

RE: J0424-1957 Lot 11 Overhills Creek 2ND FL

Site Information:

Customer: Project Name: J0424-1957 Lot/Block: Address: City:

Model: Subdivision: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

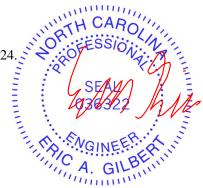
Design Code: IRC2018/TPI2014 Wind Code: N/A Roof Load: N/A psf Design Program: MiTek 20/20 8.4 Wind Speed: N/A mph Floor Load: 55.0 psf

This package includes 11 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date
1	164629108	F200	4/2/2024
2	164629109	F201	4/2/2024
3	164629110	F202L	4/2/2024
4	l64629111	F203	4/2/2024
5	164629112	F204	4/2/2024
6	164629113	F205L	4/2/2024
7	164629114	F206L	4/2/2024
8	164629115	F207	4/2/2024
9	164629116	K200	4/2/2024
10	164629117	K201	4/2/2024
11	164629118	K202	4/2/2024

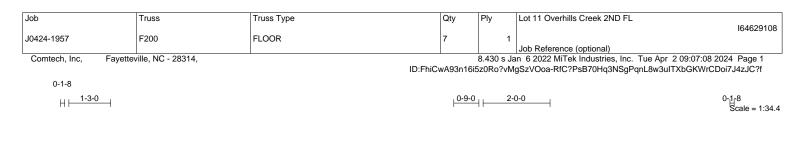
The truss drawing(s) referenced above have been prepared by

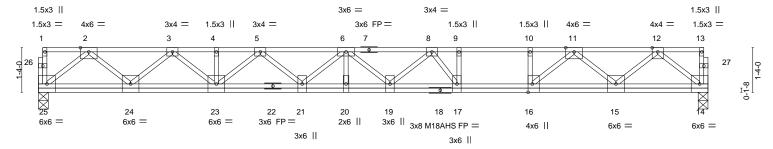
Truss Engineering Co. under my direct supervision


based on the parameters provided by Comtech, Inc - Fayetteville.

Truss Design Engineer's Name: Gilbert, Eric

My license renewal date for the state of North Carolina is December 31, 2024


North Carolina COA: C-0844


IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Gilbert, Eric

Trenco 818 Soundside Rd Edenton, NC 27932

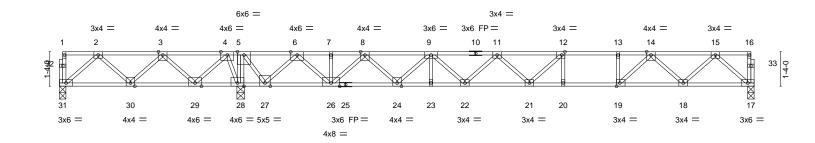
	<u> </u>			<u>+ 13-8-0 + 14-8-0</u> 1-0-0 1-0-0		<u>20-0-0</u> 5-4-0	
Plate Offsets (X,Y)							
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrYESCode IRC2018/TPI2014	CSI. TC 0.47 BC 0.56 WB 0.63 Matrix-S	Vert(LL) -0.28	n (loc) l/defl 3 17-19 >839 9 17-19 >610 2 14 n/a	L/d 480 360 n/a	PLATES MT20 M18AHS Weight: 132 lb	GRIP 244/190 186/179 FT = 20%F, 11%E
BOT CHORD 2x4 WEBS 2x4	SP 2400F 2.0E(flat) SP 2400F 2.0E(flat) SP No.3(flat) size) 14=0-3-8, 25=0-3-8		BRACING- TOP CHORD BOT CHORD	except end vert	icals.	ectly applied or 6-0-0 o	oc purlins,
FORCES. (Ib) - Ma TOP CHORD 2-3 9-7	<pre>c Grav 14=1079(LC 1), 25=1079(LC 1) ax. Comp./Max. Ten All forces 250 (lb) o 3=-2054/0, 3-4=-3534/0, 4-5=-3534/0, 5-6= 10=-3909/0, 10-11=-3909/0, 11-12=-1985/ -25=0/1244, 23-24=0/2904, 21-23=0/4070</pre>	=-4337/0, 6-8=-4621/0, 8-9=-3 0					
16 WEBS 10 5-2	5-17=0/3909, 15-16=0/2983, 14-15=0/121 -16=-339/0, 2-25=-1573/0, 2-24=0/1102, 3 21=0/361, 6-21=-343/0, 8-19=-53/516, 8-1 -15=-1353/0, 11-16=0/1318	9 3-24=-1153/0, 3-23=0/836, 5-:	23=-712/0,				

Unbalanced floor live loads have been considered for this design

2) All plates are MT20 plates unless otherwise indicated.

3) Plates checked for a plus or minus 1 degree rotation about its center.

4) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 11 Overhills Creek 2ND FL
					I6462910
J0424-1957	F201	Floor	3	1	
					Job Reference (optional)
Comtech, Inc, Fay	tteville, NC - 28314,			8.430 s Ja	in 6 2022 MiTek Industries, Inc. Tue Apr 2 09:07:09 2024 Page 1
· · · •		ID:FhiC	wA93n16i	5z0Ro?vM	gSzVOoa-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f
0-1-8	0-9	-12			
Η ⊢	0- <u>4-1</u> 2				2-0-0 1-2-8 0-1-8 Scale = 1:44

2-9-0 2-9-0 Plate Offsets (X,Y)	7-11-8 7-11-8 5-3-0 2-6-0 1-7-12 0-11-4 0-11-4 [12:0-1-8,Edge], [19:0-1-8,Edge]	<u>13-1-0</u> 5-1-8	<u>15-8-8</u> 2-7-8	18-2-8 19-7-0 2-6-0 1-4-8	21-8-8 <u>20-7-0</u> <u>21-7-0</u> 1-0-0 0-1-8	24-2-0 2-5-8	26-11-0 2-9-0
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.81 BC 0.72 WB 0.70 Matrix-S	Vert(LL) -0.27	(loc) l/defl 20-21 >877 20-21 >645 28 n/a	L/d 480 360 n/a	PLATES MT20 Weight: 143 lb	GRIP 244/190 FT = 20%F, 11%E
BOT CHORD 2x4 S 17-25	SP No.1(flat) SP No.1(flat) *Except* 5: 2x4 SP 2400F 2.0E(flat) SP No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sl except end vertica Rigid ceiling direc	als.		oc purlins,
Max	size) 31=0-3-0, 28=0-3-8, 17=0-3-0 : Uplift 31=-508(LC 4) : Grav 31=188(LC 3), 28=2311(LC 1), 17=	868(LC 4)					
TOP CHORD 2-3	ux. Comp./Max. Ten All forces 250 (lb) or 3=-88/1181, 3-4=0/2472, 4-5=0/3513, 5-6= 9=-1336/0, 9-11=-2402/0, 11-12=-2821/0, 1	0/2606, 6-7=0/385, 7-8=0	0/385,				
BOT CHORD 30- 24-	-15=-1529/0 -31=-595/162, 29-30=-1799/0, 28-29=-315 -26=0/671, 23-24=0/2013, 22-23=0/2013, 2 -19=0/2162, 17-18=0/932						
WEBS 12- 3-2 11-	22=-521/0, 9-22=0/537, 9-24=-928/0, 5-28=-1353/0, 29=-1158/0, 4-29=0/1173, 4-28=-1042/0, 1 -22=-521/0, 9-22=0/537, 9-24=-928/0, 8-24 27=-1680/0, 5-27=0/1479, 15-17=-1239/0,	2-21=-234/304, 11-21=-2 l=0/932, 8-26=-1284/0, 6	24/255, 6-26=0/1439,				
 All plates are 1.5x Plates checked for Provide mechanic This truss is desig referenced standa Recommend 2x6 s Strongbacks to be 	live loads have been considered for this de 3 MT20 unless otherwise indicated. r a plus or minus 1 degree rotation about i al connection (by others) of truss to bearin gned in accordance with the 2018 Internatio ard ANSI/TPI 1. strongbacks, on edge, spaced at 10-0-0 o e attached to walls at their outer ends or re- t erect truss backwards.	s center. g plate capable of withst onal Residential Code se c and fastened to each t	ections R502.11.1 and R80 russ with 3-10d (0.131" X	02.10.2 and		SEAL SEAL O363	

В Unuminitien (April 2,2024

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type		Qty	Ply	Lot 11 O	verhills Creek 2NI	D FL	
J0424-1957	F202L	Floor		1		1			16462911
				1.			erence (optional)		
Comtech, Inc, Fag	yetteville, NC - 28314,								:07:09 2024 Page 1
			ID:Fhi	WA93n16	6i5z0Ro?v	MgSzVOoa	-RfC?PsB70Hq3N	ISgPqnL8w3uITXb0	GKWrCDoi7J4zJC?f
0-1-8		0-10-0							
H ⊢ 1-3-0	op	4-8					2-0-0	1-2-8	0-1-8 Scale = 1:4
1.5x3 1.5x3 = 4x4 =	4x12 = 6x	12 = 5x8 = 5x8	4x12 5 = 4x6 = 3x6 FP =	=		3	≪4 = 1.5x3	4x4 =	1.5x3 4x4 = 1.5x3 =
1 2		5 6 7		36	3x6 11	JA4 —	13 14	15	16 17
T H 9	9 00 9			50			13 14 a ^g H	15 *al	10 17 Tol 17
					2				34
									\bowtie
	31 30	29 28 2	27 26 25	24 23		22	21 20	19	18
32 3×6 —	31 30		27 26 25		_		21 20 5x3 II 4x4	19 — 4x4 —	18
32 3x6 =	31 30 4x6 = 4x6 =			BAHS FP		22 3x4 = 1.9			18
			5x5 = 3x8 M1	BAHS FP					18
		4x8 = 5x8 = 5 7-11-8 7-0-0 13- 0-18 5-	5x5 = 3x8 M1	BAHS FP		3x4 = 1.	5x3 4x4 21-8-8 20-7-0 21-7-0 -0-0 1-0-0	= 4x4 =	18
3x6 = <u>−−2-9-0</u> 2-9-0	4x6 = 4x6 =	4x8 = 5x8 = 5 7-0-0 13-0-1-8 5-0-11-8	1-0 15-8-8 1-8 2-7-8	BAHS FP :: 3x4 =	= 18-2-8	3x4 = 1.4	5x3 4x4 21-8-8 120-7-0121-7-011	= 4x4 =	18 3x6 =
3x6 = <u>2-9-0</u> <u>2-9-0</u> <u>Plate Offsets (X,Y)</u> LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0	4x6 = 4x6 = + 5-3-0 + 6-10-8 2-6-0 + 1-7-8 [5:0-4-8,Edge], [7:0-1-8,Ed SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr	4x8 = 5x8 = 5 $7-0.10 + 13.$	1-0 15-8-8 1-0 15-8-8 1-8 2-7-8 :0-1-8,Edge], [27:0-1-8,Edge] 0.79 DEFL. 0.90 Vert(Cl 0.90 Horz(Cl	3AHS FP 3x4 = 	= <u>18-2-8</u> <u>2-6-0</u> in (loc) 19 21-22 10 21-22	3x4 = 1.4	5x3 4x4 21-8-8 20-7-0 21-7-0 -0-0 1-0-0	= 4x4 = <u>24-2-0</u> <u>2-5-8</u> PLATES MT20 M18AHS	18 3x6 = 26-11-0 2-9-0
3x6 = <u>2-9-0</u> <u>2-9-0</u> <u>2-9-0</u> <u>2-9-0</u> <u>2-9-0</u> <u>2-9-0</u> <u>2-9-0</u> <u>2-9-0</u> <u>2-9-0</u> <u>2-9-0</u> <u>2-9-0</u> <u>2-9-0</u> <u>2-9-0</u> <u>2-9-0</u> <u>2-9-0</u> <u>2-9-0</u> <u>2-9-0</u> <u>2-9-0</u> <u>2-9-0</u> <u>2-9-0</u> <u>2-9-0</u> <u>2-9-0</u> <u>2-9-0</u> <u>2-9-0</u> <u>2-9-0</u> <u>2-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1-9-0</u> <u>1</u>	4x6 = 4x6 = + 5-3-0 + 6-10-8 2-6-0 + 1-7-8 [5:0-4-8,Edge], [7:0-1-8,Edge] [5:0-4-8,Edge], [7:0-1-8,Edge] Plate Grip DOL Lumber DOL	4x8 = 5x8 = 5 $7-0.10 + 13.$	1-0 15-8-8 1-0 15-8-8 1-8 2-7-8 :0-1-8,Edge], [27:0-1-8,Edge] 0.79 DEFL. 0.90 Vert(Cl 0.90 Horz(Cl	3AHS FP 3x4 = 	= <u>18-2-8</u> <u>2-6-0</u> in (loc) 19 21-22 10 21-22	3x4 = 1.3 + <u>19-7-0</u> 1-4-8 - - - - - - - - - - - - - - - - - -	5x3 4x4 21-8-8 +20-7-0 +21-7-0 1-0-0 +1-0-0 0-1-8 L/d 480 360	= 4x4 = 3 24-2-0 2-5-8 PLATES MT20	18 3x6 = 26-11-0 2-9-0 GRIP 244/190

Max Uplift 32=-595(LC 4) Max Grav 32=49(LC 3), 29=3005(LC 1), 18=959(LC 4)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- TOP CHORD 2-3=0/1398, 3-4=0/3118, 4-5=0/4801, 5-6=0/4763, 6-7=0/2018, 7-8=0/647, 8-10=-1584/0, 10-11=-3231/0, 11-13=-3552/0, 13-14=-3162/0, 14-15=-3162/0, 15-16=-1719/0
- BOT CHORD
 31-32=-699/5, 30-31=-2274/0, 29-30=-4096/0, 28-29=-3376/0, 27-28=-647/0, 26-27=0/612, 25-26=0/2787, 23-25=0/2787, 22-23=0/3733, 21-22=0/3162, 20-21=0/3162, 19-20=0/2449, 18-19=0/1036

 WEBS
 13-21=-316/0, 14-20=-498/0, 5-29=0/461, 2-32=-4/932, 2-31=-971/0, 3-31=0/1127, 3-30=-1443/0, 4-30=0/1557, 4-29=-1780/0, 13-22=0/661, 11-22=-356/0, 11-23=-687/0, 10-23=0/650, 10-26=-1512/0, 8-26=0/1347, 8-27=-1581/0, 7-27=0/1086, 7-28=-1925/0, 6-28=0/1889, 6-29=-2225/0, 16-18=-1378/0, 16-19=0/950, 15-19=-1015/0, 15-20=0/1098

NOTES-

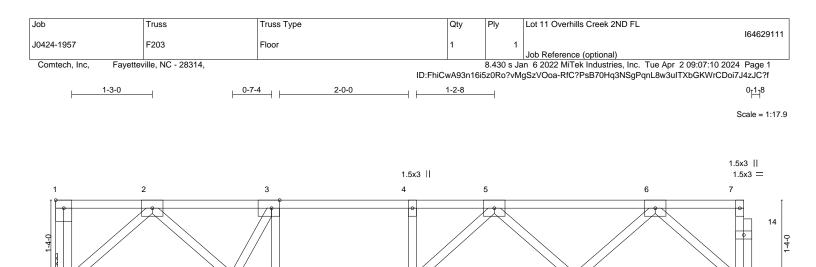
- 1) Unbalanced floor live loads have been considered for this design.
- 2) All plates are MT20 plates unless otherwise indicated.
- 3) Plates checked for a plus or minus 1 degree rotation about its center.
- 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 595 lb uplift at joint 32.
 5) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 7) CAUTION, Do not erect truss backwards.
- 8) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 422 lb down at 5-4-8, and 422
- Ib down at 15-11-8 on top chord. The design/selection of such connection device(s) is the responsibility of others.
- 9) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

- 1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00
- Uniform Loads (plf)
 - Vert: 18-32=-10, 1-17=-100

ERENCO AMITEK Affiliate

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building component Association (www.sbcacomponents.com)


	Job	Truss	Truss Type	Qty	Ply	Lot 11 Overhills Creek 2ND FL
						I64629110
	J0424-1957	F202L	Floor	1	1	
						Job Reference (optional)
	Comtech, Inc, Fayettev	ville, NC - 28314,			8.430 s Ja	n 6 2022 MiTek Industries, Inc. Tue Apr 2 09:07:10 2024 Page 2
ID:FhiCwA93n16i5z0Ro?vMgSzVOoa-RfC						gSzVOoa-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

LOAD CASE(S) Standard

Concentrated Loads (lb) Vert: 35=-342(B) 36=-342(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

H	<u>2-9-0</u> 2-9-0	3-5-12	4-5-12 1-0-0	5-5-12	5 ₁ 7 ₁ 4 0-1-8	8-0-12 2-5-8		<u>10-9-12</u> 2-9-0	
Plate Offsets (X,Y)	[1:Edge,0-1-8], [3:0-1-8,E								
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2018/TF	2-0-0 1.00 1.00 YES Pl2014	CSI. TC BC WB Matri:	0.44 0.61 0.26 x-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.09 9-10 -0.12 9-10 0.01 8	l/defl L/d >999 480 >999 360 n/a n/a	PLATES MT20 Weight: 58 lb	GRIP 244/190 FT = 20%F, 11%E
BOT CHORD 2x4 SF	^o No.1(flat) ^o No.1(flat) ^o No.3(flat)				BRACING- TOP CHOF BOT CHOF	RD Structura except e	al wood sheathing di end verticals. illing directly applied	rectly applied or 6-0-0 or 10-0-0 oc bracing.) oc purlins,

10

9

REACTIONS. (size) 13=Mechanical, 8=0-3-0 Max Grav 13=581(LC 1), 8=575(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-961/0, 3-4=-1207/0, 4-5=-1207/0, 5-6=-932/0

BOT CHORD 12-13=0/575, 11-12=0/1207, 10-11=0/1207, 9-10=0/1200, 8-9=0/607

WEBS 2-13=-766/0, 2-12=0/536, 3-12=-552/0, 6-8=-806/0, 6-9=0/451, 5-9=-374/0

12

11 1.5x3 ||

NOTES-

13 ^{3x6} =

1) Unbalanced floor live loads have been considered for this design.

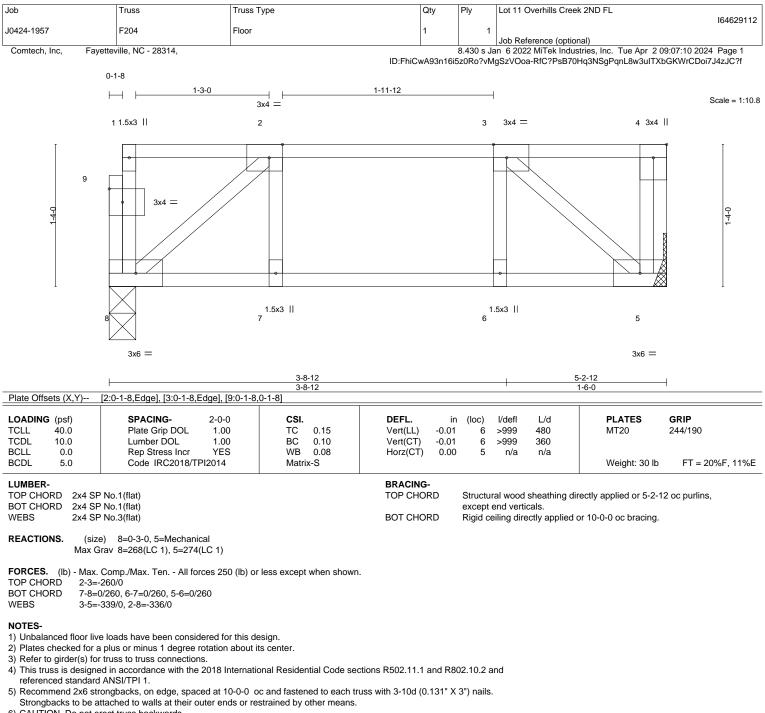
2) All plates are 3x4 MT20 unless otherwise indicated.

3) Plates checked for a plus or minus 1 degree rotation about its center.

Refer to girder(s) for truss to truss connections.

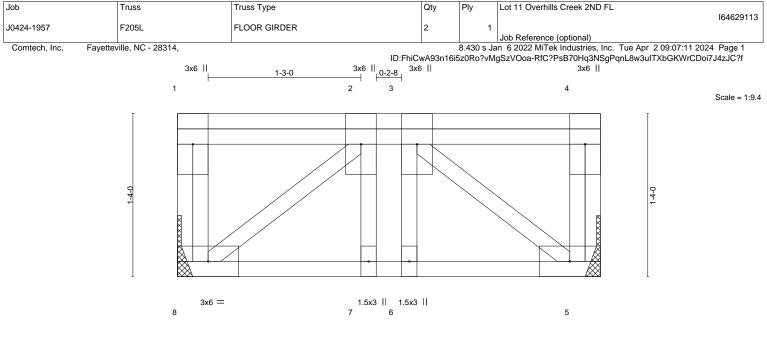
5) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.


Strongbacks to be attached to walls at their outer ends or restrained by other means.

7) CAUTION, Do not erect truss backwards.

3x6 =


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

6) CAUTION, Do not erect truss backwards.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent bucking of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

3x6	=

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

LOADING TCLL	(psf) 40.0	SPACING- Plate Grip DOL	2-0-0 1.00	CSI. TC	0.08	DEFL. Vert(LL)	in -0.00-	(loc) 7	l/defl >999	L/d 480	PLATES MT20	GRIP 244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.13	Vert(CT)	-0.01	7	>999	360		
BCLL	0.0	Rep Stress Incr	NO	WB	0.13	Horz(CT)	0.00	5	n/a	n/a		
BCDL	5.0	Code IRC2018/TPI2	2014	Matrix	(-S						Weight: 29 lb	FT = 20%F, 11%

BOT CHORD

2 5 0

TOP CHORD	2x4 SP No.1(flat)
BOT CHORD	2x4 SP No.1(flat)
WEBS	2x4 SP No.3(flat)

REACTIONS. (size) 8=Mechanical, 5=Mechanical Max Grav 8=442(LC 1), 5=392(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-422/0

BOT CHORD 7-8=0/422, 6-7=0/422, 5-6=0/422 WEBS 3-5=-540/0, 2-8=-540/0

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Refer to girder(s) for truss to truss connections.

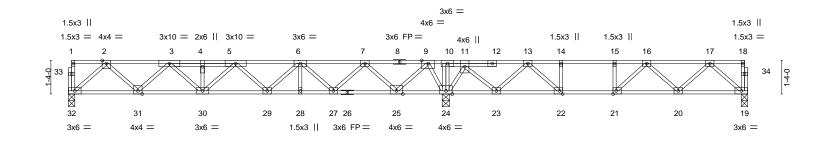
4) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

6) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 519 lb down at 1-10-4 on top chord. The design/selection of such connection device(s) is the responsibility of others.

7) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

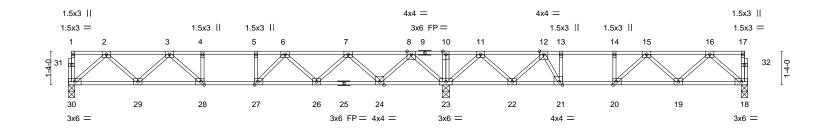

1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 5-8=-10, 1-4=-100 Concentrated Loads (lb)

Vert: 2=-481(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

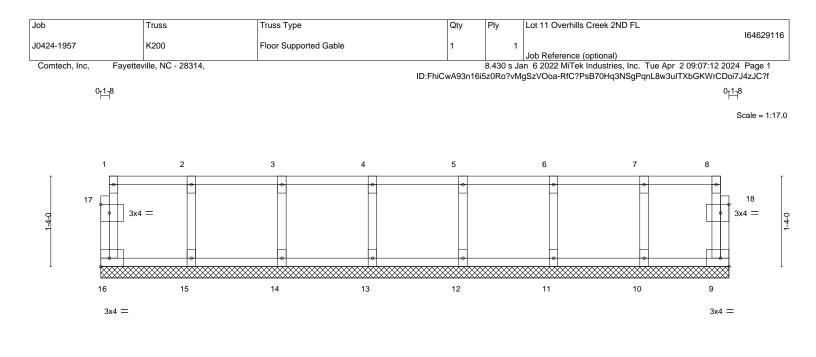
Job	Truss	Truss Type	Qty	Ply	Lot 11 Overhills Creek 2ND FL	
					164	4629114
J0424-1957	F206L	Floor	1	1		
					Job Reference (optional)	
Comtech, Inc, Fayettev	ville, NC - 28314,			8.430 s Ja	n 6 2022 MiTek Industries, Inc. Tue Apr 2 09:07:11 2024 Pa	ige 1
		ID:FhiC	wA93n16i5	5z0Ro?vM	gSzVOoa-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4z、	JC?f
0-1-8						
1-3-0		0-7-0	0-7-8		2-0-0 1 1-2-8 0-1	.8
H ⊢ 1-3-0		Q-7-Q	F-7-0			e = 1:45.7
) = 1.40.7

	9-0 7-10-8 9-0 5-1-8	10-6-0 13-0-0 2-7-8 2-6-0	14-11-8 <u>14-10-0 15-8-8 16-1</u> 1-10-0 0-1-8 1-3 0-9-0	<u>1-8 18-2-8 19-7-(</u> -0 1-3-0 1-4-8	20-7-0 21-7-0 1-0-0 1-0-0	-8-8 24-2-0 -1-8	<u>26-11-0</u> 2-9-0
Plate Offsets (X,	,Y) [21:0-1-8,Edge], [22:0-1-8,Edge]						
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0	Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrNO	CSI. TC 0.84 BC 0.65 WB 0.58	Vert(LL) -0.11	n (loc) l/defl 20-21 >999 529-30 >999 19 n/a	L/d 480 360 n/a	PLATES MT20	GRIP 244/190
BCDL 5.0	Code IRC2018/TPI2014	Matrix-S				Weight: 149 lb	FT = 20%F, 11%E
BOT CHORD	2x4 SP No.1(flat) 2x4 SP No.1(flat) 2x4 SP No.3(flat)		BRACING- TOP CHORD BOT CHORD	except end verti	cals.	ectly applied or 6-0-0 o	oc purlins,
REACTIONS.	(size) 32=0-3-0, 24=0-3-8, 19=0-3-0						
	Max Grav 32=895(LC 8), 24=2134(LC 1), 19	9=564(LC 4)					
TOP CHORD BOT CHORD WEBS	2-3=-1657/0, 3-4=-2750/0, 4-5=-2750/0, 5-6 9-10=0/1799, 10-11=0/1812, 11-13=-211/7 15-16=-1144/165, 16-17=-910/0 31-32=0/970, 30-31=0/2436, 29-30=0/2801 24-25=-1104/0, 23-24=-1116/0, 22-23=-464 19-20=0/595 14-22=-380/0, 2-32=-1289/0, 2-31=0/951, 3 5-29=-496/0, 6-29=0/493, 6-27=-819/0, 7-2 9-24=-1353/0, 13-22=0/791, 13-23=-822/0, 17-20=0/438, 16-20=-356/72, 16-21=-282/0	18, 13-14=-1144/165, 14-19 , 28-29=0/2126, 27-28=0/2 1/714, 21-22=-165/1144, 20 1-31=-1006/0, 3-30=0/444, 7=0/834, 7-25=-1205/0, 9-2 11-23=0/795, 11-24=-1355	5=-1144/165, 2126, 25-27=0/1004, 0-21=0/1166, 4-30=-328/0, 25=0/1226,				
 All plates are Plates checked This truss is or referenced st Recommend Strongbacks CAUTION, Do Hanger(s) or 	loor live loads have been considered for this of 3x4 MT20 unless otherwise indicated. ad for a plus or minus 1 degree rotation about designed in accordance with the 2018 Interna andard ANSI/TPI 1. 2x6 strongbacks, on edge, spaced at 10-0-0 to be attached to walls at their outer ends or no not erect truss backwards.	t its center. tional Residential Code ser oc and fastened to each tr restrained by other means. sufficient to support concer	russ with 3-10d (0.131" X ntrated load(s) 372 lb do	3") nails. wn at 5-4-8, and 3	372	NUTH CA	RO
8) In the LOAD	5-11-8 on top chord. The design/selection of CASE(S) section, loads applied to the face of			hers.	11110	0363	
Uniform Load Vert: Concentrated	Live (balanced): Lumber Increase=1.00, Plat is (plf) 19-32=-10, 1-18=-100	e Increase=1.00				SEA 0363 MGIN C A. G Ap	EER ILBERTITUT ril 2,2024


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

A MiTek Affili

GINEERING B


	5-4-8	649	749		14-11-8			19-6-15		21-6-15 20-6-15	26-11-0	
	5-4-8	1-0-0	7-4-8		7-7-0			4-7-7		1-0-0 1-0-0	5-4-1	
Plate Offsets (X,Y)	[20:0-1-8,Edge			-1-8,Edge], [le]		411		100 100	041	
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	Lumber Rep Str	rip DOL	2-0-0 1.00 1.00 YES PI2014	CSI. TC BC WB Matri	0.82 0.57 0.46 x-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.11 2 -0.14 2 0.03		l/defl >999 >999 n/a	L/d 480 360 n/a	PLATES MT20 Weight: 139 lb	GRIP 244/190 FT = 20%F, 11%E
BOT CHORD 2x4 SP No.1 (flat) except									end vert	icals.	ctly applied or 6-0-0 c 6-0-0 oc bracing.	oc purlins,
(-	ize) 30=0-3-0, Grav 30=719(L0	,		8=581(LC 4)								
8-1	x. Comp./Max. T ⊨-1228/0, 3-4=-1 0=0/1465, 10-11 ∙15=-1238/168. 1	1937/0, 4-5 =0/1465, 1	=-1937/0, 5-6 1-12=-580/60	=-1937/0, 6-7	/=-1512/0, 7-	8=-514/112,						
BOT CHORD 29-												
WEBS 13- 8-2 11-	21=-517/0, 2-30 4=0/956, 7-24=-	=-1021/0, 2 928/0, 7-26	2-29=0/639, 3- 6=0/541, 6-26=	29=-610/0, 3 =-501/0, 6-27	-28=0/459, 8 =0/440, 11-2	3-23=-1311/0,						
NOTES-												

- 1) Unbalanced floor live loads have been considered for this design.
- 2) All plates are 3x4 MT20 unless otherwise indicated.
- 3) Plates checked for a plus or minus 1 degree rotation about its center.
- 4) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- Silongbacks to be attached to waits at their outer ends of res
- 6) CAUTION, Do not erect truss backwards.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

A MITek Atfilia 818 Soundside Road Edenton, NC 27932

I			9-3-0			I		
Plate Offsets (X,Y)	[17:0-1-8,0-1-8], [18:0-1-8,0-1-8]	1	1		I			
LOADING (psf)	SPACING- 2-0-0	CSI.		n (loc) l/defl L/d	PLATES	GRIP		
TCLL 40.0	Plate Grip DOL 1.00	TC 0.06	Vert(LL) n/a	a - n/a 999	MT20	244/190		
TCDL 10.0	Lumber DOL 1.00	BC 0.01	Vert(CT) n/a	a - n/a 999				
BCLL 0.0	Rep Stress Incr YES	WB 0.03	Horz(CT) 0.00	0 9 n/a n/a				
BCDL 5.0	Code IRC2018/TPI2014	Matrix-R			Weight: 43 lb	FT = 20%F, 11%E		
LUMBER-			BRACING-					
TOP CHORD 2x4 S	SP No.1(flat)		TOP CHORD	ectly applied or 6-0-0	oc purlins,			
BOT CHORD 2x4 S	SP No.1(flat)			except end verticals.		-		
WEBS 2x4 S	SP No.3(flat)		BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing.				
OTHERS 2x4 S	SP No.3(flat)			3111 31 117 11				

9-3-0

REACTIONS. All bearings 9-3-0.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 16, 9, 15, 14, 13, 12, 11, 10

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

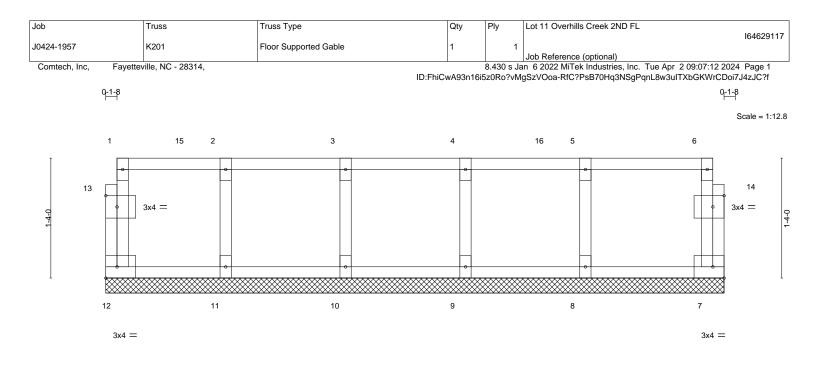
1) All plates are 1.5x3 MT20 unless otherwise indicated.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Gable requires continuous bottom chord bearing.

4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

5) Gable studs spaced at 1-4-0 oc.


- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 7) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932

						<u>6-10-8</u> 6-10-8						
Plate Offs	ets (X,Y)	[13:0-1-8,0-1-8], [14:0-1-	8,0-1-8]			0-10-8						
LOADING TCLL TCDL BCLL BCDL	(psf) 40.0 10.0 0.0 5.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2018/T	2-0-0 1.00 1.00 YES PI2014	CSI. TC BC WB Matri	0.09 0.02 0.05 x-R	DEFL. Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 7	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 32 lb	GRIP 244/190 FT = 20%F, 11%
LUMBER TOP CHC BOT CHC	ORD 2x4 SF ORD 2x4 SF	P No.1(flat) P No.1(flat)				BRACING- TOP CHOR	D	except	end verti	cals.	ectly applied or 6-0-0	oc purlins,

WEBS 2x4 SP No.3(flat) OTHERS 2x4 SP No.3(flat)

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 6-10-8.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 12, 7, 11, 10, 9, 8

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) All plates are 1.5x3 MT20 unless otherwise indicated.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Gable requires continuous bottom chord bearing.

4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

5) Gable studs spaced at 1-4-0 oc.

6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

7) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

LOAD CASE(S) Standard

1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00

Uniform Loads (plf) Vert: 7-12=-10, 1-6=-100 Concentrated Loads (lb) Vert: 3=-74 15=-76 16=-74

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB Building Component Scietur Information**. Building from the Structure Building Component Advance interpretention. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss			Truss	Гуре				Qty	/	Ply	Lot 11 O	verhills C	reek 2ND	FL			10.400	
J0424-1957	K202			Floor S	Supported Ga	able			1		1	Job Refe	rence (or	otional)				16462	29118
Comtech, Inc, Fay	etteville, NC -	28314,									8.430 s Ja				Inc. Tue	Apr 2 09	:07:13 20	024 Page	. 1
	,	,						10	D:FhiCwA9										
0- <u>1</u> -8																		0-1-8	1
																		Scale =	1:44.9
									3x6 FF	-									
1 2	3 4	5	6	7	8	9	10	11	12 13	14	15	16	17	18	19	20	21	22	
	, - a a	H		, 		н	- 10			-14		- H		- 10	- 13	20	- 1		T
945 m		Ĩ		Ī		Ĩ	Ĩ	Ĩ	Ĩ		Ĩ	Ĩ	Ĩ	Ĩ			Ĩ		46
		XXXXXXXX	XXXXXXXX														XXXXXXX		1
	2 41	40	39	38	37	36	35	34 33	32	31	30	29	28	27	26	25	24	23	
3x4 =							3	x6 FP=										3x4 =	:

			26-11-0 26-11-0			
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrYESCode IRC2018/TPI2014	CSI. TC 0.09 BC 0.01 WB 0.03 Matrix-R	DEFL. i Vert(LL) n/ Vert(CT) n/ Horz(CT) 0.0	'a - n/a 999	PLATES MT20 Weight: 116 lb	GRIP 244/190 FT = 20%F, 11%E
BOT CHORD 2x4	SP No.1(flat) SP No.1(flat)		BRACING- TOP CHORD	Structural wood sheathing di except end verticals.	rectly applied or 6-0-0	oc purlins,

TOP CHORD	2x4 SP No.1(flat)	TOP CHORD	Structural wood sheathing directly applied or 6-0-0
BOT CHORD	2x4 SP No.1(flat)		except end verticals.
WEBS	2x4 SP No.3(flat)	BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing.
OTHERS	2x4 SP No.3(flat)		

REACTIONS. All bearings 26-11-0.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 44, 23, 43, 42, 41, 40, 39, 38, 37, 36, 35, 33, 32, 31, 30, 29, 28, 27, 26, 25, 24

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) All plates are 1.5x3 MT20 unless otherwise indicated.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Gable requires continuous bottom chord bearing.

4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

5) Gable studs spaced at 1-4-0 oc.

6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

7) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

