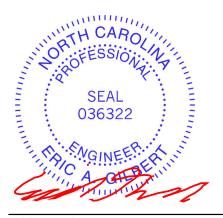


Trenco 818 Soundside Rd Edenton, NC 27932

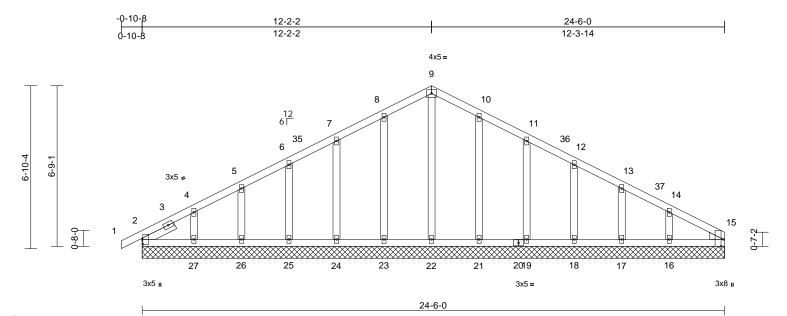

Re: 24090010-01 2 Serenity-Roof-B328 A CP GLH

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Carter Components (Sanford, NC)).

Pages or sheets covered by this seal: I68179957 thru I68179999

My license renewal date for the state of North Carolina is December 31, 2024.

North Carolina COA: C-0844


September 16,2024

Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

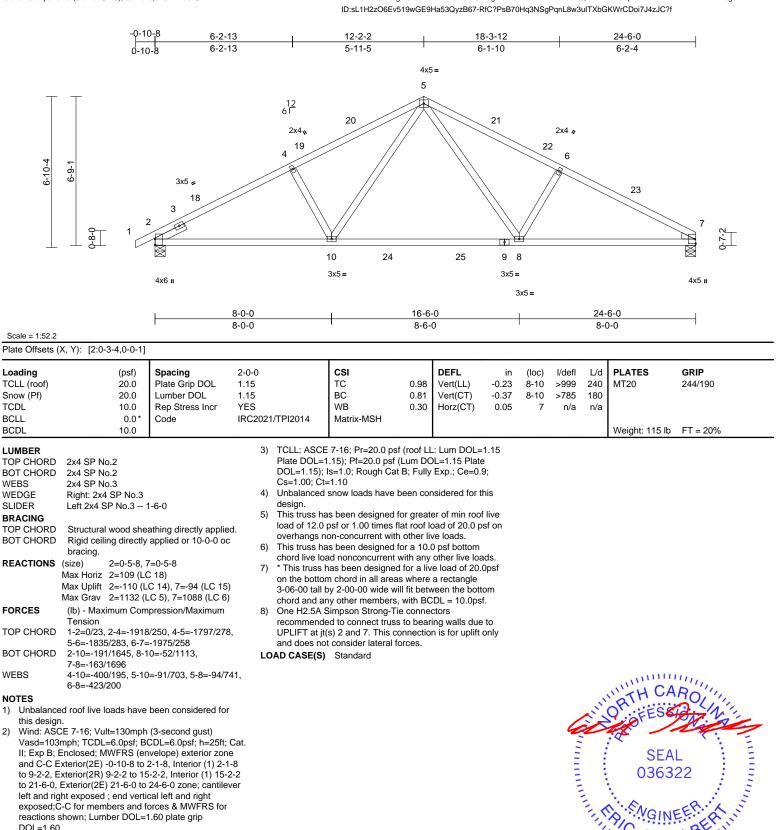
Job	Truss	Truss Type	Qty	Ply	2 Serenity-Roof-B328 A CP GLH	
24090010-01	A01	Common Supported Gable	1	1	Job Reference (optional)	168179957

Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Thu Sep 12 11:24:13 ID:_6rcLEIwA7tnIXY?wa67GkyzB5f-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:48.5 Plate Offsets (X, Y): [2:0-2-8.0-0-5]. [15:0-3-8.Edge]

Plate Offsets (X, Y): [2:0-2-8,0-0-5]	, [15:0-3-8,Edge]									-		
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES RC2021/TPI2014	CSI TC BC WB Matrix-MSH	0.07 0.06 0.12	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 15	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 139 lb	GRIP 244/190 FT = 20%	
	6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 2=24-6-0 21=24-6- 24=245(1 24=245(1 24=245(1 24=245(1))))))))))))))))))))))))))))))))))))	Pathing directly applied of applied or 10-0-0 oc (15=24-6-0, 16=24-6-0, 0, 18=24-6-0, 23=24-6-0, 23=24-6-0, 23=24-6-0, 25=24-6-0, 25=24-6-1, 25=24-6-1, 25=24-6-1, 25=24-6-1, 25=24-6-1, 25=25, 16=-71 (LC 15), LC 15), 15=-78 (LC 15), LC 14), 28=-13 (LC 15), LC 37), 17=150 (LC 1), LC 22), 19=228 (LC 22), 22=153 (LC 28) LC 21), 24=-228 (LC 21), 26=157 (LC 1), LC 22), 26=157 (LC 1), LC 23), 26=157 (LC 1), LC 23), 28=149 (LC 1), C 1), C 1), 26=157 (LC 1), C 1), C 1)	BOT CHORD or WEBS 0, 0, 0, 1) Unbalanc this desig 2) Wind: AS Vasd=10 II; Exp B; and C-C to 9-2-2, to 21-6-0 left and ri exposed; reactions DOL=1.6 3) Truss des only. For see Stand or consul 4) TCLL: AS	24-25=-23/89, 23-2 21-22=-23/89, 19-2 17-18=-23/89, 19-2 17-18=-23/89, 16-1 9-22=-113/15, 8-23 6-25=-135/78, 5-26 10-21=-205/75, 11 12-18=-136/78, 13 14-16=-142/127 ed roof live loads hav n. CE 7-16; Vult=130mp 3mph; TCDL=6.0psf; 1 Enclosed; MWFRS (6 Corner(3E) -0-10-8 to Corner(3E) -0-10-8 to Corner(3E) 21-6-0 to ght exposed ; end ver C-C for members and shown; Lumber DOL: 0 signed for wind loads i studs exposed to win dard Industry Gable E qualified building des CCE 7-16; Pr=20.0 psf	4/102, 7 89/19 89/19 13=-51 7 23/8 24=-23/8 24=-23/8 24=-23/8 25/7 -19=-18 125/7 -19=-18 -17=-12 e been h (3-sea 3CDL=6 envelope 2-2-2, E 5-2-2, E 5-2-2, E 24-6-0 tical left forces =1.60 pl n the pl d (norm nd Deta signer a (roof Ll	r-8=-75/147, I, 10-11=-75/ 1/55, 13-14=-5 2/55, 13-14=-5 2/55, 13-14=-5 2/55, 13-14=-5 2/5, 13-14=-23 2/5, 1-24=-188 2/7, 1-24=-188 2/73, 2/74, 2/74, 2/74, 2/74, 2/74, 2/74, 2/74, 2/74, 2/74, 2	147, 9/17, 39, /89, /89, /79, /110, r c Cat. he -2-2 c-2-2 ver ss), ble, P] 1. 1.15	loa ove 7) All 8) Ga 9) Ga 10) Thi chc 11) * Tl on 3-00 chc 12) Prc bea 2, 4 at j ioir 13 LOAD	d of 12.0 erhangs i plates ar ble requi- ble studs s truss h ord live lo his truss the botto 6-00 tall ord and a ovide me aring pla- 15 lb uplif t 18, 36 lb uplift a CASE(S) psf or non-cc re 2x4 irres co s space tas bee bad none thas bé by 2-0 any oth chanic te capa iff at joint lb uplif at joint lb uplif at joint S at y		oof load of 20. her live loads. herwise indicat chord bearing a 10.0 psf botto any other live a live load of here a rectang between the b y others) of tru ing 13 lb uplift at joint 29, 46 7 lb uplift at joint b uplift at joint	0 psf on ed. bom loads. 20.0psf le boottom ss to at joint 3 lb uplift int 27, o uplift at
	Tension		DOL=1.1 Cs=1.00;	L=1.15); Pf=20.0 psf (5); Is=1.0; Rough Cat Ct=1.10 ed snow loads have b	B; Fully	Exp.; Ce=0.9	9;			in the second se	A. C	EER	

September 16,2024


Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	2 Serenity-Roof-B328 A CP GLH	
24090010-01	A02	Common	9	1	Job Reference (optional)	168179958

Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Thu Sep 12 11:24:14

Page: 1

left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

Edenton, NC 27932

GI (1111111) September 16,2024

Job	Truss	Truss Type	Qty	Ply	2 Serenity-Roof-B328 A CP GLH	
24090010-01	A04	Common	6	1	Job Reference (optional)	168179959

10-2-2

3-11-5

12-2-2 14-2-2

2-0-0

2-0-0

Carter Components (Sanford, NC), Sanford, NC - 27332,

TCDL

BCLL

BCDL

WEBS

WEBS

WEBS

1)

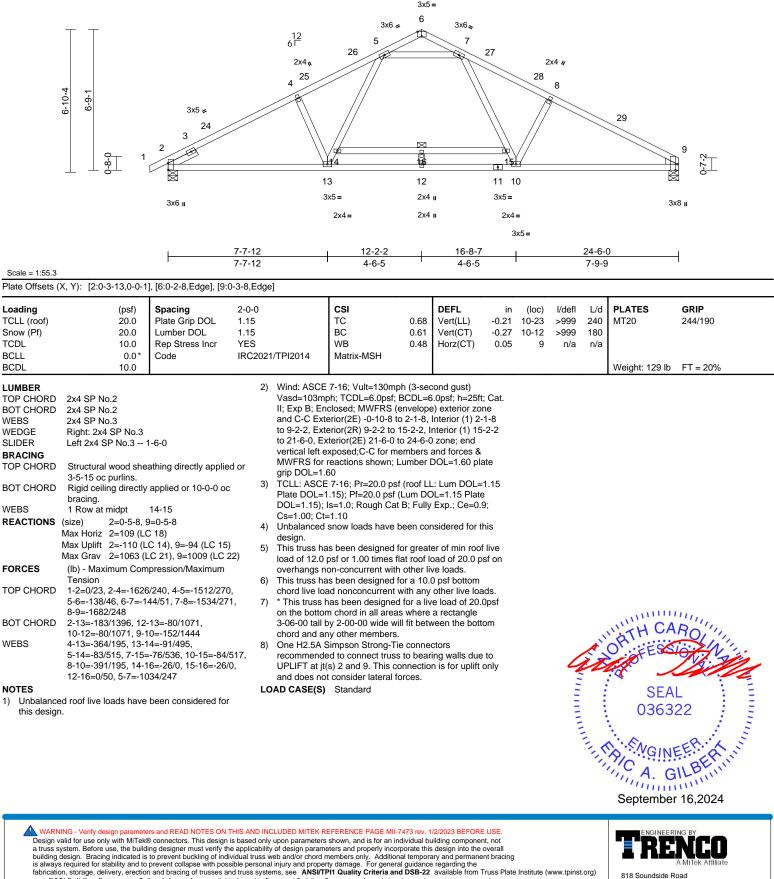
-0-10-8

0-10-8

6-2-13

6-2-13

Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Thu Sep 12 11:24:14 ID:1N5k5UiLgOv7p9PHKp3jFOyzB70-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


18-3-12

4-1-10

24-6-0

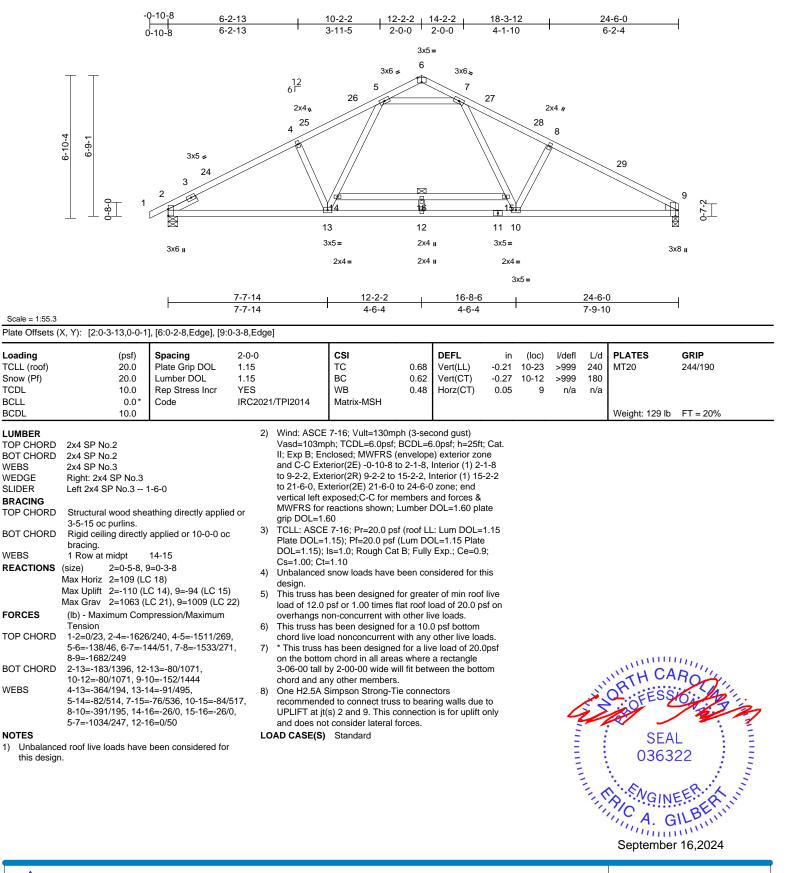
6-2-4

Page: 1

and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	2 Serenity-Roof-B328 A CP GLH	
24090010-01	A04A	Common	4	1	Job Reference (optional)	168179960

TCDL


BCLL

BCDL

1)

Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Thu Sep 12 11:24:14 ID:1N5k5UiLgOv7p9PHKp3jFOyzB70-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

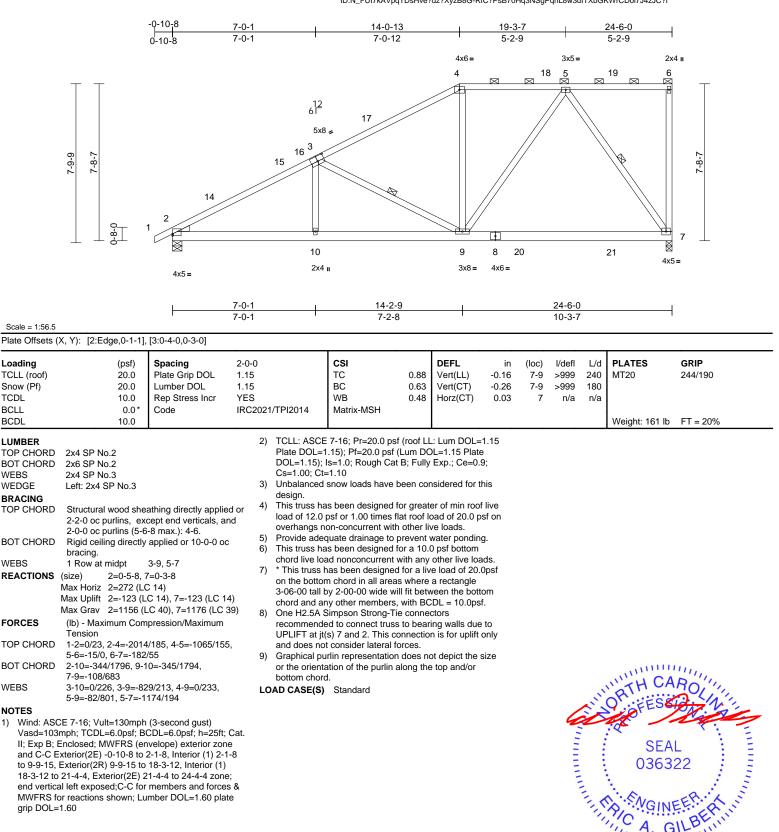
Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	2 Serenity-Roof-B328 A CP GLH	
24090010-01	A05	Half Hip	1	1	Job Reference (optional)	168179961

TCDL

BCLL

BCDL


WEBS

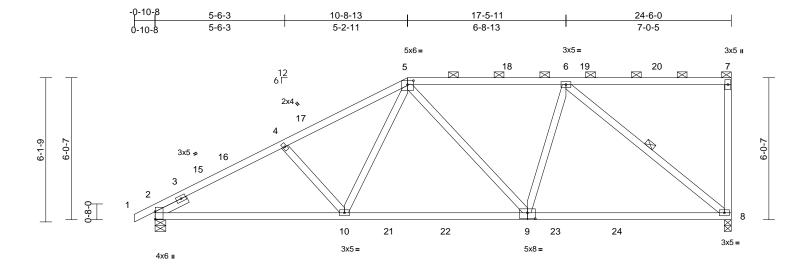
WEBS

WEBS

Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Thu Sep 12 11:24:14 ID:N_FUI7kAVpqTDsHve?dz?XyzB8G-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


unnun 1 September 16,2024

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	2 Serenity-Roof-B328 A CP GLH	
24090010-01	A06	Half Hip	1	1	Job Reference (optional)	168179962

Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Thu Sep 12 11:24:15 ID:8_hfrEPsdpZA5tlv6Y9sy2yzB8g-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

8-0-10	15-10-0	24-6-0
8-0-10	7-9-6	8-8-0

Scale = 1:49 Plate Offsets (X, Y): [2:0-3-13,0-0-1], [5:0-3-0,0-2-0], [9:0-4-0,0-3-0]

	(X, Y): [2:0-3-13,0-0-1], [5.0-3-0,0-2-0], [9: -	0-4-0,0-3-	σj									
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	21/TPI2014	CSI TC BC WB Matrix-MSH	1.00 0.89 0.65	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.19 -0.34 0.05	(loc) 8-9 8-9 8	l/defl >999 >851 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 134 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD WEBS REACTIONS	 2x4 SP No.2 2x4 SP No.3 Left 2x4 SP No.3 1 Structural wood she 3-9-14 oc purlins, e 2-0-0 oc purlins (2-2 Rigid ceiling directly bracing. 1 Row at midpt 	athing directly applie xcept end verticals, : -0 max.): 5-7. applied or 10-0-0 or 6-8 3=0-3-8 C 14) C 14), 8=-136 (LC 1 _C 40), 8=1240 (LC 1	and 7) c 8) 1)	 design. This truss ha load of 12.0 overhangs n Provide aded This truss ha chord live loa * This truss f on the bottor 3-06-00 tall b chord and ar One H2.5A S recommende UPLIFT at jt(and does no Graphical put 	snow loads have I s been designed f psf or 1.00 times f on-concurrent with quate drainage to is been designed f ad nonconcurrent i has been designed n chord in all area by 2-00-00 wide wi by other members, simpson Strong-Ti simpson Strong-Ti ed to connect truss s) 8 and 2. This ct t consider lateral fr rlin representation ation of the purlin a	for great lat roof I o other li prevent for a 10. with any d for a liv s where ill fit betv , with BC e conne s to bear onnectio onces.	er of min roo oad of 20.0 p ve loads. water pondin 0 psf bottom other live loa re load of 20. a rectangle veen the bott CDL = 10.0ps ctors ing walls due n is for uplift ot depict the	f live ssf on g. ads. Opsf f. to only					
TOP CHORD BOT CHORD WEBS	Tension 1-2=0/23, 2-4=-1992 5-6=-1333/124, 6-7=	2/217, 4-5=-1769/206 32/2, 7-8=-253/76 10=-203/1322 414/163, 5-9=-226/	_	bottom chorc OAD CASE(S)	I							WITH CA	RO.
Vasd=103 II; Exp B; and C-CI to 6-5-15, 14-11-12 end vertic MWFRS f grip DOL 2) TCLL: AS Plate DOI DOL=1.15	CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; B Enclosed; MWFRS (er Exterior(2E) -0-10-8 to , Exterior(2R) 6-5-15 to to 21-4-4, Exterior(2E) tal left exposed;C-C for for reactions shown; Lu	(3-second gust) CDL=6.0psf; h=25ft; tvelope) exterior zon 2-1-8, Interior (1) 2-1 14-11-12, Interior (1) 21-4-4 to 24-4-4 zor members and force imber DOL=1.60 pla roof LL: Lum DOL=1 um DOL=1.15 Plate	ne 1-8 1) ne; s & te 1.15							<u>(</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	The second secon	SEA 0363	

Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

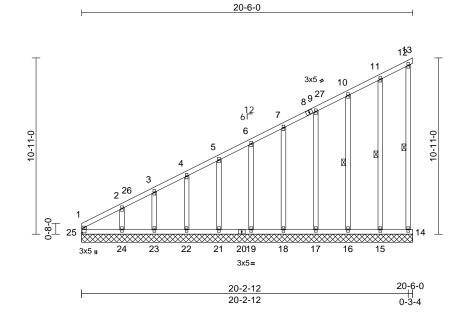
A. GILBE September 16,2024

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	2 Serenity-Roof-B328 A CP GLH	
24090010-01	A07	Half Hip Girder	1	1	Job Reference (optional)	168179963

Job	Truss		Truss Type			Qt	у	Ply	2 Ser	enity-Roof-	B328 A C	CP GLH	100470	062
24090010-0	01 A07		Half Hip Gir	der		1		1	Job R	eference (optional)		168179	9903
arter Compone	ents (Sanford, NC), Sanfor	rd, NC - 27332,				-		-	5 2024 N	MiTek Indust	ries, Inc. T	hu Sep 12 11:24:1 rCDoi7J4zJC?f	5	Page: 1
					ID.EXE4IIXED2	2011/91/09/17	Alyzbol	-KIC ! F 3D/	UTIQUINC	bgr qrieowou	TIXDORVI	10001/34230?1		
	-0-10-8	3-9-13	7-4-13 3-7-0		<u>13-1-1</u> 5-9-0				<u>18-9-0</u> 5-7-4			24-6-0		4
	0-10-8	3-9-13	3-7-0	•	5-9-0	J	•		5-7-4		·	5-9-0		
				NAILED	NAILED	NAILED	NAILE	D NAII	FD	NAILED	NAILEE 3x5 =) NAILED	NAILED	
		10		4x5=			3x5 =			3x5=	0.00 -	1011220		8=
		1 <u>2</u> 6 F	NAILED	4	18	19	5 ⊠	202	122	6	7 23	24	25 8	3
ТТ		NAILED	17	F			╱╤┦╜		1		⊠ ∄			- 1
		2x4	*									/		
4-5-9 4-4-7		3	$\langle \rangle$							/				4-4-7
4 4			\sim											4
	♀ 1 2													
\perp \perp												 	[9 -
		26	27	13 3x8=	28	29	12 3x5 =		011 4x6=	31	10 32 5x6=	33	υ.	∝ x8 ∎
	5x6	S= NAILED	NAILED	NAILED	NAILED	NAILED	NAILE			NAILED	NAILE	NAILED	NAILED	
		7-6-9			<u>13-1-</u> 5-7-4				<u>18-9-0</u> 5-7-4			<u>24-6-0</u> 5-9-0		4
Scale = 1:48.2			an 0 0 01											
	X, Y): [2:Edge,0-1-9],	1												
oading CLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.90	DEFL Vert(L	L) -0.		loc) l/de 2-13 >99		PLATES MT20	GRIP 244/190	
now (Pf)	20.0 10.0	Lumber DOL Rep Stress Incr	1.15 NO		BC WB	0.96 0.68	Vert(C Horz(C	,	23 12 05	2-13 >999 9 n/a				
BCLL	0.0*	Code	IRC2021/TPI2	2014	Matrix-MSH	0.00	11012(0	, 0.	00	5 10	u 11/u			
SCDL	10.0											Weight: 154 lb		
OP CHORD	2x4 SP No.1 *Excep	ot* 1-4:2x4 SP No.2			7-16; Pr=20.0 .15); Pf=20.0 p							F), 6=-111 (F), 1 =-34 (F), 17=-2		. ,
SOT CHORD	2x6 SP No.2 2x4 SP No.3 *Excep	ot* 8-10,5-13,7-12:2x4		_=1.15); I 1.00; Ct=	s=1.0; Rough 0 1.10	Cat B; Fully	Exp.; C	e=0.9;				1=-111 (F), 23= 6=-95 (F), 27=-8		
VEDGE	No.2 Left: 2x4 SP No.3	, 0 . 0, 1	0.	alanced s	snow loads hav	/e been cor	nsidered	for this		29=-3		=-34 (F), 31=-34		
BRACING			4) This	truss ha	s been designe					00-0		\. /		
OP CHORD		athing directly applied cept end verticals, an	d over	rhangs no	osf or 1.00 time on-concurrent w	vith other li	ve loads							
BOT CHORD	2-0-0 oc purlins (2-8 Rigid ceiling directly	8-6 max.): 4-8.	5) Prov 6) This	truss ha	uate drainage t s been designe	ed for a 10.	0 psf bot	tom						
VEBS	bracing.	8-9			d nonconcurre as been desigr									
EACTIONS	(size) 2=0-5-8, 9	9=0-3-8	on t	he bottom	n chord in all ar y 2-00-00 wide	reas where	a rectar	ngle						
	Max Horiz 2=150 (LC Max Uplift 2=-501 (L		cho	rd and an	y other membe	ers.								
	Max Grav 2=1847 (L	LC 34), 9=1996 (LC 3	3) con	nect truss	on Strong-Tie c to bearing wal	lls due to U	PLIFT a	t jt(s) 9.						
ORCES	(lb) - Maximum Com Tension		late	ral forces.				onsider						
OP CHORD	4-5=-2522/822, 5-7=		,		impson Strong d to connect tru			s due to					011	
OT CHORD	7-8=-2242/722, 8-9= 2-13=-912/2662, 12-		UPL	.IFT at jt(s	s) 2. This conne sider lateral for	ection is for						"TH CA	ARO	1.
VEBS	10-12=-722/2242, 9- 4-13=-152/721, 3-13	-10=-17/44	10) Gra	phical pui	lin representat	ion does n					(S)	ES	STO NO	1º-
	8-10=-866/2700, 5-1	12=-396/223,	bott	om chord		-	-			4	, A	icho -	C.	9
	5-13=-673/272, 7-12 7-10=-1357/530		(0.1	48"x3.25'	licates 3-10d (0 ') toe-nails per	NDS guidli	nes.				Ξ. 1	SE/	AL .	1 E
OTES) Wind: ASC	CE 7-16; Vult=130mph	(3-second aust)			CASE(S) section re noted as from			the face			8 1	0363		1 E
Vasd=103	mph; TCDL=6.0psf; B	CDL=6.0psf; h=25ft; 0	Cat. LOAD C	ASE(S)	Standard	.,	. ,				5			1 3
end vertica	Enclosed; MWFRS (er al left exposed; Lumbe		Ínc	rease=1.		Lumper Inc	rease=1	. 15, Plate			11.6	N. ENOU	FER.	LE
DOL=1.60	1			iform Loa Vert: 1-4=	ids (lb/ft) =-60, 4-8=-60, 9	9-14=-20					The second s	PIC GIN	FERE	TIT
					ed Loads (lb)							A. C	all unit	N.7.
												Septembe		24
A														
/ WARN	IING - Verify design paramete	ers and READ NOTES ON T	HIS AND INCLUDE	D MITEK RE	FERENCE PAGE	MII-7473 rev. 1	/2/2023 BE	FORE USE.				ENGINEE	RING BY	


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	2 Serenity-Roof-B328 A CP GLH	
24090010-01	B01	Monopitch Supported Gable	1	1	Job Reference (optional)	168179964

Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Thu Sep 12 11:24:15 ID:pRYBEe4gu7lwx_7UFLIIXlyzBJR-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

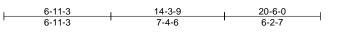
Page: 1

Scale = 1:71.4

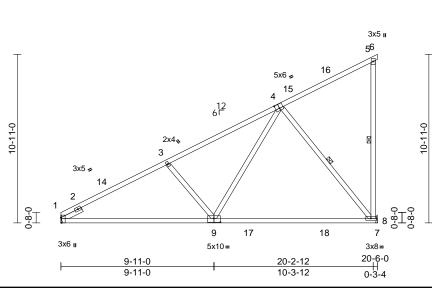
Plate Offsets (X, Y): [25:0-3-11,0-1-8]

	1	_										
(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
				тс	0.29			(·) -			MT20	244/190
								-				
								13				
			1/TPI2014									
10.0											Weight: 152 lb	FT = 20%
5.2 5.2 5.3 wood shea ourlins, exa ng directly midpt 13=20-6-C 16=20-6-C 23=20-6-C 23=20-6-C 23=20-6-C 23=20-6-C 23=20-6-C 13=-11 (L 13=-31 (L 13=-31 (L 13=-31 (L 13=-31 (L 13=-23 (L 13=-21 (L 13=-23	athing directly applied cept end verticals. applied or 10-0-0 oc 12-14, 11-15, 10-16 0, 14=20-6-0, 15=20- 0, 17=20-6-0, 12=20- 0, 24=20-6-0, 22=20- 0, 24=20-6-0, 22=20- 0, 24=20-6-0, 25=20- 1, 24, 14=-16 (LC 14 C 14), 18=-44 (LC 14 C 14), 18=-44 (LC 14 C 14), 18=-44 (LC 14 C 14), 23=-5 (LC 14) LC 14) C 14), 18=-44 (LC 14 C 14), 23=-5 (LC 14) LC 14) C 20), 16=233 (LC 20), C 20), 16=233 (LC 20), C 20), 21=159 (LC 1 C 20), 23=147 (LC 2 C 1), 25=253 (LC 14) pression/Maximum 492/192, 2-3=-389/15	2 W d or Ni 6-0, 6-0, 6-0, 6-0 1), 2) 1), 1), 3), 3), 3), 3), 3), 3), 3), 3), 3), 3	VEBS Vasd=103m II; Exp B; Er and C-C Col 3-1-12 to 20 MWFRS for grip DOL=1. Truss desigr only. For stu see Standar or consult qu TCLL: ASCE Plate DOL= DOL=1.15); Cs=1.00; CtL: ASCE Plate DOL= DOL=1.15); Cs=1.00; CtL: ASCE Colored a standar or consult qu TCLL: ASCE Plate DOL= DOL=1.15); Cs=1.00; CtL: ASCE DoL=1.15); Cs=1.00; CtL: ASCE DOL=1.15); CtL: ASC	21-22=-1/0, 19-21=- 17-18=-1/0, 16-17=- 17-18=-1/0, 16-17=- 14-15=-194/79, 10- 9-17=-137/79, 7-18- 5-21=-126/78, 4-22= 2-24=-172/204 7-16; Vult=130mph ph; TCDL=6.0psf; B iclosed; MWFRS (er mer(3E) 0-1-12 to 3- 6-0 zone; C-C for m reactions shown; Lu 60 ned for wind loads in Jalified building desi 5-7-16; Pr=20.0 psf (L Is=1.0; Rough Cat E =1.10 snow loads have be a 2x4 MT20 unless of the spaced at 2-0-0 oc, as been designed for ad nonconcurrent w has been designed for ad nonconcurrent w	1/0, 18 1/0, 18 1/0, 15 1/0, 15 1/0, 15 1/0, 15 1/0, 15 1/0, 10 1/0, 1	-19=-1/0, -16=-1/0, -16=-1/0, 3/81, 0, 6-19=-127 6, 3-23=-113 cond gust) .0psf; h=25ft; e) exterior zor Exterior (2N) s and forces a DOL=1.60 pla ane of the tru al to the face is as applical s per ANS/TIF \pm Lum DOL=: $b_{L}=1.15$ Plate Exp.; Ce=0.5 asidered for th se indicated. d bearing. e or securely iagonal web) D psf bottom other live loa a rectangle	/53, Cat. he ss tte ss), ole, PI 1. 1.15 0; anis ds. opsf	usir des 12) Pro bea 13, uplii 18, uplii joini LOAD (ng ANS// igner sh vide mer ring plat 16 lb up ft at joint 44 lb up ft at joint t 24. CASE(S)	TPI1: ould ve chanici lift at je t 16, 43 lift at je t 22, 5) Star	13 considers par angle to grain for rify capacity of b al connection (by able of withstandii oint 14, 41 lb uplii 3 lb uplift at joint 10, 41 lb uplii 10 uplift at joint 23 ndard	allel to grain value mula. Building earing surface. others) of truss to ng 11 lb uplift at joint t at joint 15, 45 lb 17, 44 lb uplift at joint t at joint 21, 53 lb 8 and 171 lb uplift at
	2.2 2.2 3.3 *Excep 3.3 wood shea urlins, exc ng directly nidpt 13=20-6-C 23=20-6-C 23=20-6-C 23=20-6-C 23=20-6-C 23=20-6-C 23=20-6-C 23=20-6-C 23=20-6-C 23=20-6-C 23=20-6-C 23=20-6-C 23=20-6-C 23=20-6-C 23=20-6-C 23=20-6-C 23=20-6-C 23=20-6-C 23=20-6-C 23=20-6-C 23=20-6-C 23=20-6-C 23=20-6-C 23=20-6-C 23=20-6-C 23=20-6-C 23=20-6-C 23=20-6-C 23=20-6-C 23=20-6-C 23=20-6-C 23=20-6-C 23=20-6-C 23=20-6-C 23=20-6-C 23=20-6-C 23=20-6-C 23=20-6-C 23=20-6-C 23=20-6-C 23=20-6-C 23=20-6-C 23=20-6-C 23=20-6-C 23=20-6-C 23=20-6-C 23=20-6-C 23=20-6-C 23=20-6-C 23=20-6-C 23=20-6-C 23=20-6-C 23=20-6-C 23=20-6-C 23=20-6-C 23=20-6-C 23=20-6-C 23=20-6-C 23=20-6-C 23=20-6-C 23=20-6-C 23=20-6-C 23=20-6-C 23=20-6-C 23=20-6-C 23=20-6-C 23=20-6-C 23=20-6-C 23=20-6-C 23=20-6-C 23=20-6-C 23=20-6-C 23=20-6-C 23=20-6-C 23=20-6-C 23=20-6-C 23=20-6-C 23=20-6-C 23=20-6-C 23=20-6-C 24=202 (L 24=202 (L 143, 4-5=-3 143, 7, 7-9=-11 /42, 7, 7-9=-11 /42, 7, 7-9=-11 /42, 7, 7-9=-11 /42, 7, 7-9=-11 /42, 7, 7-9=-11	20.0 Plate Grip DOL 20.0 Lumber DOL 10.0 Rep Stress Incr 0.0* Code 10.0 Rep Stress Incr 0.0* Code 10.0 Rep Stress Incr 0.0* Code 10.0 Code 0.0* Code 0.0 Stress Incr 0.0 Code 0.0 Stress Incr 0.0 Code 0.3 Except* 12-14:2x4 SP No.2 0.3 wood sheathing directly applied or 10-0-0 oc midpt 12-14, 11-15, 10-16 13=20-6-0, 17=20-6-0, 18=20-1 19=20-6-0, 21=20-6-0, 22=20-2 23=20-6-0, 24=20-6-0, 25=20-1 23=20-6-0, 24=20-6-0, 25=20-1 23=20-6-0, 24=20-6-0, 25=20-1 23=216-0, 24=20-6-0, 25=20-1 23=216-10, 17=20-6-0, 25=20-1 23=20-6-0, 24=20-6-0, 25=20-1 23=216-10, 12-24, 12-41 (LC 14) 13=-11 (LC 14), 18=-44 (LC 14 15=-41 (LC 14), 18=-44 (LC 14 15=-235 (LC 20), 18=160 (LC 14) 15=-235 (LC 20), 18=160	$\begin{array}{cccc} 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20.0 20.0 20.0Plate Grip DOL Lumber DOL Lumber DOL Lumber DOL Lumber DOL 1.15TC BC WB Watrix-MR10.0Rep Stress Incr YES CodeWB Watrix-MR10.0CodeIRC2021/TPI2014Matrix-MR10.0BOT CHORD 24-25=-1/0, 23-24=- 21-22=-1/0, 19-21=- 17-18=-1/0, 16-17=- 17-18=-1/0, 16-17=- 17-18=-1/0, 16-17=- 17-18=-1/0BOT CHORD 24-25=-1/0, 23-24=- 21-22=-1/0, 19-21=- 17-18=-1/0, 16-17=- 17-18=-1/0, 16-17=- 17-18=-1/0, 16-17=- 17-18=-1/0, 16-17=- 17-18=-1/0, 16-17=- 17-18=-1/0, 16-17=- 17-18=-1/0, 16-17=- 17-18=-1/0, 16-17=- 17-18=-1/0, 16-17=- 17-137/79, 7-18=- 5-21=-126/78, 4-22 2-24=-172/204midpt 12-14, 11-15, 10-16 13=20-6-0, 17=20-6-0, 18=20-6-0, 13=20-6-0, 21=20-6-0, 22=20-6-0, 23=20-6-0, 24=20-6-0, 25=20-6-0, 23=20-6-0, 24=20-6-0, 25=20-6-0, 24=201 (LC 14), 18=-44 (LC 14), 13=23 (LC 20), 14=83 (LC 20), 15=235 (LC 20), 14=83 (LC 20), 24=202 (LC 1), 25=253 (LC 14), mum Compression/Maximum (69, 1-2=-492/192, 2-3=-389/156, 13, 4-5=-306/123, 5-6=-260/105, 87, 7-9=-167/69, 9-10=-121/52, 1/26Totic Value Add from of braced against lateral movement 80 Gable studs spac	20.0Plate Grip DOL1.15TC0.2920.0Lumber DOL1.15BC0.1910.0Rep Stress IncrYESWB0.150.0*CodeIRC2021/TPI2014WB0.1510.0CodeIRC2021/TPI2014WB0.1510.0CodeIRC2021/TPI2014WB0.1510.0CodeIRC2021/TPI2014WB0.1510.0CodeIRC2021/TPI2014WB0.1510.0CodeIRC2021/TPI2014WB0.1510.0CodeIRC2021/TPI2014WB0.1510.1CodeIRC2021/TPI2014WB0.1510.2StatestandT-18=-1/00.2410.3StatestandT-18=-1/00.2411.15=-194/79, 10-16=-193Statestand11-15=-194/79, 10-16=-19311.2StatestandStatestand11-15=-194/79, 10-16=-19311.2StatestandStatestandStatestand11.2StatestandStatestandStatestand11.2StatestandStatestandStatestand11.2StatestandStatestandStatestand11.2StatestandStatestandStatestand11.3StatestandStatestandStatestand11.3StatestandStatestandStatestand11.3StatestandStatestandStatestand11.3StatestandStatestandStatestand11.4StatestandStatestandStatestand <td< td=""><td>20.0 20.0 20.0Plate Grip DOL Lumber DOL 1.15 Rep Stress Incr YES CodeTC BC BC 0.15 WB WB WB 0.15 Matrix-MRVert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(L) Vert(L) Vert(L) Vert(L) Vert(L) Vert(L) Vert(L) Vert(L) Vert(L) Vert(L) Vert(L) Vert(L) Vert(L) Vert(L) Vert(L) Vert(L) Vert(L) Vert(L) Vert(L) Vert(L) Vert(L) Vert(L) Vert(L) Vert(L) Vert(L) Vert(L) Ver</td><td>20.0 20.0Plate Grip DOL Lumber DOL Rep Stress Incr Code1.15 Incr YES West CodeTC C BC O.14 West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West </td><td>20.0 20.0 20.0Plate Grip DOL Lumber DOL 1.151.15 Lumber DOL 1.15TC $0.2$0.2 0.0^*Vert(LL) $n/a$$n/a$ $-100$0.0* 10.0Code1.15 Rep Stress Incr VES CodeIRC2021/TPI2014TC $0.0^*$$0.15$ Matrix-MRVert(LL) $n/a$$n/a$0.0* 10.0CodeIRC2021/TPI2014Matrix-MRHoriz(TL) $-0.02$$0.0^*$ $13.$0.0* 10.0CodeIRC2021/TPI2014Matrix-MRHoriz(TL) $-0.02$$0.0^*$ $13.$0.2 2.2 2.2DC HORD<math>24-25=-1/0, 23-24=-1/0, 18-19=-1/0, 18-19=-1/0, usir<math>17-18=-1/0, 16-17=-1/0, 15-16=-1/0, des<math>11-15=-194/79, 10-16=-193/81, 0-17=137/79, 7-18=-126/80, 6-19=-127/80, 13.<math>5-21=-126/78, 4-22=-129/86, 3-23=-113/53, upli$2-24=-172/204$<math>11.15=-194/79, 10-16=-193/81, 0-17=127/80, 13.<math>5-21=-126/78, 4-22=-129/86, 3-23=-113/53, upli$2-24=-172/204$$12.12$ 12.12NOTES10NOTES10NOTES1111LC 14, 11-15, 10-16 $112-20-6-0, 15=20-6-0, 18=20-6-0, 23=20-6-0, 23=20-6-0, 23=20-6-0, 24=20-6-0, 25=20-6-0, 23=20-6-0, 24=20-6-0, 25=20-6-0, 23=20-6-0, 24=20-6-0, 25=20-6-0, 23=20-6-0, 24=20-6-0, 25=20-6-0, 23=20-6-0, 24=20-6-0, 25=20-6-0, 23=20-6-0, 24=20-6-0, 25=20-6-0, 23=20-6-0, 24=20-6-0, 25=20-6-0, 25=20-6-0, 25=20-6-0, 25=20-6-0, 25=20-6-0, 23=20-6-0, 24=20-6-0, 25=20-6-0, 24=20-6-0, 25=20-6-0, 25=20-6-0, 25=20-6-0, 23=20-6-0, 24=20-6-0, 25=20-6-0, 25=20-6-0, 25=20-6-0, 25=20-6-0, 25=20-6-0, 25=20-6-0, 25=20-6-0, 25=20-6-0, 25=20-6-0, 25=20-6-0, 25=20-6-0, 25=20-6-0, 25=20-6-0, 25=20-6-0, 25=20-6-0, 25=20-6-0, 25=20-6-0, 25=20-6-0, 25=20-6-0, 25=20-6-0, 25=20-6-0, 25=20-6-0, 25=20-6-0, 25=20-6-0, 25=20-6-0, 25=20-6-0, 25=20$</math></math></math></math></math></math></td><td>20.0 20.0 20.0Plate Grip DOL Lumber DOL 1.151.15 Lumber DOL 1.15TC 0.29 BC 0.0^*Vert(LL) 0.15 WB WB $0.15$$0.16$ Wert(TL) Wert(TL) $0.0^*$$0.16$ Horiz(TL) $0.02$$0.13$ Wert(TL) $0.02$$0.13$ Wert(TL) $0.02$$0.15$ Wert(TL) $0.02$$0.15$ Wert(TL) $0.02$$0.15$ Wert(TL) $0.02$$0.15$ Wert(TL) $0.02$$0.15$ Wert(TL) $0.02$$0.15$ Wert(TL) $0.02$$0.15$ Wert(TL) $0.02$$0.15$ Wert(TL) $0.02$$0.15$ Wert(TL) $0.02$$0.15$ Wert(TL) $0.02$$0.15$ Wert(TL) $0.02$$0.15$ Wert(TL) $0.02$$0.15$ Wert(TL) $0.02$$0.15$ Wert(TL) $0.02$$0.15$ Wert(TL) $0.02$$0.15$ Wert(TL) $0.02$$0.15$ Wert(TL) $0.02$$0.15$ Wert(TL) $0.02$$0.15$ Wert(TL) $0.02$$0.15$ Wert(TL) $0.02$$0.15$ Wert(TL) $0.02$$0.15$ Wert(TL) $0.02$$0.11$ $0.02$$0.15$ Wert(TL) $0.02$$0.11$ $0.02$$0.11$ $0.02$$0.11$ $0.02$$0.11$ $0.02$$0.11$ $0.02$$0.11$ $0.02$$0.11$ $0.02$$0.11$ $0.02$$0.11$ $0.02$$0.11$ $0.02$$0.11$ $0.02$$0.11$ $0.02$$0.11$ $0.02$$0.11$ $0.02$$0.11$ $0.02$$0.11$ $0.02$$0.11$ $0.02$$0.11$ $0.02$$0.11$ $0.02$$0.11$ $0.02$$0.11$ $0.02$$0.11$ $0.02$$0.11$ $0.02$$0.11$ $0.02$$0.11$ $0.02$$0.11$ $0.02$$0.11$ $0.02$$0.11$ 0.02<t< td=""><td>20.0 20.0 20.0Plate Grip DOL Lumber DOL 1.151.15 1.15TC C 0.0° BC0.16 9Vert(LL) Vert(TL) n/an/an/a999 99910.0 0.0° 10.0Code1.15 Rep Stress Incr VES IRC2021/TPI2014TC BC0.16 BC0.17 WB0.15Vert(LL) Vert(LL)n/an/a10.99910.0 0.0° 10.0Code1.15 Rep Stress Incr VESTC VES0.0° Point (TL)n/an/a11010.0CodeIRC2021/TPI2014Matrix-MRMatrix-MR11110.0Second 10.922-323-10, 21-222-10, 19-21-10, 18-19=-10, 19-20-60, 21-20-60, 21-20-60, 21-20-60, 23-20-60, 21-20-60, 22-20-60, 23-20-60, 21-20-60, 21-20-60, 22-20-60, 23-20-60, 21-20-60, 21-20-60, 22-20-60, 23-20-60, 21-20-60, 21-20-60, 21-20-60, 21-20-60, 21-20-60, 21-20-60, 21-20-60, 21-20-60, 21-20-60, 21-20-60, 21-20-60, 21-</td><td>20.0 Plate Grip DOL 1.15 TC 0.29 Vert(LL) n/a - n/a 999 MT20 0.0 Code III.15 III.15 BC 0.19 Vert(LL) n/a - n/a 999 MT20 0.0 Code III.15 III.15 BC 0.19 Vert(LL) n/a - n/a 999 MT20 0.0 Code III.15 III.15 III.15 III.15 Weight: 152.1b Weight: 152.1b 3.3 Except* 12-14.2X4 SP No.2 III.15=-147.07, 10-16=-193/81, 917.748-1267.06, 61-92-127/80, 5-21=-1267.07, 84-22=-128/86, 6-19=-127/80, 5-21=-1267.07, 84-22=-128/86, 3-23=-113/53, 2-24=-172/204 11) Bearing at joint (2, 1) to uping at joint (2, 1) to uping at joint (2, 2, 5) bup lift at join</td></t<></td></td<>	20.0 20.0 20.0Plate Grip DOL Lumber DOL 1.15 Rep Stress Incr YES CodeTC BC BC 0.15 WB WB WB 0.15 Matrix-MRVert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(L) Vert(L) Vert(L) Vert(L) Vert(L) Vert(L) Vert(L) Vert(L) Vert(L) Vert(L) Vert(L) Vert(L) Vert(L) Vert(L) Vert(L) Vert(L) Vert(L) Vert(L) Vert(L) Vert(L) Vert(L) Vert(L) Vert(L) Vert(L) Vert(L) Vert(L) Ver	20.0 20.0Plate Grip DOL Lumber DOL Rep Stress Incr Code1.15 Incr YES West CodeTC C BC O.14 West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West West 	20.0 20.0 20.0Plate Grip DOL Lumber DOL 1.151.15 Lumber DOL 1.15TC 0.2 0.2 0.0^* Vert(LL) n/a n/a -100 0.0* 10.0Code1.15 Rep Stress Incr VES CodeIRC2021/TPI2014TC 0.0^* 0.15 Matrix-MRVert(LL) n/a n/a 0.0* 10.0CodeIRC2021/TPI2014Matrix-MRHoriz(TL) -0.02 0.0^* $13.$ 0.0* 10.0CodeIRC2021/TPI2014Matrix-MRHoriz(TL) -0.02 0.0^* $13.$ 0.2 2.2 2.2 DC HORD $24-25=-1/0, 23-24=-1/0, 18-19=-1/0, 18-19=-1/0, usir17-18=-1/0, 16-17=-1/0, 15-16=-1/0, des11-15=-194/79, 10-16=-193/81, 0-17=137/79, 7-18=-126/80, 6-19=-127/80, 13.5-21=-126/78, 4-22=-129/86, 3-23=-113/53, upli2-24=-172/20411.15=-194/79, 10-16=-193/81, 0-17=127/80, 13.5-21=-126/78, 4-22=-129/86, 3-23=-113/53, upli2-24=-172/20412.1212.12NOTES10NOTES10NOTES1111LC 14, 11-15, 10-16112-20-6-0, 15=20-6-0, 18=20-6-0, 23=20-6-0, 23=20-6-0, 23=20-6-0, 24=20-6-0, 25=20-6-0, 23=20-6-0, 24=20-6-0, 25=20-6-0, 23=20-6-0, 24=20-6-0, 25=20-6-0, 23=20-6-0, 24=20-6-0, 25=20-6-0, 23=20-6-0, 24=20-6-0, 25=20-6-0, 23=20-6-0, 24=20-6-0, 25=20-6-0, 23=20-6-0, 24=20-6-0, 25=20-6-0, 25=20-6-0, 25=20-6-0, 25=20-6-0, 25=20-6-0, 23=20-6-0, 24=20-6-0, 25=20-6-0, 24=20-6-0, 25=20-6-0, 25=20-6-0, 25=20-6-0, 23=20-6-0, 24=20-6-0, 25=20-6-0, 25=20-6-0, 25=20-6-0, 25=20-6-0, 25=20-6-0, 25=20-6-0, 25=20-6-0, 25=20-6-0, 25=20-6-0, 25=20-6-0, 25=20-6-0, 25=20-6-0, 25=20-6-0, 25=20-6-0, 25=20-6-0, 25=20-6-0, 25=20-6-0, 25=20-6-0, 25=20-6-0, 25=20-6-0, 25=20-6-0, 25=20-6-0, 25=20-6-0, 25=20-6-0, 25=20-6-0, 25=20-6-0, 25=20$	20.0 20.0 20.0Plate Grip DOL Lumber DOL 1.151.15 Lumber DOL 1.15TC 0.29 BC 0.0^* Vert(LL) 0.15 WB WB 0.15 0.16 Wert(TL) Wert(TL) 0.0^* 0.16 Horiz(TL) 0.02 0.13 Wert(TL) 0.02 0.13 Wert(TL) 0.02 0.15 Wert(TL) 0.02 0.11 0.02 0.15 Wert(TL) 0.02 0.11 0.02 <t< td=""><td>20.0 20.0 20.0Plate Grip DOL Lumber DOL 1.151.15 1.15TC C 0.0° BC0.16 9Vert(LL) Vert(TL) n/an/an/a999 99910.0 0.0° 10.0Code1.15 Rep Stress Incr VES IRC2021/TPI2014TC BC0.16 BC0.17 WB0.15Vert(LL) Vert(LL)n/an/a10.99910.0 0.0° 10.0Code1.15 Rep Stress Incr VESTC VES0.0° Point (TL)n/an/a11010.0CodeIRC2021/TPI2014Matrix-MRMatrix-MR11110.0Second 10.922-323-10, 21-222-10, 19-21-10, 18-19=-10, 19-20-60, 21-20-60, 21-20-60, 21-20-60, 23-20-60, 21-20-60, 22-20-60, 23-20-60, 21-20-60, 21-20-60, 22-20-60, 23-20-60, 21-20-60, 21-20-60, 22-20-60, 23-20-60, 21-20-60, 21-20-60, 21-20-60, 21-20-60, 21-20-60, 21-20-60, 21-20-60, 21-20-60, 21-20-60, 21-20-60, 21-20-60, 21-</td><td>20.0 Plate Grip DOL 1.15 TC 0.29 Vert(LL) n/a - n/a 999 MT20 0.0 Code III.15 III.15 BC 0.19 Vert(LL) n/a - n/a 999 MT20 0.0 Code III.15 III.15 BC 0.19 Vert(LL) n/a - n/a 999 MT20 0.0 Code III.15 III.15 III.15 III.15 Weight: 152.1b Weight: 152.1b 3.3 Except* 12-14.2X4 SP No.2 III.15=-147.07, 10-16=-193/81, 917.748-1267.06, 61-92-127/80, 5-21=-1267.07, 84-22=-128/86, 6-19=-127/80, 5-21=-1267.07, 84-22=-128/86, 3-23=-113/53, 2-24=-172/204 11) Bearing at joint (2, 1) to uping at joint (2, 1) to uping at joint (2, 2, 5) bup lift at join</td></t<>	20.0 20.0 20.0Plate Grip DOL Lumber DOL 1.151.15 1.15TC C 0.0° BC0.16 9Vert(LL) Vert(TL) n/an/an/a999 99910.0 0.0° 10.0Code1.15 Rep Stress Incr VES IRC2021/TPI2014TC BC0.16 BC0.17 WB0.15Vert(LL) Vert(LL)n/an/a10.99910.0 0.0° 10.0Code1.15 Rep Stress Incr VESTC VES0.0° Point (TL)n/an/a11010.0CodeIRC2021/TPI2014Matrix-MRMatrix-MR11110.0Second 10.922-323-10, 21-222-10, 19-21-10, 18-19=-10, 19-20-60, 21-20-60, 21-20-60, 21-20-60, 23-20-60, 21-20-60, 22-20-60, 23-20-60, 21-20-60, 21-20-60, 22-20-60, 23-20-60, 21-20-60, 21-20-60, 22-20-60, 23-20-60, 21-20-60, 21-20-60, 21-20-60, 21-20-60, 21-20-60, 21-20-60, 21-20-60, 21-20-60, 21-20-60, 21-20-60, 21-20-60, 21-	20.0 Plate Grip DOL 1.15 TC 0.29 Vert(LL) n/a - n/a 999 MT20 0.0 Code III.15 III.15 BC 0.19 Vert(LL) n/a - n/a 999 MT20 0.0 Code III.15 III.15 BC 0.19 Vert(LL) n/a - n/a 999 MT20 0.0 Code III.15 III.15 III.15 III.15 Weight: 152.1b Weight: 152.1b 3.3 Except* 12-14.2X4 SP No.2 III.15=-147.07, 10-16=-193/81, 917.748-1267.06, 61-92-127/80, 5-21=-1267.07, 84-22=-128/86, 6-19=-127/80, 5-21=-1267.07, 84-22=-128/86, 3-23=-113/53, 2-24=-172/204 11) Bearing at joint (2, 1) to uping at joint (2, 1) to uping at joint (2, 2, 5) bup lift at join

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)


TRENCO A MiTek Affiliate

818 Soundside Road Edenton, NC 27932


September 16,2024

Job	Truss	Truss Type	Qty	Ply	2 Serenity-Roof-B328 A CP GLH	
24090010-01	B02	Monopitch	9	1	Job Reference (optional)	168179965

Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Thu Sep 12 11:24:15 ID:DTBTk2iEBbrKjDFXxKE1mCyzBJw-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:74.6

Plate Offsets (X, Y): [1:0-4-1,Edge], [4:0-3-0,0-3-4], [9:0-5-0,0-3-0]

		-										
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.72	Vert(LL)	-0.48	8-9	>504	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.91	Vert(CT)	-0.73	8-9	>331	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.43	Horz(CT)	0.02	8	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MSH								
BCDL	10.0	1			-						Weight: 115 lb	FT = 20%
LUMBER			5) * This tr	uss has been designe	ed for a liv	e load of 20.	Opsf					
TOP CHORE	2x4 SP No.2		on the b	ottom chord in all are	as where	a rectangle						
BOT CHORE	2x4 SP No.1			tall by 2-00-00 wide v								
WEBS	2x4 SP No.3 *Excep			nd any other members			f.					
SLIDER	Left 2x4 SP No.3	1-6-0		girder(s) for truss to t								
BRACING				mechanical connection								
TOP CHORE				plate capable of withs 7 lb uplift at joint 1.	standing 2	232 ID UPIIIT a	t joint					
	4-8-11 oc purlins, e											
BOT CHORE	0 0 ,	applied or 8-3-12 o	C LUAD CAS	E(S) Standard								
	bracing.	5040										
WEBS	1 Row at midpt	5-8, 4-8										
REACTIONS		anical, 8= Mechanica	al									
	Max Horiz 1=375 (L0	,	0									
	Max Uplift 1=-27 (LC Max Grav 1=898 (LC											
FORCES	(lb) - Maximum Corr	,. , ,										
FURGES	(ib) - Maximum Con Tension	ipression/iviaximum										
TOP CHORE		1185/96 5-612/0										
	5-8=-271/90	1100/00, 0 0– 12/0,										
BOT CHORE		=0/0										
WEBS	4-8=-923/258, 4-9=-	51/875, 3-9=-408/22	22									111
NOTES	, -	,									TH CA	D'''
	SCE 7-16; Vult=130mph	(3-second aust)									ORTH CA	70/11
)3mph; TCDL=6.0psf; B		; Cat.							~	ONIES	in the
	; Enclosed; MWFRS (er								4	E a	10th	Phil
and C-C	Exterior(2E) 0-0-0 to 3-	0-0, Interior (1) 3-0-	0 to						4		1	The second
17-6-0, E	Exterior(2E) 17-6-0 to 20)-6-0 zone;C-C for							1			1 1 1 E
	s and forces & MWFRS		;							:	SEA	L : =
	DOL=1.60 plate grip DC								=	:	0363	22 : =
	SCE 7-16; Pr=20.0 psf (1		0303	22 <u>:</u> :
	DL=1.15); Pf=20.0 psf (L I5); Is=1.0; Rough Cat E								-		1	1 3
	; Ct=1.10; Rough Cat E	s, Fully Exp., Ce=0.8	,						S	1 .	·	Airs
	ced snow loads have be	en considered for th	nis							25		EFRANS
design.										11	10	BEN
	s has been designed fo	r a 10.0 psf bottom									A. G	il-L'
	e load nonconcurrent w		ds.								(IIIIII)	mm,

- 2 Plate DOL=1.15); Pf=20.0 psf (Lum DOL .=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

September 16,2024

minimum)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oullapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCB Building Component Scietu Information available from the Structural Building Component Section Component Scietul Information available from the Structural Building Component Scietul Information** and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	2 Serenity-Roof-B328 A CP GLH	
24090010-01	B03	Monopitch	2	1	Job Reference (optional)	168179966

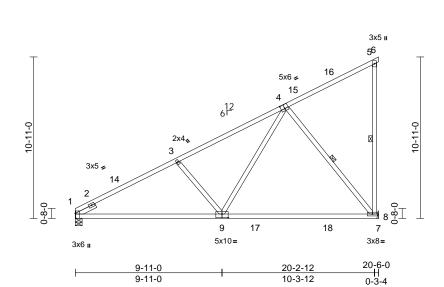
14-3-9

7-4-6

6-11-3

6-11-3

Carter Components (Sanford, NC), Sanford, NC - 27332,


Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Thu Sep 12 11:24:16 ID:KLIp2cdP9FdyXYyQD889fRyzBLJ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

20-6-0

6-2-7

-

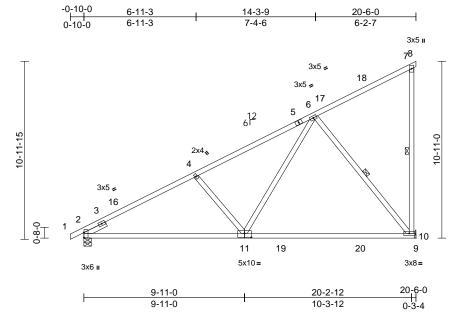
Page: 1

Scale = 1:77.9

Plate Offsets (X, Y): [1:0-4-1,Edge], [4:0-3-0,0-3-4], [9:0-5-0,0-3-0]

	, i). [1.0-4-1,∟uge],	[4.0-3-0,0-3-4], [3.0	-3-0,0-3-0]										
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TF	912014	CSI TC BC WB Matrix-MSH	0.72 0.91 0.43	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.48 -0.73 0.02	(loc) 8-9 8-9 8	l/defl >504 >331 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 115 lb	GRIP 244/190 FT = 20%
	2x4 SP No.2 2x4 SP No.1 2x4 SP No.3 *Excep Left 2x4 SP No.3 Structural wood she 4-8-11 oc purlins, e Rigid ceiling directly bracing. 1 Row at midpt (size) 1=0-5-8, 8 Max Horiz 1=375 (LC Max Uplift 1=-27 (LC Max Grav 1=898 (LC	1-6-0 athing directly applie xcept end verticals. applied or 8-3-12 or 5-8, 4-8 3= Mechanical C 14) 2 14), 8=-232 (LC 14	ch 5) * 1 or 3- ch ed or 6) Re 8) Or 8) Or re Ul ul do	ord live loa This truss h the bottom 06-00 tall b ord and an efer to girde rovide mech earing plate ne H2.5A S commende PLIFT at jt(s been designed f id nonconcurrent v as been designed in chord in all areas y 2-00-00 wide wi y other members, ar(s) for truss to tru- ranical connection capable of withsta- timpson Strong-Tie d to connect truss s) 1. This connect sider lateral forces Standard	with any for a liv s where Il fit betw with BC uss conr h (by oth anding 2 e conne to bear ion is for	other live load e load of 20.1 a rectangle veen the bott DL = 10.0ps nections. ers) of truss t :32 lb uplift at ctors ing walls due	Opsf om f. to t joint to					
FORCES	(lb) - Maximum Com Tension												
TOP CHORD	1-3=-1402/34, 3-5=- 5-8=-271/90	1185/96, 5-6=-12/0,											
BOT CHORD WEBS	1-8=-408/1298, 7-8=		0										
NOTES	4-8=-923/258, 4-9=-	51/675, 5-9=-406/22	2										in the second se
 Wind: ASC Vasd=103/ II; Exp B; E and C-C E 17-6-0, Ex left expose reactions s DOL=1.60 TCLL: ASC Plate DOL DOL=1.15 Cs=1.00; C 	CE 7-16; Pr=20.0 psf (=1.15); Pf=20.0 psf (L ;); Is=1.0; Rough Cat E	CDL=6.0psf; h=25ft; ivelope) exterior zon 0-0, Interior (1) 3-0-0 I-6-0 zone; end vertiend of forces & MWFRS 1.60 plate grip roof LL: Lum DOL=1 um DOL=1.15 Plate i; Fully Exp.; Ce=0.9	e o to cal for .15							M. anno.		SEA 0363	ER A LU

September 16,2024



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	2 Serenity-Roof-B328 A CP GLH	
24090010-01	B04	Monopitch	3	1	Job Reference (optional)	168179967

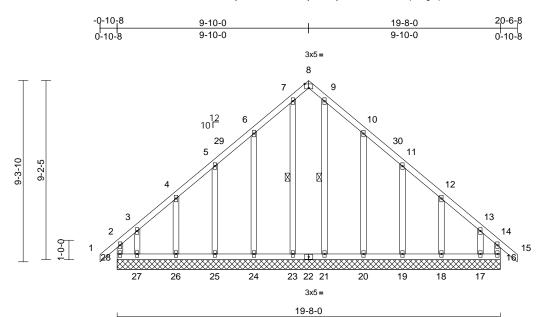
Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Thu Sep 12 11:24:16 ID:uKtrJGkYuK_5qa1S4NLaLYyzBNI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:71.1 Plate Offsets (X, Y): [2:0-3-13,0-0-1], [11:0-5-0,0-3-0]

Plate Offsets	(X, Y): [2:0-3-13,0-0-1], [11:0-5-0,0-3-0]											
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MSH	0.72 0.91 0.43	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.48 -0.73 0.02	(loc) 10-11 10-11 10	l/defl >504 >330 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 117 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD	 2x4 SP No.2 2x4 SP No.1 2x4 SP No.3 "Except Left 2x4 SP No.3 Structural wood she 4-10-6 oc purlins, e Rigid ceiling directly bracing. 1 Row at midpt (size) 2=0-5-8, - Max Horiz 2=388 (LC Max Uplift 2=-43 (LC Max Grav 2=942 (LC (Ib) - Maximum Com Tension 1-2=0/22, 2-4=-1400 6-7=-155/95, 7-8=-1 	1-6-0 athing directly applie xcept end verticals. applied or 8-3-12 oc 7-10, 6-10 10= Mechanical C 14) 14), 10=-232 (LC 14 C 5), 10=1071 (LC 5) ipression/Maximum 0/34, 4-6=-1183/25, 2/0, 7-10=-269/88	6) d or : 7) 8) 4) 9)	load of 12.0 overhangs n This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar Refer to gird Provide mec bearing plate 10. One H2.5A S recommende UPLIFT at jtt	Is been designed f psf or 1.00 times fl on-concurrent with is been designed f ad nonconcurrent v has been designed n chord in all areas by 2-00-00 wide wi y other members, er(s) for truss to tru- hanical connection e capable of withsta Simpson Strong-Tie d to connect truss (s) 2. This connection sider lateral forces Standard	at roof I other Ii or a 10. with any for a liv s where II fit betv with BC uss conin (by oth anding 2 e conne to bear ion is fo	bad of 20.0 ps re loads. D psf bottom other live loa o other live loa e load of 20.0 a rectangle veen the botto DL = 10.0psf ecctions. ers) of truss t 32 lb uplift at ctors ing walls due	sf on Ids. Opsf om f. to t joint					2070
Vasd=103 II; Exp B; and C-C1 to 17-6-0, vertical le MWFRS grip DOL2 2) TCLL: AS Plate DO DOL=1.1: Cs=1.00;	SCE 7-16; Pr=20.0 psf (L=1.15); Pf=20.0 psf (L 5); Is=1.0; Rough Cat E	(3-second gust) CDL=6.0psf; h=25ft; ivelope) exterior zon- 2-2-0, Interior (1) 2-2 20-6-0 zone; end mbers and forces & mber DOL=1.60 plat roof LL: Lum DOL=1 um DOL=1.15 Plate ; Fully Exp.; Ce=0.9;	Cat. e -0 re .15							Continue		SEA 0363	22 EERER III

September 16,2024

A MITEK Affiliate


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

nst.org) 818 Soundside Road Edenton, NC 27932

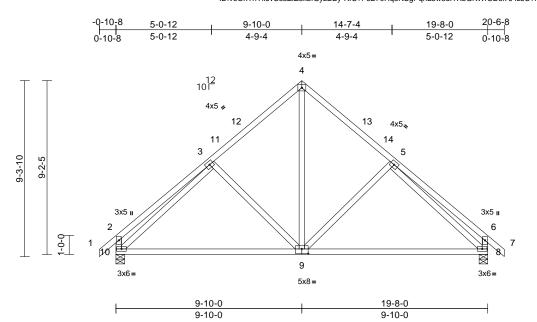
Job	Truss	Truss Type	Qty	Ply	2 Serenity-Roof-B328 A CP GLH	
24090010-01	C01	Common Supported Gable	1	1	Job Reference (optional)	168179968

Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Thu Sep 12 11:24:16 ID:y?IVUHJnnTWv5Ac?yd58OGyzBFF-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:59.1

Plate Offsets (X, Y): [8:0-2-8,Edge]


Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0		1.15		TC	0.20	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0		1.15		BC	0.12	Vert(CT)	n/a	-	n/a	999	-	
. ,									16				
				/TPI2014									
BCDL	10.0			,								Weight: 142 lb	FT = 20%
TCDL BCLL BCDL LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD WEBS REACTIONS FORCES TOP CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. 1 Row at midpt (size) 16=19-8-(23=19-8-(23=19-8-(23=19-8-(23=19-8-(23=19-8-(23=19-8-(23=19-8-(23=19-8-(23=19-8-(23=19-8-(18=-68 (L) 20=-103 (L) 20=-103 (L) 25=-75 (L) 27=-225 (L) 27=-219 (L) (10) - Maximum Com Tension 2-28=-173/105, 1-2= 3-4=-134/128, 4-5=-	Code athing directly applied cept end verticals. applied or 6-0-0 oc 7-23, 9-21 0, 17=19-8-0, 18=19-8- 0, 24=19-8-0, 25=19-8- 0, 24=19-8-0, 25=19-8- 0, 24=19-8-0, 28=19-8- LC 12) LC 13), 17=-212 (LC 1 C 13), 17=-212 (LC 1 C 14), 26=-67 (LC 14) LC 14), 26=-67 (LC 14) LC 15), 17=193 (LC 13 .C 26), 19=175 (LC 22 .C 21), 24=210 (LC 21 .C 21), 24=260 (LC 21 .C 21), 24=252 (LC 14 .pression/Maximum c0/39, 2-3=-237/179, 105/102, 5-6=-84/122,	BO or WE 0, NC 0, 1) 0, 2) 5), (4), (2) (5), (4), (7) (7) (7) (7) (7) (7) (7) (7) (7) (7)	TES Unbalanced this design. Wind: ASCE Vasd=103m II; Exp B; Er and C-C Ex to 6-10-0, E 12-7-12 to 1 end vertical forces & MW DOL=1.60 p Truss desig only. For st see Standar or consult q TCLL: ASCC Plate DOL= DOL=1.15); Cs=1.00; Cl	E 7-16; Vult=130mp nph; TCDL=6.0psf; I nclosed; MWFRS (e terior(2E) -0-10-8 to xterior(2R) 6-10-0 t 17-6-8, Exterior(2E) left and right expose VFRS for reactions olate grip DOL=1.6C ined for wind loads is tuds exposed to win rd Industry Gable E ualified building des E 7-16; Pr=20.0 psf (1.5); Pf=20.0 psf (1.5=1.0; Rough Cat	4-25=-1 1-23=-1 9-20=-1 7-18=-1 1=-175/6 5=-156/' -20=-21 -18=-15 re been bh (3-see BCDL=6 envelope 2-2-1-8, to 12-7-' 17-6-8 sed;C-C shown;) in the pl ad (norm nd Deta signer a f (roof LL (Lum DC B; Fully	13/157, 13/157, 13/157, 13/157, 13/157, 3, 6-24=-219/1 00, 9/128, 6/100, 9/128, 6/100, considered for cond gust) 5.0psf; h=25ft; 2) exterior zon Interior (1) 2-1 12, Interior (1) to 20-6-8 zong for members Lumber ane of the trus all to the face) ils as applicat s per ANSI/TF :: Lum DOL=1 DL=1.15 Plate Exp.; Ce=0.9	Cat. lee I-8 e; and Ss ble, PI 1. I.15	bra 10) Gal 11) Thi: cho 12) * Th 3-0 cho 13) Pro bez 28, upli join Ib u LOAD (ced aga ble studs s truss h ord live lc nis truss the botto 6-00 tall ord and a vide me aring plai 116 lb u fit at join t 27, 103 uplift at jo CASE(S	inst latits s space pad nor has be por cho by 2-0 any oth chaniccite capa uplift at t 25, 67 3 lb upl) Star	heathed from one eral movement (i ad at 2-00 oc. in designed for a nconcurrent with een designed for al ancans who 0-00 wide will fit er members. al connection (by able of withstandi joint 16, 101 lb u 7 lb uplift at joint 20, 74 and 212 lb uplift	e face or securely e. diagonal web). 10.0 psf bottom any other live loads. a live load of 20.0psf between the bottom r others) of truss to ng 161 lb uplift at joint plift at joint 24, 75 lb 26, 225 lb uplift at lb uplift at joint 19, 68 at joint 17.
	9-10=-109/171, 10-1	85/129, 8-9=-85/129, 1=-64/106, 11-12=-79 4=-218/141, 14-15=0/	/73, 6)	design. This truss h	as been designed f	or great	er of min roof	live				· · · · · · · · · · · · · · · · · · ·	ERIA
	14-16=-156/74	210/141, 14 13-0/		overhangs r	psf or 1.00 times fl non-concurrent with	other li	ve loads.	sf on			14	PIC A	BERNIN
			7) 8)		e 2x4 MT20 unless res continuous bott							A. G	ininini,
												Septembe	r 16,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	2 Serenity-Roof-B328 A CP GLH	
24090010-01	C02	Common	6	1	Job Reference (optional)	168179969

Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Thu Sep 12 11:24:16 ID:veOhTnYiIJvCs52fZ6xbfGyzBEy-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:60.9

Plate Offsets (X, Y): [9:0-4-0,0-3-0]

	() / []												
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MSH	0.50 0.90 0.59	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.17 -0.35 0.02	(loc) 8-9 8-9 8	l/defl >999 >669 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 124 lb	GRIP 244/190 FT = 20%
this desigr	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 6-0-0 oc purlins, exc Rigid ceiling directly is bracing. (size) 8=0-5-8, 11 Max Horiz 10=-236 (L Max Uplift 8=-73 (LC Max Grav 8=884 (LC (lb) - Maximum Comp Tension 1-2=0/39, 2-3=-415/1 4-5=-757/159, 5-6=-3 2-10=-407/144, 6-8=- 8-10=-100/652 4-9=-82/568, 5-9=-25 3-10=-666/53, 5-8=-6	ept end verticals. applied or 10-0-0 oc 0=0-5-8 _C 12) 15), 10=-73 (LC 14 22), 10=884 (LC 2 pression/Maximum 131, 3-4=-757/159, 395/131, 6-7=0/39, -394/144 59/212, 3-9=-259/21 566/53 been considered for	c 7)) 8) 1) LC 2,	design. This truss ha load of 12.0 overhangs m This truss ha chord live lo * This truss on the botto 3-06-00 tall chord and a One H2.5A recommend UPLIFT at jt	snow loads have b as been designed for psf or 1.00 times fits on-concurrent with as been designed for ad nonconcurrent w has been designed m chord in all areas by 2-00-00 wide wil ny other members. Simpson Strong-Tie ed to connect truss (s) 10 and 8. This c t consider lateral for Standard	or great at roof I other li or a 10. vith any for a liv s where Il fit betw e conne to bear connection	er of min roo oad of 20.0 p ve loads. 0 psf bottom other live loa re load of 20. a rectangle ween the bott ctors ing walls due	f live asf on ads. Opsf com				WHTH CA	ROUN
	Bmph; TCDL=6.0psf; BC		Cat.							2			1 all

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 6-10-0, Exterior(2R) 6-10-0 to 12-10-0, Interior (1) 12-10-0 to 17-6-8, Exterior(2E) 17-6-8 to 20-6-8 zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DDL=1.60 plate grip DDL=1.60

 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

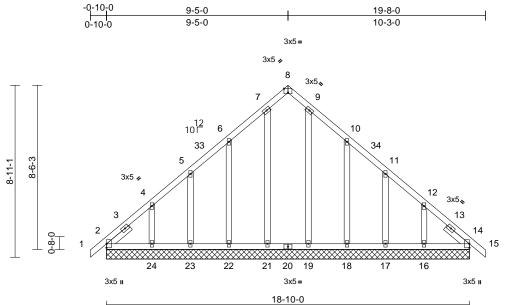
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

A MiTek Aff 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	2 Serenity-Roof-B328 A CP GLH	
24090010-01	E01	Common Supported Gable	1	1	Job Reference (optional)	l68179970

9-5-0

H


Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Thu Sep 12 11:24:16 ID:x0ypEL3Up0yR9Rp3VsFHJqyzBIA-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

19-8-0

Page: 1

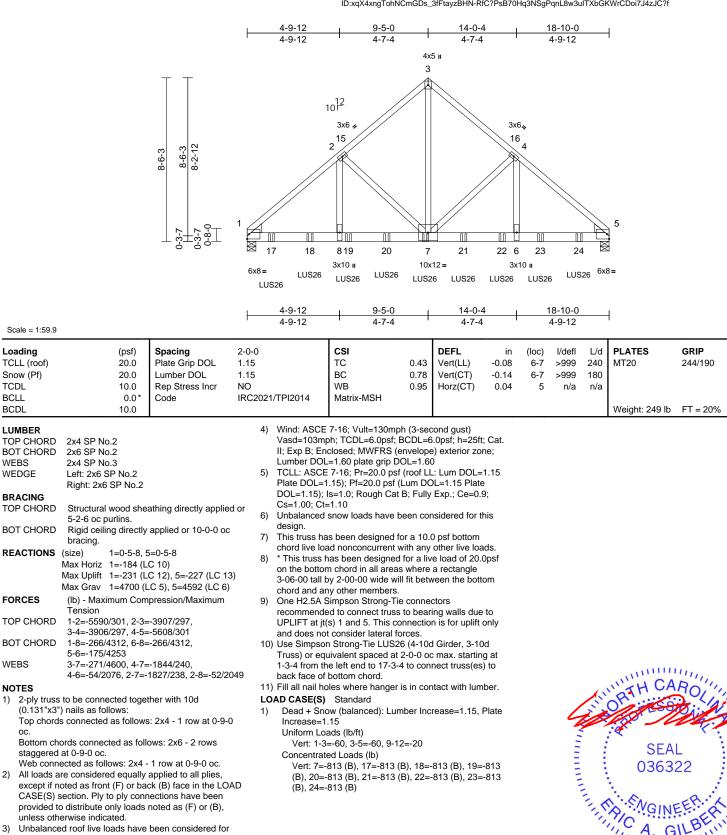
10-3-0

Scale = 1:59.8

Plate Offsets (X, Y): [8:0-2-8,Edge]

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	21/TPI2014	CSI TC BC WB Matrix-MSH	0.07 0.09 0.18	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01	(loc) - - 14	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 127 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS SLIDER BRACING TOP CHORD BOT CHORD	1-6-0 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing.	1-6-0, Right 2x4 SP N athing directly applied applied or 10-0-0 oc	lo.3 W dor N	/EBS OTES	2-24=-84/227, 23-2 22-23=-84/227, 21- 19-21=-84/226, 18- 17-18=-84/226, 16- 14-16=-84/226 7-21=-175/29, 9-19 5-23=-142/88, 4-24 10-18=-211/122, 11 12-16=-175/134 d roof live loads have	22=-84 19=-84 17=-84 =-175/1 =-175/1 -17=-1	/227, /226, /226, 2, 6-22=-211, 36, 42/88,	,	cho 11) * Tr on t 3-00 cho 12) Pro bea 2, 1 join 101	rd live lo nis truss the botto 6-00 tall rd and a vide me uring plat Ib uplift t 22, 55 Ib uplift	bad nor has be om cho by 2-0 any oth chanic te capa a t join lb uplif a t join	een designed for a rd in all areas wh 0-00 wide will fit b er members. al connection (by able of withstandir t 14, 3 lb uplift at it at joint 23, 1411 tt 18, 55 lb uplift a	any other live loads. a live load of 20.0psf
	(size) 2=18-10-0 16=18-10 18=18-10 23=18-10 23=18-10 23=18-10 23=18-10 25=18-10 Max Horiz 2=201 (LC 16=-138 (18=-101 (22=-97 (L 24=-141 (23=-97 (L 24=-141 (16=216 (L 18=252 (L 21=217 (L 23=163 (L 25=206 (LC	Wind: ASCI Vasd=103m II; Exp B; E and C-C Ex to 64-4, Ex 12-5-12 to ' end vertical forces & MM DOL=1.60 j; Truss desig only. For si see Standa or consult q TCLL: ASC Plate DOL= DOL=1.15); Cs=1.00; C	CE 7-16; Vult=130mph (3-second gust) 3mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. Enclosed; MWFRS (envelope) exterior zone Exterior(2E) -0-10-0 to 2-4-4, Interior (1) 2-4-4 Exterior(2R) 6-4-4 to 12-5-12, Interior (1) to 16-5-12, Exterior(2E) 16-5-12 to 19-8-0 zone; cal left and right exposed; C-C for members and WWFRS for reactions shown; Lumber 0 plate grip DOL=1.60 signed for wind loads in the plane of the truss studs exposed to wind (normal to the face), dard Industry Gable End Details as applicable, t qualified building designer as per ANSI/TPI 1. SCE 7-16; Pr=20.0 psf (Lum DOL=1.15 Plate 5); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Ct=1.10					a d 1. 5					
FORCES	(lb) - Maximum Com Tension 1-2=0/32, 2-4=-252/ 5-6=-111/67, 6-7=-1 8-9=-89/66, 9-10=-1	pression/Maximum 136, 4-5=-154/92,	6) 7) 0/32 8)	 Plate DOL=1.15), Place DO psi (Luin DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 Unbalanced snow loads have been considered for this design. Unbalanced snow loads have been considered for this design. This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. All plates are 2x4 MT20 unless otherwise indicated. Gable requires continuous bottom chord bearing. Gable studs spaced at 2-0-0 oc. 									E.R. KINN

in mann September 16,2024


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	2 Serenity-Roof-B328 A CP GLH	
24090010-01	E02	Common Girder	1	2	Job Reference (optional)	168179971

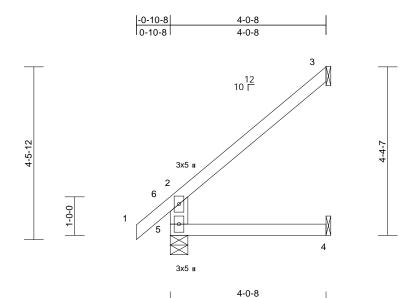
Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Thu Sep 12 11:24:16 ID:xqX4xngTohNCmGDs_3fFtayzBHN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

3) this design.

1)

unnun 1 September 16,2024



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

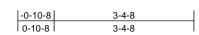
Job	Truss	Truss Type	Qty	Ply	2 Serenity-Roof-B328 A CP GLH	
24090010-01	EJ4	Jack-Open	9	1	I6817997 Job Reference (optional)	2

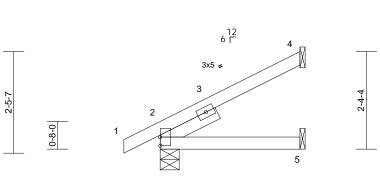
Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Thu Sep 12 11:24:16 ID:crXu80texbJNcE7reHwwFyyzBEX-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:29.9

Scale = 1:29.9												
Loading	(psf)	Spacing	2-0-0	CSI TC	0.00	DEFL	in	(loc) 4-5	l/defl >999	L/d	PLATES MT20	GRIP 244/190
TCLL (roof) Snow (Pf)	20.0 20.0	Plate Grip DOL Lumber DOL	1.15 1.15	BC	0.36 0.32	Vert(LL) Vert(CT)	0.02 -0.02	4-5 4-5	>999 >999	240 180	WI120	244/190
TCDL	10.0	Rep Stress Incr	YES	WB	0.02	Horz(CT)	-0.03	- 3	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MR								
BCDL	10.0				_						Weight: 18 lb	FT = 20%
UMBER			6) * This tru	ss has been designe	ed for a liv	ve load of 20.	0psf					
TOP CHORD				ttom chord in all are								
BOT CHORD				all by 2-00-00 wide d any other member		ween the bott	om					
NEBS	2x6 SP No.2			are assumed to be:		Iser Defined						
BRACING TOP CHORD	Structural wood she	athing directly appli		girder(s) for truss to								
TOF CHORD	4-0-8 oc purlins, ex		9) Provide	nechanical connecti	on (by oth	ers) of truss						
BOT CHORD				late capable of with	standing §	90 lb uplift at	joint					
	bracing.			o uplift at joint 4.								
REACTIONS	(size) 3= Mecha 5=0-5-8	anical, 4= Mechanica	al, LOAD CASE	(S) Standard								
	5=0-5-8 Max Horiz 5=133 (L0	C 14)										
	Max Uplift 3=-90 (LC											
	Max Grav 3=171 (L0	C 21), 4=71 (LC 7),	5=328									
	(LC 21)											
FORCES	(lb) - Maximum Corr Tension	pression/Maximum										
TOP CHORD		53 2-3=-144/84										
BOT CHORD		00,20 11,01										
NOTES												
1) Wind: AS	CE 7-16; Vult=130mph	(3-second gust)										
	Bmph; TCDL=6.0psf; B											1111.
	Enclosed; MWFRS (er Exterior(2E) zone; cant		ne								WHY CA	Pall
	end vertical left and riv		r							1	all	. Oliver
	and forces & MWFRS									K	O'. FESS	Chillin 1
	OL=1.60 plate grip DC		,							22		12.
	CE 7-16; Pr=20.0 psf (V		<u>v</u>	
	L=1.15); Pf=20.0 psf (L								-		SEA	1 1 =
	5); Is=1.0; Rough Cat E	3; Fully Exp.; Ce=0.9	9;						=		JL/	• -
Cs=1.00; (ed snow loads have be	en considered for th	his						Ξ		0363	22 : E
design.									-	2		1 - E
	has been designed fo									2	·	Airis
	2.0 psf or 1.00 times fla		sf on							25	S GIN	EFRAN
	s non-concurrent with o									11	C	BEIN
	has been designed fo load nonconcurrent wi		ads								Soptombo	all in the
0											Septembe	10.0004
											Sontombo	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)




818 Soundside Road Edenton, NC 27932

September 16,2024

Job	Truss	Truss Type	Qty	Ply	2 Serenity-Roof-B328 A CP GLH	
24090010-01	EJ34	Jack-Open	2	1	Job Reference (optional)	168179973

Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Thu Sep 12 11:24:17 ID:wY4gRT_LHtvJeN9W1caV_MyzBD5-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

3x5 🛛

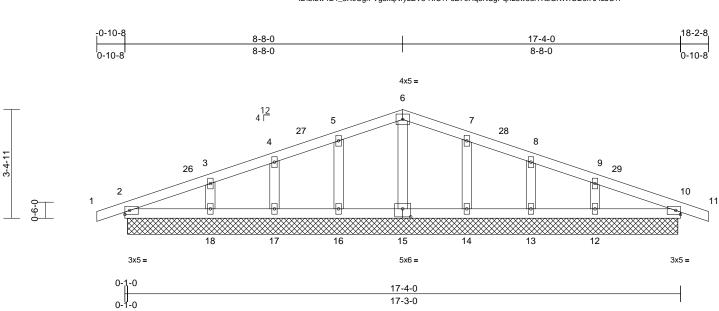
3-4-8

Scale = 1:27.8

Plate Offsets (X, Y): [2:0-2-8,0-0-1]

······································	.1						
Loading (psf TCLL (roof) 20. Snow (Pf) 20. TCDL 10.0 BCLL 0.0 BCDL 10.4	D Plate Grip DOL 1 D Lumber DOL 1 D Rep Stress Incr 1 D* Code 1	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC 0.20 BC 0.16 WB 0.00 Matrix-MP	DEFL in Vert(LL) -0.01 Vert(CT) -0.02 Horz(CT) 0.01	(loc) l/de 5-8 >999 5-8 >999 2 n/s	9 240 9 180	PLATES GRIP MT20 244/190 Weight: 15 lb FT = 20%
BOT CHORD 3-4-8 oc purlins. Rigid ceiliury dire bracing. REACTIONS (size) 2=0-5 Mecha Max Horiz 2=74 Max Uplit 2=-18 Max Grav 2=279 5=59	sheathing directly applied c ctly applied or 10-0-0 oc -8, 4= Mechanical, 5= anical (LC 14), (LC 14), 4=-45 (LC 14) 0 (LC 21), 4=-126 (LC 21), (LC 7) Compression/Maximum 18/45 nph (3-second gust) f; BCDL=6.0psf; h=25ft; Ca (envelope) exterior zone exantilever left and right d right exposed;C-C for RS for reactions shown; DOL=1.60 sef (roof LL: Lum DOL=1.15 ff (Lum DOL=1.15 Plate at B; Fully Exp.; Ce=0.9; e been considered for this d for greater of min roof lives flat roof load of 20.0 psf on	 chord live lo * This truss on the botto 3-06-00 tall chord and a 7) Bearings ard 8) Refer to gird 9) Provide med bearing plate 4. 10) One H2.5A recommend UPLIFT at jt does not con LOAD CASE(S) 	as been designed for a 10. ad nonconcurrent with any has been designed for a liv m chord in all areas where by 2-00-00 wide will fit beth ny other members. e assumed to be: , Joint 2 I der(s) for truss to truss con chanical connection (by oth e capable of withstanding 4 Simpson Strong-Tie conne ed to connect truss to bear (s) 2. This connection is fo nsider lateral forces.) Standard	other live loads. re load of 20.0psf a rectangle ween the bottom Jser Defined . inections. iers) of truss to 15 lb uplift at joint ctors ing walls due to			SEAL 036322

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



September 16,2024

Job	Truss	Truss Type	Qty	Ply	2 Serenity-Roof-B328 A CP GLH	
24090010-01	F01	Common Supported Gable	1	1	Job Reference (optional)	168179974

Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Thu Sep 12 11:24:17 ID:blbw4E4_5X0UgfFVg5xqNryzBV3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:35.9

3-5-14

Plate Offsets (X, Y): [15:0-3-0,0-3-0]

Plate Offsets ()	X, Y): [15:0-3-0,0-3-0]			-							-	
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL LUMBER	(psf) 20.0 20.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr		1/TPI2014 DTES	CSI TC BC WB Matrix-MSH	0.08 0.05 0.04	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - 10 11) N/#	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 74 lb	GRIP 244/190 FT = 20%
TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 2=17-2-0, 13=17-2-1 19=17-2-0 (19=17-2-0) Max Horiz 2=-50 (LC Max Uplift 2=-38 (LC 12=-46 (L 17=-30 (L 19=-38 (L 19=-38 (L 19=-38 (L 12=249 (L) 12=249 (L) 12=249 (L) 16=235 (L)	C 10), 10=-45 (LC 11), C 15), 13=-31 (LC 11), C 15), 16=-38 (LC 14), C 10), 18=-49 (LC 14), C 10), 18=-49 (LC 14), C 10), 23=-45 (LC 11) C 1), 10=160 (LC 1), LC 22), 13=203 (LC 22) C 22), 15=135 (LC 22) LC 21), 17=203 (LC 21),), 0, 3) , ,), 5) , 5)	this design. Wind: ASCE Vasd=103mg II; Exp B; En and C-C Cor to 5-8-0, Cor to 15-2-8, Coc left and right exposed;C-C reactions sho DOL=1.60 Truss design only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced design. This truss ha load of 12.0	roof live loads hav 7-16; Vult=130mp bh; TCDL=6.0psf; I closed; MWFRS (e ner(3E) -0-10-8 to ner(3E) 15-2-8 to exposed; end ver for members and bwn; Lumber DOL= ted for wind loads i dids exposed to wind d Industry Gable E tailfied building des 7-16; Pr=20.0 psf (15); Pf=20.0 psf (15); Pf=20.0 psf (15); Pf=20.0 psf (15); Snow loads have to the been designed fi psf or 1.00 times fil on-concurrent with	h (3-sec BCDL=6 envelopp 2-1-8, E 1-8-0, E 1-8-0	cond gust) .0.psf; h=25ft; .0.psf; h=25ft; .0.psf; .0.psf; h=25ft; .0.psf; h=25ft; .0.psf; h=25ft; .0.psf; h=25ft; .0.psf; h=25ft; .0.psf; h=25ft; .0.psf; .0.psf; h=25ft; .0.psf;	c Cat. ne -1-8 l-8-0 ver ss), ble, PI 1. 1.15 ;); live	12) Nor LOAD () Sta	aring condition. F ndard	
FORCES	(lb) - Maximum Com Tension 1-2=0/17, 2-3=-60/3 4-5=-54/78, 5-6=-64	4, 3-4=-51/47, /121, 6-7=-64/121,	7) 8) 9)	All plates are Gable studs This truss ha	2x4 MT20 unless spaced at 2-0-0 or is been designed f ad nonconcurrent v	otherwi c. or a 10.4	se indicated.) psf bottom	ds.		Contraction of the second seco	Ø	SEA	L
BOT CHORD	7-8=-54/78, 8-9=-51 10-11=0/17 2-18=-22/45, 17-18= 14-16=0/45, 13-14= 10-12=-18/45	=0/45, 16-17=0/45, 0/45, 12-13=0/45,) * This truss h on the bottor 3-06-00 tall b	nas been designed n chord in all areas by 2-00-00 wide wi ny other members.	for a liv s where	e load of 20.0 a rectangle)psf				SEA 0363	EER. ILBERTITUT r 16,2024
WEBS	6-15=-96/12, 5-16=- 3-18=-190/104, 7-14 8-13=-170/86, 9-12=		3,									Septembe	ILBE r 16,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

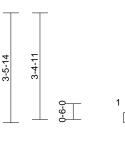
Job	Truss	Truss Type	Qty	Ply	2 Serenity-Roof-B328 A CP GLH	
24090010-01	F02	Common	4	1	Job Reference (optional)	168179975

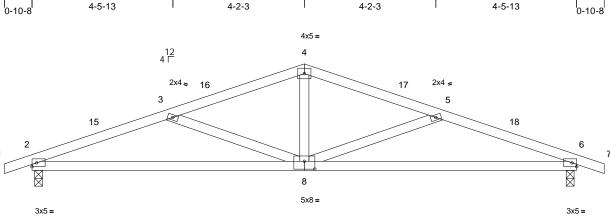
8-8-0

Carter Components (Sanford, NC), Sanford, NC - 27332,

0-10-8

4-5-13


Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Thu Sep 12 11:24:17 ID:qaiA6xbzzIROKF1mhdDvcwyzBUO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


12-10-3

17-4-0

18-2-8

Scale = 1:36.7

Plate Offsets (X, Y): [8:0-4-0,0-3-0]

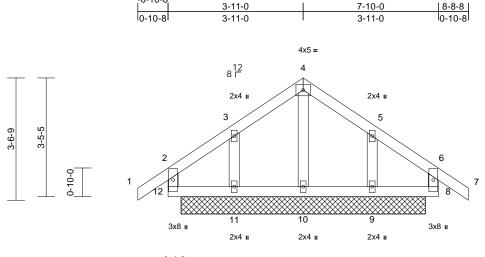
·		-			-								
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.39	Vert(LL)	0.10	8-11	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.70	Vert(CT)	-0.19	8-11	>999	180		
TCDL	10.0	Rep Stress Incr	YES		WB	0.24	Horz(CT)	0.03	6	n/a	n/a		
BCLL	0.0*	Code	IRC202	1/TPI2014	Matrix-MSH								
BCDL	10.0											Weight: 73 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD FORCES TOP CHORD BOT CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 4-4-6 oc purlins. Rigid ceiling directly bracing. (size) 2=0-3-0, (Max Horiz 2=-50 (LC Max Uplift 2=-266 (L Max Grav 2=816 (LC (lb) - Maximum Com Tension 1-2=0/17, 2-3=-1656 4-5=-1134/656, 5-6= 2-6=-692/1528	5=0-3-0 19) C 10), 6=-266 (LC 1 ⁻ C 21), 6=816 (LC 22) ppression/Maximum	d or 6) 7) 1) 8)	design. This truss ha load of 12.0 overhangs n This truss ha chord live loa * This truss h on the bottor 3-06-00 tall t chord and ar One H2.5A S recommende UPLIFT at jt(snow loads have to show loads have to show loads have to show loads have to show load the show load to the show load	or great lat roof li o other li or a 10. with any l for a liv s where ll fit betw e conne s to bear onnectio	er of min roo oad of 20.0 p ve loads. 0 psf bottom other live loa re load of 20. a rectangle veen the bott ctors ing walls due	f live sf on ads. Opsf om					
NOTES													1.1.1
,	ed roof live loads have	been considered for											in the second se
Vasd=103/ II; Exp B; E and C-C E to 5-8-0, E to 15-2-8, left and rig exposed; p and forces DOL=1.60 3) TCLL: ASC Plate DOL	CE 7-16; Vult=130mph mph; TCDL=6.0psf; B Enclosed; MWFRS (er ixterior(2E) -0-10-8 to ixterior(2E) 5-8-0 to 11 Exterior(2E) 15-2-8 to pht exposed ; end verti porch left and right exp between the second second plate grip DOL=1.60 CE 7-16; Pr=20.0 psf (L =1.15); Pf=20.0 psf (L i); Is=1.0; Rough Cat E	CDL=6.0psf; h=25ft; ivelope) exterior zong 2-1-8, Interior (1) 2-1 -8-0, Interior (1) 11-8 18-2-8 zone; cantilev cal left and right ivosed;C-C for member ins shown; Lumber roof LL: Lum DOL=1 um DOL=1.15 Plate	e -8 3-0 ver ers 15							C. CHILLINS		SEA 0363	EEP A

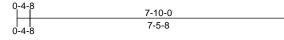
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

September 16,2024

Job	Truss	Truss Type	Qty	Ply	2 Serenity-Roof-B328 A CP GLH	
24090010-01	G01	Common Supported Gable	1	1	Job Reference (optional)	168179976


-0-10-8


Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Thu Sep 12 11:24:17 ID:DP_INHM2klcG82JXPRIrjVyzBPX-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:33.4

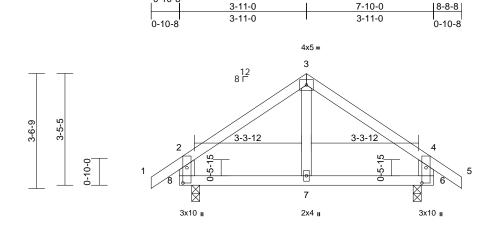
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021	I/TPI2014	CSI TC BC WB Matrix-MR	0.28 0.23 0.07	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 9	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 39 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood shea 7-10-0 oc purlins, ex Rigid ceiling directly a bracing. (size) 9=7-1-0, 1 Max Horiz 11=96 (LC Max Uplift 9=-83 (LC Max Grav 9=459 (LC 11=459 (L)	xcept end verticals. applied or 6-0-0 oc 0=7-1-0, 11=7-1-0 3 13) 15), 11=-82 (LC 14 3 22), 10=260 (LC 22)	7) 8) 9)	Plate DOL=1 DOL=1.15); Cs=1.00; Ct Unbalanced design. This truss ha load of 12.0 overhangs n Truss to be f braced agair Gable studs This truss ha chord live loa) * This truss f	snow loads have s been designed psf or 1.00 times on-concurrent wi ully sheathed fro ist lateral moven spaced at 2-0-0 is been designed ad nonconcurren has been designed	of (Lum DC at B; Fully be been cor d for greate flat roof lo ith other liv m one fac nent (i.e. d oc. d for a 10.0 t with any ed for a liv	DL=1.15 Plate Exp.; Ce=0.9 asidered for t er of min roof bad of 20.0 p e loads. e or securely iagonal web) 0 psf bottom other live loa e load of 20.1	e 9; his f live sf on /).					
FORCES	(lb) - Maximum Comp Tension	,		3-06-00 tall b	n chord in all are by 2-00-00 wide v by other member	will fit betw	0	om					
TOP CHORD	2-12=-51/46, 1-2=0/5 3-4=-27/172, 4-5=-29 6-7=0/57, 6-8=-51/46	9/172, 5-6=-113/228	, LC	DAD CASE(S)									
BOT CHORD	11-12=-129/162, 10- 9-10=-129/205, 8-9=-	11=-129/205,											
WEBS	4-10=-256/49, 3-11=-	-301/199, 5-9=-301/	197										Dilli
NOTES 1) Unbalance this design	ed roof live loads have l	been considered for								6	and a	ORTH CA	TO IN

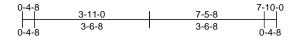
 Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-10-8 to 1-11-0, Corner(3R) 1-11-0 to 5-11-0, Corner(3E) 5-11-0 to 8-8-8 zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

A MiTek Affilia


Job	Truss	Truss Type	Qty	Ply	2 Serenity-Roof-B328 A CP GLH	
24090010-01	G02	Common	1	1	Job Reference (optional)	168179977

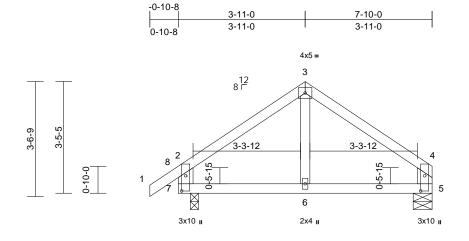

-0-10-8

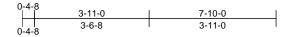
Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Thu Sep 12 11:24:17 ID:DP_INHM2kIcG82JXPRIrjVyzBPX-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Plate Offsets (X	, Y):	[6:0-5-10,0-1-8],	[8:0-5-10,0-1-8]

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021	/TPI2014	CSI TC BC WB Matrix-MR	0.33 0.15 0.05	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.01 -0.01 0.00	(loc) 7-8 7-8 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 36 lb	GRIP 244/190 FT = 20%
	2x4 SP No.2 2x6 SP No.2 *Excep Structural wood she 6-0-0 oc purlins, exc Rigid ceiling directly bracing.	athing directly applie cept end verticals. applied or 10-0-0 or 3=0-3-0 13) : 15), 8=-45 (LC 14)	6) ed or 7) e	load of 12.0 g overhangs no This truss ha chord live loa * This truss h on the bottom 3-06-00 tall b chord and an Provide mech bearing plate	s been designed osf or 1.00 times f on-concurrent with s been designed d nonconcurrent as been designed n chord in all area y 2-00-00 wide w y other members nanical connection capable of withst plift at joint 6. Standard	lat roof k n other liv for a 10.0 with any d for a liv is where ill fit betv n (by oth	bad of 20.0 p ve loads. 0 psf bottom other live loa e load of 20.1 a rectangle veen the bott ers) of truss	sf on ads. Opsf om to					
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASC Vasd=103 II; Exp B; I and C-C E to 5-8-8, E	(lb) - Maximum Com Tension 1-2=0/62, 2-3=-344/ 4-5=0/62, 2-8=-455// 7-8=-33/184, 6-7=-3: 3-7=-72/142 ed roof live loads have	pression/Maximum 190, 3-4=-344/188, 234, 4-6=-455/232 3/184 been considered for (3-second gust) CDL=6.0psf; h=25ft; vvelope) exterior zom 2-1-8, Exterior(2R) 2 8-8 zone; end vertica	- Cat. e -1-8 al							U.	the state of the s	ORTH CA	
for member Lumber D0 3) TCLL: AS0 Plate DOL DOL=1.15 Cs=1.00; 0	ers and forces & MWFf OL=1.60 plate grip DO CE 7-16; Pr=20.0 psf (L _=1.15); Pf=20.0 psf (L 5); Is=1.0; Rough Cat B	RS for reactions sho L=1.60 roof LL: Lum DOL=1 um DOL=1.15 Plate ;; Fully Exp.; Ce=0.9	wn; .15 ;							THURS.		SEA 0363 WGIN C A. C September	EER.KI


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Job	Truss	Truss Type	Qty	Ply	2 Serenity-Roof-B328 A CP GLH	100470070	
24090010-01	G03	Common	1	1	Job Reference (optional)	168179978	

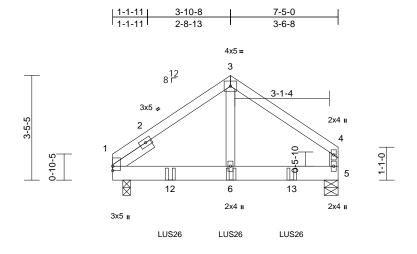
Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Thu Sep 12 11:24:17 ID:?D?Cdqfjr_mjeujLNBFiEnyzBP8-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:35.5

Plate Offsets (X, Y): [5:0-5-10,0-1-8], [7:0-5-10,0-1-8]

Plate Offsets	(X, Y): [5:0-5-10,0-1-8], [7:0-5-10,0-1-8]										-	
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MR	0.29 0.18 0.05	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.01 -0.02 0.00	(loc) 6-7 6-7 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 34 lb	GRIP 244/190 FT = 20%
 this desig Wind: AS Vasd=100 II; Exp 8; and C-C I to 4-7-4, I left expose members Lumber L TCLL: AS Plate DO DOL=1.1: Cs=1.00; 	2x4 SP No.2 2x6 SP No.2 *Excep Structural wood she 6-0-0 oc purlins, exi Rigid ceiling directly bracing. (size) 5=0-7-0, 7 Max Horiz 7=82 (LC Max Grav 5=378 (LC (lb) - Maximum Com Tension 1-2=0/43, 2-3=-337/ 2-7=-408/234, 4-5=- 6-7=-83/194, 5-6=-8 3-6=-65/137 ed roof live loads have in. CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; Bf Enclosed; MWFRS (er Exterior(2E) -0-10-8 to : Exterior(2E) 4-7-4 to 7- sed; porch left and right and forces & MWFRS DOL=1.60 plate grip DO GCE 7-16; Pr=20.0 psf (L =1-15); Pf=20.0 psf (L	athing directly applie cept end verticals. applied or 10-0-0 oc 7=0-3-0 11) 15), 7=-45 (LC 14) C 22), 7=450 (LC 21) pression/Maximum 190, 3-4=-345/186, 332/165 3/194 been considered for (3-second gust) CDL=6.0psf; h=25ft; ivelope) exterior zonu 2-1-8, Exterior(2R) 2- 7-4 zone; end vertica exposed;C-C for for reactions shown; uL=1.60 roof LL: Lum DOL=1 um DOL=1.15 Plate b; Fully Exp.; Ce=0.9;	Cat. e -1-8 al .15	load of 12.0 overhangs n This truss ha chord live lo. * This truss l on the botto 3-06-00 tall l chord and al Provide mee bearing plate 7. One H2.5A \$ recommend UPLIFT at jt	as been designed psf or 1.00 times f ion-concurrent with as been designed ad nonconcurrent has been designed m chord in all area by 2-00-00 wide w my other members shanical connection e capable of withst Simpson Strong-Ti ed to connect truss (s) 5. This connect hsider lateral force Standard	lat roof lin n other lin for a 10. with any d for a liv is where ill fit betw n (by oth anding 4 ie conne is to bear tion is fol	bad of 20.0 p ve loads. D psf bottom other live load e load of 20. a rectangle veen the bott ers) of truss 15 lb uplift at ctors ing walls due	ads. Opsf tom to joint ≩ to			The second secon	SEA 0363 September	EER.RY



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

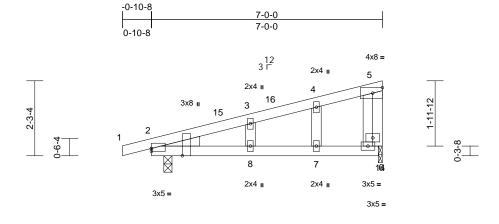
Job	Truss	Truss Type	Qty	Ply	2 Serenity-Roof-B328 A CP GLH	
24090010-01	G04	Common Girder	1	2	Job Reference (optional)	168179979

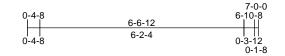
Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Thu Sep 12 11:24:17 ID:mIX4RCA3yu3lhLxPq??YxdyzBOU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:37.9

BCDL 10.0 LUMBER 5) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 BRACING TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. 60 Unbalanced snow loads have been considered for this design. 7) This truss has been designed for a 10.0 psf bottom	Weight: 76 lb FT = 20%
 BOT CHORD Rigid ceiling directly applied or 100-0 oc bracing. REACTIONS (size) 1=0-3-0, 5=0-5-8 Max Horiz 1=60 (LC 9) Max Uplift 1=-160 (LC 12), 5=-167 (LC 13) Max Grav 1=857 (LC 18), 5=814 (LC 19) Max Uplift 1=-160 (LC 12), 5=-167 (LC 13) Max Grav 1=857 (LC 18), 5=814 (LC 19) FORCES (b) - Maximum Compression/Maximum Tension TOP CHORD 1-3=-245/126, 3-4=-73/73, 4-5=-164/70 BOT CHORD 1-6=-57/60, 5-6=-00 WEBS 3-6=-261/40 NOTES 1) 2-ply truss to be connected together with 10d (0.131*3°) naits as follows: 2x4 - 1 row at 0-9-0 oc. Mal loads are considered equally applied to all plies, except if noted as follows: 2x4 - 1 row at 0-9-0 oc. Web connected as follows: 2x4 - 1 row at 0-9-0 oc. Al loads are considered equally applied to all plies, except if noted as follows: 2x4 - 1 row at 0-9-0 oc. Al loads are considered equally applied to all plies, except if noted as follows: 2x4 - 1 row at 0-9-0 oc. Al loads are considered equally applied to all plies, except if noted as follows: 2x4 - 1 row at 0-9-0 oc. Al loads are considered equally applied to all plies, except if noted as follows: 2x4 - 1 row at 0-9-0 oc. Al loads are considered equally applied to all plies, except if noted as follows: 2x4 - 1 row at 0-9-0 oc. Al loads are considered equally applied to all plies, except if noted as follows: 2x4 - 1 row at 0-9-0 oc. Al loads are considered equally applied to all plies, except if noted as follows: 2x4 - 1 row at 0-9-0 oc. Al loads are considered equally applied to all plies, except if noted as follows: 2x4 - 1 row at 0-9-0 oc. Al loads are considered equally applied to all plies, except if noted as follows: 2x4 - 1 row at 0-9-0 oc. Al loads are considered equally applied to all plies, except if noted as follows: 2x4 - 1 row at 0-9-0 oc. Wett: 1.3=-60, 3-4=-60, 5-7=-20 Concentrated Loads (lb) Vert: 6=-313 (SEAL 036322




WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	2 Serenity-Roof-B328 A CP GLH	
24090010-01	H01	Monopitch	1	1	Job Reference (optional)	168179980

Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Thu Sep 12 11:24:17 ID:1aYKOOAVMhpxxEzIlwYOtKyzBSM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

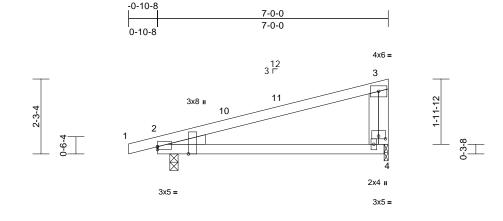
Scale = 1:34.9

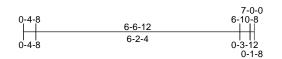
Plate Offsets (X, Y): [2:Edge,0-1-1], [2:0-2-10, Edge]

	(X, 1): [2:Euge;0 1 1];	[2:0 2 10,Edg0]				-							-
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MR	0.60 0.53 0.01	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.06 -0.09 0.01	(loc) 7-8 7-8 2	l/defl >999 >944 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 32 lb	GRIP 244/190 FT = 20%
Vasd=103 II; Exp B; and C-C1 to 3-8-8, I exposed exposed; reactions DOL=1.6(2) Truss des only. For see Stand	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Left: 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 2=0-3-0,1 Max Horiz 2=72 (LC Max Uplift 2=-137 (L Max Grav 2=469 (LC (lb) - Maximum Com Tension 1-2=0/18, 2-3=-295/ 4-5=-255/176, 5-6=- 2-8=-212/263, 7-8=- 4-7=-60/47, 3-8=-64. CE 7-16; Vult=130mph Bmph; TCDL=6.0psf; Bf Enclosed; MWFRS (er Exterior(2E) -0-10-8 to 2 tetrior(2E) tetrior(2E) tetrior(2E) tetrior(2E) tetrior(2E) tetrior(2E)	applied or 10-0-0 oc 14=0-1-8 10) C 10), 14=-98 (LC 10 C 21), 14=311 (LC 21 pression/Maximum 143, 3-4=-277/159, 137/170 212/263, 6-7=-212/26 /43, 5-14=-333/268 (3-second gust) CDL=6.0psf; h=25ft; 1 velope) exterior zone 2-1-8, Interior (1) 2-1. 8-8 zone; cantilever le ed; porch left and rig orces & MWFRS for 1.60 plate grip the plane of the truss: (normal to the face), d Details as applicabl	4) 5) d or 6) 7) 8) 0)) 9) 9) 9) 63 11 63 11 Cat. e -8 eft ht s le,	Plate DOL=1 DOL=1.15); Cs=1.00; Cts Unbalanced design. This truss ha load of 12.0 overhangs n Gable studs This truss ha chord live loa * This truss ha chord live loa * This truss ha chord live loa * This truss ha chord and ar Bearing at jo using ANSI/ designer sho Provide mec bearing plate tearmende UPLIFT at jtt	snow loads have as been designed psf or 1.00 times on-concurrent wit spaced at 2-0-0 d as been designed ad nonconcurrent has been designe m chord in all are: by 2-00-00 wide w ny other members oint(s) 14 conside thanical connectic e at joint(s) 14. Simpson Strong- d to connect trus (s) 2 and 14. This t consider lateral	(Lum DC t B; Fully been cou- for great flat roof I h other li oc. for a 10. with any d for a 10. with any d for a liv as where vill fit between s sparalle in formul y of bear n (by oth ie conne s to bear connecti	DL=1.15 Plate Exp.; Ce=0. Insidered for t er of min roo bad of 20.0 p ve loads. D psf bottom other live loa e load of 20. a rectangle veen the bott to grain valu a. Building ng surface. ers) of truss ctors ing walls due	e 9; this f live psf on ads. 0psf tom ue to		4		SEA 0363	L

- to 3-8-8, Exterior(2E) 3-8-8 to 6-8-8 zone; cantilever left exposed ; end vertical left exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss
- only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone 818 Soundside Road Edenton, NC 27932 and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


GI 11111111 September 16,2024


Job	Truss	Truss Type	Qty	Ply	2 Serenity-Roof-B328 A CP GLH	
24090010-01	H02	Monopitch	5	1	Job Reference (optional)	168179981

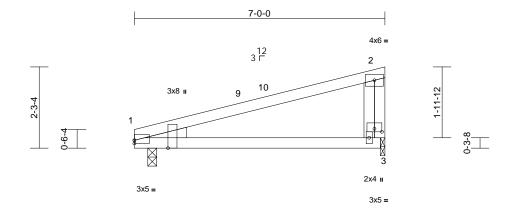
Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Thu Sep 12 11:24:18 ID:KTXq?QfDiHz7LXcdC1n?2_yzBRj-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

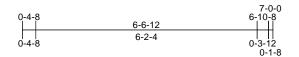
i d

Scale = 1:34.9

Plate Offsets (X, Y): [2:Edge,0-1-1], [2:0-2-10,Edge], [4:0-2-8,0-1-0]

	X, Y): [2:Edge,0-1-1],	, [2:0-2-10,Edge], [4:0	0-2-8,0-1-0	J									
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code		1/TPI2014	CSI TC BC WB Matrix-MP	0.78 0.64 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.16 -0.21 0.02	(loc) 4-9 4-9 2	l/defl >518 >390 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 29 lb	GRIP 244/190 FT = 20%
FORCES TOP CHORD BOT CHORD NOTES 1) Wind: ASC Vasd=1037 II; Exp B; E and C-C E: to 3-8-8, E: exposed; (exposed; c reactions s DOL=1.60 2) TCLL: ASC Plate DOL DOL=1.15) Cs=1.00; C	6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 2=0-3-0, 4 Max Horiz 2=72 (LC Max Uplift 2=-133 (L Max Grav 2=457 (LC (Ib) - Maximum Com Tension 1-2=0/18, 2-3=-108/ 2-4=-135/127 CE 7-16; Vult=130mph mph; TCDL=6.0psf; B Enclosed; MWFRS (er xterior(2E) -0-10-8 to xterior(2E) -0-10-8 to xterior(2E) -3-8-8 to 6- end vertical left expose C- for members and f shown; Lumber DOL=: CE 7-16; Pr=20.0 psf (L =1.15); Pf=20.0 psf (L =1.15); Pf=20.0 psf (L	r applied or 10-0-0 oc 4=0-1-8 10) .C 10), 4=-102 (LC 10 C 21), 4=322 (LC 21) apression/Maximum 102, 3-4=-225/179 a (3-second gust) CDL=6.0psf; h=25ft; hvelope) exterior zon 2-1-8, Interior (1) 2-1 8-8 zone; cantilever 1 sed; porch left and rig forces & MWFRS for 1.60 plate grip (roof LL: Lum DOL=1 .um DOL=1.15 Plate 3; Fully Exp.; Ce=0.9	6) d or 7) 8) 0) 9) Cat. e -8 left ht .15 ;	load of 12.0 overhangs n This truss ha chord live loa * This truss h on the bottor 3-06-00 tall h chord and ar Bearing at jo using ANSI/ designer sho Provide mec bearing plate One H2.5A S recommende UPLIFT at jtt	as been designed f psf or 1.00 times f on-concurrent with as been designed f ad nonconcurrent in has been designed m chord in all area by 2-00-00 wide wi hy other members. int(s) 4 considers TPI 1 angle to grai buld verify capacity chanical connection at joint(s) 4. Simpson Strong-Ti ad to connect truss (s) 2 and 4. This cu t consider lateral for Standard	lat roof I o other Ii or a 10. with any I for a liv s where III fit betv parallel n formul of bear n (by oth e conne s to bear ponnectio	bad of 20.0 p ve loads. 0 psf bottom other live loa e load of 20. a rectangle veen the bott to grain value a. Building ing surface. ers) of truss ctors ing walls due	osf on ads. Opsf tom to to € to		C . (111)		SEA 0363	• -
design.												September	TLBE




September 16,2024

Job	Truss	Truss Type	Qty	Ply	2 Serenity-Roof-B328 A CP GLH	
24090010-01	H03	Monopitch	1	1	Job Reference (optional)	168179982

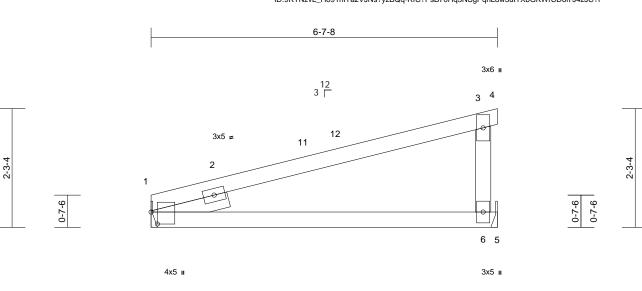
Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Thu Sep 12 11:24:18 ID:qsbcfelXa5E8GwWwy0z5_xykdBf-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

.

Scale = 1:32.2

Plate Offsets (X, Y): [1:Edge,0-1-1], [1:0-2-10,Edge], [3:0-2-8,0-1-0]

Plate Offsets (X,	Y): [1:Edge,0-1-1],	[1:0-2-10,Edge], [3:0	0-2-8,0-1-0	0]								-	
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MP	0.82 0.70 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.17 -0.22 0.03	(loc) 3-8 3-8 1	l/defl >472 >361 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 28 lb	GRIP 244/190 FT = 20%
BOT CHORD 2 WEBS 2 OTHERS 2 WEDGE 1 BRACING TOP CHORD 6 BOT CHORD 6 BOT CHORD 6 BOT CHORD 6 BOT CHORD 7 BOT CHORD 7 BOT CHORD 7 BOT CHORD 7 BOT CHORD 7 BOT CHORD 7 BOT CHORD 7 DOL CHORD 7 BOT CHORD 7 DOL CHORD 7 BOT CHORD 7 DOL CHORD 7 BOT CHORD	6-0-0 oc purlins, exe Rigid ceiling directly bracing. ize) 1=0-3-0, 2 ax Horiz 1=62 (LC ax Uplift 1=-97 (LC ax Grav 1=373 (LC (b) - Maximum Com Tension 1-2=-188/130, 2-3=- 1-3=-217/211 7-16; Vult=130mph ph; TCDL=6.0psf; Bd closed; MWFRS (er erior(2E) 0-0-0 to 3- ior(2E) 3-8-8 to 6-8-6 brch left and right exi MWFRS for reaction late grip DOL=1.60 : 7-16; Pr=20.0 psf (L :15); Pf=20.0 psf (L :15); Pf=20.0 psf (L :15); Rough Cat E =1.10 snow loads have be as been designed for	applied or 10-0-0 oc 3=0-1-8 14) 10), 3=-105 (LC 10) 2 21), 3=332 (LC 21) pression/Maximum 230/186 (3-second gust) CDL=6.0psf; h=25ft; ivelope) exterior zon 0-0, Interior (1) 3-0-0 3 zone; cantilever left possed;C-C for membrance ns shown; Lumber roof LL: Lum DOL=1 um DOL=1.15 Plate i; Fully Exp.; Ce=0.9 ven considered for th	Cat. e b to t .15 ; is	on the bottor 3-06-00 tall b chord and ar Bearing at jo using ANSI/1 designer sho Provide mec bearing plate One H2.5A S recommende UPLIFT at jt(as been designed n chord in all area by 2-00-00 wide w y other members int(s) 3 considers "PI 1 angle to grai uld verify capacity hanical connectio a t joint(s) 3. Simpson Strong-T d to connect trus s) 1 and 3. This c t consider lateral f Standard	is where ill fit betw parallel t in formula y of beari n (by oth ie connection onnection	a rectangle veen the bott o grain value a. Building ng surface. ers) of truss ctors ng walls due	to			25	SEA 0363 September	EER PHUM



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	2 Serenity-Roof-B328 A CP GLH	
24090010-01	H04	Monopitch	3	1	Job Reference (optional)	168179983

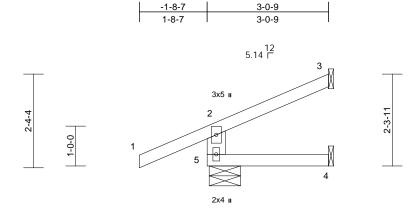
Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Thu Sep 12 11:24:18 ID:9RTNzvL_Ho91hiTa2VJNs?yzBQq-RtC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

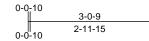
6-7-8

Scale = 1:22

Plate Offsets (X, Y): [1:0-2-12,0-1-7]

	1									
Loading (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0* BCDL 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES IRC2021/TPI2014	BC 0	.68 DEFL Vert(LL) .54 Vert(CT) Horz(CT)	in 0.07 -0.09 0.02	(loc) 6-9 6-9 1	l/defl >999 >838 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 25 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 OTHERS 2x4 SP No.2 SLIDER Left 2x4 SP No.3 BRACING TOP CHORD Structural wood she 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly bracing.	athing directly applied applied or 10-0-0 oc nical, 6= Mechanical 10) 2 10), 6=-109 (LC 10) 2 20), 6=363 (LC 20) pression/Maximum 6/0, 3-6=-239/172 //0 (3-second gust) CDL=6.0psf; h=25ft; C. ivelope) exterior zone 0-0, Interior (1) 3-0-0 to 3 zone; porch left and and forces & MWFRS L=1.60 plate grip roof LL: Lum DOL=1.1 um DOL=1.15 Plate 8; Fully Exp.; Ce=0.9; een considered for this r a 10.0 psf bottom	on the botto 3-06-00 tall chord and a 6) Refer to gird 7) Provide men- bearing plat 1 and 109 lt LOAD CASE(S) at.	has been designed for m chord in all areas wh by 2-00-00 wide will fit ny other members. der(s) for truss to truss chanical connection (b) e capable of withstand o uplift at joint 6.) Standard	here a rectangle between the bo connections. v others) of trus	e ottom s to				SEA 0363	EER. KIN


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Job	Truss	Truss Type	Qty	Ply	2 Serenity-Roof-B328 A CP GLH	
24090010-01	HJ211	Jack-Open	1	1	Job Reference (optional)	168179984

Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Thu Sep 12 11:24:18 ID:sO9akXcGp1tsoTjN9u??hcyzBDb-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

C?f

Scale = 1:28.9

Scale = 1:28.9												
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI20	4 CSI TC BC WB Matrix-MR	0.40 0.11 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 -0.01 -0.01	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 14 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x6 SP No.2 Structural wood she 3-0-9 oc purlins, exi Rigid ceiling directly bracing.	cept end verticals. applied or 10-0-0 o inical, 4= Mechanica 14) 2 14), 5=-47 (LC 10)	on the 3-06-0 chord 7) Bearin ed or 8) Refer 9) Provic bearin 5 and al, LOAD CA	truss has been design bottom chord in all are 0 tall by 2-00-00 wide t and any other member gs are assumed to be: to girder(s) for truss to g girder(s) for truss to e mechanical connecti g plate capable of with 36 lb uplift at joint 3. SE(S) Standard	eas where will fit betw rs. : , Joint 5 l o truss con ion (by oth	a rectangle veen the bott Jser Defined nections. ers) of truss						
FORCES	(LC 21) (lb) - Maximum Com Tension											
TOP CHORD BOT CHORD	2-5=-349/235, 1-2=0 4-5=0/0)/70, 2-3=-68/27										
Vasd=103 II; Exp B; and C-C C 2-11-13 z and forces DOL=1.60 2) TCLL: AS Plate DOL DOL=1.15 Cs=1.00; 3) Unbalance design. 4) This truss load of 12 overhange 5) This truss	CE 7-16; Vult=130mph imph; TCDL=6.0psf; Bu Enclosed; MWFRS (er Corner (3) -1-8-7 to 2-6 one; end vertical left ex s & MWFRS for reaction 0 plate grip DOL=1.60 CE 7-16; Pr=20.0 psf (L =1.15); Pf=20.0 psf (L =1.15); Pf=20.0 psf (L =1.10) ed snow loads have be has been designed for .0 psf or 1.00 times flat s non-concurrent with c has been designed for load nonconcurrent with c	CDL=6.0psf; h=25ft; ivelope) exterior zor -8, Exterior(2R) 2-6; iposed;C-C for mem ins shown; Lumber roof LL: Lum DOL= um DOL=1.15 Plate B; Fully Exp.; Ce=0.9; even considered for the r greater of min roof the roof load of 20.0 ps; ther live loads. r a 10.0 psf bottom	ne 8 to Ibers 1.15); his live sf on						A strange	The second	SEA 0363	L L L L BEER L BEER L

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE I

September 16,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

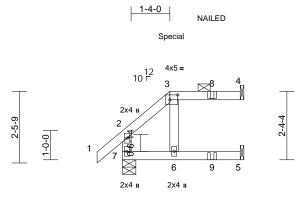
Job	Truss	Truss Type	Qty	Ply	2 Serenity-Roof-B328 A CP GLH	
24090010-01	J01	Jack-Open Girder	1	1	Job Reference (optional)	168179985

1-7-8

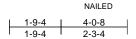
1-7-8

4-0-8

2-5-0


-0-10-8

0-10-8


Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Thu Sep 12 11:24:18 ID:5fFqIE7FhFHmT3VeBQG4whyzBCw-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

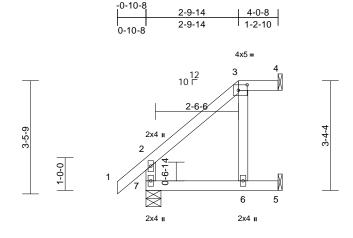
Page: 1

Special

Scale = 1:39.6

Plate Offsets (X, Y): [3:0-3-4,0-2-0]

Loading TCLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.15	CSI TC BC	0.36	DEFL Vert(LL)	in -0.03	(loc) 5-6	l/defl >999	L/d 240	PLATES MT20	GRIP 244/190
Snow (Pf) FCDL	20.0 10.0	Lumber DOL Rep Stress Incr	1.15 NO	WB	0.43 0.02	Vert(CT) Horz(CT)	-0.05 0.07	5-6 4	>911 n/a	180 n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MP	0.02	11012(01)	0.07	-	Π/a	n/a		
BCDL	10.0				-						Weight: 18 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	 2x4 SP No.2 2x4 SP No.3 Structural wood she 4-0-8 oc purlins, ex 2-0-0 oc purlins: 3-4 Rigid ceiling directly bracing. 	cept end verticals, a , applied or 6-0-0 oc anical, 5= Mechanica 53) C 9), 5=-7 (LC 12), 7= C 33), 5=115 (LC 30	Ioad of 12 overhang: 6) Provide a 7) This truss chord live and 8) * This trus on the boi 3-06-00 ta chord and 9) Bearing 9 11) Provide m e-46 4 and 7 lb 12) One H2.5	has been designed. lo psf or 1.00 times s non-concurrent wi dequate drainage to has been designed load nonconcurren s has been designed tom chord in all are tom chord in all are any other member are assumed to be: irder(s) for truss to echanical connection ate capable of withs uplift at joint 5. A Simpson Strong-	flat roof I th other li prevent for a 10. t with any d for a liv as where will fit betw s. , Joint 7 I truss cor on (by oth standing §	oad of 20.0 p ve loads. water pondinin 0 psf bottom other live loa re load of 20.1 a rectangle veen the bott Jser Defined nections. ers) of truss i 50 lb uplift at j ctors	sf on g. ads. Opsf om to joint		Vert: 3=	81 (B), 6=-29 (B), 8=-	68 (B), 9=-31 (B)
ORCES	(lb) - Maximum Con Tension 2-7=-266/35, 1-2=0/	pression/Maximum	does not o 13) Graphical	t jt(s) 7. This connect consider lateral forc purlin representation entation of the purlin	es. In does n	ot depict the						
BOT CHORD WEBS	6-7=-6/7, 5-6=0/0 3-6=-103/80		bottom ch								min	11111
NOTES	3-0=-103/80			indicates 3-10d (0. 25") toe-nails per N							WITH CA	ROUL
 Unbalance this design Wind: AS Vasd=103 II; Exp B; end vertice DOL=1.64 TCLL: AS Plate DO DOL=1.11: Cs=1.00; 	CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; B Enclosed; MWFRS (er cal left exposed; Lumbe 0 GCE 7-16; Pr=20.0 psf L=1.15); Pf=20.0 psf (L 5); Is=1.0; Rough Cat B	(3-second gust) CDL=6.0psf; h=25ft; ivelope) exterior zom r DOL=1.60 plate gr (roof LL: Lum DOL=1 um DOL=1.15 Plate 3; Fully Exp.; Ce=0.9	15) Hanger(s) provided s lb down a Cat. down and e; design/se ip responsib 16) In the LO/ .15 of the trus LOAD CASE(; 1) Dead + 3 Increase is Uniform Vert:	or other connection sufficient to support nd 92 lb up at 1-7-1 3 lb up at 1-7-1to lection of such conr lifty of others. AD CASE(S) section s are noted as from S) Standard Snow (balanced): Lt	n device(s concentr 3 on top c n bottom nection de n, loads a t (F) or ba	s) shall be ated load(s) 1 hord, and 34 chord. The vice(s) is the pplied to the ck (B). rease=1.15,	lb face		Contraction of the second seco	The second secon	SEA 0363	EER.K


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	2 Serenity-Roof-B328 A CP GLH	
24090010-01	J02	Jack-Open	1	1	Job Reference (optional)	168179986

Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Thu Sep 12 11:24:18 ID:oyh2Rm0XL_ipQxTyo5dVCHyzBEM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

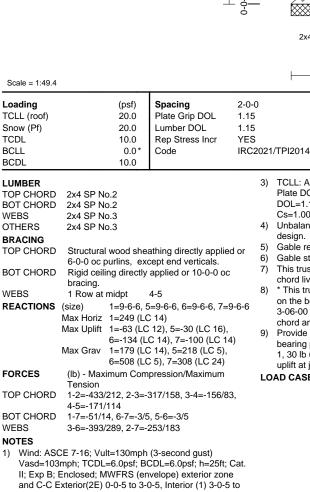
Page: 1

1	2-11-10	4-0-8
I	2-11-10	1-0-14

Scale = 1:35.3

Plate Offsets (X, Y): [3:0-3-4,0-2-0]

Plate Offsets	(A, T). [3.0-3-4,0-2-0]													
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MP	0.23 0.23 0.04	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.03 -0.03 -0.04	(loc) 6-7 6-7 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 20 lb	GRIP 244/190 FT = 20%	
 this desig Wind: ASS Vasd=103 II; Exp B; and C-C E C for men shown; Lu TCLL: AS Plate DOI 	2x4 SP No.2 2x4 SP No.3 Structural wood she 4-0-8 oc purlins, exi 2-0-0 oc purlins: 3-4 Rigid ceiling directly bracing. (size) 4= Mecha 7=0-5-8 Max Horiz 7=100 (LC Max Uplift 4=-15 (LC (LC 14) Max Grav 4=85 (LC 7=324 (LC) (1b) - Maximum Com Tension 2-7=-261/82, 1-2=0// 6-7=-6/6, 5-6=0/0 3-6=-117/125 ed roof live loads have n. CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; Bt Enclosed; MWFRS (er Exterior(2E) zone; end ' hobers and forces & MW umber DOL=1.60 plate CE 7-16; Pf=20.0 psf (L 1=1.15); Pf=20.0 psf (L	cept end verticals, ar applied or 6-0-0 oc inical, 5= Mechanica C 14) C 11), 5=-42 (LC 14), 37), 5=103 (LC 38), C 38) pression/Maximum 63, 2-3=-113/60, 3-4 been considered for (3-second gust) CDL=6.0psf; h=25ft; welope) exterior zom- vertical left exposed; /FRS for reactions grip DOL=1.60 roof LL: Lum DOL=1 um DOL=1.15 Plate	5) hd or 6) hd 7) 8) 1, 9) 1(12 =0/0 13 12 =0/0 13 Cat. e C- .15	 design. This truss ha load of 12.0 overhangs n Provide ader This truss ha chord live loa This truss ha chord live loa This truss fa on the bottor 3-06-00 tall b chord and ar Bearings are Bearing plate 4 and 42 lb u One H2.5A S recommende UPLIFT at jtt does not cor Graphical pu 		for great flat roof I n other li prevent for a 10. with any d for a 10. with any d for a liv is where ill fit betv. Joint 7 I russ con n (by oth tanding ' ie conne s to bear tion is fo s. n does no	er of min roo bad of 20.0 p we loads. water pondin 0 psf bottom other live loz e load of 20. a rectangle veen the bott Jser Defined nections. ers) of truss 5 lb uplift at ctors ing walls due r uplift only a bt depict the	f live osf on g. ads. Opsf tom to joint to joint		A. HILLING		SEA 0363	EER ER	
												Septembe	r 16,2024	


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	2 Serenity-Roof-B328 A CP GLH	
24090010-01	VLC1	Valley	1	1	Job Reference (optional)	168179987

Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Thu Sep 12 11:24:18 ID:MUJwr2X04VK7oB8VeTRuFYyzBGG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

9-6-6 2x4 🛛 2x4 II 12 3 11 7-11-9 7-11-9 10 2x4 12 10 F 2 0-0-4 5 6 2x4 II 2x4 u 2x4 2x4 II 9-6-6 2-0-0 CSI DEFL l/defl in (loc) 1.15 TC 0.31 Vert(LL) n/a n/a BC 1 15 0.17 Vert(TL) n/a n/a WB 0.15 Horiz(TL) 0.00 7 n/a

- 5-2-1, Exterior(2R) 5-2-1 to 9-4-15 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss 2)
- only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.

Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 4) Unbalanced snow loads have been considered for this desian. Gable requires continuous bottom chord bearing. 5) 6) Gable studs spaced at 4-0-0 oc. 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 8) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom

TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15

chord and any other members, with BCDL = 10.0psf. Provide mechanical connection (by others) of truss to 9) bearing plate capable of withstanding 63 lb uplift at joint 1, 30 lb uplift at joint 5, 134 lb uplift at joint 6 and 100 lb uplift at joint 7.

Matrix-MSH

LOAD CASE(S) Standard

L/d

999

999

n/a

PLATES

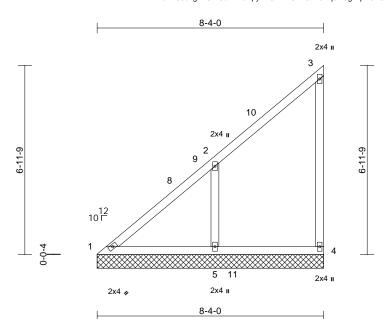
Weight: 50 lb

MT20

GRIP

244/190

FT = 20%


818 Soundside Road

Edenton, NC 27932

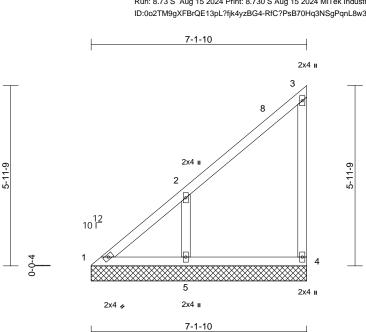
Job	Truss	Truss Type	Qty	Ply	2 Serenity-Roof-B328 A CP GLH	
24090010-01	VLC2	Valley	1	1	I68179988 Job Reference (optional)	

Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Thu Sep 12 11:24:18 ID:BehB56cngL4GW6cf?kYJVpyzBGA-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:42.4

	·											
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.35	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.20	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.11	Horiz(TL)	0.00	4	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 42 lb	FT = 20%
				quires continuous b uds spaced at 4-0-0		rd bearing.						
TOP CHORD BOT CHORD				s has been designe		0 pef bottom						
WEBS	2x4 SP No.2 2x4 SP No.3			e load nonconcurrei			eh					
OTHERS	2x4 SP No.3			iss has been design								
BRACING				ottom chord in all ar								
TOP CHORD	Structural wood she	athing directly appli	ied or 3-06-00	tall by 2-00-00 wide	will fit betw	veen the botto	om					
	6-0-0 oc purlins, ex		chord ar	d any other membe	ers, with BC	DL = 10.0psf						
BOT CHORD				mechanical connect								
	bracing.		bearing	plate capable of with	nstanding 2	29 lb uplift at jo	oint					
REACTIONS	(size) 1=8-4-0,	4=8-4-0, 5=8-4-0		5 lb uplift at joint 5.								
	Max Horiz 1=224 (Le	C 14)	LOAD CASE	(S) Standard								
	Max Uplift 4=-29 (LC											
	Max Grav 1=165 (L		,									
	5=554 (L	,										
FORCES	(lb) - Maximum Con	npression/Maximum										
TOP CHORD	Tension	457/70 0 4 400/4	10									
BOT CHORD			19									
WEBS	2-5=-420/319	0										
	2-3420/313											
NOTES		(2 cocord such)										
	CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; B		. Cot								minin	UUI,
	Enclosed; MWFRS (er										W'TH CA	Rolly
	Exterior(2E) 0-0-5 to 3-									1º	R	11/17
	Exterior(2R) 3-11-10 to								/	5.	U. Fress	N. Vian
	and forces & MWFRS		ז;						-			No.
	OOL=1.60 plate grip DC								-	÷.,	2	
,	signed for wind loads ir								-		SEA	
	studs exposed to wind								=		0000	
	dard Industry Gable En t qualified building desi								-		0363	322 : :
	CE 7-16; Pr=20.0 psf (2 8		1
	L=1.15); Pf=20.0 psf (L									5	·	all S
	5); Is=1.0; Rough Cat E									25	NGIN	FERMAN
Cs=1.00;									CONTRACT.	11	710	allin
4) Unbalance	ed snow loads have be	een considered for th	his								11. A. C	ALPIN
design.											A. C	111111

minin September 16,2024



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

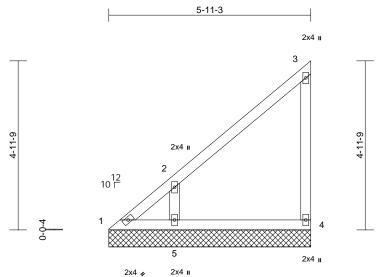
Job	Truss	Truss Type	Qty	Ply	2 Serenity-Roof-B328 A CP GLH	
24090010-01	VLC3	Valley	1	1	Job Reference (optional)	168179989

Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Thu Sep 12 11:24:18 ID:0o2TM9gXFBrQE13pL?fjk4yzBG4-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:38.1

00010 = 1.00.1												
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.36	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.12	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.09	Horiz(TL)	0.00	4	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MP		l `´						
BCDL	10.0										Weight: 35 lb	FT = 20%
	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing.	cept end verticals. applied or 10-0-0 o , 4=7-1-10, 5=7-1-10 C 14)	7) This truss I chord live I 8) * This truss on the bott 3-06-00 tal chord and 9) Provide me bearing pla 4 and 149 0 LOAD CASE(S	s spaced at 4-0-0 c has been designed oad nonconcurrent is has been designe om chord in all area by 2-00-00 wide w any other members echanical connection te capable of withs b uplift at joint 5. 5) Standard	for a 10. with any d for a liv as where vill fit betv s. on (by oth	other live loa ve load of 20.0 a rectangle ween the botto hers) of truss t)psf om o					
	Max Grav 1=121 (L0 5=467 (L0	C 26), 4=198 (LC 20 C 20))),									
FORCES	(lb) - Maximum Com Tension	pression/iviaximum										
TOP CHORD BOT CHORD WEBS	1-2=-303/163, 2-3=- 1-5=-73/91, 4-5=0/0 2-5=-383/290		12									
NOTES												
1) Wind: ASC Vasd=103 II; Exp B; I and C-C E	CE 7-16; Vult=130mph imph; TCDL=6.0psf; B Enclosed; MWFRS (er Exterior(2E) zone;C-C S for reactions shown; 1.60	CDL=6.0psf; h=25ft; nvelope) exterior zor for members and for	ne rces						4	111	OR TH CA	ROLIN
 Truss desi only. For see Stand or consult TCLL: ASC Plate DOL 	igned for wind loads in studs exposed to wind lard Industry Gable En qualified building desi CE 7-16; Pr=20.0 psf (L =1.15); Pf=20.0 psf (L 5); Is=1.0; Rough Cat E	I (normal to the face d Details as applica gner as per ANSI/TI roof LL: Lum DOL= um DOL=1.15 Plate), ble, Pl 1. 1.15								SEA 0363	• -
Cs=1.00; (4) Unbalance design.	Cs=1.00; Ct=1.10) Unbalanced snow loads have been considered for this design.) Gable requires continuous bottom chord bearing. September 16 2024											
		e.lera boaring.									Septembe	er 16,2024


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	2 Serenity-Roof-B328 A CP GLH	
24090010-01	VLC4	Valley	1	1	Job Reference (optional)	168179990

Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Thu Sep 12 11:24:18 ID:MmrMPskg4jTiKoxm8YEuR8yzBG?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

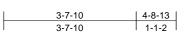
Piz 11:24:18 Pi

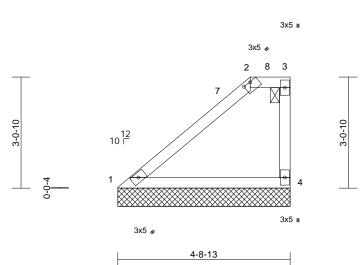
5-11-3

Scale = 1:33.8

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	BC 0.	.34 .12 .10	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 28 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	5-11-3 oc purlins, e Rigid ceiling directly bracing.	applied or 10-0-0 oc 4=5-11-3, 5=5-11-3 C 14) C 12), 4=-61 (LC 14), C 14) C 14), 4=199 (LC 20),	 6) Gable studs 7) This truss ha chord live loi 8) * This truss loi on the bottor 3-06-00 tall li chord and ai 9) Provide mec bearing plate 4, 31 lb uplif LOAD CASE(S) 	es continuous bottom of spaced at 4-0-0 oc. Is been designed for a ad nonconcurrent with has been designed for n chord in all areas wh by 2-00-00 wide will fit yo other members. hanical connection (by e capable of withstandi at joint 1 and 133 lb u Standard	10.0 any a live betw betw othe) psf bottom other live load e load of 20.0 a rectangle veen the botto ers) of truss to 1 lb uplift at jo	Opsf om o					
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Maximum Com Tension 1-2=-330/170, 2-3=- 1-5=-34/11, 4-5=0/0 2-5=-414/331	pression/Maximum	ı									
NOTES 1) Wind: ASC Vasd=103 II; Exp B; I and C-C E & MWFRS grip DOL= 2) Truss desis only. For see Stand or consult 3) TCLL: ASC Plate DOL DOL=1.15 Cs=1.00; C	CE 7-16; Vult=130mph mph; TCDL=6.0psf; B Enclosed; MWFRS (er exterior(2E) zone;C-C f 6 for reactions shown; 1.60 igned for wind loads in studs exposed to wind ard Industry Gable En qualified building desi CE 7-16; Pr=20.0 psf (L =1.15); Pf=20.0 psf (L i); Is=1.0; Rough Cat E	CDL=6.0psf; h=25ft; (ivelope) exterior zone for members and forc Lumber DOL=1.60 pl the plane of the trus: (normal to the face), d Details as applicabl gner as per ANSI/TPI roof LL: Lum DOL=1.15 Plate b; Fully Exp.; Ce=0.9;	e es ate e, 1. 15						M. COULTAN	The second secon	SEA 0363	EER. KIN

September 16,2024




WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	2 Serenity-Roof-B328 A CP GLH	
24090010-01	VLC5	Valley	1	1	Job Reference (optional)	68179991

Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Thu Sep 12 11:24:18 ID:f6m?tGq3QtLjgt_72WsXDcyzBFu-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

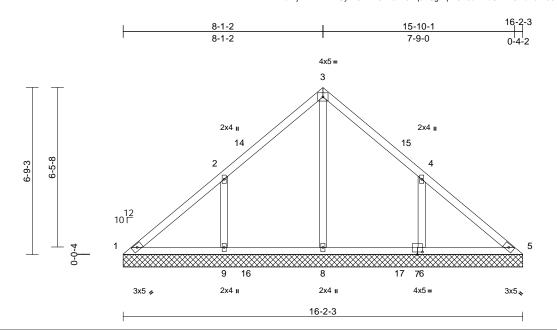
Page: 1

Scale = 1:31.6

Plate Offsets (X, Y): [2:0-2-8,0-0-3]

	, , , , , [<u>_</u>]e <u>_</u> e,e e e]	-										-
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI20	CSI TC BC WB Matrix-MR	0.52 0.34 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 19 lb	GRIP 244/190 FT = 20%
LUMBER6)Gable requires continuous bottom chord bearing.TOP CHORD2x4 SP No.27)Gable studs spaced at 4-0-0 oc.BOT CHORD2x4 SP No.28)This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.WEBS2x4 SP No.38)BRACING TOP CHORDStructural wood sheathing directly applied or 4-8-13 oc purlins; except end verticals, and 2-0-0 oc purlins: 2-3.9)BOT CHORDRigid ceiling directly applied or 10-0-0 oc bracing.7)9)Personer10, bot the the the the term10)Personer10, bot the term10, bot the termPersoner10, bot the term10, bot termPersoner10, bot term10, bot termPersoner10, bot term10, bot termPersoner10, bot term10, bot termPersoner10, bot term												
BOT CHORD		applied or 10-0-0 oc										
	(size) 1=4-8-13, Max Horiz 1=107 (L0 Max Uplift 4=-56 (L0 Max Grav 1=261 (L0 (lb) - Maximum Com Tension 1-2=-322/1, 2-3=-85	C 14) C 37), 4=212 (LC 37) pression/Maximum	11) Grap or the botto	nical purlin represent orientation of the punchord. NSE(S) Standard			size					
NOTES 1) Wind: ASC Vasd=103 II; Exp B; B and C-C E to 3-7-15, members a Lumber DC 2) Truss desi only. For s	CE 7-16; Vult=130mph imph; TCDL=6.0psf; B Enclosed; MWFRS (er Exterior(2E) 0-0-5 to 3- Exterior(2E) 3-7-15 to and forces & MWFRS OL=1.60 plate grip DC OL=1.60 plate grip DC igned for wind loads in studs exposed to wind ard Industry Gable En	CDL=6.0psf; h=25ft; ivelope) exterior zon 0-5, Exterior(2R) 3-0 4-7-6 zone;C-C for for reactions shown; 0L=1.60 t he plane of the trus I (normal to the face)	e 5 ss						C.	A.	ORTH CA	L

- 2
- or consult qualified bilding designer as per ANSI/TPI 1. TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Provide adequate drainage to prevent water ponding.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	2 Serenity-Roof-B328 A CP GLH	
24090010-01	VLE1	Valley	1	1	Job Reference (optional)	168179992

Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Thu Sep 12 11:24:19 ID:DTBTk2iEBbrKjDFXxKE1mCyzBJw-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:46.7

Plate Offsets (X, Y): [7:0-2-8,0-1-4]

			-								-	
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL LUMBER TOP CHORD BOT CHORD OTHERS	2x4 SP No.2	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	only. For see Standa	CSI TC BC WB Matrix-MSH gned for wind loads tuds exposed to win rrd Industry Gable E pualified building de	nd (norm End Deta	al to the face), ble,	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 72 lb	GRIP 244/190 FT = 20%
OTHERS 2x4 SP No.3 or consult qualified building designer as per ANSI/TPI 1. BRACING or consult qualified building designer as per ANSI/TPI 1. TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pl=20.0 psf (Lum DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. TCLL: ASCE 7-16; Pr=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 REACTIONS (size) 1=16-2-3, 5=16-2-3, 6=16-2-3, 8=16-2-3, 8=16-2-3, 8=16-2-3, 8=16-2-3, 9=16-2-3 Gable requires continuous bottom chord bearing.												
REACTIONS	EACTIONS 1=16-2-3, 5=16-2-3, 6=16-2-3, 8=16-2-3, 8=16-2-3, 9=16-2-3 design. Max Horiz 1=-154 (LC 10) Gable requires continuous bottom chord bearing. Max Horiz 1=-154 (LC 10) This truss has been designed for a 10.0 psf bottom chord live load on concourrent with any other live loads. Max Grav 1=126 (LC 25), 5=105 (LC 21), 6=496 (LC 6), 8=468 (LC 24), 9=496 (LC 5) 9											
FORCES TOP CHORD BOT CHORD	Tension 1-2=-149/216, 2-3=- 4-5=-123/175	131/167, 3-4=-131/1	10) Provide me bearing pla 46, 1, 177 lb u	chanical connection te capable of withst plift at joint 9 and 17	n (by oth tanding 2	ers) of truss t 22 lb uplift at j	to					
this design 2) Wind: ASC Vasd=103 II; Exp B; and C-C E 5-1-6, Ext 13-2-8, Ex	3-8=-279/0, 2-9=-38 ed roof live loads have	been considered for (3-second gust) CDL=6.0psf; h=25ft; ivelope) exterior zon 0-5, Interior (1) 3-0-5 6, Interior (1) 11-1-6 2-2-8 zone; cantilevel	Cat. e to to r left							E. M.	SEA 0363	• –
C for mem	exposed ; end vertical i nbers and forces & MW imber DOL=1.60 plate	/FRS for reactions	J,C-								Septembe	TLBERTIN 11,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	2 Serenity-Roof-B328 A CP GLH	
24090010-01	VLE2	Valley	1	1	Job Reference (optional)	168179993

Scale = 1:42.3

TCLL (roof)

Snow (Pf)

LUMBER

OTHERS

BRACING

TOP CHORD

BOT CHORD

FORCES

WEBS

NOTES

1)

2)

TOP CHORD

BOT CHORD

this design.

DOL=1.60

REACTIONS (size)

Structural wood sheathing directly applied or

1=13-9-6, 5=13-9-6, 6=13-9-6,

1=-25 (LC 10), 6=-147 (LC 15),

1=115 (LC 25), 5=77 (LC 29),

6=443 (LC 21), 7=288 (LC 20),

Rigid ceiling directly applied or 6-0-0 oc

7=13-9-6, 8=13-9-6

1=130 (LC 11)

8=-151 (LC 14)

8=445 (LC 20)

(Ib) - Maximum Compression/Maximum

1-8=-47/113, 7-8=-47/85, 6-7=-47/85,

Unbalanced roof live loads have been considered for

Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat.

II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 2-11-0, Interior (1) 2-11-0

to 3-11-0, Exterior(2R) 3-11-0 to 9-11-0, Interior (1) 9-11-0 to 10-5-3, Exterior(2E) 10-5-3 to 13-5-3 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip

Wind: ASCE 7-16; Vult=130mph (3-second gust)

3-7=-206/0. 2-8=-374/193. 4-6=-374/191

1-2=-143/120, 2-3=-191/114, 3-4=-191/112,

6-0-0 oc purlins.

bracing.

Max Horiz

Max Uplift

Max Grav

Tension

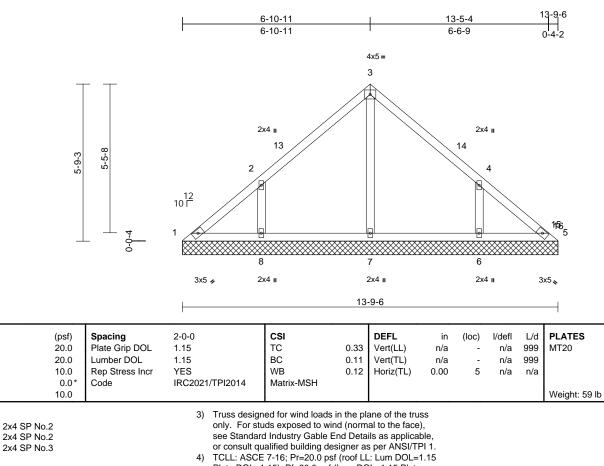
4-5=-103/83

5-6=-47/85

TOP CHORD BOT CHORD

TCDL

BCLL


BCDL

Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Thu Sep 12 11:24:19 ID:XFryJlebWm?dvpUHJx6YFyyzBHQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

GRIP

244/190

FT = 20%

-) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1. Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this design.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 4-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 25 lb uplift at joint 1, 151 lb uplift at joint 8 and 147 lb uplift at joint 6.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TPHI Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

A MiTek Affilia

Job	Truss	Truss Type	Qty	Ply	2 Serenity-Roof-B328 A CP GLH	
24090010-01	VLE3	Valley	1	1	Job Reference (optional)	168179994

4-5-8

-0-0

2-0-0

1.15

1 15

YES

4)

5)

6)

7)

8)

9)

12 10 Г

4-9-3

Spacing

Code

Structural wood sheathing directly applied or

1=11-4-10, 5=11-4-10, 6=11-4-10,

1=-38 (LC 10), 5=-22 (LC 13),

6=-133 (LC 15), 8=-138 (LC 14)

1=76 (LC 25), 5=55 (LC 15), 6=438

(LC 21), 7=252 (LC 20), 8=441 (LC

Rigid ceiling directly applied or 10-0-0 oc

7=11-4-10, 8=11-4-10

1=107 (LC 11)

(Ib) - Maximum Compression/Maximum

1-8=-30/70, 7-8=-23/70, 6-7=-23/70,

1-2=-124/100, 2-3=-224/109, 3-4=-225/109,

3-7=-163/1, 2-8=-432/242, 4-6=-431/236

20)

Plate Grip DOL

Rep Stress Incr

Lumber DOL

(psf)

20.0

20.0

10.0

10.0

2x4 SP No.2

2x4 SP No.2

2x4 SP No.3

6-0-0 oc purlins.

bracing.

Max Horiz

Max Uplift

Max Grav

Tension

4-5=-101/66

5-6=-35/70

0.0

Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Thu Sep 12 11:24:19 ID:XFryJlebWm?dvpUHJx6YFyyzBHQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

11-4-10 5-8-5 11-0-8 5-8-5 5-4-3 4x5 = 3 2x4 🛛 14 13 2x4 🛛 4 2 1156₅ 8 7 6 2x4 🛛 2x4 II 3x5 🛷 3x5 💊 2x4 🛚 11-4-10 CSI DEFL l/defl L/d PLATES GRIP in (loc) TC 0.32 Vert(LL) n/a 999 MT20 244/190 n/a BC 0.12 Vert(TL) n/a n/a 999 WB 0.09 Horiz(TL) 0.00 5 n/a n/a IRC2021/TPI2014 Matrix-MSH Weight: 46 lb FT = 20%3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10 Unbalanced snow loads have been considered for this desian. Gable requires continuous bottom chord bearing. Gable studs spaced at 4-0-0 oc. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 38 lb uplift at joint 1, 22 lb uplift at joint 5, 138 lb uplift at joint 8 and 133 lb uplift at joint 6.
- LOAD CASE(S) Standard

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

NOTES Unbalanced roof live loads have been considered for 1) this design.

Scale = 1:40.6 Loading

TCLL (roof)

Snow (Pf)

LUMBER

OTHERS

BRACING

TOP CHORD

BOT CHORD

FORCES

WEBS

TOP CHORD

BOT CHORD

REACTIONS (size)

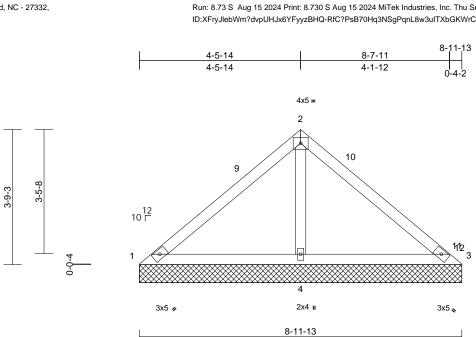
TOP CHORD BOT CHORD

TCDL

BCLL

BCDL

Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Exterior(2R) 3-0-5 to 8-0-6, Exterior(2E) 8-0-6 to 11-0-6 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60



Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	2 Serenity-Roof-B328 A CP GLH	
24090010-01	VLE4	Valley	1	1	Job Reference (optional)	168179995

Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Thu Sep 12 11:24:19 ID:XFryJlebWm?dvpUHJx6YFyyzBHQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

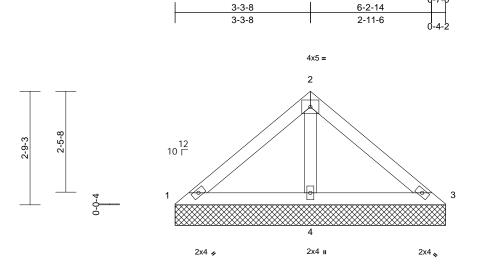
Page: 1

Scale = 1:32.1

Snow (Pf) 20.0		T E V /TPI2014 N	CSI TC 0.4 BC 0.4 WB 0.1 Matrix-MP	Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 34 lb	GRIP 244/190 FT = 20%
8-11-13 oc purlins. BOT CHORD Rigid ceiling directly a bracing. REACTIONS (size) 1=8-11-13, Max Horiz 1=83 (LC 1 Max Uplift 1=-57 (LC 2) 4=-116 (LC	5) athing directly applied or applied or 6-0-0 oc 7) 3=8-11-13, 4=8-11-13 9) 21), 3=-65 (LC 20), 214) 20), 3=66 (LC 21), 4=742 10) pression/Maximum 139/348 262/187 been considered for (3-second gust) DL=6.0psf; h=25ft; Cat. velope) exterior zone -5, Exterior(2R) 3-0-5 '-9 zone; cantilever left aft and right exposed;C- FRS for reactions grip DOL=1.60 the plane of the truss (normal to the face), 1 Details as applicable,	Plate DOL=1.15 DOL=1.15); Is= Cs=1.00; Ct=1. Unbalanced sund Gable requires Gable studs spr This truss has on the bottom c 3-06-00 tall by 2 chord and any 2 Provide mechan bearing plate ca	now loads have been of baced at 4-0-0 oc. been designed for a 1 nonconcurrent with a s been designed for a chord in all areas whe 2-00-00 wide will fit b other members. anical connection (by o capable of withstandin tt joint 3 and 116 lb up	DOL=1.15 Plate ly Exp.; Ce=0.9 onsidered for th ord bearing. D.0 psf bottom by other live load live load of 20.0 re a rectangle tween the botto thers) of truss t p 57 lb uplift at j	e); ds. Dpsf om o		Contraction of the second s		SEA 0363	• -

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932


A. GI minimum) September 16,2024

Job	Truss	Truss Type	Qty	Ply	2 Serenity-Roof-B328 A CP GLH	
24090010-01	VLE5	Valley	1	1	Job Reference (optional)	168179996

Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Thu Sep 12 11:24:19 ID: XFryJlebWm?dvpUHJx6YFyyzBHQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

6-7-0

Scale = 1:28

Scale = 1:28													
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.20	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.22	Vert(TL)	n/a	-	n/a	999	-	
TCDL	10.0	Rep Stress Incr	YES		WB	0.07	Horiz(TL)	0.00	4	n/a	n/a		
BCLL	0.0*	Code	IRC20	21/TPI2014	Matrix-MP								
BCDL	10.0											Weight: 24 lb	FT = 20%
LUMBER			5) Unbalanced	snow loads have	been cor	nsidered for t	his					
TOP CHORD	2x4 SP No.2			design.									
BOT CHORD			6		res continuous bot		d bearing.						
OTHERS	2x4 SP No.3		7		spaced at 4-0-0 c								
BRACING			8		as been designed								
TOP CHORD	 Structural wood she 6-7-0 oc purlins. 	athing directly appli	ied or) * This truss	ad nonconcurrent has been designe	d for a liv	e load of 20.						
BOT CHORD	 Rigid ceiling directly bracing. 	applied or 6-0-0 oc	;	3-06-00 tall	m chord in all area by 2-00-00 wide w	vill fit betw		om					
REACTIONS	(size) 1=6-7-0, 3 Max Horiz 1=-60 (LC Max Uplift 1=-5 (LC (LC 14) Max Grav 1=102 (LC 4=461 (LC	21), 3=-5 (LC 20), 4 C 20), 3=102 (LC 21	l=-61	 Provide med bearing plate 	ny other members chanical connectio e capable of withs joint 3 and 61 lb u Standard	on (by oth tanding 5	i lb uplift at jo						
FORCES	(lb) - Maximum Com Tension	,											
TOP CHORD	1-2=-88/190, 2-3=-8	8/190											
BOT CHORD	1-4=-150/135, 3-4=-	150/135											
WEBS	2-4=-359/169												
NOTES													
1) Unbalanc	ed roof live loads have	been considered fo	or									TH CA	11
this desig	ın.											11111 01	1111
	CE 7-16; Vult=130mph											TH UF	ROIL
	3mph; TCDL=6.0psf; B										~	ON HOS	11.2
	Enclosed; MWFRS (er		ne								i	FEUG	N.
	Exterior(2E) zone; cant		_							1	5	in the second	A.
	; end vertical left and rig and forces & MWFRS										2 B	. *	
	OOL=1.60 plate grip DC		ι,							=		SEA SEA	L : =
	signed for wind loads in		ISS							=	:		• –
	studs exposed to wind											0363	22 : :
	dard Industry Gable En										-	N	

- 3
- or consult qualified building designer as per ANSI/TPI 1. TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Co. 1.00; Ct. 1.10 4) Cs=1.00; Ct=1.10

THE RECEIPTION A. GI A. GIL September 16,2024

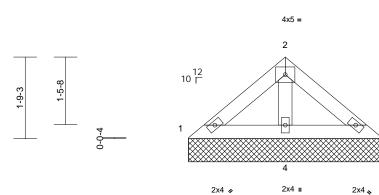
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	2 Serenity-Roof-B328 A CP GLH	
24090010-01	VLE6	Valley	1	1	Job Reference (optional)	168179997

2-1-2

2-1-2

Carter Components (Sanford, NC), Sanford, NC - 27332,


Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Thu Sep 12 11:24:19 ID:?RPKW5fDG37UXz3Ttedno9yzBHP-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3-10-1

1-9-0

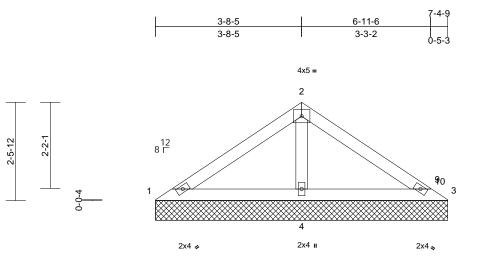
3

Page: 1

4-2-3

Scolo - 1.24 0

Scale = 1:24.9				1								
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI20	CSI TC BC WB Matrix-MP	0.06 0.08 0.03	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 15 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD 2 BOT CHORD 2 OTHERS 2 BRACING TOP CHORD BOT CHORD REACTIONS (s M	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 4-2-3 oc purlins. Rigid ceiling directly bracing. ize) 1=4-2-3, 3 ax Horiz 1=37 (LC ax Uplift 1=-1 (LC (LC 14)	eathing directly applie 7 applied or 6-0-0 oc 3=4-2-3, 4=4-2-3 11) 14), 3=-8 (LC 15), 4: 20), 3=80 (LC 21), 4	desig 6) Gabl 7) Gabl 8) This chorr 9) * This on th 3-06 chorr 10) Provi beari 8 Ibc	lanced snow loads hav in. e requires continuous b e studs spaced at 4-0-0 truss has been designe d live load nonconcurrer s truss has been design e bottom chord in all ar 00 tall by 2-00-00 wide d and any other membe de mechanical connect ng plate capable of with uplift at joint 3 and 25 lb ASE(S) Standard	bottom chor o oc. ed for a 10.1 nt with any ned for a liv eas where will fit betw ers. tion (by oth nstanding 1	d bearing. D psf bottom other live loa e load of 20.0 a rectangle veen the botto ers) of truss t Ib uplift at joi	ds. Dpsf om					
TOP CHORD BOT CHORD WEBS NOTES 1) Unbalanced this design. 2) Wind: ASCE Vasd=103mj II; Exp B; En and C-C Ext exposed ; er members an Lumber DOL 3) Truss desigr only. For stu see Standar or consult 4 TCLL: ASCE Plate DOL=1	Tension 1-2=-72/77, 2-3=-72 1-4=-62/70, 3-4=-62 2-4=-159/69 roof live loads have 7-16; Vult=130mph oh; TCDL=6.0psf; Bi closed; MWFRS (er erior(2E) zone; cant id vertical left and rig d forces & MWFRS .=1.60 plate grip DC ued for wind loads in ids exposed to wind d lndustry Gable En ialified building desis ; 7-16; Pr=20.0 psf (.15); Pf=20.0 psf (.15); Rough Cat E	been considered for (3-second gust) CDL=6.0psf; h=25ft; tvelope) exterior zor illever left and right ght exposed;C-C for for reactions shown	Cat. ne ; ss), ole, PI 1. 1.15						W. HILLING		SEA 0363	EER.K
	G - Verify design parameter			MITEK REFERENCE PAGE N	MII-7473 roy 1	/2/2023 BEFORE	USE				ENGINEE	


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	2 Serenity-Roof-B328 A CP GLH	
24090010-01	VLG1	Valley	1	1	Job Reference (optional)	168179998

Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Thu Sep 12 11:24:19 $ID:aURQiS0qpwcnaEzI3_tgZTyjNsg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?ff$

Page: 1

7-4-9

Scale	- 1	1.20	1

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	20.0 20.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-MP	0.25 0.25 0.08	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 25 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	Max Horiz 1=54 (LC 1 Max Uplift 1=-10 (LC 2 4=-56 (LC 1 Max Grav 1=102 (LC 2 4=518 (LC 2	pplied or 6-0-0 oc 7-4-9, 4=7-4-9 1) 21), 3=-24 (LC 20), 14) 20), 3=67 (LC 21), 21)	d or d or d or d or d or d or d or d or	CE 7-16; Pr=20.0 =1.15); Pf=20.0 p); Is=1.0; Rough 0 Ct=1.10 ed snow loads hav uires continuous I ds spaced at 4-0-1 has been design too concurre s has been design too chord in all a Il by 2-00-00 wide any other membe echanical connec ate capable of wit	sf (Lum DC Cat B; Fully ve been cor bottom chor 0 oc. ed for a 10.0 nt with any ned for a 10.0 nt with any ned for a liv reas where e will fit betw ers. tion (by oth	DL=1.15 Plate Exp.; Ce=0. Insidered for t d bearing. D psf bottom other live loa e load of 20. a rectangle veen the bott ers) of truss	e 9; his ads. 0psf om to					
FORCES	(lb) - Maximum Comp Tension 1-2=-96/237, 2-3=-83/			o uplift at joint 3. S) Standard	-							
BOT CHORD	1-2=-90/237, 2-3=-03/											
WEBS	2-4=-413/176											
this design 2) Wind: ASC Vasd=103	ed roof live loads have b n. CE 7-16; Vult=130mph (3 mph; TCDL=6.0psf; BCD	3-second gust) DL=6.0psf; h=25ft;	Cat.							- II	NITH CA	ROLA

- II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-6 to 3-0-6, Exterior(2R) 3-0-6 to 3-8-11, Exterior(2E) 3-8-11 to 6-11-9 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

GI

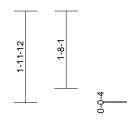
SEAL

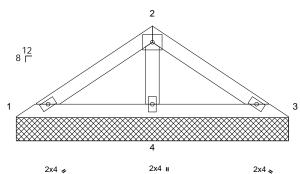
036322

anninnin an

Vanantan

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Job	Truss	Truss Type	Qty	Ply	2 Serenity-Roof-B328 A CP GLH	
24090010-01	VLG2	Valley	1	1	Job Reference (optional)	168179999


Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Thu Sep 12 11:24:19 ID:?Kf_vIGN638x_JV8EBEMMhyjNsM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

5-10-9 2-11-5 5-5-6 2-11-5 2-6-2

5-10-9

Scale = 1:24.9

Loading TCLL (roof) Snow (Pf) TCDL BCLL	(psf) 20.0 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI20	CSI TC BC WB 14 Matrix-MP	0.14 0.16 0.05	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0										Weight: 20 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD DTHERS BRACING TOP CHORD BOT CHORD	5-10-9 oc purlins. Rigid ceiling direct bracing.	eathing directly appli y applied or 6-0-0 oc	desigr 6) Gable 7) Gable 8) This tr chord 9) * This on the 3-06-0 chord	anced snow loads hav requires continuous b studs spaced at 4-0-0 uss has been designe live load nonconcurrer truss has been design bottom chord in all ar 0 tall by 2-00-00 wide and any other membe	ottom chor oc. d for a 10. nt with any ed for a liv eas where will fit betw	rd bearing. 0 psf bottom other live loa re load of 20.0 a rectangle	ids. Opsf					
	Max Horiz 1=42 (LC Max Uplift 1=-4 (LC (LC 14)	9, 3=5-10-9, 4=5-10-9 C 11) S 14), 3=-11 (LC 15), C 20), 3=96 (LC 21), 4	4=-35 4=-35 11 Ιb τ	e mechanical connect g plate capable of with pplift at joint 3 and 35 I SE(S) Standard	ion (by oth istanding 4	l lb uplift at jo						
 this design Wind: ASC Vasd=103i II; Exp B; E and C-C E exposed; members a Lumber DC Truss desi only. For s see Standard or consult 	Tension 1-2=-95/154, 2-3=- 1-4=-132/101, 3-4= 2-4=-284/126 ad roof live loads hav E 7-16; Vult=130mp mph; TCDL=6.0psf; I Enclosed; MWFRS (exterior(2E) zone; car end vertical left and and forces & MWFRS DL=1.60 plate grip D gned for wind loads studs exposed to win ard Industry Gable E qualified building des	-132/101 e been considered fo h (3-second gust) 3CDL=6.0psf; h=25ft; invelope) exterior zor tillever left and right ight exposed;C-C for 6 for reactions shown DL=1.60 n the plane of the tru d (normal to the face nd Details as applical igner as per ANSI/TF	Cat. ne ; ; ss), ble, PI 1.						Manuta and a second sec		SEA 0363	22
Plate DOL	=1.15); Pf=20.0 psf (); Is=1.0; Rough Cat	(roof LL: Lum DOL= Lum DOL=1.15 Plate B; Fully Exp.; Ce=0.9	I.								Septembe	F.F.F.F.F.F.F.F.F.F.F.F.F.F.F.F.F.F.F.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

