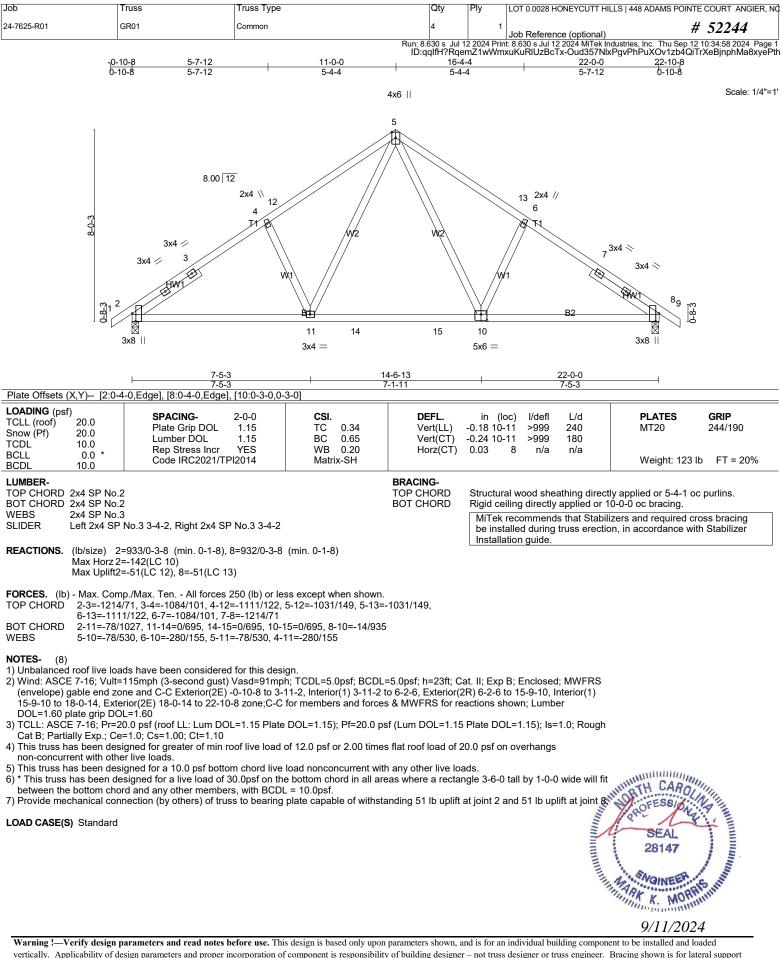

Mark Morris, P.E. #126, 1317-M, Summerville, SC 29483 843 209-5784, Fax (866)-213-4614

The truss drawing(s) listed below have been prepared by **Atlantic Building Components** under my direct supervision based on the parameters provided by the truss designers.


AST #: 52244 JOB: 24-7625-R01 JOB NAME: LOT 0.0028 HONEYCUTT HILLS Wind Code: ASCE7-16 Wind Speed: Vult= 120mph Exposure Category: B Mean Roof Height (feet): 23 These truss designs comply with IRC 2015 as well as IRC 2018. *64 Truss Design(s)*

Trusses:

GR01, GR02, GR03, GR04, GR05, GR06, GR07, J01, J02, J03, J04, J05, J06, J07, J08, J09, J11, J12, J13, J14, J15, J16, J17, J19, J20, J21, J22, J23, J24, J25, J26, J27, J28, P01, R01, R02, R03, R04, R05, R06, R07, R08, R09, R10, R11, R12, R13, R14, R15, R16, R17, R18, R19, R20, R21, R22, R23, R24, R24A, R25, R26, R27, VT01, VT02

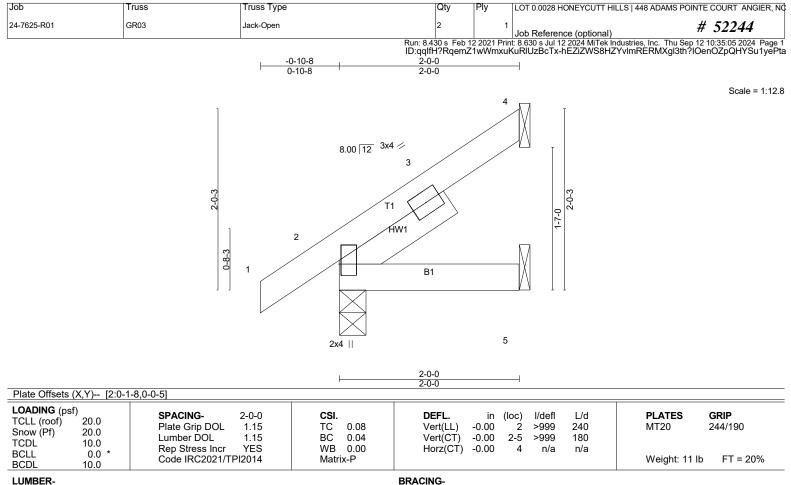
Warning !--- Verify design parameters and read notes before use.

Continued on bade X-sign parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 0.0028 HONEYCUTT HILLS 448 ADAMS POINTE COURT ANGIER, N
24-7625-R01	GR02	Hip Girder	1	2	Job Reference (optional) # 52244

Run: 8.430 s Feb 12 2021 Print: 8.630 s Jul 12 2024 MiTek Industries, Inc. Thu Sep 12 10:35:05 2024 Page 2 ID:qqlfH?RqemZ1wWmxuKuRIUzBcTx-hEZiZWS8HZYvImRERMXgl3ta8IKenN3pQHYSu1yePta

LOAD CASE(S) Standard


1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-4=-60, 4-5=-60, 5-8=-60, 2-7=-20

Concentrated Loads (lb)

Vert: 4=-83(F) 5=-83(F) 10=-97(F) 3=-48(F) 13=-58(F) 12=-29(F) 11=-29(F) 6=-48(F) 9=-58(F) 14=-63(F) 15=-15(F) 16=-83(F) 17=-83(F) 18=-15(F) 19=-63(F) 20=-43(F) 21=-97(F) 22=-29(F) 23=-29(F) 24=-43(F)

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

Left 2x4 SP No.3 1-5-0 SLIDER

REACTIONS. (Ib/size) 4=48/Mechanical, 2=144/0-3-8 (min. 0-1-8), 5=20/Mechanical Max Horz 2=53(LC 12) Max Uplift4=-35(LC 12), 2=-3(LC 12) Max Grav 4=52(LC 20), 2=147(LC 18), 5=40(LC 5)

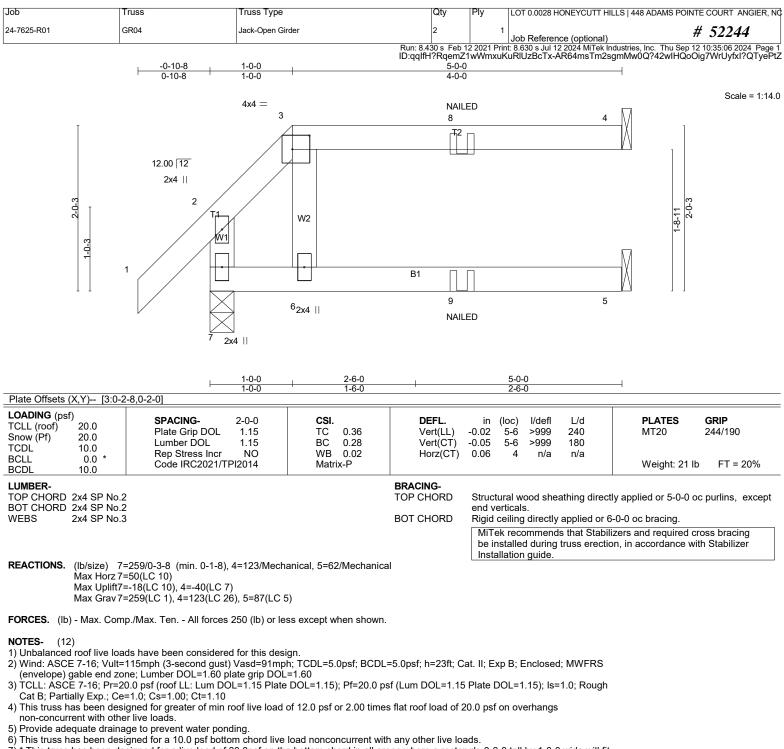
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-


- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs

non-concurrent with other live loads.

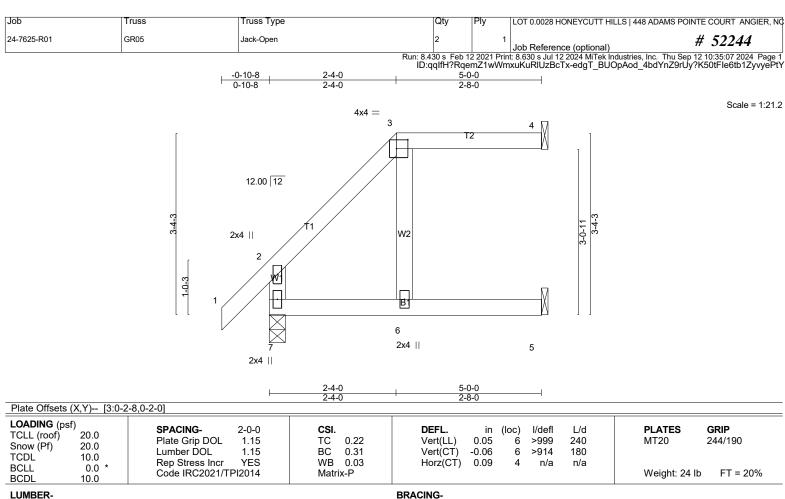
4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 35 lb uplift at joint 4 and 3 lb uplift at joint 2.

LOAD CASE(S) Standard

Structural wood sheathing directly applied or 2-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.


- 7)* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit
- between the bottom chord and any other members.
- 8) Refer to girder(s) for truss to truss connections.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 18 lb uplift at joint 7 and 40 lb uplift at joint 4.
- 10) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines
- 11) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-2=-60, 2-3=-60, 3-4=-60, 5-7=-20

SEAL 28147 MORPHS INTERNAL MORPHS INTERNAL MORPHS INTERNAL MORPHS INTERNAL MARKEN INTERNA 9/11/2024

TOP CHORD

BOT CHORD

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

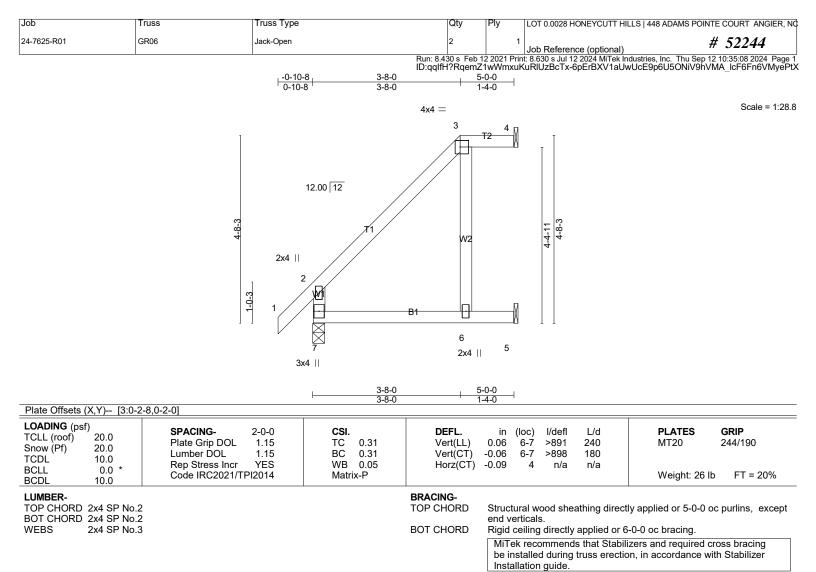
2x4 SP No.3 WFBS

Structural wood sheathing directly applied or 5-0-0 oc purlins, except end verticals

Rigid ceiling directly applied or 6-0-0 oc bracing MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (Ib/size) 7=259/0-3-8 (min. 0-1-8), 4=108/Mechanical, 5=78/Mechanical Max Horz 7=87(LC 12) Max Uplift4=-27(LC 9), 5=-7(LC 12)

Max Grav 7=259(LC 1), 4=108(LC 1), 5=86(LC 5)

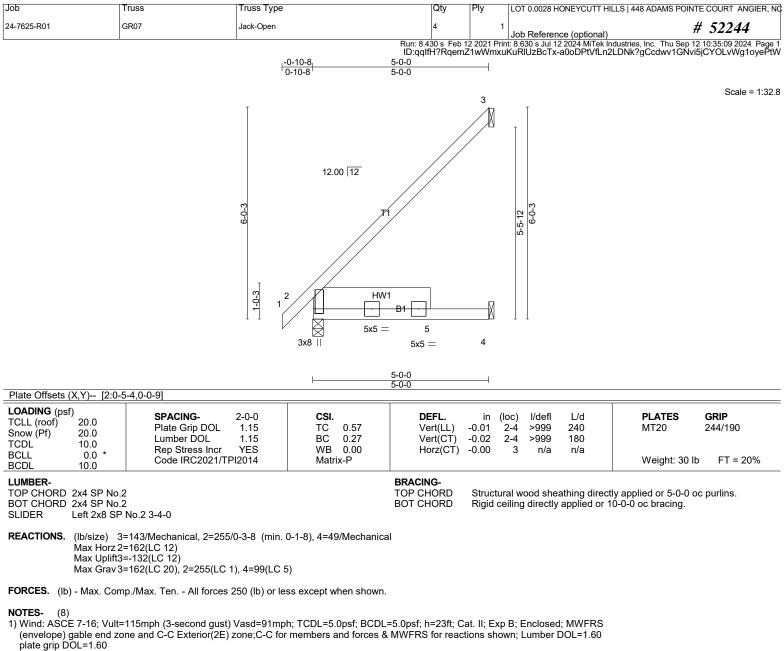

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES- (10)

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 5) Provide adequate drainage to prevent water ponding.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit
- between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 27 lb uplift at joint 4 and 7 lb uplift at joint 5.

LOAD CASE(S) Standard

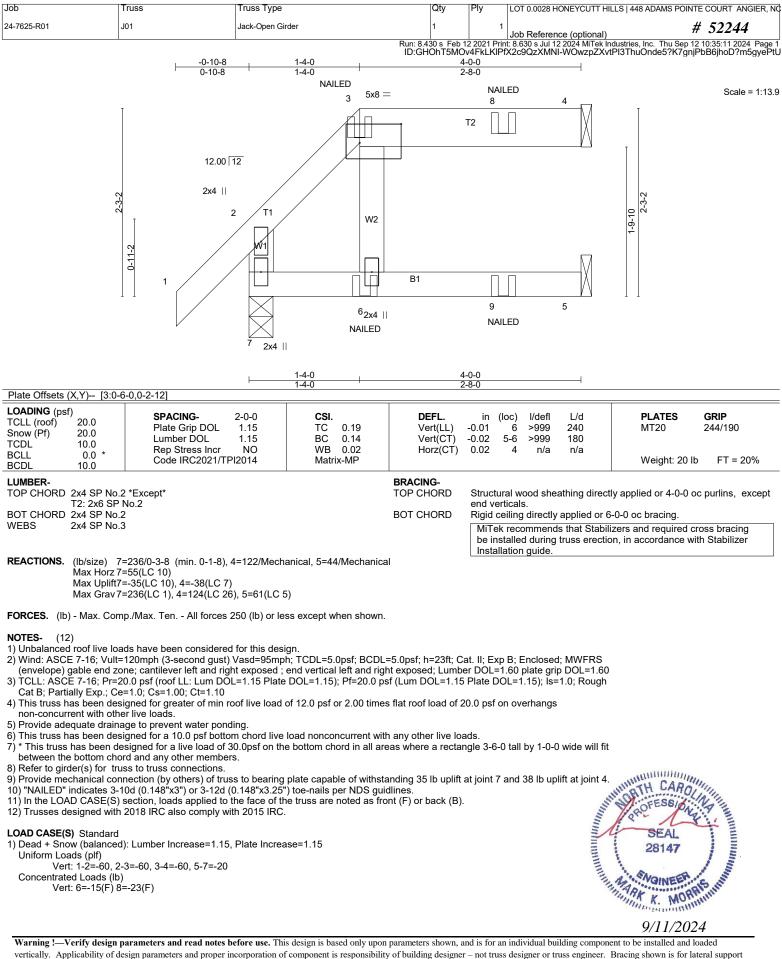
REACTIONS. (lb/size) 7=259/0-3-8 (min. 0-1-8), 4=68/Mechanical, 5=117/Mechanical Max Horz 7=125(LC 12) Max Uplift4=-8(LC 9), 5=-58(LC 12) Max Grav 7=259(LC 1), 4=68(LC 1), 5=120(LC 20)

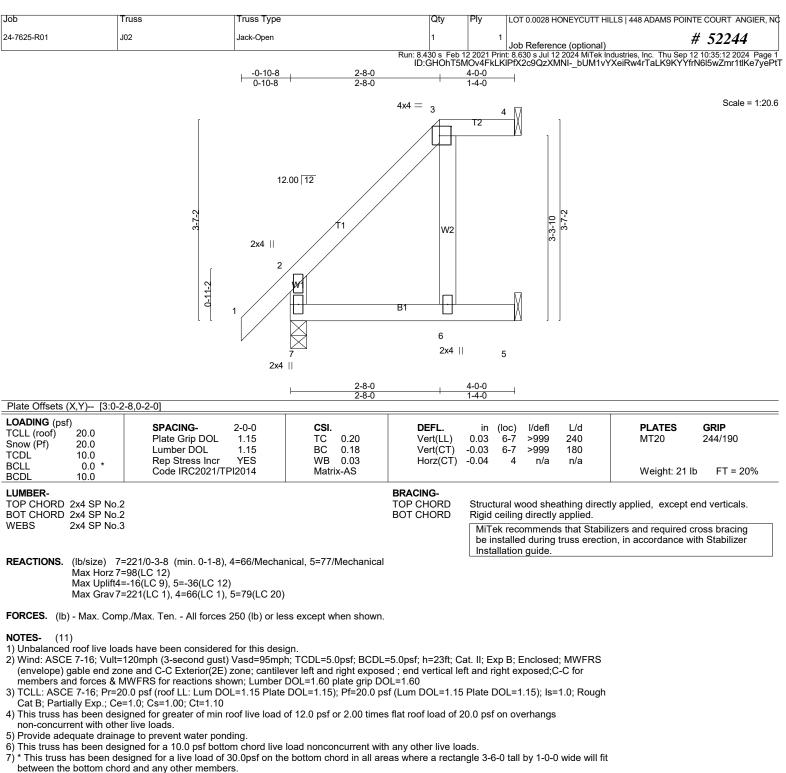

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES- (10)

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 5) Provide adequate drainage to prevent water ponding.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit
- between the bottom chord and any other members.
- 8) Refer to girder(s) for truss to truss connections.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 8 lb uplift at joint 4 and 58 lb uplift at joint 5.

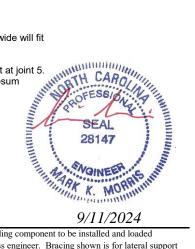
LOAD CASE(S) Standard

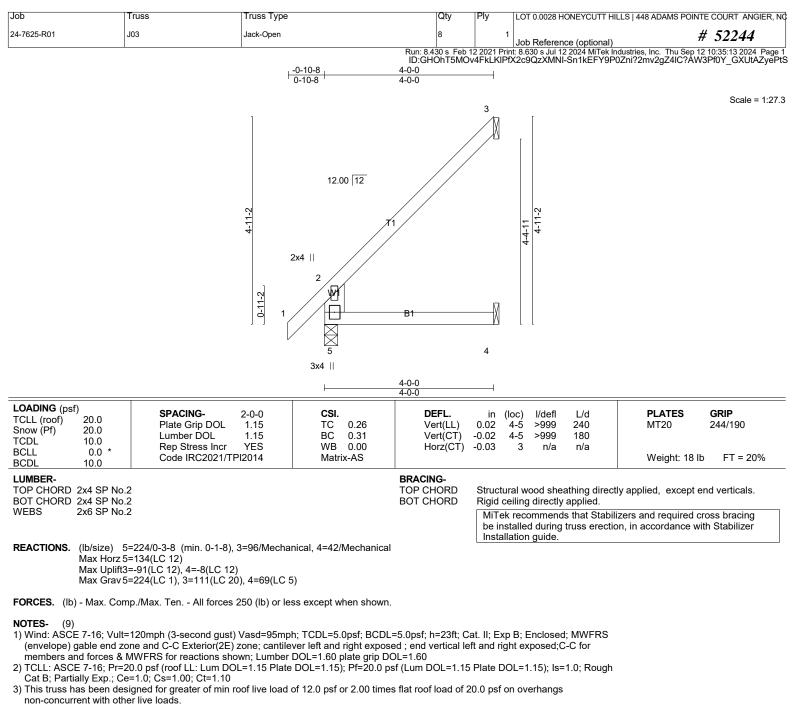




- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs
- non-concurrent with other live loads. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5)* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 132 lb uplift at joint 3.

LOAD CASE(S) Standard





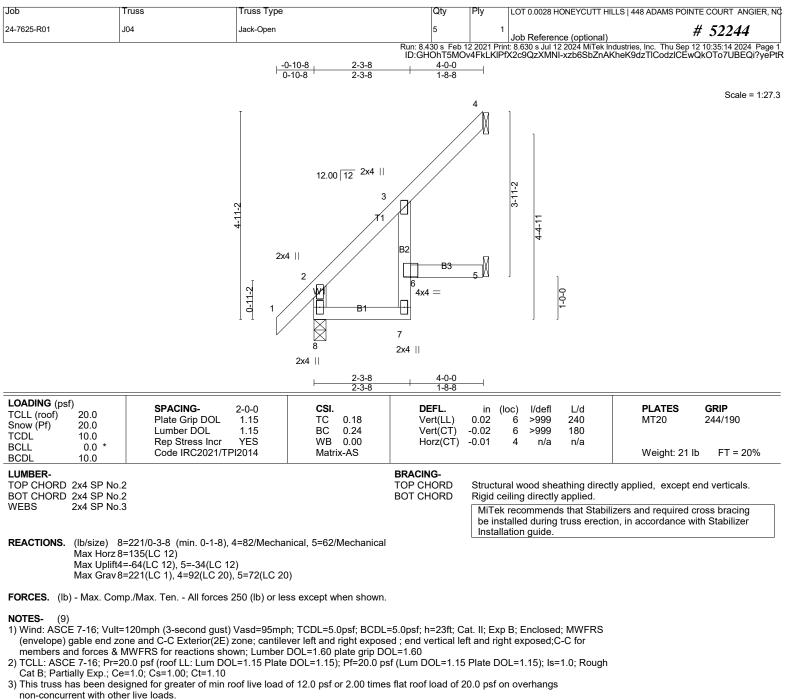
- 8) Refer to girder(s) for truss to truss connections.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 16 lb uplift at joint 4 and 36 lb uplift at joint 5. 10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 11) Trusses designed with 2018 IRC also comply with 2015 IRC.

LOAD CASE(S) Standard

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5)* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.


7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 91 lb uplift at joint 3 and 8 lb uplift at joint 4.

8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum

- sheetrock be applied directly to the bottom chord.
- Trusses designed with 2018 IRC also comply with 2015 IRC.

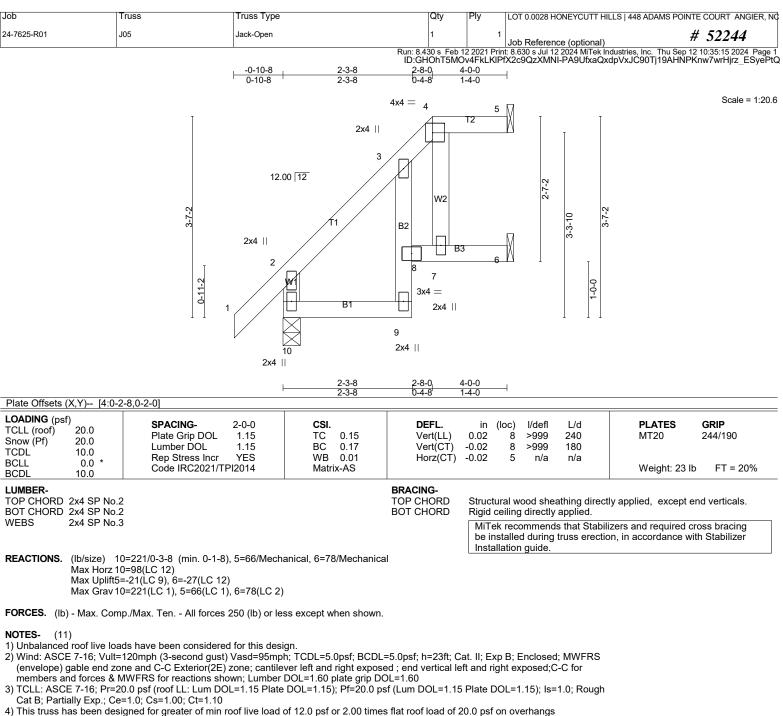
```
LOAD CASE(S) Standard
```


4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5)* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

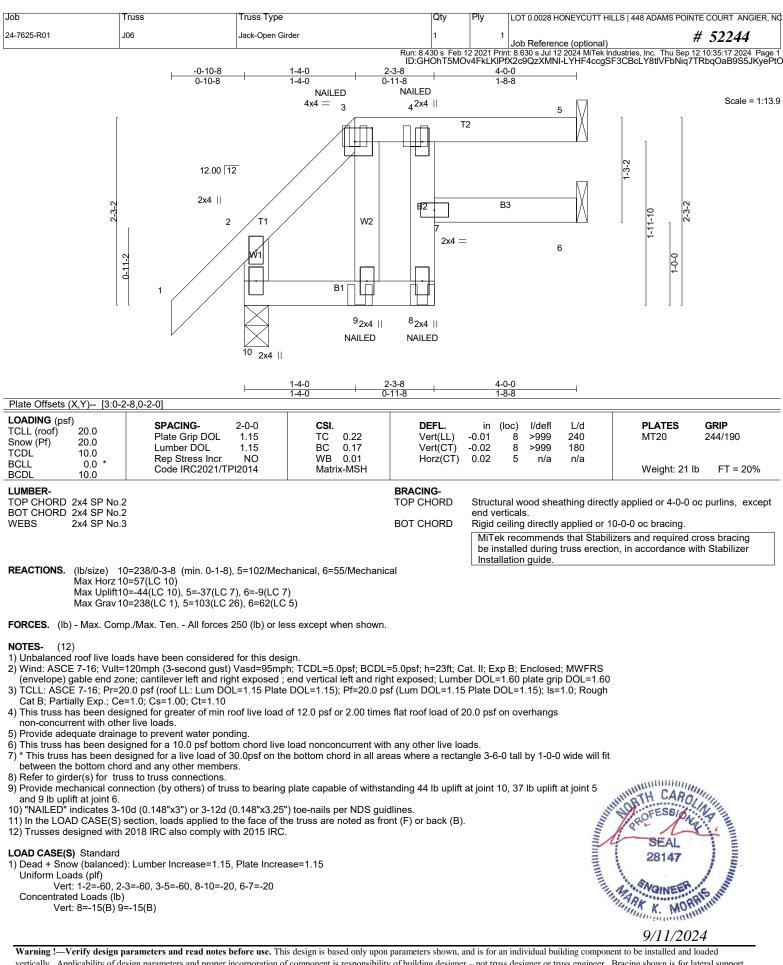
7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 64 lb uplift at joint 4 and 34 lb uplift at joint 5.

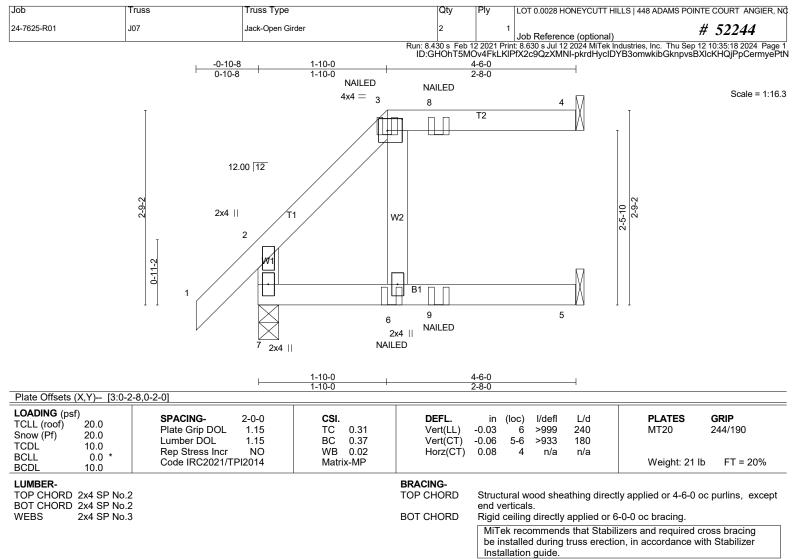

8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum

sheetrock be applied directly to the bottom chord.

Trusses designed with 2018 IRC also comply with 2015 IRC.

LOAD CASE(S) Standard





- This truss has been designed for greater of min non-concurrent with other live loads.
- 5) Provide adequate drainage to prevent water ponding.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit
- between the bottom chord and any other members.
- 8) Refer to girder(s) for truss to truss connections.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 21 lb uplift at joint 5 and 27 lb uplift at joint 6.
 10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 11) Trusses designed with 2018 IRC also comply with 2015 IRC.

LOAD CASE(S) Standard

REACTIONS. (lb/size) 7=281/0-3-8 (min. 0-1-8), 4=116/Mechanical, 5=88/Mechanical Max Horz 7=72(LC 10) Max Uplift7=-31(LC 10), 4=-39(LC 7), 5=-9(LC 10) Max Grav 7=281(LC 1), 4=118(LC 26), 5=96(LC 5)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES- (12)

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS

(envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough

Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

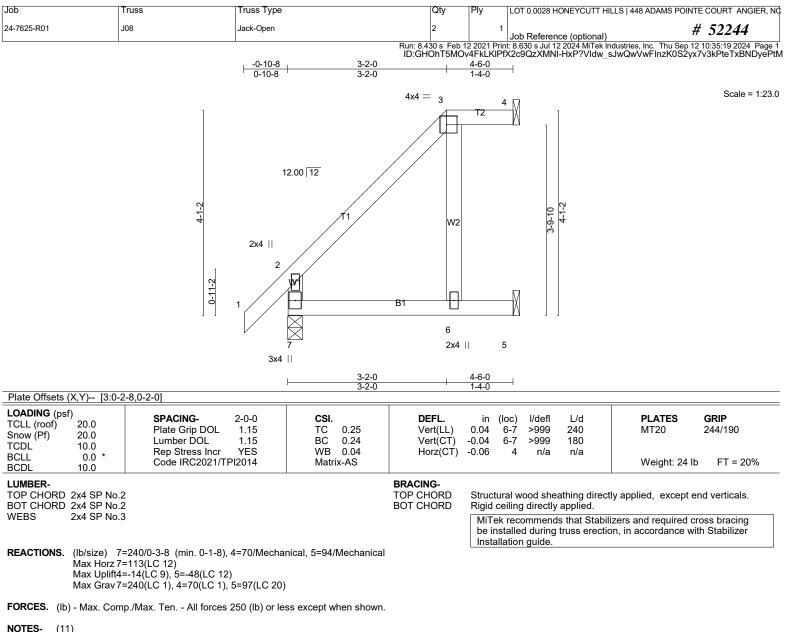
4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

5) Provide adequate drainage to prevent water ponding.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit

between the bottom chord and any other members.


- 8) Refer to girder(s) for truss to truss connections.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 31 lb uplift at joint 7, 39 lb uplift at joint 4 and 9 lb uplift at joint 5.
- "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.
 In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

12) Trusses designed with 2018 IRC also comply with 2015 IRC.

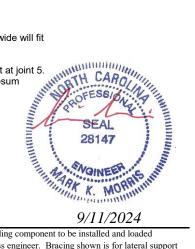
LOAD CASE(S) Standard

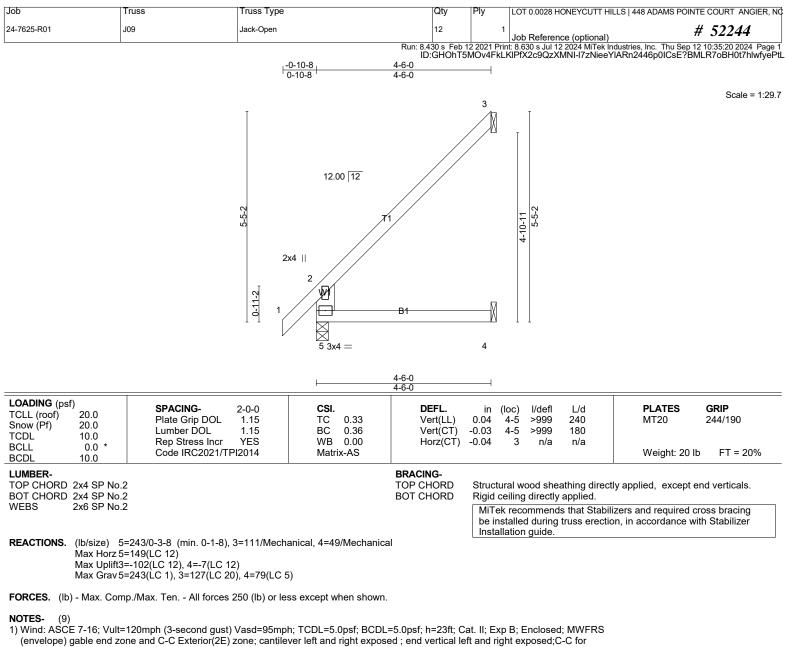
1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-2=-60, 2-3=-60, 3-4=-60, 5-7=-20 Concentrated Loads (lb) Vert: 3=-12(F) 6=-29(F) 8=-12(F) 9=-29(F)

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

- 5) Provide adequate drainage to prevent water ponding.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

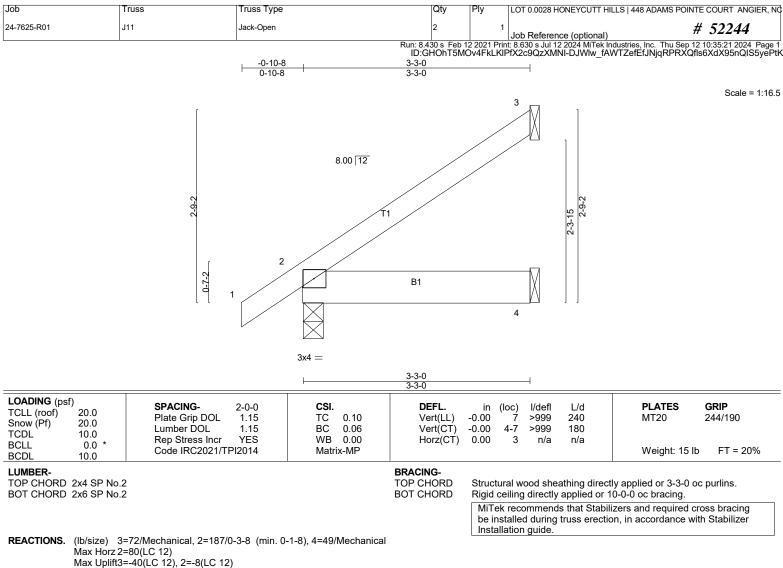

7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.


- 8) Refer to girder(s) for truss to truss connections.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 14 lb uplift at joint 4 and 48 lb uplift at joint 5. 10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

11) Trusses designed with 2018 IRC also comply with 2015 IRC.

LOAD CASE(S) Standard

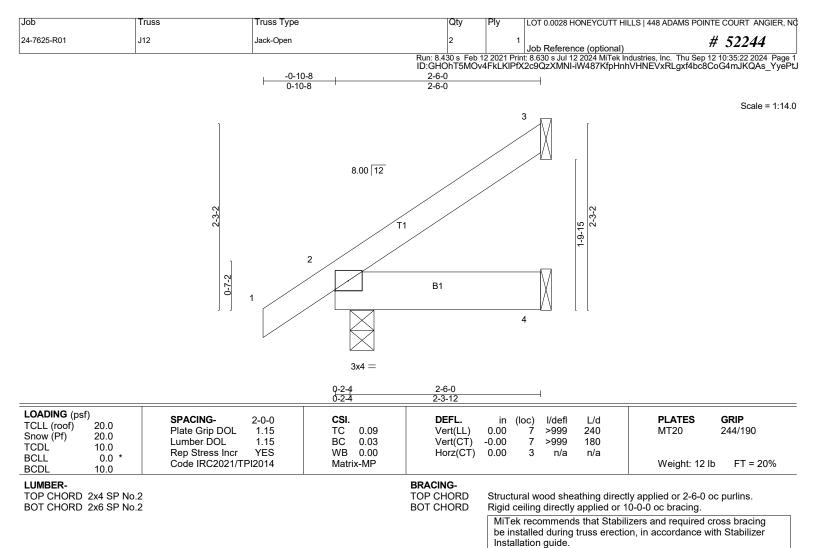


members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs
- non-concurrent with other live loads. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5)* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 102 lb uplift at joint 3 and 7 lb uplift at joint 4.
- 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum
- sheetrock be applied directly to the bottom chord.
- Trusses designed with 2018 IRC also comply with 2015 IRC.

LOAD CASE(S) Standard

Max Grav 3=74(LC 24), 2=187(LC 1), 4=66(LC 5)

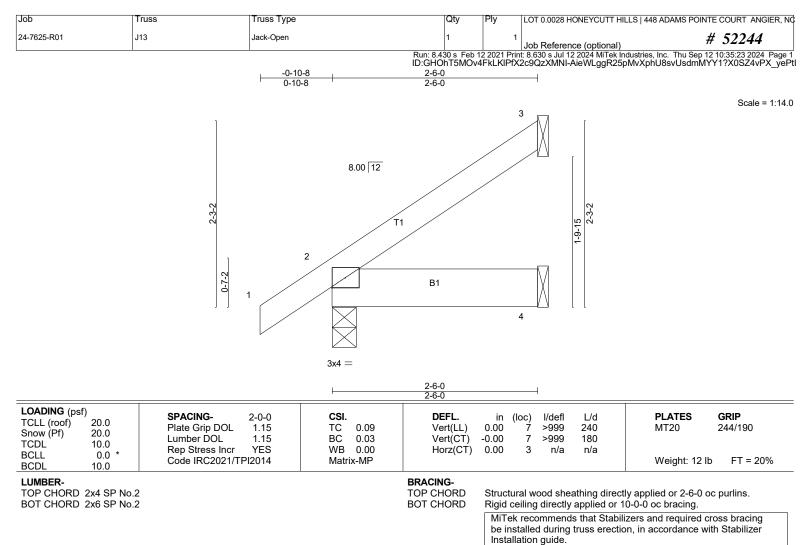

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES- (8)

- Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs
- non-concurrent with other live loads.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 40 lb uplift at joint 3 and 8 lb uplift at joint 2.
- 8) Trusses designed with 2018 IRC also comply with 2015 IRC.

```
LOAD CASE(S) Standard
```


REACTIONS. (lb/size) 3=53/Mechanical, 2=159/0-3-8 (min. 0-1-8), 4=35/Mechanical Max Horz 2=65(LC 12) Max Uplift3=-30(LC 12), 2=-10(LC 12) Max Grav 3=55(LC 20), 2=159(LC 1), 4=50(LC 5)


FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES- (8)

- Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs
- non-concurrent with other live loads.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 30 lb uplift at joint 3 and 10 lb uplift at joint 2.
- 8) Trusses designed with 2018 IRC also comply with 2015 IRC.

```
LOAD CASE(S) Standard
```


REACTIONS. (lb/size) 3=53/Mechanical, 2=159/0-3-8 (min. 0-1-8), 4=35/Mechanical Max Horz 2=65(LC 12) Max Uplift3=-30(LC 12), 2=-10(LC 12) Max Grav 3=55(LC 24), 2=159(LC 1), 4=50(LC 5)


FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES- (8)

- Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs
- non-concurrent with other live loads.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 30 lb uplift at joint 3 and 10 lb uplift at joint 2.
- 8) Trusses designed with 2018 IRC also comply with 2015 IRC.

```
LOAD CASE(S) Standard
```


REACTIONS. All bearings 1-3-0 except (jt=length) 4=Mechanical, 5=Mechanical.

(lb) - Max Horz 7=38(LC 11)

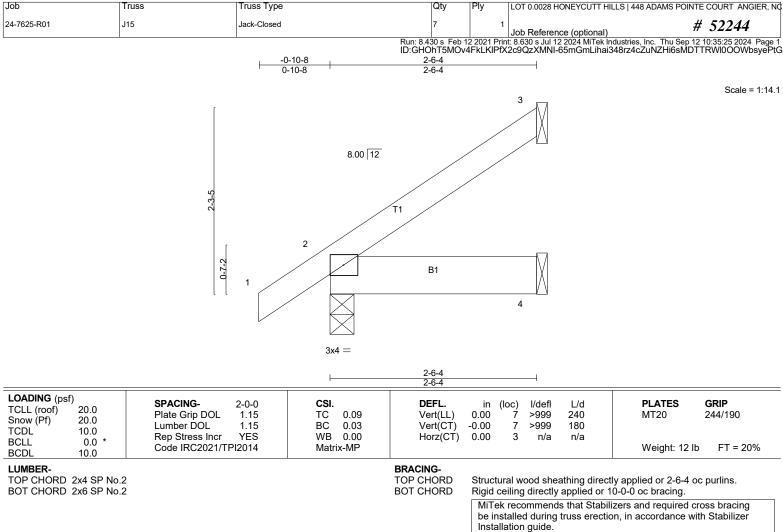
Max Uplift All uplift 100 lb or less at joint(s) 4, 7, 6 Max Grav All reactions 250 lb or less at joint(s) 4, 7, 5, 6, 6

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES- (11)

- Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs

non-concurrent with other live loads.

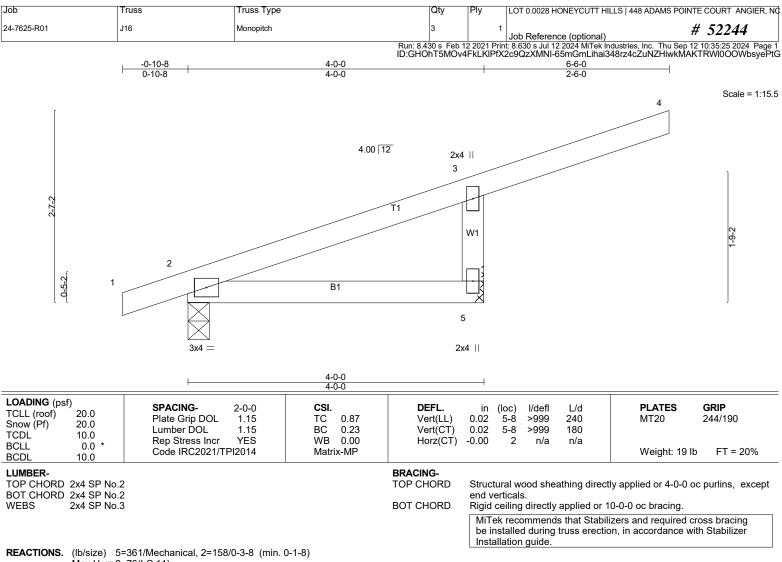

- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.

9) Refer to girder(s) for truss to truss connections.

- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 7, 6.
- 11) Trusses designed with 2018 IRC also comply with 2015 IRC.

LOAD CASE(S) Standard

REACTIONS. (lb/size) 3=54/Mechanical, 2=160/0-3-8 (min. 0-1-8), 4=35/Mechanical Max Horz 2=65(LC 12) Max Uplift3=-30(LC 12), 2=-10(LC 12) Max Grav 3=56(LC 24), 2=160(LC 1), 4=50(LC 5)


FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

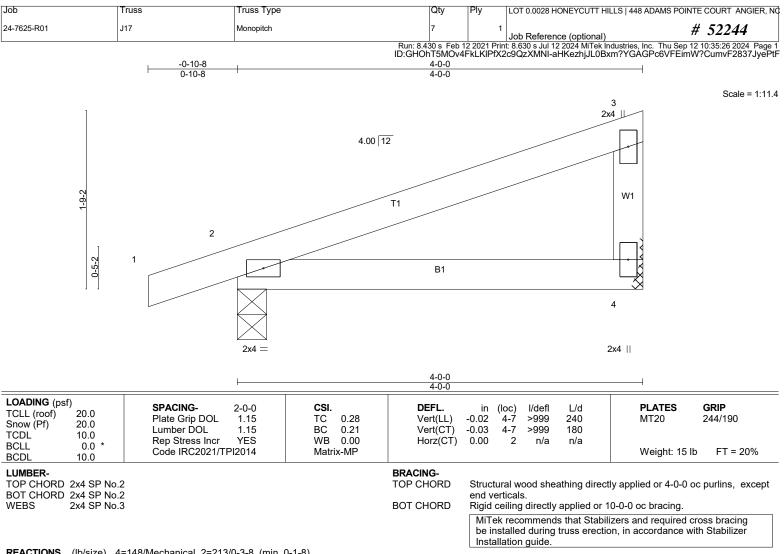
NOTES- (8)

- Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs
- non-concurrent with other live loads.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2.
- 8) Trusses designed with 2018 IRC also comply with 2015 IRC.

```
LOAD CASE(S) Standard
```



Max Horz 2=76(LC 11) Max Uplift5=-97(LC 11), 2=-21(LC 10) Max Grav 5=511(LC 21), 2=186(LC 21)

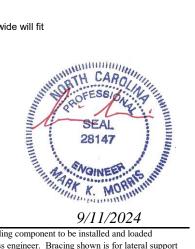

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 3-5=-481/291

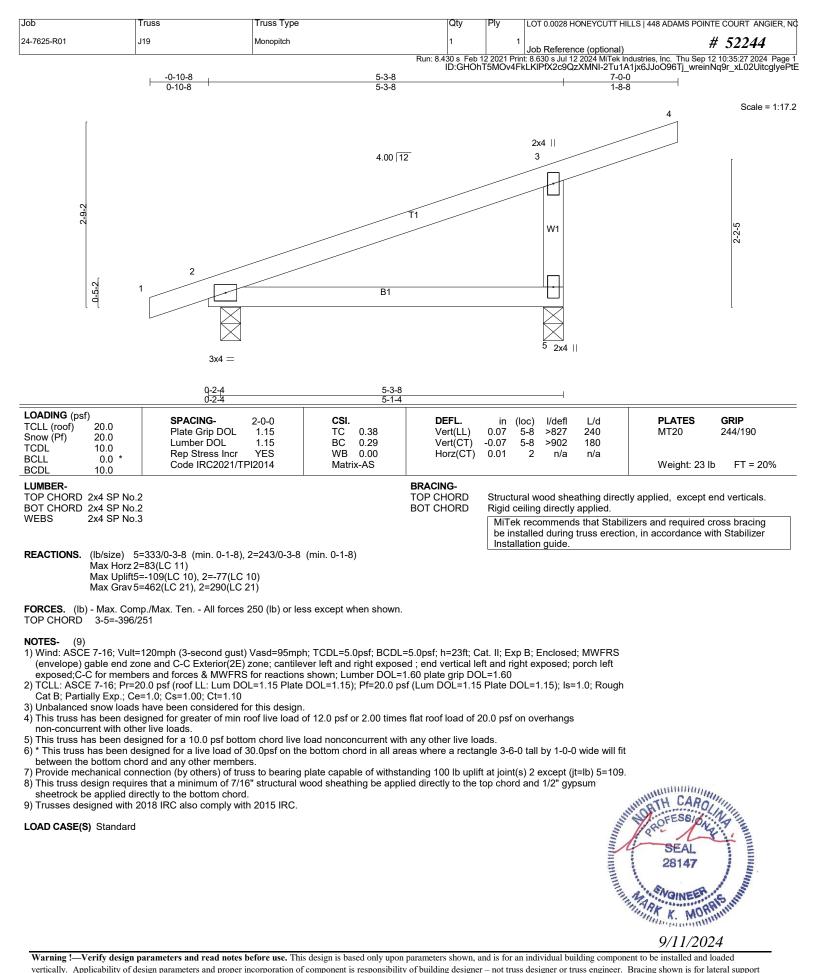
NOTES- (9)

- Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit
- between the bottom chord and any other members.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 2.
- 9) Trusses designed with 2018 IRC also comply with 2015 IRC.

LOAD CASE(S) Standard

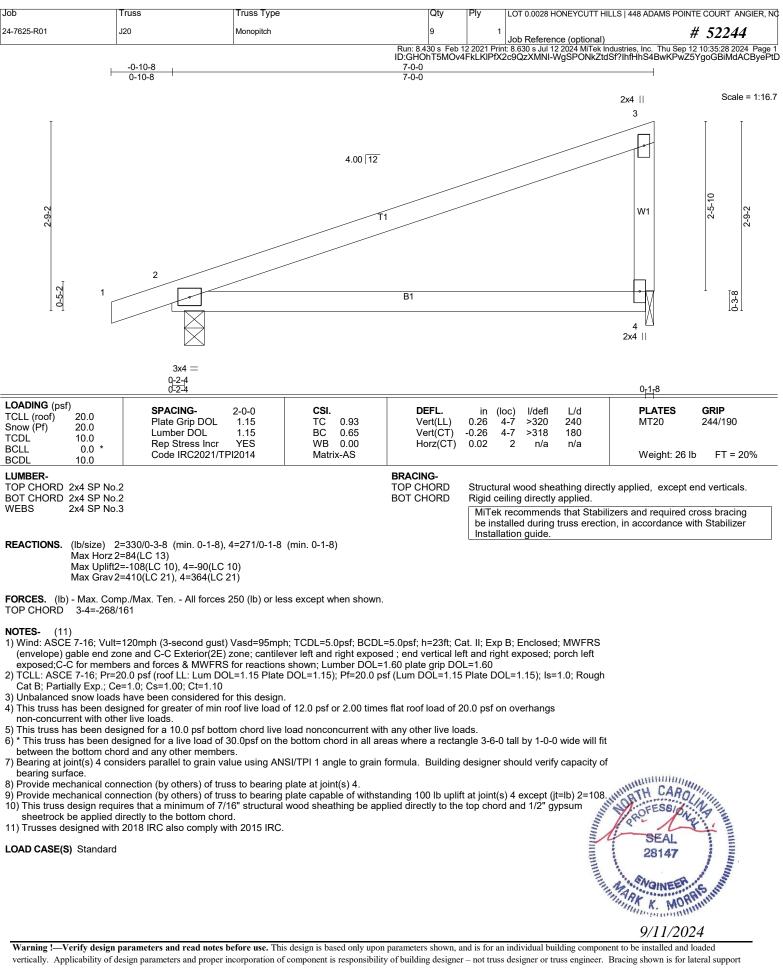
REACTIONS. (lb/size) 4=148/Mechanical, 2=213/0-3-8 (min. 0-1-8) Max Horz 2=50(LC 13) Max Uplift4=-23(LC 14), 2=-47(LC 10) Max Grav4=197(LC 21), 2=290(LC 21)

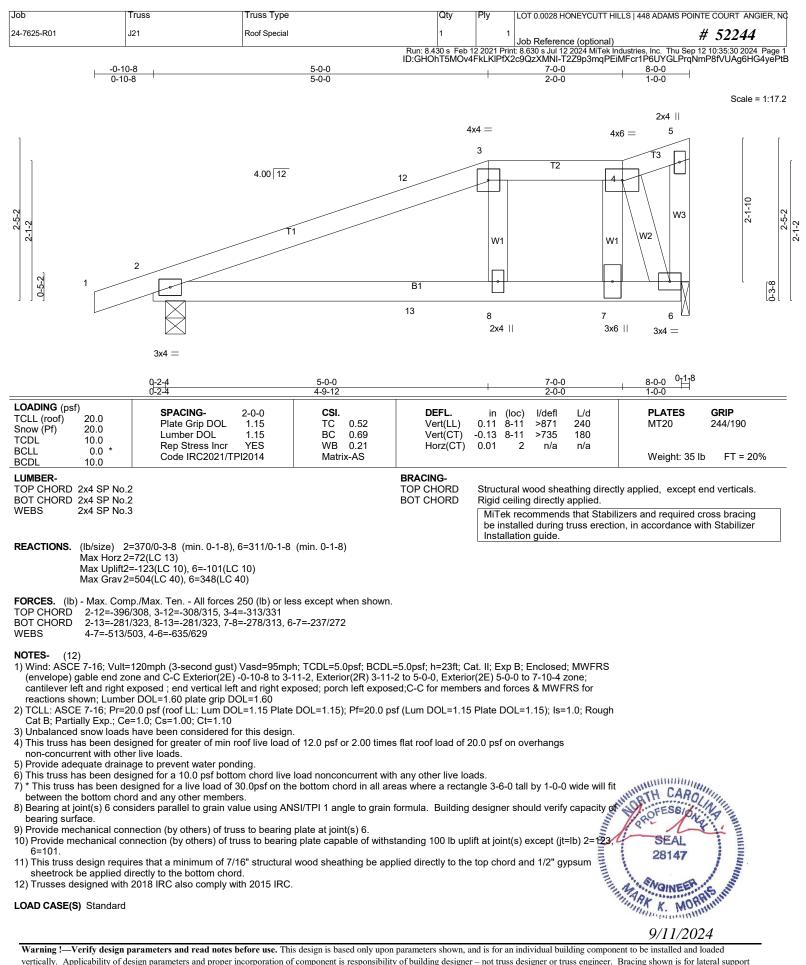

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

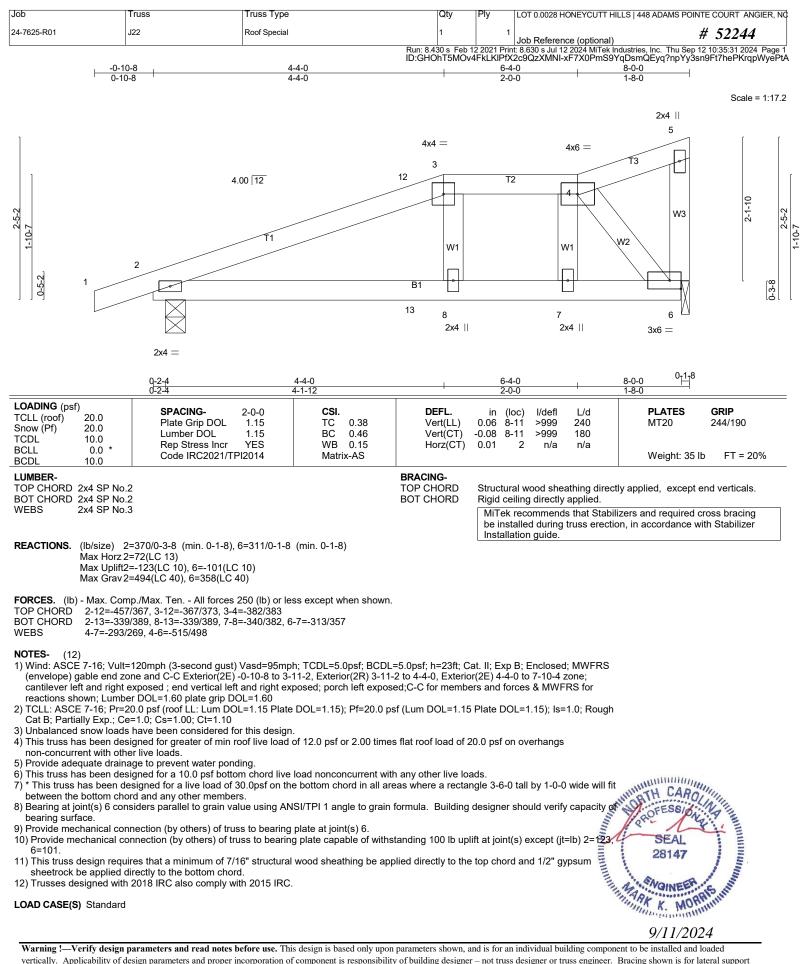

NOTES- (

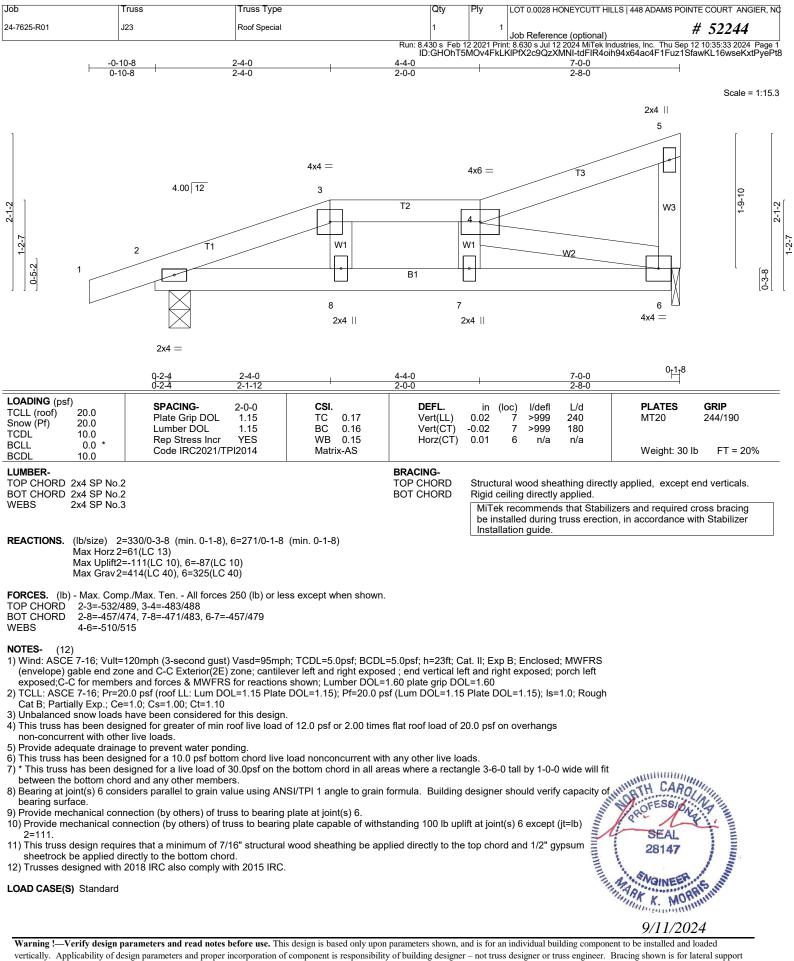
- 1) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs
- non-concurrent with other live loads. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6)* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit
- between the bottom chord and any other members.
- 7) Refer to girder(s) for truss to truss connections.

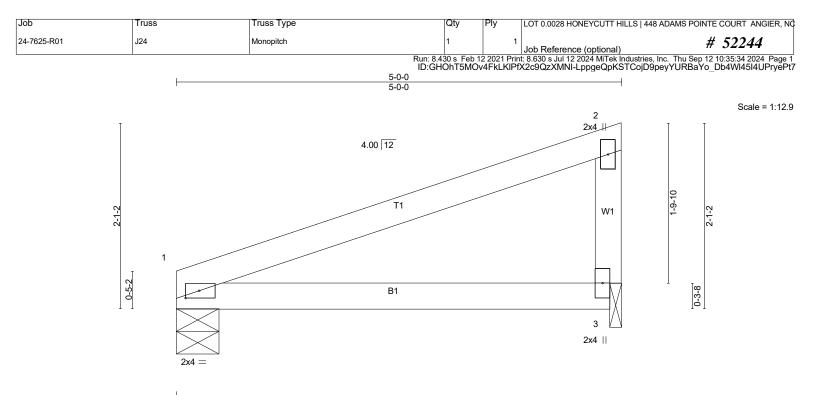
LOAD CASE(S) Standard


- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 2.
- 9) Trusses designed with 2018 IRC also comply with 2015 IRC.




Warning !-- Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.


9/11/2024



vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 *National Design Standard for Metal Plate Connected Wood Truss Construction* and BCSI 1-03 Guide to *Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses* from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

<u>0-1-8</u> Plate Offsets (X,Y)-- [1:0-1-14,0-1-0] LOADING (psf) SPACING-DEFL. I/d PLATES GRIP 2-0-0 CSI. in (loc) l/defl TCLL (roof) 20.0 Plate Grip DOL 1.15 тс 0.46 Vert(LL) 0.07 3-6 >849 240 **MT20** 244/190 Snow (Pf) 20.0 Lumber DOL 1.15 BC 0.35 Vert(CT) -0.07 3-6 >805 180 TCDL 10.0 WB 0.00 Rep Stress Incr YES Horz(CT) 0.01 n/a n/a 1 BCLL 0.0 Code IRC2021/TPI2014 Matrix-AS Weight: 17 lb FT = 20% BCDL 10.0 LUMBER-BRACING-TOP CHORD 2x4 SP No.2 TOP CHORD Structural wood sheathing directly applied, except end verticals.

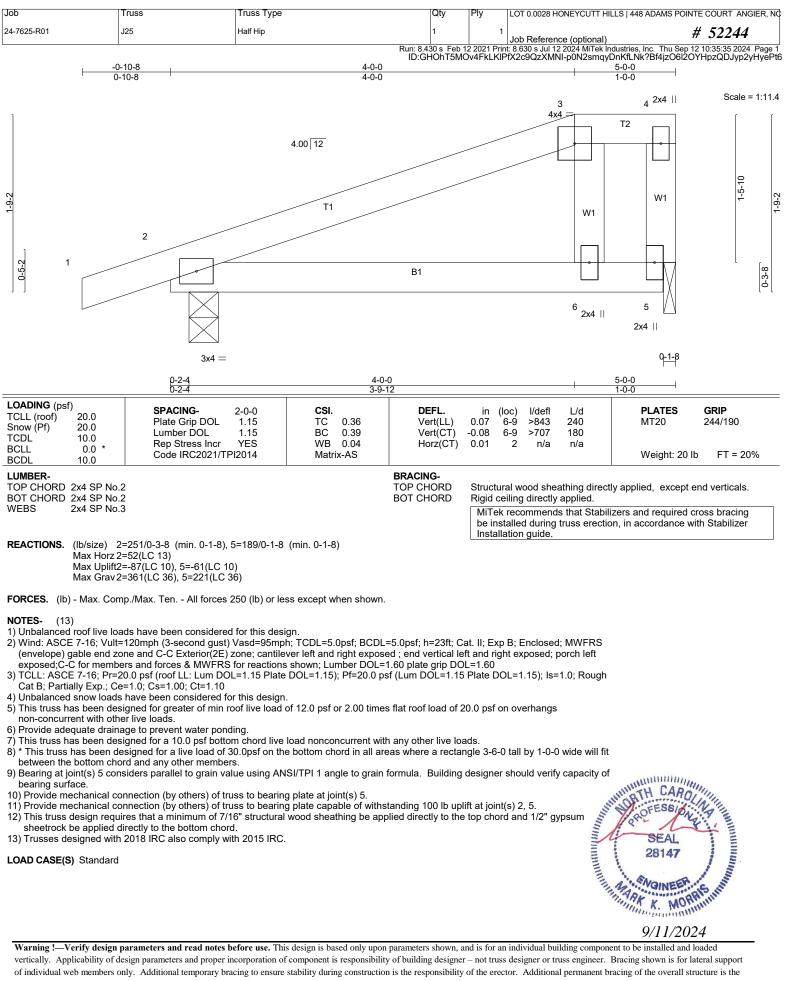
BOT CHORD 2x4 SP No.2 2x4 SP No.3 WFBS

BOT CHORD

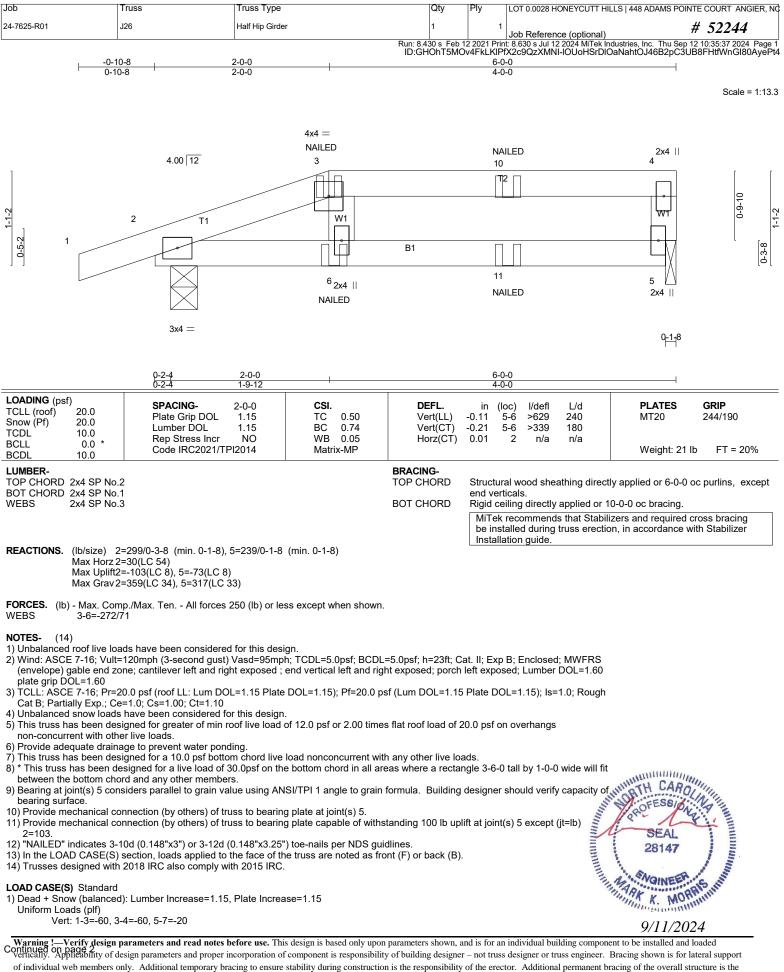
Rigid ceiling directly applied. MiTek recommends that Stabilizers and required cross bracing

be installed during truss erection, in accordance with Stabilizer Installation guide

REACTIONS. (lb/size) 1=194/0-5-12 (min. 0-1-8), 3=194/0-1-8 (min. 0-1-8) Max Horz 1=57(LC 13) Max Uplift1=-56(LC 10), 3=-65(LC 10) Max Grav 1=260(LC 21), 3=260(LC 21)

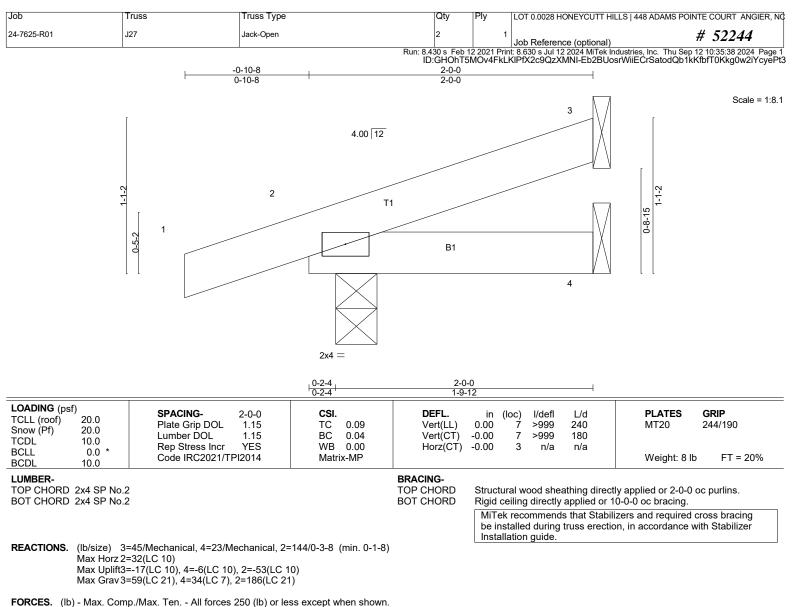

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-


- 1) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; porch left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 6) Bearing at joint(s) 3 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 7) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 3.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 10) Trusses designed with 2018 IRC also comply with 2015 IRC.

LOAD CASE(S) Standard

of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

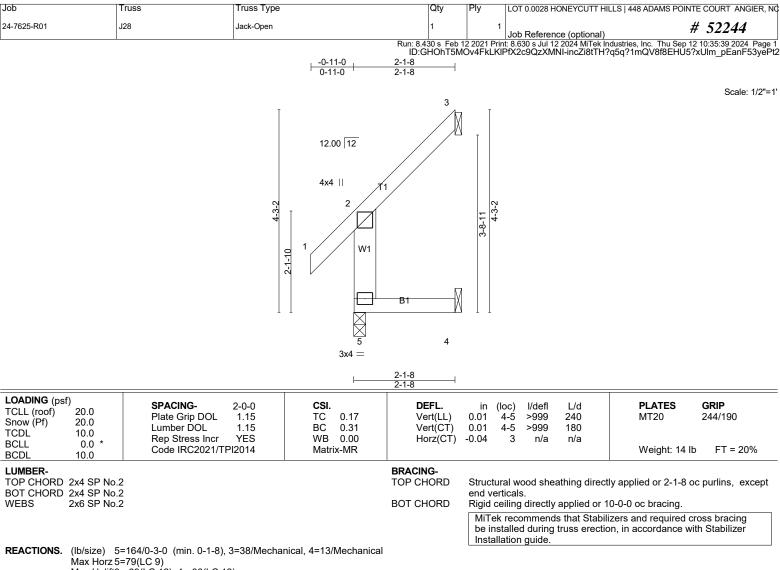

of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 *National Design Standard for Metal Plate Connected Wood Truss Construction* and BCSI 1-03 Guide to *Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses* from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 0.0028 HONEYCUTT HILLS 448 ADAMS POINTE COURT ANGIER, NC	
24-7625-R01	J26	Half Hip Girder	1	1	Job Reference (optional) # 52244	
Run: 8.430 s Feb 12 2021 Print: 8.630 s Jul 12 2024 MiTek Industries, Inc. Thu Sep 12 10:35:37 2024 Page ID:GHOhT5MOv4FkLKIPfX2c9QzXMNI-IOUoHSrDIOaNahtOJ46B2pC3UB8FHtfWnGI80Ayel						

LOAD CASE(S) Standard Concentrated Loads (Ib)

Vert: 3=-2(B) 6=-7(B) 10=-2(B) 11=-7(B)

SEAL 28147 9/11/2024

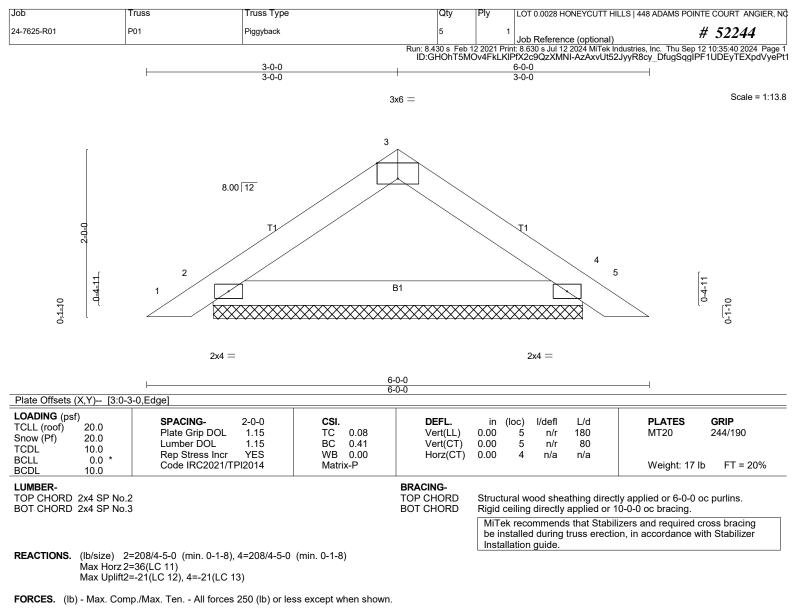

FORCES. (ib) - Max. Comp./Max. Ten. - All forces 250 (ib) of less except wi

NOTES- (9)

- Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; porch left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs
- non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6)* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit
- between the bottom chord and any other members.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 4, 2.
- 9) Trusses designed with 2018 IRC also comply with 2015 IRC.

```
LOAD CASE(S) Standard
```

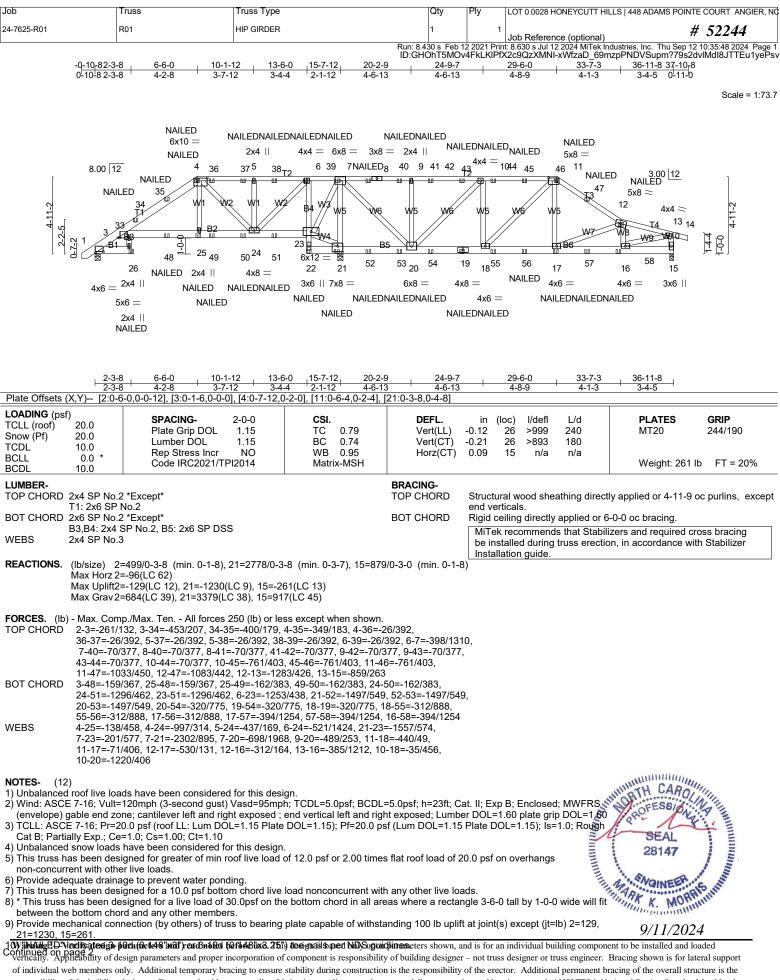

Max Uplift3=-69(LC 12), 4=-36(LC 12) Max Grav 5=187(LC 18), 3=61(LC 24), 4=47(LC 10)


FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES- (

- Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs
- non-concurrent with other live loads.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 4.
- 8) Trusses designed with 2018 IRC also comply with 2015 IRC.

LOAD CASE(S) Standard



NOTES- (10)

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.
- 9) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building
- designer. 10) Trusses designed with 2018 IRC also comply with 2015 IRC.

LOAD CASE(S) Standard

responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

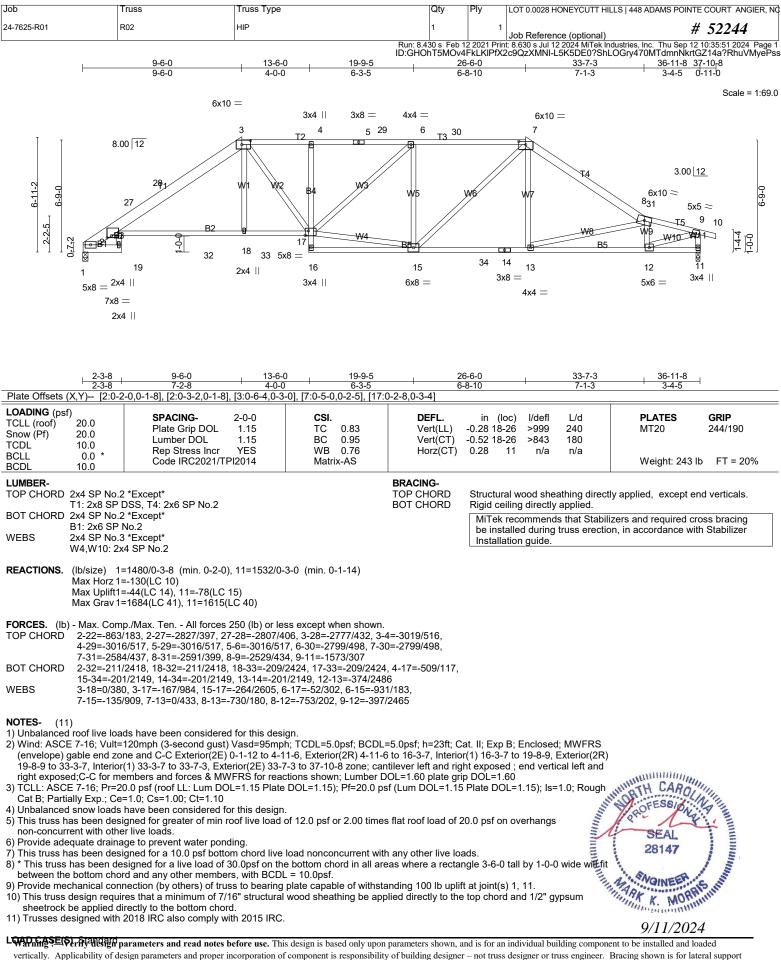
Job	Truss	Truss Type	Qty	Ply	LOT 0.0028 HONEYCUTT HILLS 448 ADAMS POINT	E COURT ANGIER, NC
24-7625-R01	R01	HIP GIRDER	1	1	Job Reference (optional)	# 52244
					t: 8.630 s Jul 12 2024 MiTek Industries, Inc. Thu Sep 12 fX2c9QzXMNI-PiDLoZ Iw45q0Xoh0cK?YLi1o1E	

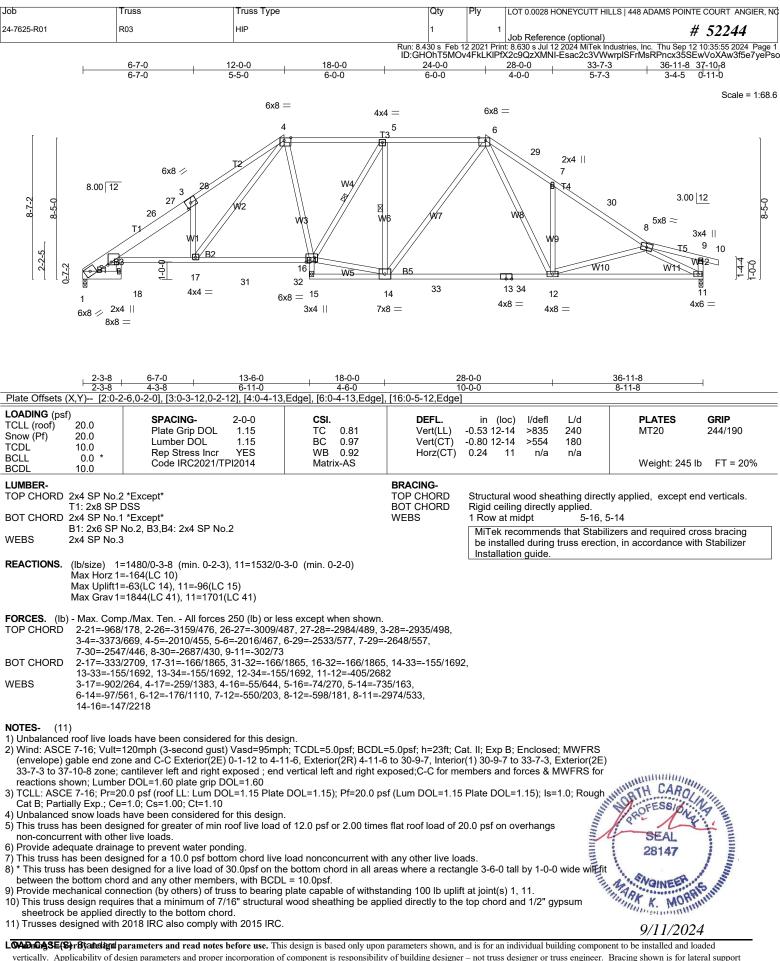
NOTES- (12)

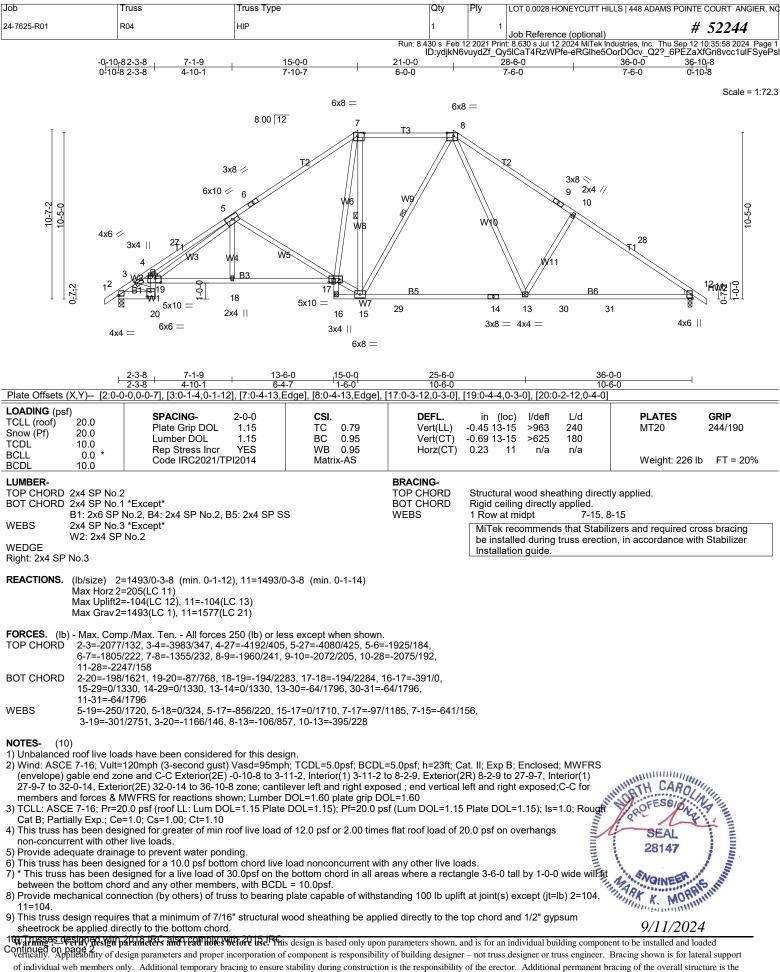
11) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

12) Trusses designed with 2018 IRC also comply with 2015 IRC.

LOAD CASE(S) Standard


1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15


Uniform Loads (plf)


Vert: 1-3=-60, 3-4=-60, 4-11=-60, 11-12=-60, 12-13=-60, 13-14=-60, 26-27=-20, 23-30=-20, 15-22=-20

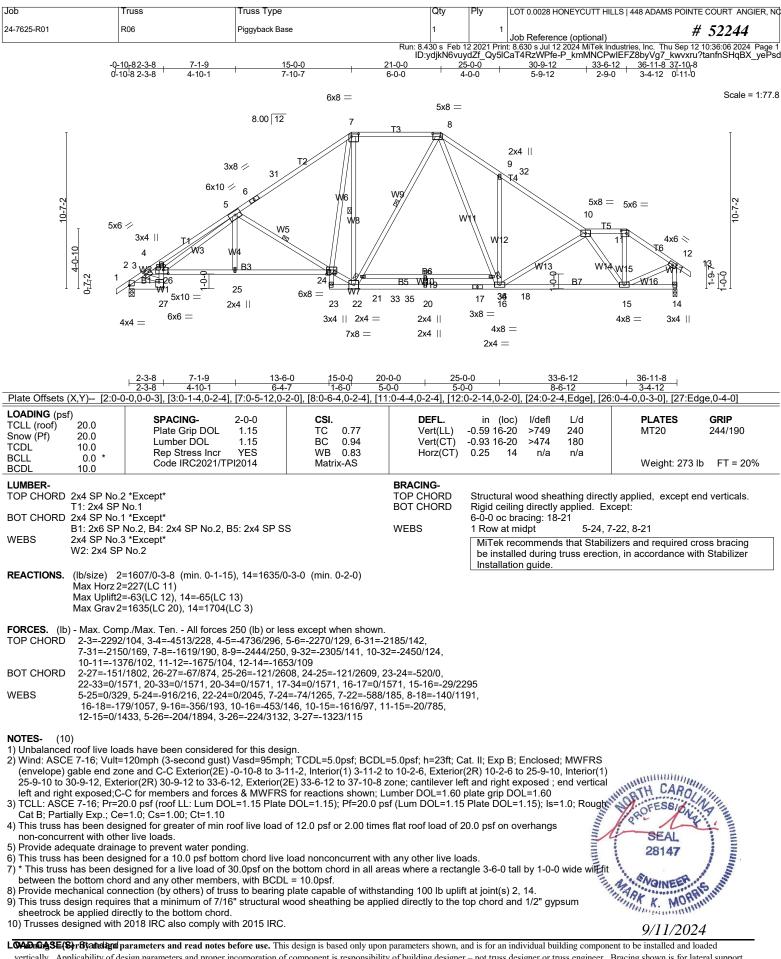
Concentrated Loads (lb) Vert: 4=-22(F) 11=-36(F) 12=-64(F) 26=-36(F) 6=-22(F) 19=-22(F) 25=-42(F) 21=-22(F) 23=-42(F) 7=-36(F) 17=-22(F) 34=-43(F) 35=-8(F) 36=-22(F) 37=-22(F) 38=-22(F) 40=-36(F) 42=-36(F) 43=-36(F) 45=-36(F) 46=-36(F) 47=-11(F) 48=-58(F) 49=-42(F) 50=-42(F) 51=-42(F) 52=-22(F) 53=-22(F) 54=-22(F) 55=-22(F) 56=-22(F) 56=-22(F)

of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

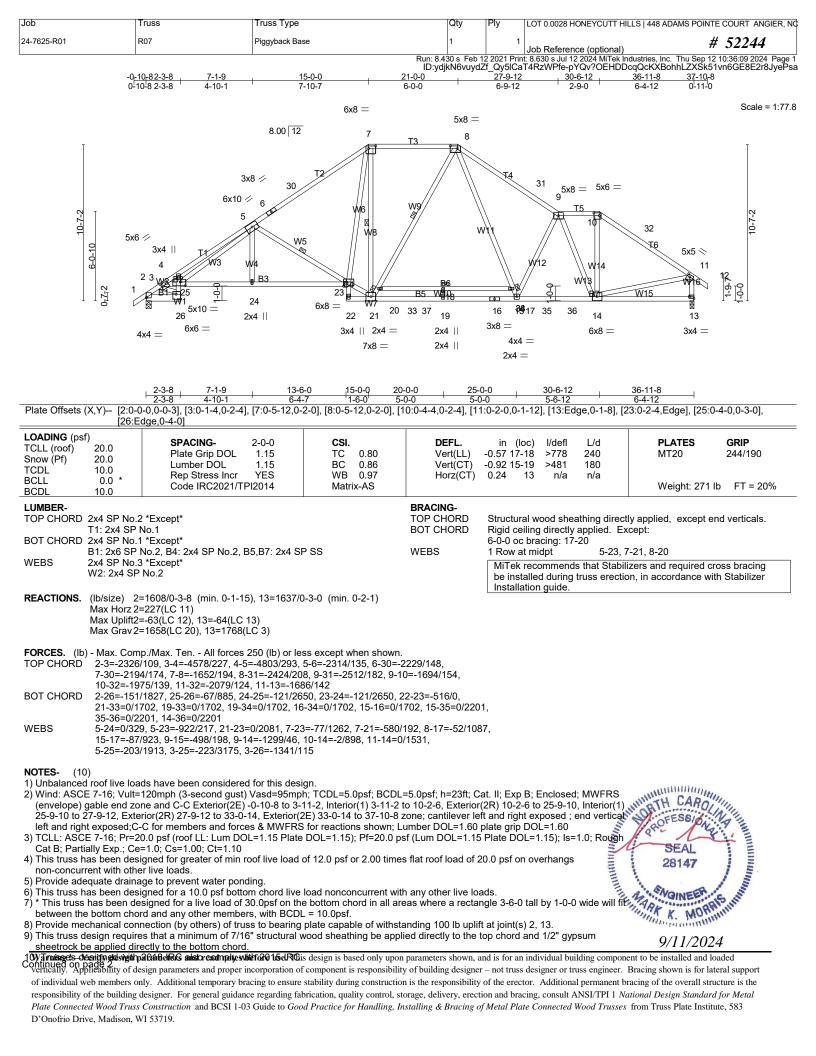
Job	Truss	Truss Type	Qty	Ply	LOT 0.0028 HONEYCUTT HILLS 448 ADA	AMS POINTE COURT ANGIER, NC
24-7625-R01	R04	HIP	1	1	Job Reference (optional)	# 52244
		Pup: 6	130 c Eob 1	2 2021 Drin	t: 8 630 s. Jul 12 2024 MiTok Industrios. Inc.	Thu Son 12 10:35:50 2024 Page 2

.n: 8.430 s Feb 12 2021 Print: 8.630 s Jul 12 2024 MiTek Industries, Inc. Thu Sep 12 10:35:59 2024 Page 2 ID:ydjkN6vuydZf_Qy5lCaT4RzWPfe-6dp7uz60Z9LFD3ZcbiVLxS6kH3c4Rb9lrhdJnuyePsk

LOAD CASE(S) Standard


Job 24-7625-R01	Tru R05		Truss Type HIP		Qty 1	1		ONEYCUTT HI	LLS 448 ADAMS F	OINTE COURT ANGIER, NO
	-0-10 ₁ 82-3-8 0-10-82-3-8		15-0		Run: 8.430 s Feb ID:ydjkN6vuy 21-0-0 6-0-0	12 2021 Print: /dZf_Qy5lCa 	8.630 s Jul 12 T4RzWPfe- 6-0	2 2024 MiTek In XCVFX?8us4	dustries, Inc. Thu S kq4XIBGq32Z4k 36-0-0 7-6-0	ep 12 10:36:02 2024 Page 1 FaGdoexUCXfszODyePsh
				5x8 =	5x8 =	=				Scale = 1:71.2
	$4x6 = 3x4$ $1^2 = 4x4 = 3x4$	~	8.00 12 3x8 = 0 10 = 6 5 10 = 6 5 17 2x4	7 7 7 7 7 7 7 7 7 7 7 7 7 7	T3 8 W9 B5 28	12 W10 13 3x8 =		3x8 ≥ 9 2x4 // 10 		10-7-2 14W2-0 1-0-0 10-7-2 10-7-2 10-7-2 10-7-2
	<u>2-3-8</u> 2-3-8		13-6-0 6-4-7	15-0-0 1-6-0	25-6-0 10-6-0	140.0.4.4.0		36-0		
Plate Offsets (LOADING (psf TCLL (roof) Snow (Pf) TCDL BCLL BCDL		<u>SPACING-</u> Plate Grip D Lumber DOI Rep Stress Code IRC20	2-0-0 OL 1.15 _ 1.15 Incr YES	-12], [8:0-5-12,0-2-0] CSI. TC 0.79 BC 0.95 WB 0.97 Matrix-AS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (lo -0.45 12-1 -0.69 12-1	c) l/defl 4 >958	<u>-2-12,0-4-0]</u> L/d 240 180 n/a	PLATES MT20 Weight∷	GRIP 244/190 225 lb FT = 20%
LUMBER- TOP CHORD BOT CHORD WEBS WEDGE Right: 2x4 SP	2x4 SP No.1 *I B1: 2x6 SP No 2x4 SP No.3 *I W2: 2x4 SP No	.2, B4: 2x4 SP N Except*	lo.2, B5: 2x4 SP SS		BRACING- TOP CHORD BOT CHORD WEBS	Rigid ceil 1 Row at MiTek r be insta	ing directly midpt ecommend	7-14, 8 s that Stabili	3-14 izers and require	ed cross bracing e with Stabilizer
REACTIONS.	Max Horz 2=20 Max Uplift2=-1			3-8 (min. 0-1-13)						
FORCES. (Ib) TOP CHORD BOT CHORD WEBS) - Max. Comp./ 2-3=-2078/13 6-7=-1802/22 11-27=-2253 2-19=-206/16 14-28=-1/131 11-30=-92/18 5-18=-255/17	Max. Ten All fo 3, 3-4=-3980/35 7, 7-8=-1342/23 165 19, 18-19=-92/7 8, 13-28=-1/131 03 03, 5-17=0/323,	orces 250 (lb) or less 5, 4-26=-4179/412, 5, 8-9=-1968/250, 9 68, 17-18=-205/228 8, 12-13=-1/1318, 1 5-16=-880/225, 14-	s except when showr 5-26=-4067/432, 5-6 -10=-2080/212, 10-2 4, 16-17=-205/2284, 2-29=-92/1803, 29-3 16=0/1690, 7-16=-10 , 8-12=-110/881, 10-	=-1921/188, 7=-2081/199, 15-16=-393/0, 0=-92/1803, 14/1188,					
 Wind: ASCF (envelope) (27-9-7 to 31) members ar TCLL: ASC Cat B; Parti This truss h non-concurn Provide ade This truss h between the Provide men (2=104. This truss d sheetrock b 	b) d roof live loads E 7-16; Vult=12 gable end zone I-2-6, Exterior(2 nd forces & MV E 7-16; Pr=20.0 ally Exp.; Ce=1 as been design rent with other I quate drainage as been design has been design has been design bas been design chanical conner esign requires i e applied direct	have been cons Dmph (3-second and C-C Exterio E) 31-2-6 to 36-1 (FRS for reaction psf (roof LL: Lu 0; Cs=1.00; Ct= ed for greater of ve loads. to prevent wate ed for a 10.0 psf ined for a live load and any other mo- tion (by others) hat a minimum of ly to the bottom	idered for this desig gust) Vasd=95mph; r(2E) -0-10-8 to 3-1 D-0 zone; cantilever ns shown; Lumber D m DOL=1.15 Plate I 1.10 min roof live load of r ponding. bottom chord live lo ad of 30.0psf on the embers, with BCDL of truss to bearing p of 7/16" structural wo chord.	n. ; TCDL=5.0psf; BCD 1-2, Interior(1) 3-11-2 left and right expose (OL=1.60 plate grip E DOL=1.15); Pf=20.0 p f 12.0 psf or 2.00 time bad nonconcurrent w bottom chord in all a = 10.0psf. late capable of withs bod sheathing be app	L=5.0psf; h=23ft; C to 8-2-9, Exterior(2 d; end vertical left ODL=1.60 osf (Lum DOL=1.15 es flat roof load of 2 ith any other live loa reas where a rectar tanding 100 lb uplif blied directly to the f		ind i/2 976	Joann	9/11/2	2024
of individual w responsibility of Plate Connected	blicability of designed members only. The building des	n parameters and p Additional tempor igner. For general p <i>instruction</i> and BC	roper incorporation of c ary bracing to ensure st guidance regarding fabr	design is based only upo component is responsibil tability during constructi ication, quality control, i <i>Practice for Handling</i> ,	ity of building designer on is the responsibility storage, delivery, erect	r – not truss of of the erectorion and brace	designer or tr or. Additiona ing, consult A	uss engineer. Il permanent bi ANSI/TPI 1 <i>Na</i>	Bracing shown is tracing of the overa national Design State	for lateral support Il structure is the <i>indard for Metal</i>

D'Onofrio Drive, Madison, WI 53719.

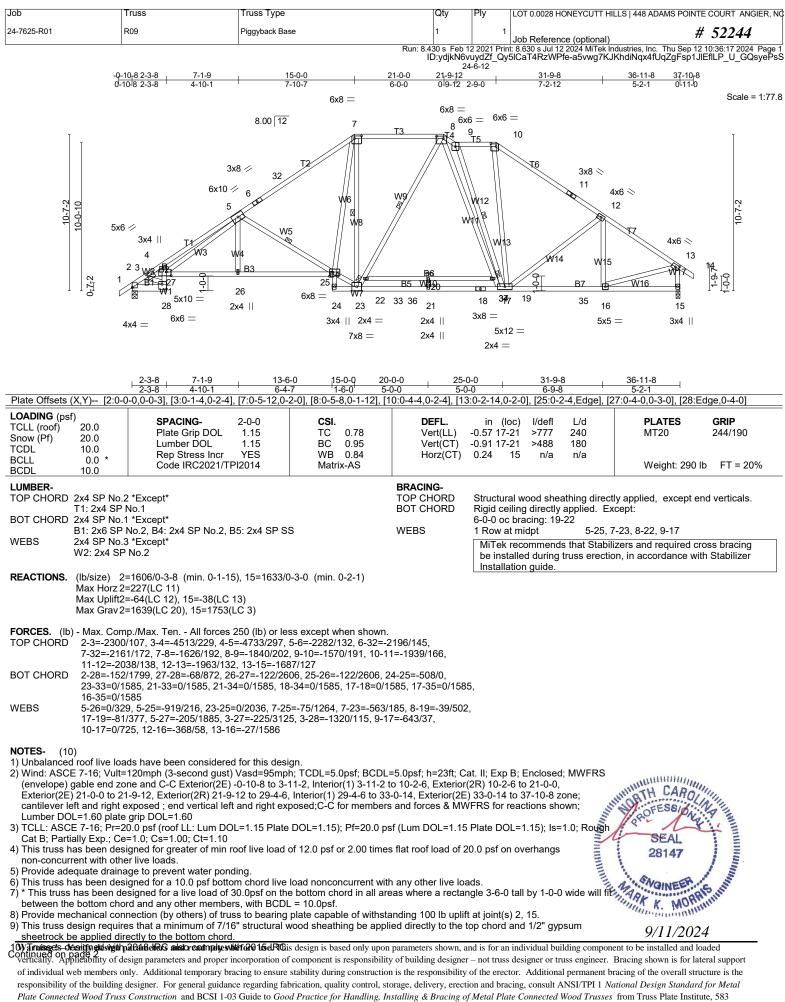

Job	Truss	Truss Type	Qty	Ply	LOT 0.0028 HONEYCUTT HILLS 448 ADAMS POINTE COURT ANGIER, NO
24-7625-R01	R05	HIP	1	1	Job Reference (optional) # 52244
		Run: 8	.430 s Feb 1 :ydjkN6vuy	2 2021 Prir dZf_Qy5lC	it: 8.630 s Jul 12 2024 MiTek Industries, Inc. Thu Sep 12 10:36:02 2024 Page 2 CaT4RzWPfe-XCVFX?8us4kq4XIBGq32Z4kFaGdoexUCXfszODyePsh

LOAD CASE(S) Standard

vertically. Applicability of design parameters and read notes before use. This begin is based only upon parameters shown, and is for an individual voluting component to be instanced and loaded of individual web members only. Additional permanent pracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 *National Design Standard for Metal Plate Connected Wood Trusse Construction* and BCSI 1-03 Guide to *Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses* from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 0.0028 HONEYCUTT HILLS 448 ADAMS POINTE COURT ANGIER, NO			
24-7625-R01	R07	Piggyback Base	1	1	Job Reference (optional) # 52244			
Run: 8.430 s Feb 12 2021 Print: 8.630 s Jul 12 2024 MiTek Industries, Inc. Thu Sep 12 10:36:10 202 ID:ydjkN6vuydZf Qy5ICaT4RzWPfe-II HCkFw Xkh2lvjkWCwum3dUVN8WZWNNuoOg								

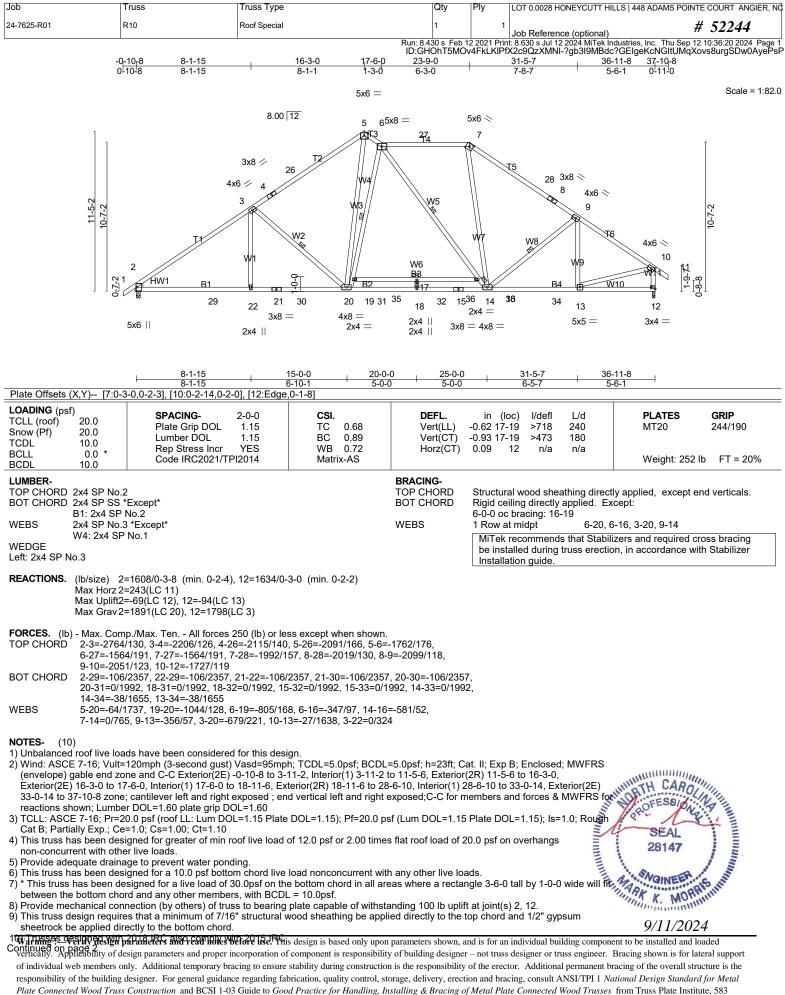
LOAD CASE(S) Standard


Job	Truss	;	Truss Type		Qty	Ply LOT 0.00	28 HONEYCUTT H	ILLS 448 ADAMS POINT	
24-7625-R01	R08		Piggyback Base		1 Run: 8 430 s. Feb 1		erence (optional)	ndustries, Inc. Thu Sep 12	t 52244
	-0 <u>-10-82</u> 0-10-8 2	-3-8 7-1-9 -3-8 4-10-1	+ <u>15-0-</u> 7-10-		ID:ydjkN6vuy 1-0-0 <u>24-</u>	dZf_Qy5lCaT4RzW -9-12 + 27-6-12 9-12 + 2-9-0 +	Pfe-iKgPqmHoG 32-11-7 5-4-11	S6GvDdIQeldWPh8SiF 36-11-8 37-10-8 4-0-2 0-11-0	hjy1p3s02H4yePsW
				6x8 =					Scale = 1:77.8
			8.00 12	7	5x8 =				
10-7-2	5x6 / 33	5x8 = 5 4 11 4 W/3 V	W5 W4 B3		иуу муу врам В5 мару	9 T5 10 T5 10 W ¹ 2 0 0	- <u>B7</u>	32 2x4 T6 11 4x6 \ 12 W15 W16	1-0-0 1-0-0 10-7-2
	44	6x6 =	x4	$\begin{array}{c} 23 & 22 \\ 3x4 \parallel 2x4 = \end{array}$	^{33 37} 20 2x4	17 38 18 35 3x8 =		15 $146x8 = 3x4 $	
	4x4 =	Ξ		7x8 =	2x4	4x8 = 2x4 =			
Plate Offsets	2	-3-8 7-1-9 -3-8 4-10-1 -0-3], [3:0-1-4,0-2-0], 0-4-0]	13-6-0 6-4-7 [5:0-2-10,0-1-12)-0 5-0	-0	32-11-7 7-11-7 0-2-14,0-2-0], [2	<u> </u>	-4-0,0-3-0],
LOADING (psf TCLL (roof) Snow (Pf) TCDL BCLL	5) 20.0 20.0 10.0 0.0 *	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2021/TP	2-0-0 1.15 1.15 YES	CSI. TC 0.81 BC 0.87 WB 0.86 Matrix-AS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) l/d -0.54 16-20 >8 -0.88 16-20 >50 0.25 14 n	13 240	PLATES MT20 Weight: 283 I	GRIP 244/190 b FT = 20%
BCDL	10.0		12014		BRACING-			Weight. 200 I	b 11 - 2076
	2x4 SP No.2 *Ex T1: 2x4 SP No.1				TOP CHORD BOT CHORD	Rigid ceiling dire	ectly applied.	tly applied, except e	
WEBS	2x4 SP No.1 *E> B1: 2x6 SP No.2 2x4 SP No.3 *E> W2: 2x4 SP No.	2, B4: 2x4 SP No.2, B ccept*	5,B7: 2x4 SP S	5	WEBS		ends that Stabil ring truss erection	7-22, 8-21, 9-16, 10- lizers and required cr on, in accordance wit	oss bracing
REACTIONS.	Max Horz 2=227 Max Uplift2=-63	07/0-3-8 (min. 0-2-0), /(LC 11) (LC 12), 14=-65(LC 1 /4(LC 20), 14=1832(L	3)	(min. 0-2-3)					
FORCES. (Ib)	2-3=-2350/99, 7-31=-2225/16	ax. Ten All forces 2 3-4=-4624/228, 4-5=- 3, 7-8=-1673/185, 8-9	-4852/295, 5-6=- 9=-2539/238, 9-1	-2345/123, 6-31=-22 10=-2060/158, 10-32					
BOT CHORD	2-27=-151/184	00, 11-12=-1947/120 4, 26-27=-67/893, 25 20-33=0/1648, 20-34	-26=-121/2678,	24-25=-121/2679, 2		3			
WEBS	35-36=0/1723, 5-25=0/329, 5- 16-18=-154/12	15-36=0/1723 24=-925/217, 22-24= 104, 5-26=-204/1929,	0/2099, 7-24=-7 3-26=-224/3206	/4/1265, 7-22=-585/1 6, 3-27=-1353/115, 9	85, 8-18=-116/12	,			
	,	11-15=-303/176, 10-	15=-326/75, 12-	15=-21/1658					
NOTES- (10 1) Unbalancec 2) Wind: ASCI (envelope) ; Exterior(2E) cantilever le Lumber DO 3) TCLL: ASC Cat B; Parti 4) This truss h non-concurr 5) Provide ade 6) This truss h 7) * This truss between the 8) Provide me 9) This truss d	roof live loads h	ave been considered mph (3-second gust) nd C-C Exterior(2E) - 2, Exterior(2R) 24-9- sed; end vertical left DOL=1.60 sof (roof LL: Lum DOI ; Cs=1.00; Ct=1.10 d for greater of min rc e loads. o prevent water pond d for a 10.0 psf bottor ed for a live load of 3 nd any other membersion (by others) of trus at a minimum of 7/16 http://site/Web bottors/ parameters and proper in Additional temporary bra ner. For general guidanc struction and BCSI 1-03 719.	for this design. Vasd=95mph; T 0-10-8 to 3-11-2 12 to 32-4-6, Intr and right expose _=1.15 Plate DC oof live load of 1 ing. m chord live load 0.0psf on the bc s, with BCDL = s to bearing plat " structural woon	CDL=5.0psf; BCDL= 2, Interior(1) 3-11-2 t erior(1) 32-4-6 to 32 ed;C-C for members 0L=1.15); Pf=20.0 ps 2.0 psf or 2.00 times d nonconcurrent with ttom chord in all are 10.0psf. te capable of withsta d sheathing be appli	5.0psf; h=23ft; Ca o 10-2-6, Exterior(-11-6, Exterior(2E and forces & MW f (Lum DOL=1.15 f flat roof load of 2 a any other live loa as where a rectar inding 100 lb upliff ed directly to the t	at. II; Exp B; Enclo (2R) 10-2-6 to 21-) 32-11-6 to 37-10 /FRS for reactions Plate DOL=1.15) 0.0 psf on overha ads. 1gle 3-6-0 tall by 1 t at joint(s) 2, 14. op chord and 1/2"	osed; MWFRS 0-0, I-8 zone; s shown; ; Is=1.0; Rough ngs -0-0 wide will fit	SEAL 28147 9/11/202	A A
vertically. App of individual w responsibility of Plate Connected D'Onofrio Dri	bice of the second seco	parameters and read hores b parameters and proper in Additional temporary bra ner. For general guidanc struction and BCSI 1-03 719.	corporation of con cing to ensure stab e regarding fabrica Guide to <i>Good Pr</i>	sign is based only upon aponent is responsibility ility during construction tion, quality control, sto <i>cactice for Handling, In</i>	parameters shown, a v of building designer i is the responsibility prage, delivery, erecti stalling & Bracing of	in is for an individual - not truss designer of the erector. Addition and bracing, cons f Metal Plate Connect	or truss engineer. tional permanent b sult ANSI/TPI 1 N cted Wood Trusses	Bracing shown is for lat aracing of the overall stru- ational Design Standara from Truss Plate Institu	teral support inclure is the <i>l for Metal</i> ite, 583

Job	Truss	Truss Type	Qty	Ply	LOT 0.0028 HONEYCUTT HILLS 448 ADAMS POINTE COURT ANGIER, NC
24-7625-R01	R08	Piggyback Base	1	1	Job Reference (optional) # 52244
					t: 8.630 s Jul 12 2024 MiTek Industries, Inc. Thu Sep 12 10:36:14 2024 Page 2 zzWPfe-AWDo26IQ1mE7WNCVzMGs2cEJC6IwSPHzHWmcpXyePsV

10) Trusses designed with 2018 IRC also comply with 2015 IRC.

LOAD CASE(S) Standard



D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 0.0028 HONEYCUTT HILLS 448 ADAMS POINTE COURT ANGIER, NO
24-7625-R01	R09	Piggyback Base	1	1	Job Reference (optional) # 52244
					t: 8.630 s Jul 12 2024 MiTek Industries, Inc. Thu Sep 12 10:36:17 2024 Page 2 5ICaT4RzWPfe-a5vwg7KJKhdiNqx4fUqZgFsp1JIEfILP_U_GQsyePsS

LOAD CASE(S) Standard

i une connecteu	wood mass construction
D'Onofrio Drive	Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 0.0028 HONEYCUTT HILLS 448 ADAMS POINTE COURT ANGIER, 1
24-7625-R01	R10	Roof Special	1		Job Reference (optional) # 52244

Run: 8.430 s Feb 12 2021 Print: 8.630 s Jul 12 2024 MiTek Industries, Inc. Thu Sep 12 10:36:20 2024 Page 2 ID:GHOhT5MOv4FkLKIPfX2c9QzXMNI-?gb3I9MBdc?GEIgeKcNGltUMqXovs8urgSDw0AyePsP

LOAD CASE(S) Standard

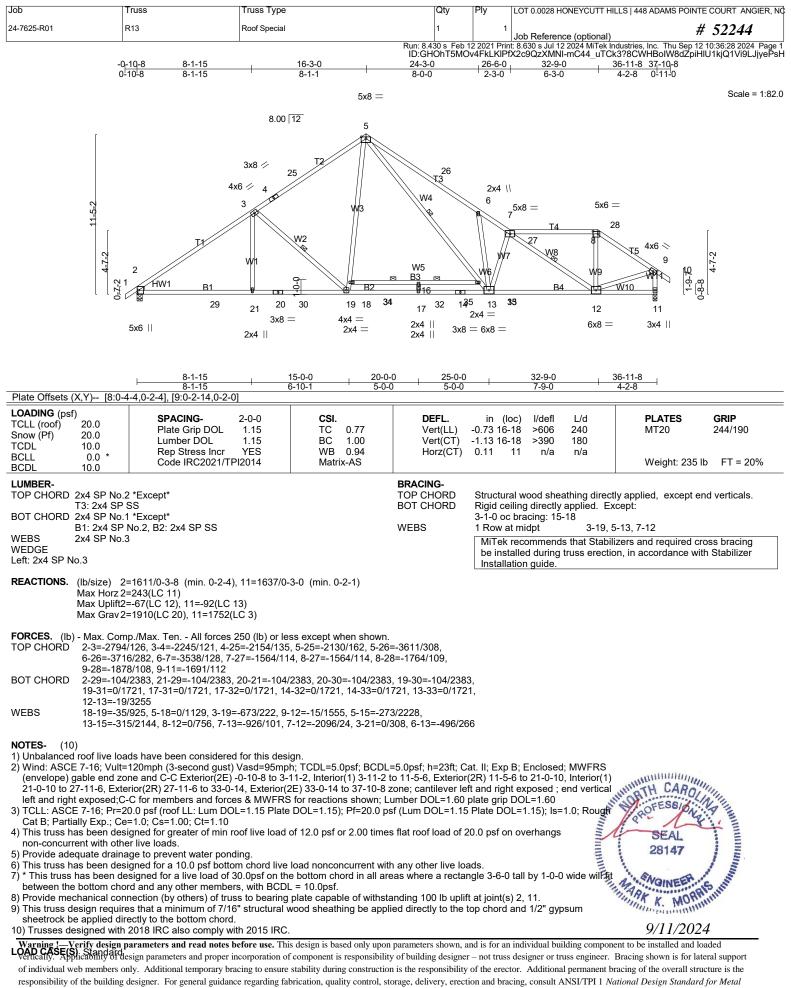
ob	Т	russ	Truss Type		Qty	Ply L	LOT 0.0028 HC	ONEYCUTT HIL	LS 448 ADAMS PO	INTE COURT ANGIER, N
4-7625-R01	F	11	Roof Special		1	1	Job Referenc	ce (optional)		# 52244
					Run: 8.430 s Feb 1	12 2021 Print:	8.630 s Jul 12	2024 MiTek In I-x3ipirOR9D	dustries, Inc. Thu Se F Ubp1R1QkNIZi4	# 32244 0 12 10:36:22 2024 Page KSNK_487mi153yePs
	-0 <u>-1</u> 0-10	0 <u>-8 8-1-15</u>)-8 8-1-15	16-		0-6-0 26-	-9-0 3-0	31-9-8	36	6-11-8 37-10-8 5-2-0 0-11-0	
	0-10		0-1			3-0	5-0-8		5-2-0 0-11-0	
				5x8 =						Scale = 1:80.
			8.00 12	5						
	[, ,						
				тэ	₹3 5x6 =		5x8 =			
	ſ		3x8 // 25 //			7 14				l
			4x6 / 4		26 W4	Π	M			
	2		3	wз				2x4 8		
	-5 11.				// /W6		/W8	815		-2
	8-7-2	I	W2			, w	/k		4x6 📎	8-7-2
			W1				/		9 ₁₀	
		2 HW1 B1	o		B3					0-8-7 -8-8-8 -8-8-8
	0-7-2			19 18 2		15 13 31;	B4		Ŵ10 ·	- j∞j
		× 27	21 20 28 2x4 3x8 =	19 18 ²⁰ 4x4 =	17	6x10 =	32 33	12	11	
	6	$x_{6} =$	2x4 ^{3x0} =	3x6 =	2x4	2x4 =		6x8 =	3x4	
					2x4 3x8					
		8-1-15	15-0-0	20-0	-0 , 25-0-0		31-9-8	20	S 11 9	
		8-1-15	6-10-1				6-9-8		6-11-8 5-2-0	
OADING (psf		-12,0-2-0], [9:0-2-14,0-	2-0]							
CLL (roof)	20.0	SPACING- Plate Grip DOL	2-0-0 1.15	CSI. TC 0.69	DEFL. Vert(LL)	in (loc -0.62 16-1		L/d 240	PLATES MT20	GRIP 244/190
Snow (Pf) CDL	20.0 10.0	Lumber DOL	1.15	BC 0.96	Vert(CT)	-0.99 16-1	8 >448	180	WIZO	244/100
BCLL	0.0 *	Rep Stress Incr Code IRC2021/	YES FPI2014	WB 1.00 Matrix-AS	Horz(CT)	0.08 1	1 n/a	n/a	Weight: 25	51 lb FT = 20%
UMBER-	10.0				BRACING-				0	
OP CHORD					TOP CHORD				y applied, excep	t end verticals.
BOT CHORD		Except* No.2, B4: 2x4 SP No.1			BOT CHORD WEBS	Rigid ceili 1 Row at	ing directly a midpt		-12, 3-19, 5-15	
WEBS	2x4 SP No.3	*Except*				MiTek re	ecommends	s that Stabili	zers and required	
VEDGE	W3,W6,W4:	2X4 SP No.1					lled during t ion guide.	truss erectio	n, in accordance	with Stabilizer
.eft: 2x4 SP N	lo.3						<u> </u>			
REACTIONS.		1609/0-3-8 (min. 0-2-	5), 11=1632/0-3-0	(min. 0-2-3)						
		-68(LC 12), 11=-94(L0								
	Max Grav2=	1938(LC 20), 11=185	B(LC 3)							
		o./Max. Ten All force								
OP CHORD		122, 3-4=-2289/117, 4 3/151, 7-26=-1953/151								
BOT CHORD		2425, 21-27=-105/242 03, 17-29=0/1403, 17-								
	13-32=0/17	75, 32-33=0/1775, 12	33=0/1775, 18-34=			σ,				
VEBS		7/442, 15-35=-107/442 924, 5-18=-1/1099, 6- [.]		=0/989, 8-12=-312	/179, 3-19=-679/22	23,				
		81, 3-21=0/322, 5-15=			,	,				
IOTES- (10										
Wind ASC	= 7 16. \/ult-	ds have been consider 120mph (3-second gus	t) Vacd-05mpb. T(CDI =5 0psf ⁻ BCDI	=5 0psf: h=23ft: C;	at II [.] Exp.B	8. Enclosed	· MWFRS		
(envelope)	gable end zor	ne and C-C Exterior(2E) -0-10-8 to 3-11-2	, Interior(1) 3-11-2	to 11-5-6, Exterior((2R) 11-5-6	to 16-3-0,	(05)	SUMMER CAR	Itter.
Exterior(2E) 33-0-14 to 3) 16-3-0 to 20 37-10-8 zone;	-6-0, Interior(1) 20-6-0 cantilever left and righ	to 21-11-6, Exterio it exposed ; end ve	r(2R) 21-11-6 to 31 rtical left and right	exposed;C-C for m	-9-8 to 33-0 nembers an	0-14, Extern Id forces & I	or(2E) MWFRS for	IN ATH CAA	LIAMU
reactions sh	nown; Lumbe	ne and C-C Exterior(2E -6-0, Interior(1) 20-6-0 cantilever left and right r DOL=1.60 plate grip 0.0 psf (roof LL: Lum D	DOL=1.60	-1 15). Df-20.0 p	of (Lum DOI = 1.15		-1 15). lo-1	1.0: Pough	ROFESSIO	No. P III
Cat B; Parti	ally Exp.; Ce	=1.0; Cs=1.00; Ct=1.10)						SEAL	
	as been desi rent with othe	gned for greater of mir r live loads.	roof live load of 12	2.0 psf or 2.00 time	s flat roof load of 2	0.0 psf on	overhangs	Infrathantin	28147	1111
) Provide ade	equate draina	ge to prevent water po			h ony other live l	do		IIII	1	
		gned for a 10.0 psf bot signed for a live load o					all by 1-0-0	wide will fit	1 SNOINEE	S. S. Martin
) * This truss	e bottom chor	d and any other memb nection (by others) of ti	ers, with BCDL = 1	0.0psf.		0	•		MARK K. MO	RM IIII
between the									111111111111111	
between the B) Provide me D) This truss d	esign require	s that a minimum of 7/		sheathing be app	lied directly to the t	op chord a	nd 1/2" gyp	sum	0/11/0	001
 between the Provide mee This truss d sheetrock b 	esign require e applied dire		d.	0 11		•		sum	<i>9/11/2</i>	ARE MARKED

responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Meta Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job		Truss	Truss Type	Qty	Ply	LOT 0.0028 HONEYCUTT HILLS 448 ADAM	IS POINTE COURT ANGIER, NO
24-7625	i-R01	R11	Roof Special	1	1	Job Reference (optional)	# 52244
	-					Job Reference (optional)	

Run: 8.430 s Feb 12 2021 Print: 8.630 s Jul 12 2024 MiTek Industries, Inc. Thu Sep 12 10:36:22 2024 Page 2 ID:GHOhT5MOv4FkLKIPfX2c9QzXMNI-x3ipjrOR9DF_Ubp1R1QkNIZi4KSNK_487mi153yePsN

LOAD CASE(S) Standard


R12 Roof Special 1 1 1 1 1 1 Built 2024 # 52244 -0r10-8 8-1-15 16-3-0 23-6-0 29-9-0 36-11-8 37-10-8 0-10-8 8-1-15 8-1-1 7-3-0 6-3-0 7-2-8 0-11-0	Job		russ	Truss Type		Qty	Ply LOT 0.002			
$\frac{1}{9^{168}} = \frac{1}{2^{116}} + \frac{1}{16^{10}} + \frac{1}{2^{10}} + \frac$						1				
$\frac{4103}{4102} \frac{1415}{5113} + \frac{1030}{511} + \frac{1240}{724} + 12$						Run: 8,430 s Feb 1	Job Refe	rence (optional) ul 12 2024 MiTek Indu		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		-0-1	0-8 8-1-15	16-3-0		ID:GHOhT5MOv 23-6-0	4FkLKIPfX2c9QzXN 29-9-0	INI-LdOyLsQKS8d 36-11-8	ZL3Yc79zR?xBÁw 3 37-10-8	YTtXPxapkwhiOyePs
$\frac{1}{1000} = \frac{1}{1000} + \frac{1}{10000} + \frac{1}{10000} + \frac{1}{100000} + \frac{1}{10000000000000000000000000000000000$		0-10	D-8 8-1-15							
$ \begin{array}{c} \begin{array}{c} & & & & & & & & & & & & & & & & & & &$					5x8 =					Scale = 1:80.7
$ \begin{array}{c} \begin{array}{c} & & & & & & & & & & & & & & & & & & &$										
$\frac{46\%}{10^{-1}} \frac{2}{10^{-1}} \frac{46\%}{10^{-1}} \frac{2}{10^{-1}} \frac{2}{10^{-$				8.00 12	5					
$ \frac{46^{2}}{10^{2}} \frac{1}{10^{2}} \frac{1}{10^{2$						<				
$ \frac{46^{2} + \frac{24}{9}}{9} + \frac{24}{9} + 24$				3x8 // T2/		13				
$ \frac{4}{10^{-1}} \frac{1}{2^{-1}} \frac$			4	24		\\ \\ ²⁵	_5x6 =	5x8 =		
$ \frac{1}{10^{2} - \frac{1}{10^{2} -$			4)					-7.		Ŧ
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} \end{array} \end{array} \\ \begin{array}{c} \\ \end{array} \end{array} \\ \begin{array}{c} \\ \end{array} \end{array} \\ \begin{array}{c} \\ \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array} \\ \end{array} \\ \end{array}$		1-5-2		3 AR	ŴЗ	A E	26			
$\frac{1}{23} \frac{1}{2} 1$									•	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		-7-2	Tł				W6 M7		7x8 🕅	-7-2
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $, //	w1				WB	X	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		N ₁			B2	VIII5 -		Rd W9	11 17	
$\frac{2}{56 \text{ II}} = \frac{2}{24 \text{ II}} \frac{3}{28} = \frac{4}{224 \text{ II}} = \frac{2}{24 \text{ II}} = \frac{11}{244 $		I IZ		10 20		0 21 18	5 12 32 33			- Im I
24 = 224 =			20			10 3v8				
$\frac{8.1+15}{8.1+15} + \frac{15\cdot0.0}{6.10\cdot1} + \frac{20\cdot0.0}{5\cdot0.0} + \frac{25\cdot0.0}{6\cdot0.0} + \frac{29\cdot0.0}{4\cdot0.0} + \frac{38\cdot11.8}{72\cdot8} + \frac{15\cdot0.0}{72\cdot8} + $		5	x6	2x4	2x4 =		2x4 =	5x5 =	3x6 =	
Bit-15 6-10-1 5-0-0 4-9-0 7-2-8 OADING (psf) CLL (roof) I/0-1-12], [10:Edge.0-1-8] I/0-1 5-0-0 4-9-0 7-2-8 OADING (psf) CLL (roof) SPACING- 20.0 Plate Grip DOL 1.15 TC 0.85 Vert(C1) -10.68 15-17 >649 240 MT20 244/190 CDL 10.0 Rep Stress Incr. YES WB 0.73 Horz(CT) 0.08 10 n/a n/a MIDER- OP CHORD 2.45 PN 5. Code IRC2021/TPI2014 Matrix-AS BRACING- TOP CHORD TOP CHORD Structural wood sheathing directly applied. except end verticals. Rigid celling directly applied. Except: OP CHORD 2x4 SP No.2 FExcept* TOP CHORD BOT CHORD Structural wood sheathing directly applied. Except: 6-10-0 co bracing 14-17 WEBS X45 PN o.3 Except* WEBS MTer recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide. VEDGE eff: 2x4 SP No.3 EACTONG Max Korz 2=228/1/36, 3.4==27274/131, 4:24==2183/145, 5:24==2759/172, 5:25==3706/341, 6:25==3796/341, 6:25==3796/341, 6:24==2748/143, 6:24==2748/145, 6:24==2748/145, 6:24==2748/145, 6:24==2748/145, 6:24										
Bit-15 6-10-1 5-0-0 4-9-0 7-2-8 OADING (psf) CLL (roof) I/0-1-12], [10:Edge.0-1-8] I/0-1 5-0-0 4-9-0 7-2-8 OADING (psf) CLL (roof) SPACING- 20.0 Plate Grip DOL 1.15 TC 0.85 Vert(C1) -10.68 15-17 >649 240 MT20 244/190 CDL 10.0 Rep Stress Incr. YES WB 0.73 Horz(CT) 0.08 10 n/a n/a MIDER- OP CHORD 2.45 PN 5. Code IRC2021/TPI2014 Matrix-AS BRACING- TOP CHORD TOP CHORD Structural wood sheathing directly applied. except end verticals. Rigid celling directly applied. Except: OP CHORD 2x4 SP No.2 FExcept* TOP CHORD BOT CHORD Structural wood sheathing directly applied. Except: 6-10-0 co bracing 14-17 WEBS X45 PN o.3 Except* WEBS MTer recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide. VEDGE eff: 2x4 SP No.3 EACTONG Max Korz 2=228/1/36, 3.4==27274/131, 4:24==2183/145, 5:24==2759/172, 5:25==3706/341, 6:25==3796/341, 6:25==3796/341, 6:24==2748/143, 6:24==2748/145, 6:24==2748/145, 6:24==2748/145, 6:24==2748/145, 6:24			8-1-15	15-0-0	20-0-	0 . 25-0-0	29-9-0		3	
DADING (psf) CLL (rod) SPACING- 20.0 Plate Grip DOL 2-0-0 Plate Grip DOL CSI. DEFL. in (loc) l/defl L/d Microw (Pf) CDL 10.0 Rep Stress Incr YES WB 0.73 Vert(CT) -1.07 15-17 >442 180 VBL 0.0 Rep Stress Incr YES WB 0.73 Horz(CT) -1.07 15-17 >412 180 UMBER- YOP CHORD 2x4 SP No.2 Except* T3: 2x4 SP SS TOP CHORD Structural wood sheathing directly applied, except end verticals. OFO CHORD 2x4 SP SS Texcept* T3: 2x4 SP No.2 Except* TOP CHORD Structural wood sheathing directly applied, except end verticals. OTO CHORD 2x4 SP No.2 Except* TOP CHORD Structural wood sheathing directly applied, except end verticals. 050 CHORD 2x4 SP No.3 Except* TOP CHORD TOP CHORD Structural wood sheathing directly applied, except end verticals. 04 EX dSP No.3 Except* TOP CHORD ToP Secopt* NWEBS TRow at midpt 6-12, 3-18, 5-14 WEDGE eff 2x4 SP No.3 Except* No.3 No.3 St	Plata Offacta (V	(V) [7:0 5	8-1-15	6-10-1					·	
CLL (root) 20.0 FACINC- prove (FI) 20.0 FLAILS CMP row (FI) 20.0 Lumber DOL 1.15 TC 0.85 Vert(CT) -0.68 15-17 >649 240 MT20 244/190 Yell 0.0 Rep Stress Incr YES WB 0.73 Horz(CT) -0.08 15-17 >649 240 Weight: 237 lb FT = 20% JUMBER Too Code IRC2021/TPI2014 Matrix-AS BRACING- TOP CHORD Structural wood sheathing directly applied, except end verticals. GP CHORD 2x4 SP No 2 *Except* TOP CHORD B1: 2x4 SP No.2 WEBS TOP CHORD Structural wood sheathing directly applied, except end verticals. W4: 2x4 SP No.3 EEACTIONS. (b/size) 2=1611/0-3.6 (min. 0-2-4), 10=1637/0-3-0 (min. 0-2-2) Max Horz 2=243(LC 11) Max Grav2=1928(LC 20), 10=-1818(LC 3) VEDGE GP CHORD 2-32-2826/136, 3-4=-227/14131, 4-24=-2183/145, 5-24=-2159/140, 7-26=-254-3705/341, 6-25=-3705/341, 6-25=-3705/341, 6-25=-3705/341, 6-25=-3705/341, 6-25=-3705/341, 6-25=-3705/341, 6-25=-3705/341, 6-25=-3705/341, 6-25=-3705/341, 6-25=-3705/341, 6-25=-3705/341, 6-25=-3705/341, 6-25=-3705/341, 6		<u>, 1) [7.0-5</u>								
Inform Lumber DOL 1.15 BC 0.97 Vent(CT) -1.07 15-17 >412 180 IGLL 0.0* Rep Stress incr YES WB 0.73 Horz(CT) 0.08 10 n/a n/a IGLL 0.0* Code IRC2021/TPI2014 Matrix-AS Horz(CT) 0.08 10 n/a n/a IMMER- To 2 24 SP No.2*Except* TO P CHORD Structural wood sheathing directly applied. except end verticals. Rigide celling directly applied. except end verticals. Rigide celling directly applied. Except: 6-0.0 oc bracing: 14-17 B1: 2x4 SP No.3*Except* WEBS WEBS WEBS 100 Hora (rd) IMmet fold. Mith and the fold of the coept: W2 DGE WE S 24 SP No.3 EEACTIONS. (Ib/size) 2=1611/0.3-8 (min. 0-2-4), 10=1637/0-3-0 (min. 0-2-2) Max Hora 2=243(LC 21). Mith coept and the fold of the size and required cross bracing be installed during truss erection, in accordance with Stabilizer installation guide. VEDGE =61: 2.34 SP No.3 EEACTIONS. (Ib/size) 2=1611/0-3-8 (min. 0-2-4), 10=1637/0-3-0 (min. 0-2-2) Max Hora 2=283(LC 20), 10=1818(LC 3) Miter recommends that Stabilizer installation guide. VCD CHORD 2-3=-2826/3163, 6-3=4=27/4131, 4-24==-2183/145, 5-24=-2159	CLL (roof)									
CLL 0.0 * Rep Stress incr YES WB 0.73 Hor2(C1) 0.08 10 n/a N/a ICDL 10.0 Code IRC2021/TPI2014 Matrix-AS Matrix-AS Weight: 237 lb FT = 20% UMBER. TOP CHORD 2x4 SP Sx Structural wood sheathing directly applied, except end verticals. TOP CHORD Structural wood sheathing directly applied, except end verticals. 6-0-0 oc bracing: 14-17 10.0 10.0 10.0 10.0 6-12, 3-18, 5-14 WEBS 40.0 oc bracing: 14-17 10.0 oc bracing:			Lumber DOL	1.15 BC	0.97	Vert(CT)	-1.07 15-17 >41	2 180	WIT20	244/100
UNDER- OP CHORD 2x4 SP Sizecpt* T3: 2x4 SP Sizecpt* B1: 2x4 SP No.2 *Except* W4: 2x4 SP No.2 #Except* W4: 2x4 SP No.2 *Except* W4: 2x4 SP No.2 BRACING- TOP CHORD B1: 2x4 SP Sizecpt* W4: 2x4 SP No.2 Structural wood sheathing directly applied, except end verticals. Rigid ceiling directly applied, except end verticals. CO-0 oc bracing: 14-17 VEBS 2x4 SP Sizecpt* W4: 2x4 SP No.2 WEBS WEBS The recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide. VEDGE eft: 2x4 SP No.3 WEBS MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide. VEDGE eft: 2x4 SP No.3 WEBS MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide. VEDGE eft: 2x4 SP No.3 WEBS Image: Commends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide. VEDGE 2-36280(136, 3-4=-274/131, 4-24=-2183/145, 5-24=-2159/172, 5-25=-3705/341, 6-25=-3795/315, 6-26=-2515/140, 7-26=-2515/140, 7-27=-2063/328, 8-27=-2168/113, 8-30=0/1730, 16-30=0/1730, 16-31=0/1730, 13-32=0/1730, 13-32=0/1730, 12-33=0/1720, 12-34=-328/2200, 12-4=-328/2201, 3-21=0/326, 3-18=-675/222, 8-11=0/1592, 5-14=-283/2280, 12-14=-328/2201, 3-20=0/312 VEES (10) VIDBalanced roof live loads have been considered f	BCLL	0.0 *				Horz(CT)	0.08 10 n/	a n/a	Weight: 237	' lb FT = 20%
OP CHORD 2x4 SP No.2 *Except* T3: 2x4 SP S0 TOP CHORD BOT CHORD Structural wood sheathing directly applied, except end verticals. Rigid ceiling directly applied. Except: 6-0-0 oc bracing: 14-17 Structural wood sheathing directly applied, except end verticals. Rigid ceiling directly applied. Except: 6-0-0 oc bracing: 14-17 WEBS 2x4 SP No.3 *Except* W4: 2x4 SP No.3 WEBS ''' VEDGE ef: 2x4 SP No.3 2=1611/0-3-8 (min. 0-2-4), 10=1637/0-3-0 (min. 0-2-2) Max Horz 2=243(LC 11) Max Grav2=1928(LC 20), 10=1818(LC 3) MiTek recommends that Stabilizer Installed during trues erection, in accordance with Stabilizer Installation guide. VORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. OP CHORD 2-3=-2826/136, 3-4=-2274/131, 4-24=-2183/145, 5-24=-2159/172, 5-25=-3705/341, 6-25=-3795/315, 6-26=-2515/140, 7-27=-2063/132, 8-27=-2188/113, 8-10=-1736/137 Structural wood sheathing directly applied, except with shown. OP CHORD 2-3=-8286/136, 3-4=-2274/131, 4-24=-2183/145, 5-24=-2159/172, 5-25=-3705/341, 6-25=-3795/315, 6-26=-2515/140, 7-26=-2515/140, 7-27=-2063/132, 8-27=-2188/113, 8-10=-1736/137 Structural wood sheathing directly applied, except with shown. OP CHORD 2-3=-8286/136, 3-4=-2274/131, 4-24=-2183/145, 5-24=-2159/172, 5-25=-3705/341, 6-25=-3795/315, 6-26=-2515/140, 7-26=-2515/140, 7-27=-2063/132, 8-27=-2188/113, 8-10=-1736/137 Structural wood sheathing directly applied, except with sheathing directly applied. OP CHORD 2-3=-104/2409, 20-28=-104/2409, 19-29=-104/2409, 19-29=-104/2409, 19-29=-104/2409, 12-3==0/1730, 16-33=0/1730,		10.0		-		PRACING			5	
BOT CHORD 2x4 SP SS *Except* B1: 2x4 SP No.2, B4: 2x4 SP No.1 WEBS 6-0-0 oc bracing: 14-17 Row at midpt 6-12, 3-18, 5-14 WEBS 2x4 SP No.3 *Except* W4: 2x4 SP No.3 MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installed during truss erection, in accor	OP CHORD 2					TOP CHORD				end verticals.
B1: 2x4 SP No.2, B4: 2x4 SP No.1 WEBS 1 Row at midpt 6-12, 3-18, 5-14 WEBS 2x4 SP No.3 *Except MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide. WEDGE WEDGE WETORE WEDGE REACTIONS. (Ib/size) 2=1611/0-3-8 (min. 0-2-4), 10=1637/0-3-0 (min. 0-2-2) Max Horz 2=243(LC 11) Max Uplift2=-67(LC 12), 10=-92(LC 13) Max Grav2=1928(LC 20), 10=1818(LC 3) FORCES. (Ib) - Max. Comp./Max. Ten 2.74/131, 4-24=-2183/145, 5-24=-2159/172, 5-25=-3705/341, 6-25=-3795/315, 6-26=-2515/140, 7-27=-2063/132, 8-27=-2168/113, 8-10=-1736/137 GOT CHORD 2-3=-2826/136, 3-4=-2215/140, 7-26=-2515/140, 7-27=-2063/132, 8-27=-2168/113, 8-10=-1736/137 SOT CHORD 2-28=-104/2409, 19-20=-104/2409, 19-29=-104/2409, 18-29=-104/2409, 18-39=-104/2409, 18-30=-0/1730, 16-31=0/1730, 13-31=0/1730, 13-32=0/1730, 12-32=0/1730, 1						BOT CHORD			ept:	
W4: 2x4 SP No.2 WEDGE vef: 2x4 SP No.3 XEACTIONS. (Ib/size) 2=1611/0-3-8 (min. 0-2-4), 10=1637/0-3-0 (min. 0-2-2) Max Horz 2=243(LC 11) Max Uplift2=-67(LC 12), 10=-92(LC 13) Max Grav 2=1928(LC 20), 10=1818(LC 3) FORCES. (Ib) - Max. Comp./Max. Ten All forces 250 (Ib) or less except when shown. FOP CHORD 2-3=-2826/136, 3-4=-2274/131, 4-24=-2183/145, 5-24=-2159/172, 5-25=-3705/341, 6-25=-3795/315, 6-26=-2515/140, 7-26=-2515/140, 7-27=-2063/132, 8-27=-2168/113, 8-10=-1736/137 FOR CES. (Ib) - Max. Comp./Max. Ten All forces 250 (Ib) or less except when shown. FOP CHORD 2-3=-2826/136, 3-4=-2274/131, 4-24=-2183/145, 5-24=-2159/172, 5-25=-3705/341, 6-25=-3795/315, 6-26=-2515/140, 7-26=-2515/140, 7-27=-2063/132, 8-27=-2168/113, 8-10=-1736/137 SOT CHORD 2-28=-104/2409, 20-28=-104/2409, 19-20=-104/2409, 18-29=-104/2409, 18-30=0/1730, 16-30=0/1730, 16-31=0/1730, 13-31=0/1730, 13-32=0/1730, 12-33=0/1721, 11-33=0/1721 VEBS 17.18=-36/916, 5-17=-0/1125, 6-12=-2426/311, 7-12=0/1356, 3-18=-675/222, 8-11=0/1592, 5-14=-283/2280, 12-14=-328/2201, 3-20=0/312 VDTES- (10)) Unbalanced roof live loads have been considered for this design.	E	81: 2x4 SP N	lo.2, B4: 2x4 SP No.1			WEBS			8, 5-14	
MEDGE Left: 2x4 SP No.3 Installation guide. REACTIONS. (Ib/size) 2=1611/0-3-8 (min. 0-2-4), 10=1637/0-3-0 (min. 0-2-2) Max Horz 2=243(LC 11) Max Uplift2=-67(LC 12), 10=-92(LC 13) Max Grav 2=1928(LC 20), 10=1818(LC 3) Installation guide. FORCES. (Ib) - Max. Comp./Max. Ten All forces 250 (Ib) or less except when shown. FORCES. FORCES. FOP CHORD 2-3=-2826/136, 3-4=-2274/131, 4-24=-2183/145, 5-24=-2159/172, 5-25=-3705/341, 6-25=-3795/315, 6-26=-2515/140, 7-26=-2515/140, 7-27=-2063/132, 8-27=-2168/113, 8-10=-1736/137 8-10=-1736/137 SOT CHORD 2-28=-104/2409, 19-20=-104/2409, 19-29=-104/2409, 18-29=-104/2409, 18-30=0/1730, 16-30=0/1730, 16-31=0/1730, 13-31=0/1730, 13-32=0/1730, 12-32=0/1730, 12-33=0/1721, 11-33=0/1721 18-30=0/1730, 16-31=0/1730, 13-31=0/1730, 13-32=0/1730, 12-32=0/1730, 12-33=0/1721, 11-33=0/1721 WEBS T7-18=-36/916, 5-17=0/1125, 6-12=-2426/311, 7-12=0/1356, 3-18=-675/222, 8-11=0/1592, 5-14=-283/2280, 12-14=-328/2201, 3-20=0/312 NOTES- (10) NUTES- (10) Installation guide. Installation guide.										
REACTIONS. (lb/size) 2=1611/0-3-8 (min. 0-2-4), 10=1637/0-3-0 (min. 0-2-2) Max Horz 2=243(LC 11) Max Upiff2=-67(LC 12), 10=-92(LC 13) Max Grav2=1928(LC 20), 10=1818(LC 3) FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown.		2								
Max Horz 2=243(LC 11) Max Uplift2=-67(LC 12), 10=-92(LC 13) Max Grav 2=1928(LC 20), 10=1818(LC 3) FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-2826/136, 3-4=-2274/131, 4-24=-2183/145, 5-24=-2159/172, 5-25=-3705/341, 6-25=-3795/315, 6-26=-2515/140, 7-26=-2515/140, 7-27=-2063/132, 8-27=-2168/113, 8-10=-1736/137 3OT CHORD 2-28=-104/2409, 19-20=-104/2409, 19-29=-104/2409, 18-29=-104/2409, 18-30=0/1730, 16-30=0/1730, 16-31=0/1730, 13-31=0/1730, 13-32=0/1730, 12-32=0/1730, 12-33=0/1721, 11-33=0/1721 WEBS 17-18=-36/916, 5-17=0/1125, 6-12=-2426/311, 7-12=0/1356, 3-18=-675/222, 8-11=0/1592, 5-14=-283/2280, 12-14=-328/2201, 3-20=0/312 NOTES- (10))) Unbalanced roof live loads have been considered for this design.										
Max Uplift2=-67(LC 12), 10=-92(LC 13) Max Grav 2=1928(LC 20), 10=1818(LC 3) FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-2826/136, 3-4=-2274/131, 4-24=-2183/145, 5-24=-2159/172, 5-25=-3705/341, 6-25=-3795/315, 6-26=-2515/140, 7-26=-2515/140, 7-27=-2063/132, 8-27=-2168/113, 8-10=-1736/137 SOT CHORD 2-28=-104/2409, 19-20=-104/2409, 19-29=-104/2409, 18-29=-104/2409, 18-30=0/1730, 16-30=0/1730, 16-31=0/1730, 13-31=0/1730, 13-32=0/1730, 12-32=0/1730, 12-33=0/1721, 11-33=0/1721 WEBS 17-18=-36/916, 5-17=0/1125, 6-12=-2426/311, 7-12=0/1356, 3-18=-675/222, 8-11=0/1592, 5-14=-283/2280, 12-14=-328/201, 3-20=0/312 NOTES- (10) Unbalanced roof live loads have been considered for this design.				, 10=1637/0-3-0 (min	. 0-2-2)					
ORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. FOP CHORD 2-3=-2826/136, 3-4=-2274/131, 4-24=-2183/145, 5-24=-2159/172, 5-25=-3705/341, 6-25=-3795/315, 6-26=-2515/140, 7-26=-2515/140, 7-27=-2063/132, 8-27=-2168/113, 8-10=-1736/137 SOT CHORD 2-28=-104/2409, 20-28=-104/2409, 19-20=-104/2409, 19-29=-104/2409, 18-29=-104/2409, 18-30=0/1730, 16-30=0/1730, 16-31=0/1730, 13-31=0/1730, 13-32=0/1730, 12-32=0/1730, 12-33=0/1721, 11-33=0/1721 VEBS 17-18=-36/916, 5-17=0/1125, 6-12=-2426/311, 7-12=0/1356, 3-18=-675/222, 8-11=0/1592, 5-14=-283/2280, 12-14=-328/2201, 3-20=0/312 NOTES- (10))) Unbalanced roof live loads have been considered for this design.	I	Max Uplift2=	-67(LC 12), 10=-92(LC							
OP CHORD 2-3=-2826/136, 3-4=-2274/131, 4-24=-2183/145, 5-24=-2159/172, 5-25=-3705/341, 6-25=-3795/315, 6-26=-2515/140, 7-26=-2515/140, 7-27=-2063/132, 8-27=-2168/113, 8-10=-1736/137 SOT CHORD 2-28=-104/2409, 20-28=-104/2409, 19-20=-104/2409, 19-29=-104/2409, 18-29=-104/2409, 18-30=0/1730, 16-30=0/1730, 16-31=0/1730, 13-31=0/1730, 13-32=0/1730, 12-32=0/1730, 12-33=0/1721, 11-33=0/1721 VEBS 17-18=-36/916, 5-17=-0/1125, 6-12=-2426/311, 7-12=0/1356, 3-18=-675/222, 8-11=0/1592, 5-14=-283/2280, 12-14=-328/201, 3-20=0/312 NOTES- (10)) Unbalanced roof live loads have been considered for this design.	I	Max Grav 2=	1928(LC 20), 10=1818(LC 3)						
6-25=-3795/315, 6-26=-2515/140, 7-26=-2515/140, 7-27=-2063/132, 8-27=-2168/113, 8-10=-1736/137 8OT CHORD 2-28=-104/2409, 20-28=-104/2409, 19-29=-104/2409, 18-29=-104/2409, 18-30=0/1730, 16-30=0/1730, 13-31=0/1730, 13-31=0/1730, 13-32=0/1730, 12-32=0/1730, 12-33=0/1721, 11-33=0/1721 VEBS 17-18=-36/916, 5-17=0/1125, 6-12=-2426/311, 7-12=0/1356, 3-18=-675/222, 8-11=0/1592, 5-14=-283/2280, 12-14=-328/2201, 3-20=0/312 IOTES- (10)) Unbalanced roof live loads have been considered for this design.	()			()		3705/3/1				
OT CHORD 2-28=-104/2409, 20-28=-104/2409, 19-29=-104/2409, 18-29=-104/2409, 18-30=0/1730, 16-30=0/1730, 16-31=0/1730, 13-31=0/1730, 13-32=0/1730, 12-32=0/1730, 12-33=0/1721, 11-33=0/1721 VEBS 17-18=-36/916, 5-17=0/1125, 6-12=-2426/311, 7-12=0/1356, 3-18=-675/222, 8-11=0/1592, 5-14=-283/2280, 12-14=-328/2201, 3-20=0/312 IOTES- (10)) Unbalanced roof live loads have been considered for this design.		6-25=-3795	5/315, 6-26=-2515/140, 7							
18-30=0/1730, 16-30=0/1730, 16-31=0/1730, 13-31=0/1730, 13-32=0/1730, 12-32=0/1720, 12-32=0/1720,	OT CHORD			19-20=-104/2409, 19	-29=-104/2409	. 18-29=-104/2409).			
VEBS 17-18=-36/916, 5-17=0/1125, 6-12=-2426/311, 7-12=0/1356, 3-18=-675/222, 8-11=0/1592, 5-14=-283/2280, 12-14=-328/2201, 3-20=0/312 IOTES- (10)) Unbalanced roof live loads have been considered for this design.		18-30=0/17	30, 16-30=0/1730, 16-3							
IOTES- (10)) Unbalanced roof live loads have been considered for this design.	VEBS			2426/311, 7-12=0/13	856, 3-18=-675	/222, 8-11=0/1592	2,			
) Unbalanced roof live loads have been considered for this design.		5-14=-283/2	2280, 12-14=-328/2201,	3-20=0/312						
 (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 3-11-2, Interior(1) 3-11-2 to 11-5-6, Exterior(2R) 11-5-6 to 21-0-10, Interior(1) 21-0-10 to 24-11-6, Exterior(2R) 24-0-10 to 24-11-6, Exterior(2R) 24-11-6 to 33-0-14, Exterior(2E) 33-0-14 to 37-10-8 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15) Plate DOL=1.15); Pl=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Routh Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.) Provide adequate drainage to prevent water ponding.) This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 10.) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum 9/11/2024 Wither Structural wood Structural wood sheathing be applied directly to the top chord and 1/2" gypsum 9/11/2024 Wither Structural wood sheathing be applied directly to the top chord and 1/2" gypsum 9/11/2024 Wither Structural wood sheathing be applied directly to the top chord and 1/2" gypsum 9/11/2024 Wither Structural wood s		7 40 14 14			5.0psf: BCDL	=5.0psf: h=23ft: Ca	at. II: Exp B: Enclo	sed: MWFRS	MUMMIN	
21-0-10 to 24-11-6, Extendr(2R) 24-11-6 to 33-0-14, Extendr(2E) 33-0-14 to 37-10-8 20he; Cantilever feit and right exposed; end vertical provides and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 17 CLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 17 This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. Provide adequate drainage to prevent water ponding. 17 This truss has been designed for a live load of 30.0 psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0 psf. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 10. 17 This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. With struss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. With struss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. With struss design anameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability for out, storage, delivery, erection and bracing, consult ANSI/TP1 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handline, Installine & Bracin	(envelope) ga	able end zor	ne and C-C Exterior(2E)	-0-10-8 to 3-11-2, Inte	rior(1) 3-11-2	o 11-5-6, Exterior(2R) 11-5-6 to 21-0	-10, Interior(1)	WATH CARO	11111
) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Routh Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs on-concurrent with other live loads.) Provide adequate drainage to prevent water ponding.) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.)* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord any other members, with BCDL = 10.0psf.) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 10.) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. W THESE SAND SAND SAND SAND SAND SAND SAND SAND	left and right	exposed;C-0	C for members and force	es & MWFRS for react	ions shown; L	umber DOL=1.60 p	olate grip DOL=1.6	d ; end vertical	OFESSION	NATH
SEAL 28147 This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. Provide adequate drainage to prevent water ponding. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 10. This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. Wither Structure St) TCLL: ASCE	7-16; Pr=20).0 psf (roof LL: Lum DO	L=1.15 Plate DOL=1.	15); Pf=20.0 ps	of (Lum DOL=1.15	Plate DOL=1.15);	Is=1.0; Rough	and A	
non-concurrent with other live loads.) Provide adequate drainage to prevent water ponding.) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.) This truss has been designed for a live load of 30.0 psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0 psf.) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 10.) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. 9/11/2024 W_INESS design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction, and BCSI 1-03 Guide to Good Practice for Handline, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute 583) This truss ha	s been desi	gned for greater of min r	oof live load of 12.0 p	sf or 2.00 time	s flat roof load of 2	0.0 psf on overhar	ngs	SEAL 28147	
This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 10. This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. With second the bottom chord design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Trusses Construction, and BCSI 1-03 Guide to Good Practice for Handling. Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute 583	non-concurre Provide adeo	nt with othe	r live loads. ge to prevent water pop	lina.				11111	20147	1
() This truss has been designed for a live load of 30.upsr on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. () Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 10. () This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. () This struss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. (4) This section of the bottom chord. (4) This section of the bottom chord is been of the bottom chord. (4) This section of the bottom chord. (5) This truss design requires that a minimum of 7/16". This design is based only upon parameters shown, and is for an individual building component to be installed and loaded ontinued on page 2. Structure is not proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Trusses from Truss Plate Institute 583) This truss ha	s been desi	gned for a 10.0 psf botto	m chord live load non	concurrent wit	n any other live loa	ads.		NOINFER	10 Million
 B) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 10. B) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum B) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum B) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum B) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum B) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum B) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum B) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum B) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the truss design or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Trusses from Truss Plate Institute 583 	between the	as been des	signed for a live load of d and any other membe	so.upsi on the bottom rs, with BCDL = 10.0p	cnord in all are sf.	eas where a rectar	igie 3-6-0 tall by 1-	U-U wide will fit	ARK & MOR	Blann
sheetrock be applied directly to the bottom chord. <i>y</i> -11/2024 <i>y</i> -1) Provide mecl	nanical conn	ection (by others) of true	ss to bearing plate cap	able of withsta	anding 100 lb uplift	t at joint(s) 2, 10.	avpeum	Hanna Man	10.
With the set of the second set	sheetrock be	applied dire	ectly to the bottom chord	ອີ່ຈແບບເບເສເ wood she	aunny ne appi	ea anechy to the t		ууръцп	9/11/20	24
Véřtičally. Appličability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 <i>National Design Standard for Metal</i> <i>Plate Connected Wood Truss Construction</i> and BCSI 1-03 Guide to <i>Good Practice for Handling. Installing & Bracing of Metal Plate Connected Wood Trusses</i> from Truss Plate Institute 583	ontinued on pa	invedswinp	Paineters and compless	efore lise. This design is	based only upon	parameters shown, a	nd is for an individual	building component	t to be installed and	loaded
responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Trusses from Truss Plate Institute 583	of individual wa	eability of des	sign parameters and proper i	ncorporation of componer acing to ensure stability do	t is responsibilit	y of building designer	 not truss designer of of the erector Additional Additiona Additiona Additional Additiona Additional Additional Addition	or truss engineer. Br	acing shown is for l	ateral support
Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling. Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute 583	responsibility of	the building d	esigner. For general guidan	ce regarding fabrication, c	uality control, st	orage, delivery, erecti	ion and bracing, consu	ilt ANSI/TPI 1 Natio	onal Design Standa	rd for Metal
Pronotion Drive, Madison, WI 53719.	Plate Connected	Wood Truss	Construction and BCSI 1-0	3 Guide to Good Practice	for Handling, In	stalling & Bracing of	f Metal Plate Connect	ted Wood Trusses fr	om Truss Plate Inst	itute, 583

D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 0.0028 HONEYCUTT HILLS 448 ADAMS POINTE COURT ANGIER, NC
24-7625-R01	R12	Roof Special	1	1	Job Reference (optional) # 52244
					t: 8.630 s Jul 12 2024 MiTek Industries, Inc. Thu Sep 12 10:36:25 2024 Page 2 K2c9QzXMNI-LdOyLsQKS8dZL3Yc79zR?xBAwYTtXPxapkwhiOyePsK

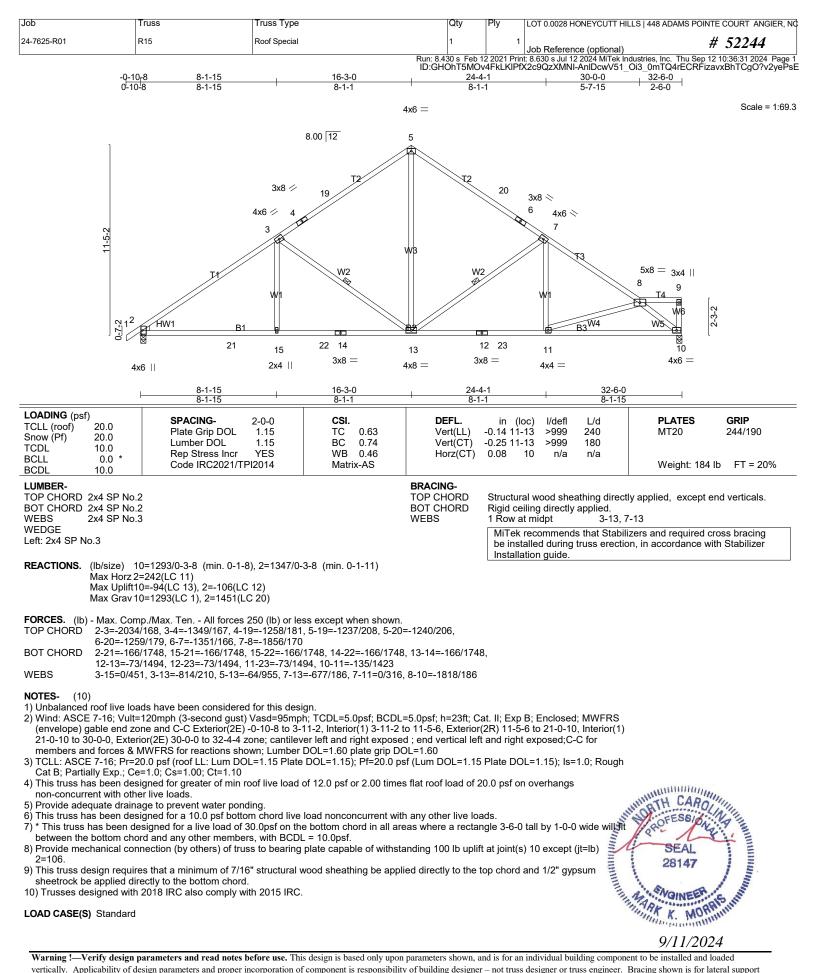
LOAD CASE(S) Standard

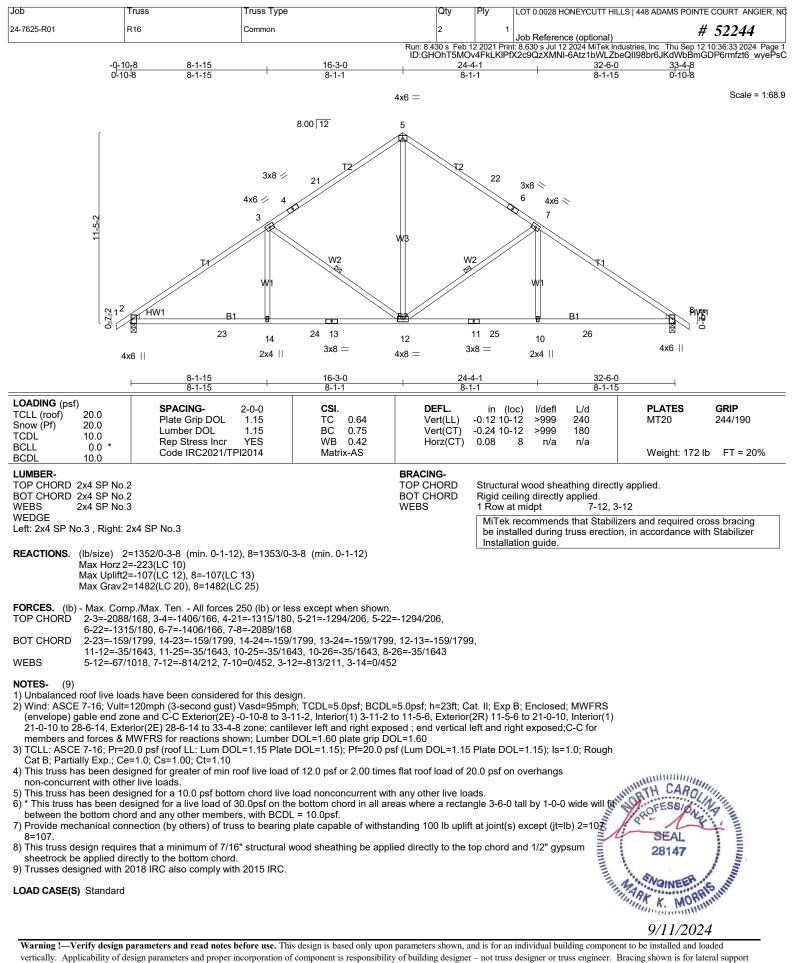
D'Onofrio Drive Madison WI 53719

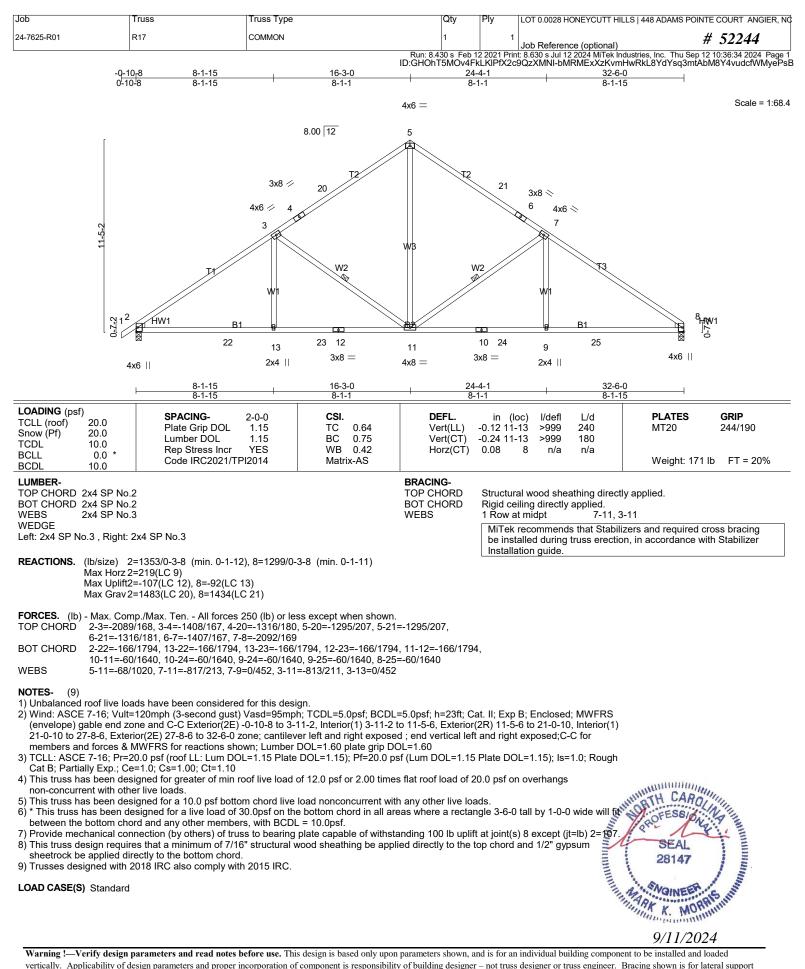
Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583

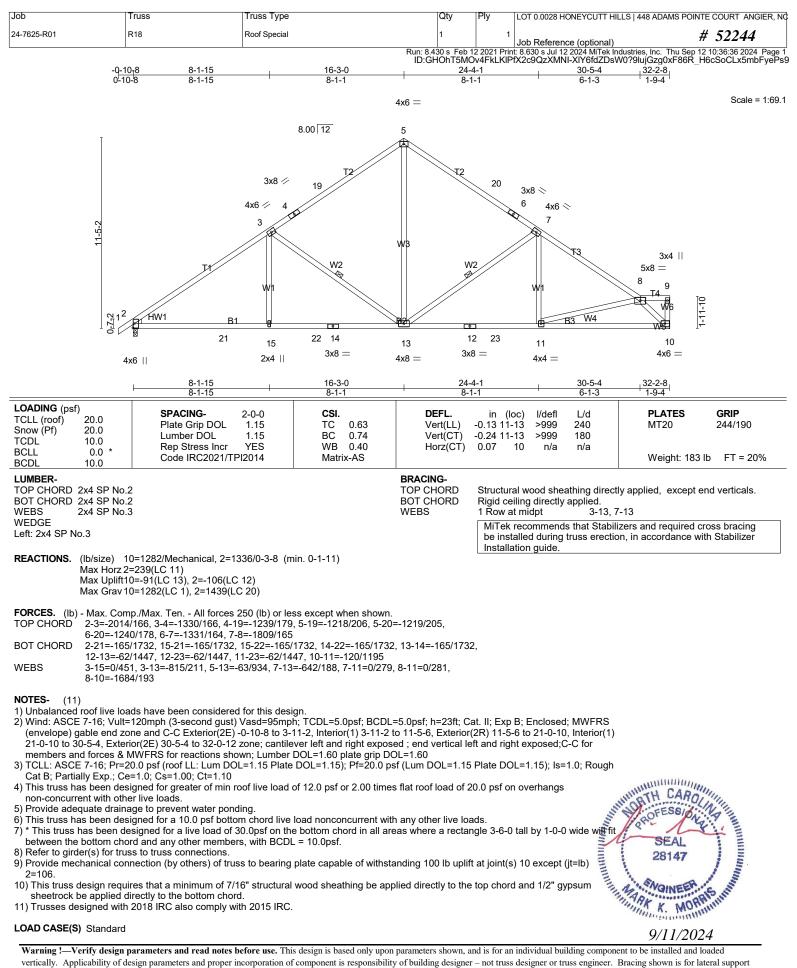
Job	Tr	uss	Truss Type		Qty	Ply LOT 0.	0028 HONEYCUTT H	HILLS 448 ADAMS POINTE COURT ANGIER, N
24-7625-R01	R1	4	Roof Special Girder		1	1 Job R	eference (optional)	# 52244
		0.4.45						Industries, Inc. Thu Sep 12 10:36:30 2024 Page SGgFsRqRZvjZci_u?iZBvCi4Jz0eSNbyePs
	-0 <u>-10-</u> 8 0-10-8	<u>8 8-1-15</u> 8-1-15	16-3-0 8-1-1		<u>24-4-1</u> 8-1-1	27-0-0	<u>33-3-0</u> 6-3-0	<u>36-11-8 37-10</u> -8 <u>3-8-8 0-11-0</u>
				5x6 =				Scale = 1:77.
			8.00 12					
	[0.00 12	5				
			то					
			3x8 🖉 🎵					
		4	(6 - 4		13	4x6 <>		
	11-5-2		3			6 7 ⁵	ix8 =	5x6 =
	-			Wβ	W2		T4	NAILED
	~	IF	W2				W5	8 15 4x6 ≥
	7-8- 4-3-2					W1 W4		910 CF +
	0-7-2	HW1 B1		- F	32		B3	W6 W7 8 1-6-1
	- 8	21	17 16 22 $3x4 \parallel 3x8 =$	15	23	14 ¹³		12 11
	5x6	11	2x4 ^{5x6} —	4x8 =		4x4 = 4x8 =	Ν	5x8 = 3x4 JAILED
	+	8-1-15 8-1-15	16-3-0 8-1-1		24-4-1 8-1-1		33-3-0 8-10-15	<u>36-11-8</u> <u>3-8-8</u>
Plate Offsets (LOADING (psf		4,0-2-4], [9:0-2-14,0-2-0						
TCLL (roof) Snow (Pf)	20.0 20.0	SPACING- Plate Grip DOL	2-0-0 CSI 1.15 TC	0.97	DEFL. Vert(LL)	-0.20 14-15 >	/defl L/d •999 240	PLATES GRIP MT20 244/190
TCDL	10.0 0.0 *	Lumber DOL Rep Stress Incr	1.15 BC NO WB		Vert(CT) Horz(CT)	-0.37 12-14 > 0.11 11	·999 180 n/a n/a	
BCDL	10.0	Code IRC2021/T	PI2014 Mat	rix-MSH				Weight: 214 lb FT = 20%
LUMBER- TOP CHORD	2x4 SP No.2	*Except*			BRACING- TOP CHORD	Structural woo	d sheathing direc	tly applied, except end verticals.
BOT CHORD		o.1, T3: 2x4 SP SS 'Except*			BOT CHORD	Rigid ceiling d 6-0-0 oc bracir		10-0-0 oc bracing, Except:
	B2: 2x4 SP N 2x4 SP No.3	0.1			WEBS	1 Row at midp		6-15, 7-12 ilizers and required cross bracing
WEDGE Left: 2x4 SP N	0.3						luring truss erect	ion, in accordance with Stabilizer
		1525/0-3-8 (min. 0-1-1	5), 11=1535/0-3-0 (min	0-1-13)		Installation g		
	Max Horz 2=2							
		1626(LC 42), 11=1535(
FORCES. (Ib) TOP CHORD			250 (lb) or less except v =-1515/222, 5-6=-1657		13/261			
BOT CHORD	7-8=-1271/2	18, 8-9=-1561/228, 9-1		,	*	2		
	15-23=-140/	2247, 14-23=-140/224	7, 13-14=-228/2690, 12	13=-228/2690)			
WEBS		/137, 8-12=0/567, 9-12	-99/1300, 6-15=-1232/2 :=-134/1345	71, 6-14=-43/	947, 7-14=-849/13	07,		
NOTES- (11		- h h	l for data da stara					
2) Wind: ASCE	E 7-16; Vult=1		Vasd=95mph; TCDL=5					
			ht exposed ; end vertica L=1.15 Plate DOL=1.15					
Cat B; Partia 1) This truss h	ally Exp.; Ce= as been desig	1.0; Cs=1.00; Ct=1.10 ned for greater of min ı	oof live load of 12.0 psf	or 2.00 times	flat roof load of 2	0.0 psf on overl	nangs	WINDTH CARO
non-concurr	ent with other	live loads.	dina					OFESSION
6) This truss h	as been desig	ned for a 10.0 psf botto	om chord live load nonce	oncurrent with	any other live loa	ads. Jale 3-6-0 tall by	(1-0-0 wide will fi	and the second
between the	bottom chore	and any other membe	rs, with BCDL = 10.0 ps	ble of withoto		$t_{at ioint(a)}$	nt (it=lb) 2-120	28147
			DL=1.15 Plate DOL=1.15 oof live load of 12.0 psf ding. om chord live load nonce 30.0psf on the bottom c rs, with BCDL = 10.0psf ss to bearing plate capa 0.148"x3.25") toe-nails p the face of the truss are		nang iou io uplit	r ar joini(s) exce	pr (Jr-ID) 2=120,	
9) "NAILED" IN 10) In the LOA	D CASE(S) se	(0.148°x3°) or 3-12d (0 ection, loads applied to	the face of the truss are	er NDS guidli e noted as fror	nes. nt (F) or back (B).		(III)	A NOINEER OS UN
11) Trusses de	esigned with 2	018 IRC also comply w	ith 2015 IRC.					SEAL 28147 9/11/2024 nent to be installed and loaded Decide the function of th
LOAD CASE(S	6) Standard							9/11/2024
Warning !	erify design pa	rameters and read notes	before use. This design is b	ased only upon	parameters shown, a	nd is for an individ	lual building compo	nent to be installed and loaded

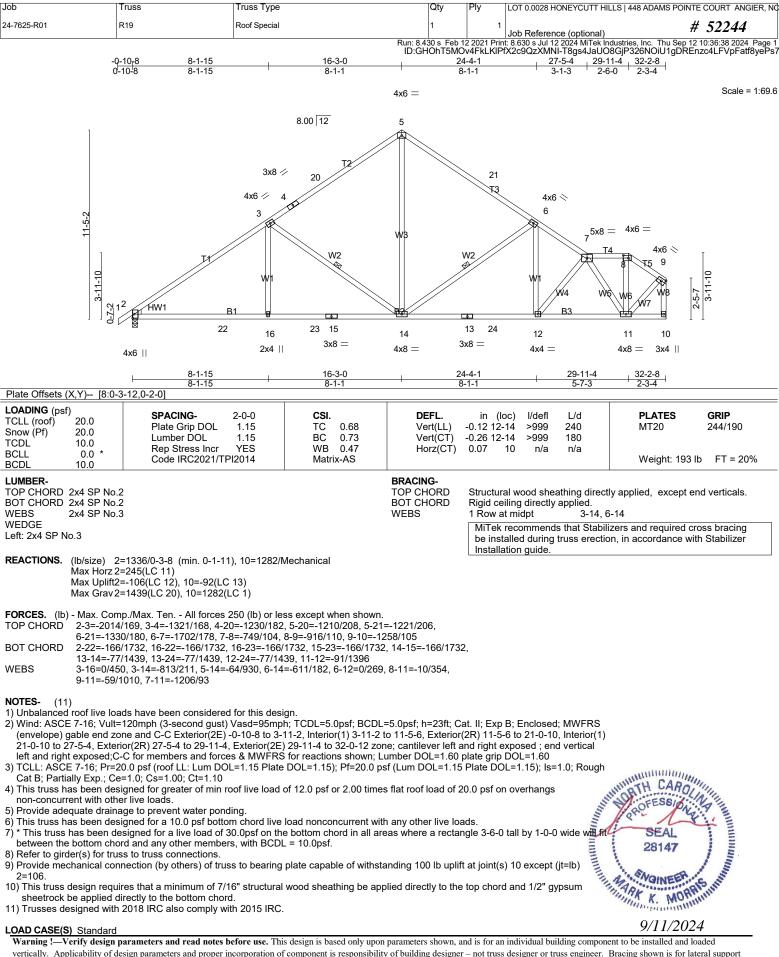
Job	Truss	Truss Type	Qty	Ply	LOT 0.0028 HONEYCUTT HILLS 448 AD	AMS POINTE COURT ANGIER, NO
24-7625-R01	R14	Roof Special Girder	1	1	Job Reference (optional)	# 52244
			Pup: 8 430 c Ech 1	2 2021 Drir	t: 8 630 c Jul 12 2024 MiTok Industrios Inc.	Thu Son 12 10:36:30 2024 Page 2

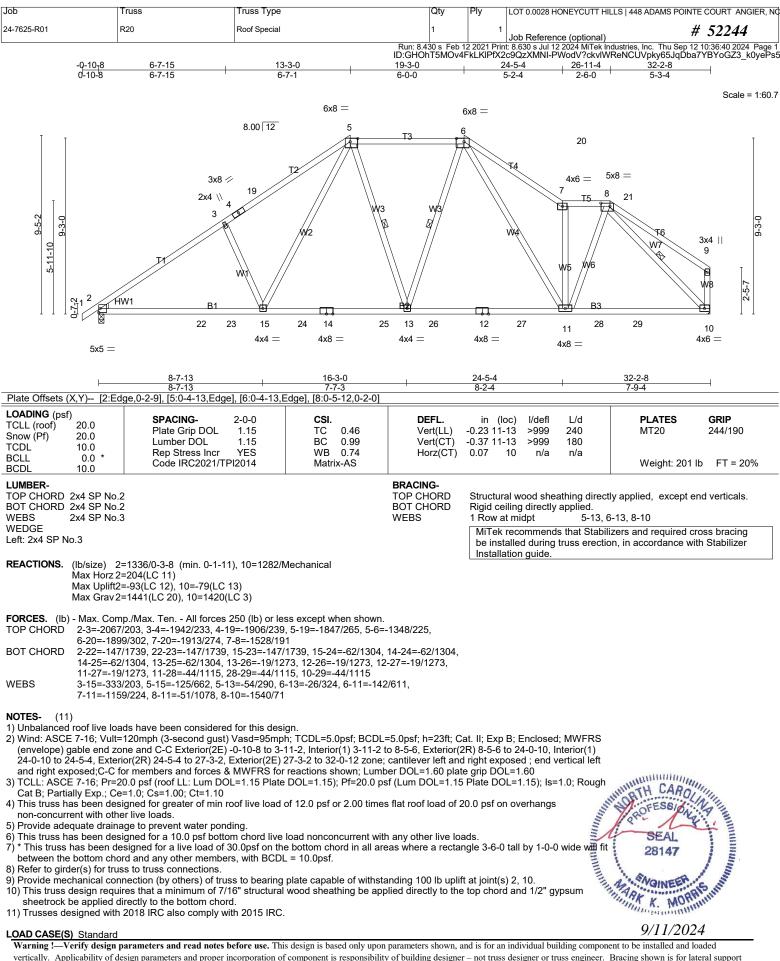

In: 8.430 s Feb 12 2021 Print: 8.630 s Jul 12 2024 Mi Lek Industries, Inc. Thu Sep 12 10:36:30 2024 Page 2 ID:GHOhT5MOv4FkLKIPfX2c9QzXMNI-ibBrPaUSGgFsRqRZvjZci_u?iZBvCi4Jz0eSNbyePsF

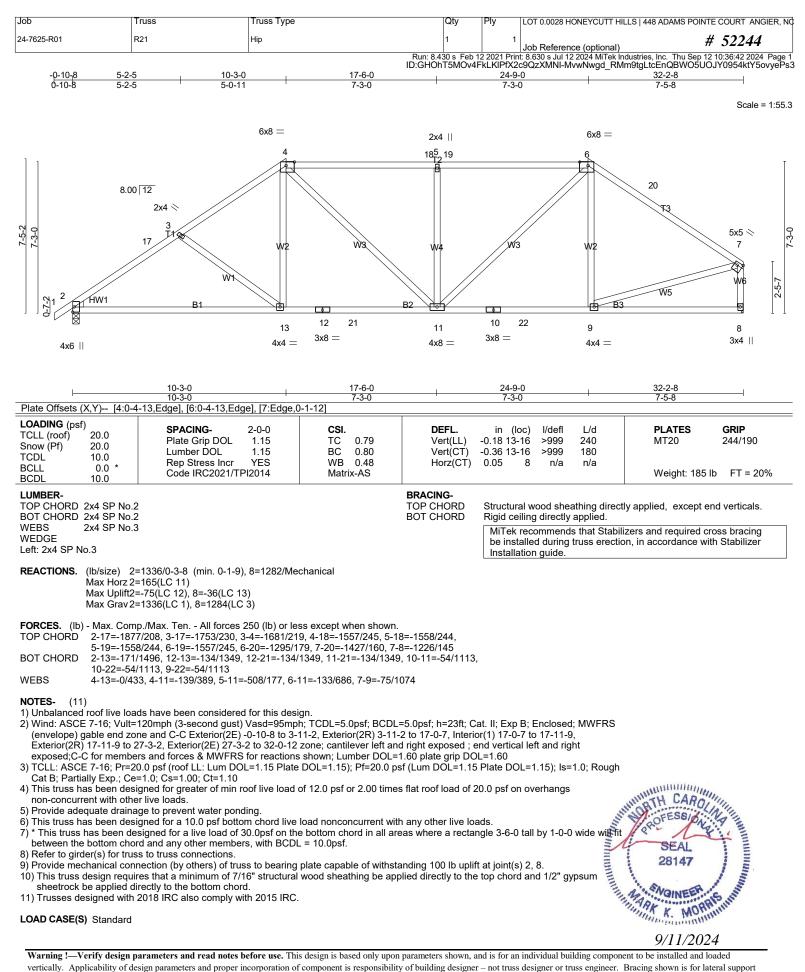

LOAD CASE(S) Standard

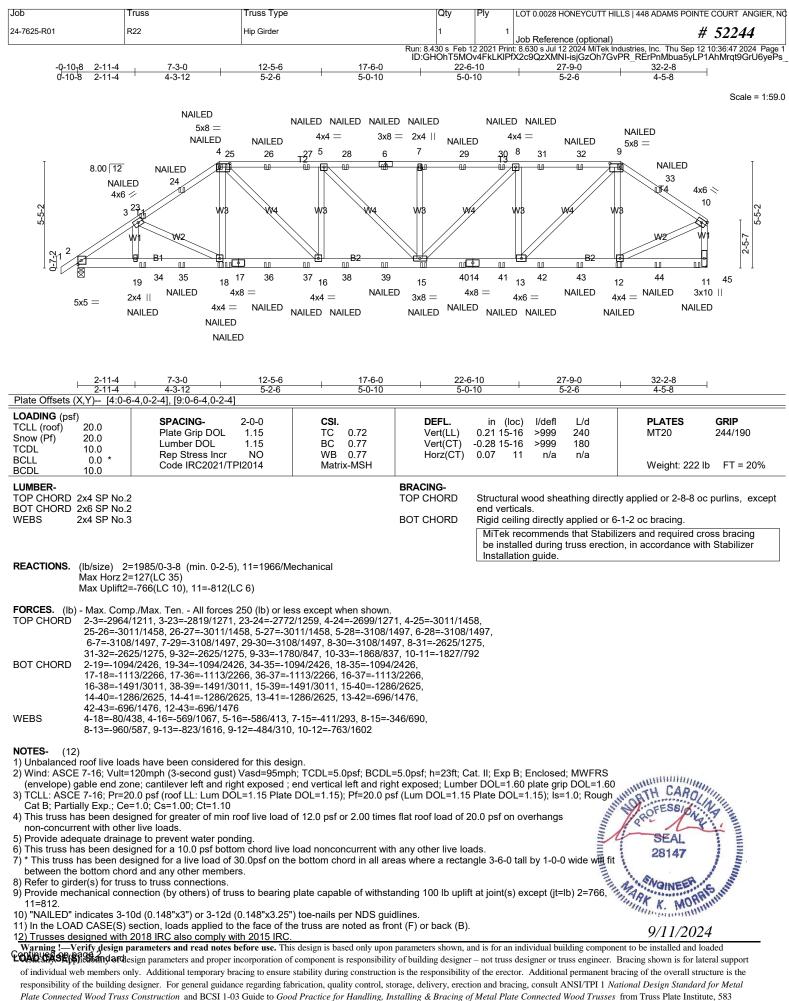

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)


Vert: 1-5=-60, 5-7=-60, 7-8=-60, 8-9=-60, 9-10=-60, 11-18=-20 Concentrated Loads (lb) Vert: 12=2(B)


> SEAL 28147 9/11/2024





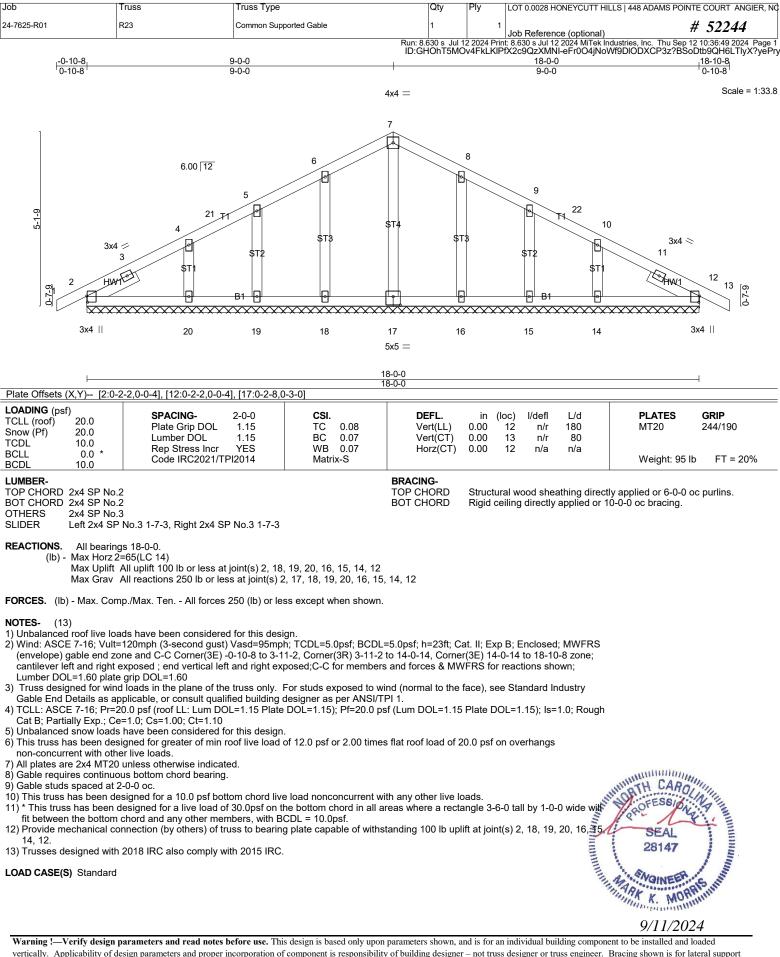


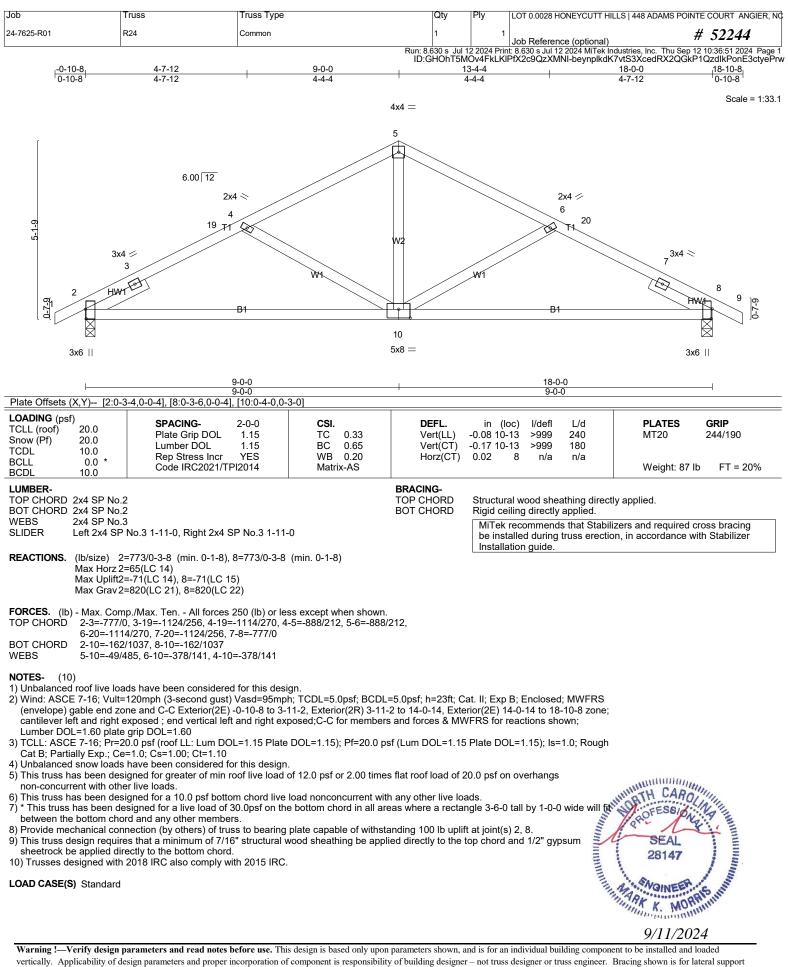
D'Onofrio Drive Madison WI 53719

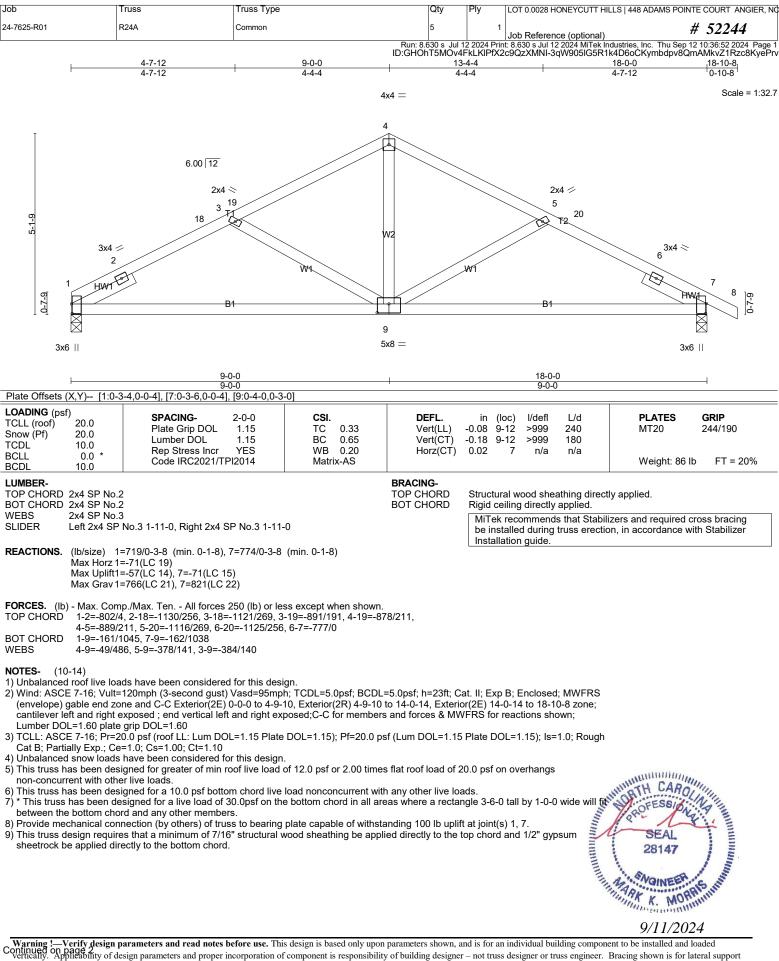
Job	Truss	Truss Type	Qty	Ply	LOT 0.0028 HONEYCUTT HILLS 448 AD	DAMS POINTE COURT ANGIER, NO
24-7625-R01	R22	Hip Girder	1	1	Job Reference (optional)	# 52244
			Run: 8 430 s Feb 1	2 2021 Prin	nt: 8 630 s Jul 12 2024 MiTek Industries Inc.	Thu Sep 12 10:36:47 2024 Page 2

Run: 8.430 s Feb 12 2021 Print: 8.630 s Jul 12 2024 MiTek Industries, Inc. Thu Sep 12 10:36:47 2024 Page 2 ID:GHOhT5MOv4FkLKIPfX2c9QzXMNI-isjGzOh7GvPR_RErPnMbua5yLP1AhMrqt9GrU6yePs_

LOAD CASE(S) Standard


1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15


Uniform Loads (plf) Vert: 1-4=-60, 4-9=-60, 9-10=-60, 11-20=-20

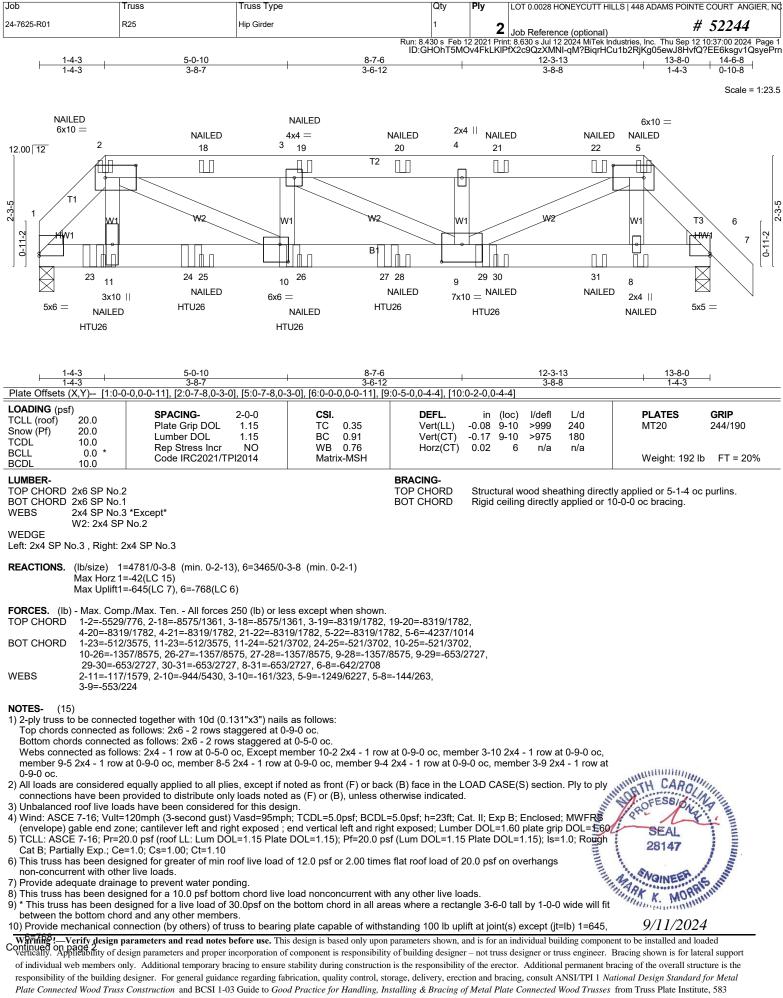

Concentrated Loads (lb)

Vert: 4=-51(B) 6=-51(B) 9=-51(B) 18=-58(B) 7=-51(B) 15=-29(B) 12=-29(B) 23=-58(B) 24=-15(B) 25=-51(B) 26=-51(B) 27=-51(B) 28=-51(B) 29=-51(B) 30=-51(B) 31=-51(B) 32=-51(B) 33=-15(B) 34=-68(B) 35=-74(B) 36=-29(B) 38=-29(B) 38=-29(B) 39=-29(B) 40=-29(B) 41=-29(B) 42=-29(B) 43=-29(B) 44=-74(B) 45=-74(B) 45=-

Job	Truss	Truss Type	Qty	Ply	LOT 0.0028 HONEYCUTT HILLS 448 ADAMS POINTE COURT ANGIER, NO
24-7625-R01	R24A	Common	5	1	Job Reference (optional) # 52244
					t: 8.630 s Jul 12 2024 MiTek Industries, Inc. Thu Sep 12 10:36:53 2024 Page 2 fX2c9QzXMNI-X04XERmusk9biMh_m2T?8rL4uq5P5B9iF5jAgmyePru

10) Trusses designed with 2018 IRC also comply with 2015 IRC.

11) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.


12) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

 Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.
 SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS

4) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 0.0028 HONEYCUTT HILLS 448 ADAMS POINTE COURT ANGIER, NO
24-7625-R01	R25	Hip Girder	1	2	Job Reference (optional) # 52244
					it: 8.630 s Jul 12 2024 MiTek Industries, Inc. Thu Sep 12 10:37:00 2024 Page 2 fX2c9QzXMNI-qM?BiqrHCu1b2RjKg05ewJ8HvfQ?EE6ksgv1QsyePrn

NOTES- (15)

11) Use Simpson Strong-Tie HTU26 (10-16d Girder, 14-10dx1 1/2 Truss) or equivalent spaced at 2-0-0 oc max. starting at 1-1-4 from the left end to 7-1-4 to connect truss(es) R18 (1 ply 2x4 SP), R19 (1 ply 2x4 SP), R20 (1 ply 2x4 SP), R21 (1 ply 2x4 SP) to back face of bottom chord. 12) Use Simpson Strong-Tie HTU26 (20-10d Girder, 14-10dx1 1/2 Truss, Single Ply Girder) or equivalent at 9-1-4 from the left end to connect truss(es) R22 (1 ply 2x6 SP) to back

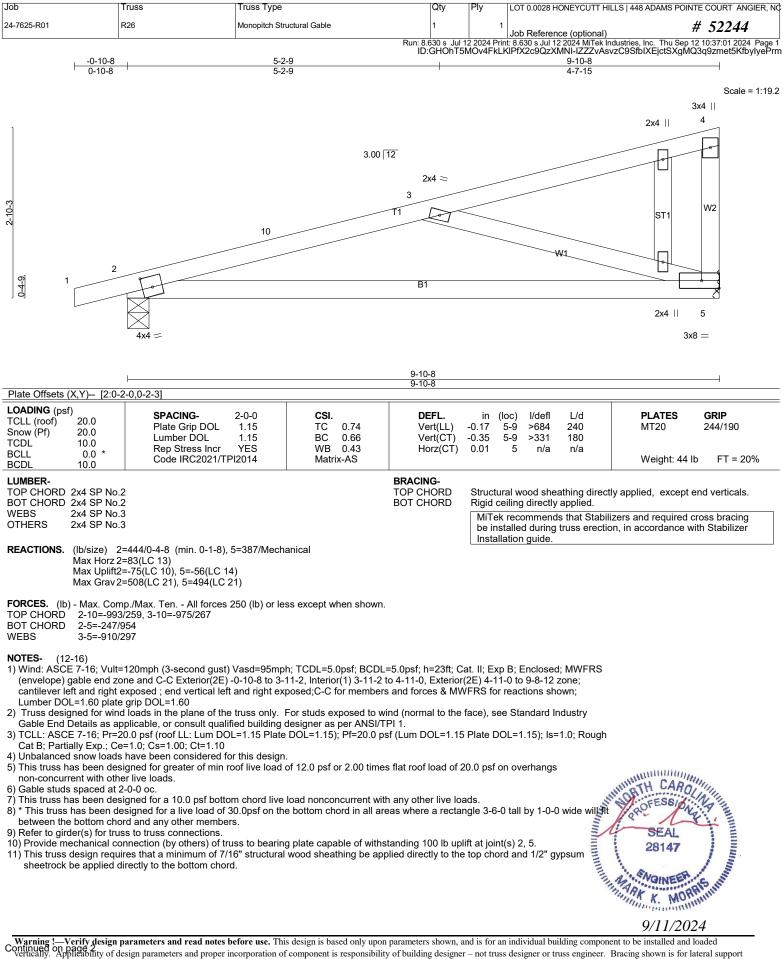
face of bottom chord.

13) Fill all nail holes where hanger is in contact with lumber.

14) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.

15) Trusses designed with 2018 IRC also comply with 2015 IRC.

LOAD CASE(S) Standard


1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-2=-60, 2-5=-60, 5-7=-60, 12-15=-20

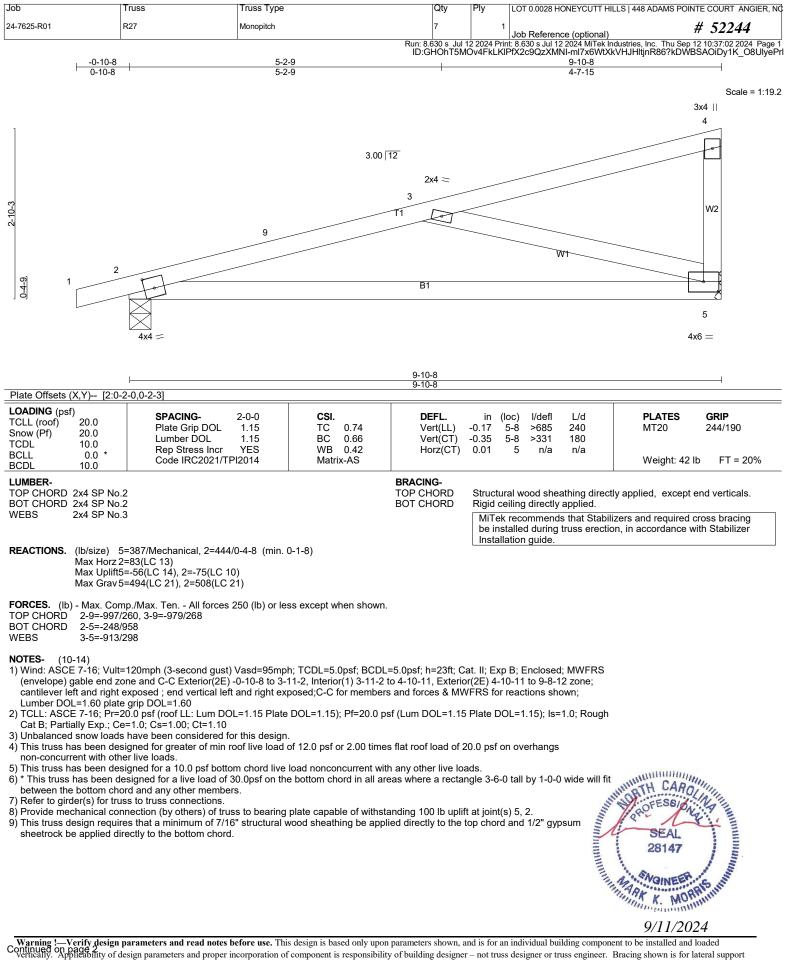
Concentrated Loads (lb)

Vert: 11=-15(F) 10=-1262(B) 8=-15(F) 23=-1262(B) 24=-1262(B) 25=-15(F) 26=-15(F) 27=-1262(B) 28=-15(F) 29=-1946(B) 30=-15(F) 31=-15(F)

Job	Truss	Truss Type	Qty	Ply	LOT 0.0028 HONEYCUTT HILLS 448 ADAMS POINTE COURT ANGIER, NO
24-7625-R01	R26	Monopitch Structural Gable	1	1	Job Reference (optional) # 52244
		Ru			t: 8.630 s Jul 12 2024 MiTek Industries, Inc. Thu Sep 12 10:37:01 2024 Page 2 (IPfX2c9QzXMNI-IZZZvAsvzC9SfbIXEjctSXgMQ3q9zmet5KfbyIyePrm

12) Trusses designed with 2018 IRC also comply with 2015 IRC.

13) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.


14) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

 Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.
 SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS

16) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

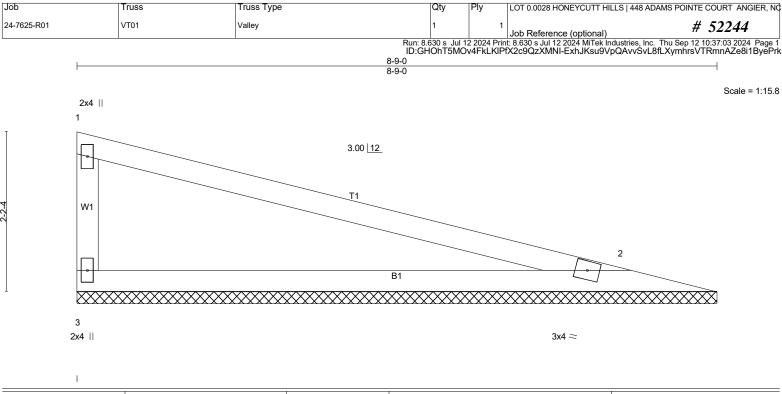
LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	LOT 0.0028 HONEYCUTT HILLS 448 ADAMS POINTE COURT ANGIER, NO
24-7625-R01	R27	Monopitch	7	1	Job Reference (optional) # 52244
					t: 8.630 s Jul 12 2024 MiTek Industries, Inc. Thu Sep 12 10:37:02 2024 Page 2 PfX2c9QzXMNI-ml7x6WtXkVHJHltjnR86?kDWBSAOiDy1K_08UlyePrl

10) Trusses designed with 2018 IRC also comply with 2015 IRC.

11) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.

12) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the

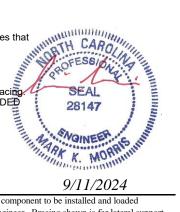

loads indicated.

13) Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing. 14) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS

(4) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

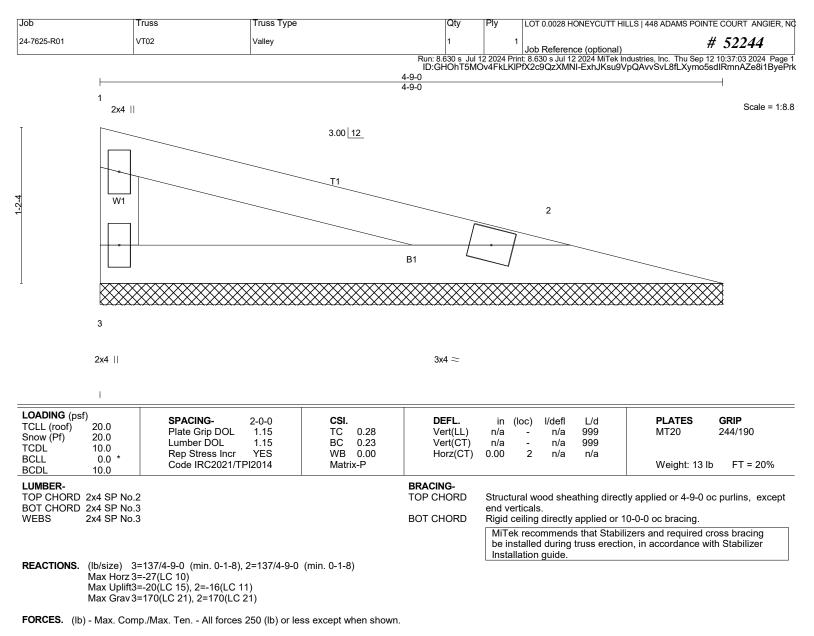
LOAD CASE(S) Standard

LOADING (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2021/TPI2014	CSI. TC 0.75 BC 0.73 WB 0.00 Matrix-P	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) l/defl L/d n/a - n/a 999 n/a - n/a 999 0.00 2 n/a n/a	PLATES GRIP MT20 244/190 Weight: 27 lb FT = 20%	
LUMBER- TOP CHORD 2x4 SP SS BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3			BRACING- TOP CHORD BOT CHORD	Structural wood sheathing directly applied or 7-7-14 oc purlins, e end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.		
					lizers and required cross bracing ion, in accordance with Stabilizer	


Installation guide.

REACTIONS. (lb/size) 3=297/8-9-0 (min. 0-1-8), 2=297/8-9-0 (min. 0-1-8) Max Horz 3=-60(LC 10) Max Uplift3=-43(LC 15), 2=-36(LC 11) Max Grav 3=384(LC 21), 2=384(LC 21)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 1-3=-310/137


NOTES- (8-12)

- 1) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2.
- 8) Trusses designed with 2018 IRC also comply with 2015 IRC.
- 9) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
- 10) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.
- 11) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing 12) SEE BČŚI-B3 SUMMĂRY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WĔB MEMBERS FOR ŘECŎMMENDED
- MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS

9/11/2024

LOAD CASE(S) Standard

NOTES-

- 1) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2.
 Trusses designed with 2018 IRC also comply with 2015 IRC.
- 9) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
- 10) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the
- 11) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling,
- Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing. SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES IN ADDITION FOR RECOMMENDED MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OF THE CONSIDERATIONS. 12) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED

MORPHS MORPHS 11/2024 ⁴ and lo AND HUMAN ANT AK NOINEE 9/11/2024

LOAD CASE(S) Standard