

RE: J0724-4083 Lot 11 Magnolia Hills **Trenco** 818 Soundside Rd Edenton, NC 27932

Site Information:

Customer: Project Name: J0724-4083 Lot/Block: Address: City:

Model: Subdivision: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

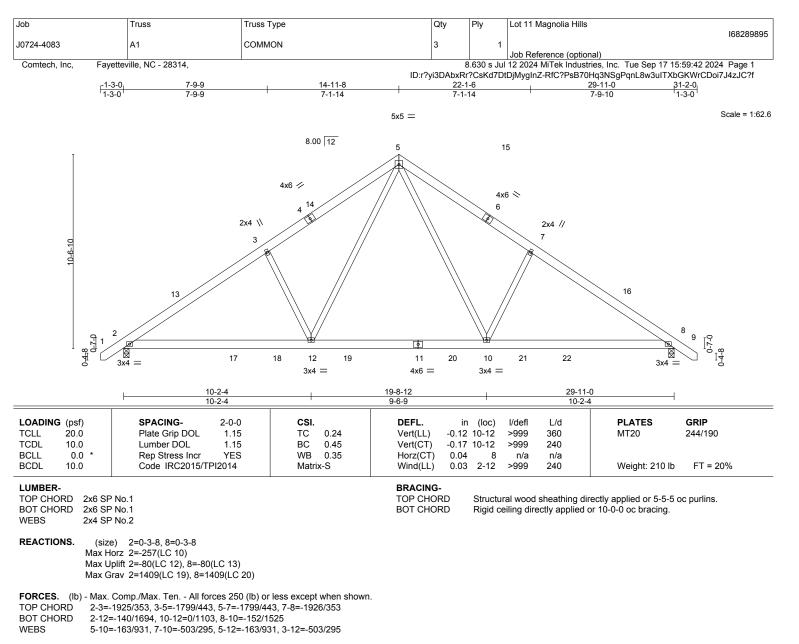
Design Code: IRC2015/TPI2014 Wind Code: ASCE 7-10 Roof Load: 40.0 psf Design Program: MiTek 20/20 8.6 Wind Speed: 130 mph Floor Load: N/A psf

This package includes 30 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
1	168289895	A1	9/19/2024	21	168289915	P1GE	9/19/2024
2	168289896	A1GE	9/19/2024	22	168289916	PB1	9/19/2024
3	168289897	A2	9/19/2024	23	168289917	PB1GE	9/19/2024
4	168289898	A2A	9/19/2024	24	168289918	PB2	9/19/2024
5	168289899	A2GE	9/19/2024	25	168289919	VC1	9/19/2024
6	168289900	B1	9/19/2024	26	168289920	VC2	9/19/2024
7	168289901	B1GE	9/19/2024	27	168289921	VG1	9/19/2024
8	168289902	C1	9/19/2024	28	168289922	VG2	9/19/2024
9	168289903	C1GE	9/19/2024	29	168289923	VG3	9/19/2024
10	168289904	D1	9/19/2024	30	168289924	VG4	9/19/2024
11	168289905	D1GE	9/19/2024				
12	168289906	G1	9/19/2024				
13	168289907	G1GE	9/19/2024				
14	168289908	G1GRD	9/19/2024				
15	168289909	H1GE	9/19/2024				
16	168289910	K1	9/19/2024				
17	168289911	K1GE	9/19/2024				
18	168289912	K2	9/19/2024				
19	168289913	K3	9/19/2024				
20	168289914	P1	9/19/2024				

The truss drawing(s) referenced above have been prepared by Truss Engineering Co. under my direct supervision

based on the parameters provided by Comtech, Inc - Fayetteville.


Truss Design Engineer's Name: Gilbert, Eric

My license renewal date for the state of North Carolina is December 31, 2024

North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

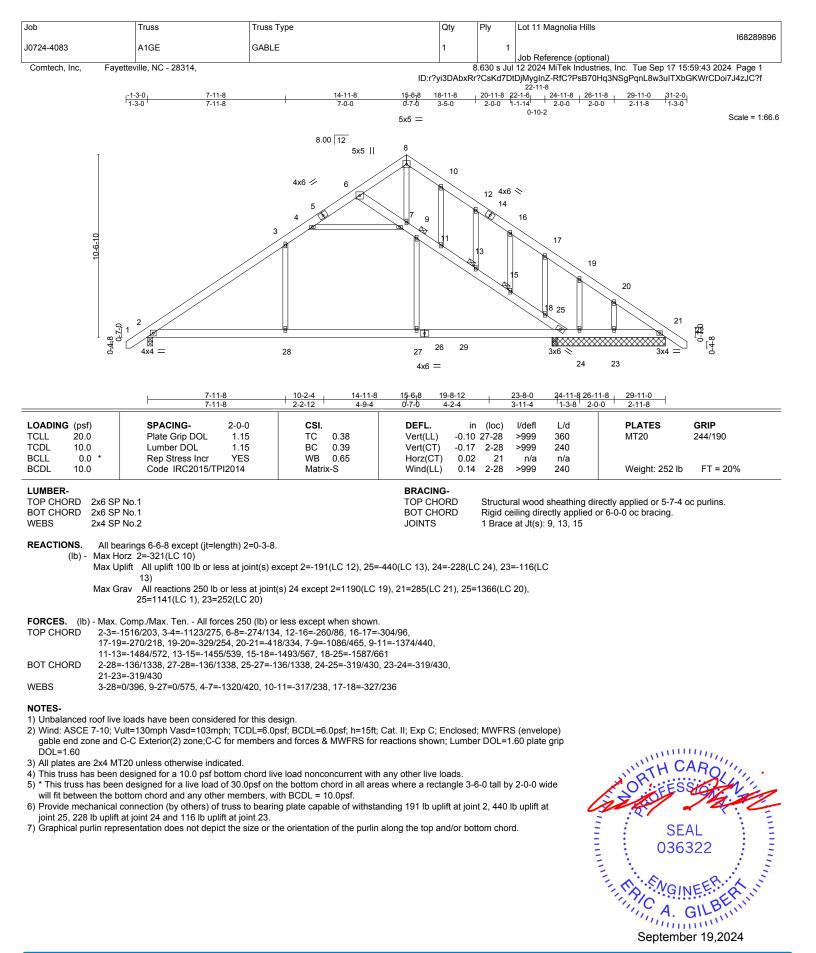
NOTES-

1) Unbalanced roof live loads have been considered for this design.

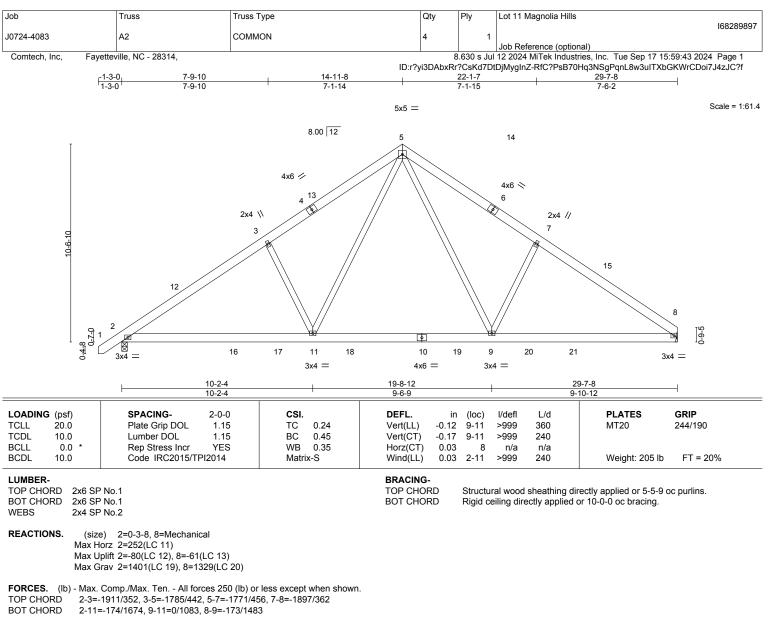
2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -1-1-7 to 3-3-6, Interior(1) 3-3-6 to 14-11-8, Exterior(2) 14-11-8 to 19-4-5, Interior(1) 19-4-5 to 31-0-7 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.


5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 8.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)


TRENCO A MiTek Affiliate

818 Soundside Road

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPII Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

TRENCO

WEBS 5-9=-162/904, 7-9=-478/294, 5-11=-163/932, 3-11=-503/295

NOTES-

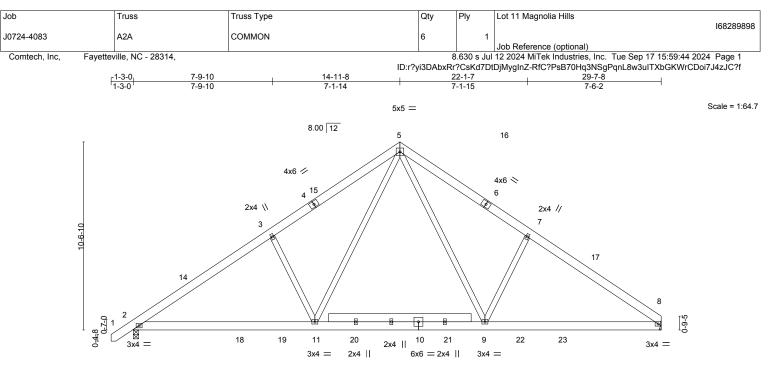
1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -1-1-7 to 3-3-6, Interior(1) 3-3-6 to 14-11-8, Exterior(2) 14-11-8 to 19-4-5, Interior(1) 19-4-5 to 29-6-12 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Refer to girder(s) for truss to truss connections.


6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 80 lb uplift at joint 2 and 61 lb uplift at joint 8.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

818 Soundside Road

	10-2-4	<u> </u>		<u>29-7-8</u> 9-10-12	
LOADING (psf) TCLL 20.0	SPACING- 2-0-0 Plate Grip DOL 1.15	CSI. DEFL TC 0.24 Vert(L	()	I/defl L/d PLATES	GRIP 244/190
TCDL 10.0 BCLL 0.0 *	Lumber DOL 1.15 Rep Stress Incr YES	BC 0.44 Vert(C WB 0.35 Horz()	CT) -0.16 9-11 >	>999 240 n/a n/a	244/150
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S Wind	LL) 0.03 2-11 >	>999 240 Weight: 2	23 lb FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x6 SP No.1BOT CHORD2x6 SP No.1WEBS2x4 SP No.2 *Except*0 400 CM CAR AND CAR

12-13: 2x6 SP No.1 REACTIONS. (size) 2=0-3-8, 8=Mechanical

Max Horz 2=252(LC 11) Max Uplift 2=-80(LC 12), 8=-61(LC 13)

Max Grav 2=1391(LC 19), 8=1319(LC 20)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-1892/352, 3-5=-1765/442, 5-7=-1752/456, 7-8=-1877/362

BOT CHORD 2-11=-174/1658, 9-11=0/1072, 8-9=-173/1467

WEBS 5-9=-162/893, 7-9=-478/294, 5-11=-163/920, 3-11=-503/295

NOTES-

1) Unbalanced roof live loads have been considered for this design.

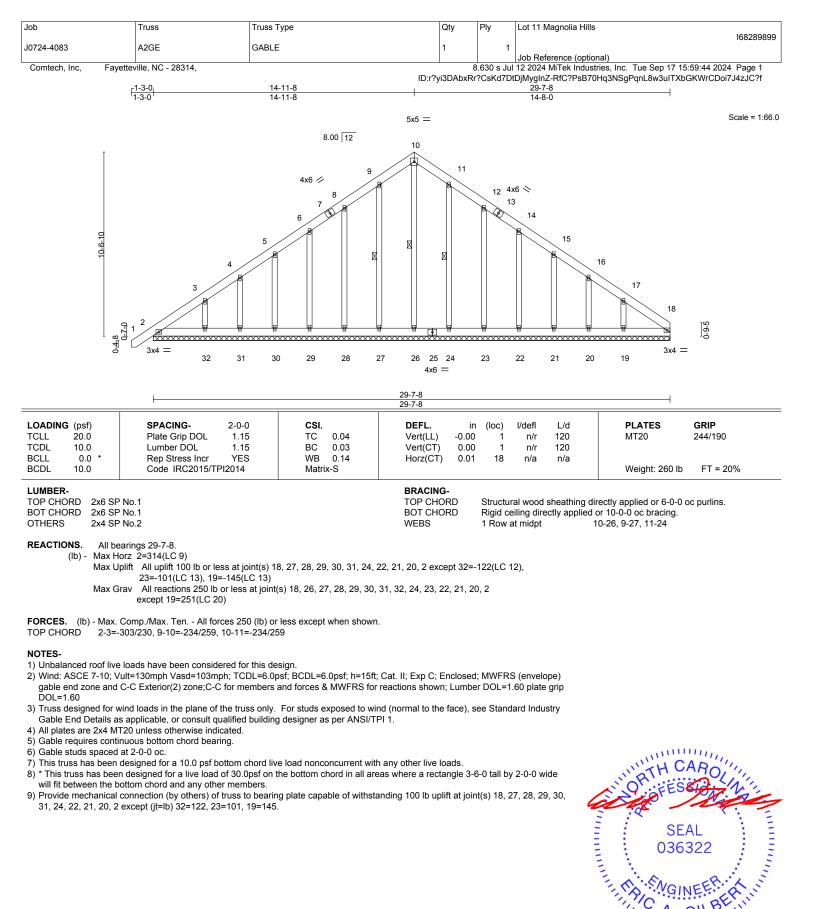
2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -1-1-7 to 3-3-6, Interior(1) 3-3-6 to 14-11-8, Exterior(2) 14-11-8 to 19-4-5, Interior(1) 19-4-5 to 29-6-12 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Refer to girder(s) for truss to truss connections.

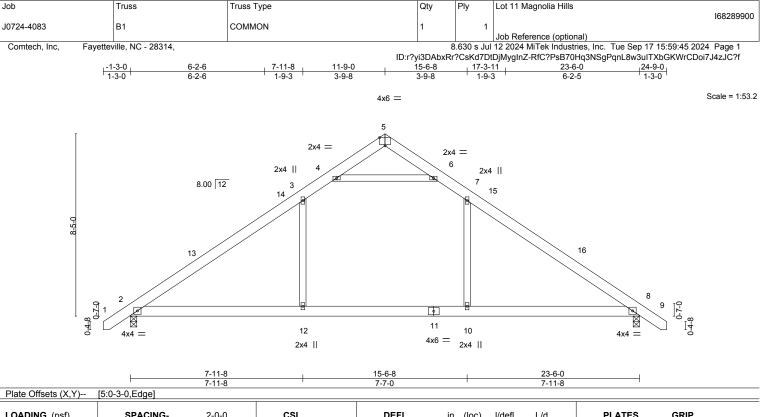
6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 80 lb uplift at joint 2 and 61 lb uplift at joint 8.



Structural wood sheathing directly applied or 5-5-14 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


A MiTek Affili 818 Soundside Road

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

TRENCO A MiTek Affiliat

September 19,2024

LOADING	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.45	Vert(LL)	-0.15	8-10	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.38	Vert(CT)	-0.20	8-10	>999	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.55	Horz(CT)	0.02	8	n/a	n/a		
BCDL	10.0	Code IRC2015/TF	912014	Matri	x-S	Wind(LL)	0.13	2-12	>999	240	Weight: 151 lb	FT = 20%
											-	
						BBACING						

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 WEBS 2x4 SP No.2

REACTIONS. (size) 2=0-3-8, 8=0-3-8 Max Horz 2=-206(LC 10) Max Uplift 2=-67(LC 12), 8=-67(LC 13) Max Grav 2=1105(LC 19), 8=1105(LC 20)

- FORCES. (lb) Max. Comp./Max. Ten. All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-1487/249, 3-4=-1028/302, 4-5=-72/280, 5-6=-72/281, 6-7=-1027/302,
- TOP CHORD
- 7-8=-1486/249
- BOT CHORD 2-12=-42/1150, 10-12=-42/1150, 8-10=-42/1150
- WEBS 7-10=0/427, 3-12=0/427, 4-6=-1398/431

NOTES-

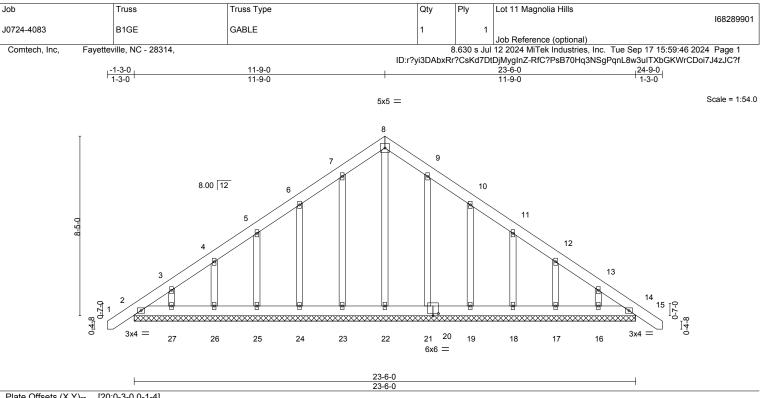
1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -1-1-7 to 3-3-6, Interior(1) 3-3-6 to 11-9-0, Exterior(2) 11-9-0 to 16-1-13, Interior(1) 16-1-13 to 24-7-7 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 8.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of frusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB Building Component Scitut Information**. Building from the Structure Building Component Advance interpretention. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl	L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.03	Vert(LL) -0.00 14 n/r	120	MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.02	Vert(CT) -0.00 14 n/r	120	
3CLL 0.0 *	Rep Stress Incr YES	WB 0.15	Horz(CT) 0.00 14 n/a	n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S			Weight: 192 lb FT = 20%

LUMBER-

TOP CHORD2x6 SP No.1BOT CHORD2x6 SP No.1OTHERS2x4 SP No.2

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 23-6-0.

(lb) - Max Horz 2=-257(LC 10)

 $Max \ Uplift \ \ All \ uplift \ \ 100 \ lb \ or \ less \ at \ joint(s) \ 2, \ 14, \ 23, \ 24, \ 25, \ 26, \ 27, \ 21, \ 19, \ 18, \ 17, \ 16 \ and \ 100 \ lb \ and \ and$

Max Grav All reactions 250 lb or less at joint(s) 2, 14, 22, 23, 24, 25, 26, 27, 21, 19, 18, 17, 16

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

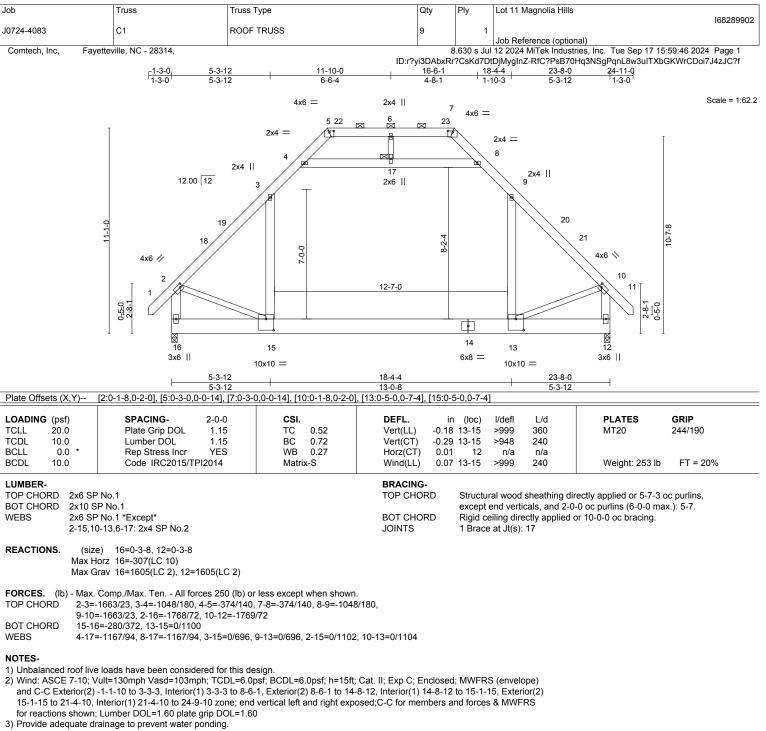
2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) All plates are 2x4 MT20 unless otherwise indicated.

5) Gable requires continuous bottom chord bearing.

6) Gable studs spaced at 2-0-0 oc.

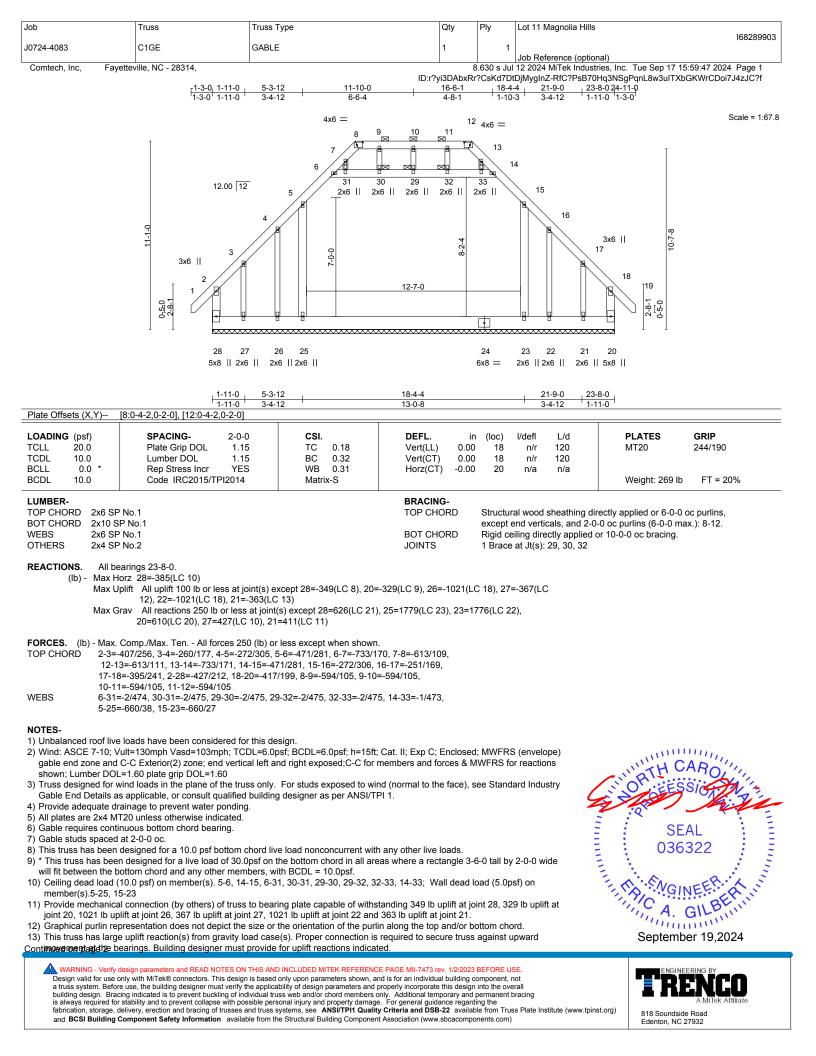

7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 14, 23, 24, 25, 26, 27, 21, 19, 18, 17, 16.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

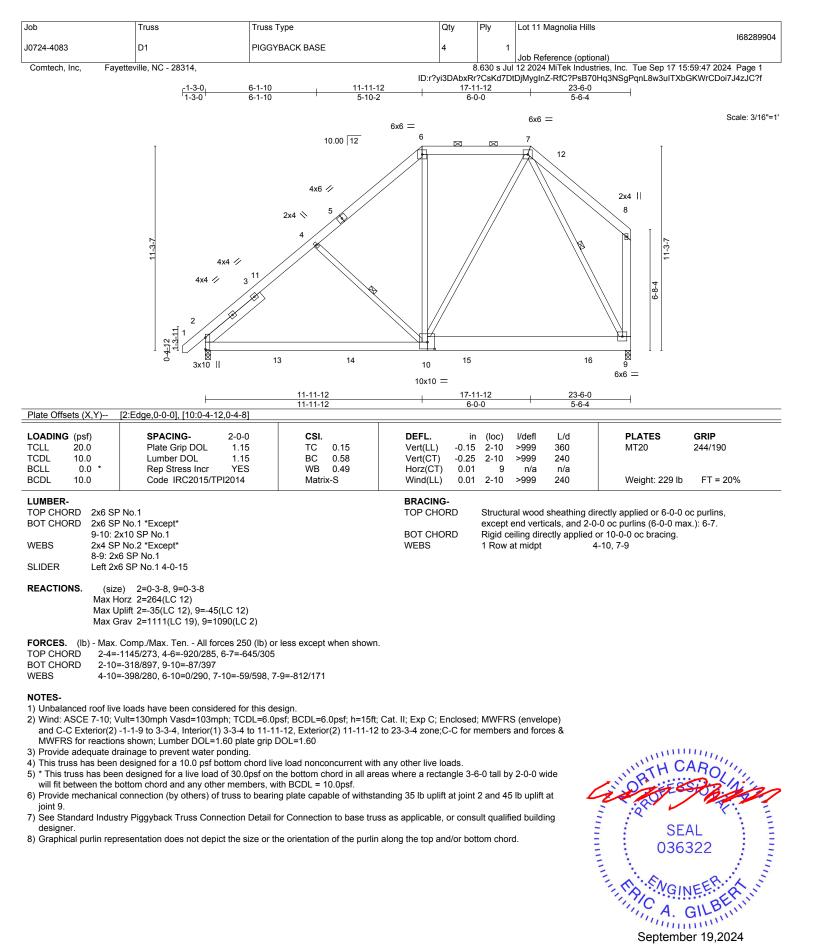

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

- 6) Ceiling dead load (10.0 psf) on member(s). 3-4, 8-9, 4-17, 8-17; Wall dead load (5.0psf) on member(s).3-15, 9-13
- 7) Bottom chord live load (40.0 psf) and additional bottom chord dead load (10.0 psf) applied only to room. 13-15

8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
 9) Attic room checked for L/360 deflection.

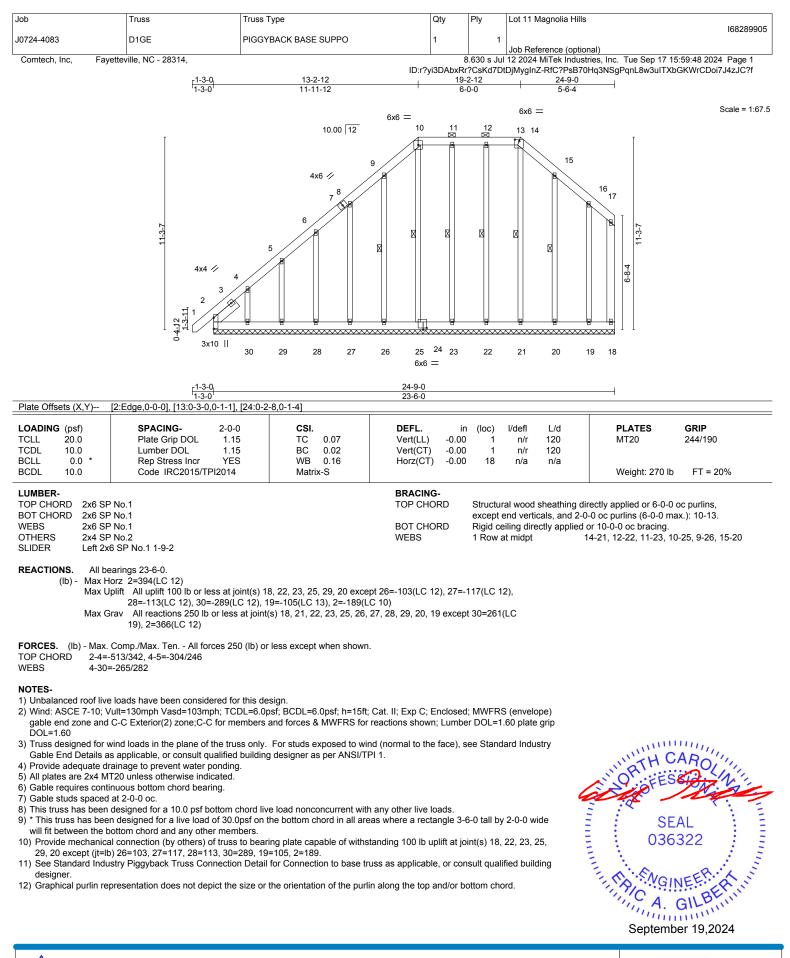
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

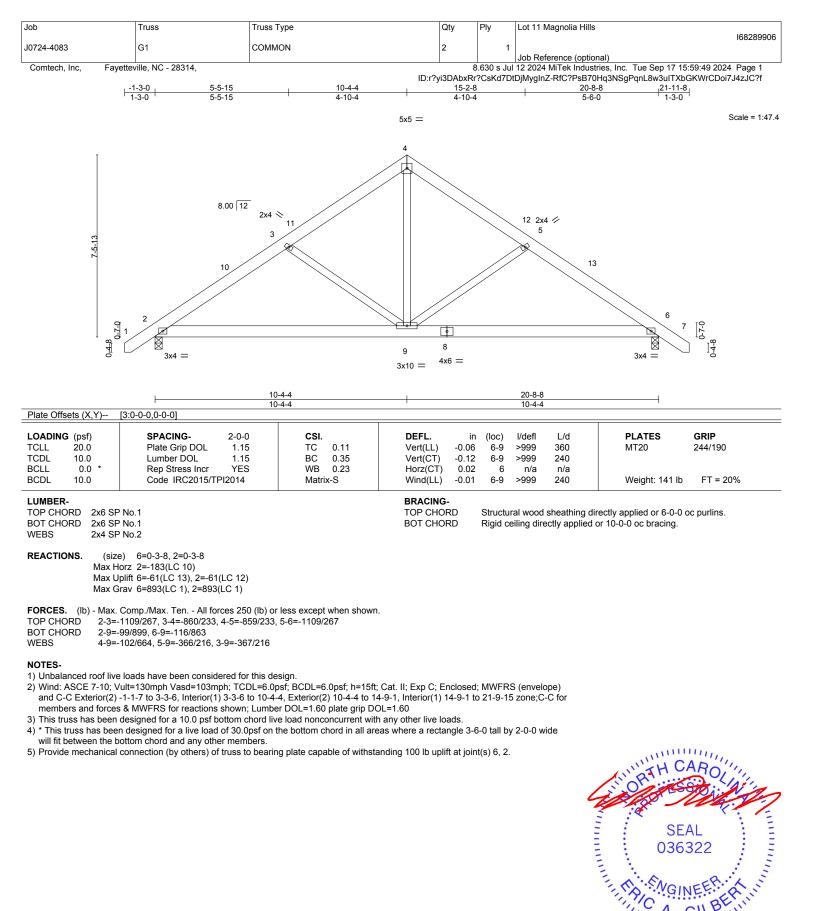
Job	Truss	Truss Type	Qty	Ply	Lot 11 Magnolia Hills	
					168289903	
J0724-4083	C1GE	GABLE	1	1		
					Job Reference (optional)	
Comtech, Inc, Fayettev						


ID:r?yi3DAbxRr?CsKd7DtDjMygInZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

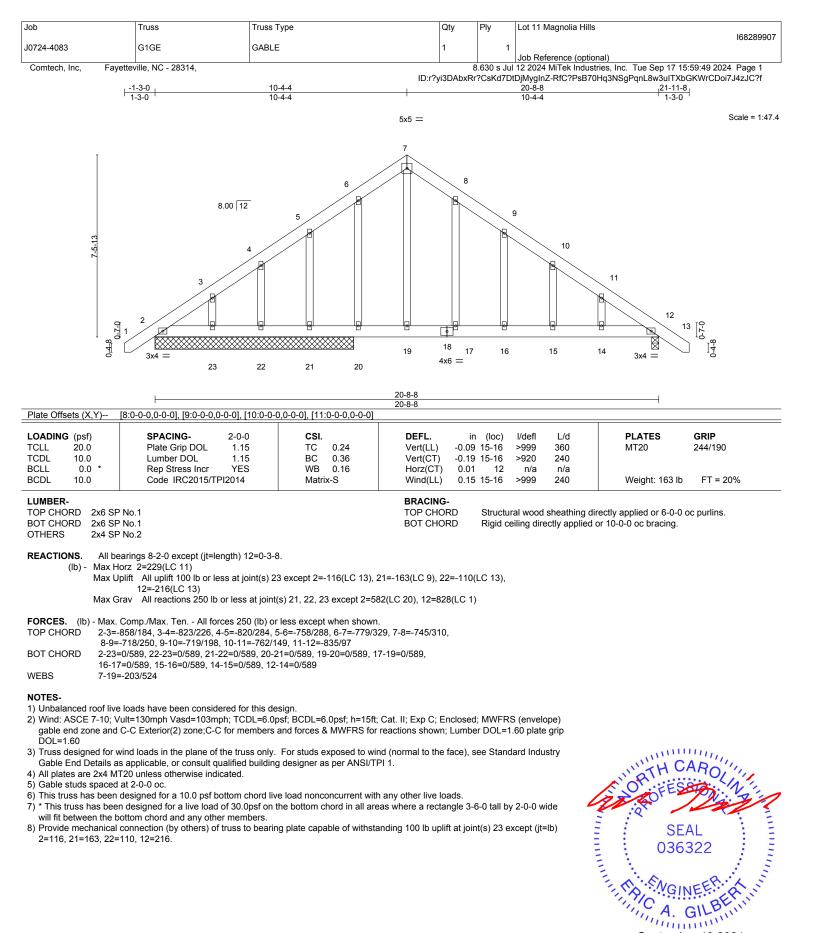
NOTES-

14) Attic room checked for L/360 deflection.

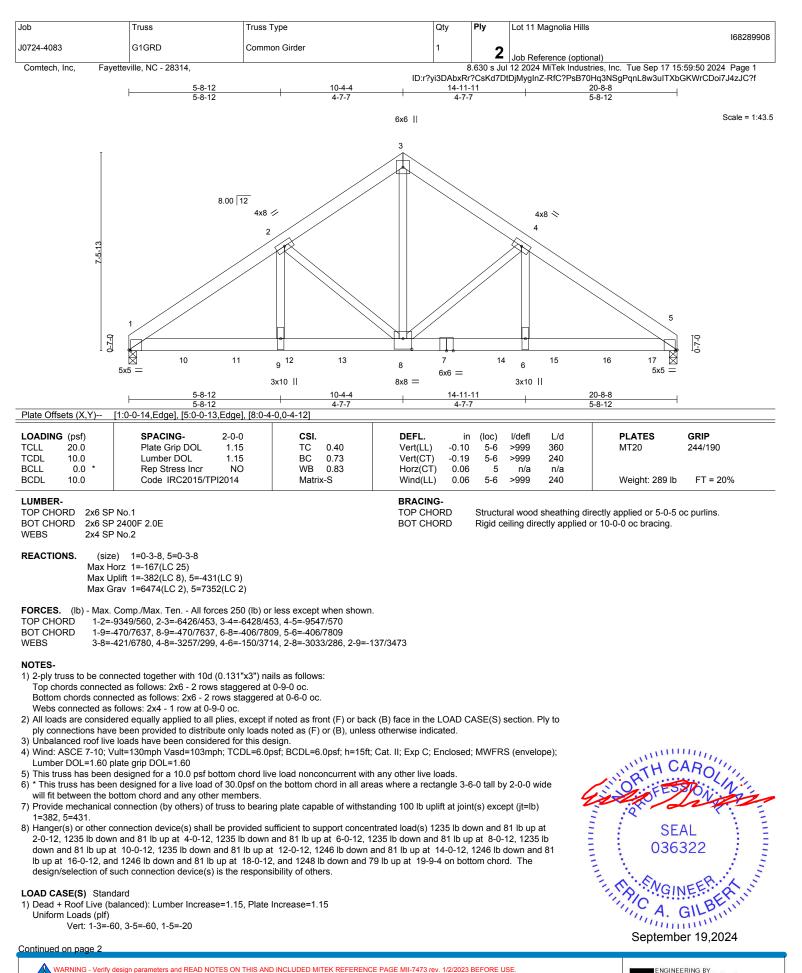

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



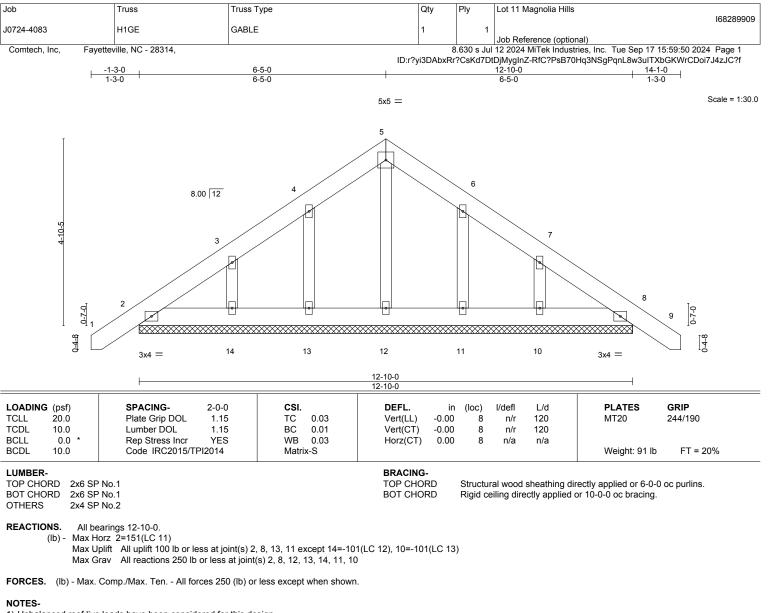
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcaccomponents.com)


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

September 19,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcaccomponents.com) September 19,2024

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)


ſ	Job	Truss	Truss Type	Qty	Ply	Lot 11 Magnolia Hills	
						168289908	
	J0724-4083	G1GRD	Common Girder	1	2		
					_	Job Reference (optional)	
	Comtech, Inc, Fayetteville, NC - 28314, 8.630 s Jul 12 2024 MiTek Industries, Inc. Tue Sep 17 15:59:50 2024 Page 2						
			ID:r?yi3DAbxRr?CsKd7DtDjMygInZ-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f				

LOAD CASE(S) Standard Concentrated Loads (Ib)

Vert: 7=-1155(B) 8=-1155(B) 10=-1155(B) 11=-1155(B) 12=-1155(B) 13=-1155(B) 14=-1155(B) 15=-1155(B) 16=-1155(B) 17=-1157(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

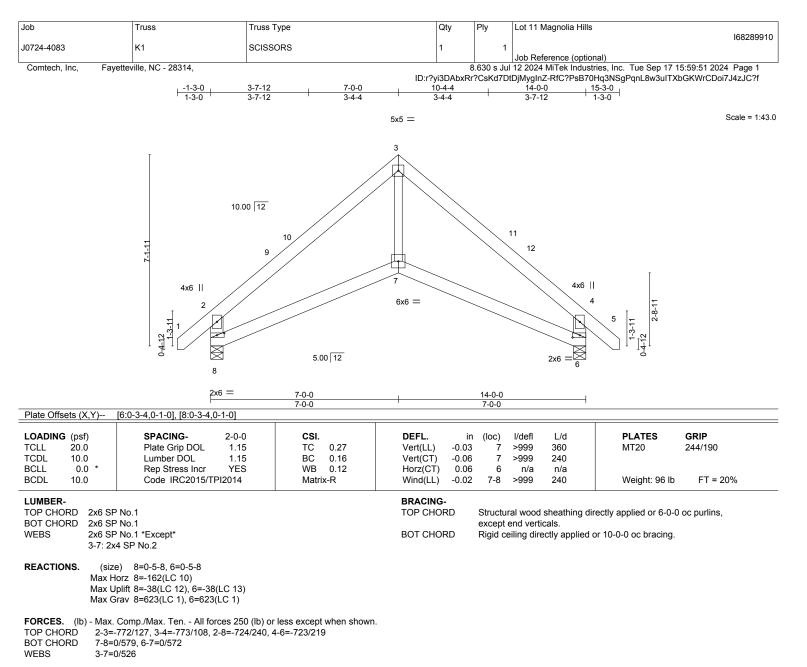
1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 pole=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

- 4) All plates are 2x4 MT20 unless otherwise indicated.5) Gable requires continuous bottom chord bearing.
- 5) Gable requires continuous bottom
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 8, 13, 11 except (jt=lb) 14=101, 10=101.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

TRENCE A MITEK Affilia

818 Soundside Road

NOTES-

1) Unbalanced roof live loads have been considered for this design.

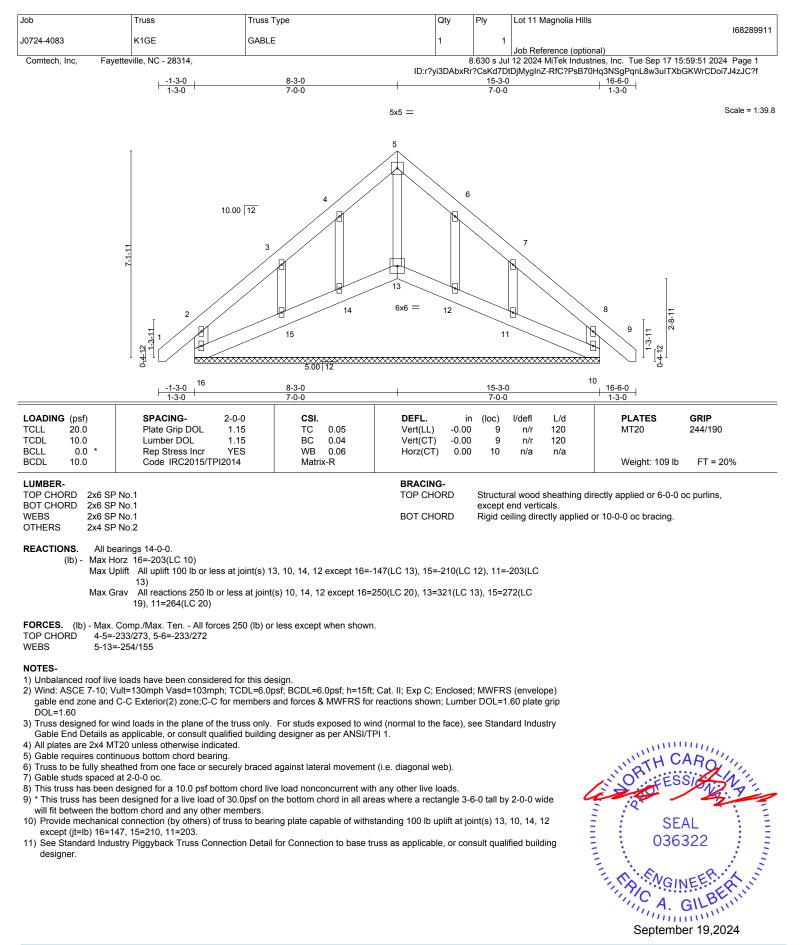
2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -1-1-9 to 3-3-4, Interior(1) 3-3-4 to 7-0-0, Exterior(2) 7-0-0 to 11-4-13, Interior(1) 11-4-13 to 15-1-9 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

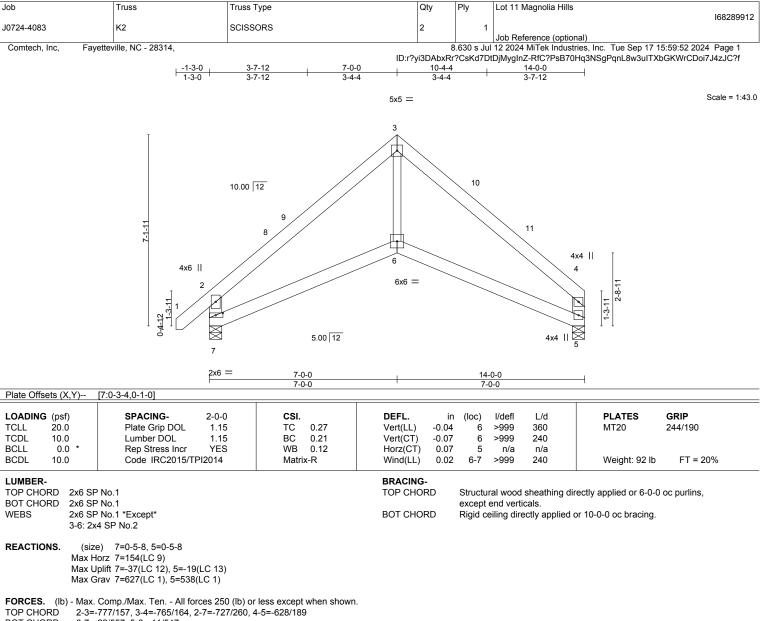
3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Bearing at joint(s) 8, 6 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 6.


7) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

818 Soundside Road

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

- BOT CHORD 6-7=-22/557, 5-6=-11/547
- WEBS 3-6=0/518

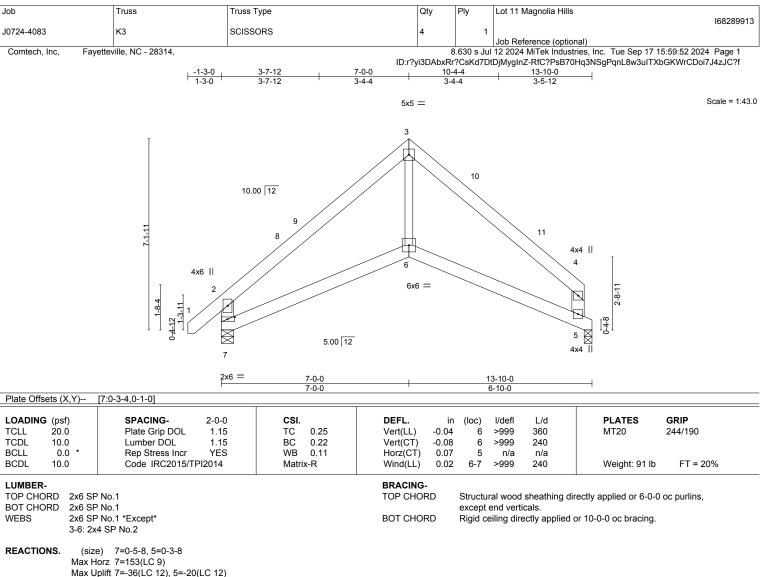
NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -1-1-9 to 3-3-4, Interior(1) 3-3-4 to 7-0-0, Exterior(2) 7-0-0 to 11-4-13, Interior(1) 11-4-13 to 13-9-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


5) Bearing at joint(s) 7, 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 5.

7) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Max Grav 7=609(LC 1), 5=519(LC 1)

 FORCES.
 (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 TOP CHORD
 2-3=-726/156, 3-4=-710/171, 2-7=-694/261, 4-5=-589/188

BOT CHORD 6-7=-28/515, 5-6=-22/501

WEBS 3-6=0/478

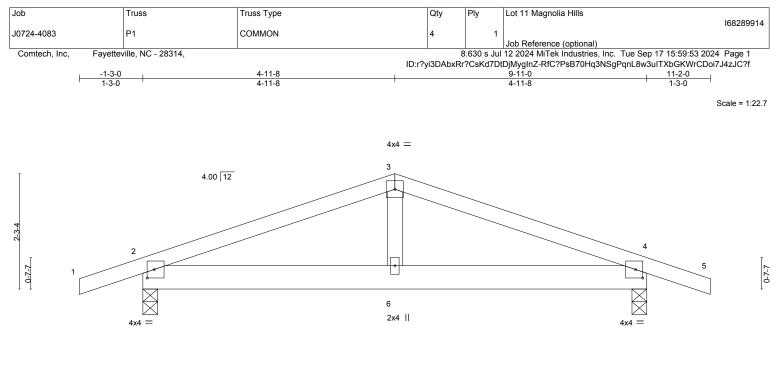
NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -1-1-9 to 3-3-4, Interior(1) 3-3-4 to 7-0-0, Exterior(2) 7-0-0 to 11-4-13, Interior(1) 11-4-13 to 13-3-12 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


5) Bearing at joint(s) 7, 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

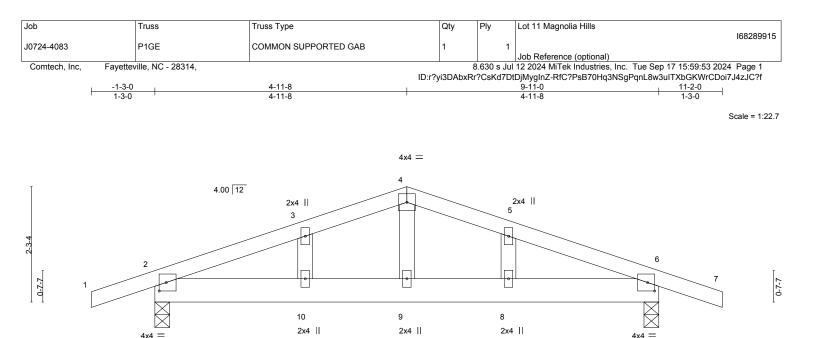
6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 5.

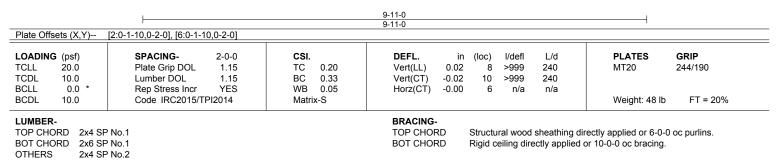
7) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent bucking of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

		11-8	9-11-0
Plate Offsets (X,Y)	<u>4</u> [2:0-1-10,0-2-0], [4:0-1-10,0-2-0]	11-8	4-11-8
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.22 BC 0.45 WB 0.05 Matrix-S	DEFL. in (loc) l/defl L/d Vert(LL) 0.02 4-6 >999 240 Vert(CT) -0.02 6 >999 240 Horz(CT) -0.00 4 n/a n/a
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x6 SF WEBS 2x4 SF	? No.1		BRACING-TOP CHORDStructural wood sheathing directly applied or 6-0-0 oc purlins.BOT CHORDRigid ceiling directly applied or 9-10-12 oc bracing.
Max H Max U	e) 2=0-3-8, 4=0-3-8 lorz 2=42(LC 12) lplift 2=-271(LC 8), 4=-271(LC 9) irav 2=469(LC 1), 4=469(LC 1)		
TOP CHORD 2-3=- BOT CHORD 2-6=-	Comp./Max. Ten All forces 250 (lb) o -609/728, 3-4=-609/728 -598/514, 4-6=-598/514 -302/230	r less except when shown.	
2) Wind: ASCE 7-10; V gable end zone and Lumber DOL=1.60 p	C-C Exterior(2) zone; porch left and rig	psf; BCDL=6.0psf; h=15ft; ht exposed;C-C for memb	Cat. II; Exp C; Enclosed; MWFRS (envelope) ers and forces & MWFRS for reactions shown; any other live loads.

iyne


4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=271, 4=271.

6) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of frusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB Building Component Scitut Information**. Building from the Structure Building Component Advance interpretention. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

REACTIONS. (size) 2=0-3-8, 6=0-3-8 Max Horz 2=42(LC 16) Max Uplift 2=-271(LC 8), 6=-271(LC 9) Max Grav 2=469(LC 1), 6=469(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-599/706, 3-4=-558/732, 4-5=-558/732, 5-6=-599/706

BOT CHORD 2-10=-590/514, 9-10=-590/514, 8-9=-590/514, 6-8=-590/514

WEBS 4-9=-339/210

NOTES-

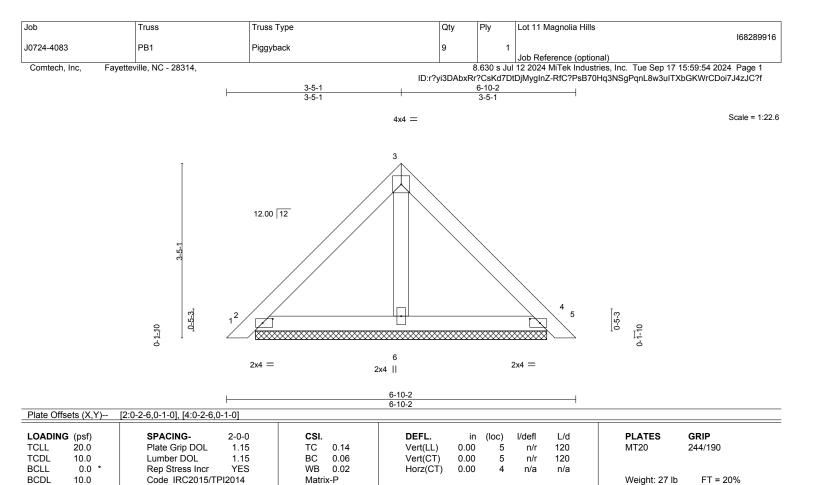
1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

Gable studs spaced at 2-0-0 oc.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=271, 6=271.

 See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcaccomponents.com)

BRACING-

TOP CHORD

BOT CHORD

LUMBER-	
---------	--

TOP CHORD 2x4 SP No.1 2x4 SP No.1 BOT CHORD OTHERS 2x4 SP No.2

(size) 2=5-8-8, 4=5-8-8, 6=5-8-8

REACTIONS.

Max Horz 2=-77(LC 10) Max Uplift 2=-27(LC 13), 4=-31(LC 13)

Max Grav 2=162(LC 1), 4=162(LC 1), 6=177(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)

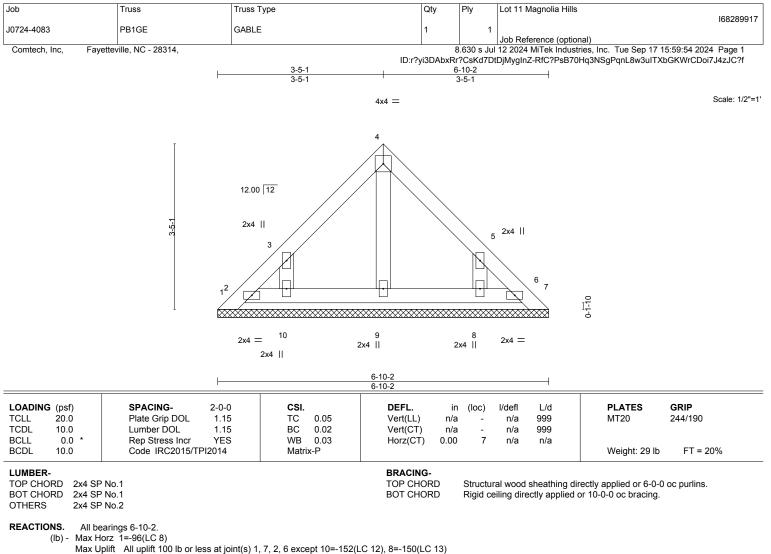
and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.


7) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall a loss system. Before use, the building designer index very the applications of design had very the application of and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Max Grav All reactions 250 lb or less at joint(s) 1, 7, 2, 6, 9, 10, 8

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 pole 1.60

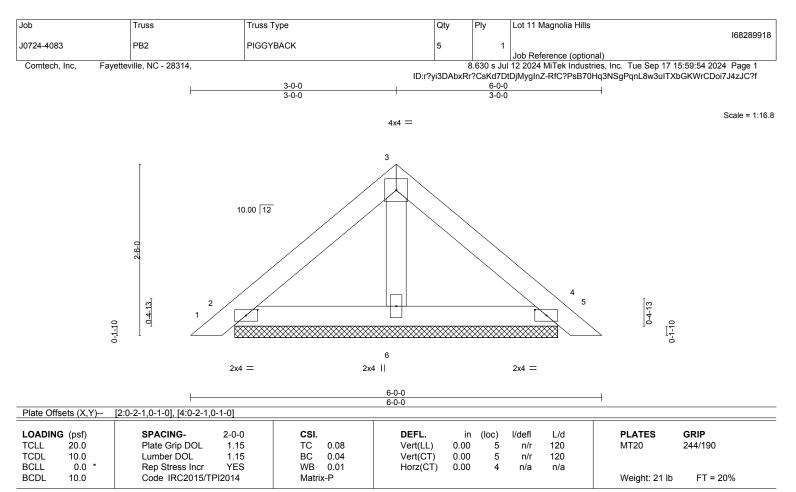
3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) Gable requires continuous bottom chord bearing.

5) Gable studs spaced at 2-0-0 oc.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


8) Bearing at joint(s) 7, 6 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 7, 2, 6 except (jt=lb) 10=152, 8=150.

10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x4 SP No.1BOT CHORD2x4 SP No.1OTHERS2x4 SP No.2

REACTIONS. (size) 2=4-8-9, 4=4-8-9, 6=4-8-9

Max Horz 2=-69(LC 10) Max Uplift 2=-47(LC 12), 4=-56(LC 13)

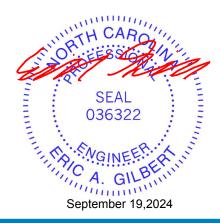
Max Grav 2=136(LC 1), 4=136(LC 1), 6=155(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

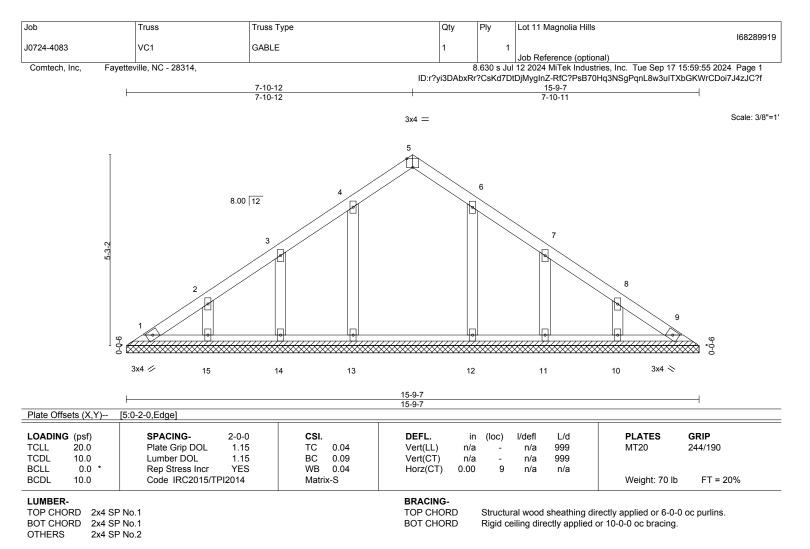

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.

 See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.


Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

A MiTek Affiliate

818 Soundside Road

REACTIONS. All bearings 15-9-7.

(lb) - Max Horz 1=-148(LC 8)

Max Uplift All uplift 100 lb or less at joint(s) 1, 13, 14, 15, 12, 10 except 11=-100(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 1, 9, 14, 15, 11, 10 except 13=295(LC 19), 12=287(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

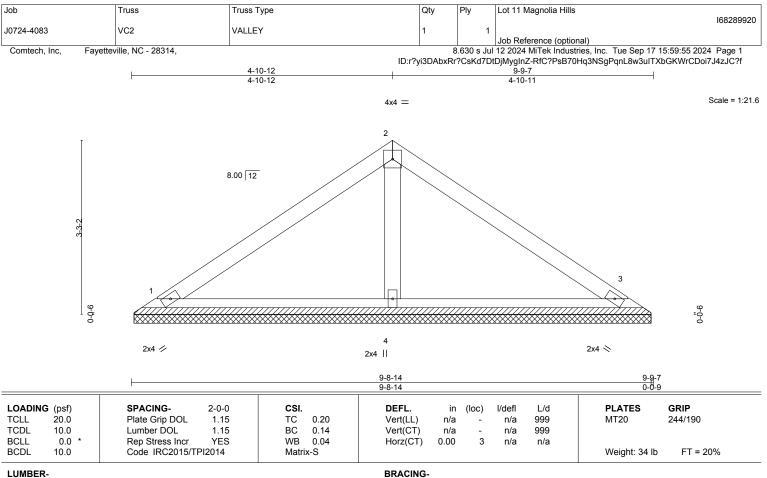
1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) All plates are 2x4 MT20 unless otherwise indicated.

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 13, 14, 15, 12, 10 except (jt=lb) 11=100.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

A MiTek Af 818 Soundside Road Edenton, NC 27932

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD OTHERS

2x4 SP No.1 2x4 SP No.2

REACTIONS. 1=9-8-5, 3=9-8-5, 4=9-8-5 (size) Max Horz 1=-71(LC 8) Max Uplift 1=-22(LC 12), 3=-29(LC 13) Max Grav 1=175(LC 1), 3=175(LC 1), 4=354(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

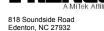
1) Unbalanced roof live loads have been considered for this design.

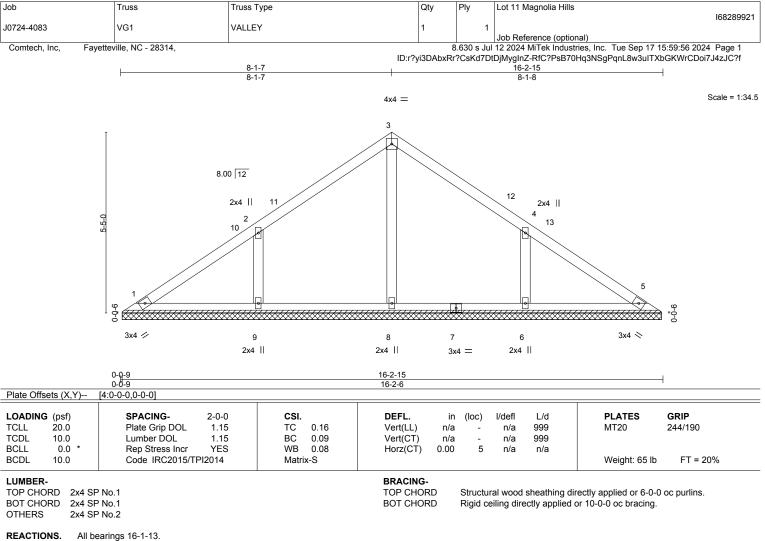
2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)

and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.



Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of frusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB Building Component Scitut Information**. Building from the Structure Building Component Advance interpretention. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Max Horz 1=-122(LC 8) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 1 except 9=-109(LC 12), 6=-109(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 1, 5, 8 except 9=387(LC 19), 6=386(LC 20)

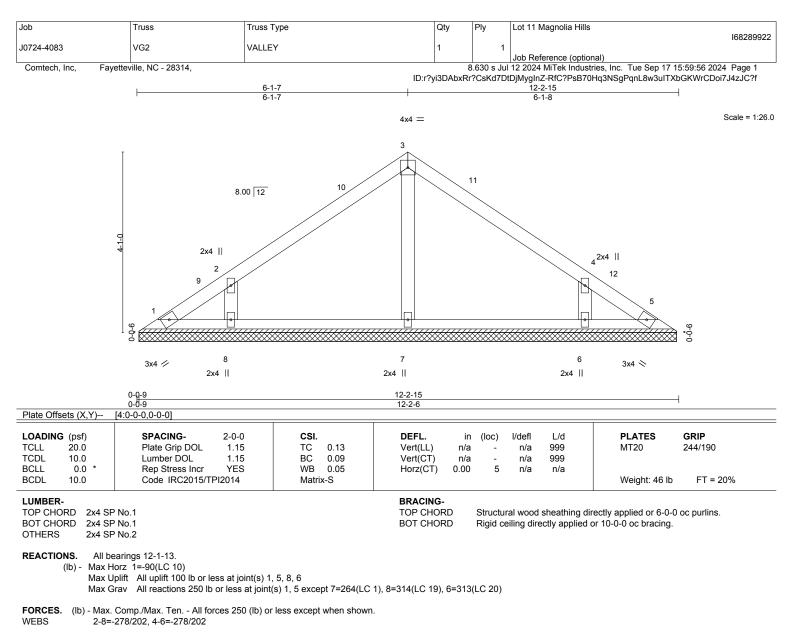
FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

2-9=-324/212, 4-6=-324/212 WEBS

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-5-15 to 4-10-12, Interior(1) 4-10-12 to 8-1-7, Exterior(2) 8-1-7 to 12-6-4, Interior(1) 12-6-4 to 15-9-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1 except (jt=lb) 9=109, 6=109

6) Non Standard bearing condition. Review required.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent bucking of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

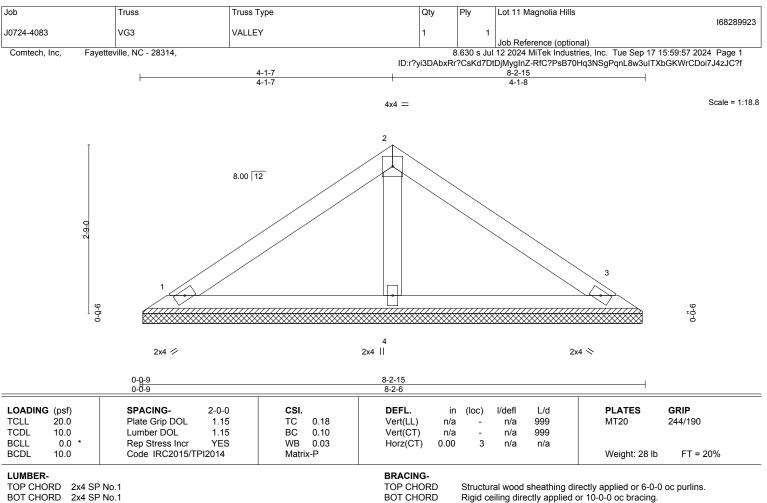
NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-5-15 to 4-10-12, Interior(1) 4-10-12 to 6-1-7, Exterior(2) 6-1-7 to 10-6-4, Interior(1) 10-6-4 to 11-9-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5, 8, 6.


6) Non Standard bearing condition. Review required.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

TRENCO A MiTek Affiliate

818 Soundside Road

BOT CHORD OTHERS 2x4 SP No.2

REACTIONS. 1=8-1-13, 3=8-1-13, 4=8-1-13 (size) Max Horz 1=-58(LC 10) Max Uplift 1=-25(LC 12), 3=-31(LC 13) Max Grav 1=158(LC 1), 3=158(LC 1), 4=265(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

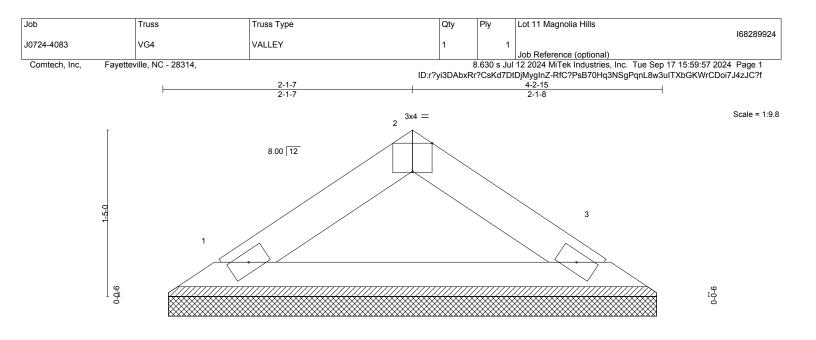
NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)

and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3. 6) Non Standard bearing condition. Review required.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent bucking of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

2x4 🥢

2x4 📎

Structural wood sheathing directly applied or 4-2-15 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

0-0-9 Plate Offsets (X,Y) [2:0-2-0,Edge]	4-2-6			I			
LOADING(psf)SPACIITCLL20.0Plate GTCDL10.0LumberBCLL0.0 *Rep StrBCDL10.0Code II	ip DOL 1.15 DOL 1.15	CSI. TC 0.03 BC 0.09 WB 0.00 Matrix-P	DEFL. in Vert(LL) n/a Vert(CT) n/a Horz(CT) 0.00	a - n/a a - n/a	999	PLATES MT20 Weight: 12 lb	GRIP 244/190 FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x4 SP No.1BOT CHORD2x4 SP No.1

REACTIONS. (size) 1=4-1-13, 3=4-1-13 Max Horz 1=-26(LC 8) Max Uplift 1=-7(LC 12), 3=-7(LC 13) Max Grav 1=130(LC 1), 3=130(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

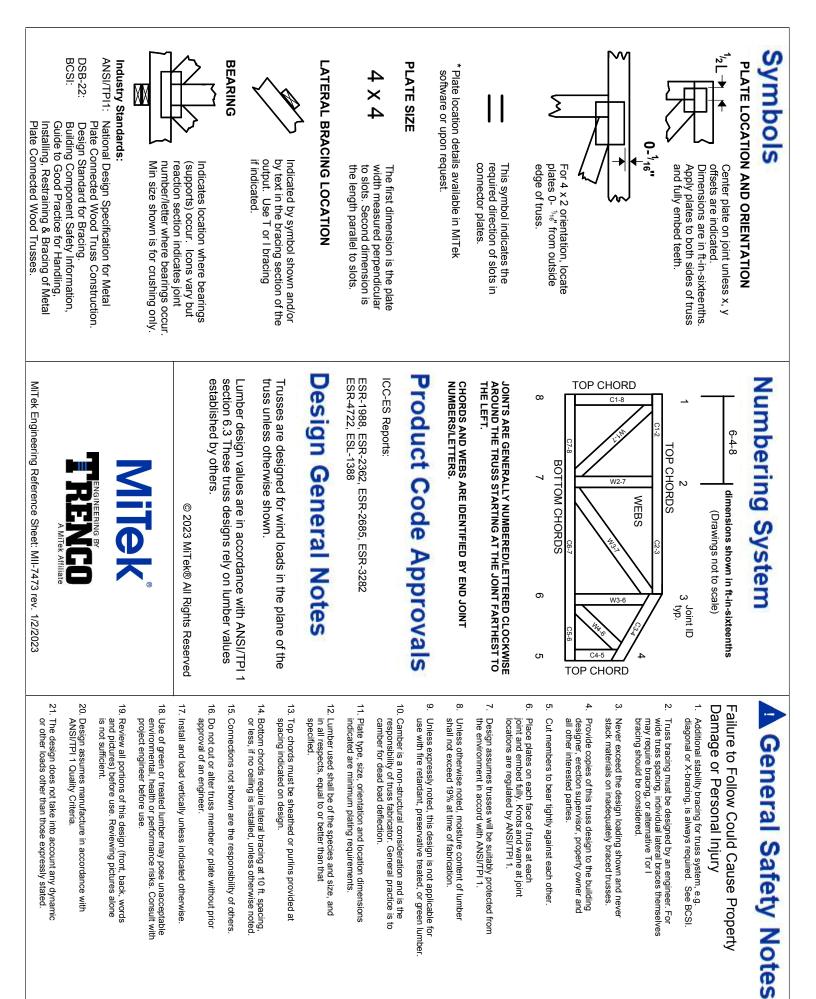
1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)

and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.6) Non Standard bearing condition. Review required.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

RE: J0724-4084 Lot 11 Magnolia Hills **Trenco** 818 Soundside Rd Edenton, NC 27932

Site Information:

Customer: Project Name: J0724-4084 Lot/Block: Address: City:

Model: Subdivision: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2015/TPI2014 Wind Code: N/A Roof Load: N/A psf Design Program: MiTek 20/20 8.6 Wind Speed: N/A mph Floor Load: 55.0 psf

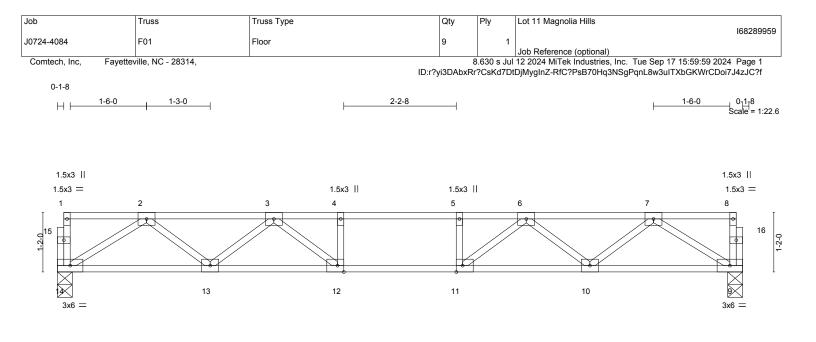
This package includes 12 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date
1	168289959	F01	9/20/2024
2	168289960	F02	9/20/2024
3	168289961	F03	9/20/2024
4	168289962	F04	9/20/2024
5	168289963	F04A	9/20/2024
6	168289964	F05	9/20/2024
7	168289965	F06	9/20/2024
8	168289966	F06A	9/20/2024
9	168289967	F07	9/20/2024
10	168289968	FKW1	9/20/2024
11	168289969	FKW3	9/20/2024
12	168289970	FKW6	9/20/2024

The truss drawing(s) referenced above have been prepared by

Truss Engineering Co. under my direct supervision

based on the parameters provided by Comtech, Inc - Fayetteville.


Truss Design Engineer's Name: Gilbert, Eric

My license renewal date for the state of North Carolina is December 31, 2024

North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

			<u>13-5-8</u> 13-5-8			
Plate Offsets (X,Y)	[11:0-1-8,Edge], [12:0-1-8,Edge]					
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.42 BC 0.51 WB 0.31 Matrix-S	Vert(LL) -0.1	n (loc) l/defl L/ 2 12-13 >999 48 5 12-13 >999 36 3 9 n/a n/	0 MT20 0	GRIP 244/190 FT = 20%F, 11%E
BOT CHORD 2x4 SI	P No.1(flat) P No.1(flat) P No.3(flat) re) 14=0-3-8. 9=0-3-8	BRACING- TOP CHORD BOT CHORD	except end verticals.	thing directly applied or 6-0-0 applied or 10-0-0 oc bracing.) oc purlins,	

Max Grav 14=720(LC 1), 9=720(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-1533/0, 3-4=-2255/0, 4-5=-2255/0, 5-6=-2255/0, 6-7=-1533/0

BOT CHORD 13-14=0/1028, 12-13=0/2002, 11-12=0/2255, 10-11=0/2002, 9-10=0/1028

WEBS 2-14=-1217/0, 2-13=0/658, 3-13=-610/0, 3-12=0/546, 4-12=-260/0, 7-9=-1217/0,

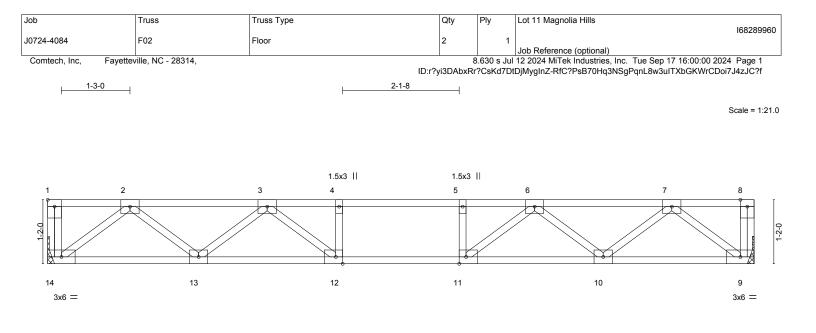
7-10=0/658, 6-10=-610/0, 6-11=0/546, 5-11=-260/0

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) All plates are 3x4 MT20 unless otherwise indicated.

3) Plates checked for a plus or minus 1 degree rotation about its center.


4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

			12-10-8 12-10-8							
Plate Offsets (X,Y) [1:Edge,0-1-8], [11:0-1-8,Edge], [12:0-1-8,Edge]										
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.38 BC 0.46 WB 0.31 Matrix-S	Vert(LL) -0.10	n (loc) l/defl L/d 0 12-13 >999 480 3 12-13 >999 360 3 9 n/a n/a	PLATES MT20 Weight: 65 lb	GRIP 244/190 FT = 20%F, 11%E				
BOT CHORD 2x4 SF	P No.1(flat) P No.1(flat) P No.3(flat)	BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dii except end verticals. Rigid ceiling directly applied o) oc purlins,					

REACTIONS. (size) 14=Mechanical, 9=Mechanical Max Grav 14=694(LC 1), 9=694(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-1351/0, 3-4=-2060/0, 4-5=-2060/0, 5-6=-2060/0, 6-7=-1351/0

BOT CHORD 13-14=0/851, 12-13=0/1815, 11-12=0/2060, 10-11=0/1815, 9-10=0/851

2-14=-1068/0, 2-13=0/650, 3-13=-605/0, 3-12=0/519, 7-9=-1068/0, 7-10=0/650, WEBS

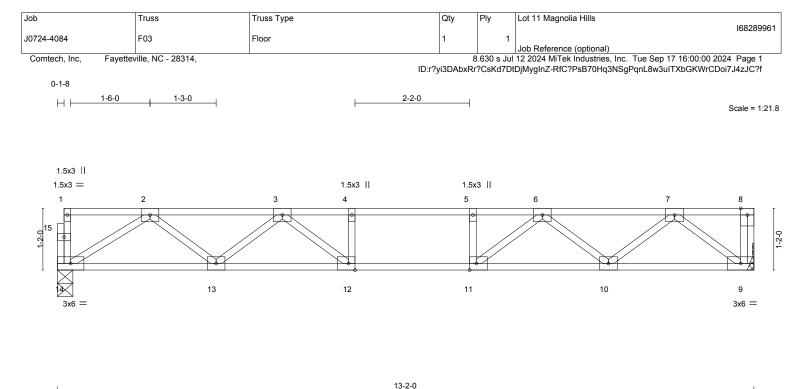
6-10=-605/0, 6-11=0/519

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) All plates are 3x4 MT20 unless otherwise indicated.

3) Plates checked for a plus or minus 1 degree rotation about its center.


4) Refer to girder(s) for truss to truss connections.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oclapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of frusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCI8. Building component forth. Information, and information. Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

			13-2-0			
Plate Offsets (X,Y)	[11:0-1-8,Edge], [12:0-1-8,Edge]					
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.43 BC 0.51 WB 0.32 Matrix-S	Vert(LL) -0.1	in (loc) l/defl L/d 2 12-13 >999 480 5 12-13 >999 360 3 9 n/a n/a	PLATES MT20 Weight: 66 lb	GRIP 244/190 FT = 20%F, 11%E
BOT CHORD 2x4 SF	P No.1(flat) P No.1(flat) P No.3(flat)	BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dir except end verticals. Rigid ceiling directly applied c	, ,,,) oc purlins,	

REACTIONS. (size) 14=0-3-8, 9=Mechanical Max Grav 14=704(LC 1), 9=710(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-1491/0, 3-4=-2156/0, 4-5=-2156/0, 5-6=-2156/0, 6-7=-1389/0

BOT CHORD 13-14=0/1003, 12-13=0/1938, 11-12=0/2156, 10-11=0/1875, 9-10=0/872

- WEBS 2-14=-1188/0, 2-13=0/635, 3-13=-582/0, 3-12=0/504, 7-9=-1094/0, 7-10=0/672,
 - 6-10=-633/0, 6-11=0/562, 5-11=-265/0

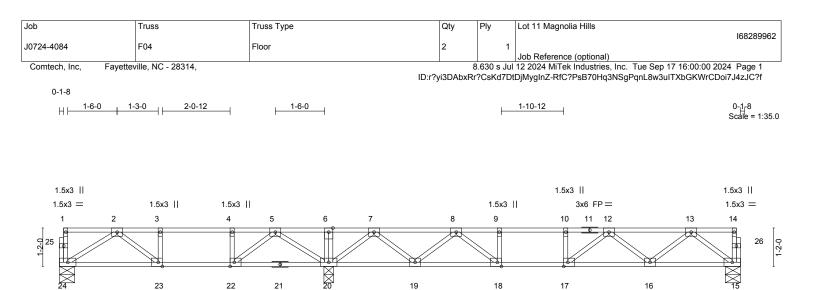
NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) All plates are 3x4 MT20 unless otherwise indicated.

3) Plates checked for a plus or minus 1 degree rotation about its center.

4) Refer to girder(s) for truss to truss connections.


5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

6) CAUTION, Do not erect truss backwards.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

L		20-8-8							
	8-2-4			12-6-4		I			
Plate Offsets (X,Y)	[17:0-1-8,Edge], [18:0-1-8,Edge], [22:0-	1-8,Edge], [23:0-1-8,Edge]							
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES	CSI. TC 0.42 BC 0.46 WB 0.34	Vert(LL) -0.0	n (loc) l/defl L/d 9 16-17 >999 480 2 16-17 >999 360 2 15 n/a n/a	PLATES MT20	GRIP 244/190			
BCDL 5.0	Code IRC2015/TPI2014	Matrix-S			Weight: 103 lb	FT = 20%F, 11%E			
BOT CHORD 2x4 SI	P No.1(flat) P No.1(flat) P No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing di except end verticals. Rigid ceiling directly applied	,	oc purlins,			
REACTIONS. (siz Max C	ze) 24=0-5-8, 20=0-3-8, 15=0-5-8 Grav 24=403(LC 3), 20=1256(LC 1), 15=	640(LC 7)							
	. Comp./Max. Ten All forces 250 (lb) oi -694/30, 3-4=-694/30, 4-5=-694/30, 5-6=		0,						

2-3--694/30, 3-4--694/30, 4-5--694/30, 5-6-0/704, 6-7-0/703, 7-6--97770, 8-9=-1777/0, 9-10=-1777/0, 10-12=-1777/0, 12-13=-1233/0 23-24=0/505, 22-23=-30/694, 20-22=-263/350, 19-20=-11/451, 18-19=0/1479, BOT CHORD 17-18=0/1777, 16-17=0/1635, 15-16=0/787 2-24=-595/0, 5-20=-788/0, 5-22=0/589, 4-22=-297/0, 7-20=-1110/0, 7-19=0/717, WEBS

8-19=-700/0, 13-15=-985/0, 13-16=0/581, 12-16=-522/0, 12-17=-32/331, 8-18=0/554, 9-18=-254/0

NOTES-

3x6 =

1) Unbalanced floor live loads have been considered for this design.

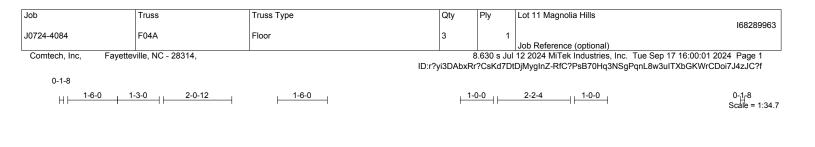
2) All plates are 3x4 MT20 unless otherwise indicated.

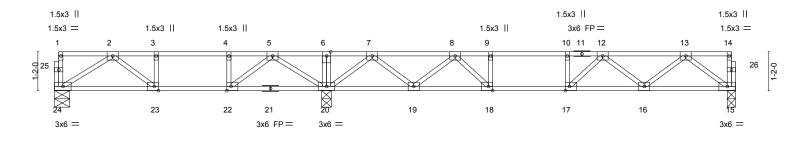
3) Plates checked for a plus or minus 1 degree rotation about its center.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

3x6 FP =

3x6 =


5) CAUTION, Do not erect truss backwards.



3x6 =

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of frusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB Building Component Scitut Information**. Building from the Structure Building Component Advance interpretation and information and property damage. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

	8-2-4			20-6-0						
Plate Offsets (X,Y)	8-2-4 [17:0-1-8,Edge], [18:0-1-8,Edge], [22:0-	1-8,Edge], [23:0-1-8,Edge]		12-3-12						
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES	CSI. TC 0.43 BC 0.46 WB 0.33	Vert(LL) -0.0	n (loc) l/defl L/d 9 16-17 >999 480 2 16-17 >999 360 2 15 n/a n/a	PLATES MT20	GRIP 244/190				
BCDL 5.0	Code IRC2015/TPI2014	Matrix-S			Weight: 101 lb	FT = 20%F, 11%E				
	P No.1(flat) P No.1(flat)		BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.							
	° No.3(flat)		BOT CHORD	Rigid ceiling directly applied of	or 6-0-0 oc bracing.					
REACTIONS. (size) 24=0-5-8, 20=0-3-8, 15=0-3-0 Max Grav 24=405(LC 3), 20=1235(LC 1), 15=631(LC 7)										
FORCES. (ib) - Max. Comp./Max. Ten All forces 250 (ib) or less except when shown.										

TOP CHORD 2-3=-703/9, 3-4=-703/9, 4-5=-703/9, 5-6=0/652, 6-7=0/651, 7-8=-980/0, 8-9=-1721/0,

2-10=.1721/0, 10-12=-1721/0, 12-13=-1210/0 23-24=0/509, 22-23=-9/703, 20-22=-229/363, 19-20=-0/473, 18-19=0/1467, BOT CHORD

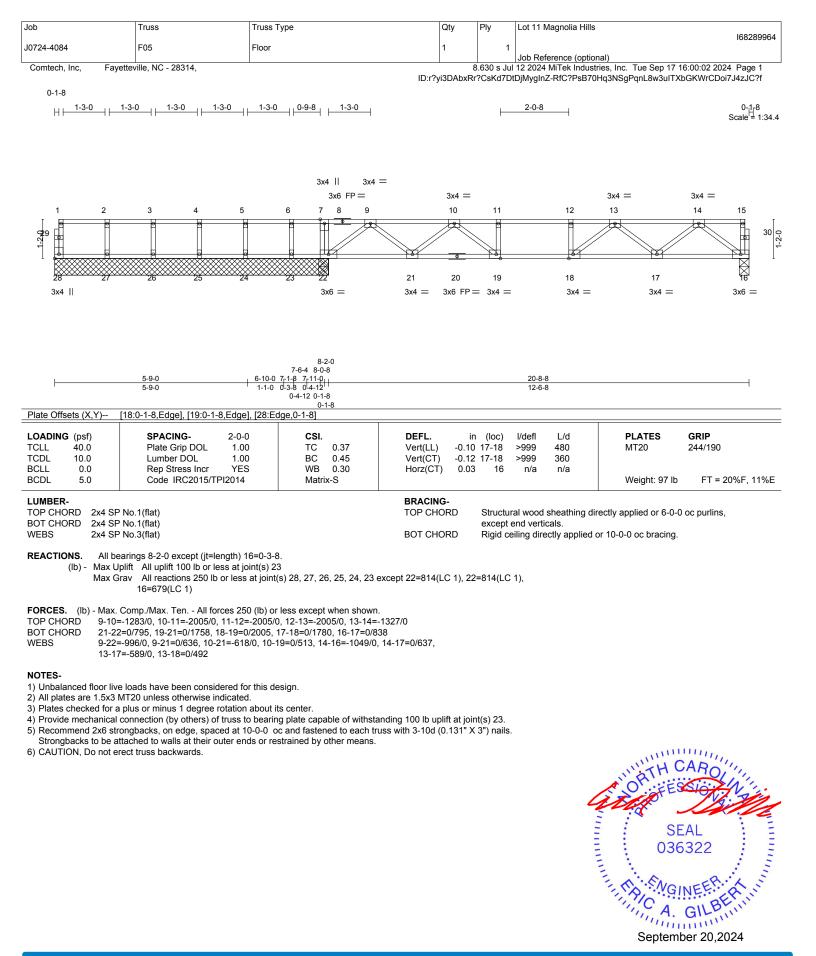
17-18=0/1721, 16-17=0/1601, 15-16=0/776

2-24=-599/0, 5-20=-785/0, 5-22=0/583, 4-22=-295/0, 7-20=-1086/0, 7-19=0/691, WEBS 8-19=-682/0, 13-15=-971/0, 13-16=0/566, 12-16=-508/0, 12-17=-27/324, 8-18=0/541, 9-18=-291/0

NOTES-

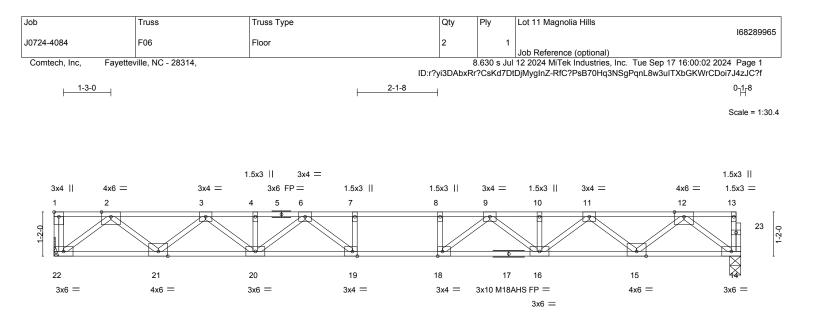
1) Unbalanced floor live loads have been considered for this design.

2) All plates are 3x4 MT20 unless otherwise indicated.


3) Plates checked for a plus or minus 1 degree rotation about its center.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

5) CAUTION, Do not erect truss backwards.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of frusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB Building Component Scitut Information**. Building from the Structure Building Component Advance interpretation and information and property damage. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com) TRENCO AMITEK Affiliate

I			18-1-8 18-1-8							
Plate Offsets (X,Y)	- [1:Edge,0-1-8], [18:0-1-8,Edge], [19:0-1	-8,Edge]								
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.38 BC 0.48 WB 0.53 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.24 18-19 -0.33 18-19 0.06 14	>881 >641	L/d 480 360 n/a	PLATES MT20 M18AHS Weight: 92 lb	GRIP 244/190 186/179 FT = 20%F, 11%E		
LUMBER- BRACING- TOP CHORD 2x4 SP 2400F 2.0E(flat) TOP CHORD 2x4 SP 2400F 2.0E(flat) BOT CHORD 2x4 SP 2400F 2.0E(flat) TOP CHORD 2x4 SP 2400F 2.0E(flat) WEBS 2x4 SP No.3(flat) BOT CHORD Rigid ceiling directly applied or 10-0 oc bracing.							oc purlins,			
	size) 22=Mechanical, 14=0-3-8 x Grav 22=983(LC 1), 14=977(LC 1)									
FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-2075/0, 3-4=-3469/0, 4-6=-3469/0, 6-7=-4167/0, 7-8=-4167/0, 8-9=-4167/0, 9-10=-3469/0, 10-11=-3469/0, 11-12=-2075/0 BOT CHORD 21-22=0/1229, 20-21=0/2888, 19-20=0/3892, 18-19=0/4167, 16-18=0/3892, 15-16=0/2889, 14-15=0/1228 WEBS 2-22=-1541/0, 2-21=0/1102, 3-21=-1058/0, 3-20=0/742, 12-14=-1538/0, 12-15=0/1103, 11-15=-1059/0, 11-16=0/741, 9-16=-539/0, 9-18=-56/690, 6-20=-539/0, 6-19=-56/690,										

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) All plates are MT20 plates unless otherwise indicated.

3) Plates checked for a plus or minus 1 degree rotation about its center.

4) Refer to girder(s) for truss to truss connections.

7-19=-319/0, 8-18=-319/0

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

6) CAUTION, Do not erect truss backwards.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qt	у	Ply	Lot 11	Magnolia Hills		168289966
J0724-4084	F06A	Floor	1		1		ference (optional	\	
Comtech, Inc, Fayette	eville, NC - 28314,					ul 12 2024	MiTek Industrie	s, Inc. Tue Sep 17 16	
1-2-8			1-7-8	JAbxRr	?CsKd/l	DtDjMygIn	Z-RfC?PsB70Hc	3NSgPqnL8w3ulTXb	
									0- 1 8
									Scale = 1:30.7
									3x4
3x6 = 6x8 =	6x8 =	3x6 FP = 6x6 =		6x6		FP =	6x8 =	6x8 =	
1 2	3 4	5 6 7 8	9	10	1	1 12	13	14 15	16
						•			34
1-20							< >		
			6		¢		9		
33 32		28 27 26	25	24	23	22	21 20	19 18	
4x8 = 1.5x3	4x8 = 1.5x3	5x8 = 4x6	4x6	3x10) M18AHS	S FP = 6x8 =	1.5x3	4x8 = 1.5x3	4x8 =
						010 —			
 			18-1-8						
		[8:0-3-0,Edge], [9:0-3-0,Edge], [<u>18-1-8</u> 13:0-3-12,Edge], [´	15:0-3-	8,Edge]	l, [17:Edg	e,0-1-8], [22:0-2	-12,Edge], [25:0-3-0	,Edge],
[26	6:0-3-0,Edge], [28:0-3-12,Edg	e], [33:Edge,0-1-8]							
LOADING (psf) TCLL 40.0	SPACING- 2-0-0 Plate Grip DOL 1.00	CSI. TC 0.31	DEFL. Vert(LL)		(loc) 25-26	l/defl >999	L/d 480	PLATES MT20	GRIP 244/190
TCDL 10.0	Lumber DOL 1.00	BC 0.71	Vert(CT)	-0.45	25-26	>475	360	M18AHS	186/179
BCLL 0.0 BCDL 5.0	Rep Stress Incr NC Code IRC2015/TPI2014	WB 0.94 Matrix-S	Horz(CT)	0.09	17	n/a	n/a	Weight: 141 lb	FT = 20%F, 11%E
LUMBER-			BRACING-						
TOP CHORD 2x4 SP 24	100F 2.0E(flat)		TOP CHOR	D				tly applied or 6-0-0	oc purlins,
BOT CHORD 2x4 SP 24 WEBS 2x4 SP N	100F 2.0E(flat) 0.3(flat)		BOT CHOR	D		t end verti ceiling dire		10-0-0 oc bracing.	
	. ,								
()	33=Mechanical, 17=0-3-8 / 33=1877(LC 1), 17=1864(LC	; 1)							
FORCES (lb) - Max Co	mn /Max Ten - All forces 250) (Ib) or less except when shown							
TOP CHORD 2-3=-43	95/0, 3-4=-4417/0, 4-5=-7551	0, 5-7=-7551/0, 7-8=-8958/0, 8-9	9=-8958/0,						
		-7551/0, 13-14=-4419/0, 14-15=)/5928, 28-30=0/5930, 27-28=0/		93.					
		0/8493, 20-22=0/5930, 19-20=0	/5927,	,					
)/2482, 17-18=0/2481 000/0, 2-31=0/2443, 3-31=-39	2/0, 4-31=-1847/0, 4-28=0/1970	, 5-28=-277/0,						
		/0, 15-17=-2979/0, 15-19=0/245 -277/0, 10-22=-1144/0, 10-25=0							
NOTES- 1) Unbalanced floor live lo	ads have been considered fo	this design.							
	tes unless otherwise indicated ounless otherwise indicated.	l.							
4) Plates checked for a pl	us or minus 1 degree rotation	about its center.						ANTIN .	11111
 5) Refer to girder(s) for true 6) Load case(s) 1, 2, 3, 4, 		Building designer must review lo	bads to verify that	thev ar	e correc	ct for the		TH C	ARO
intended use of this tru	SS.						_	A ON FES	Sio N'L
		0-0-0 oc and fastened to each tr ls or restrained by other means.	uss with 3-10d (0.7	131" X	3") nails	5.	4	THE	1/3/1/
8) CAUTION, Do not erec		,							
LOAD CASE(S) Standar	d						E	SE 036	

- 1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)
- Vert: 17-33=-10, 1-16=-200
- 2) Dead: Lumber Increase=1.00, Plate Increase=1.00
- Uniform Loads (plf)
- Vert: 17-33=-10, 1-16=-200
- 3) 1st chase Dead + Floor Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00

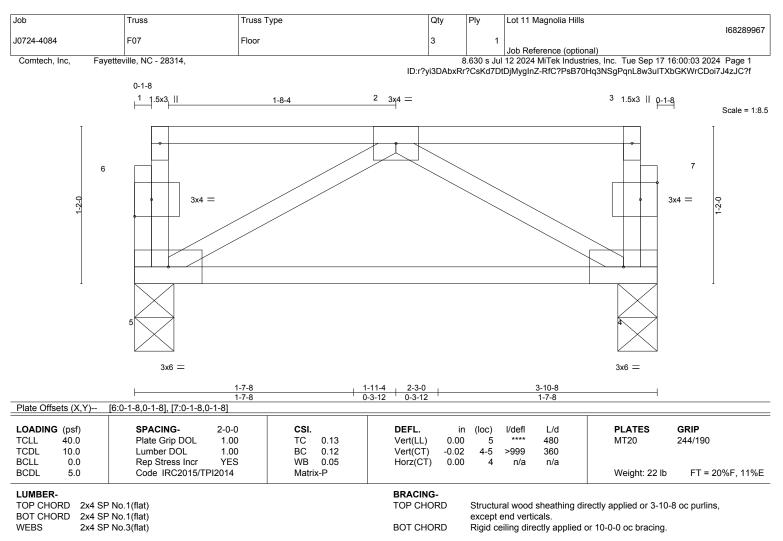
Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 11 Magnolia Hills
					168289966
J0724-4084	F06A	Floor	1	1	Job Reference (optional)
Comtech, Inc. Fayettev	rille, NC - 28314,		8	3.630 s Jul	12 2024 MiTek Industries, Inc. Tue Sep 17 16:00:03 2024 Page 2

8.630 s Jul 12 2024 MiTek Industries, Inc. Tue Sep 17 16:00:03 2024 Page 2 ID:r?yi3DAbxRr?CsKd7DtDjMygInZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

LOAD CASE(S) Standard


Uniform Loads (plf)

Vert: 17-33=-10, 1-9=-200, 9-16=-120

- 4) 2nd chase Dead + Floor Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)
- Vert: 17-33=-10, 1-8=-120, 8-16=-200 5) 3rd chase Dead: Lumber Increase=1.00, Plate Increase=1.00
- Uniform Loads (plf)
 - Vert: 17-33=-10, 1-9=-200, 9-16=-120
- 6) 4th chase Dead: Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)
 - Vert: 17-33=-10, 1-8=-120, 8-16=-200

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

REACTIONS. (size) 5=0-3-8, 4=0-3-8

Max Grav 5=193(LC 1), 4=193(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Plates checked for a plus or minus 1 degree rotation about its center.

 Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932

24-4084 FKV1 GABLE 1 1 1 Job Reference (optional) amtech, Inc. Fayetteville, NC - 28314, 8.830 s Jul 12 2024 MTek Industries, Inc. Tue Sep 17 16:00:03 2024 F B.830 s Jul 12 2024 MTek Industries, Inc. Tue Sep 17 16:00:03 2024 F Immech, Inc. Fayetteville, NC - 28314, 8.830 s Jul 12 2024 MTek Industries, Inc. Tue Sep 17 16:00:03 2024 F Inc. Tue Sep 17 16:00:03 2024 F Immech, Inc. Fayetteville, NC - 28314, 8.830 s Jul 12 2024 MTek Industries, Inc. Tue Sep 17 16:00:03 2024 F Inc. Tue Sep 17 16:00:03 2024 F Immech, Inc. Fayetteville, NC - 28314, Sci Sci Sci Immech, Inc. Fayetteville, NC - 28314, Sci Sci Sci Immech, Inc. Fayetteville, NC - 28314, Sci Sci Sci Immech, Inc. Fayetteville, NC - 28314, Sci Sci Sci Immech, Inc. Immech, Inc. Fayetteville, NC - 28314, Sci Sci Immech, Inc. Immech, Inc. Fayetteville, Inc. Sci Sci Immech, Inc. Immech, Inc. Fayetteville, Inc. Sci Sci Immech, Inc.	lob	Truss	Truss Type		Qty	P	ly	Lot 11 Magr	nolia Hills			1000000
Intech, Inc. Fayetteville, NC - 28314. 8.830 s Jul 12 2024 MiTek Industries, Inc. Tue Sep 17 16:003 2024 F ID:/?yi3DAbxR?CSK47DIDJMyginZ-RIC?PeB70Hq3NSgPqnL&w3UTXbGKWrCD0744 1 2 3 4 5 6 7 8 9 10 11 20 1 2 3 4 5 6 7 8 9 10 11 21 2 3 4 5 6 7 8 9 10 11 22 21 20 19 18 17 16 15 14 13 1 3x4 1 3 1 14-0 14-0 14-0 14-0 14-0 14-0 14-0 13-5-8 410 14-0 14-0 14-0 14-0 14-0 14-0 14-0 13-5-8 3x4 11 3 1 3 3 3 3 Verticity of the state of the	724-4084	FKW1	GABLE		1		1					16828996
D:r?yi3DAbxR?CsKd7DtDjMyginZ-RIC?PeB70Hq3NSgPqnLBw3ulTXbGKWrCDoTA Sec 1 2 3 4 5 6 7 8 9 10 11 1 4 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1												
1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11 1 2 2 1 20 19 18 17 16 15 14 13 1 22 21 20 19 18 17 16 15 14 13 1 3x4 1 3 1 33 33 33 33 240 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 140 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 140 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 141 00 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 11.0 11.0 11.0 12.0 12.0 12.0 12.0.0 12.44/190 </td <td>Comtech, Inc, Fa</td> <td>yetteville, NC - 28314,</td> <td></td>	Comtech, Inc, Fa	yetteville, NC - 28314,										
1 2 3 4 5 6 7 8 9 10 11 20 1 <td></td> <td></td> <td></td> <td></td> <td>ID.I : YIODA</td> <td></td> <td>Januar Di</td> <td>.⊖jiviygin≥-i ti</td> <td></td> <td></td> <td></td> <td></td>					ID.I : YIODA		Januar Di	.⊖jiviygin≥-i ti				
1 2 3 4 5 6 7 8 9 10 11 20 1 <td></td> <td>0₁18</td>												0 ₁ 18
14-0 28-0 40-0 54-0 68-0 8-0 94-0 108-0 12-0 13-58 22 21 20 19 18 17 16 15 14 13 1 3x4 3x4 <td></td> <td>:</td> <td>Scale = 1:2</td>											:	Scale = 1:2
14-0 28-0 40-0 54-0 68-0 8-0 94-0 108-0 12-0 13-58 22 21 20 19 18 17 16 15 14 13 1 3x4 3x4 <td></td>												
23 1		2 3	4 5	6		7		8	9	10		11
Image: transmission of the transmission of the transmission of transmis				e e		•		<u> </u>	•	<u>e</u>		
Image: transmission of the transmission of the transmission of transmis												
3x4 3x4 1.4-0 2.8-0 4.0-0 1.4-0 1.4-0	-											
3x4 3x4 1.4-0 2.8-0 4.0-0 1.4-0 1.4-0		•	•	•		•		•	•	•		<u>⊢</u>
3x4 3x4 1.4-0 2.8-0 4.0-0 1.4-0 1.4-0					********			*******				
1-4-0 2-8-0 4-0-0 5-4-0 6-8-0 8-0-0 9-4-0 10-8-0 12-0-0 13-5-8 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-5-8 Dation (psf) SPACING- 2-0-0 CSI. DEFL. in (loc) I/defl L/d PLATES GRIP 2LL 40.0 Plate Grip DOL 1.00 TC 0.07 Vert(LL) n/a - n/a 999 MT20 244/190 2DL 10.0 Lumber DOL 1.00 BC 0.01 Vert(CT) n/a - n/a 999 MT20 244/190 2DL 5.0 Code IRC2015/TPI2014 Matrix-R Weight: S7 lb FT = 20% Weight: S7 lb FT = 20%	22	21 20	19 18	17		16		15	14	13		12
I-4-0 I-4-0 <th< td=""><td>3x4 </td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>3x4 =</td></th<>	3x4											3x4 =
I-4-0 I-4-0 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>												
I-4-0 I-4-0 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>												
I-4-0 I-4-0 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>												
I-4-0 I-4-0 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>												
I-4-0 I-4-0 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>												
I-4-0 I-4-0 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>												
I-4-0 I-4-0 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>												
I-4-0 I-4-0 <th< td=""><td>140</td><td>280 4</td><td>0.0 E 4.0</td><td>6 9 0</td><td>800</td><td></td><td>040</td><td>1</td><td>0 0 0</td><td>12.0.0</td><td>12 5 0</td><td></td></th<>	140	280 4	0.0 E 4.0	6 9 0	800		040	1	0 0 0	12.0.0	12 5 0	
Date Offsets (X,Y) [22:Edge,0-1-8] DADING (psf) SPACING- 2-0-0 CSI. DEFL. in (loc) l/defl L/d PLATES GRIP CDL 40.0 Plate Grip DOL 1.00 TC 0.07 Vert(LL) n/a - n/a 999 MT20 244/190 CDL 10.0 Lumber DOL 1.00 BC 0.01 Vert(CT) n/a - n/a 999 MT20 244/190 CLL 0.0 Rep Stress Incr YES WB 0.03 Horz(CT) 0.00 12 n/a n/a Weight: 57 lb FT = 20% CDL 5.0 Code IRC2015/TPI2014 Matrix-R Vertice Vert	1-4-0	1-4-0 4		1-4-0	1-4-0		9-4-0		1-4-0	1-4-0	13-5-6	
CLL 40.0 Plate Grip DOL 1.00 TC 0.07 Vert(LL) n/a - n/a 999 MT20 244/190 DD 10.0 Lumber DOL 1.00 BC 0.01 Vert(CT) n/a - n/a 999 MT20 244/190 DL 0.0 Rep Stress Incr YES WB 0.03 Horz(CT) 0.00 12 n/a n/a DL 5.0 Code IRC2015/TPI2014 Matrix-R Weight: 57 lb FT = 20%	ate Offsets (X,Y)											
CLL 40.0 Plate Grip DOL 1.00 TC 0.07 Vert(LL) n/a - n/a 999 MT20 244/190 DD 10.0 Lumber DOL 1.00 BC 0.01 Vert(CT) n/a - n/a 999 MT20 244/190 DL 0.0 Rep Stress Incr YES WB 0.03 Horz(CT) 0.00 12 n/a n/a DL 5.0 Code IRC2015/TPI2014 Matrix-R Weight: 57 lb FT = 20%		00.000			5		<i>a</i> >			DI 4750	0.010	
CDL 10.0 Lumber DOL 1.00 BC 0.01 Vert(CT) n/a - n/a 999 CLL 0.0 Rep Stress Incr YES WB 0.03 Horz(CT) 0.00 12 n/a n/a CDL 5.0 Code IRC2015/TPI2014 Matrix-R Weight: 57 lb FT = 20%	DADING (pst)			0.07			` '					
CLL 0.0 Rep Stress Incr YES WB 0.03 Horz(CT) 0.00 12 n/a n/a CDL 5.0 Code IRC2015/TPI2014 Matrix-R Matrix-R Weight: 57 lb FT = 20%										IVI I ZU	244/190	
CDL 5.0 Code IRC2015/TPI2014 Matrix-R Yeight: 57 lb FT = 20%												
IMBER- BRACING-										Weight: 57 lb	FT = 20	0%F, 11%
IMBER- BRACING-			I									
DP CHORD 2x4 SP No.1(flat) TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins,	JMBER-											

iy app BOT CHORD 2x4 SP No.1(flat) WEBS 2x4 SP No.3(flat) except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. OTHERS 2x4 SP No.3(flat)

REACTIONS. All bearings 13-5-8.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 22, 12, 21, 20, 19, 18, 17, 16, 15, 14, 13

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) All plates are 1.5x3 MT20 unless otherwise indicated.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Gable requires continuous bottom chord bearing.

4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

5) Gable studs spaced at 1-4-0 oc.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

7) CAUTION, Do not erect truss backwards.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of frusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB Building Component Scitut Information**. Building from the Structure Building Component Advance interpretation and information and property damage. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

ob	Truss	Truss Type		Qty P	ly	Lot 11 Magnolia Hills		1000000
0724-4084	FKW3	GABLE		1	1			168289969
Comtech, Inc, Fay	etteville, NC - 28314,			86		Job Reference (optional) 2 2024 MiTek Industries, I	nc. Tue Sen 17 1	6:00:04 2024 Page 1
connecti, inc, i ayo	elleville, NC - 20314,		ID:r?)jMygInZ-RfC?PsB70Hq3N		
0 ₁ 18								0 ₁ 18
								Scale = 1:21
	_		_	_		_		
1 2	3	4 5	6	7	_	8	9	10 11
23			<u> </u>	-	-	<u> </u>		
230-2-1								
				-	-		H	
22 21	20	19 18	17	16	3	15	14	13 12
3x4 =								3x4 =
1-4-0	2-8-0 4	-0-0 5-4-0	6-8-0	8-0-0	9-	4-0 10-8-0	12-0-0	12-10-0
1-4-0	1-4-0 1	-4-0 1-4-0	1-4-0	1-4-0	<u> </u>	4-0 1-4-0	1-4-0	0-10-0
LOADING (psf)		2-0-0 CSI .	DEFL.		· /	/defl L/d	PLATES	GRIP
TCLL 40.0 TCDL 10.0	Plate Grip DOL Lumber DOL	1.00 TC 0.06 1.00 BC 0.01			-	n/a 999 n/a 999	MT20	244/190
BCLL 0.0	Rep Stress Incr	YES WB 0.03			12	n/a n/a		
BCDL 5.0	Code IRC2015/TPI2	2014 Matrix-R					Weight: 55 lb	FT = 20%F, 11%E
			BRACI					
LUMBER-	No.1(flat)		TOP CH			I wood sheathing directly		

BOT CHORD

WEBS 2x4 SP No.3(flat) Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 12-10-0.

2x4 SP No.3(flat)

(lb) - Max Grav All reactions 250 lb or less at joint(s) 22, 12, 21, 20, 19, 18, 17, 16, 15, 14, 13

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

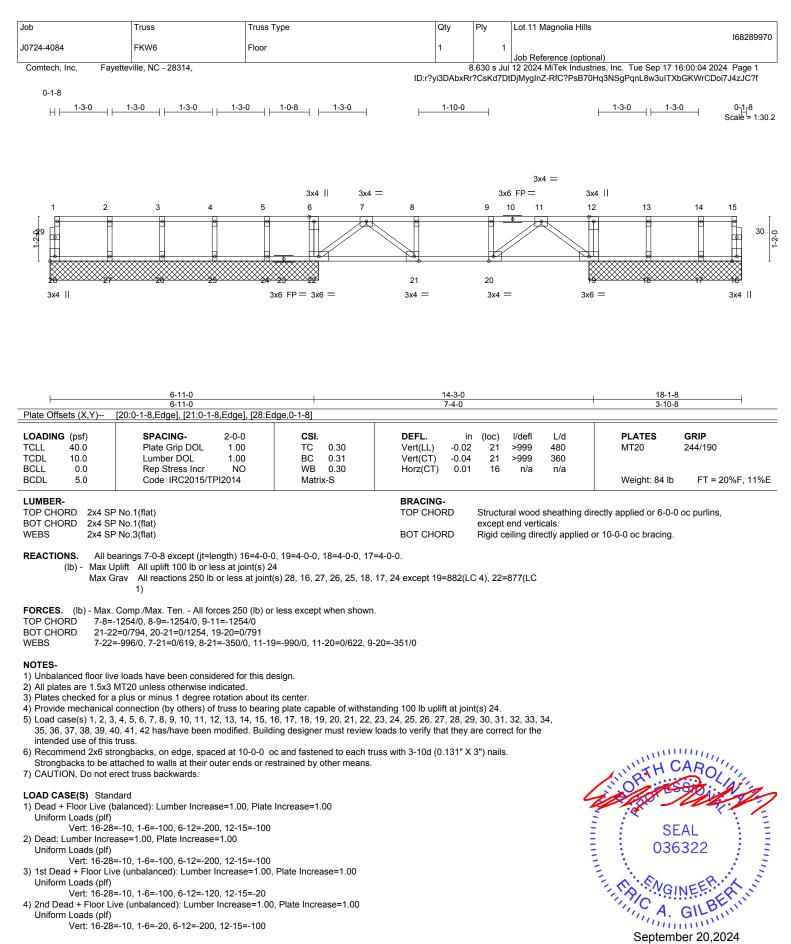
OTHERS

1) All plates are 1.5x3 MT20 unless otherwise indicated.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Gable requires continuous bottom chord bearing.

4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).


5) Gable studs spaced at 1-4-0 oc.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of frusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB Building Component Scitut Information**. Building from the Structure Building Component Advance interpretation and information and property damage. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Plv	Lot 11 Magnolia Hills
			,	,	168289970
					100203370
J0724-4084	FKW6	Floor	1	1	
					Job Reference (optional)
Comtech, Inc, Fayettev	ille, NC - 28314,			.630 s Jul	12 2024 MiTek Industries, Inc. Tue Sep 17 16:00:05 2024 Page 2

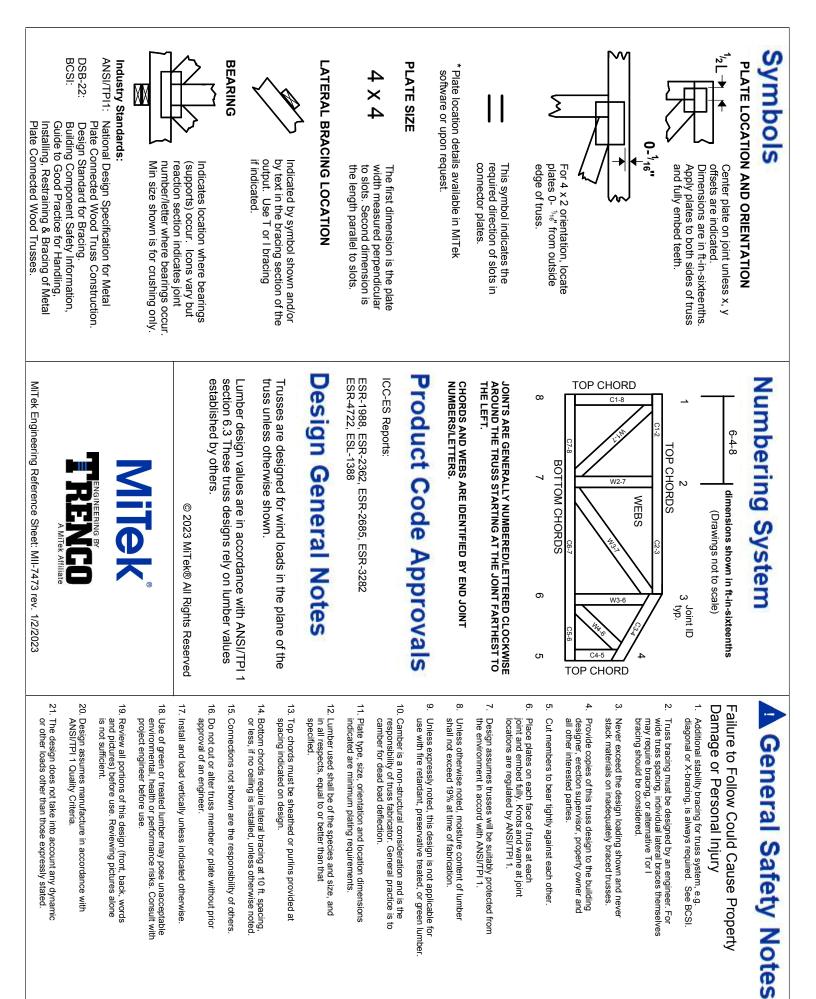
8.630 s Jul 12 2024 MiTek Industries, Inc. Tue Sep 17 16:00:05 2024 Page 2 ID:r?yi3DAbxRr?CsKd7DtDjMygInZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

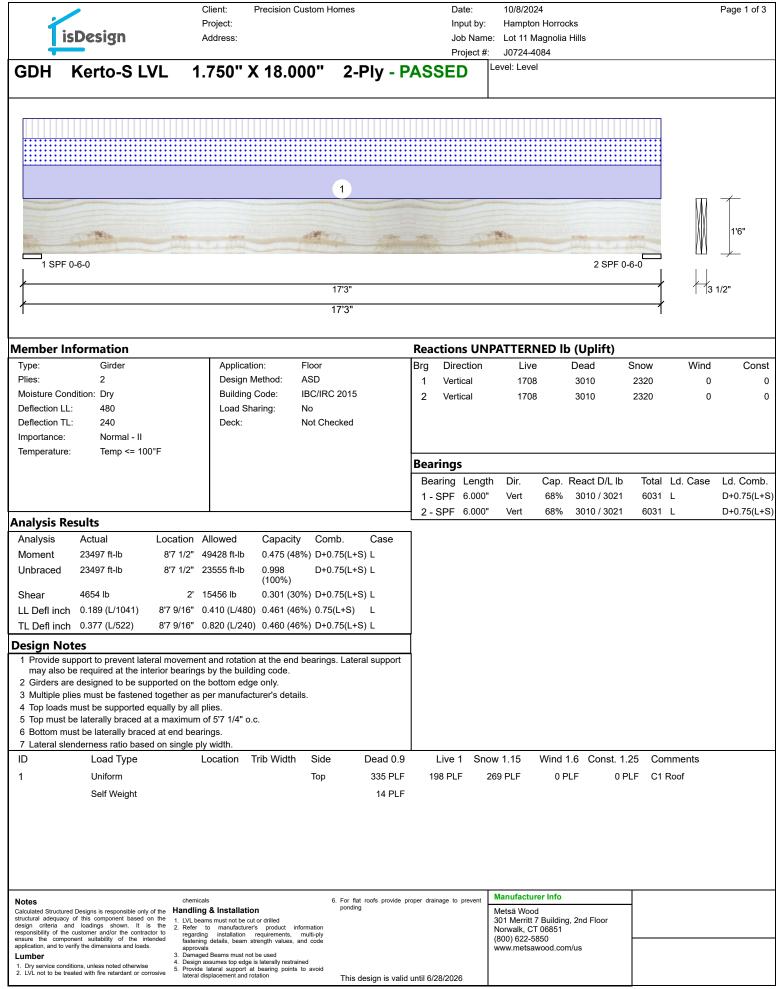
LOAD CASE(S) Standard
5) 3rd unbalanced Dead: Lumber Increase=1.00, Plate Increase=1.00
Uniform Loads (plf) Vert: 16-28=-10, 1-6=-100, 6-12=-120, 12-15=-20
6) 4th unbalanced Dead: Lumber Increase=1.00, Plate Increase=1.00
Uniform Loads (plf)
Vert: 16-28=-10, 1-6=-20, 6-12=-200, 12-15=-100
 1st chase Dead + Floor Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)
Vert: 16-28=-10, 1-6=-100, 6-12=-200, 12-15=-100
8) 2nd chase Dead + Floor Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00
Uniform Loads (plf)
Vert: 16-28=-10, 1-6=-100, 6-12=-200, 12-15=-100 9) 3rd chase Dead + Floor Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00
Uniform Loads (plf)
Vert: 16-28=-10, 1-6=-100, 6-12=-200, 12-15=-100
10) 4th chase Dead + Floor Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00
Uniform Loads (plf) Vert: 16-28=-10, 1-6=-100, 6-12=-200, 12-15=-100
11) 5th chase Dead + Floor Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00
Uniform Loads (plf)
Vert: 16-28=-10, 1-6=-100, 6-12=-200, 12-15=-100 12) 6th chase Dead + Floor Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00
Uniform Loads (plf)
Vert: 16-28=-10, 1-6=-100, 6-12=-200, 12-15=-100
13) 7th chase Dead + Floor Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00
Uniform Loads (plf) Vert: 16-28=-10, 1-6=-100, 6-12=-200, 12-15=-100
14) 8th chase Dead + Floor Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00
Uniform Loads (plf)
Vert: 16-28=-10, 1-6=-100, 6-12=-200, 12-15=-100
 9th chase Dead + Floor Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)
Vert: 16-28=-10, 1-6=-100, 6-12=-200, 12-15=-100
16) 10th chase Dead + Floor Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00
Uniform Loads (plf)
Vert: 16-28=-10, 1-6=-100, 6-12=-200, 12-15=-100 17) 11th chase Dead + Floor Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00
Uniform Loads (plf)
Vert: 16-28=-10, 1-6=-100, 6-9=-200, 9-12=-120, 12-15=-100
 18) 12th chase Dead + Floor Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)
Vert: 16-28=-10, 1-6=-100, 6-8=-120, 8-12=-200, 12-15=-100
19) 13th chase Dead + Floor Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00
Uniform Loads (plf)
Vert: 16-28=-10, 1-6=-100, 6-12=-200, 12-15=-100 20) 14th chase Dead + Floor Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00
Uniform Loads (plf)
Vert: 16-28=-10, 1-6=-100, 6-12=-200, 12-15=-100
21) 15th chase Dead + Floor Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)
Vert: 16-28=-10, 1-6=-100, 6-12=-200, 12-15=-100
22) 16th chase Dead + Floor Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00
Uniform Loads (plf)
Vert: 16-28=-10, 1-6=-100, 6-12=-200, 12-15=-100 23) 17th chase Dead + Floor Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00
Uniform Loads (plf)
Vert: 16-28=-10, 1-6=-100, 6-12=-200, 12-15=-100
24) 18th chase Dead + Floor Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00
Uniform Loads (plf) Vert: 16-28=-10, 1-6=-100, 6-12=-200, 12-15=-100
25) 19th chase Dead: Lumber Increase=1.00, Plate Increase=1.00
Uniform Loads (plf)
Vert: 16-28=-10, 1-6=-100, 6-12=-200, 12-15=-100
26) 20th chase Dead: Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)
Vert: 16-28=-10, 1-6=-100, 6-12=-200, 12-15=-100
27) 21st chase Dead: Lumber Increase=1.00, Plate Increase=1.00
Uniform Loads (plf)
Vert: 16-28=-10, 1-6=-100, 6-12=-200, 12-15=-100 28) 22nd chase Dead: Lumber Increase=1.00, Plate Increase=1.00
Uniform Loads (plf)
Vert: 16-28=-10, 1-6=-100, 6-12=-200, 12-15=-100
29) 23rd chase Dead: Lumber Increase=1.00, Plate Increase=1.00
Uniform Loads (plf) Vert: 16-28=-10, 1-6=-100, 6-12=-200, 12-15=-100

Continued on page 3

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 11 Magnolia Hills
J0724-4084	FKW6	Floor	1	1	168289970
30724-4084	FRVVO	FIOO	1		Job Reference (optional)
Comtech, Inc, Fayette	ville, NC - 28314,			3.630 s Jul	12 2024 MiTek Industries, Inc. Tue Sep 17 16:00:05 2024 Page 3


ID:r?yi3DAbxRr?CsKd7DtDjMygInZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


LOAD CASE(S) Standard

- 30) 24th chase Dead: Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)
- Vert: 16-28=-10, 1-6=-100, 6-12=-200, 12-15=-100 31) 25th chase Dead: Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)
- Vert: 16-28=-10, 1-6=-100, 6-12=-200, 12-15=-100 32) 26th chase Dead: Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)
- Vert: 16-28=-10, 1-6=-100, 6-12=-200, 12-15=-100 33) 27th chase Dead: Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)
- Vert: 16-28=-10, 1-6=-100, 6-12=-200, 12-15=-100 34) 28th chase Dead: Lumber Increase=1.00, Plate Increase=1.00
- Uniform Loads (plf) Vert: 16-28=-10, 1-6=-100, 6-12=-200, 12-15=-100
- 35) 29th chase Dead: Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)
- Vert: 16-28=-10, 1-6=-100, 6-9=-200, 9-12=-120, 12-15=-100 36) 30th chase Dead: Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)
- Vert: 16-28=-10, 1-6=-100, 6-8=-120, 8-12=-200, 12-15=-100 37) 31st chase Dead: Lumber Increase=1.00, Plate Increase=1.00
- Uniform Loads (plf) Vert: 16-28=-10, 1-6=-100, 6-12=-200, 12-15=-100 38) 32nd chase Dead: Lumber Increase=1.00, Plate Increase=1.00
- Uniform Loads (plf) Vert: 16-28=-10, 1-6=-100, 6-12=-200, 12-15=-100
- 39) 33rd chase Dead: Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 16-28=-10, 1-6=-100, 6-12=-200, 12-15=-100
- 40) 34th chase Dead: Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)
- Vert: 16-28=-10, 1-6=-100, 6-12=-200, 12-15=-100 41) 35th chase Dead: Lumber Increase=1.00, Plate Increase=1.00
- Uniform Loads (plf) Vert: 16-28=-10, 1-6=-100, 6-12=-200, 12-15=-100 42) 36th chase Dead: Lumber Increase=1.00, Plate Increase=1.00
- Uniform Loads (plf) Vert: 16-28=-10, 1-6=-100, 6-12=-200, 12-15=-100

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

																B 0 (0
-			lient: P roject:	recision Cust	om Homes			Date: Input t		10/8/202 Hampton	4 i Horrock:	e				Page 2 of 3
Tis	Design		ddress:						-	-	agnolia H					
								Projec		J0724-40	•					
BM4 I	Kerto-S L	/ 17	750" X	14 000)" 2-F	Plv - P	ASS	SED	Lev	el: Level						
				14.000	_	iy - i										
1 SPF 0- 1 SPF 0- Member In Type: Plies:	3-8 formation Girder	1 5' 5'	2 SPF 0-3-	n: Fk			Brg	tions U Directio		Live	[Dead		now	Wind	1'2" 3 1/2" Consi
Plies:	2		Design Me				1	Vertical		650		755		0	0	C
Moisture Con			Building C		C/IRC 2015		2	Vertical		650		755		0	0	(
Deflection LL:	480		Load Shar	0												
Deflection TL:			Deck:	No	ot Checked		1									
Importance:	Normal - II						1									
Temperature:	Temp <= 100)°F					B									
							-	rings		<u> </u>						
								aring Ler	-	Dir.		leact D/L			d. Case	Ld. Comb.
								SPF 3.5		Vert	27%	755 / 6		1405 L		D+L
Analysis Re	culte		1				2 -	SPF 3.5	00"	Vert	27%	755 / 6	50	1405 L		D+L
-	Actual	Location A	llowed	Canacity	Comb.	Case	1									
Analysis Momont			lliowea 6999 ft-Ib	Capacity												
Moment	1449 ft-lb 1449 ft-lb			0.054 (5%)	D+L	L										
Unbraced				0.071 (7%)		L										
Shear	996 lb	3'6 1/2" 1		0.095 (10%)		L .										
LL Defl inch	0.003 (L/17407)	2'6" 0	.114 (L/480)	0.028 (3%)	L	L										
TL Defl inch	0.007 (L/8054)	2'6" 0	.227 (L/240)	0.030 (3%)	D+L	L										
Design Not			· · · /	x- 1			1									
1 Provide su may also b 2 Girders are 3 Multiple plid 4 Top loads r 5 Top must b 6 Bottom mu 7 Lateral sler	oport to prevent late e required at the int designed to be sup as must be fastened nust be supported e e laterally braced a st be laterally brace iderness ratio base	terior bearings oported on the d together as p equally by all pl t end bearings. ed at end bearing d on single ply	by the buildin bottom edge er manufactu lies. ngs. width.	g code. only. rer's details.							147					
ID	Load Type	L	ocation Tr		Side	Dead 0.9			Snow 1			6 Cons			nents	
1	Uniform				Far Face	81 PLF	26	0 PLF	0	PLF	0 PL	F	0 PLF	F02		
2	Uniform				Тор	210 PLF		0 PLF	0	PLF	0 PL	F	0 PLF	wall		
	Self Weight					11 PLF										
structural adequacy design criteria and responsibility of the o ensure the comport	Designs is responsible only of this component based o loadings shown. It is zustomer and/or the contrac ent suitability of the int	on the 1. LVL beam s the 2. Refer to ctor to regarding ended fastening	& Installation as must not be cut of manufacturer's installation re- details, beam stree	product information product pr	ponding ation ti-ply	roofs provide p	vroper drain	nage to preve	Me 301 Noi (80	rwalk, CT 0) 622-58	Building, 3 06851 950					
application, and to ver Lumber	ify the dimensions and loads	 approvals 3. Damaged 	: I Beams must not be	e used					ww	w.metsav	/ood.com/	us				
1. Dry service condit	ons, unless noted otherwise ted with fire retardant or cor	 Design as Provide I 	ssumes top edge is ateral support at t	laterally restrained bearing points to a												
		···· Iateral dis	placement and rota	uoΠ	This d	esign is valid	until 6/2	8/2026								

		Cli	ient: Precisior	Custom Homes	3		Date:	10/8/202	24				Page 3 of 3
2			oject:	l oustoin homes	5		Input by:		n Horrocks				r age o or o
	isDesign		ldress:				Job Name	e: Lot 11 M	lagnolia Hills				
							Project #:						
BM3	Kerto-S LV	′L 1.7	250'' X 14 .	000" 2·	-Ply - P	ASSE	D	Level: Leve	I				
	2												
		1											
												MM	
	Contraction of the second			al Miles								MA	1'2"
and the state of the state	Introduction of the second	- Aller											
1 SPF	0-3-8		2 SF	F 0-3-0									
1		6'										13	1/2"
1		6'		1									
Member	nformation					Reacti	ons UN	PATTERN	NED lb (Up	lift)			
Type: Plies:	Girder 2		Application: Design Method:	Floor ASD		l v	irection	Live			now	Wind	Cons
	ondition: Dry		Building Code:	IBC/IRC 201	5		ertical ertical	1900 1874			0 0	0	(
Deflection L	•		Load Sharing:	No			Critical	1074	000		Ū	0	,
Deflection 7	FL: 240		Deck:	Not Checked	l								
Importance													
Temperatur	e: Temp <= 100°	°F				Bearin	<u>ae</u>						
							-	h Dir	Can Baaa		Total Lo		Ld. Comb.
							ig Lengtl F 3.500"	h Dir. Vert	Cap. Reac 49% 667	/ 1900	2567 L	I. Case	D+L
							F 3.000"	Vert		/ 1900	2507 L 2532 L		D+L D+L
Analysis F	Results					2-0	0.000	Voit	0170 000	7 1074	2002 L		DIE
Analysis	Actual	Location All	lowed Capac	city Comb.	Case								
Moment	3312 ft-lb	3' 1/4" 26		(12%) D+L	L								
Unbraced	3312 ft-lb	3' 1/4" 17		(19%) D+L	L								
Shear	1745 lb	1'5 1/2" 10		(17%) D+L	L								
	ch 0.014 (L/4667)		140 (L/480) 0.103	. ,	L								
	ch 0.019 (L/3454)	3' 1/4" 0.2	279 (L/240) 0.069	(7%) D+L	L	-							
Design N						4							
	support to prevent later be required at the inte				eral support								
	are designed to be supp		• ,										
	plies must be fastened s must be supported eo			tails.									
	t be laterally braced at												
	nust be laterally braced		•										
/ Lateral s	lenderness ratio based Load Type		width. cation Trib Wid	th Side	Dead 0.9	_l Liv	e 1 Sno	w 1.15	Wind 1.6 C	onst 12	5 Comm	ents	
1	Uniform	20		Near Face		260 F		0 PLF	0 PLF	0 PL			
2	Uniform			Тор	123 PLF	369 F		0 PLF	0 PLF	0 PL			
_	Self Weight				11 PLF								
Notes		chemicals		6. For pond	flat roofs provide p	proper drainage	to prevent	Manufactur					
structural adequa	red Designs is responsible only of cy of this component based on	the 1. LVL beams	must not be cut or drilled						7 Building, 2nd F	loor			
responsibility of the	and loadings shown. It is the customer and/or the contractor ponent suitability of the inter	or to regarding	manufacturer's product installation requirements details, beam strength value	s, multi-ply				Norwalk, CT (800) 622-58	06851	ļ			
application, and to	verify the dimensions and loads.	approvals 3. Damaged E	Beams must not be used						wood.com/us				
1. Dry service co	nditions, unless noted otherwise treated with fire retardant or corro	 Design ass Provide lat 	sumes top edge is laterally re- teral support at bearing po	ints to avoid									
		lateral displ	lacement and rotation	This	s design is valio	1 until 6/28/2	026						

Version 23.40.705 Powered by iStruct™ Dataset: 24070801.3993