Mark Morris, P.E.

#126, 1317-M, Summerville, SC 29483 843 209-5784, Fax (866)-213-4614

The truss drawing(s) listed below have been prepared by **Atlantic Building Components** under my direct supervision based on the parameters provided by the truss designers.

AST #: 52103 JOB: 24-7417-R01 JOB NAME: LOT 0.0036 HONEYCUTT HILLS Wind Code: ASCE7-16 Wind Speed: Vult= 120mph Exposure Category: B Mean Roof Height (feet): 23 These truss designs comply with IRC 2015 as well as IRC 2018. 56 Truss Design(s)

Trusses:

J01, J02, J03, J05, J06, J07, J08, J09, J11, J12, J13, J14, J15, J16, J17, J19, J20, J21, J22, J23, J24, J25, J26, J27, J28, P01, R01, R02, R03, R04, R05, R06, R07, R08, R09, R10, R11, R12, R13, R14, R15, R16, R17, R18, R19, R20, R21, R22, R23, R24, R24A, R25, R26, R27, VT01,

Warning !--- Verify design parameters and read notes before use.

- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7)* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit
- between the bottom chord and any other members.
- 8) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 5.
 This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum
- sheetrock be applied directly to the bottom chord.
- 11) Trusses designed with 2018 IRC also comply with 2015 IRC.

LOAD CASE(S) Standard

- 3) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5)* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 4.
- 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 9) Trusses designed with 2018 IRC also comply with 2015 IRC.

LOAD CASE(S) Standard

responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Plate Connected Wood Trusse from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 0.0036 HONEYCUTT HILLS 286 SHEL	BY MEADOW LANE ANGIER, NC
24-7417-R01	J06	Jack-Open Girder	1	1	Job Reference (optional)	# 52103
		Pup	8630 c lul	12 2024 Dr	int: 8,630 c, Jul 12,2024 MiTok Industrias, Inc.	Sat Son 7 20:55:48 2024 Page 2

Run: 8.630 s Jul 12 2024 Print: 8.630 s Jul 12 2024 MiTek Industries, Inc. Sat Sep 7 20:55:48 2024 Page 2 ID:GHOhT5MOv4FkLKIPfX2c9QzXMNI-YUIHjO6x6SKKs4d5brqi0okURLM73991BOv85EyfwFf

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-2=-60, 2-3=-60, 3-4=-60, 5-7=-20 Concentrated Loads (lb) Vert: 6=-15(B) 9=-15(B)

REACTIONS. (lb/size) 7=281/0-3-8 (min. 0-1-8), 4=116/Mechanical, 5=88/Mechanical Max Horz 7=72(LC 10) Max Uplift7=-31(LC 10), 4=-39(LC 7), 5=-9(LC 10) Max Grav 7=281(LC 1), 4=118(LC 26), 5=96(LC 5)

Max Grav 7=281(LC 1), 4=118(LC 20), 5=96(LC 5)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES- (12)

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS

(envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough

Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

5) Provide adequate drainage to prevent water ponding.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit

between the bottom chord and any other members.

8) Refer to girder(s) for truss to truss connections.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 4, 5.

10) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.

11) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

12) Trusses designed with 2018 IRC also comply with 2015 IRC.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-2=-60, 2-3=-60, 3-4=-60, 5-7=-20 Concentrated Loads (lb)

Vert: 3=-12(F) 6=-29(F) 8=-12(F) 9=-29(F)

- (11)
- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 5) Provide adequate drainage to prevent water ponding.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 8) Refer to girder(s) for truss to truss connections.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 5.
- 10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 11) Trusses designed with 2018 IRC also comply with 2015 IRC.

LOAD CASE(S) Standard

- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs
- non-concurrent with other live loads.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4 except (jt=lb) 3=102.

8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum

- sheetrock be applied directly to the bottom chord.
- Trusses designed with 2018 IRC also comply with 2015 IRC.

LOAD CASE(S) Standard

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES- (8)

- Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs
- non-concurrent with other live loads.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2.
- 8) Trusses designed with 2018 IRC also comply with 2015 IRC.

```
LOAD CASE(S) Standard
```


REACTIONS. (lb/size) 3=53/Mechanical, 2=159/0-3-8 (min. 0-1-8), 4=35/Mechanical Max Horz 2=65(LC 12) Max Uplift3=-30(LC 12), 2=-10(LC 12) Max Grav 3=55(LC 20), 2=159(LC 1), 4=50(LC 5)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES- (8)

- Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs
- non-concurrent with other live loads.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2.
- 8) Trusses designed with 2018 IRC also comply with 2015 IRC.

```
LOAD CASE(S) Standard
```


REACTIONS. (lb/size) 3=53/Mechanical, 2=159/0-3-8 (min. 0-1-8), 4=35/Mechanical Max Horz 2=65(LC 12) Max Uplift3=-30(LC 12), 2=-10(LC 12) Max Grav 3=55(LC 24), 2=159(LC 1), 4=50(LC 5)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES- (8)

- Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs
- non-concurrent with other live loads.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2.
- 8) Trusses designed with 2018 IRC also comply with 2015 IRC.

```
LOAD CASE(S) Standard
```


REACTIONS. All bearings 1-3-0 except (jt=length) 4=Mechanical, 5=Mechanical.

(lb) - Max Horz 7=38(LC 11)

Max Uplift All uplift 100 lb or less at joint(s) 4, 7, 6 Max Grav All reactions 250 lb or less at joint(s) 4, 7, 5, 6, 6

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES- (11)

- Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs
- non-concurrent with other live loads.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.

9) Refer to girder(s) for truss to truss connections.

- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 7, 6.
- 11) Trusses designed with 2018 IRC also comply with 2015 IRC.

LOAD CASE(S) Standard

REACTIONS. (lb/size) 3=54/Mechanical, 2=160/0-3-8 (min. 0-1-8), 4=35/Mechanical Max Horz 2=65(LC 12) Max Uplift3=-30(LC 12), 2=-10(LC 12) Max Grav 3=56(LC 24), 2=160(LC 1), 4=50(LC 5)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES- (8)

- Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs
- non-concurrent with other live loads.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2.
- 8) Trusses designed with 2018 IRC also comply with 2015 IRC.

```
LOAD CASE(S) Standard
```


Max Horz 2=76(LC 11) Max Uplift5=-97(LC 11), 2=-21(LC 10) Max Grav 5=511(LC 21), 2=186(LC 21)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 3-5=-481/291

NOTES- (9)

- Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit
- between the bottom chord and any other members.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 2.
- 9) Trusses designed with 2018 IRC also comply with 2015 IRC.

LOAD CASE(S) Standard

KEACTIONS. (ID/SiZe) 4=148/Mechanical, 2=213/0-3-8 (min. 0-1) Max Horz 2=50 (LC 13) Max Uplift4=-23(LC 14), 2=-47(LC 10) Max Grav4=197(LC 21), 2=290(LC 21)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES- (

- 1) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs

- non-concurrent with other live loads. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit
- between the bottom chord and any other members.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 2.
- 9) Trusses designed with 2018 IRC also comply with 2015 IRC.

vertically. Applicability of design parameters and roter bases before user into stagen is outsed only applications into the inductive of the stagen is obtained with the stagent is obtained w

<u>0-1-8</u> Plate Offsets (X,Y)-- [1:0-1-14,0-1-0] LOADING (psf) SPACING-DEFL I/d PLATES 2-0-0 CSI. in (loc) l/defl TCLL (roof) 20.0 Plate Grip DOL 1.15 тс 0.46 Vert(LL) 0.07 3-6 >849 240 **MT20** Snow (Pf) 20.0 Lumber DOL 1.15 BC 0.35 Vert(CT) -0.07 3-6 >805 180 TCDL 10.0 WB 0.00 Rep Stress Incr YES Horz(CT) 0.01 1 n/a n/a BCLL 0.0 Code IRC2021/TPI2014 Matrix-AS Weight: 17 lb BCDL 10.0 LUMBER-BRACING-TOP CHORD 2x4 SP No.2

BOT CHORD 2x4 SP No.2 2x4 SP No 3 WFBS

TOP CHORD BOT CHORD

Structural wood sheathing directly applied, except end verticals. Rigid ceiling directly applied. MiTek recommends that Stabilizers and required cross bracing

GRIP

244/190

FT = 20%

be installed during truss erection, in accordance with Stabilizer Installation guide

REACTIONS. (lb/size) 1=194/0-5-12 (min. 0-1-8), 3=194/0-1-8 (min. 0-1-8) Max Horz 1=57(LC 13) Max Uplift1=-56(LC 10), 3=-65(LC 10) Max Grav 1=260(LC 21), 3=260(LC 21)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed; porch left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 6) Bearing at joint(s) 3 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 7) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 3.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 10) Trusses designed with 2018 IRC also comply with 2015 IRC.

LOAD CASE(S) Standard

of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 *National Design Standard for Metal Plate Connected Wood Truss Construction* and BCSI 1-03 Guide to *Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses* from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is tor lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 *National Design Standard for Metal Plate Connected Wood Trusse Construction* and BCSI 1-03 Guide to *Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses* from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

	51			ILLO ZOU STILLDT MILADOW LANE ANGILIN, NO
24-7417-R01 J26	Half Hip Girder	1	1 Job Reference (optional)	# 52103

Run: 8.630 s Jul 12 2024 Print: 8.630 s Jul 12 2024 MiTek Industries, Inc. Sat Sep 7 20:55:56 2024 Page 2 ID:GHOhT5MOv4FkLKIPfX2c9QzXMNI-J0nIP7CyEwKCpJEe3WzaLU3ovayuwnWC1drZNnyfwFX

LOAD CASE(S) Standard Concentrated Loads (Ib)

Vert: 3=-2(B) 6=-7(B) 10=-2(B) 11=-7(B)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES- (9)

- Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; porch left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs
- non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit

between the bottom chord and any other members.

- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 4, 2.
- 9) Trusses designed with 2018 IRC also comply with 2015 IRC.

```
LOAD CASE(S) Standard
```


Max Uplift3=-69(LC 12), 4=-36(LC 12) Max Grav 5=180(LC 18), 3=61(LC 24), 4=48(LC 10)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES- (

- 1) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs
- non-concurrent with other live loads.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 4.
- 8) Trusses designed with 2018 IRC also comply with 2015 IRC.

LOAD CASE(S) Standard

- NOTES- (10)
- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.
- See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.
- 10) Trusses designed with 2018 IRC also comply with 2015 IRC.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	LOT 0.0036 HONEYCUTT HILLS 286 SHELBY	Y MEADOW LANE ANGIER, NO
24-7417-R01	R01	HIP GIRDER	1	1	Job Reference (optional)	# 52103
		Run: 8 ID:0	3.630 s Jul GHOhT5M	12 2024 Pri Ov4FkLKI	int: 8.630 s Jul 12 2024 MiTek Industries, Inc. Sa PfX2c9QzXMNI-jbTR19EqXrjmgmzCkfXHz	t Sep 7 20:55:59 2024 Page 2 6hBmn3x7v5fjb4D_6yfwFU

NOTES- (12-16)

10) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.

11) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

12) Trusses designed with 2018 IRC also comply with 2015 IRC.

13) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced. 14) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated

- 15) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate
- Connected Wood Trusses for additional bracing guidelines, including diagonal bracing. 16) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-4=-60, 4-9=-60, 9-10=-60, 10-11=-60, 11-12=-60, 13-23=-20

Concentrated Loads (lb)

Vert: 4=-36(F) 9=-36(F) 10=-63(F) 21=-22(F) 6=-36(F) 18=-22(F) 15=-22(F) 27=-37(F) 28=-11(F) 29=-36(F) 30=-36(F) 31=-36(F) 33=-36(F) 34=-36(F) 35=-36(F) 35= 36=-36(F) 37=-36(F) 38=-36(F) 42=-22(F) 42=-57(F) 43=-22(F) 44=-22(F) 45=-22(F) 45=-22

4x8 =

5x6 =

4x8 =

5x6 ||

D'Onofrio Drive, Madison, WI 53719.

	9-6-0	18-0-0		5-6-0	33-7-3 36-11-8		
Plate Offsets (X Y) [8:0	-8-13 Edge]	0-0-0	0	-0-0			
LOADING (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2021/TPI2014	CSI. TC 0.71 BC 0.93 WB 0.83 Matrix-AS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) l/defl L -0.31 16-18 >999 24 -0.50 16-18 >891 18 0.13 12 n/a n	/d PLATES GRIP 10 MT20 244/190 30 MT20HS 187/143 /a Weight: 210 lb FT = 20%		
LUMBER- TOP CHORD 2x4 SP No T4: 2x4 SF BOT CHORD 2x4 SP No B2: 2x4 SF WEBS 2x4 SP No W7: 2x4 S WEDGE Left: 2x4 SP No 3	.2 *Except*		BRACING- TOP CHORD BOT CHORD WEBS	Structural wood sheathir Rigid ceiling directly app 1 Row at midpt MiTek recommends tha be installed during trus Installation guide.	ng directly applied, except end verticals. lied. 5-18, 7-14 at Stabilizers and required cross bracing s erection, in accordance with Stabilizer		
REACTIONS. (Ib/size) Max Horz Max Uplift Max Grav	2=1525/0-3-8 (min. 0-2-2), 12=1534/0 2=-133(LC 12) 2=-67(LC 14), 12=-77(LC 15) 2=1778(LC 41), 12=1620(LC 40)	-3-0 (min. 0-1-15)					
FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-22=-2512/434, 22-23=-2493/438, 23-24=-2452/451, 3-24=-2446/455, 3-4=-2432/432, 4-5=-2015/407, 5-25=-2769/484, 25-26=-2769/484, 6-26=-2769/484, 6-27=-2769/484, 7-27=-2769/484, 7-8=-2127/437, 8-28=-2579/441, 9-28=-2586/402, 9-10=-2574/458, 10-12=-1575/309 BOT CHORD 2-18=-283/2027, 18-29=-265/2715, 17-29=-265/2715, 16-17=-265/2715, 16-30=-269/2746, 15-30=-269/2746, 15-31=-269/2746, 14-31=-269/2746, 13-14=-403/2540 WEBS 3-18=-398/142, 4-18=-92/953, 5-18=-1053/162, 5-16=0/298, 7-14=-940/159, 8-14=-54/1001, 9-14=-811/210, 9-13=-782/212, 10-13=-438/2540							
NOTES- (12-16) 1) Unbalanced roof live lo 2) Wind: ASCE 7-16; Vult (envelope) gable end z Exterior(2R) 19-8-9 to 3 vertical left and right ex 3) TCLL: ASCE 7-16; Pr= Cat B; Partially Exp.; C 4) Unbalanced snow load 5) This truss has been de non-concurrent with ott 6) Provide adequate drain 7) All plates are MT20 pla 8) This truss has been de 9) * T	ads have been considered for this des =120mph (3-second gust) Vasd=95mp one and C-C Exterior(2E) -0-10-8 to 3- 33-3-7, Interior(1) 33-3-7 to 33-7-3, Ext posed;C-C for members and forces & 20.0 psf (roof LL: Lum DOL=1.15 Plate e=1.0; Cs=1.00; Ct=1.10 s have been considered for this desigr signed for greater of min roof live load her live loads. Hage to prevent water ponding. tes unless otherwise indicated. signed for a 10.0 psf bottom chord live esigned for a live load of 30.0psf on th ord and any other members, with BCD onnection (by others) of truss to bearin parameters and read notes before use. The	ign. h; TCDL=5.0psf; BCDL= 11-2, Exterior(2R) 3-11-2 erior(2E) 33-7-3 to 37-10 MWFRS for reactions sh DOL=1.15); Pf=20.0 ps ² of 12.0 psf or 2.00 times load nonconcurrent with e bottom chord in all are L = 10.0psf. g plate capable of withst is design is based only upon	5.0psf; h=23ft; C 2 to 16-3-7, Interio -0 zone; cantileve own; Lumber DO f (Lum DOL=1.15 flat roof load of 2 any other live loa as where a rectar anding 100 lb up parameters shown, a	at. II; Exp B; Enclosed; MV or(1) 16-3-7 to 19-8-9, er left and right exposed ; L=1.60 plate grip DOL=1.0; Plate DOL=1.15); Is=1.0; 20.0 psf on overhangs ads. ngle 3-6-0 tall by 1-0-0 wid ift at joint(s) 2, 12. nd is for an individual building	NFRS end 80 Rough SEAL 28147 be will fit 9/6/2024 g component to be installed and loaded		
Vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 <i>National Design Standard for Metal</i> <i>Plate Connected Wood Truss Construction</i> and BCSI 1-03 Guide to <i>Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses</i> from Truss Plate Institute. 583							

Job	Truss	Truss Type	Qty	Ply	LOT 0.0036 HONEYCUTT HILLS 286 SHELBY	MEADOW LANE ANGIER, NC
24-7417-R01	R02	HIP	1	1	Job Reference (optional)	# 52103
		Run ID:GHC	8.630 s Jul hT5MOv4I	12 2024 Pri kLKIPfX2	int: 8.630 s Jul 12 2024 MiTek Industries, Inc. Sat c9QzXMNI-Bn1pEVFTH8rdIwYPIM2WVKE	Sep 7 20:56:00 2024 Page 2 QVBHssPOoyFpnXYyfwFT

NOTES- (12-16)

- 11) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 12) Trusses designed with 2018 IRC also comply with 2015 IRC.
- 13) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
 14) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated
- 15) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate
- Connected Wood Trusses for additional bracing guidelines, including diagonal bracing. 16) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

Ontinued On page 2 Vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison WI 53719

Job	Truss	Truss Type	Qty	Ply	LOT 0.0036 HONEYCUTT HILLS 286 SHELB	Y MEADOW LANE ANGIER, NC
24-7417-R01	R03	HIP	1	1	Job Reference (optional)	# 52103
		Ru ID:G	: 8.630 s Jul HOhT5MOv	12 2024 Pri 4FkLKIPfX	nt: 8.630 s Jul 12 2024 MiTek Industries, Inc. Sa K2c9QzXMNI-Bn1pEVFTH8rdIwYPIM2WV	at Sep 7 20:56:00 2024 Page 2 KEQrBJAsRjoyFpnXYyfwFT

11) Trusses designed with 2018 IRC also comply with 2015 IRC.

12) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.

13) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

14) Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing. 15) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS

5) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

Warning !---Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded Continued on page 2. We the state of the
Job	Truss	Truss Type	Qty	Ply	LOT 0.0036 HONEYCUTT HILLS 286 SHELBY	MEADOW LANE ANGIER, NO
24-7417-R01	R04	Hip	1	1	Job Reference (optional)	# 52103
		Run: 8 ID:GI	.630 s Jul HOhT5MC	12 2024 Pri V4FkLKIF	nt: 8.630 s Jul 12 2024 MiTek Industries, Inc. Sat \$ PfX2c9QzXMNI-f_aBSrG52SzUv47br3Zl2Xm	Sep 7 20:56:01 2024 Page 2 nfWbgsb 8xAvZK3 yfwFS

11) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.

12) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

 Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.
 SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS

(4) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	LOT 0.0036 HONEYCUTT HILLS 286 SHELE	BY MEADOW LANE ANGIER, NC
24-7417-R01	R05	Piggyback Base	1	1	Job Reference (optional)	# 52103
		Run: 8 ID:	3.630 s Jul GHOhT5N	12 2024 Pri IOv4FkLK	nt: 8.630 s Jul 12 2024 MiTek Industries, Inc. S IPfX2c9QzXMNI-f_aBSrG52SzUv47br3Z	at Sep 7 20:56:01 2024 Page 2 I2XmfVbgrb_IxAvZK3_yfwFS

11) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.

12) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the

loads indicated.

 Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.
 SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS

(4) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	LOT 0.0036 HONEYCUTT HILLS 286 SHELBY N	MEADOW LANE ANGIER, NC
24-7417-R01	R06	PIGGYBACK BASE	1	1	Job Reference (optional)	# 52103
	·	Run: 8 ID:0	3.630 s Jul GHOhT5M	12 2024 Pri Ov4FkLK	nt: 8.630 s Jul 12 2024 MiTek Industries, Inc. Sat S IPfX2c9QzXMNI-7A8ZfBHjpm5LXEinPn4 al.	Sep 7 20:56:02 2024 Page 2 Jo4?xYKL95PZItbQyfwFR

11) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.

12) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

 Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.
 SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS

4) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

Warning !---Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual canada. Control of the origin parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 0.0036 HONEYCUTT HILLS 286 SHE	LBY MEADOW LANE ANGIER, NC
24-7417-R01	R07	PIGGYBACK BASE	1	1	Job Reference (optional)	# 52103
	·	Run: 8 ID:GH0	3.630 s_Jul DhT5MOv₄	12 2024 Pri IFkLKIPfX	nt: 8.630 s Jul 12 2024 MiTek Industries, Inc. 2c9QzXMNI-cMixtXHLa3DC9OH_zUbD	Sat Sep 7 20:56:03 2024 Page 2 D7yswWOlb3ImEeD2R7tyfwFQ

12) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.

13) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

14) Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing. 15) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS

5) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	LOT 0.0036 HONEYCUTT HILLS 286 SI	HELBY MEADOW LANE ANGIER, NC
24-7417-R01	R08	PIGGYBACK BASE	1	1	Job Reference (optional)	# 52103
	·	Run: 8 ID:GH0	3.630 s Jul DhT5MOv	12 2024 Pri 4FkLKIPfX	int: 8.630 s Jul 12 2024 MiTek Industries, Ir <2c9QzXMNI-cMixtXHLa3DC9OH_zL	nc. Sat Sep 7 20:56:03 2024 Page 2 JbD7ysx8OHb3qoEeD2R7tyfwFQ

12) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.

13) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

14) Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing. 15) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS

5) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 *National Design Standard for Metal Plate Connected Wood Truss Construction* and BCSI 1-03 Guide to *Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses* from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 0.0036 HONEYCUTT HILLS 286 SHELBY M	NEADOW LANE ANGIER, NC
24-7417-R01	R09	PIGGYBACK BASE	1	1	Job Reference (optional)	# 52103
	·	Run: 8 ID:GH0	3.630 s Jul DhT5MOv	12 2024 Pri 4FkLKIPf>	int: 8.630 s Jul 12 2024 MiTek Industries, Inc. Sat S X2c9QzXMNI-4ZGK4sIzLNL3mXsAXC7SqAC	ep 7 20:56:04 2024 Page 2 D7YoeaoEqOttn gJyfwFP

11) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.

12) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

 Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.
 SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS

4) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	LOT 0.0036 HONEYCUTT HILLS 286 SHELE	BY MEADOW LANE ANGIER, NC
24-7417-R01	R10	ROOF SPECIAL	1	1	Job Reference (optional)	# 52103

Run: 8.630 s Jul 12 2024 Print: 8.630 s Jul 12 2024 MiTek Industries, Inc. Sat Sep 7 20:56:05 2024 Page 2 ID:GHOhT5MOv4FkLKIPfX2c9QzXMNI-YIqiHCJb6hTwOhQM4vehCNxHqC?bXgLX5XXYCIyfwFO

LOAD CASE(S) Standard

Job	Truss	Truss Typ	9	Qtv	Plv 10		LS 286 SHELBY MEADOW LANE ANGLER N
24-7417-R01	R11	ROOF SPE		1	1		# 52102
				'	Jok	Reference (optional)	# 32103
				ID:GHOhT5MOv	4FkLKIPfX2c9	QzXMNI-0xO4VYKDt_I	bn0r?Zed9wlbUSLcKqG3HhKBG5kCyfwF
	-0 <u>-10-8</u> 0-10-8	8-1-15	<u>16-3-0</u> 8-1-1	20-6-0 26- 4-3-0 6-3	-9-0 3-0	<u>31-9-8</u> 5-0-8	<u>6-11-8 37-10</u> -0 5-2-0 0-10-8
							Scolo - 1:90
			5x8 =				
		8.00	5				
]							
				₹3 ₆ 5x6 =	5x8	=	
		3x8 🚧	25		r4 7		1
		4x6 🖉 4		26	The second se		
2		3 191	W3	\\ W4 \\	`	2x4	11
2 11-5				// /we		W8 8	0
8-7-2		т	W2	A //	Ŵ		3-7-2
							4x6
	2				M //	ew //	³ 12
	N 1 HW1	B1 p		B3 		B4 64	
	0	27 21 20	28 19 18 2	9 17 30 35 14	15 13 31 32	33 12	
		21 2x4 ^{3x8}	= 4x4 =	17 2x4	6x10 =	12 6x8 —	3x4
	5x6	2,44 11	3x6 =	2x4 2x	2x4 =	0,00 —	
				3x8	=		
		8-1-15	15-0-0 . 20-0)-0 25-0-0		31-9-8 . 36	6-11-8
Plata Offacta (X.V)		8-1-15	6-10-1 5-0	-0 5-0-0		6-9-8	5-2-0
LOADING (psf)	[7.0-5-12,0-2-0]	, [9.0-2-14,0-2-0]					
TCLL (roof) 20.0	SP/	ACING- 2-0-0	CSI.	DEFL.	in (loc)	I/defl L/d >712 240	PLATES GRIP
Snow (Pf) 20.0	Lun	nber DOL 1.15	BC 0.96	Vert(CT)	-0.99 16-18	>448 180	W120 244/180
BCLL 0.0	* Rep	o Stress Incr YES	WB 1.00 Matrix-AS	Horz(CT)	0.08 11	n/a n/a	Weight: 251 lb $FT = 20\%$
BCDL 10.0	000		Matrix 710				
LUMBER- TOP CHORD 2x4 SP	No 2			BRACING- TOP CHORD	Structural w	ood sheathing direct	v applied except end verticals
BOT CHORD 2x4 SP	SS *Except*			BOT CHORD	Rigid ceiling	directly applied.	
WEBS 2x4 SP	4 SP No.2, B4: 2 9 No.3 *Except*	2x4 SP No.1		WEBS	1 Row at mi	dpt 6-13, /	-12, 3-19, 5-15
W3,W6	6,W4: 2x4 SP N	o.1			be installe	d during truss erectio	on, in accordance with Stabilizer
Left: 2x4 SP No.3					Installation	n guide.	
REACTIONS (Ib/size	a) 2-1600/0 3	8 (min $0.2.5$) $11-1630$	(2.3.0) (min $(0.2.3)$				
Max H	orz 2=243(LC 1	1)	5-5-0 (mm. 0-2-3)				
Max U Max G	plift2=-68(LC 12 ray2=1938(LC 1	2), 11=-94(LC 13) 20) 11=1851(LC 3)					
TOP CHORD 2-3=-	Comp./Max. Te 2845/122. 3-4=-	en All forces 250 (lb) or -2289/117. 4-25=-2197/13	ess except when shown 0. 5-25=-2174/157. 5-6	=-3807/415.			
6-26=	-1953/151, 7-20	6=-1953/151, 7-8=-2097/2	33, 8-9=-2106/123, 9-1	1=-1803/122	_		
BOT CHORD 2-27= 19-29	=-106/2425, 21-2)=0/1403, 17-29	27=-106/2425, 20-21=-10 =0/1403, 17-30=0/1403,	6/2425, 20-28=-106/242 14-30=0/1403, 14-31=0/	5, 19-28=-106/2425 1403, 13-31=0/1403	o, 3,		
13-32	2=0/1775, 32-33	=0/1775, 12-33=0/1775,	8-34=-107/442, 16-34=	-107/442,			
WEBS 18-19)=-40/924, 5-18=	=-1/1099, 6-13=-2563/360	, 7-13=0/989, 8-12=-312	2/179, 3-19=-679/22	23,		
9-12	=-3/1680, 3-21=	0/322, 5-15=-383/2384, 1	3-15=-475/2566				
NOTES- (10)							
1) Unbalanced roof liv 2) Wind: ASCE 7-16	e loads have be Vult=120mph (3	een considered for this de 3-second gust) Vasd=95m	sign. ph: TCDI =5 0psf: BCDI	=5 0psf: h=23ft: Ca	at II: Exp B: F	Enclosed: MWERS	
(envelope) gable ei	nd zone and C-0	C Exterior(2E) -0-10-8 to 3	3-11-2, Interior(1) 3-11-2	to 11-5-6, Exterior((2R) 11-5-6 to	o 16-3-0,	ANNUM CONTRACT
Exterior(2E) 16-3-0 33-0-6 to 37-10-0 z	to 20-6-0, Interi one: cantilever	ior(1) 20-6-0 to 21-11-6, E left and right exposed : er	exterior(2R) 21-11-6 to 3 id vertical left and right e	1-9-8, Interior(1) 31 exposed:C-C for me	-9-8 to 33-0-6 mbers and fo	6, Exterior(2E)	WING TH CAROLINI
reactions shown; L	umber DOL=1.6	0 plate grip DOL=1.60				Dund	ROFESSION STIT
3) TCLL: ASCE 7-16; Cat B; Partially Exp	Pr=20.0 psf (roo .; Ce=1.0; Cs=1	of LL: Lum DOL=1.15 Pla 1.00; Ct=1.10	te DOL=1.15); Pt=20.0 p	ost (Lum DOL=1.15	Plate DOL=1	1.15); Is=1.0; Rough	EAL
4) This truss has been	n designed for g	reater of min roof live loa	d of 12.0 psf or 2.00 time	es flat roof load of 2	0.0 psf on ov	erhangs	28147
5) Provide adequate c	rainage to prev	s. ent water ponding.				HIII	
6) This truss has been	n designed for a	10.0 psf bottom chord liv	e load nonconcurrent wi	th any other live loa	ads.	by 1.0.0 wide will a	1. ANGINEER C
between the bottom	n designed for h chord and any	other members, with BCI	DL = 10.0psf.	eas where a rectan	iyie 3-0-0 tall	by 1-0-0 wide will fit	APAK MORRININ
8) Provide mechanica	l connection (by	others) of truss to bearing	g plate capable of withs	tanding 100 lb uplift	t at joint(s) 2,	11. 1/2" avecum	Manage and Man
sheetrock be applie	equires mar a m ed directly to the	bottom chord.	woou sneathing be app	med directly to the t	op chord and	n∠ gypsum	9/6/2024
1007 russes designed Continued on page 2	sigh parameters	aliso-complexibitize lise. T	His design is based only upo	n parameters shown, a	nd is for an indi	ividual building compone	ent to be installed and loaded
vertically. Applicability	y of design parame	ters and proper incorporation	of component is responsibili	ty of building designer	- not truss des	igner or truss engineer.	Bracing shown is for lateral support
responsibility of the bui	lding designer Fo	nar temporary oracing to ensu or general guidance regarding	a stating during construction	torage delivery erecti	ion and bracing	consult ANSI/TPI 1 Na	ational Design Standard for Metal

responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 0.0036 HONEYCUTT HILLS 286 SHE	LBY MEADOW LANE ANGIER, NO
24-7417-R01	R11	ROOF SPECIAL	1	1	Job Reference (optional)	# 52103
	·	Run: 8 ID:GHC	.630 s Jul 0hT5MOv4	12 2024 Pri IFkLKIPfX	int: 8.630 s Jul 12 2024 MiTek Industries, Inc. (2c9QzXMNI-0xO4VYKDt_bn0r?Zed9w	Sat Sep 7 20:56:06 2024 Page 2 IbUSLcKqG3HhKBG5kCyfwFN

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	LOT 0.0036 HONEYCUTT HILLS	286 SHELBY MEADOW LANE ANGIER, NC
24-7417-R01	R12	ROOF SPECIAL	1	1	lob Poforence (anti-u-1)	# 52103
			Run: 8.630 s Jul	12 2024 Pr	IJOD Reference (optional) int: 8.630 s Jul 12 2024 MiTek Indus	tries, Inc. Sat Sep 7 20:56:06 2024 Page 1
-	-0 _r -10 _r 8 8-1-15	16-3-0	1D:GHOh I 5MOv 23-6-0	4FKLKIPt2	K2c9QzXMNI-0xO4VYKDt_bn0r)-9-0	2ed9wlbUPqcJdG7OhKBG5kCytwFN 37-10-0
	0-10-8 8-1-15	8-1-1	7-3-0	6	-3-0 7-2-8	0 ¹ 10 ¹ 8
		5x8 =				Scale = 1:80.7
		0.00 42				
r		8.00 12 5				
		3x8 / T2	T3 or			
	4	24	25	5x6 =	5x8 =	
	48		\\w4	5	T47	
1-5-2	/	W3	A R	26		
-				//	27	
3-7-2	It			Wes		6x6 = 6x6 = 6x6
	2	wh ll		× _	WY WB	8 9 .
2	1 HW1 B1		Ba3		R4 W9	Wild 6- 6-
0	28	19 29 18 17 30		5 12	32 33	
		20 $3x8 = 4x4 =$	16 3x8	= 7x8 =	11 5v5 —	10 2ve —
	5x6	2x4 2x4 =	2x4 2x4	2x4 =	- 6x6	3x0 —
			2.41 11			
	8-1-15	15-0-0 20-0-0) 25-0-0		29-9-0 . 36-11-8	
Plate Offsets (X V) [7:	8-1-15 0 5 12 0 2 01 [10:Edge 0 1	6-10-1 5-0-0	5-0-0		4-9-0 7-2-8	
I OADING (nef)	0-5-12,0-2-0], [10.Edge,0-1-					
TCLL (roof) 20.0	SPACING- Plate Grip DOL	2-0-0 CSI. 1.15 TC 0.85	DEFL. Vert(LL)	in (l -0.68 15	oc) l/defl L/d -17 >649 240	PLATES GRIP MT20 244/190
Snow (Pf) 20.0 TCDL 10.0	Lumber DOL	1.15 BC 0.97	Vert(CT)	-1.07 15	-17 >412 180	
BCLL 0.0 *	Code IRC2021/TP	YES WB 0.73 Pl2014 Matrix-AS	Horz(CT)	0.08	10 n/a n/a	Weight: 237 lb FT = 20%
			RRACING			
TOP CHORD 2x4 SP N	o.2 *Except*		TOP CHORD	Structur	al wood sheathing directly ap	oplied, except end verticals.
BOT CHORD 2x4 SP S	S *Except*		BOT CHORD	6-0-0 oc	biling directly applied. Except	t:
B1: 2x4 S	SP No.2, B4: 2x4 SP No.1		WEBS	1 Row a	at midpt 6-12, 3-18,	, 5-14
WEBS 2x4 SF N W4: 2x4 S	SP No.2			MiTek be inst	recommends that Stabilizers alled during truss erection, in	s and required cross bracing
WEDGE Left: 2x4 SP No 3				Installa	ation guide.	
	0.4044/0.0.0.(
Max Horz	z2=1611/0-3-8 (min. 0-2-4) z2=243(LC 11)	, 10=1634/0-3-0 (min. 0-2-2)				
Max Uplit Max Gray	ft2=-67(LC 12), 10=-92(LC 1	(3) (- 3)				
TOP CHORD 2-3=-28	omp./Max. Ten All forces 2 26/136, 3-4=-2274/131, 4-24	250 (Ib) or less except when shown. 4=-2183/145, 5-24=-2159/171, 5-25=	-3705/341,			
6-25=-3	795/315, 6-26=-2515/140, 7	-26=-2515/140, 7-27=-2063/132, 8-2	27=-2168/113,			
BOT CHORD 2-28=-1	04/2409, 20-28=-104/2409,	19-20=-104/2409, 19-29=-104/2409,	18-29=-104/2409	9,		
18-30=0 12-33=0	0/1730, 16-30=0/1730, 16-3 ⁻ 0/1721_11-33=0/1721	1=0/1730, 13-31=0/1730, 13-32=0/17	730, 12-32=0/1730	0,		
WEBS 17-18=-	36/916, 5-17=0/1125, 6-12=	-2427/311, 7-12=0/1356, 3-18=-675/	/222, 8-11=0/1591	1,		
5-14=-2	83/2280, 12-14=-328/2202,	3-20=0/312				
NOTES- (10)	landa hava haan aanaidarad	for this design				
2) Wind: ASCE 7-16; Vu	ilt=120mph (3-second gust)	Vasd=95mph; TCDL=5.0psf; BCDL=	5.0psf; h=23ft; Ca	at. II; Exp	B; Enclosed; MWFRS	MILLING MILLING
(envelope) gable end 21-0-10 to 24-11-6 E	zone and C-C Exterior(2E) xterior(2R) 24-11-6 to 33-0-6	-0-10-8 to 3-11-2, Interior(1) 3-11-2 to 5 Exterior(2E) 33-0-6 to 37-10-0 zon	o 11-5-6, Exterior(e [.] cantilever left a	(2R) 11-5 Ind right e	-6 to 21-0-10, Interior(1)	RTH LAROLINI
left and right exposed	;C-C for members and force	s & MWFRS for reactions shown; Lu	imber DOL=1.60 j	plate grip	DOL=1.60	ROFESSION & III
3) TCLL: ASCE 7-16; Pr Cat B; Partially Exp.; (=20.0 psf (roof LL: Lum DOI Ce=1.0; Cs=1.00; Ct=1.10	L=1.15 Plate DOL=1.15); Pt=20.0 ps	f (Lum DOL=1.15	Plate DC	DL=1.15); IS=1.0; Rough	SFAL
4) This truss has been d	lesigned for greater of min ro	oof live load of 12.0 psf or 2.00 times	flat roof load of 2	0.0 psf o	n overhangs	28147
5) Provide adequate dra	inage to prevent water pond	ling.			HIII	
 6) This truss has been d 7) * This truss has been 	lesigned for a 10.0 psf bottol designed for a live load of 3	m chord live load nonconcurrent with 0 0psf on the bottom chord in all are	any other live loa as where a rectan	ads. Iale 3-6-0	tall by 1-0-0 wide will fit 4	NOINEER
between the bottom c	hord and any other member	s, with BCDL = 10.0psf.			The second second second	RAK MORRAUM
 o) Provide mechanical c 9) This truss design requ 	onnection (by others) of trus uires that a minimum of 7/16	is to bearing plate capable of withsta " structural wood sheathing be appli	naing 100 lb uplifi ed directly to the t	t at joint(s op chord	s) 2, 10. and 1/2" gypsum	White the state of
sheetrock be applied	directly to the bottom chord.		,	•		9/6/2024
Continued on page 2	H parameters and read holdes b	eforte lise. This design is based only upon	parameters shown, a	nd is for ar - not true	n individual building component to	be installed and loaded
of individual web members	s only. Additional temporary bra	cing to ensure stability during construction	is the responsibility	of the erec	tor. Additional permanent bracin	g of the overall structure is the
responsibility of the building	ng designer. For general guidance	e regarding fabrication, quality control, sto	rage, delivery, erecti	ion and bra	cing, consult ANSI/TPI 1 Nation	al Design Standard for Metal
Plate Connected Wood Tr	uss Construction and BCSI 1-03	Guide to Good Practice for Handling, Inst	stalling & Bracing of	† Metal Pla	te Connected Wood Trusses from	n Truss Plate Institute, 583

D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 0.0036 HONEYCUTT HILLS 286 SHELE	BY MEADOW LANE ANGIER, NC
24-7417-R01	R12	ROOF SPECIAL	1	1	Job Reference (optional)	# 52103
		Run: ID:GF	8.630 s Jul OhT5MOv	12 2024 Pri 4FkLKIPfX	nt: 8.630 s Jul 12 2024 MiTek Industries, Inc. S {2c9QzXMNI-0xO4VYKDt_bn0r?Zed9wlb	at Sep 7 20:56:06 2024 Page 2 UPqcJdG7OhKBG5kCyfwFN

LOAD CASE(S) Standard

of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply LOT 0.00	36 HONEYCUTT HILLS	286 SHELBY MEADOW LANE ANGIER, NC
24-7417-R01	R14	ROOF SPECIAL GIRDER	1	1 Iob Ref	erence (ontional)	# 52103
			Run: 8.630 s Jul	12 2024 Print: 8.630 s	Jul 12 2024 MiTek Indu	stries, Inc. Sat Sep 7 20:56:08 2024 Page 1
-0-	10 _г 8 8-1-15	16-3-0	1D:GHON 15MO	27-0-0	33-3-0	36-11-8 37-10-0
0-1	0-8 8-1-15	8-1-1	8-1-1	2-7-15	6-3-0	3-8-8 0-10-8
		5×6 —				Scale = 1:77.4
		500				
		8.00 12				
]		5				
		3x8 12	\mathcal{N}			
			73			
	4x6	4	ne /	4x6 <>		
5		3		6	5	v6 —
		WB WB	/	75x8		ED
ſ			MD		T4	
	TX .		₩2 Ø		× 8	4x6 ×
3-2		W1		vv1	CON CON	9 ₁₀
4	2			////	W6	
	B1		32		B3	
07	⊠ 21	17 ^{16 22} 15	23	14 ¹³	12	⊠ 2. 11
		2x4 ^{3x8} = 4x8 =		$4x4 \equiv$	5x8	= 3x4
	0X0			4x8 =	NAILI	ED
	8-1-15	16-3-0	24-4-1		33-3-0	36-11-8
Plate Offsets (X Y) [8:0	8-1-15 -4-4 0-2-41 [9:0-2-14 0-2-0]	8-1-1	8-1-1	<u> </u>	-10-15	3-8-8
I DADING (nof)	,0-2-4], [0.0-2-14,0-2-0]					
TCLL (roof) 20.0	SPACING-	2-0-0 CSI.	DEFL.	in (loc) I/d	efl L/d	PLATES GRIP
Snow (Pf) 20.0	Lumber DOL	1.15 IC 0.97 1.15 BC 0.91	Vert(LL)	-0.20 14-15 >9	99 240 99 180	MT20 244/190
ICDL 10.0 BCII 0.0 *	Rep Stress Incr	NO WB 0.61	Horz(CT)	0.11 11 r	i/a n/a	
BCDL 10.0	Code IRC2021/TP	2014 Matrix-MSH				Weight: 214 lb FT = 20%
LUMBER-			BRACING-			
TOP CHORD 2x4 SP No	.2 *Except*		TOP CHORD	Structural wood	sheathing directly a	applied, except end verticals.
BOT CHORD 2x4 SP No	.2 *Except*		BOT CHORD	6-0-0 oc bracing	: 11-12.	-o oc bracing, Except.
B2: 2x4 SF	P No.1		WEBS	1 Row at midpt	3-15, 6-15	5, 7-12
WEBS 2x4 SP No	.3			MiTek recomm	ends that Stabilizer	rs and required cross bracing
Left: 2x4 SP No.3				be installed du	ring truss erection, i de	in accordance with Stabilizer
	0-4505/0.0.0 (min. 0.4.45)	44-4522/0.2.0 (min. 0.4.42)		inotaliation gai		
Max Horz	2=1525/0-3-8 (min. 0-1-15) 2=243(LC 9)	, 11=1533/0-3-0 (min. 0-1-13)				
Max Uplift	2=-120(LC 10), 11=-222(LC	11)				
Max Grav	2=1626(LC 42), 11=1533(L	C 1)				
FORCES. (Ib) - Max. Cor	mp./Max. Ten All forces 2	50 (lb) or less except when shown.				
TOP CHORD 2-3=-233	4/169, 3-4=-1631/182, 4-5=	-1515/222, 5-6=-1658/207, 6-7=-26	44/264,			
7-8=-127 BOT CHORD 2-21=-17	2/218, 8-9=-1562/228, 9-11 6/2002 17-21=-176/2002	=-1519/225 16-17=-176/2002 16-22=-176/2002	15-22=-176/2002	,		
15-23=-1	41/2247, 14-23=-141/2247,	13-14=-229/2691, 12-13=-229/269	1	-,		
WEBS 3-17=0/4	45, 3-15=-806/213, 5-15=-9	9/1300, 6-15=-1232/271, 6-14=-43/	947, 7-14=-849/15	57,		
/-121/	20/137, 0-12-0/300, 9-12-	-135/1344				
NOTES- (11)		e				
 Unbalanced root live lo Wind: ASCE 7-16: Vult 	ads have been considered	for this design. /asd=95mpb: TCDI =5 0psf: BCDI =	5 0psf: h=23ft: Ca	at II: Exp B: Enclo	used: MWERS	
(envelope) gable end z	one; cantilever left and righ	t exposed ; end vertical left and righ	t exposed; Lumbe	er DOL=1.60 plate	grip DOL=1.60	
3) TCLL: ASCE 7-16; Pr=	20.0 psf (roof LL: Lum DOL	=1.15 Plate DOL=1.15); Pf=20.0 ps	f (Lum DOL=1.15	Plate DOL=1.15)	; ls=1.0; Rough	anitality.
4) This truss has been de	signed for greater of min ro	of live load of 12.0 psf or 2.00 times	flat roof load of 2	0.0 psf on overha	nas 📣	NUMERICARO
non-concurrent with oth	ner live loads.				and a state	OR RESPICE NUM
5) Provide adequate drain	hage to prevent water pondi	ng. A shard live load nanaanaurrant with	any other live les	de	Inn	OPOPLO PAGE THE
7) * This truss has been de	lesigned for a live load of 3).0psf on the bottom chord in all are	as where a rectan	iale 3-6-0 tall by 1	-0-0 wide will fit	CEAL .
between the bottom ch	ord and any other members	, with BCDL = 10.0psf.				28147 E
8) Provide mechanical co 11=222	nnection (by others) of trus	s to bearing plate capable of withsta	nding 100 lb uplift	at joint(s) except	(Jt=lb) 2=120,	
9) "NAILED" indicates 3-1	0d (0.148"x3") or 3-12d (0.	148"x3.25") toe-nails per NDS guidli	nes.		All the second sec	SNOW OR ! !!
10) In the LOAD CASE(S) section, loads applied to t	he face of the truss are noted as from	nt (F) or back (B).		ann	AD2 ONE OR SUNT
(11) I russes designed with	n 2018 IRC also comply wit	n 2015 IRC.			14)	Min K. MORININ
LOAD CASE(S) Standard	I					
XX7 · · X7 · · · ·		e mi · · · · · · ·		1. 6	11 11	9/6/2024

Job	Truss	Truss Type	Qty	Ply	LOT 0.0036 HONEYCUTT HILLS 286 SHELBY MEAD	OW LANE ANGIER, NC
24-7417-R01	R14	ROOF SPECIAL GIRDER	1	1	Job Reference (optional)	t 52103
		Run: i ID:GH	3.630 s Jul IOhT5MO	12 2024 Pr /4FkLKIPf	nt: 8.630 s Jul 12 2024 MiTek Industries, Inc. Sat Sep 7 X2c9QzXMNI-yKVqwELUPcrVF99xm2BOq0ZjUF	20:56:08 2024 Page 2 ??yk3nznVICp4yfwFL

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-5=-60, 5-7=-60, 7-8=-60, 8-9=-60, 9-10=-60, 11-18=-20 Concentrated Loads (lb) Vert: 12=1(B)

D'Onofrio Drive Madison WI 53719

Job	Truss	Truss Type	Qty	Ply	LOT 0.0036 HONEYCUTT HILLS 286 SHE	LBY MEADOW LANE ANGIER, NC
24-7417-R01	R22	Hip Girder	1	1	Job Reference (optional)	# 52103
		Bue	0 6 2 0 o lul	12 2024 Dr	nt: 9 620 a Jul 12 2024 MiTak Industriaa Jaa	Set Sen 7 20:56:12 2024 Degs 2

Run: 8.630 s Jul 12 2024 Print: 8.630 s Jul 12 2024 MiTek Industries, Inc. Sat Sep 7 20:56:13 2024 Page 2 ID:GHOhT5MOv4FkLKIPfX2c9QzXMNI-JHJjzxPcE8TnLw2vYbnZX3Ge8QmQPlajxnTzUlyfwFG

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-4=-60, 4-9=-60, 9-10=-60, 11-20=-20

Concentrated Loads (lb)

Vert: 4=-51(B) 6=-51(B) 9=-51(B) 18=-58(B) 7=-51(B) 15=-29(B) 12=-29(B) 23=-58(B) 24=-15(B) 25=-51(B) 26=-51(B) 27=-51(B) 28=-51(B) 29=-51(B) 30=-51(B) 31=-51(B) 32=-51(B) 32=-51(B) 33=-15(B) 34=-68(B) 35=-74(B) 36=-29(B) 38=-29(B) 38=-29(B) 39=-29(B) 40=-29(B) 41=-29(B) 42=-29(B) 43=-29(B) 44=-74(B) 45=-74(B) 45=-

Job	Truss	Truss Type	Qty	Ply	LOT 0.0036 HONEYCUTT HILLS 286 SHELBY MEA	ADOW LANE ANGIER, NC
24-7417-R01	R23	Common Supported Gable	1	1	Job Reference (optional)	# 52103
		Run ID:0	8.630 s Jul GHOhT5M0	12 2024 Pr Dv4FkLKIF	int: 8.630 s Jul 12 2024 MiTek Industries, Inc. Sat Sep PfX2c9QzXMNI-JHJjzxPcE8TnLw2vYbnZX3Go	7 20:56:13 2024 Page 2 QwjPSXjxnTzUlyfwFG

15) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.

16) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

 Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.
 SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS

8) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	LOT 0.0036 HONEYCUTT HILLS	S 286 SHELBY MEADOW LANE ANGIER, NO
24-7417-R01	R24	Common	1	1	Job Reference (optional)	# 52103
		Run: ID:G	8.630 s Jul HOhT5MO	12 2024 Pri v4FkLKIPf	nt: 8.630 s Jul 12 2024 MiTek Ind X2c9QzXMNI-nUt6AHQF_Sc	lustries, Inc. Sat Sep 7 20:56:14 2024 Page 2 cez4c56IIo3Hpveq6R8tVsARCW0kyfwFF

11) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.

12) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

 Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.
 SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS

4) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	LOT 0.0036 HONEYCUTT HILLS	286 SHELBY MEADOW LANE ANGIER, NO
24-7417-R01	R24A	Common	5	1	Job Reference (optional)	# 52103
		Run ID:C	8.630 s Jul HOhT5MO	12 2024 Pri v4FkLKIP	int: 8.630 s Jul 12 2024 MiTek Indu fX2c9QzXMNI-nUt6AHQF_Sco	Istries, Inc. Sat Sep 7 20:56:14 2024 Page 2 ez4c56IIo3Hpvdq6P8tRsARCW0kyfwFF

11) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.

12) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

 Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.
 SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS

(4) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	LOT 0.0036 HONEYCUTT HILLS 286 SHELE	Y MEADOW LANE ANGIER, NC
24-7417-R01	R25	Hip Girder	1	2	Job Reference (optional)	# 52103
		Run: ID:G	8.630 s Jul HOhT5MO	12 2024 Pri v4FkLKIP1	int: 8.630 s Jul 12 2024 MiTek Industries, Inc. S fX2c9QzXMNI-FgRUOdRtllkVbEBHg0p1c	at Sep 7 20:56:15 2024 Page 2 UL4TEOftC7?O4y3YAyfwFE

NOTES- (15)

11) Use Simpson Strong-Tie HTU26 (10-16d Girder, 14-10dx1 1/2 Truss) or equivalent spaced at 2-0-0 oc max. starting at 1-1-4 from the left end to 7-1-4 to connect truss(es) R18 (1 ply 2x4 SP), R19 (1 ply 2x4 SP), R20 (1 ply 2x4 SP), R21 (1 ply 2x4 SP) to back face of bottom chord. 12) Use Simpson Strong-Tie HTU26 (20-10d Girder, 14-10dx1 1/2 Truss, Single Ply Girder) or equivalent at 9-1-4 from the left end to connect truss(es) R22 (1 ply 2x6 SP) to back

face of bottom chord.

13) Fill all nail holes where hanger is in contact with lumber.

14) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.

15) Trusses designed with 2018 IRC also comply with 2015 IRC.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-2=-60, 2-5=-60, 5-7=-60, 12-15=-20

Concentrated Loads (lb)

Vert: 11=-15(F) 10=-1262(B) 8=-15(F) 23=-1262(B) 24=-1262(B) 25=-15(F) 26=-15(F) 27=-1262(B) 28=-15(F) 29=-1946(B) 30=-15(F) 31=-15(F)

Warning !-- Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Trusse Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Trusse Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Warning !---Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded Continued on page 2. We the design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 0.0036 HONEYCUTT HILLS 286 SHEL	BY MEADOW LANE ANGIER, NC
24-7417-R01	R26	Monopitch Structural Gable	1	1	Job Reference (optional)	# 52103
		Run: 8 ID:GH	630 s Jul OhT5MO	12 2024 Pri v4FkLKIPf	nt: 8.630 s Jul 12 2024 MiTek Industries, Inc. 5 X2c9QzXMNI-js_sbzRVW3sMDNmUEjK	Sat Sep 7 20:56:16 2024 Page 2 G9iu9Beoyckj9dkhd5dyfwFD

12) Trusses designed with 2018 IRC also comply with 2015 IRC.

13) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.

14) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

 Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.
 SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS

(6) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRĂCINĞ OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

Warning !—Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 *National Design Standard for Metal Plate Connected Wood Truss Construction* and BCSI 1-03 Guide to *Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses* from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Warning !---Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be instance and readened to be overliable of the page 2 wertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 0.0036 HONEYCUTT HILLS 286 SHELBY	MEADOW LANE ANGIER, NC
24-7417-R01	R27	Monopitch	7	1	Job Reference (optional)	# 52103
		Run: 8 ID:GH	8.630 s Jul OhT5MOv	12 2024 Pri 4FkLKIPf)	nt: 8.630 s Jul 12 2024 MiTek Industries, Inc. Sat K2c9QzXMNI-js_sbzRVW3sMDNmUEjKG9	t Sep 7 20:56:16 2024 Page 2 Diu9Ceoyckn9dkhd5dyfwFD

10) Trusses designed with 2018 IRC also comply with 2015 IRC.

11) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.

12) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the

loads indicated.

 Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.
 SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS

(4) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRĂCINĞ OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

Warning !—Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 *National Design Standard for Metal Plate Connected Wood Truss Construction* and BCSI 1-03 Guide to *Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses* from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

LOADING (psf) TCLL (roof) 2 Snow (Pf) 2 TCDL 2 BCLL BCDL 2	20.0 20.0 10.0 0.0 * 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2021/TPI2014	CSI. TC 0.75 BC 0.73 WB 0.00 Matrix-P	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) n/a - n/a - 0.00 2	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 27 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x BOT CHORD 2x WEBS 2x	x4 SP SS x4 SP No.2 x4 SP No.3			BRACING- TOP CHORD BOT CHORD	Structural wo end verticals Rigid ceiling MiTek reco be installed	ood shea directly mmenda	athing direct applied or 1 s that Stabil truss erection	ly applied or 7-7-14 o 0-0-0 oc bracing. izers and required cr	oc purlins, except oss bracing h Stabilizer

Installation guide.

REACTIONS. (lb/size) 3=297/8-9-0 (min. 0-1-8), 2=297/8-9-0 (min. 0-1-8) Max Horz 3=-60(LC 10) Max Uplift3=-43(LC 15), 2=-36(LC 11) Max Grav 3=384(LC 21), 2=384(LC 21)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 1-3=-310/137

NOTES- (8-12)

- 1) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2.
- 8) Trusses designed with 2018 IRC also comply with 2015 IRC.
- 9) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
- 10) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.
- 11) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing 12) SEE BČŚI-B3 SUMMĂRY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WĔB MEMBERS FOR ŘECŎMMENDED
- MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS

9/6/2024

LOAD CASE(S) Standard

Warning !-- Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

NOTES-

- 1) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2.
 Trusses designed with 2018 IRC also comply with 2015 IRC.
- 9) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
- 10) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the
- 11) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling,
- Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing. SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES IN ADDITION FOR RECOMMENDED MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OF THE CONSIDERATIONS. 12) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED

MORPH MORPH MORPH MORPH MORPH MULTIN MORPH MULTIN MORPH MULTIN MU AND HUMAN ANT AK NOINEE 9/6/2024

LOAD CASE(S) Standard

Warning !-- Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Trusse Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Trusse Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.