

RE: J0924-5121 Lot 153 Duncans Creek Trenco 818 Soundside Rd Edenton, NC 27932

Site Information:

Customer: Project Name: J0924-5121 Lot/Block: Address: City:

Model: Subdivision: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2015/TPI2014 Wind Code: N/A Roof Load: N/A psf Design Program: MiTek 20/20 8.4 Wind Speed: N/A mph Floor Load: 55.0 psf

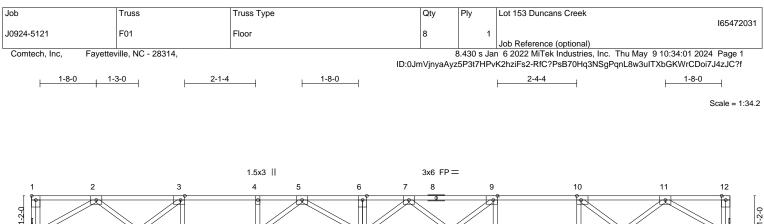
This package includes 14 individual, dated Truss Design Drawings and 0 Additional Drawings.

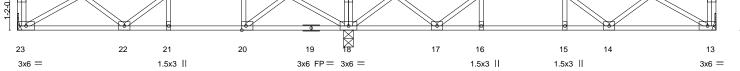
No.	Seal#	Truss Name	Date
1	165472031	F01	5/9/2024
2	165472032	F02	5/9/2024
3	165472033	F03	5/9/2024
4	165472034	F04	5/9/2024
5	165472035	F05	5/9/2024
6	165472036	F06	5/9/2024
7	165472037	F07	5/9/2024
8	165472038	F08	5/9/2024
9	165472039	FKW1	5/9/2024
10	165472040	FKW2	5/9/2024
11	165472041	FKW3	5/9/2024
12	165472042	FKW4	5/9/2024
13	165472043	FKW5	5/9/2024
14	165472044	FKW6	5/9/2024

The truss drawing(s) referenced above have been prepared by

Truss Engineering Co. under my direct supervision

based on the parameters provided by Comtech, Inc - Fayetteville.


Truss Design Engineer's Name: Gilbert, Eric


My license renewal date for the state of North Carolina is December 31, 2024

North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

	<u>9-9-12</u> 9-9-12		20-8-8 10-10-12						
Plate Offsets (X,Y)	[1:Edge,0-1-8], [3:0-1-8,Edge], [9:0-1-8,	Edge], [10:0-1-8,Edge], [2	0:0-1-8,Edge]						
LOADING(psf)TCLL40.0TCDL10.0BCLL0.0BCDL5.0	SPACING-1-7-3Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.36 BC 0.44 WB 0.26 Matrix-S	Vert(LL) -0.07	n (loc) l/defl L/d 7 21-22 >999 480 9 21-22 >999 360 2 13 n/a n/a	PLATES MT20 Weight: 102 lb	GRIP 244/190 FT = 20%F, 11%E			
BOT CHORD 2x4 SF	P No.1(flat) P No.1(flat) P No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing except end verticals. Rigid ceiling directly applie 6-0-0 oc bracing: 18-20.	2 11	· ·			

REACTIONS. (size) 23=Mechanical, 18=0-3-8, 13=Mechanical Max Grav 23=429(LC 10), 18=940(LC 1), 13=467(LC 7)

NOTES-

2) All plates are 3x4 MT20 unless otherwise indicated.

```
3) Plates checked for a plus or minus 1 degree rotation about its center.
```

4) Refer to girder(s) for truss to truss connections.

Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

6) CAUTION, Do not erect truss backwards.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB Building Component Scietus Information**, and the from the Structure Building Component Advance interport of the property damage. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 2-3=-835/0, 3-4=-966/0, 4-5=-966/0, 5-6=-62/325, 6-7=-64/323, 7-9=-828/0, 9-10=-1161/0, 10-11=-948/0 BOT CHORD 22-23=0/643, 21-22=0/966, 20-21=0/966, 18-20=-3/634, 17-18=0/504, 16-17=0/1161, 15-16=0/1161, 14-15=0/1161, 13-14=0/701 WEBS 2-23=-744/0, 2-22=0/250, 5-18=-756/0, 5-20=0/541, 7-18=-723/0, 7-17=0/466, 9-17=-514/0, 11-13=-810/0, 11-14=0/322, 10-14=-272/0

¹⁾ Unbalanced floor live loads have been considered for this design.

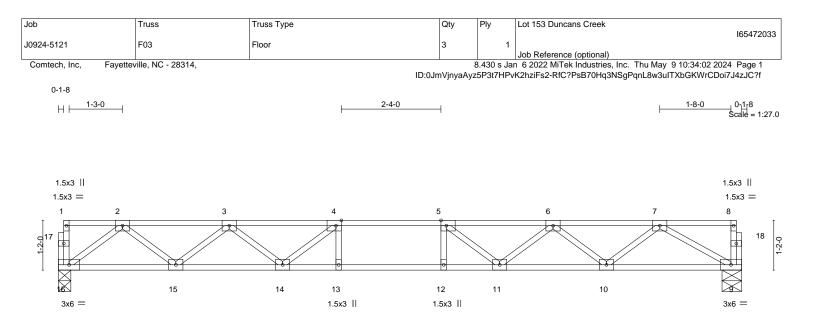
Job	Truss	Truss Type	Qty	Ply	Lot 153 Duncans Creek	105.47	
J0924-5121	F02	Floor	11	1		165472	2032
					Job Reference (optional)		
Comtech, Inc, Fayette	wille, NC - 28314,				6 2022 MiTek Industries, Inc. Thu		
			ID:0JmVjnyaAyz	5P3t/HPV	K2hziFs2-RfC?PsB70Hq3NSgPqnL8	3W3UITXDGKWrCD0I7J4ZJC?	T
0-1-8							
⊢		2-3	3-12			Quala	1.05.0
						Scale =	1:25.9
1.5x3							
1.5x3 =							
1 2	3	4	5		6	7 8	_
			İst				Ī
017				\searrow			1-2-0
Ϋ Π //							
			•	¥	T T		
\bowtie							
	15	14 13	12	1	1 10	9	
3x6 =		1.5x3	1.5x3			3x6 =	

L			15-6-12				
Plate Offsets (X,Y	(4:0.1.9 Edge) [5:0.1.9 Edge]		15-6-12				1
Fidle Olisels (A, I) [4:0-1-8,Edge], [5:0-1-8,Edge]	1					
LOADING (psf)	SPACING- 1-7-3	CSI.	DEFL. ir	(loc)	l/defl L/d	PLATES	GRIP
TCLL 40.0	Plate Grip DOL 1.00	TC 0.34		. ,	>999 480	MT20	244/190
TCDL 10.0	Lumber DOL 1.00	BC 0.66	Vert(CT) -0.19	11-12	>947 360		
BCLL 0.0	Rep Stress Incr YES	WB 0.34	Horz(CT) 0.04	9	n/a n/a		
BCDL 5.0	Code IRC2015/TPI2014	Matrix-S				Weight: 77 lb	FT = 20%F, 11%E
LUMBER-		1	BRACING-				
	(4 SP No.1(flat)		TOP CHORD	Structura	al wood sheathing di	rectly applied or 6-0-0	oc purlins,
BOT CHORD 2	(4 SP No.1(flat)				nd verticals.	,	, ,
WEBS 2	4 SP No.3(flat)		BOT CHORD	Rigid ce	iling directly applied	or 10-0-0 oc bracing.	
REACTIONS.	(aiza) 16-0-2-8-0 Machanical						
	(size) 16=0-3-8, 9=Mechanical lax Grav 16=668(LC 1), 9=673(LC 1)						
FORCES. (lb) -	Max. Comp./Max. Ten All forces 250 (lb) o	r less except when shown.					
TOP CHORD	2-3=-1381/0, 3-4=-2174/0, 4-5=-2441/0, 5-6	=-2174/0, 6-7=-1381/0					
	15-16=0/831, 14-15=0/1903, 13-14=0/2441,	12-13=0/2441, 11-12=0/24	441, 10-11=0/1903,				
	9-10=0/831						
	2-16=-1040/0, 2-15=0/716, 3-15=-680/0, 3-1		0=0/716,				
	6-10=-680/0, 6-11=0/401, 5-11=-499/0, 4-14	=-499/0					
NOTES-							
NOTED							

1) Unbalanced floor live loads have been considered for this design.

2) All plates are 3x4 MT20 unless otherwise indicated.

3) Plates checked for a plus or minus 1 degree rotation about its center.


4) Refer to girder(s) for truss to truss connections.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
6) CAUTION, Do not erect truss backwards.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

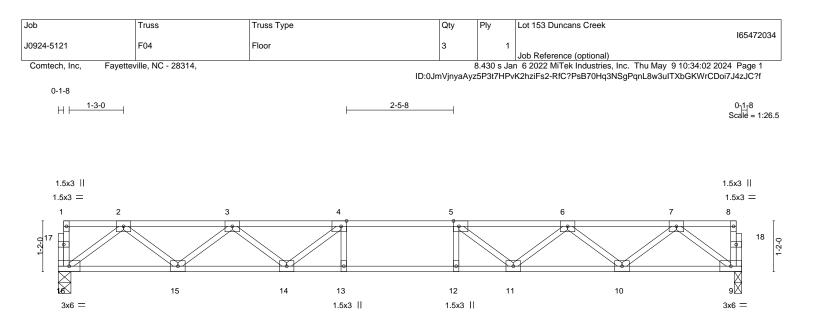
LOADING (psf)	SPACING- 1-7-3	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP	
TCLL 40.0	Plate Grip DOL 1.00	TC 0.38	Vert(LL)	in (loc) -0.17 11-12		480	MT20	244/190	
CDL 10.0	Lumber DOL 1.00	BC 0.74	Vert(CT)	-0.23 11-12		360	101120	244/130	
BCLL 0.0	Rep Stress Incr YES	WB 0.35	Horz(CT)	0.04 9		n/a			
BCDL 5.0	Code IRC2015/TPI2014	Matrix-S					Weight: 78 lb	FT = 20%F, 11%	
TOP CHORD2x4 SP No.1(flat)BOT CHORD2x4 SP No.1(flat)WEBS2x4 SP No.3(flat)				except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.					
REACTIONS. (size	e) 16=0-3-8, 9=0-5-8 rav 16=688(LC 1), 9=688(LC 1)								
REACTIONS. (size Max G	, ,	r less except when shown.							

WEBS 2-16=-1073/0, 2-15=0/744, 3-15=-706/0, 3-14=0/433, 4-14=-551/0, 7-9=-1242/0, 7-10=0/691, 6-10=-654/0, 6-11=0/385, 5-11=-474/0

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) All plates are 3x4 MT20 unless otherwise indicated.


3) Plates checked for a plus or minus 1 degree rotation about its center.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

			15-8-8 15-8-8					
Plate Offsets (X,Y)	[4:0-1-8,Edge], [5:0-1-8,Edge]						1	
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 1-7-3 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.37 BC 0.68 WB 0.35 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.16 11-12 -0.21 13-14 0.04 9	l/defl >999 >897 n/a	L/d 480 360 n/a	PLATES MT20 Weight: 77 lb	GRIP 244/190 FT = 20%F, 11%E
BOT CHORD 2x4 SF	P No.1(flat) P No.1(flat) P No.3(flat)		BRACING- TOP CHOR BOT CHOR	except	t end vert	icals.	rectly applied or 6-0-0 or 10-0-0 oc bracing.	oc purlins,
REACTIONS. (siz Max G	e) 16=0-3-8, 9=0-2-0 Grav 16=675(LC 1), 9=675(LC 1)							
TOP CHORD 2-3= BOT CHORD 15-1	Comp./Max. Ten All forces 250 (lb) or -1396/0, 3-4=-2206/0, 4-5=-2484/0, 5-6= 6=0/839, 14-15=0/1926, 13-14=0/2484, =0/839	-2206/0, 6-7=-1396/0		Э,				

WEBS 2-10=-0725, 6-10=-689/0, 6-11=0/414, 4-14=-517/0, 7-9=-1051/0, 7-10=0725, 6-10=-689/0, 6-11=0/414, 5-11=-517/0

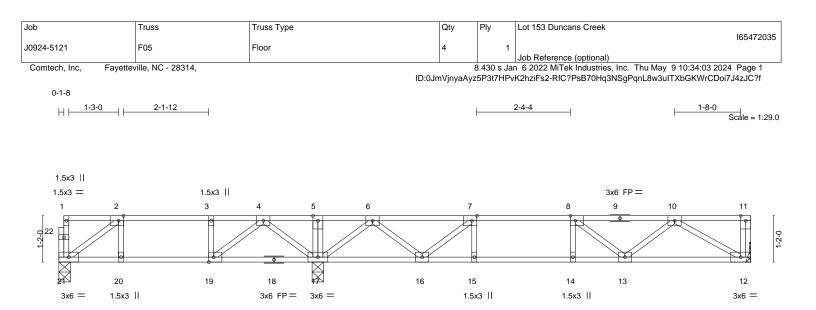
NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) All plates are 3x4 MT20 unless otherwise indicated.

3) Plates checked for a plus or minus 1 degree rotation about its center.

4) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 9.


5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

L	6-6-4	1		17-5-0		
I	6-6-4	I		10-10-12		
Plate Offsets (X,Y)	[2:0-1-8,Edge], [7:0-1-8,Edge], [8:0-1-8,	Edge], [19:0-1-8,Edge]				
LOADING (psf)	SPACING- 1-7-3	CSI.	DEFL. in ((loc) I/defl L/d	PLATES	GRIP
TCLL 40.0	Plate Grip DOL 1.00	TC 0.34	Vert(LL) -0.07 13	3-14 >999 480	MT20	244/190
TCDL 10.0	Lumber DOL 1.00	BC 0.47	Vert(CT) -0.09	14 >999 360		
BCLL 0.0	Rep Stress Incr YES	WB 0.22	Horz(CT) 0.01	12 n/a n/a		
BCDL 5.0	Code IRC2015/TPI2014	Matrix-S			Weight: 86 lb	FT = 20%F, 11%E
LUMBER-			BRACING-	·		
TOP CHORD 2x4 SF	PNo.1(flat)		TOP CHORD S	structural wood sheathing dired	ctly applied or 6-0-0	oc purlins,
BOT CHORD 2x4 SF	PNo.1(flat)		e	xcept end verticals.		
WEBS 2x4 SF	PN0.3(flat)		BOT CHORD R	ligid ceiling directly applied or	10-0-0 oc bracing,	Except:
	. ,		6-	-0-0 oc bracing: 17-19,16-17.		·
REACTIONS. (size	e) 21=0-3-8, 17=0-3-8, 12=Mechanica	1		5		
Max G	Grav 21=248(LC 10), 17=847(LC 1), 12=	454(LC 4)				

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

 TOP CHORD
 2-3=-318/0, 3-4=-318/0, 4-5=0/446, 5-6=0/446, 6-7=-721/0, 7-8=-1089/0, 8-10=-908/0

 BOT CHORD
 20-21=0/318, 19-20=0/318, 16-17=-71/384, 15-16=0/1089, 14-15=0/1089, 13-14=0/1089,

	12-13=0/680
WEBS	2-21=-391/0, 4-17=-473/0, 4-19=0/345, 10-12=-787/0, 10-13=0/297, 6-17=-733/0,
	6-16=0/471, 7-16=-528/0

NOTES-

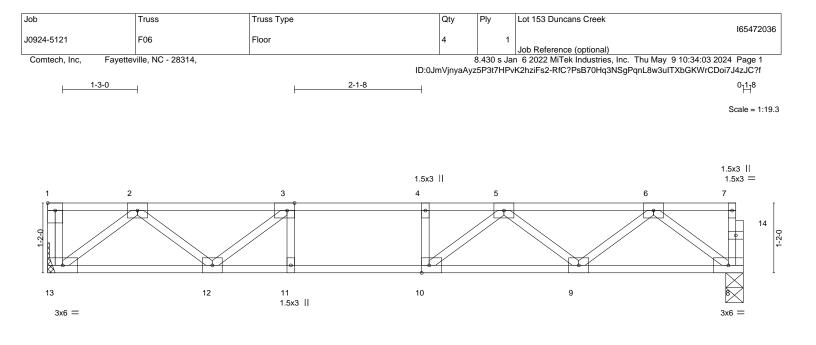
1) Unbalanced floor live loads have been considered for this design.

2) All plates are 3x4 MT20 unless otherwise indicated.

3) Plates checked for a plus or minus 1 degree rotation about its center.

4) Refer to girder(s) for truss to truss connections.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.


Strongbacks to be attached to walls at their outer ends or restrained by other means.

6) CAUTION, Do not erect truss backwards.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Plate Offsets (X,Y)	[1:Edge,0-1-8], [3:0-1-8,Edge], [10:0-1-4	3,Edge]	<u>11-7-8</u> 11-7-8			
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 1-7-3 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.35 BC 0.47 WB 0.22 Matrix-S	DEFL. ii Vert(LL) -0.05 Vert(CT) -0.1 Horz(CT) 0.02	9-10 >999 360	PLATES MT20 Weight: 58 lb	GRIP 244/190 FT = 20%F, 11%E
BOT CHORD 2x4 SF	P No.1(flat) P No.1(flat) P No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dire except end verticals. Rigid ceiling directly applied o	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	oc purlins,

REACTIONS. (size) 13=Mechanical, 8=0-3-8 Max Grav 13=500(LC 1), 8=495(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-947/0, 3-4=-1321/0, 4-5=-1321/0, 5-6=-949/0

BOT CHORD 12-13=0/597, 11-12=0/1321, 10-11=0/1321, 9-10=0/1246, 8-9=0/609

WEBS 2-13=-749/0, 2-12=0/456, 3-12=-495/0, 6-8=-761/0, 6-9=0/443, 5-9=-387/0,

5-10=-36/281

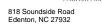
NOTES-

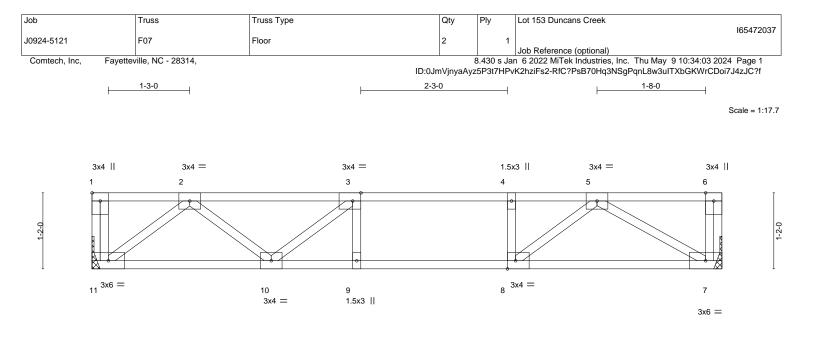
1) Unbalanced floor live loads have been considered for this design.

2) All plates are 3x4 MT20 unless otherwise indicated.

3) Plates checked for a plus or minus 1 degree rotation about its center.

4) Refer to girder(s) for truss to truss connections.


5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.


Strongbacks to be attached to walls at their outer ends or restrained by other means.

6) CAUTION, Do not erect truss backwards.

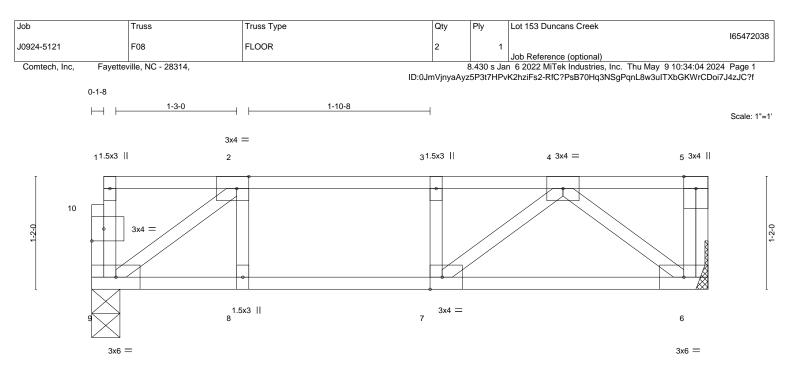
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Plate Offsets (X,Y)	[1:Edge,0-1-8], [3:0-1-8,Edge], [8:0-1-8	,Edge]	9-8-0						
OADING (psf)	SPACING- 1-7-3	CSI.	DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL 40.0	Plate Grip DOL 1.00	TC 0.32	Vert(LL)	-0.06	9	>999	480	MT20	244/190
CDL 10.0	Lumber DOL 1.00	BC 0.38	Vert(CT)	-0.08	9	>999	360		
BCLL 0.0	Rep Stress Incr YES	WB 0.21	Horz(CT)	0.01	7	n/a	n/a		
BCDL 5.0	Code IRC2015/TPI2014	Matrix-S						Weight: 49 lb	FT = 20%F, 11%E
UMBER-			BRACING-						
OP CHORD 2x4 SP	No.1(flat)		TOP CHOP	D	Structu	ral wood	sheathing di	rectly applied or 6-0-0	oc purlins,
OT CHORD 2x4 SP	No.1(flat)				except	end vert	cals.		
VEBS 2x4 SP	No.3(flat)		BOT CHOF	D	Rigid c	eiling dir	ectly applied	or 10-0-0 oc bracing.	
REACTIONS. (size Max G	e) 11=Mechanical, 7=Mechanical rav 11=414(LC 1), 7=414(LC 1)								
	Comp./Max. Ten All forces 250 (lb) or	r less except when shown.							
()									
OP CHORD 2-3=-	725/0, 3-4=-900/0, 4-5=-900/0	1500							
OP CHORD 2-3=- 3OT CHORD 10-11									

1) Unbalanced floor live loads have been considered for this design.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Refer to girder(s) for truss to truss connections.


4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Plate Offsets (X,Y)	[2:0-1-8,Edge], [7:0-1-8,Edge], [10:0-1-8	3.0-1-81	6-4-8 6-4-8		
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.30 BC 0.27 WB 0.13 Matrix-S	DEFL. ir Vert(LL) -0.04 Vert(CT) -0.05 Horz(CT) 0.00	6-7 >999 480 6-7 >999 360	GRIP 244/190 FT = 20%F, 11%E
BOT CHORD 2x4 SF	P No.1(flat) P No.1(flat) P No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dire except end verticals. Rigid ceiling directly applied o	 c purlins,

REACTIONS. (size) 9=0-3-8, 6=Mechanical

Max Grav 9=331(LC 1), 6=337(LC 1)

 FORCES.
 (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 TOP CHORD
 2-3=-452/0, 3-4=-452/0

 BOT CHORD
 8-9=0/452, 7-8=0/452, 6-7=0/349

2-9=-557/0, 4-6=-438/0 WEBS

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Refer to girder(s) for truss to truss connections.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

5) CAUTION, Do not erect truss backwards.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB Building Component Scietus Information**, and the from the Structure Building Component Advance interport of the property damage. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	-	Truss	1	Truss Type			Qty	Ply	Lot 153 D	uncans Creek			1654720	20
J0924-5121	1	FKW1	F	Floor Supported Gab	e		1	1	Job Refer	ence (optional)			1054720	39
Comtech, Inc,	Fayettevi	lle, NC - 28314,				ID:0J			n 62022 N	liTek Industries, In RfC?PsB70Hq3NS				
0-1-8													0 ₁ 18	
													Scale = 1:2	:5.7
1	2	3	4	5	6	7	8		9	10	11	12	13	
		•	• • •	0 0		• •	• •	*****		0	• • •		2	1-2-0
26	25	24	23	22	21	20	<u></u>	~~~~~	18	17	16	15	14	
3x4 =	20		20			20			10		10		3x4 =	

			15-6-12 15-6-12	I
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.06 BC 0.01 WB 0.03 Matrix-R	DEFL. in (loc) I/defl L/d PLATES GRIP Vert(LL) n/a - n/a 999 MT20 244/1 Vert(CT) n/a - n/a 999 MT20 244/1 Horz(CT) 0.00 14 n/a n/a Weight: 66 lb FT	90 ⁻ = 20%F, 11%E
	P No.1(flat) P No.1(flat)	1	BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purl except end verticals.	ins,

BOT CHORD

 TOP CHORD
 2x4 SP No.1(flat)

 BOT CHORD
 2x4 SP No.1(flat)

 WEBS
 2x4 SP No.3(flat)

 OTHERS
 2x4 SP No.3(flat)

except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 15-6-12.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 26, 14, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) All plates are 1.5x3 MT20 unless otherwise indicated.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Gable requires continuous bottom chord bearing.

4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

5) Gable studs spaced at 1-4-0 oc.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 153 Duncans Creek			165472040
J0924-5121	FKW2	Floor Supported Gable	1	1				103472040
					Job Reference (optional)			
Comtech, Inc, Fayetter	ville, NC - 28314,				n 6 2022 MiTek Industries,			
			ID:0JmVjnyaAy	z5P3t7HPv	K2hziFs2-RfC?PsB70Hq3N	SgPqnL8w3uIT	XbGKWrCDoi7J	4zJC?f
0 ₁ 18								0 ₁ 18
							S	cale = 1:26.5
$ \begin{array}{c} 1 & 2 \\ \hline 0 & 0 \\ \hline 0 & 0 \\ \hline 26 & 25 \\ 3x4 = \\ \end{array} $	3 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5 6 7 0 0 0 0 0 0 22 21 20		9		11 • • • • 16	15	13 28 0 0 0 0 0 0 0 0 0 0 0 0 0

						16-0-0 16-0-0						
TCDL 10 BCLL 0	osf) 0.0 0.0 0.0 5.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TF	2-0-0 1.00 1.00 YES Pl2014	CSI. TC BC WB Matrix	0.06 0.01 0.03 <-R	DEFL. Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 14	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 67 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER- TOP CHORD BOT CHORD		No.1(flat)				BRACING- TOP CHOR	D		ral wood end verti		rectly applied or 6-0-0	oc purlins,

BOT CHORD

BOT CHORD2x4 SP No.1(flat)WEBS2x4 SP No.3(flat)OTHERS2x4 SP No.3(flat)

except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 16-0-0.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 26, 14, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

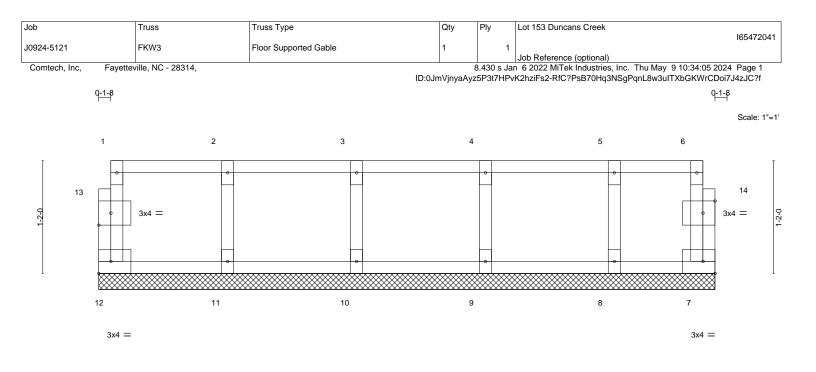
NOTES-

1) All plates are 1.5x3 MT20 unless otherwise indicated.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Gable requires continuous bottom chord bearing.

4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).


5) Gable studs spaced at 1-4-0 oc.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

			<u>6-4-8</u> 6-4-8			
Plate Offsets (X,Y)	[13:0-1-8,0-1-8], [14:0-1-8,0-1-8]					
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.06 BC 0.01 WB 0.03 Matrix-R	DEFL. in Vert(LL) n/a Vert(CT) n/a Horz(CT) 0.00	a - n/a 999	PLATES MT20 Weight: 29 lb	GRIP 244/190 FT = 20%F, 11%E
BOT CHORD 2x4 SP	P No.1(flat) P No.1(flat) P No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dire except end verticals. Rigid ceiling directly applied o		oc purlins,

REACTIONS. All bearings 6-4-8.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 12, 7, 11, 10, 9, 8

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

OTHERS

1) All plates are 1.5x3 MT20 unless otherwise indicated.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Gable requires continuous bottom chord bearing.

2x4 SP No.3(flat)

4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

5) Gable studs spaced at 1-4-0 oc.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

A Mi Tek Affiliate 818 Soundside Road

Edenton, NC 27932

105 1700		3 Duncans Creek	Lot 1	Ply	Qty			Truss Type	uss	וד	Job
16547204			1		1		rted Gable	Floor Suppo	KW4	F	J0924-5121
		eference (optional)								··	0024 0121
	nc. Thu May 9 10:34:0 SgPqnL8w3uITXbGKW				ID:0JmVjn				e, NC - 28314,	Fayetteville	Comtech, Inc,
0138											
Scale = 1:1											
											3x4
10	9	8	7		6	,	5	4	3	2	1
	0	0			•	•			0	0	
2			_			H					1-2-0
11	12	13	14		15	6	1	17	18	19	20
3x4 =											3x4
044 -											0/14

					1-7-8 1-7-8						
Plate Offsets ()	X,Y) [1:Edge,0-1-8], [20:Edge,0-1-	-8]								
LOADING (ps: TCLL 40.1 TCDL 10.1 BCLL 0.1 BCDL 5.1	Ó O .0	Plate Grip DOL 1 Lumber DOL 1	-0-0 CSI. 1.00 TC 1.00 BC YES WB 14 Matri	0.06 0.01 0.03 ix-R	DEFL. Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 11	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 50 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER- TOP CHORD BOT CHORD WEBS	2x4 SP	No.1(flat) No.1(flat) No.3(flat)			BRACING- TOP CHOR BOT CHOR	-	except e	end vertion	als.	rectly applied or 6-0-0 or 10-0-0 oc bracing.	oc purlins,

REACTIONS. All bearings 11-7-8.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 20, 11, 19, 18, 17, 16, 15, 14, 13, 12

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

OTHERS

1) All plates are 1.5x3 MT20 unless otherwise indicated.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Gable requires continuous bottom chord bearing.

2x4 SP No.3(flat)

4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

5) Gable studs spaced at 1-4-0 oc.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

7) CAUTION, Do not erect truss backwards.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB Building Component Scietus Information**, and the from the Structure Building Component Advance interport of the property damage. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

b	Truss	Ti	uss Type		Qty	Ply	Lot 153 Duncans Creek		16547204
924-5121	FKW5	FI	oor Supported Gable		1	1	Job Reference (optional)		10047204
Comtech, Inc, F	ayetteville, NC - 28314,					8.430 s Ja	an 6 2022 MiTek Industries, In	c. Thu May 9 10:34	4:06 2024 Page 1
				ID:0J	mVjnyaAy	/z5P3t7HP	vK2hziFs2-RfC?PsB70Hq3NS	gPqnL8w3uITXbGK	
									0 _[1] 8
									Scale = 1:1
3x4									
1	2	3	4	5		6	7	8	9
						H			
-2-0									•
1 💾									
		•	0	0		•		0	

18	17	16	15	14		13	12	11	10
3x4									3x4 =
				40.0.0					
				<u>10-9-0</u> 10-9-0					

Plate Offsets (X,Y)	[1:Edge,0-1-8], [18:Edge,0-1-8]	1			1	
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.07 BC 0.01 WB 0.03 Matrix-R	Vert(LL) n	in (loc) l/defl L/d /a - n/a 999 /a - n/a 999 /0 10 n/a n/a	PLATES MT20 Weight: 47 lb	GRIP 244/190 FT = 20%F. 11%E
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x4 SP	No.1(flat) No.3(flat)	Wall ATA	BRACING- TOP CHORD BOT CHORD	Structural wood sheathing d except end verticals. Rigid ceiling directly applied	lirectly applied or 6-0-0) oc purlins,

REACTIONS. All bearings 10-9-0.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 18, 10, 17, 16, 15, 14, 13, 12, 11

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

OTHERS

1) All plates are 1.5x3 MT20 unless otherwise indicated.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Gable requires continuous bottom chord bearing.

2x4 SP No.3(flat)

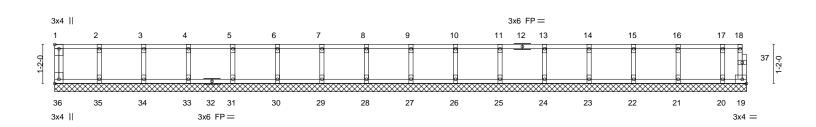
4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

5) Gable studs spaced at 1-4-0 oc.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

7) CAUTION, Do not erect truss backwards.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB Building Component Scietus Information**, and the from the Structure Building Component Advance interport of the property damage. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Lot 153 Duncans Creek
J0924-5121	FKW6	Floor Supported Gable	1	1	165472044
000210121					Job Reference (optional)
Comtech, Inc, Fayette	ville, NC - 28314,		8	3.430 s Jai	n 6 2022 MiTek Industries, Inc. Thu May 9 10:34:06 2024 Page 1

ID:0JmVjnyaAyz5P3t7HPvK2hziFs2-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

0-<u>1</u>-8

Scale = 1:34.5

			20-8-8 20-8-8			
Plate Offsets (X,Y)	[1:Edge,0-1-8], [36:Edge,0-1-8]	1	1			
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. i	n (loc) l/defl L/d	PLATES	GRIP
TCLL 40.0	Plate Grip DOL 1.00	TC 0.06	Vert(LL) n/a	a - n/a 999	MT20	244/190
TCDL 10.0	Lumber DOL 1.00	BC 0.01	Vert(CT) n/a	a - n/a 999		
BCLL 0.0	Rep Stress Incr YES	WB 0.03	Horz(CT) 0.00) 19 n/a n/a		
BCDL 5.0	Code IRC2015/TPI2014	Matrix-R			Weight: 87 lb	FT = 20%F, 11%E
LUMBER-			BRACING-			
TOP CHORD 2x4 SP	No.1(flat)		TOP CHORD	Structural wood sheathing di	rectly applied or 6-0-0) oc purlins,
	No.1(flat)			except end verticals.		
W/EBG 2v/ GD	No 3(flat)			Rigid ceiling directly applied	or 10-0-0 oc bracing	

TOP CHORD	2x4 SP No.1(flat)	TOP CHORD	Structural wood sheathing directly applied or 6-0-0 oc pur
BOT CHORD	2x4 SP No.1(flat)		except end verticals.
WEBS	2x4 SP No.3(flat)	BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing.
OTHERS	2x4 SP No.3(flat)		

REACTIONS. All bearings 20-8-8.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 36, 19, 35, 34, 33, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22,

21.20

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) All plates are 1.5x3 MT20 unless otherwise indicated.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Gable requires continuous bottom chord bearing.

- 4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 5) Gable studs spaced at 1-4-0 oc.
- 6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

7) CAUTION, Do not erect truss backwards.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

