

Trenco 818 Soundside Rd Edenton, NC 27932

Re: 24090009-01

3 Serenity-Roof-B326 A CP GLH

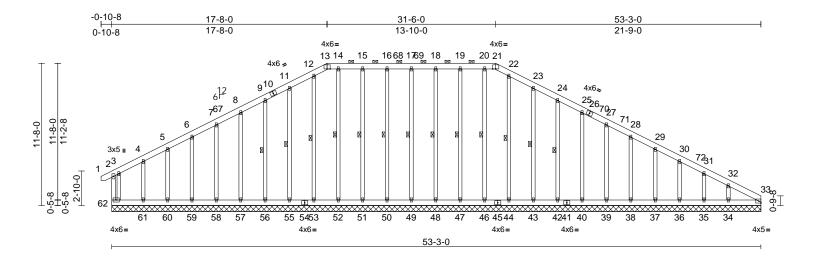
The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Carter Components (Sanford, NC)).

Pages or sheets covered by this seal: I68160396 thru I68160431

My license renewal date for the state of North Carolina is December 31, 2024.

North Carolina COA: C-0844

September 13,2024


Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	3 Serenity-Roof-B326 A CP GLH	
24090009-01	A01	Piggyback Base Supported Gable	1	1	Job Reference (optional)	I68160396

Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Wed Sep 11 15:16:33 ID:HvYYHe4LpHmiz2Dld9nw5TzRQov-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

94	.5
	94

TOP CHORD

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.13	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.12	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.21	Horz(CT)	0.01	33	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MSH								
BCDL	10.0	ļ									Weight: 546 lb	FT = 20%

TCDL BCLL	10.0 0.0*	Rep Stress Incr Code	YES IRC2021/TPI2014	WB Matrix-MSH	0.21	Horz(CT)	0.01	33	n/a	n/a		
BCDL	10.0										Weight: 546 lb	FT = 2
LUMBER				Max Grav 34=	419 (LC 1),	35=81 (LC 13	3),	вот сн	ORD	61-62	=-81/150, 60-61	=-81/150
TOP CHORD	2x6 SP No.2			36=	197 (LC 41)	, 37=152 (LC	59),			59-60	=-81/150, 58-59	=-81/150
BOT CHORD	2x6 SP No.2			38=	174 (LC 45)	, 39=221 (LC	45),			57-58	=-81/150, 56-57	=-81/150
WEBS	2x4 SP No.3			40=	230 (LC 45)	, 42=229 (LC	45),			55-56	=-81/150, 53-55	=-81/150
OTHERS	2x4 SP No.3 *Except	! *		43=	230 (LC 45)	, 44=217 (LC	45),			52-53	=-81/150, 51-52	=-81/150

49-17,48-18,47-19,46-20,44-22,50-16,51-15, 52-14,53-12:2x4 SP No.2 BRACING

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals, and 2-0-0 oc purlins (10-0-0 max.): 13-21.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing.

WEBS 1 Row at midpt 17-49, 18-48, 19-47,

20-46, 22-44, 23-43, 24-42, 16-50, 15-51, 14-52, 12-53, 11-55, 9-56

REACTIONS (size) 33=53-3-0, 34=53-3-0, 35=53-3-0, 36=53-3-0, 37=53-3-0, 38=53-3-0, 39=53-3-0, 40=53-3-0, 42=53

43=53-3-0, 44=53-3-0, 46=53-3-0, 47=53-3-0, 48=53-3-0, 49=53-3-0, 50=53-3-0, 51=53-3-0, 52=53-3-0, 53=53-3-0, 58=53-3-0, 59=53-3-0, 58=53-3-0, 59=53-3-0, 60=53-3-0, 61=53-3-0, 62=53-3-0,

66=53-3-0 Max Horiz 62=-186 (LC 12)

Max Uplift 34=-66 (LC 14), 35=-170 (LC 15), 36=-15 (LC 14), 37=-50 (LC 15), 38=-42 (LC 15), 39=-44 (LC 15), 40=-43 (LC 15), 42=-46 (LC 15), 43=-52 (LC 15), 47=-29 (LC 11), 48=-28 (LC 11), 49=-25 (LC 10),

50=-28 (LC 11), 51=-29 (LC 10), 55=-52 (LC 14), 56=-46 (LC 14), 57=-43 (LC 14), 58=-44 (LC 14), 59=-46 (LC 14), 60=-22 (LC 14), 61=-137 (LC 14), 62=-88 (LC 15) 43=230 (LC 45), 44=217 (LC 45), 46=199 (LC 40), 47=220 (LC 40), 48=217 (LC 40), 49=216 (LC 40), 50=217 (LC 40), 51=220 (LC 40), 52=199 (LC 40), 53=218 (LC 43), 55=234 (LC 43), 56=233 (LC 43), 57=233 (LC 43), 58=233 (LC 43), 59=199 (LC 43), 60=150 (LC 58), 61=257 (LC 51), 62=133 (LC 58) (lb) - Maximum Compression/Maximum

(ID) - MAXIMUM Compression/MAXIMUM Tension 2-62=-245/191, 1-2=0/23, 2-3=-100/91, 3-4=-74/121, 4-5=-48/115, 5-6=-58/156, 7-75/201, 7-9-00/246, 9-0-106/20

3-4=-74/121, 4-5=-46/173, 3-6=-36/136, 6-7=-75/201, 7-8=-90/246, 8-9=-106/291, 9-11=-124/338, 11-12=-144/387, 12-13=-146/383, 13-14=-140/380, 14-15=-140/380, 15-16=-140/380, 16-17=-140/380, 17-18=-140/380, 18-19=-140/380, 19-20=-140/380, 20-21=-140/380, 21-22=-146/383, 22-23=-144/387, 23-24=-124/338, 24-25=-106/291, 25-27=-90/246, 27-28=-75/201, 28-29=-59/160,

29-30=-63/137, 30-31=-71/112,

31-32=-124/100, 32-33=-134/117

0 61-62=-81/150, 60-61=-81/150, 59-60=-81/150, 58-59=-81/150, 57-58=-81/150, 56-57=-81/150, 55-56=-81/150, 53-55=-81/150, 52-53=-81/150, 51-52=-81/150, 50-51=-81/150, 49-50=-81/150, 48-49=-81/150, 47-48=-81/150, 46-47=-81/150, 44-46=-81/150, 43-44=-81/150, 42-43=-81/150, 40-42=-81/150, 39-40=-81/150, 38-39=-81/150, 37-38=-81/150, 36-37=-81/150, 35-36=-81/150,

34-35=-81/150, 33-34=-81/150

September 13,2024

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

FORCES

TOP CHORD

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss we be and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Qty Job Truss Truss Type Ply 3 Serenity-Roof-B326 A CP GLH 168160396 24090009-01 A01 Piggyback Base Supported Gable Job Reference (optional)

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Wed Sep 11 15:16:33 ID:HvYYHe4LpHmiz2Dld9nw5TzRQov-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 2

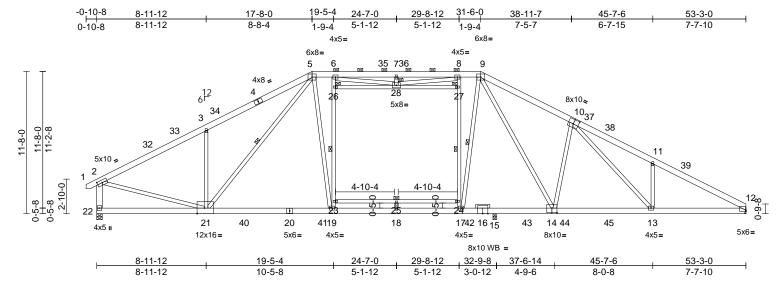
WEBS

17-49=-176/57, 18-48=-177/62, 19-47=-180/61, 20-46=-159/6, 22-44=-177/2, 23-43=-190/87, 24-42=-189/81, 25-40=-190/77, 27-39=-181/77, 28-38=-132/77, 29-37=-125/77, 30-36=-138/78, 31-35=-65/120, 32-34=-244/137, 16-50=-177/62, 15-51=-180/61, 14-52=-159/1, 12-53=-178/0, 11-55=-194/87, 9-56=-193/81, 8-57=-193/77,

7-58=-194/77. 6-59=-157/77. 5-60=-115/91.

4-61=-186/159, 3-62=-226/263

NOTES


- Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-8-6 to 4-7-0, Exterior(2N) 4-7-0 to 12-4-2, Corner(3R) 12-4-2 to 22-11-14, Exterior(2N) 22-11-14 to 26-2-2, Corner(3R) 26-2-2 to 36-7-0, Exterior(2N) 36-7-0 to 47-11-2, Corner(3E) 47-11-2 to 53-3-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- Provide adequate drainage to prevent water ponding.
- All plates are 2x4 MT20 unless otherwise indicated.
- 9) Gable requires continuous bottom chord bearing.
- 10) Gable studs spaced at 2-0-0 oc.
- 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 13) N/A
- 14) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	3 Serenity-Roof-B326 A CP GLH	
24090009-01	A03	Piggyback Base	8	1	Job Reference (optional)	I68160397

Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Wed Sep 11 15:16:35 ID:OFJFx3IDTxFbWWzrBXohbzzRCTM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:94.5

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.70	Vert(LL)	-0.36	19-21	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.88	Vert(CT)	-0.56	19-21	>691	180		
TCDL	10.0	Rep Stress Incr	YES	WB	1.00	Horz(CT)	0.11	12	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 471 lb	FT = 20%

LUMBER

TOP CHORD 2x6 SP No.2 BOT CHORD 2x6 SP No.2

HORD 2x6 SP No.2 *Except* 16-14:2x6 SP 2400F

2.0E

WEBS 2x4 SP No.3 *Except* 22-2:2x6 SP No.2,

6-19,8-17,21-5,19-5,17-9,14-9:2x4 SP No.2

OTHERS 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or

3-2-15 oc purlins, except end verticals, and 2-0-0 oc purlins (3-9-7 max.): 5-9.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

WEBS 1 Row at midpt 19-26, 17-27, 5-21, 9-17,

23-

JOINTS 1 Brace at Jt(s): 26,

27, 28

REACTIONS (size) 12= Mechanical, 15=0-3-8,

22=0-5-8

Max Horiz 22=-187 (LC 12)

Max Uplift 12=-107 (LC 14), 15=-223 (LC 15),

22=-269 (LC 14)

Max Grav 12=2012 (LC 47), 15=829 (LC 39),

22=2270 (LC 37)

FORCES (lb) - Maximum Compression/Maximum

Tension

1-2=0/25. 2-3=-3090/354. 3-5=-3206/547.

5-6=-2534/403, 6-7=-3068/590, 7-8=-3068/590, 8-9=-2512/401,

9-11=-4015/460, 11-12=-4055/352

2-22 BOT CHORD 21-2

TOP CHORD

2-22=-2317/313 21-22=-138/274, 19-21=-189/2334, 18-19=-183/2429, 17-18=-183/2429.

15-17=-147/2312, 13-15=-192/2990,

12-13=-228/3505

WEBS

2-21=-183/2547, 19-23=-482/256, 23-26=-469/261, 6-26=-456/264, 17-24=-867/224, 24-27=-858/226, 8-27=-837/222, 3-21=-817/328, 5-21=-205/545, 5-19=-107/788, 9-17=-196/830, 10-14=-916/318, 9-14=-143/1007, 10-13=-216/806, 11-13=-337/230, 23-25=-63/45,

24-25=-63/45, 18-25=0/27, 26-28=-15/52, 27-28=-139/30, 7-28=-261/85,

6-28=-281/725, 8-28=-268/841

NOTES

 Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-8-6 to 4-7-9, Interior (1) 4-7-9 to 10-1-10, Exterior(2R) 10-1-10 to 39-2-5, Interior (1) 39-2-5 to 47-11-2, Exterior(2E) 47-11-2 to 53-3-0 zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

 Unbalanced snow loads have been considered for this design.

5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

6) Provide adequate drainage to prevent water ponding.

7) All plates are 2x4 MT20 unless otherwise indicated.

This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

10) Refer to girder(s) for truss to truss connections.11) Provide mechanical connection (by others) of truss to

bearing plate capable of withstanding 107 lb uplift at joint 12.

12) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to

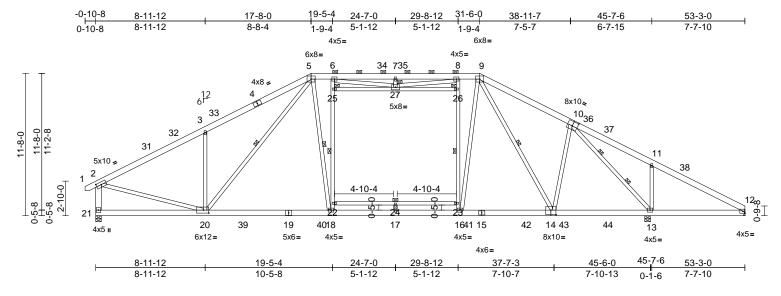
UPLIFT at jt(s) 22 and 15. This connection is for uplift only and does not consider lateral forces.

13) Graphical purlin representation does not depict the size

13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

September 13,2024


a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	3 Serenity-Roof-B326 A CP GLH	
24090009-01	A04	Piggyback Base	3	1	Job Reference (optional)	I68160398

Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Wed Sep 11 15:16:35 ID:DGN6a6f8caCKWpHw1clz1BzRCZx-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:94.5

Plate Offsets (X, Y): [2:0-4-14,0-2-8], [10:0-5-0,0-4-8], [14:0-5-0,0-4-8], [20:0)-5-4,0-3-0]
---	--------------

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.68	Vert(LL)	-0.41	18-20	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.91	Vert(CT)	-0.62	18-20	>882	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.97	Horz(CT)	0.09	12	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 469 lb	FT = 20%

LUMBER

TOP CHORD 2x6 SP No 2 BOT CHORD 2x6 SP No.2

WEBS 2x4 SP No.3 *Except* 21-2:2x6 SP No.2, 6-18,16-8,16-9,14-9,20-5,18-5:2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or

3-4-2 oc purlins, except end verticals, and 2-0-0 oc purlins (3-10-0 max.): 5-9.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing, Except:

6-0-0 oc bracing: 12-13.

WEBS 1 Row at midpt 18-25, 16-26, 9-14, 5-20, 5-18, 22-23

WEBS 2 Rows at 1/3 pts

JOINTS 1 Brace at Jt(s): 25,

26, 27

REACTIONS (size) 12= Mechanical, 13=0-5-8.

21=0-5-8

Max Horiz 21=-187 (LC 12) 12=-220 (LC 14), 13=-482 (LC 15), Max Uplift

21=-248 (LC 14)

Max Grav 12=885 (LC 37), 13=2317 (LC 39),

21=2209 (LC 37)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/25, 2-3=-3030/325, 3-5=-3146/518,

5-6=-2451/399, 6-7=-3031/589, 7-8=-3031/589, 8-9=-2428/397 9-11=-2686/560, 11-12=-1525/492

2-21=-2275/301

BOT CHORD 20-21=-136/270, 18-20=-154/2261,

17-18=-137/2358, 16-17=-137/2358 13-16=-200/2157, 12-13=-376/1311

WEBS

2-20=-167/2495, 18-22=-477/306, 22-25=-469/306, 6-25=-457/307, 16-23=-847/255, 23-26=-847/257, 8-26=-827/252, 9-16=-163/1256, 9-14=-268/136. 10-14=-10/516. 10-13=-2090/385, 11-13=-456/258 3-20=-817/328, 5-20=-219/594, 5-18=-164/756, 22-24=-61/46, 23-24=-61/46.

17-24=0/16, 25-27=-49/99, 26-27=-172/51, 7-27=-267/85, 8-27=-276/863, 6-27=-293/747

NOTES

Unbalanced roof live loads have been considered for 1) this design.

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-8-6 to 4-7-9, Interior (1) 4-7-9 to 10-1-10, Exterior(2R) 10-1-10 to 39-2-5, Interior (1) 39-2-5 to 47-11-2, Exterior(2E) 47-11-2 to 53-3-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- Provide adequate drainage to prevent water ponding.
- All plates are 2x4 MT20 unless otherwise indicated.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 10) Refer to girder(s) for truss to truss connections.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 220 lb uplift at joint
- 12) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 21 and 13. This connection is for uplift only and does not consider lateral forces.
- 13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

September 13,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qtv Ply 3 Serenity-Roof-B326 A CP GLH 168160399 24090009-01 A05 Attic Girder 4 Job Reference (optional) Carter Components (Sanford, NC), Sanford, NC - 27332, Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Wed Sep 11 15:16:36 Page: 1 ID:VIY0g5gMUgwQZRyxiBXYItzRA_f-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 17-8-0 25-10-14 32-9-4 -0-10-8 5-7-13 20-7-5 2-11-5 13-6-7 16-2-4 31-6-0 11-0-3 39-7-10 46-5-3 53-0-8 0-10-8 5-7-13 5-4-5 2-6-4 2-7-13 2-7-13 2-7-13 2-7-13 2-11-5 6-10-6 6-9-9 6-7-5 1-5-12 12x16= 1-3-4 4x8 6x8 " 4x8= 4x5= 12x16= **6**0 6110 12 8 13 6 a pr 8x10 = जरती 49 52 612 53 48 4650 6x8= 6x8= 8x10~ 5x6= 182 59 4x5 ڃ 63 58 9-1-14 3 4x5 15 5x8 -4x5~ .16 17⊵ 0-10 -0] 45 4443 42 64 65 4166 38 35 33*Ģ*30 2677 2524 620 4x5= 3x5= 3x5= 5x8= 4x8= 4x5 II 3x5= 3x8= 4x6= 4x5 II 4x6= 12x16= 3x8= 3x5= 3x5= 3x5= 8x10= 3x6 II 4x6 II FASTEN TRUSS TO BEARING FOR 3x8= THE UPLIFT REACTION SHOWN WHILE PERMITTING NO UPWARD 5x6= 18-7-4 MT20HS 8x12 30-4-8 32-MOVEMENT OF THE BEARING 18-5-8 16-5-0 21-4-12 24-2-4 26-11-8 29-9-0 32-6-8/8= 20-0-0 22-9-8 25-6-12 28-4-4 31-1-12 37-1-8 0-7-5 0-1-12 1-4-12 1-4-8 1-4-12 0-7-8 0-2-12 4-4-4 2-0-8 1-4-12 1-4-12 1-4-12 1-4-12 1-4-12 6-6-0 11-0-3 39-7-10 15-9-11 46-5-3 53-0-8 5-7-13 0-10-3 4-6-3 4-9-9 2-6-2 6-9-9 6-7-5 Scale = 1:102.4 [7:0-8-0,0-3-4], [12:0-10-8,0-2-12], [14:0-5-0,0-4-8], [19:0-4-8,20-2-0], [22:0-3-8,0-2-8], [25:0-3-8,0-2-8], [28:0-3-0,0-3-0], [38:0-4-12,Edge], [41:0-8-0,0-4-12], Plate Offsets (X, Y): [44:0-3-0,0-3-4] CSI DEFL PLATES Loading (psf) Spacing 2-0-0 in (loc) I/defl I/d GRIP Plate Grip DOL TC -0.42 38-41 >926 240 MT20 244/190 TCLL (roof) 20.0 1.15 Vert(LL) 20.0 1.15 ВС 0.97 -0.63 38-41 >617 180 MT20HS 187/143 Snow (Pf) Lumber DOL Vert(CT) Rep Stress Incr TCDI NO WB 10.0 0.97Horz(CT) 0.17 17 n/a n/a **BCLL** 0.0 Code IRC2021/TPI2014 Matrix-MSH Attic -0.21 22-40 >931 360 **BCDL** 10.0 Weight: 2005 lb FT = 20% TOP CHORD 1-2=0/24, 2-3=-13894/811, 3-4=-17855/1068, LUMBER 4-6=-19196/1164, 6-7=-5749/483, TOP CHORD 2x6 SP No.2 *Except* 5-7:2x4 SP No.1 7-8=-3024/527, 8-9=-3021/526 **BOT CHORD** 2x4 SP 2400F 2.0E *Except* 43-38,43-45:2x6 9-10=-3792/720, 10-11=-1853/1232, SP No.2, 28-22,20-17:2x4 SP No.2 11-12=-1853/1232, 12-13=-5041/447, 13-15=-18603/1151, 15-17=-4060/262, **WEBS** 2x4 SP No.3 *Except* 13-21:2x6 SP 2400F 2.0E, 6-46,45-2,41-47,41-6,46-13:2x6 SP 2-45=-11891/728 **BOT CHORD** 44-45=-126/446, 42-44=-761/12424, No.2, 44-2:2x4 SP No.2 41-42=-877/16595, 35-41=-660/17142, SLIDER Right 2x4 SP No.3 -- 1-6-0 33-35=0/18682, 30-33=0/19483, BRACING 27-30=0/18806, 24-27=-281/16626, TOP CHORD Structural wood sheathing directly applied or 21-24=-805/13168, 19-21=-553/10974, 4-3-4 oc purlins, except end verticals, and 18-19=-179/3511, 17-18=-179/3511, 2-0-0 oc purlins (6-0-0 max.): 7-12. 39-40=-515/594, 37-39=-518/546, BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

JOINTS 1 Brace at Jt(s): 49, 50, 51, 52, 40, 26,

37, 29, 34

REACTIONS (size)

17=20-6-0, 18=20-6-0, 19=20-6-0,

21=20-6-0, 45=0-5-8, 54=20-6-0

Max Horiz 45=-188 (LC 10)

Max Uplift 17=-141 (LC 13), 18=-383 (LC 12), 19=-265 (LC 12), 21=-11735 (LC 46), 45=-708 (LC 12), 54=-141 (LC

13)

17=2267 (LC 46), 18=7963 (LC Max Grav

23), 19=5365 (LC 46), 21=1104 (LC 12), 45=12082 (LC 46), 54=2267

(LC 46)

FORCES (lb) - Maximum Compression/Maximum

Tension

36-37=-2880/0, 34-36=-2880/0, 32-34=-3769/0, 31-32=-3769/0, 29-31=-3769/0. 26-29=-2830/0.

23-26=-322/1917 22-23=-322/1917

September 13,2024

ontinued on page 2

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Ply Job Truss Truss Type Qty 3 Serenity-Roof-B326 A CP GLH 168160399 24090009-01 A05 Attic Girder 4 Job Reference (optional)

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Wed Sep 11 15:16:36 ID:VIY0g5gMUgwQZRyxiBXYltzRA_f-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 2

WEBS

3-44=-5422/380. 3-42=-243/5049. 4-42=-776/166, 5-41=-150/1931, 21-22=-715/6617, 13-22=-547/7714, 6-48=-11763/751 48-49=-11346/727 49-50=-11312/680, 50-51=-11353/682, 51-52=-16183/978, 52-53=-12452/790, 13-53=-13084/827, 2-44=-701/13155, 40-41=-699/7786, 6-40=-547/8776, 7-48=-156/2528, 8-49=-546/66, 9-50=-137/2538, 10-51=-241/36 11-52=-238/66, 12-53=-207/3427, 22-24=0/2405, 38-40=0/2734, 23-24=-541/0, 38-39=-594/0, 24-26=-2137/0, 37-38=-1092/0, 26-27=0/2655, 35-37=0/1905, 27-28=-765/12, 35-36=-942/22, 27-29=-229/226, 34-35=-202/159, 29-30=0/879, 33-34=-17/945, 30-31=-431/0, 32-33=-391/12, 7-49=-4489/251, 9-49=-4763/367, 9-51=-4992/308 10-52=-2393/279, 12-52=-5783/334, 14-19=-9336/551, 15-19=-442/8385, 14-21=-441/8353, 5-42=-2558/146, 15-18=-7758/466

NOTES

- 1) 4-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc, 2x4 - 1 row at 0-9-0 oc. Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc, 2x4 - 1 row at 0-7-0 oc. Web connected as follows: 2x4 - 1 row at 0-9-0 oc, 2x6 -
 - 2 rows staggered at 0-9-0 oc, Except member 41-47 2x6 - 3 rows staggered at 0-4-0 oc, member 6-41 2x6 - 2 rows staggered at 0-4-0 oc. Attach BC w/ 1/2" diam. bolts (ASTM A-307) in the
 - center of the member w/washers at 4-0-0 oc. All loads are considered equally applied to all plies,
- except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads
- 8) Provide adequate drainage to prevent water ponding.
- All plates are MT20 plates unless otherwise indicated.
- 10) All plates are 2x4 MT20 unless otherwise indicated.
- 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 13) Ceiling dead load (5.0 psf) on member(s). 6-48, 48-49, 49-50, 50-51, 51-52, 52-53, 13-53; Wall dead load (5.0psf) on member(s).13-22, 6-40
- 14) Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 39-40, 37-39, 36-37, 34-36, 32-34, 31-32, 29-31, 28-29, 26-28, 23-26, 22-23

- 15) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 11735 lb uplift at ioint 21.
- 16) LGT4-SDS3 Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 45. This connection is for uplift only and does not consider lateral forces.
- 17) N/A
- 18) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 19) This truss has large uplift reaction(s) from gravity load case(s). Proper connection is required to secure truss against upward movement at the bearings. Building designer must provide for uplift reactions indicated.
- 20) LGT4 Hurricane ties must have four studs in line below the truss.
- 21) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 608 lb down and 52 lb up at 28-8-4, and 9100 lb down and 774 lb up at 16-1-4 on bottom chord. The design/ selection of such connection device(s) is the responsibility of others.
- 22) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard

Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (lb/ft) Vert: 1-2=-60, 2-7=-60, 7-12=-60, 12-17=-60, 45-54=-20, 22-40=-30, 6-48=-10, 48-49=-10,

46-49=-10, 46-50=-10, 50-51=-10, 51-52=-10, 52-53=-10, 13-53=-10 Drag: 13-22=-10, 40-47=-10, 6-47=-10

Concentrated Loads (lb) Vert: 41=-4881 (F), 67=-326 (F)

and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qtv Ply 3 Serenity-Roof-B326 A CP GLH 168160400 24090009-01 A06 Attic Girder 4 Job Reference (optional) Carter Components (Sanford, NC), Sanford, NC - 27332 Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Wed Sep 11 15:16:36 Page: 1 ID:pGeZvt1?lwruiNEY_xH4fkzRAp7-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 25-10-14 17-8-0 32-9-4 -0-10-8 20-7-5 23-3-2 5-7-13 11-0-3 13-6-0 16-2-4 31-6-0 39-7-10 46-5-3 53-6-0 2-5-14 2-8-41-5-122-11-5 2-7-13 2-7-13 2-7-13 2-11-51-3-4 0-10-8 5-7-13 5-4-5 6-10-6 6-9-9 7-0-13 1-1-0 12x16= 4x8s 6x8 = 12x16= 12x16= 4x5= 9 5810 11 12 13 6 £ 8x10 -48 51 49 612 6x8= 6x8 =8x10 11459 66 4x5 -65 11-8-0 9-1-14 3 4x5 16 5x8 -2 4x5 2-10-0 17 18_C 46 4544 43 61 62 4263 39 36 34 931 29 27 25 64 21 20 19 23 4x5 II 6x8= 6x8= 4x8= 4x5 II 3x5 =3x5 =3x5 =3x8 =MT20HS 3x8 =5x8= 4x6= 12x16= 3x8= 3x5= 3x5= 5x6 WB = FASTEN TRUSS TO BEARING FOR 6x8= THE UPLIFT REACTION SHOWN 8x10= 3x5= WHILE PERMITTING NO LIPWARD 29-9-0₃₋₈32-9 9-7-8 32-6-8 20-0-0 MOVEMENT OF THE BEARING. .0-0 21-4-12 24-2-4 26-11-8 29-7-8 18-5-8 22-9-8 25-6-12 28-4-4 31-1-12 1-4-12 1-4-8 1-4-120-1-81-4-12 15-9-11 16-5-0 18-7-4 39-7-10 5-7-13 46-5-3 11-0-3 37-6-8 53-6-0 2-1-2 5-7-13 0-10-3 4-6-3 4-9-9 0-7-5 0-1-12 4-9-4 6-9-9 7-0-13 Scale = 1:94.2 2-0-8 1-4-12 1-4-12 1-4-12 1-3-4 0-2-12 Plate Offsets (X, Y): [7:0-8-0,0-3-4], [9:0-8-0,0-2-4], [12:0-10-8,0-2-12], [18:Etglé,0-2-4], [23:0-3-8,0-2-8], [28:0-3-0,0-3-0], [39:0-4-12,Edge], [42:0-8-0,0-4-12], [45:0-3-8,0-3-0] 2-0-0 CSI DEFL I/defl L/d **PLATES** GRIP Loading (psf) Spacing in (loc) TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.93 Vert(LL) -0.4939-42 >803 240 MT20HS 187/143 Snow (Pf) 20.0 Lumber DOL 1.15 BC 0.72 Vert(CT) -0.7339-42 >532 180 MT20 244/190 TCDL WB 10.0 Rep Stress Incr NO 0.87 Horz(CT) 0.21 18 n/a **BCLL** 0.0 IRC2021/TPI2014 Matrix-MSH -0.24 >812 360 Code 23-41 Attic BCDL 10.0 Weight: 2017 lb FT = 20% LUMBER **BOT CHORD** 45-46=-123/440, 43-45=-731/12074, 1) 4-ply truss to be connected together with 10d 42-43=-832/16073, 36-42=-684/17253, (0.131"x3") nails as follows: 2x6 SP No.2 *Except* 7-5:2x4 SP 2400F TOP CHORD 34-36=0/17880, 31-34=0/17942, Top chords connected as follows: 2x6 - 2 rows 2.0E 29-31=0/16739, 25-29=-151/14334 staggered at 0-9-0 oc. 2x4 - 1 row at 0-9-0 oc. **BOT CHORD** 2x4 SP 2400F 2.0E *Except* 28-23,28-41:2x4

SP No.2, 44-46:2x6 SP No.2, 44-39:2x6 SP

2400F 2.0E

WEBS 2x4 SP No.3 *Except*

46-2,42-47,6-42,6-51,51-13:2x6 SP No.2,

13-22:2x6 SP 2400F 2.0E, 45-2:2x4 SP No.2

OTHERS 2x4 SP No.3 **SLIDER**

Right 2x4 SP No.3 -- 1-6-0 BRACING

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals, and

2-0-0 oc purlins (6-0-0 max.): 7-12.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

JOINTS 1 Brace at Jt(s): 50, 51, 52, 53, 41, 38,

35, 30, 26

REACTIONS (size) 18= Mechanical, 22=0-5-8,

46=0-5-8

Max Horiz 46=-190 (LC 10)

Max Uplift 18=-420 (LC 12), 22=-5361 (LC

45), 46=-683 (LC 12)

18=8887 (LC 46), 22=792 (LC 12), Max Grav

46=11746 (LC 46)

FORCES (lb) - Maximum Compression/Maximum

Tension TOP CHORD

7-8=-3092/528, 8-9=-3089/526 9-10=-3727/713, 10-11=-1715/1441, 11-12=-1715/1441, 12-13=-4561/424

13-15=-17753/1087, 15-16=-17925/1006, 16-18=-17697/900, 2-46=-11550/702,

1-2=0/24, 2-3=-13497/782, 3-4=-17366/1032

4-6=-18564/1120, 6-7=-5994/479

22-25=-772/12128, 20-22=-780/16089,

19-20=-741/15543, 18-19=-741/15543,

40-41=-1028/0, 38-40=-1102/0,

37-38=-2921/0, 35-37=-2921/0,

33-35=-3019/0, 32-33=-3019/0, 30-32=-3019/0. 26-30=-1178/736

24-26=-370/3083, 23-24=-370/3083

3-45=-5311/373, 4-43=-700/162,

41-42=-617/7143, 6-41=-530/8717

22-23=-712/6595, 13-23=-513/7229,

6-48=-10655/685, 48-50=-10276/663,

50-52=-11090/661, 52-53=-15532/928,

49-53=-12360/771, 13-49=-12997/808,

2-45=-673/12777, 15-20=-220/184,

16-19=-11/162, 16-20=-132/757, 15-22=-640/213, 3-43=-237/4930,

7-48=-147/2364, 12-49=-204/3451,

8-50=-471/64, 9-51=-120/2271,

10-52=-109/92, 11-53=-268/67,

12-53=-5376/307, 10-53=-2531/278,

9-52=-4653/281, 9-50=-4233/347,

7-50=-4773/262, 39-40=-446/0,

39-41=0/2886, 38-39=-859/135, 36-38=0/1265, 36-37=-671/19,

35-36=-160/340, 34-35=-22/133,

33-34=-116/0, 31-32=-558/0, 30-31=0/1422,

29-30=-818/0, 28-29=-736/19, 26-29=0/2289 25-26=-1725/0, 24-25=-569/0. 23-25=0/1636.

5-42=-124/1475, 5-43=-2258/111

Bottom chords connected as follows: 2x6 - 2 rows

staggered at 0-9-0 oc. 2x4 - 1 row at 0-9-0 oc. Web connected as follows: 2x4 - 1 row at 0-9-0 oc, 2x6 -

3 rows staggered at 0-4-0 oc. Except member 6-42 2x6 -2 rows staggered at 0-4-0 oc, member 13-22 2x6 - 2 rows staggered at 0-9-0 oc.

Attach BC w/ 1/2" diam. bolts (ASTM A-307) in the center of the member w/washers at 4-0-0 oc.

All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been

provided to distribute only loads noted as (F) or (B), unless otherwise indicated

Unbalanced roof live loads have been considered for this design.

September 13,2024

Continued on page 2

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

NOTES

WFBS

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	3 Serenity-Roof-B326 A CP GLH	
24090009-01	A06	Attic Girder	1	4	Job Reference (optional)	168160400

Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Wed Sep 11 15:16:36 ID:pGeZvt1?lwruiNEY_xH4fkzRAp7-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 2

- Wind: ASCE 7-16: Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- Provide adequate drainage to prevent water ponding.
- All plates are MT20 plates unless otherwise indicated.
- 10) All plates are 2x4 MT20 unless otherwise indicated.
- 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
 * This truss has been designed for a live load of 20.0psf
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 13) Ceiling dead load (5.0 psf) on member(s). 6-48, 48-50, 50-51, 51-52, 52-53, 49-53, 13-49; Wall dead load (5.0psf) on member(s).6-41, 13-23
- 14) Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 40-41, 38-40, 37-38, 35-37, 33-35, 32-33, 30-32, 28-30, 26-28, 24-26, 23-24
- 15) Refer to girder(s) for truss to truss connections.
- 16) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 420 lb uplift at joint 18 and 5361 lb uplift at joint 22.
- 17) LGT4-SDS3 Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 46. This connection is for uplift only and does not consider lateral forces.
- 18) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 19) This truss has large uplift reaction(s) from gravity load case(s). Proper connection is required to secure truss against upward movement at the bearings. Building designer must provide for uplift reactions indicated.
- 20) LGT4 Hurricane ties must have four studs in line below the truss.
- 21) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 9100 lb down and 774 lb up at 16-1-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 22) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard

Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (lb/ft)

Vert: 7-12=-60, 12-18=-60, 46-54=-20, 23-41=-30, 6-48=-10. 48-50=-10. 50-51=-10. 51-52=-10. 52-53=-10, 49-53=-10, 13-49=-10, 1-2=-60, 2-7=-60 Drag: 41-47=-10, 6-47=-10, 13-23=-10

Concentrated Loads (lb)

Vert: 42=-4881 (F)

Job Truss Truss Type Qtv Ply 3 Serenity-Roof-B326 A CP GLH 168160401 24090009-01 A07 Attic Job Reference (optional) Carter Components (Sanford, NC), Sanford, NC - 27332 Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Wed Sep 11 15:16:37 Page: 1 ID:1d5INYb_SnpigiftH0e1reGzRBHO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 20-7-5 25-10-14 32-10-7 -0-10-8 17-8-0 8-4-0 16-2-4 23-3-2 31-6-0 39-4-14 46-3-13 0-10-8 1-5-122-11-5 2-7-13 2-7-13 2-7-13 8-4-0 7-10-4 2-11-5 1-4-7 6-6-7 6-10-14 6x8= 6x8≤ 4x8 = 4x8= 4x5= 6x8= 612 6 8 529 11 10 12 Œ. 4x6 💋 44 43 46 47 48 61 45 53 8x10 4x5 🏼 5x8= 5x8= 3x6 1354 3 60⁴ 11-8-0 59 9-1-14 58 4x5≤ 14 5x8 -2 2-10-0 42 57 40 39 36 33 31 28 25 23 20 18 17 16 MT18HS 3x10 = 2119 5x8= 5x8= 4x6= 4x6= 3x5= 3x5= 3x8= 5x10= 3x6= 12x16= 5x8 II 5x6 II 4x5 II 8x10= 3x10= 4x8= 5x8= 3x6= 29-10-0₁32-9 99-9-0 32-6-8 17-9-12 26-11-8 29-9-0 16-5-0 20-7-4 23-4-12 16-2 19-2-8 22-0-0 25-6-12 39-4-14 8-4-0 13-11-0 37-6-8 46-3-13 53-6-0 8-4-0 5-7-0 1-4-12 1-4-12 1 4-12 2-2-0 4-9-4 1-10-6 6-10-14 7 - 2 - 30-2-12 0-2-12 Scale = 1:93.6 1-4-12 [2:0-2-12,0-2-0], [6:0-5-8,0-3-0], [11:0-5-8,0-3-0], [1<u>2:0-5</u>,0,0-4-8], [15:Edge,0-0-7], [17:0<mark>-3-12:</mark>0-3-4], [19:0-6-12,0-3-0], [26:0-3-0,0-3-0], [28:0-3-8,0-1-8], [38:Edge,0-2-4], [41:0-3-8,0-2-8]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	I/defI	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.97	Vert(LL)	-0.47	31-33	>833	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.95	Vert(CT)	-0.77	31-33	>509	180	MT18HS	244/190
TCDL	10.0	Rep Stress Incr	YES	WB	0.94	Horz(CT)	0.15	15	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MSH		Attic	-0.32	21-38	>604	360		
BCDL	10.0										Weight: 454 lb	FT = 20%
•												

LUMBER TOP CHORD 2x6 SP No.2

BOT CHORD 2x4 SP 2400F 2.0E *Except* 26-21,40-42:2x4

SP No.1, 18-23,26-38:2x4 SP No.2

WEBS 2x4 SP No.3 *Except* 5-39.12-19:2x6 SP

No.2.

41-2,45-12,20-21,36-38,45-5,36-35,35-33,33-32.32-31,28-27,27-25,25-24,24-20:2x4 SP

No.2, 21-17:2x4 SP No.1

WEDGE Right: 2x4 SP No.3 **BRACING**

TOP CHORD

Structural wood sheathing directly applied or 2-10-3 oc purlins, except end verticals, and

2-0-0 oc purlins (3-9-8 max.): 6-11.

BOT CHORD Rigid ceiling directly applied or 2-2-0 oc bracing.

1 Row at midpt

WFBS 12-47, 13-21, 3-39 JOINTS 1 Brace at Jt(s): 43,

45, 46, 47, 35, 32,

27, 24

REACTIONS (size) 15= Mechanical, 19=0-5-8,

42=0-5-8

Max Horiz 42=-190 (LC 12)

Max Grav 15=2298 (LC 48), 19=1793 (LC

40), 42=3002 (LC 38)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD

6-7=-2981/411, 7-8=-2981/411,

8-9=-3607/536, 9-10=-2740/425 10-11=-2740/425, 11-12=-1776/184,

12-14=-4116/100, 14-15=-4686/98 2-42=-2999/91 1-2=0/22 2-3=-3961/16

3-5=-4084/38, 5-6=-2144/162

BOT CHORD

WEBS

41-42=-107/220, 39-41=0/3431, 36-39=0/3347, 33-36=0/5184, 31-33=0/6303, 28-31=0/6100, 25-28=0/4804, 20-25=0/1822,

19-20=-2299/0, 17-19=-2104/0, 16-17=-11/4069, 15-16=-72/4069,

37-38=-1135/0, 35-37=-1135/0, 34-35=-3123/0, 32-34=-3123/0

30-32=-3176/0, 29-30=-3176/0, 27-29=-3176/0, 24-27=-690/956,

22-24=0/3300, 21-22=0/3300 3-41=-681/82, 13-17=-267/96,

14-17=-578/208, 14-16=0/247, 38-39=-47/336, 5-38=0/1190,

19-21=-1403/103, 12-21=-46/1140 2-41=0/3476. 5-44=-2083/54.

43-44=-2008/54 43-46=-1597/1328 46-47=-1799/1221, 47-48=-2471/0,

12-48=-2567/0, 7-43=-138/122, 6-44=0/354, 8-45=0/62, 9-46=0/131, 10-47=-170/78

11-48=0/450, 20-21=0/2699, 36-38=0/1559,

36-37=-230/0, 20-22=-352/0, 25-26=-320/0, 33-34=-185/0, 28-29=-533/0, 30-31=-2/95,

13-21=-579/324, 3-39=-149/379, 17-21=0/5329, 6-43=-342/1277,

8-43=-876/124, 8-46=-285/0, 11-47=-314/1438, 9-47=-923/118

35-36=-1294/0, 33-35=0/1052, 32-33=-303/181, 31-32=-363/11

27-28=0/1529, 25-27=-1405/0, 24-25=0/2106,

20-24=-2165/0

NOTES

Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-8-2 to 4-8-2, Interior (1) 4-8-2 to 12-3-13, Exterior(2R) 12-3-13 to 23-3-2, Interior (1) 23-3-2 to 25-10-14, Exterior(2R) 25-10-14 to 36-10-3, Interior (1) 36-10-3 to 48-1-13, Exterior(2E) 48-1-13 to 53-6-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

September 13,2024

ontinued on page 2

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

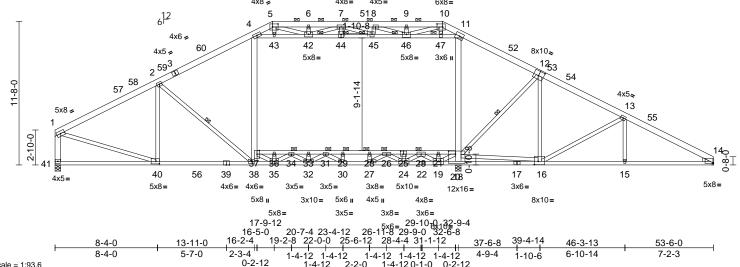
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	3 Serenity-Roof-B326 A CP GLH	
24090009-01	A07	Attic	1	1	Job Reference (optional)	68160401

Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Wed Sep 11 15:16:37

Page: 2

- All plates are MT20 plates unless otherwise indicated.
- All plates are 2x4 MT20 unless otherwise indicated.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 11) Ceiling dead load (5.0 psf) on member(s). 5-44, 43-44, 43-45, 45-46, 46-47, 47-48, 12-48; Wall dead load (5.0psf) on member(s).5-38, 12-21
- 12) Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 37-38, 35-37, 34-35, 32-34, 30-32, 29-30, 27-29, 26-27, 24-26, 22-24, 21-22
- 13) Refer to girder(s) for truss to truss connections.
- 14) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 15) Attic room checked for L/360 deflection.


LOAD CASE(S) Standard

Job Truss Truss Type Qtv Ply 3 Serenity-Roof-B326 A CP GLH 168160402 24090009-01 A08 Attic 6 Job Reference (optional) Page: 1

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Wed Sep 11 15:16:39 ID:1d5INYb_SnpjqifH0e1reGzRBHO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

[5:0-5-8,0-3-0], [10:0-5-8,0-3-0], [12:0-5-0,0-4¹8], [f4:Edge,0-0-7], [16:0-3-12,0-3-4], [18:%-6-42,0-3-0], [25:0-3-0,0-3-0], [27:0-3-8,0-1-8], [37:Edge,0-2-4],

1-4-12

2-2-0

Plate Offsets (X, Y): [40:0-3-8,0-2-8], [46:0-4-0,0-2-0]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.65	Vert(LL)	-0.47	30-32	>837	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.95	Vert(CT)	-0.76	30-32	>513	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.93	Horz(CT)	0.15	14	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MSH		Attic	-0.32	20-37	>605	360		
BCDL	10.0										Weight: 454 lb	FT = 20%

LUMBER

Scale = 1:93.6

TOP CHORD 2x6 SP No.2

BOT CHORD 2x4 SP 2400F 2.0E *Except* 25-20,39-41:2x4

SP No.1, 17-22,25-37:2x4 SP No.2

WEBS 2x4 SP No.3 *Except* 41-1.4-38.11-18:2x6

SP No.2.

40-1.44-11.19-20.35-37.44-4.35-34.34-32.32-31 31-30 27-26 26-24 24-23 23-19:2x4 SP

No.2. 20-16:2x4 SP No.1

WEDGE Right: 2x4 SP No.3

BRACING TOP CHORD

Structural wood sheathing directly applied or 2-10-2 oc purlins, except end verticals, and

2-0-0 oc purlins (3-9-9 max.): 5-10. Rigid ceiling directly applied or 2-6-0 oc

BOT CHORD bracing.

WFBS

1 Row at midpt 11-46, 12-20, 2-38

JOINTS 1 Brace at Jt(s): 42, 44, 45, 46, 34, 31,

26, 23

REACTIONS (size) 14= Mechanical, 18=0-5-8,

41=0-5-8

Max Horiz 41=-222 (LC 15)

Max Grav 14=2292 (LC 47), 18=1790 (LC

39), 41=2957 (LC 37)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD

5-6=-2972/412, 6-7=-2972/412, 7-8=-3601/537, 8-9=-2737/426,

9-10=-2737/426, 10-11=-1773/186 11-13=-4095/106, 13-14=-4666/103

1-41=-2958/58, 1-2=-3909/28, 2-4=-4057/44,

4-5=-2133/163

BOT CHORD 40-41=-106/246, 38-40=0/3385

> 35-38=0/3319, 32-35=0/5160, 30-32=0/6294 27-30=0/6096, 24-27=0/4806, 19-24=0/1830, 18-19=-2285/0, 16-18=-2093/0,

1-4-12 0-1-0 0-2-12

15-16=-16/4051, 14-15=-74/4051, 36-37=-1129/0, 34-36=-1129/0,

33-34=-3124/0, 31-33=-3124/0

29-31=-3185/0, 28-29=-3185/0,

26-28=-3185/0, 23-26=-708/939,

21-23=0/3264, 20-21=0/3264

2-40=-705/77, 12-16=-264/99, 13-16=-579/209, 13-15=0/247,

37-38=-45/325, 4-37=0/1182,

18-20=-1401/105, 11-20=-47/1134

1-40=0/3451, 4-43=-2073/58,

42-43=-1999/58 42-45=-1586/1333

45-46=-1785/1228, 46-47=-2450/0, 11-47=-2546/0 6-42=-139/121 5-43=0/353

7-44=0/62, 8-45=0/130, 9-46=-171/78

10-47=0/447, 19-20=0/2695, 35-37=0/1556,

35-36=-230/0, 19-21=-351/0, 24-25=-319/0,

32-33=-185/0. 27-28=-531/0. 29-30=-3/94.

12-20=-573/324, 2-38=-131/398,

16-20=0/5298, 5-42=-342/1280,

7-42=-875/124, 7-45=-283/0, 10-46=-314/1437, 8-46=-920/118

34-35=-1298/0, 32-34=0/1056,

31-32=-307/177, 30-31=-355/12

26-27=0/1522, 24-26=-1401/0, 23-24=0/2101,

19-23=-2162/0

NOTES

WEBS

Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-2-12 to 5-6-15, Interior (1) 5-6-15 to 12-3-13, Exterior(2R) 12-3-13 to 23-3-2, Interior (1) 23-3-2 to 25-10-14, Exterior(2R) 25-10-14 to 36-10-3, Interior (1) 36-10-3 to 48-1-13, Exterior(2E) 48-1-13 to 53-6-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this design.
- Provide adequate drainage to prevent water ponding.
- All plates are 2x4 MT20 unless otherwise indicated.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

September 13,2024

ontinued on page 2

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	3 Serenity-Roof-B326 A CP GLH	
24090009-01	A08	Attic	6	1	I68160 ² Job Reference (optional)	402

Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Wed Sep 11 15:16:39

Page: 2

- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Ceiling dead load (5.0 psf) on member(s). 4-43, 42-43, 42-44, 44-45, 45-46, 46-47, 11-47; Wall dead load (5.0psf) on member(s).4-37, 11-20
- 10) Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 36-37, 34-36, 33-34, 31-33, 29-31, 28-29, 26-28, 25-26, 23-25, 21-23, 20-21
- 11) Refer to girder(s) for truss to truss connections.
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 13) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard

818 Soundside Road Edenton, NC 27932

 Job
 Truss
 Truss Type
 Qty
 Ply
 3 Serenity-Roof-B326 A CP GLH

 24090009-01
 A09
 Attic Supported Gable
 1
 1
 Job Reference (optional)

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 E Nov 16 2023 Print: 8.730 E Nov 16 2023 MiTek Industries, Inc. Fri Sep 13 17:37:50 ID:8kdnaNVfrXy7X5iJovJ26tzRBB2-P7LXzmj_K2iwXj5I0HRieyE5bRBngA6skE8cGkye8G?

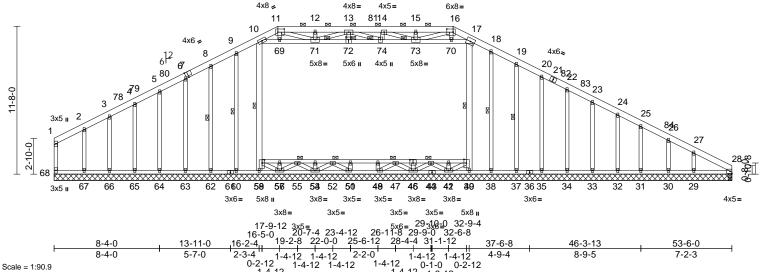


Plate Offsets (X, Y): [7:0-2-6,Edge], [11:0-6-0,0-3-0], [16:0-6-0,0-3-0], [40:Edge,0-2-4], [46:0-3-0,0-3-0], [58:0-3-0,0-2-4], [72:0-2-8,0-2-8]

Loading	(psf)	Spacing	2-0-0	csı		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.44	Vert(LL)	-0.01	10	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.11	Vert(CT)	-0.01	10	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.65	Horz(CT)	0.02	28	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 504 lb	FT = 20%

LUMBER

TOP CHORD 2x6 SP No.2 BOT CHORD 2x4 SP No.2

WEBS 2x4 SP No.3 *Except* 10-59,17-39:2x6 SP No.2, 72-17,72-10:2x4 SP No.2

OTHERS 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins, except end verticals, and 2-0-0 oc purlins (4-1-8 max.): 11-16.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing, Except:

6-0-0 oc bracing: 48-51.

WEBS 1 Row at midpt 10-58, 17-40, 18-38,

19-37, 9-60, 8-62

JOINTS 1 Brace at Jt(s): 71, 72, 73, 74, 55, 52,

47, 44

REACTIONS All bearings 53-6-0.

(lb) - Max Horiz 68=-221 (LC 15)

Max Uplift All uplift 100 (lb) or less at joint(s) 28, 29, 30, 31, 32, 33, 34, 35, 37, 39, 59, 62, 63, 64, 65, 66, 67, 68, 75 except 38=-133 (LC 40),

60=-128 (LC 40)

Max Grav All reactions 250 (lb) or less at joint (s) 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 60, 62, 63, 64, 65, 66, 67, 68, 75 except 39=1111 (LC 40), 42=334 (LC 20), 45=369 (LC 20), 48=320 (LC 20), 51=320 (LC 20),

53=368 (LC 20), 56=330 (LC 20), 59=1119 (LC 40)

FORCES (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 5-80=-100/260, 6-80=-94/267, 6-7=-120/303, 7-8=-119/313, 8-9=-135/359, 9-10=-115/375,

10-11=903/328, 11-12=-2147/593, 12-13=-2147/593, 13-81=-2804/764, 14-81=-2804/764, 14-15=-2132/593, 15-16=-2132/593, 16-17=-894/327,

17-18=-121/375, 18-19=-143/366, 19-20=-137/322, 20-21=-105/275, 21-82=-107/270, 22-82=-121/265

58-59=-1090/31, 10-58=-1096/109, 39-40=-1083/62, 17-40=-1093/151, 10-69=-39/644, 69-71=-37/638, 71-72=-441/2725, 72-74=-441/2725, 73-74=-447/275, 70-73=-42/627,

17-70=-44/635, 12-71=-256/67, 11-71=-325/1558, 13-71=-654/189, 14-73=-715/182, 16-73=-327/1553

NOTES

WERS

- Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) 0-1-12 to 5-5-15, Exterior(2N) 5-5-15 to 12-3-13, Corner(3R) 12-3-13 to 23-3-2, Exterior(2N) 23-3-2 to 25-10-14, Corner(3R) 25-10-14 to 36-10-3, Exterior(2N) 36-10-3 to 48-1-13, Corner(3E) 48-1-13 to 53-6-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

 Unbalanced snow loads have been considered for this design.

Page: 1

- Provide adequate drainage to prevent water ponding.
- 7) All plates are 2x4 MT20 unless otherwise indicated.
- Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 11) Ceiling dead load (5.0 psf) on member(s). 10-69, 69-71, 71-72, 72-74, 73-74, 70-73, 17-70; Wall dead load (5.0psf) on member(s).10-58, 17-40
- 12) Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 57-58, 55-57, 54-55, 52-54, 50-52, 49-50, 47-49, 46-47, 44-46, 41-44, 40-41

September 13,2024

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

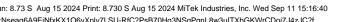
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI (audity Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

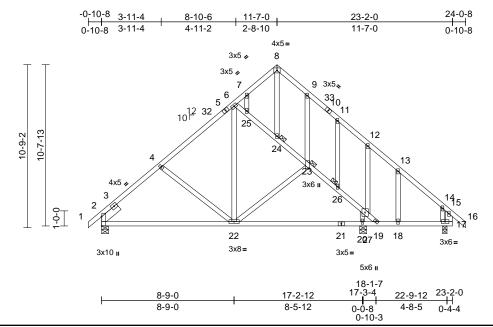
Job	Truss	Truss Type	Qty	Ply	3 Serenity-Roof-B326 A CP GLH	
24090009-01	A09	Attic Supported Gable	1	1	Job Reference (optional)	68160403

Run: 8.73 E Nov 16 2023 Print: 8.730 E Nov 16 2023 MiTek Industries, Inc. Fri Sep 13 17:37:50 ID:8kdnaNVfrXy7X5iJovJ26tzRBB2-P7LXzmj_K2iwXj5I0HRieyE5bRBngA6skE8cGkye8G?

Page: 2


13) One RT4 MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 68, 28, 64, 31, 30, 29, 59, 39, 38, 37, 35, 34, 33, 32, 60, 62, 63, 65, 66, and 67. This connection is for uplift only and does not consider lateral forces.

- 14) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 15) Attic room checked for L/360 deflection.


LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	3 Serenity-Roof-B326 A CP GLH	
24090009-01	B01	Common	1	1	Job Reference (optional)	l68160404

Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Wed Sep 11 15:16:40 ID:Nseaq6A9EjNfxKX1O6yXnly7LSU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:76.1

Plate Offsets (X, Y): [2:0-7-7,Edge], [23:0-0-0,0-0-10]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.37	Vert(LL)	0.06	17-18	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.57	Vert(CT)	-0.16	22-30	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.49	Horz(CT)	0.02	17	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 172 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No 2 **BOT CHORD** 2x4 SP No.2

WEBS 2x4 SP No.3 *Except* 17-15:2x6 SP No.2, 6-19:2x4 SP No.2

OTHERS 2x4 SP No.3

SLIDER Left 2x6 SP No.2 -- 1-6-0

BRACING

TOP CHORD Structural wood sheathing directly applied or 5-5-8 oc purlins, except end verticals. **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc

bracing.

JOINTS 1 Brace at Jt(s): 23,

24, 26

REACTIONS (size) 2=0-5-8, 17=0-3-8, 20=0-5-8

Max Horiz 2=265 (LC 13)

Max Uplift 2=-52 (LC 14), 20=-209 (LC 15) Max Grav 2=850 (LC 21), 17=451 (LC 22),

20=746 (LC 22)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/34, 2-4=-907/84, 4-6=-756/94,

6-7=-319/158, 7-8=-300/205, 8-9=-266/165,

9-11=-281/132, 11-12=-303/87, 12-13=-173/16, 13-14=-309/12,

14-15=-43/52, 15-16=0/42, 15-17=-58/178

BOT CHORD 2-22=-213/692, 20-22=-39/516,

19-20=-6/623, 18-19=-40/208, 17-18=-40/208

WEBS 4-22=-236/182, 20-27=-511/335, 6-25=-483/105, 24-25=-483/116,

23-24=-439/59, 23-26=-446/39, 26-27=-457/56. 19-27=-513/67.

22-23=-96/81, 6-22=0/356, 14-17=-462/0, 8-24=-146/151, 7-25=-31/50, 9-23=-200/24,

11-26=-81/66, 12-27=-365/203, 13-18=-30/97

1) Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 8-7-0, Exterior(2R) 8-7-0 to 14-7-0, Interior (1) 14-7-0 to 21-0-8, Exterior(2E) 21-0-8 to 24-0-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads
- All plates are 2x4 MT20 unless otherwise indicated.
- Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom 9) chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 11) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 20. This connection is for uplift only and does not consider lateral forces.

LOAD CASE(S) Standard

September 13,2024

NOTES

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

 Job
 Truss
 Truss Type
 Qty
 Ply
 3 Serenity-Roof-B326 A CP GLH

 24090009-01
 B02
 Common Girder
 1
 2
 Job Reference (optional)

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Wed Sep 11 15:16:40 ID:iFFKd9_s5HOVK9vBFwqTAGzRAMn-RfC?PsB70Hq3NSqPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

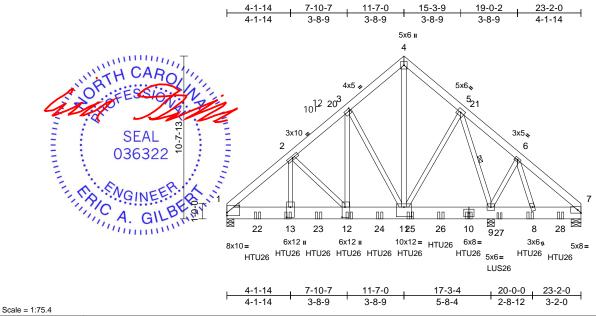


Plate Offsets (X, Y): [1:Edge,0-2-5], [3:0-0-12,0-1-12], [11:0-6-0,0-7-8], [12:0-8-0,0-2-4], [13:0-8-0,0-3-0]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.27	Vert(LL)	-0.09	12-13	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.34	Vert(CT)	-0.15	12-13	>999	180		
TCDL	10.0	Rep Stress Incr	NO	WB	0.92	Horz(CT)	0.02	9	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 480 lb	FT = 20%

LUMBER

TOP CHORD 2x6 SP No.2
BOT CHORD 2x10 SP 2400F 2.0E
WEBS 2x4 SP No.2
WEDGE Left: 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or

4-10-12 oc purlins.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

WEBS 1 Row at midpt 5-9

REACTIONS (size) 1=0-5-8, 7=0-7-12, 9=0-5-8

Max Horiz 1=-227 (LC 8) Max Uplift 1=-469 (LC 12), 7=-199 (LC 12),

9=-1127 (LC 13)

Max Grav 1=8097 (LC 5), 7=726 (LC 21),

9=11690 (LC 6)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-9625/571, 2-3=-7184/470,

3-4=-4546/368, 4-5=-4495/383, 5-6=-67/181, 6-7=-171/425

BOT CHORD 1-13=-511/7292, 12-13=-511/7292,

11-12=-343/5503, 9-11=-84/1683,

8-9=-137/86, 7-8=-257/85 WEBS 2-13=-173/3283, 2-12=-2563/277,

3-12=-343/5248, 3-11=-4288/419,

4-11=-392/5382, 5-11=-243/3823,

5-9=-6506/469, 6-9=-341/301, 6-8=-438/67

NOTES

 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:

Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc.

Bottom chords connected as follows: 2x10 - 3 rows staggered at 0-5-0 oc.

Web connected as follows: 2x4 - 1 row at 0-9-0 oc, Except member 2-13 2x4 - 2 rows staggered at 0-7-0 oc, member 3-12 2x4 - 1 row at 0-7-0 oc.

- All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- Unbalanced roof live loads have been considered for this design.
- 4) Wind: ASCE 7-16; Vult=130mph (3-second gust)
 Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat.
 II; Exp B; Enclosed; MWFRS (envelope) exterior zone;
 cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 5) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- One H2.5A Simpson Strong-Tie connectors
 recommended to connect truss to bearing walls due to
 UPLIFT at jt(s) 1 and 7. This connection is for uplift only
 and does not consider lateral forces.

- 10) LGT2 Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 9. This connection is for uplift only and does not consider lateral forces.
- 11) Use Simpson Strong-Tie HTU26 (20-10d Girder, 14-10dx1 1/2 Truss, Single Ply Girder) or equivalent spaced at 2-0-0 oc max. starting at 2-0-0 from the left end to 15-10-0 to connect truss(es) to back face of bottom chord.
- 12) Use Simpson Strong-Tie LUS26 (4-10d Girder, 3-10d Truss) or equivalent at 17-10-0 from the left end to connect truss(es) to back face of bottom chord.
- 13) Use Simpson Strong-Tie HTU26 (10-16d Girder, 14-10dx1 1/2 Truss) or equivalent spaced at 2-0-0 oc max. starting at 19-10-0 from the left end to 21-10-0 to connect truss(es) to back face of bottom chord.
- 14) Fill all nail holes where hanger is in contact with lumber.15) LGT2 Hurricane ties must have two studs in line below
- LGT2 Hurricane ties must have two studs in line be the truss.

LOAD CASE(S) Standard

 Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

September 13,2024

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Ply Truss Truss Type Qty 3 Serenity-Roof-B326 A CP GLH 168160405 2 24090009-01 B02 Common Girder Job Reference (optional)

Carter Components (Sanford, NC), Sanford, NC - 27332,

Vert: 1-4=-60, 4-7=-60, 14-17=-20

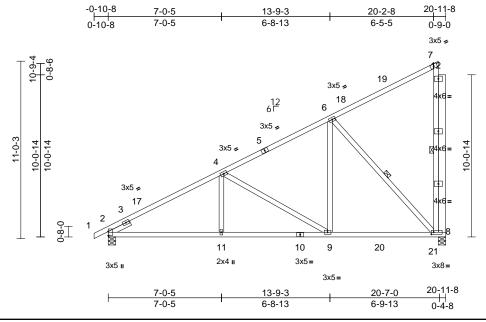
Vert: 10=-1799 (B), 13=-1799 (B), 12=-1799 (B),

Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Wed Sep 11 15:16:40 $ID: IFFKd9_s5HOVK9vBFwqTAGzRAMn-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?ffCPsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJCPsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJCPsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJCPsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJCPsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJCPsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJCPsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJCPsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJCPsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJCPsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJCPsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJCPsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJCPsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJCPsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJCPsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJCPsB70Hq3NSgPqnWqqANAyANdqAyAyANdqAyAyANdqAyAyAyAyAyAyAyA$

Page: 2

8=-863 (B), 22=-1799 (B), 23=-1799 (B), 24=-1799 (B), 25=-1799 (B), 26=-1799 (B), 27=-863 (B),

Uniform Loads (lb/ft)


Concentrated Loads (lb)

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	3 Serenity-Roof-B326 A CP GLH
24090009-01	C01	Half Hip	4	1	Job Reference (optional)

Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Wed Sep 11 15:16:40 ID:Je5w06f8goBW?T4xbCQ60Kyfk?K-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:71.5

Plate Offsets (X, Y):	[2:0-3-1,0-0-1],	, [8:0-1-12,0-1-8]
-----------------------	------------------	--------------------

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.83	Vert(LL)	-0.08	8-9	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.62	Vert(CT)	-0.14	8-9	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.79	Horz(CT)	0.03	8	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 148 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No 2 BOT CHORD 2x4 SP No.2

WEBS 2x4 SP No.3 *Except* 7-8:2x4 SP No.2

OTHERS 2x6 SP No.2

Left 2x4 SP No.3 -- 1-6-0 **SLIDER**

BRACING

TOP CHORD Structural wood sheathing directly applied or

4-8-11 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc

BOT CHORD bracing.

WEBS 1 Row at midpt REACTIONS 2=0-5-8, 8=0-5-8 (size)

Max Horiz 2=387 (LC 14)

Max Uplift 2=-49 (LC 14), 8=-342 (LC 14)

Max Grav 2=954 (LC 5), 8=1731 (LC 21)

FORCES (lb) - Maximum Compression/Maximum

Tension TOP CHORD

1-2=0/23, 2-4=-1437/30, 4-6=-824/0,

6-7=-166/102, 7-8=-270/93

BOT CHORD 2-11=-399/1321, 9-11=-320/1321,

8-9=-159/721

4-11=0/263, 4-9=-691/185, 6-9=0/637, **WEBS**

6-8=-1026/227

NOTES

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 17-4-4, Exterior(2E) 17-4-4 to 20-4-4 zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

- 3) Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- All plates are 3x5 MT20 unless otherwise indicated.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 8 and 2. This connection is for uplift only and does not consider lateral forces.
- Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 752 lb down and 128 lb up at 20-7-0 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

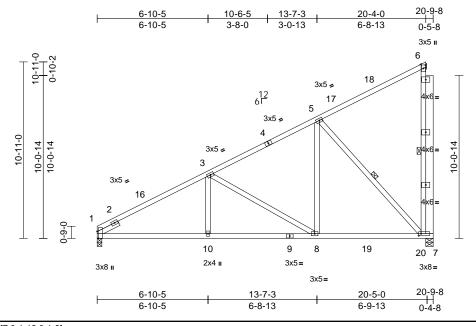
Uniform Loads (lb/ft) Vert: 1-7=-60, 8-13=-20 Concentrated Loads (lb)

Vert: 8=-747

September 13,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall


building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	3 Serenity-Roof-B326 A CP GLH	
24090009-01	C02	Half Hip	1	1	Job Reference (optional)	107

Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Wed Sep 11 15:16:41 ID:EGq646Pbf2EXC6nWIJzpaiyfjwU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:71.3

Plate Offsets (X, Y): [1:0-5-1,Edge], [7:0-1-12,0-1-8]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.82	Vert(LL)	-0.08	7-8	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.63	Vert(CT)	-0.14	7-8	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.75	Horz(CT)	0.03	7	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 146 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No 2 2x4 SP No.2 **BOT CHORD**

WEBS 2x4 SP No.3 *Except* 6-7:2x4 SP No.2

OTHERS 2x6 SP No.2 SLIDER

Left 2x4 SP No.3 -- 1-6-0 BRACING

BOT CHORD

TOP CHORD Structural wood sheathing directly applied or

4-7-1 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc

bracing.

WEBS 1 Row at midpt 6-7, 5-7 REACTIONS 1=0-3-8, 7=0-5-8 (size)

Max Horiz 1=370 (LC 14)

Max Uplift 1=-30 (LC 14), 7=-342 (LC 14) Max Grav 1=900 (LC 5), 7=1714 (LC 20)

FORCES (lb) - Maximum Compression/Maximum

Tension TOP CHORD

1-3=-1401/30, 3-5=-812/0, 5-6=-162/100,

6-7=-265/93

BOT CHORD 1-10=-405/1286, 8-10=-319/1286,

7-8=-159/716

WEBS 3-10=0/254, 3-8=-658/185, 5-8=0/624,

5-7=-1018/227

NOTES

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-2-0 to 3-2-0. Interior (1) 3-2-0 to 17-4-4, Exterior(2E) 17-4-4 to 20-4-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

- 3) Unbalanced snow loads have been considered for this design.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 7 and 1. This connection is for uplift only and does not consider lateral forces.
- Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 752 lb down and 129 lb up at 20-7-0 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

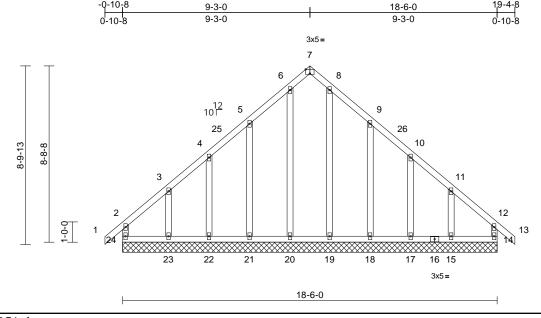
- Dead + Snow (balanced): Lumber Increase=1.15, Plate
 - Increase=1.15 Uniform Loads (lb/ft) Vert: 1-6=-60, 7-12=-20

Concentrated Loads (lb)

Vert: 7=-747

September 13,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	3 Serenity-Roof-B326 A CP GLH	
24090009-01	D01	Common Supported Gable	1	1	Job Reference (optional)	I68160408

Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Wed Sep 11 15:16:41 ID:8F2D?hHuvW?rb9K6OMb_Y2zRQrE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:56.9

Plate Offsets	(X,	Y):	[7:0-2-8,Edge]	
---------------	-----	-----	----------------	--

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.21	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.12	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.20	Horz(CT)	0.00	14	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MR								
BCDL	10.0										Weight: 127 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No 2 BOT CHORD 2x4 SP No.2 **WEBS** 2x4 SP No.3 **OTHERS** 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 6-0-0 oc

BOT CHORD

REACTIONS (size)

14=18-6-0, 15=18-6-0, 17=18-6-0, 18=18-6-0, 19=18-6-0, 20=18-6-0, 21=18-6-0, 22=18-6-0, 23=18-6-0,

24=18-6-0 Max Horiz 24=-225 (LC 12)

Max Uplift 14=-50 (LC 11), 15=-163 (LC 15),

17=-47 (LC 15), 18=-116 (LC 15), 21=-115 (LC 14), 22=-46 (LC 14),

23=-168 (LC 14), 24=-69 (LC 10) Max Grav 14=190 (LC 25), 15=221 (LC 26),

17=172 (LC 22), 18=253 (LC 22), 19=224 (LC 22), 20=224 (LC 21), 21=253 (LC 21), 22=172 (LC 21), 23=228 (LC 25), 24=205 (LC 26)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 2-24=-168/63, 1-2=0/39, 2-3=-164/140,

3-4=-105/90, 4-5=-92/118, 5-6=-116/235, 6-7=-94/171, 7-8=-94/171, 8-9=-116/235

9-10=-77/117, 10-11=-90/72, 11-12=-152/117,

12-13=0/39, 12-14=-155/47 BOT CHORD 23-24=-106/187, 22-23=-106/187,

21-22=-106/187, 20-21=-106/187, 19-20=-106/187, 18-19=-106/187,

17-18=-106/187, 15-17=-106/187,

14-15=-106/187

WEBS

6-20=-185/8, 8-19=-185/7, 5-21=-213/162, 4-22=-142/93, 3-23=-174/160, 9-18=-213/163, 10-17=-143/91, 11-15=-168/168

NOTES

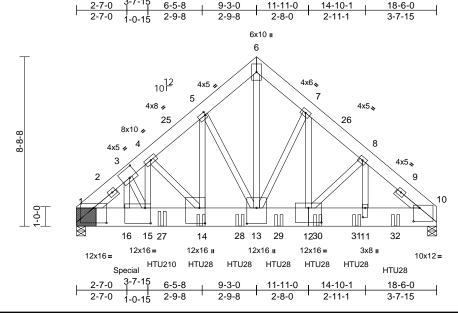
- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-10-8 to 2-3-4, Exterior(2N) 2-3-4 to 6-3-0, Corner(3R) 6-3-0 to 12-2-12, Exterior(2N) 12-2-12 to 16-2-12, Corner(3E) 16-2-12 to 19-4-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads
- All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing. Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 10) Gable studs spaced at 2-0-0 oc.
- 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 69 lb uplift at joint 24, 50 lb uplift at joint 14, 115 lb uplift at joint 21, 46 lb uplift at joint 22, 168 lb uplift at joint 23, 116 lb uplift at joint 18, 47 lb uplift at joint 17 and 163 lb uplift at joint

LOAD CASE(S) Standard

September 13,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	3 Serenity-Roof-B326 A CP GLH	
24090009-01	D02	Common Girder	1	2	Job Reference (optional)	I68160409

Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Wed Sep 11 15:16:41 ID:ahvaep5BsMWascBuTkn6buzRAib-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:59.2

Plate Offsets (X, Y): [1:0-8-0,0-9-4], [3:0-5-0,0-5-12], [5:0-0-8,0-2-0], [10:0-3-12,0-8-5], [11:0-5-12,0-1-8], [12:0-8-0,0-9-0], [13:0-9-12,0-6-0], [14:0-9-8,0-3-8], [15:0-3-8,0-9-8]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.43	Vert(LL)	-0.10	14-15	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.57	Vert(CT)	-0.17	14-15	>999	180		
TCDL	10.0	Rep Stress Incr	NO	WB	0.92	Horz(CT)	0.04	10	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 487 lb	FT = 20%

LUMBER

TOP CHORD 2x8 SP 2400F 2.0E BOT CHORD 2x12 SP 2400F 2.0E

WEBS 2x4 SP No.3 *Except* 13-6:2x4 SP No.1,

5-14:2x4 SP No.2

SLIDER Left 2x4 SP No.3 -- 1-6-0, Right 2x4 SP No.3

-- 1-6-0

BRACING

TOP CHORD Structural wood sheathing directly applied or

5-11-12 oc purlins

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 1=(0-5-8 + bearing block), (req.

0-6-2), 10=0-5-8 Max Horiz 1=-176 (LC 10)

Max Grav 1=14865 (LC 21), 10=10712 (LC 6)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-3=-15578/0, 3-4=-14258/0, 4-5=-12125/0,

5-6=-9492/0, 6-7=-9463/0, 7-8=-11050/0, 8-10=-12158/0

BOT CHORD 1-16=0/10988. 15-16=0/10988.

14-15=0/11862, 13-14=0/9117, 11-13=0/9123,

10-11=0/9123

WEBS 6-13=0/10728, 7-13=-1571/0, 7-12=0/2918,

8-12=-1103/0, 8-11=0/1625, 4-14=-4425/101, 4-15=-208/3373, 5-14=0/5105, 5-13=-3189/0,

4-15=-208/3373, 5-14=0/5105, 5-13=-31 3-16=-421/1446, 3-15=0/2222

NOTES

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:

Top chords connected as follows: 2x8 - 2 rows staggered at 0-9-0 oc.

Bottom chords connected as follows: 2x12 - 6 rows staggered at 0-5-0 oc.

Web connected as follows: 2x4 - 1 row at 0-9-0 oc, Except member 5-14 2x4 - 1 row at 0-5-0 oc, member 3-16 2x4 - 2 rows staggered at 0-2-0 oc.

- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 3) 2x12 SP 2400F 2.0E bearing block 12" long at jt. 1 attached to each face with 6 rows of 10d (0.131"x3") nails spaced 3" o.c. 24 Total fasteners per block. Bearing is assumed to be SP 2400F 2.0E.
- Unbalanced roof live loads have been considered for this design.
- 5) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 6) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

- Use Simpson Strong-Tie HTU210 (32-10dx1 1/2 Girder, 14-10dx1 1/2 Truss, Single Ply Girder) or equivalent at 4-4-12 from the left end to connect truss(es) to back face of bottom chord.
- 11) Use Simpson Strong-Tie HTU28 (20-16d Girder, 26-10dx1 1/2 Truss, Single Ply Girder) or equivalent spaced at 2-0-0 oc max. starting at 6-4-12 from the left end to 16-4-12 to connect truss(es) to back face of bottom chord.
- 12) Fill all nail holes where hanger is in contact with lumber.
- 13) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 8867 lb down and 535 lb up at 2-7-0 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

 Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (lb/ft)

Vert: 1-6=-60, 6-10=-60, 17-21=-20

Concentrated Loads (lb)

September 13,2024

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

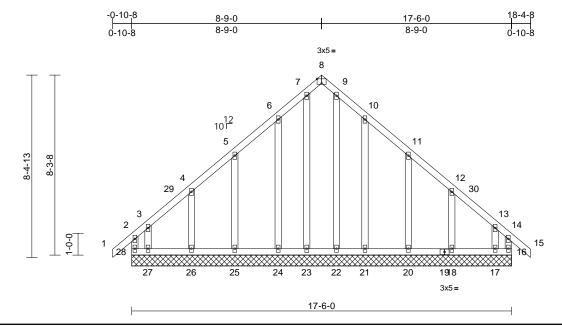
Design valid for use only with MTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design pareters and properly incorporate this design into the overall

a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design, Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see a NSI/TPI Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	3 Serenity-Roof-B326 A CP GLH	
24090009-01	D02	Common Girder	1	2	Job Reference (optional)	168160409

Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Wed Sep 11 15:16:41 ID: ahvaep5BsMWascBuTkn6buzRAib-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?ff


Page: 2

Vert: 14=-1893 (B), 16=-5499 (B), 27=-1897 (B), 28=-1893 (B), 29=-1893 (B), 30=-1893 (B), 31=-1893 (B), 32=-1893 (B)

Job	Truss	Truss Type	Qty	Ply	3 Serenity-Roof-B326 A CP GLH	
24090009-01	E01	Common Supported Gable	1	1	Job Reference (optional)	l68160410

Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Wed Sep 11 15:16:42 ID:onyrlCEMWITAUsFxYbXALJy7LR6-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:53.1

Plate Offsets (X, Y):	[8:0-2-8,Edge]
-----------------------	----------------

Loading	(psf)	Spacing	1-11-4	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.18	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.11	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.15	Horz(CT)	0.00	16	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MR								
BCDL	10.0										Weight: 130 lb	FT = 20%

LUMBER	
TOP CHORD	

2x4 SP No 2 2x4 SP No.2 **BOT CHORD WEBS** 2x4 SP No.3 **OTHERS** 2x4 SP No.3

BRACING

BOT CHORD

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 6-0-0 oc

REACTIONS (size)

16=17-6-0, 17=17-6-0, 18=17-6-0, 20=17-6-0. 21=17-6-0. 22=17-6-0. 23=17-6-0, 24=17-6-0, 25=17-6-0, 26=17-6-0, 27=17-6-0, 28=17-6-0 Max Horiz 28=209 (LC 13)

Max Uplift 16=-135 (LC 13), 17=-215 (LC 15), 18=-70 (LC 15), 20=-77 (LC 15), 21=-84 (LC 15), 24=-83 (LC 14),

25=-77 (LC 14), 26=-69 (LC 14), 27=-231 (LC 14), 28=-187 (LC 12) Max Grav 16=226 (LC 15), 17=200 (LC 13),

18=170 (LC 31), 20=206 (LC 22), 21=214 (LC 22), 22=136 (LC 22), 23=136 (LC 21), 24=214 (LC 21), 25=206 (LC 21), 26=169 (LC 25), 27=233 (LC 12), 28=261 (LC 11)

FORCES

(lb) - Maximum Compression/Maximum Tension

TOP CHORD 2-28=-168/112, 1-2=0/38, 2-3=-204/166, 3-4=-116/115, 4-5=-92/94, 5-6=-76/160, 6-7=-104/251, 7-8=-76/166, 8-9=-76/166, 9-10=-104/251, 10-11=-72/160, 11-12=-69/73,

12-13=-90/87, 13-14=-185/126, 14-15=0/38, 14-16=-142/80

BOT CHORD

WEBS

27-28=-98/172, 26-27=-98/172, 25-26=-98/172, 24-25=-98/172, 23-24=-98/172, 22-23=-98/172, 21-22=-98/172, 20-21=-98/172, 18-20=-98/172. 17-18=-98/172.

16-17=-98/172

7-23=-141/22, 9-22=-141/22, 6-24=-181/127, 5-25=-167/114, 4-26=-150/120, 3-27=-124/148. 10-21=-181/127

11-20=-167/114, 12-18=-150/120, 13-17=-111/144

NOTES

1) Unbalanced roof live loads have been considered for this design

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-10-8 to 2-1-8, Exterior(2N) 2-1-8 to 5-9-0, Corner(3R) 5-9-0 to 11-9-0, Exterior(2N) 11-9-0 to 15-4-8, Corner(3E) 15-4-8 to 18-4-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For study exposed to wind (normal to the face). see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads
- All plates are 2x4 MT20 unless otherwise indicated.

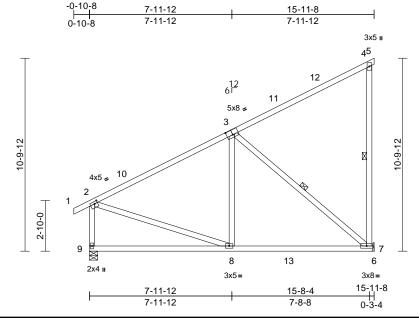
- 8) Gable requires continuous bottom chord bearing.
- Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 10) Gable studs spaced at 2-0-0 oc.
- 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 187 lb uplift at joint 28, 135 lb uplift at joint 16, 83 lb uplift at joint 24, 77 lb uplift at joint 25, 69 lb uplift at joint 26, 231 lb uplift at joint 27, 84 lb uplift at joint 21, 77 lb uplift at joint 20, 70 lb uplift at joint 18 and 215 lb uplift at joint 17.

LOAD CASE(S) Standard

September 13,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall


building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	3 Serenity-Roof-B326 A CP GLH	
24090009-01	G01	Monopitch	5	1	Job Reference (optional)	l68160411

Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Wed Sep 11 15:16:42 ID:PdAAD85_ICJN?UaWrZNnF5zRQu2-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:64.6

Plate Offsets (X, Y): [2:0-2-0,0-1-8], [3:0-4-0,0-3-4]

Loading	(psf)	Spacing	2-0-0	csı		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.95	Vert(LL)	-0.12	7-8	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.67	Vert(CT)	-0.20	7-8	>923	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.39	Horz(CT)	-0.01	7	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 106 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.1 *Except* 1-3:2x4 SP No.2

BOT CHORD 2x4 SP No.2

WEBS 2x4 SP No.3 *Except* 4-7:2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or 2-2-0 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

WEBS 1 Row at midpt 4-7, 3-7

REACTIONS (size) 7= Mechanical, 9=0-5-8

Max Horiz 9=273 (LC 14) Max Uplift 7=-221 (LC 14)

Max Grav 7=831 (LC 5), 9=754 (LC 5)

FORCES (lb) - Maximum Compression/Maximum

Tension TOP CHORD

1-2=0/27, 2-4=-677/119, 4-5=-12/0,

4-7=-328/122, 2-9=-655/84

BOT CHORD 8-9=-334/218, 7-8=-195/603, 6-7=0/0 WEBS 3-8=0/313, 3-7=-768/250, 2-8=0/486

NOTES

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 12-11-8, Exterior(2E) 12-11-8 to 15-11-8 zone; cantilever left and right exposed; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOI = 1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this

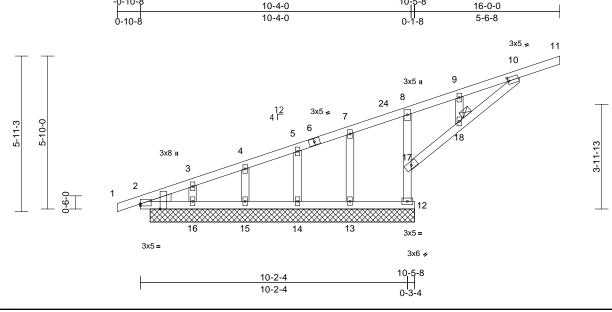
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 221 lb uplift at joint

LOAD CASE(S) Standard

September 13,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall


building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	3 Serenity-Roof-B326 A CP GLH	
24090009-01	H01	Monopitch Supported Gable	2	1	Job Reference (optional)	160412

Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Wed Sep 11 15:16:42 ID:kX6Xm09JsM8Rk_RkgNonK3zRRGV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:43.9

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.99	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.36	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.26	Horz(CT)	-0.08	17	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 68 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No 2 2x4 SP No.2 **BOT CHORD**

WEBS 2x4 SP No.3 *Except* 8-12:2x4 SP No.2 **OTHERS** 2x4 SP No.3

WEDGE Left: 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins, except end verticals.

9-5-0 oc bracing: 12-17 **BOT CHORD**

Rigid ceiling directly applied or 6-0-0 oc bracing.

JOINTS 1 Brace at Jt(s): 18

REACTIONS (size) 2=10-1-0, 12=10-1-0, 13=10-1-0, 14=10-1-0, 15=10-1-0, 16=10-1-0,

17=10-1-0, 21=10-1-0

Max Horiz 2=180 (LC 10), 21=180 (LC 10) Max Uplift 2=-48 (LC 21), 12=-72 (LC 21),

13=-9 (LC 10), 14=-41 (LC 14), 15=-26 (LC 10), 16=-98 (LC 14),

17=-271 (LC 10), 21=-48 (LC 21) Max Grav 2=123 (LC 14), 12=39 (LC 10),

13=129 (LC 1), 14=172 (LC 21), 15=158 (LC 1), 16=217 (LC 21),

17=875 (LC 21), 21=123 (LC 14)

FORCES (lb) - Maximum Compression/Maximum

TOP CHORD 1-2=0/17, 2-3=-710/428, 3-4=-650/422,

4-5=-606/425, 5-7=-544/407, 7-8=-542/476, 8-9=-633/630, 9-10=-632/697, 10-11=-45/0,

12-17=0/0, 8-17=-364/285 BOT CHORD 2-16=-383/370, 15-16=-383/370,

14-15=-383/370, 13-14=-383/370,

12-13=-383/370

WEBS

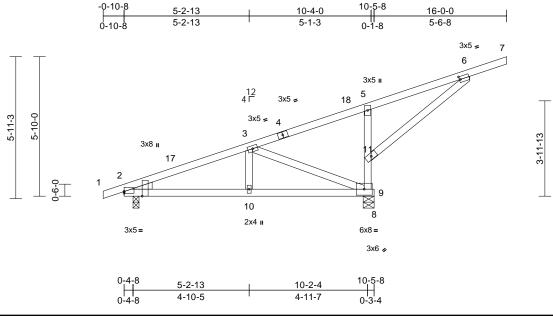
3-16=-145/179, 4-15=-125/117, 5-14=-168/172, 7-13=-33/56, 17-18=-793/656, 10-18=-801/669,

9-18=-21/26

NOTES

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-10-8 to 2-0-0, Exterior(2N) 2-0-0 to 16-0-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- All plates are 2x4 MT20 unless otherwise indicated.
- Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Bearing at joint(s) 17 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 72 lb uplift at joint 12, 98 lb uplift at joint 16 and 9 lb uplift at joint 13. 12) N/A
- 13) Non Standard bearing condition. Review required. LOAD CASE(S) Standard


September 13,2024

Job	Truss	Truss Type	Qty	Ply	3 Serenity-Roof-B326 A CP GLH	
24090009-01	H02	Monopitch	6	1	Job Reference (optional)	l68160413

Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Wed Sep 11 15:16:42 ID: nLPVeuW3K4TytrtY3ILLguzRRHK-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?ff

Page: 1

Scale = 1:48.2

Plate Offsets (X, Y): [2:Edge,0-0-14], [2:0-2-5,Edge], [6:0-0-8,0-1-8]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.78	Vert(LL)	0.03	9-10	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.36	Vert(CT)	-0.05	9-10	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.50	Horz(CT)	0.01	9	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 66 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

WEBS 2x4 SP No.3 *Except* 5-9:2x4 SP No.1

WEDGE Left: 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins, except end verticals.

Except:

5-3-0 oc bracing: 9-11

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS 2=0-3-0. 9=0-5-8 (size)

Max Horiz 2=207 (LC 10)

Max Uplift 2=-100 (LC 10), 9=-371 (LC 10)

Max Grav 2=377 (LC 1), 9=1084 (LC 21)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/17, 2-3=-368/82, 3-5=-393/465, 5-6=-456/707, 6-7=-45/0, 9-11=-847/467,

5-11=-321/163

2-10=-230/338, 9-10=-230/338, 8-9=0/0

BOT CHORD

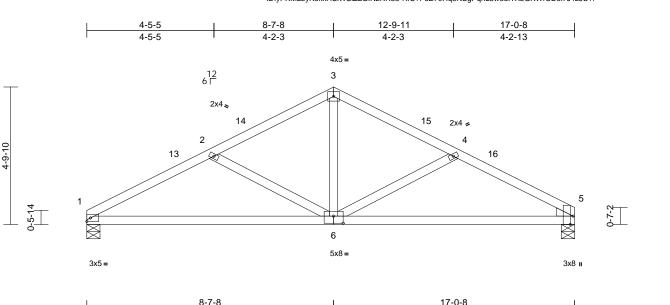
WEBS 3-10=-124/211, 3-9=-614/478, 6-11=-811/468

NOTES

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 16-0-0 zone; cantilever left exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

- 3) Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 9 and 2. This connection is for uplift only and does not consider lateral forces.

LOAD CASE(S) Standard


September 13,2024

Job	Truss	Truss Type	Qty	Ply	3 Serenity-Roof-B326 A CP GLH	
24090009-01	J01	Common	5	1	Job Reference (optional)	I68160414

Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Wed Sep 11 15:16:42 ID:yPXMLbyKekkHSiWSIZLGINzRR58-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

8-5-0

Scale = 1:40.3

Plate Offsets (X, Y): [5:0-3-8,Edge], [6:0-4-0,0-3-0]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.38	Vert(LL)	-0.09	6-9	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.64	Vert(CT)	-0.19	6-9	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.21	Horz(CT)	0.02	5	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 75 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 **WEBS** 2x4 SP No.3 WEDGE Right: 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or

5-1-15 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

1=0-5-8, 5=0-5-8 REACTIONS (size)

Max Horiz 1=71 (LC 14)

Max Uplift 1=-66 (LC 14), 5=-64 (LC 15)

Max Grav 1=747 (LC 20), 5=746 (LC 21)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-1256/309, 2-3=-879/232, 3-4=-871/231,

4-5=-1211/300 **BOT CHORD** 1-5=-221/1083

WEBS 3-6=-51/474, 4-6=-401/159, 2-6=-439/174

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior (1) 3-0-0 to 5-7-8, Exterior(2R) 5-7-8 to 11-7-8, Interior (1) 11-7-8 to 14-0-8, Exterior(2E) 14-0-8 to 17-0-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.

- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Bearings are assumed to be: , Joint 5 SP No.2 .
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 66 lb uplift at joint
- One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 5. This connection is for uplift only and does not consider lateral forces.

LOAD CASE(S) Standard

8-7-8

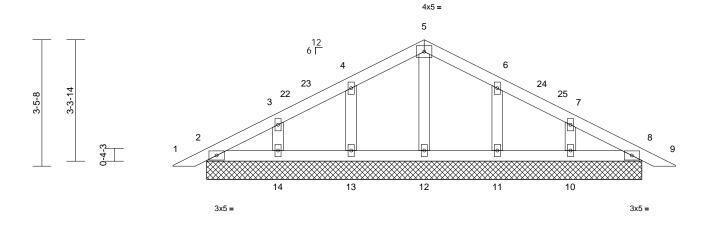
8-7-8

Page: 1

September 13,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job	Truss	Truss Type	Qty	Ply	3 Serenity-Roof-B326 A CP GLH	
24090009-01	PBA	Piggyback	2	1	Job Reference (optional)	I68160415

Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Wed Sep 11 15:16:42 ID:RPY8AW_GFKIcY3mFoYebvHzRQqK-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

11-10-14

Scale = 1:31.5

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.08	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.04	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.04	Horz(CT)	0.00	8	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 52 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 OTHERS

BRACING

Structural wood sheathing directly applied or TOP CHORD

6-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size)

2=11-10-14, 8=11-10-14, 10=11-10-14, 11=11-10-14, 12=11-10-14, 13=11-10-14, 14=11-10-14, 15=11-10-14,

19=11-10-14

Max Horiz 2=52 (LC 18), 15=52 (LC 18) Max Uplift 2=-9 (LC 15), 8=-12 (LC 15),

10=-45 (LC 15), 11=-47 (LC 15), 13=-47 (LC 14), 14=-46 (LC 14), 15=-9 (LC 15), 19=-12 (LC 15)

Max Grav 2=125 (LC 21), 8=125 (LC 22)

10=240 (LC 22), 11=243 (LC 22), 12=143 (LC 22), 13=243 (LC 21), 14=240 (LC 21), 15=125 (LC 21),

19=125 (LC 22)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/17, 2-3=-46/33, 3-4=-56/49,

> 4-5=-64/107, 5-6=-64/107, 6-7=-56/42, 7-8=-30/26, 8-9=0/17

BOT CHORD

2-14=-9/58, 13-14=-9/58, 12-13=-9/58, 11-12=-9/58, 10-11=-9/58, 8-10=-9/58

WEBS 5-12=-102/0, 4-13=-207/121, 3-14=-183/88,

6-11=-207/121, 7-10=-183/88

NOTES

1) Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-4-3 to 3-4-3, Interior (1) 3-4-3 to 3-11-0, Exterior(2R) 3-11-0 to 9-11-0, Interior (1) 9-11-0 to 10-5-13, Exterior(2E) 10-5-13 to 13-5-13 zone; cantilever left and right exposed; end vertical left and right exposed: C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- All plates are 2x4 MT20 unless otherwise indicated
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 2-0-0 oc.
- 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 12) N/A

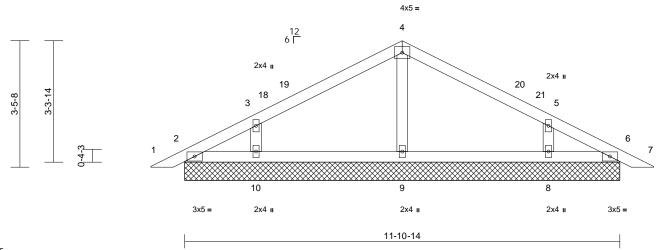
13) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

LOAD CASE(S) Standard

September 13,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job	Truss	Truss Type	Qty	Ply	3 Serenity-Roof-B326 A CP GLH	
24090009-01	PBA1	Piggyback	18	1	Job Reference (optional)	I68160416

Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Wed Sep 11 15:16:43 ID:Cx19sF4HMnJTVINoGDnTDzzRQqC-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:31.5

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.28	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.12	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.07	Horz(CT)	0.00	15	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 47 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 OTHERS

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size)

2=11-10-14, 6=11-10-14, 8=11-10-14, 9=11-10-14, 10=11-10-14, 11=11-10-14, 15=11-10-14

Max Horiz 2=52 (LC 18), 11=52 (LC 18)

Max Uplift 2=-11 (LC 15), 6=-4 (LC 11), 8=-87 (LC 15), 10=-87 (LC 14), 11=-11

(LC 15), 15=-4 (LC 11)

Max Grav 2=87 (LC 1), 6=87 (LC 1), 8=423

(LC 22), 9=301 (LC 21), 10=423 (LC 21), 11=87 (LC 1), 15=87 (LC

(lb) - Maximum Compression/Maximum

Tension

1-2=0/17, 2-3=-54/45, 3-4=-124/96, 4-5=-124/96 5-6=-34/45 6-7=0/17

BOT CHORD 2-10=-7/46, 9-10=-2/46, 8-9=-2/46, 6-8=-7/46 WFBS 4-9=-214/91, 3-10=-377/199, 5-8=-377/199

NOTES

FORCES

TOP CHORD

1) Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-4-3 to 3-4-3, Interior (1) 3-4-3 to 3-11-0, Exterior(2R) 3-11-0 to 9-11-0, Interior (1) 9-11-0 to 10-5-13, Exterior(2E) 10-5-13 to 13-5-13 zone; cantilever left and right exposed; end vertical left and right exposed: C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 11) N/A
- 12) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

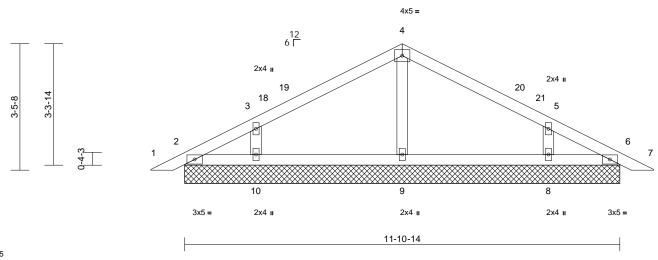
LOAD CASE(S) Standard

September 13,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Job Truss Truss Type Qty Ply 3 Serenity-Roof-B326 A CP GLH 168160417 24090009-01 PBA2 2 4 Piggyback Job Reference (optional)

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Wed Sep 11 15:16:43 ID:m2dQdjvppkexqPVgwg5aZPzRCX1-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:31.5

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.07	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.03	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.02	Horz(CT)	0.00	15	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MSH							1	
BCDL	10.0										Weight: 188 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 OTHERS

BRACING

Structural wood sheathing directly applied or TOP CHORD

6-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size)

2=11-10-14, 6=11-10-14, 8=11-10-14, 9=11-10-14, 10=11-10-14, 11=11-10-14, 15=11-10-14

Max Horiz 2=52 (LC 18), 11=52 (LC 18) Max Uplift 2=-11 (LC 15), 6=-4 (LC 11), 8=-87

(LC 15), 10=-87 (LC 14), 11=-11 (LC 15), 15=-4 (LC 11)

Max Grav 2=86 (LC 1), 6=86 (LC 1), 8=423

(LC 22), 9=302 (LC 21), 10=423 (LC 21), 11=86 (LC 1), 15=86 (LC

FORCES (lb) - Maximum Compression/Maximum

Tension

1-2=0/17, 2-3=-53/45, 3-4=-123/96, 4-5=-123/96 5-6=-33/45 6-7=0/17

BOT CHORD 2-10=-8/47, 9-10=-2/46, 8-9=-2/46, 6-8=-8/47

WFBS 4-9=-215/91, 3-10=-375/198, 5-8=-375/198

NOTES

TOP CHORD

- 4-ply truss to be connected together as follows: Top chords connected with 10d (0.131"x3") nails as follows: 2x4 - 1 row at 0-9-0 oc. Bottom chords connected with 10d (0.131"x3") nails as follows: 2x4 - 1 row at 0-9-0 oc.
- All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

- 3) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-4-3 to 3-4-3, Interior (1) 3-4-3 to 3-11-0, Exterior(2R) 3-11-0 to 9-11-0, Interior (1) 9-11-0 to 10-5-13. Exterior(2E) 10-5-13 to 13-5-13 zone: cantilever left and right exposed; end vertical left and right exposed:C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOI = 1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- Gable requires continuous bottom chord bearing.
- 10) Gable studs spaced at 4-0-0 oc.
- 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

 * This truss has been designed for a live load of 20.0psf
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 13) N/A

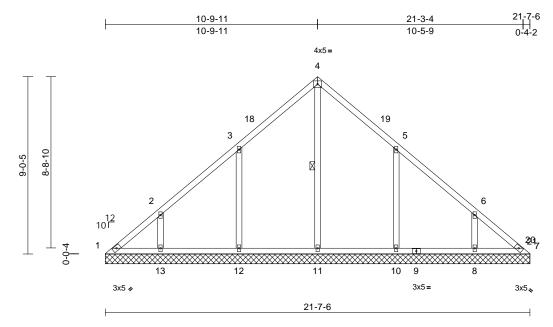
14) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

LOAD CASE(S) Standard

September 13,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall


building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	3 Serenity-Roof-B326 A CP GLH	
24090009-01	VLB1	Valley	1	1	Job Reference (optional)	I68160418

Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Wed Sep 11 15:16:43 ID:uRu6rMLa1rlmrJyJNhjxxpzRQsR-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:58.7

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.31	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.17	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.21	Horiz(TL)	0.01	7	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 106 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 OTHERS

BRACING

Structural wood sheathing directly applied or TOP CHORD

6-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

WFBS 1 Row at midpt

REACTIONS (size) 1=21-7-6, 7=21-7-6, 8=21-7-6, 10=21-7-6, 11=21-7-6, 12=21-7-6,

13=21-7-6 Max Horiz 1=207 (LC 11)

Max Uplift 1=-48 (LC 10), 7=-6 (LC 11),

8=-114 (LC 15), 10=-174 (LC 15), 12=-173 (LC 14), 13=-120 (LC 14)

Max Grav 1=149 (LC 25), 7=109 (LC 32), 8=362 (LC 25), 10=473 (LC 6)

11=414 (LC 27), 12=473 (LC 5), 13=370 (LC 24)

(lb) - Maximum Compression/Maximum

Tension

1-2=-213/174, 2-3=-164/132, 3-4=-188/181, TOP CHORD 4-5=-188/154, 5-6=-116/82, 6-7=-168/107

BOT CHORD 1-13=-76/154, 12-13=-76/154,

11-12=-76/154, 10-11=-76/154, 8-10=-76/154, 7-8=-76/154

4-11=-208/3. 3-12=-376/222. 2-13=-265/163.

5-10=-376/222, 6-8=-264/161

WFBS NOTES

FORCES

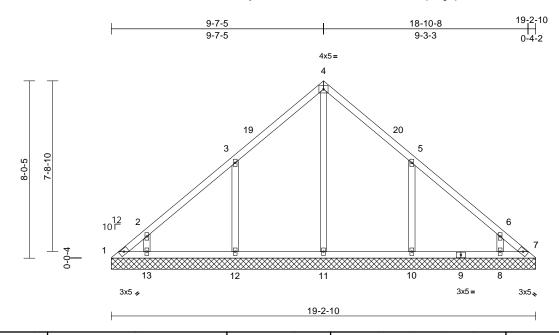
1) Unbalanced roof live loads have been considered for this design

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 2-10-0, Interior (1) 2-10-0 to 7-10-0, Exterior(2R) 7-10-0 to 13-10-0, Interior (1) 13-10-0 to 18-3-3, Exterior(2E) 18-3-3 to 21-3-3 zone; cantilever left and right exposed; end vertical left and right exposed: C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom 9) chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 48 lb uplift at joint 1, 6 lb uplift at joint 7, 173 lb uplift at joint 12, 120 lb uplift at joint 13, 174 lb uplift at joint 10 and 114 lb uplift at joint

LOAD CASE(S) Standard

September 13,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	3 Serenity-Roof-B326 A CP GLH	
24090009-01	VLB2	Valley	1	1	Job Reference (optional)	I68160419

Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Wed Sep 11 15:16:43 ID:yJIn_UX?VSBe9dbBmLUS1zzRQsC-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Loading	(psf)	Spacing	2-0-0	csı		DEFL	in	(loc)	I/defI	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.31	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.17	Vert(TL)	n/a	-	n/a	999		
TCDI	10.0	Pon Stroce Incr	VEC	1A/D	0.20	Horiz/TL\	0.00	7	n/a	n/a		

LCDL Rep Stress Inc Horiz(IL) **BCLL** 0.0* Code IRC2021/TPI2014 Matrix-MSH BCDL 10.0

Weight: 90 lb FT = 20%

LUMBER

Scale = 1:52.2

2x4 SP No.2 TOP CHORD **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 **OTHERS**

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 1=19-2-10, 7=19-2-10, 8=19-2-10,

10=19-2-10, 11=19-2-10, 12=19-2-10, 13=19-2-10,

18=19-2-10 Max Horiz 1=184 (LC 11)

Max Uplift 1=-96 (LC 10), 8=-53 (LC 15),

10=-193 (LC 15), 12=-174 (LC 14),

13=-102 (LC 14)

Max Grav 1=123 (LC 13), 7=0 (LC 13), 8=303

(LC 25), 10=477 (LC 25), 11=463 (LC 27), 12=480 (LC 5), 13=317

(LC 24), 18=0 (LC 13)

FORCES (lb) - Maximum Compression/Maximum

Tension

1-2=-218/205, 2-3=-217/187, 3-4=-207/267,

4-5=-207/241, 5-6=-124/66, 6-7=-72/42 BOT CHORD

1-13=-45/64, 12-13=-18/55, 11-12=-18/55, 10-11=-18/55, 8-10=-18/55, 7-8=-18/55

WFBS 4-11=-255/59. 3-12=-379/222. 2-13=-260/173, 5-10=-376/229, 6-8=-252/154

NOTES

TOP CHORD

Unbalanced roof live loads have been considered for this design.

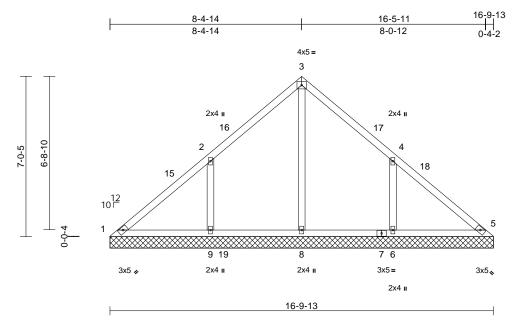
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Interior (1) 3-0-5 to 6-7-10, Exterior(2R) 6-7-10 to 12-7-10, Interior (1) 12-7-10 to 15-10-6, Exterior(2E) 15-10-6 to 18-10-6 zone; cantilever left and right exposed; end vertical left and right exposed: C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 96 lb uplift at joint 1, 174 lb uplift at joint 12, 102 lb uplift at joint 13, 193 lb uplift at joint 10 and 53 lb uplift at joint 8.

LOAD CASE(S) Standard

September 13,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall


building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	3 Serenity-Roof-B326 A CP GLH
24090009-01	VLB3	Valley	1	1	Job Reference (optional)

Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Wed Sep 11 15:16:43 ID:4pahjxh9RSqoCd5h0aDV3jzRQs?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale	 1∙5∩	5

Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.38	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.18	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.41	Horiz(TL)	0.00	5	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 75 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 OTHERS

BRACING

TOP CHORD Structural wood sheathing directly applied or

10-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

REACTIONS (size) 1=16-9-13, 5=16-9-13, 6=16-9-13, 8=16-9-13, 9=16-9-13, 14=16-9-13

1=160 (LC 11)

Max Horiz 1=-58 (LC 10), 6=-183 (LC 15), Max Uplift

9=-188 (LC 14)

1=82 (LC 35), 5=1 (LC 25), 6=510 Max Grav

(LC 6), 8=654 (LC 24), 9=510 (LC

5), 14=1 (LC 25)

(lb) - Maximum Compression/Maximum

Tension

TOP CHORD

1-2=-105/370, 2-3=-25/319, 3-4=-2/298, 4-5=-139/301

1-9=-197/76, 8-9=-197/74, 6-8=-197/74,

5-6=-197/74 WEBS

3-8=-470/0, 2-9=-392/220, 4-6=-392/218

NOTES

FORCES

BOT CHORD

- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Interior (1) 3-0-5 to 5-5-3, Exterior(2R) 5-5-3 to 11-5-3, Interior (1) 11-5-3 to 13-5-9, Exterior(2E) 13-5-9 to 16-5-9 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

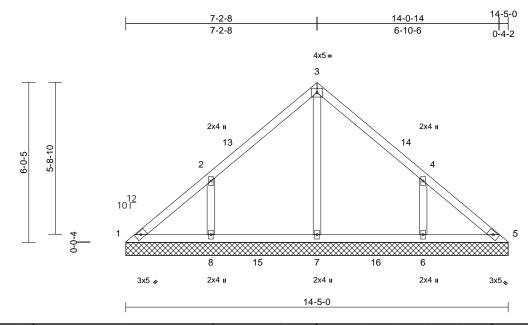
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this 5) design.
- Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 58 lb uplift at joint 1, 188 lb uplift at joint 9 and 183 lb uplift at joint 6.

LOAD CASE(S) Standard

September 13,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall


building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	3 Serenity-Roof-B326 A CP GLH
24090009-01	VLB4	Valley	1	1	Job Reference (optional)

Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Wed Sep 11 15:16:44 ID:CKtcSNrINSSyGdaBHoyY5SzRQro-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:43.4

Loading	(psf)	Spacing	2-0-0	csı		DEFL	in	(loc)	I/defI	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.31	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.16	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.14	Horiz(TL)	0.00	5	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 62 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 **OTHERS**

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

REACTIONS (size) 1=14-5-0, 5=14-5-0, 6=14-5-0,

7=14-5-0, 8=14-5-0 Max Horiz 1=-137 (LC 10)

Max Uplift 1=-24 (LC 10), 6=-154 (LC 15),

8=-157 (LC 14)

Max Grav 1=123 (LC 25), 5=99 (LC 24),

6=454 (LC 21), 7=403 (LC 24),

8=454 (LC 20)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-152/140, 2-3=-177/118, 3-4=-177/112,

4-5=-121/105

1-8=-59/126, 7-8=-59/100, 6-7=-59/100,

BOT CHORD 5-6=-59/100

3-7=-223/0. 2-8=-374/196. 4-6=-374/195

WEBS NOTES

- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-2-13, Interior (1) 3-2-13 to 4-2-13, Exterior(2R) 4-2-13 to 10-2-13, Interior (1) 10-2-13 to 11-2-13, Exterior(2E) 11-2-13 to 14-5-5 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

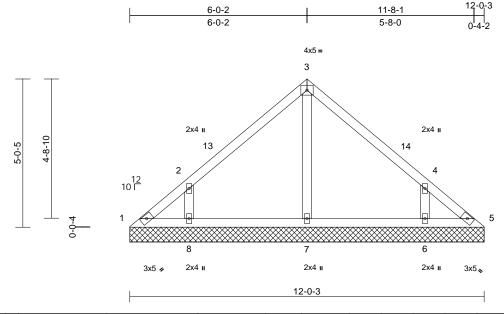
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this 5) design.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 24 lb uplift at joint 1, 157 lb uplift at joint 8 and 154 lb uplift at joint 6.

LOAD CASE(S) Standard

September 13,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall


building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	3 Serenity-Roof-B326 A CP GLH
24090009-01	VLB5	Valley	1	1	Job Reference (optional)

Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Wed Sep 11 15:16:44 ID:vFTOYoza1WjXT9L6tv8uVZzRQre-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:39.1

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.31	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.12	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.08	Horiz(TL)	0.00	5	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 50 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 **OTHERS**

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 1=12-0-3, 5=12-0-3, 6=12-0-3, 7=12-0-3, 8=12-0-3

Max Horiz 1=114 (LC 11)

1=-34 (LC 10), 5=-6 (LC 11), Max Uplift

6=-136 (LC 15), 8=-139 (LC 14) Max Grav 1=91 (LC 30), 5=70 (LC 24), 6=434

(LC 21), 7=259 (LC 20), 8=434 (LC

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-114/101, 2-3=-218/115, 3-4=-218/115,

4-5=-88/63

BOT CHORD 1-8=-32/75, 7-8=-31/73, 6-7=-31/73,

5-6=-31/73

WEBS 3-7=-172/0. 2-8=-401/220. 4-6=-401/220

NOTES

- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Exterior(2R) 3-0-5 to 9-0-8, Exterior(2E) 9-0-8 to 12-0-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this 5) design.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 34 lb uplift at joint 1, 6 lb uplift at joint 5, 139 lb uplift at joint 8 and 136 lb uplift at joint 6.

LOAD CASE(S) Standard

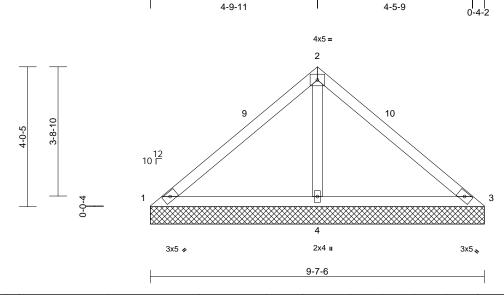
September 13,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	3 Serenity-Roof-B326 A CP GLH	
24090009-01	VLB6	Valley	1	1	Job Reference (optional)	168160423


4-9-11

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Wed Sep 11 15:16:44 ID:vFTOYoza1WjXT9L6tv8uVZzRQre-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

9-3-4

Page: 1

Scale = $1:33.2$	Scale	=	1:33.2
------------------	-------	---	--------

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.45	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.42	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.18	Horiz(TL)	0.01	4	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 37 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 **OTHERS**

BRACING

TOP CHORD Structural wood sheathing directly applied or

9-7-6 oc purlins.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

REACTIONS (size) 1=9-7-6, 3=9-7-6, 4=9-7-6

Max Horiz 1=90 (LC 11)

Max Uplift 1=-49 (LC 21), 3=-49 (LC 20),

4=-108 (LC 14)

1=95 (LC 20), 3=95 (LC 21), 4=771 Max Grav

(LC 21)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-114/372, 2-3=-114/372

BOT CHORD 1-4=-243/172, 3-4=-243/172

WEBS 2-4=-636/271

NOTES

- Unbalanced roof live loads have been considered for 1) this design
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Exterior(2R) 3-0-5 to 6-7-11, Exterior(2É) 6-7-11 to 9-7-11 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this desian.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

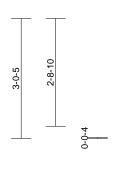
 * This truss has been designed for a live load of 20.0psf
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 49 lb uplift at joint 1, 49 lb uplift at joint 3 and 108 lb uplift at joint 4.

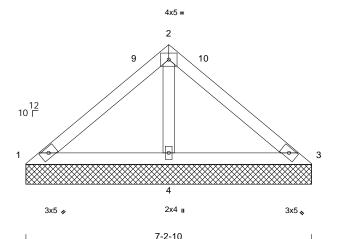
LOAD CASE(S) Standard

September 13,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)




Job	Truss	Truss Type	Qty	Ply	3 Serenity-Roof-B326 A CP GLH		
24090009-01	VLB7	Valley	1	1	Job Reference (optional)	l68160424	

Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Wed Sep 11 15:16:44 ID:vFTOYoza1WjXT9L6tv8uVZzRQre-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:29.1

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.26	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.26	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.09	Horiz(TL)	0.00	4	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 27 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 **OTHERS**

BRACING

TOP CHORD Structural wood sheathing directly applied or

7-2-10 oc purlins.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

REACTIONS (size) 1=7-2-10, 3=7-2-10, 4=7-2-10

Max Horiz 1=-67 (LC 10)

Max Uplift 1=-17 (LC 21), 3=-17 (LC 20),

4=-73 (LC 14)

Max Grav 1=105 (LC 20), 3=105 (LC 21),

4=530 (LC 20)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-88/228, 2-3=-88/228

1-4=-178/151, 3-4=-178/151 **BOT CHORD**

WEBS 2-4=-419/199

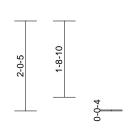
NOTES

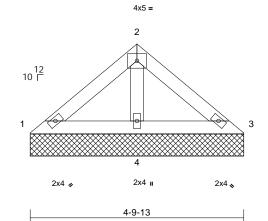
- Unbalanced roof live loads have been considered for 1) this design
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Exterior(2R) 3-0-5 to 4-2-14, Exterior(2É) 4-2-14 to 7-2-14 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

 * This truss has been designed for a live load of 20.0psf
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 17 lb uplift at joint 1, 17 lb uplift at joint 3 and 73 lb uplift at joint 4.

LOAD CASE(S) Standard


September 13,2024


Job	Truss	Truss Type	Qty	Ply	3 Serenity-Roof-B326 A CP GLH	
24090009-01	VLB8	Valley	1	1	Job Reference (optional)	168160425

Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Wed Sep 11 15:16:44 ID:vFTOYoza1WjXT9L6tv8uVZzRQre-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:26

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.09	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.11	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.04	Horiz(TL)	0.00	4	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 17 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 **OTHERS**

BRACING

TOP CHORD Structural wood sheathing directly applied or

4-9-13 oc purlins.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

REACTIONS (size) 1=4-9-13, 3=4-9-13, 4=4-9-13 Max Horiz 1=-43 (LC 10)

Max Uplift 3=-7 (LC 15), 4=-33 (LC 14)

Max Grav 1=88 (LC 20), 3=88 (LC 21), 4=292

(LC 20)

FORCES (lb) - Maximum Compression/Maximum

Tension TOP CHORD

1-2=-80/102, 2-3=-80/102 **BOT CHORD**

1-4=-82/87, 3-4=-82/87 **WEBS** 2-4=-207/95

NOTES

- Unbalanced roof live loads have been considered for
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

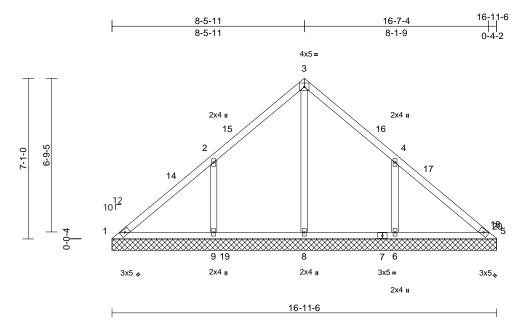
- 5) Unbalanced snow loads have been considered for this design.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 7 lb uplift at joint 3 and 33 lb uplift at joint 4.

LOAD CASE(S) Standard

September 13,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall


building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	3 Serenity-Roof-B326 A CP GLH	
24090009-01	VLD1	Valley	1	1	Job Reference (optional)	68160426

Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Wed Sep 11 15:16:44 ID:?VRASUfm0qfd3oFPBHC5FHzRQud-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale	. –	1.50	۱ ۵

Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.35	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.18	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.27	Horiz(TL)	0.00	5	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 76 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 OTHERS

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

REACTIONS (size) 1=16-11-6, 5=16-11-6, 6=16-11-6, 8=16-11-6, 9=16-11-6

Max Horiz 1=161 (LC 11)

1=-21 (LC 10), 6=-183 (LC 15), Max Uplift

9=-187 (LC 14)

Max Grav 1=123 (LC 25), 5=86 (LC 21),

6=520 (LC 25), 8=496 (LC 24),

9=526 (LC 24)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-145/253, 2-3=-108/190, 3-4=-109/170,

4-5=-111/218

BOT CHORD 1-9=-130/131, 8-9=-130/131, 6-8=-130/131,

5-6=-130/131 WEBS

3-8=-312/0, 2-9=-397/221, 4-6=-396/219

NOTES

- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Interior (1) 3-0-5 to 5-6-0, Exterior(2R) 5-6-0 to 11-6-0, Interior (1) 11-6-0 to 13-7-3, Exterior(2E) 13-7-3 to 16-7-3 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

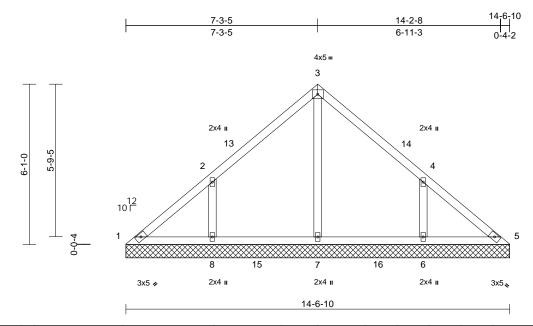
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this 5) design.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 21 lb uplift at joint 1, 187 lb uplift at joint 9 and 183 lb uplift at joint 6.

LOAD CASE(S) Standard

September 13,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall


building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	3 Serenity-Roof-B326 A CP GLH	
24090009-01	VLD2	Valley	1	1	Job Reference (optional)	168160427

Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Wed Sep 11 15:16:45

Page: 1

Scale = 1:43.7

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.31	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.16	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.15	Horiz(TL)	0.00	5	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 63 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 OTHERS

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

REACTIONS (size) 1=14-6-10, 5=14-6-10, 6=14-6-10, 7=14-6-10, 8=14-6-10

Max Horiz 1=138 (LC 11)

Max Uplift 1=-24 (LC 10), 6=-156 (LC 15),

8=-159 (LC 14)

Max Grav 1=124 (LC 25), 5=99 (LC 24),

6=456 (LC 21), 7=407 (LC 24),

8=456 (LC 20)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-153/145, 2-3=-173/121, 3-4=-173/111,

4-5=-121/110 **BOT CHORD**

1-8=-61/127, 7-8=-61/101, 6-7=-61/101,

5-6=-61/101

WEBS 3-7=-227/0. 2-8=-375/197. 4-6=-375/196

NOTES

- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-3-10, Interior (1) 3-3-10 to 4-3-10, Exterior(2R) 4-3-10 to 10-3-10, Interior (1) 10-3-10 to 11-3-10, Exterior(2E) 11-3-10 to 14-6-14 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

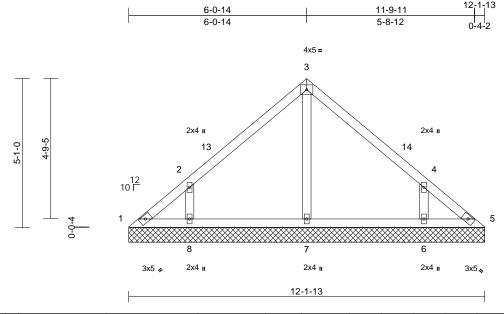
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this 5) design.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 24 lb uplift at joint 1, 159 lb uplift at joint 8 and 156 lb uplift at joint 6.

LOAD CASE(S) Standard

September 13,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall


building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	3 Serenity-Roof-B326 A CP GLH	
24090009-01	VLD3	Valley	1	1	Job Reference (optional)	168160428

Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Wed Sep 11 15:16:45 ID:kUxM45s?bF21LX?KCRTFVAzRQqU-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:39.3

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.31	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.12	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.08	Horiz(TL)	0.00	5	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 50 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 **OTHERS**

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 1=12-1-13, 5=12-1-13, 6=12-1-13, 7=12-1-13, 8=12-1-13

Max Horiz 1=-115 (LC 12)

1=-33 (LC 10), 5=-5 (LC 11), Max Uplift

6=-136 (LC 15), 8=-140 (LC 14) 1=94 (LC 25), 5=73 (LC 24), 6=434

Max Grav (LC 21), 7=261 (LC 21), 8=434 (LC

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-117/101, 2-3=-216/116, 3-4=-216/116,

4-5=-91/63

1-8=-32/79, 7-8=-32/74, 6-7=-32/74,

5-6=-32/74

WEBS 3-7=-174/0, 2-8=-397/217, 4-6=-397/217

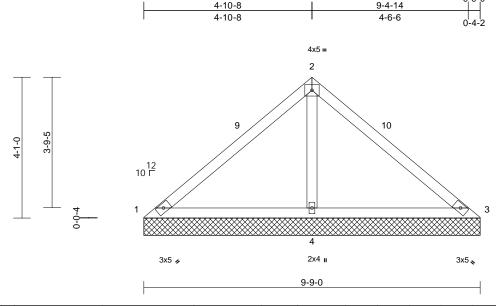
NOTES

BOT CHORD

- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Exterior(2R) 3-0-5 to 9-2-2, Exterior(2E) 9-2-2 to 12-2-2 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this 5) design.
- Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 33 lb uplift at joint 1, 5 lb uplift at joint 5, 140 lb uplift at joint 8 and 136 lb uplift at joint 6.

LOAD CASE(S) Standard


September 13,2024

Job	Truss	Truss Type	Qty	Ply	3 Serenity-Roof-B326 A CP GLH	
24090009-01	VLD4	Valley	1	1	Job Reference (optional)	I68160429

Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Wed Sep 11 15:16:45 ID:kUxM45s?bF21LX?KCRTFVAzRQqU-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = $1:3$

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.46	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.44	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.19	Horiz(TL)	0.01	4	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 37 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 **OTHERS**

BRACING

TOP CHORD Structural wood sheathing directly applied or

9-9-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

REACTIONS (size) 1=9-9-0, 3=9-9-0, 4=9-9-0

Max Horiz 1=-91 (LC 10)

Max Uplift 1=-52 (LC 21), 3=-52 (LC 20),

4=-111 (LC 14)

1=94 (LC 20), 3=94 (LC 21), 4=788 Max Grav

(LC 20)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-117/382, 2-3=-117/382

BOT CHORD 1-4=-249/175, 3-4=-249/175

WEBS 2-4=-650/275

NOTES

- Unbalanced roof live loads have been considered for 1) this design
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Exterior(2R) 3-0-5 to 6-9-5, Exterior(2E) 6-9-5 to 9-9-5 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.

 * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 52 lb uplift at joint 1, 52 lb uplift at joint 3 and 111 lb uplift at joint 4.

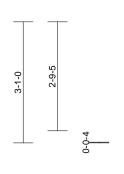
LOAD CASE(S) Standard

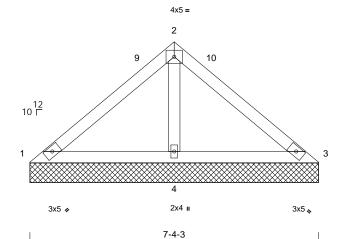
September 13,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)




Job	Truss	Truss Type	Qty	Ply	3 Serenity-Roof-B326 A CP GLH	
24090009-01	VLD5	Valley	1	1	Job Reference (optional)	I68160430

Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Wed Sep 11 15:16:45 ID:CgVkHRtdMZAuzhaXm9_U1OzRQqT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:29.3

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.27	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.27	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.09	Horiz(TL)	0.00	4	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 27 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 **OTHERS**

BRACING

TOP CHORD Structural wood sheathing directly applied or

7-4-3 oc purlins.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

REACTIONS (size) 1=7-4-3, 3=7-4-3, 4=7-4-3

Max Horiz 1=68 (LC 11)

Max Uplift 1=-19 (LC 21), 3=-19 (LC 20),

4=-76 (LC 14)

Max Grav 1=105 (LC 20), 3=105 (LC 21),

4=545 (LC 20)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-92/236, 2-3=-92/236 **BOT CHORD**

1-4=-184/155, 3-4=-184/155

WEBS 2-4=-432/204

NOTES

- Unbalanced roof live loads have been considered for 1) this design
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Exterior(2R) 3-0-5 to 4-4-8, Exterior(2E) 4-4-8 to 7-4-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

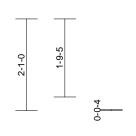
 * This truss has been designed for a live load of 20.0psf
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 19 lb uplift at joint 1, 19 lb uplift at joint 3 and 76 lb uplift at joint 4.

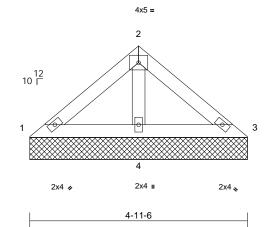
LOAD CASE(S) Standard

September 13,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)




Job	Truss	Truss Type	Qty	Ply	3 Serenity-Roof-B326 A CP GLH	
24090009-01	VLD6	Valley	1	1	Job Reference (optional)	I68160431

Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Wed Sep 11 15:16:45 $ID: CgVkHRtdMZAuzhaXm9_U1OzRQqT-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?fd$

Page: 1

Scale = 1:26.2

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.09	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.11	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.04	Horiz(TL)	0.00	4	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 18 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SP No.3 **OTHERS**

BRACING

TOP CHORD Structural wood sheathing directly applied or

4-11-6 oc purlins.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

REACTIONS (size) 1=4-11-6, 3=4-11-6, 4=4-11-6 Max Horiz 1=44 (LC 13)

Max Uplift 3=-7 (LC 15), 4=-35 (LC 14)

Max Grav 1=89 (LC 20), 3=89 (LC 21), 4=303

(LC 21)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-82/108, 2-3=-82/108

BOT CHORD 1-4=-87/91, 3-4=-87/91

WEBS 2-4=-218/101

NOTES

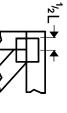
- 1) Unbalanced roof live loads have been considered for
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

- 5) Unbalanced snow loads have been considered for this design.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 7 lb uplift at joint 3 and 35 lb uplift at joint 4.

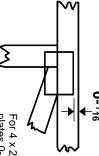
LOAD CASE(S) Standard

September 13,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Symbols

PLATE LOCATION AND ORIENTATION

Center plate on joint unless x, y offsets are indicated.
Dimensions are in ft-in-sixteenths.
Apply plates to both sides of truss and fully embed teeth.

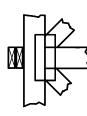
For 4 x 2 orientation, locate plates 0- ¹/16" from outside edge of truss.

This symbol indicates the required direction of slots in connector plates.

* Plate location details available in MiTek software or upon request.

PLATE SIZE

4 × 4

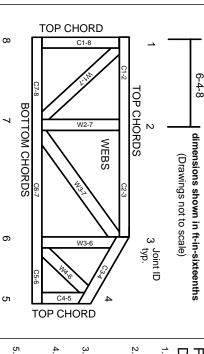

The first dimension is the plate width measured perpendicular to slots. Second dimension is the length parallel to slots.

LATERAL BRACING LOCATION

Indicated by symbol shown and/or by text in the bracing section of the output. Use T or I bracing if indicated.

BEARING

Indicates location where bearings (supports) occur. Icons vary but reaction section indicates joint number/letter where bearings occur Min size shown is for crushing only.


Industry Standards:

ANSI/TPI1: DSB-22:

National Design Specification for Metal Plate Connected Wood Truss Construction Design Standard for Bracing.

Building Component Safety Information, Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses.

Numbering System

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

Product Code Approvals

ICC-ES Reports:

ESR-1988, ESR-2362, ESR-2685, ESR-3282 ESR-4722, ESL-1388

Design General Notes

Trusses are designed for wind loads in the plane of the truss unless otherwise shown.

Lumber design values are in accordance with ANSI/TPI 1 section 6.3 These truss designs rely on lumber values established by others.

© 2023 MiTek® All Rights Reserved

MiTek®

MiTek Engineering Reference Sheet: MII-7473 rev. 1/2/2023

▲ General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI
- Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.
- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- Cut members to bear tightly against each other.
- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.
- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.

9

- Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- Top chords must be sheathed or purlins provided at spacing indicated on design.
- Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others
- Do not cut or alter truss member or plate without prior approval of an engineer.
- Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- The design does not take into account any dynamic or other loads other than those expressly stated.