

Carter Sanford Component Plant 298 Harvey Faulk Rd Sanford, NC 27332

Phone #:919-775-1450

Builder: DR Horton Inc

Model: Wilmington B FLEX VMB GRH

THE PLACEMENT PLAN NOTES:

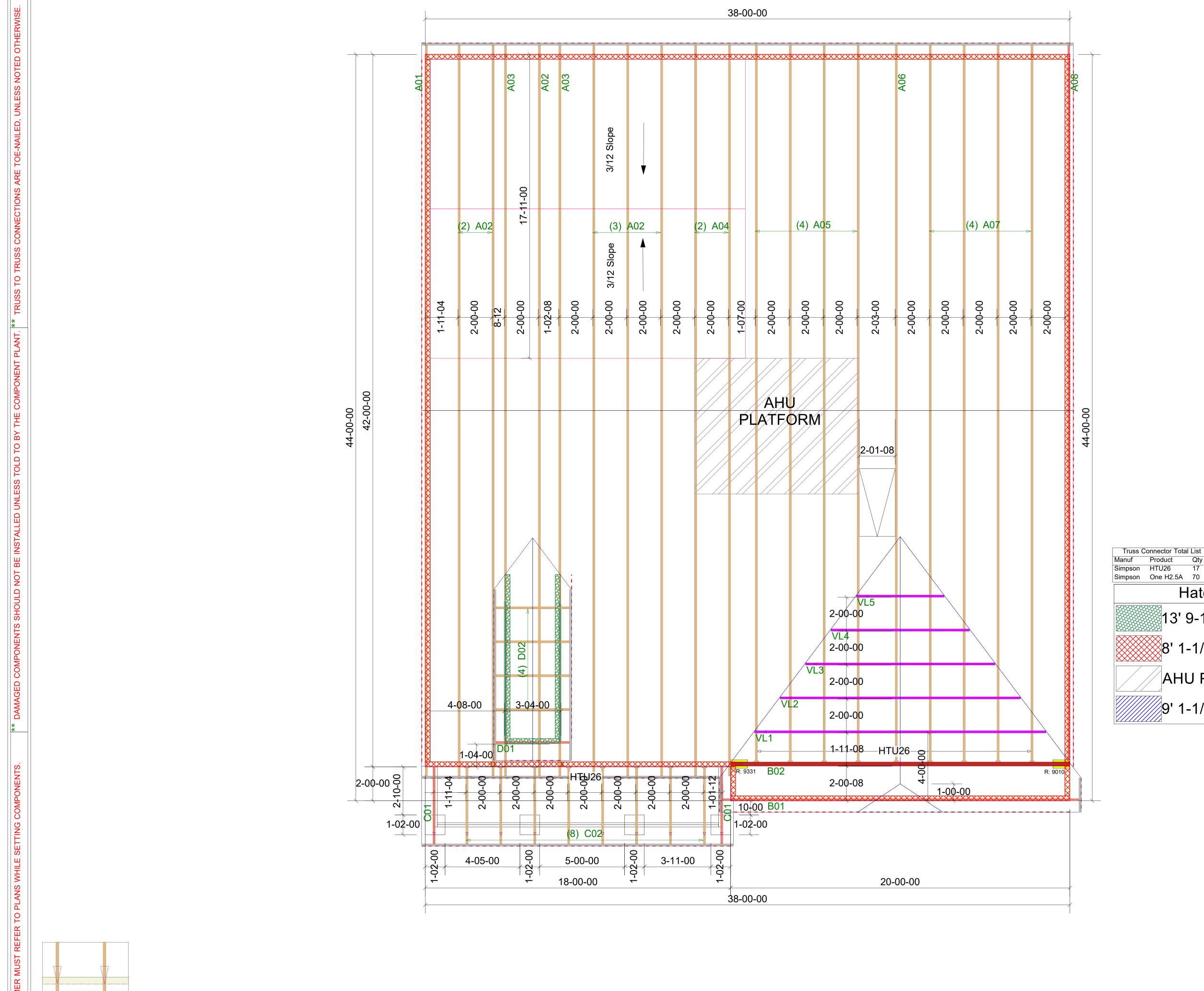
1. The Placement Plan is a diagram for truss installation. It is not an engineered drawing and has not been reviewed by an engineer. The Owner/Building Designer is responsible for obtaining an engineer's review if one is required by the local jurisdiction.

2. The responsibilities of the Owner, Contractor, Building Designer, Component Designer and Component Manufacturer shall be as set forth in ANSI/TPI 1. Capitalized terms shall be as defined in ANSI/TP 1 unless otherwise indicated.

3. Each Component is designed as an individual component utilizing information provided by others. The Owner/Building Designer is responsible for reviewing all Component Submittal Packages and individual Component Design Drawings for compliance with the Construction Documents and compatibility with the overall Building design.

4. Contractor will not proceed with component installation until the Owner/Building Designer has reviewed the Component Submittal Package. Questions on the suitability of any Component will be resolved by the Building Designer.

5. The Building Designer and Contractor are responsible for all temporary and permanent bracing.


6. The Placement Plan assumes the building is dimensionally correct, structurally sound, and in a suitable condition to support each Component during installation and thereafter, including but not limited to installation of all bearing points. Proper design and construction of all structural components, including foundations, headers, beams, walls and columns are the responsibility of the Owner, Building Designer and Contractor.

7. Do not cut, drill, or modify any Component without first consulting the Component Manufacturer or Building Designer. Damaged Components shall not be installed unless directed by the Building Designer or approved by the Component Manufacturer.

8. Components must be handled and installed following all applicable safety standards and best practices, including but not limited to BCSI, OSHA, TPI and local codes. Failure to properly handle, brace or otherwise install Component can result in serious injury or death. 9. All uplift connectors shown within these documents are recommendations only. Per ANSI/TPI 1, all uplift connectors are the responsibility of the building designer and or contractor.

Approved By: _____

Date: _____

Truss Drawing Left End Indicator

Truss Connector Total List

	nectors shown wi uplift connectors
	con , all
	** All uplift ANSI/TPI 1
nnector Total List Product Qty HTU26 17	FOOT-INCH-SIXTEENTH
One H2.5A 70 Hatch Legend	EAD AS:
13' 9-1/8" Dormer Bearing	S ARE RE
8' 1-1/8" BRG HGT	DIMENSIONS
AHU PLATFORM	*
9' 1-1/8" BRG HGT	PRIOR TO ADDING ANY LOADS.
	NG ANY
	PRIOR 1
	TOGETHER
	D TOG
	INECTED
	TLY CONN
	BE FULLY
	MUST
	GIRDERS MUST
	9 * *
** REFER TO FINAL TRUSS ENGINEERING SHEETS FOR PLY TO PLY CONNECTIONS.	

		ANSI/TPI 1, all uplif	<u>ANSI/TPI 1, all uplift connectors are the responsibilty of the bldg designer and or contractor.</u>	nd or contractor.	
Date: 8/15/ Des Nate Do Projec 24080				Revi 00/00/00 00/00/00 00/00/00 00/00/00	
2024 signer: onaldson ot Number: 083-01 t Number:	FLEX VMB GRH ROOF PLACEMENT PLAN	lange	systems and for the overall structure. The disign of the tuss support structure including headers, beams, walls, and columns is the responsibility of the building designer. For general guidance regarding the bracing, consult "Bracing of Wood Truss" available from the Truss Plate Institute, 583 D'Onifrio Drive: Madison, WI 53179	sions Name Name Name Name Name	.]

RE: 24080083

41 Mason Ridge-Roof-Wilmington B FLEX VMB GRH

Trenco 818 Soundside Rd Edenton, NC 27932

Site Information:

Customer: DR Horton Inc Project Name: 24080083 Lot/Block: 41 Model: Address: 203 Caleb Corner Place Subdivisio City: Spring Lake State: NC

24080083 Model: Subdivision: Mason Ridge State: NC

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2018/TPI2014 Wind Code: ASCE 7-16 Roof Load: 40.0 psf Design Program: MiTek 20/20 8.7 Wind Speed: 130 mph Floor Load: N/A psf

This package includes 19 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date
1	166369484	A01	6/21/2024
2	166369485	A02	6/21/2024
3	166369486	A03	6/21/2024
4	166369487	A04	6/21/2024
5	166369488	A05	6/21/2024
6	166369489	A06	6/21/2024
7	166369490	A07	6/21/2024
8	166369491	A08	6/21/2024
9	166369492	B01	6/21/2024
10	166369493	B02	6/21/2024
11	166369494	C01	6/21/2024
12	166369495	C02	6/21/2024
13	166369496	D01	6/21/2024
14	166369497	D02	6/21/2024
15	166369498	VL1	6/21/2024
16	166369499	VL2	6/21/2024
17	166369500	VL3	6/21/2024
18	166369501	VL4	6/21/2024
19	166369502	VL5	6/21/2024

The truss drawing(s) referenced above have been prepared by

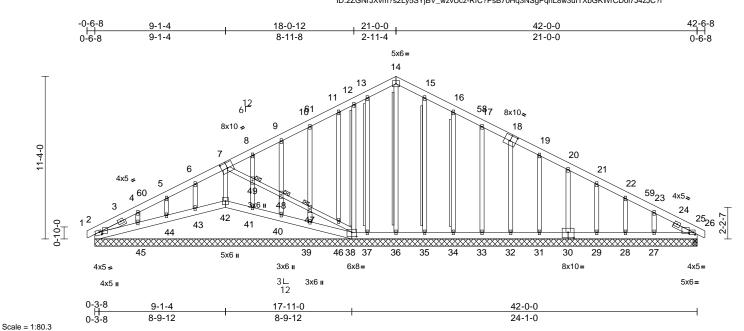
Truss Engineering Co. under my direct supervision

based on the parameters provided by Carter Components (Sanford, NC)).

Truss Design Engineer's Name: Gilbert, Eric

My license renewal date for the state of North Carolina is December 31, 2024

North Carolina COA: C-0844


IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Gilbert, Eric

Job	Truss	Truss Type	Qty	Ply	41 Mason Ridge-Roof-Wilmington B FLEX VMB GRH
24080083	A01	Roof Special	1	1	I66369484 Job Reference (optional)

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Thu Jun 20 08:26:09 ID:2ZGNrJXvm?s2Ly5SYjBV_wzvUcz-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Plate Offsets (X, Y): [2:0-1-4,0-2-12], [2:0-1-8,0-2-7], [7:0-5-0,0-4-8], [18:0-5-0,0-4-8], [25:0-1-9,0-2-0], [25:0-3-7,0-0-13], [30:0-5-0,0-4-8], [38:0-4-0,0-3-8]	

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-	0.0 0.0 0.1 MSH	4 Vert(CT)	in 0.00 0.00 0.01	(/	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 392 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS SLIDER BRACING TOP CHORD BOT CHORD WEBS	TOP CHORD 2x6 SP No.2 BOT CHORD 2x6 SP No.2 WEBS 2x4 SP No.3 OTHERS 2x4 SP No.3 *Except* 36-14,0-0,0-0,0-0,0-0,0-0:2x4 SP No.2 SLIDER Left 2x4 SP No.3 - 2-0-0, Right 2x4 SP No.3 - 1-6-0 BRACING TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. WEBS T-Brace: 2x4 SP No.2 - 12-38,				30=-43 (LC 1 32=-44 (LC 1 34=-53 (LC 1 37=-12 (LC 1 39=-46 (LC 1 41=-38 (LC 1 44=-29 (LC 1 50=-68 (LC 1 2=155 (LC 26 27=223 (LC 3 31=158 (LC 3	5), 29=-48 (LC 5), 31=-42 (LC 5), 33=-45 (LC 5), 35=-16 (LC 4), 38=-98 (LC 4), 43=-43 (LC 4), 43=-43 (LC 4), 45=-99 (LC 5) 5), 25=152 (LC 5), 28=140 (LC 5), 32=160 (LC	15), 15), 15), 15), 15), 14), 14), 14), 14), 22), 222), 222), 21),	BOT CH	IORD	43-44 41-42 39-40 37-38 35-36 33-34 31-32 28-29 25-27 7-49= 46-47 12-38 13-37	=-43/83, 38-46= =-168/52, 14-36 =-140/28, 11-46	=-29/130, =-27/131, =-29/133, =-56/171, =-56/171, =-55/171, =-55/171, =-55/171, 15/84, 47-48=-46/84, -62/106, =-144/28, =-56/40,
JOINTS	Fasten (2X) T and web with 10d (0.13 3in minimum end o	14-36, 13-37, 15-35, 16-34 I braces to narrow edg 11"x3") nails, 6in o.c.,wi listance. 90% of web length.			35=237 (LC 2 37=167 (LC 2 39=267 (LC 2 41=157 (LC 2 43=174 (LC 2	2), 34=237 (LC 2), 36=186 (LC 1), 38=253 (LC 1), 40=147 (LC), 42=169 (LC), 44=135 (LC 4), 50=155 (LC 2)	C 31), C 21), C 34), 27), 21),			40-48 6-43= 15-35 17-33 19-31 21-29 22 27	=-113/68, 8-49= -126/67, 5-44=-1 =-198/51, 16-34 =-148/69, 18-32 =-118/66, 20-30 =-121/69, 22-28 -140/10, 7242	=-120/68, =-120/68, =-112/59,
	(size) 2=42-0-1 28=42-0 31=42-0 34=42-0 37=42-0 40=42-0 43=42-0 50=42-0	0, 25=42-0-0, 27=42-0- 0, 29=42-0-0, 30=42-0 -0, 32=42-0-0, 33=42-0 -0, 35=42-0-0, 36=42-0 -0, 38=42-0-0, 39=42-0 -0, 41=42-0-0, 42=42-0 -0, 44=42-0-0, 45=42-0 -0, 54=42-0-0 _C 14), 50=171 (LC 14)	0, TOP CHORD -0, -0, -0, -0, -0,	Tension 14-15=-1 16-17=-8 19-20=-5 22-23=-1 1-2=0/13 5-6=-99/1 9-10=-62	imum Compre 14/224, 15-16= 2/150, 17-19=- 1/48, 20-21=-5 02/35, 23-25=- 2-4=-145/99, 31, 6-8=-87/19 (171, 10-11=-8 05/226, 13-14=	-102/195, 53/110, 1/25, 21-22=-7 157/66, 25-26= 1-5=-123/107, 4, 8-9=-67/147 5/194, 11-12=-	1/20, =0/17, 7,			Z	SEA 0363	ROUT

Page: 1

Continued on page 2

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. WARNING Design valid for use only with MTek connectors. This design is based only upon parameters and property incorporate this design is based only upon parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	41 Mason Ridge-Roof-Wilmington B FLEX	
24080083	A01	Roof Special	1	1	Job Reference (optional)	166369484
Carter Components (Sanford, N	.). Sanford. NC - 27332.	Run: 8.73 S Apr 25	2024 Print: 8.	730 S Apr 25	2024 MiTek Industries. Inc. Thu Jun 20 08:26:09	Page: 2

ID:2ZGNrJXvm?s2Ly5SYjBV_wzvUcz-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Carter Components (Sanford, NC), Sanford, NC - 27332,

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-5-14 to 3-8-7, Interior (1) 3-8-7 to 16-9-11, Exterior(2R) 16-9-11 to 25-0-0, Interior (1) 25-0-0 to 38-3-9, Exterior(2E) 38-3-9 to 42-5-14 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- All plates are 2x4 MT20 unless otherwise indicated. 7)
- Gable studs spaced at 2-0-0 oc. 8)
- 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 10) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 11) N/A

12) N/A

13) N/A

- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 15) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	41 Mason Ridge-Roof-Wilmington B FLEX VMB GRH
24080083	A02	Roof Special	6	1	I66369485 Job Reference (optional)

11-4-0

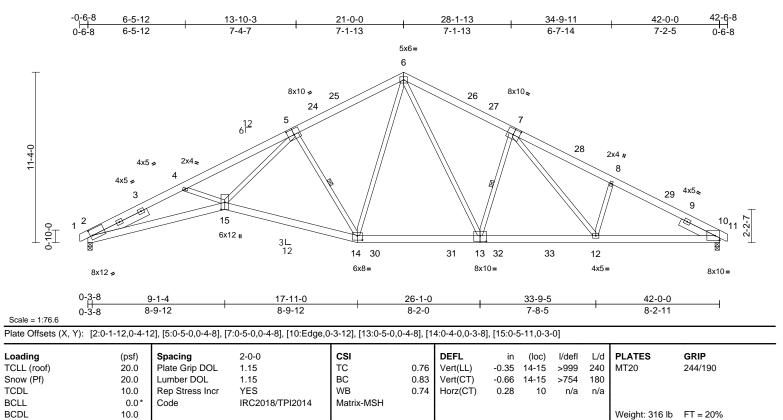
Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Thu Jun 20 08:26:10

Page: 1 ID:mnRSWvy_5Gboq0dv5C5SnJzvUx5-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 42-6-8 0-6-8 6-5-12 13-10-3 21-0-0 28-1-13 34-9-11 42-0-0 7-1-13 7-1-13 6-7-14 6-5-12 7-4-7 7-2-5 5x6= 6 8x10 🞜 8x10≈ 26 31 25 32 12 61 5 7 2x4 🛛 2x4 8 4 4x6 ≠ 33 24 4x5 👟 3 9 10₁₁ ¹-7-7 15 ß 6x8 II 3∟ 12 14 27 28 13 29 30 12 6x8= 8x10= 4x5= 4x5 = 6x8 II

8x10 =

	0-3-8	9-1-4	17-11-0	26-1-0	33-9-5	42-0-0	
	0-3-8	8-9-12	8-9-12	8-2-0	7-8-5	8-2-11	
Scale = 1:80.9							

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-MSH	0.87 0.81 0.75	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.35 -0.65 0.27	(loc) 14-15 14-15 10	l/defl >999 >766 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 307 lb	GRIP 244/190 FT = 20%
FORCES TOP CHORD BOT CHORD WEBS NOTES	2.0E 2x4 SP No.3 *Excep No.2 Left 2x4 SP No.3 2 1-6-0 Structural wood she 2-0-2 oc purlins. Rigid ceiling directly bracing. 1 Row at midpt (size) 2=0-3-8, 1 Max Horiz 2=170 (LC Max Grav 2=170 (LC Max Uplift 2=-172 (L Max Grav 2=1857 (L (lb) - Maximum Com Tension 1-2=0/17, 2-4=-5311 6-8=-3059/410, 8-10 2-15=-645/4825, 14 12-14=-125/2418, 11 6-14=-145/971, 6-13 7-13=-706/287, 7-12 8-12=-262/189, 4-15 5-15=-258/2770, 5-1	5-14 0=0-3-8 2 14) C 14), 10=-172 (LC 15 C 3), 10=1879 (LC 3) pression/Maximum /606, 4-6=-5230/517, =-3170/318, 10-11=0/ ⁻ 15=-279/2896, 0-12=-185/2749 =-191/1113, =-120/501, =-121/199, 4=-1489/351	3 or 3) 4) 5) 17 7) 17 8) 9) 10	Vasd=103mp II; Exp B; Enn and C-C Exte to 16-9-11, E 25-2-5 to 38- cantilever lef right exposed for reactions DOL=1.60 TCLL: ASCE Plate DOL=1 DOL=1.15); I Cs=1.00; CtE Unbalanced design. This truss ha chord live loa * This truss ha chord and an Bearing at jo using ANSI/T designer sho One H2.5A S recommende UPLIFT at jf(and does not) This truss is International	snow loads have b s been designed for operation of the second second solution of the second second solution of the second second solution of the second seco	SCDL=6 nvelope 3-8-7, 1 to 25-; 8-3-9 tc 1; end \ and foi DL=1.6((roof LL Lum DC B; Fully een cor or great at roof lc other lin or a 10.0 <i>i</i> th any for a liv ; where I fit betw with BC aarallel t for bear on bear on bear on bear onnecti rces.	.0psf; h=25ft) exterior zor Interior (1) 3- 2-5, Interior (' 42-5-14 zon rertical left an ces & MWFF) plate grip :: Lum DOL= U=1.15 Plate Exp.; Ce=0.9 asidered for th er of min roof pad of 20.0 pr ve loads. D psf bottom other live loa e load of 20.0 pr ve loads. D psf bottom other live loads e load of 20.0 pr ve loads. D psf bottom other live loads e load of 20.0 pr ve loads. D psf bottom other live loads e load of 20.0 pr e loads. D psf bottom e loads. D psf bottom	to nonly		(Martin		SEA 0363	


818 Soundside Road Edenton, NC 27932

G minin June 21,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component for the prevention. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	41 Mason Ridge-Roof-Wilmington B FLEX VMB GRH
24080083	A03	Roof Special	2	1	I66369486 Job Reference (optional)

Run: 8,73 S Apr 25 2024 Print: 8,730 S Apr 25 2024 MiTek Industries, Inc. Thu Jun 20 08:26:10 ID:ei_OzHALbhuf1F4IrDJXICzvUqM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

BCDL	10.0					
LUMBER			2)	Wind: ASCE	7-16; Vult=130mph (3-sec	cond gust)
TOP CHORD	2x6 SP No.2			Vasd=103mp	oh; TCDL=6.0psf; BCDL=6	0.0psf; h=25ft; Cat.
BOT CHORD	2x6 SP No.2 *Except 2.0E	* 2-15:2x6 SP 2400F			closed; MWFRS (envelope erior(2E) -0-5-14 to 3-8-7,	
WEBS	2x4 SP No.3 *Except No.2	* 5-15,14-6,13-6:2x4 SP		25-2-5 to 38-	xterior(2R) 16-9-11 to 25- 3-9, Exterior(2E) 38-3-9 to	42-5-14 zone;
SLIDER	Left 2x6 SP No.2 4 2-6-0	-0-0, Right 2x6 SP No.2		right exposed	t and right exposed ; end v d;C-C for members and for	rces & MWFRS
BRACING					shown; Lumber DOL=1.60) plate grip
TOP CHORD	Structural wood shea	thing directly applied or		DOL=1.60		
	2-2-0 oc purlins.		3)		7-16; Pr=20.0 psf (roof LL	
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 oc			.15); Pf=20.0 psf (Lum DC s=1.0; Rough Cat B; Fully	
	bracing.			Cs=1.00; Ct=		Exp., Ce=0.9,
WEBS		5-14, 7-13	4)	,	snow loads have been cor	nsidered for this
	(size) 2=0-3-8, 1		.,	design.		
	Max Horiz 2=170 (LC	,	5)		s been designed for great	er of min roof live
		C 14), 10=-337 (LC 15)		load of 12.0 p	osf or 1.00 times flat roof lo	bad of 20.0 psf on
	Max Grav 2=1985 (L				on-concurrent with other liv	
FORCES	(lb) - Maximum Com	pression/Maximum	6)		s been designed for a 10.0	
TOP CHORD	Tension	000 4 0 0407/005	_`		ad nonconcurrent with any	
TOP CHORD	1-2=0/17, 2-4=-6456/	683, 4-6=-6427/605, =-5113/602. 10-11=0/17	7)		has been designed for a liv	
BOT CHORD	2-15=-710/5803, 14-				n chord in all areas where by 2-00-00 wide will fit betw	
BOT ONORD	12-14=-244/3260, 10	,			y other members, with BC	
WEBS	8-12=-927/292, 4-15		8)		int(s) 2 considers parallel t	
	5-15=-298/3349, 5-14	,	0)		PI 1 angle to grain formula	
	6-14=-144/1016, 7-13	3=-1110/352,			uld verify capacity of beari	
	6-13=-256/1587, 7-12	2=-258/1422	9)		Simpson Strong-Tie conner	
NOTES			,	recommende	ed to connect truss to bear	ing walls due to
1) Unbalance	ed roof live loads have	peen considered for			s) 10 and 2. This connection	on is for uplift only
this design).				t consider lateral forces.	
			10) This trues is a	designed in accordance w	ith the 2018

ered for this f min roof live of 20.0 psf on

- oads. f bottom
- er live loads. ad of 20.0psf ectangle n the bottom
- = 10.0 psf.rain value Building surface.
- walls due to s for uplift only
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- LOAD CASE(S) Standard
- 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (lb/ft) Vert: 1-6=-60, 6-28=-60, 11-17=-60, 15-20=-20, 14-15=-20, 14-16=-20

Page: 1

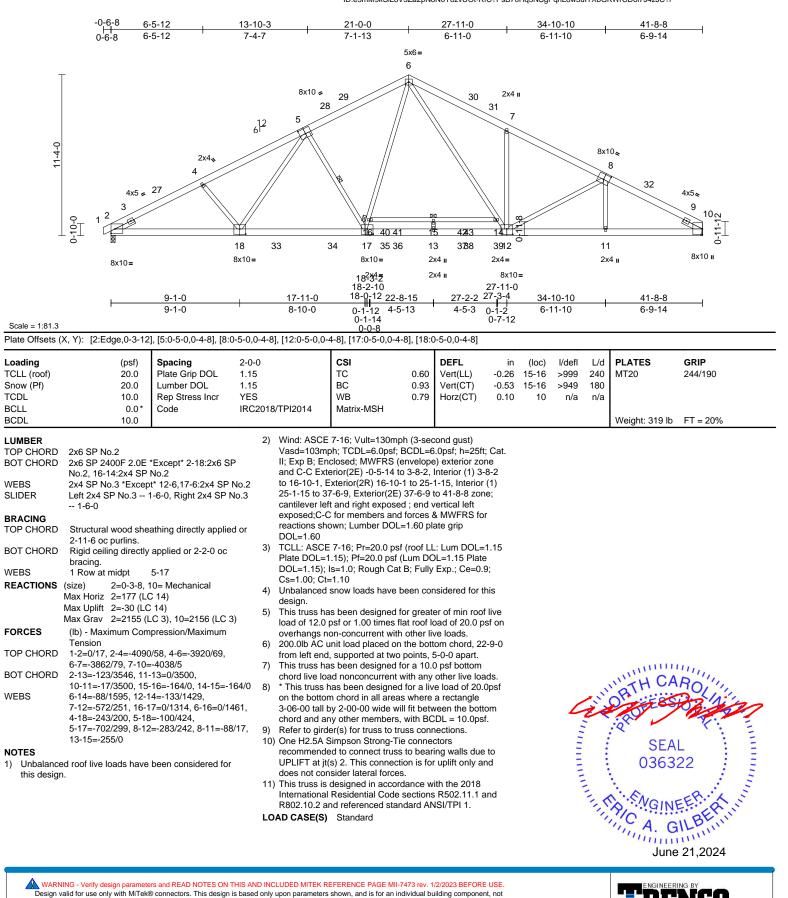
Trapezoidal Loads (lb/ft)

Vert: 28=-180-to-8=-193, 8=-193-to-29=-210, 29=-210-to-9=-218, 9=-218-to-17=-222

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall a fuss system. Derive use, the building designer index very the applications of design had very the applications of design index very the applications of design index very the application of the applicat and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	41 Mason Ridge-Roof-Wilmington B FLEX VMB GRH
24080083	A04	Roof Special	2	1	I66369487 Job Reference (optional)

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Thu Jun 20 08:26:11 ID:PUyzCTNt0PjWoBWHKfMm3nzvUVQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

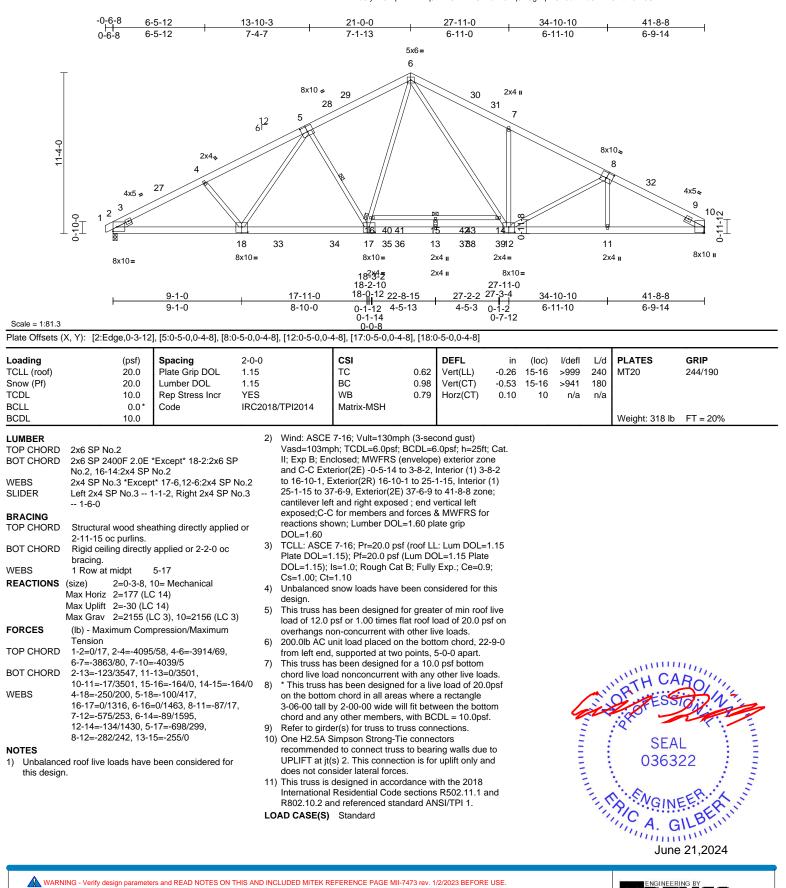

818 Soundside Road Edenton, NC 27932

FCLL (roof) 2 Snow (Pf) 2 FCDL 1 SCLL 1	<u>9-1-4</u> 8-9-12	, [8:0-5-0,0-4-8 2-0-0 - 1.15 1.15 rr YES	28 5 3L 12 17-11-0 8-9-12	CSI	8], [18:0-4	30 31 31 3340 15 3536 1 27-2-2 27-3- 4-5-3 0-1-2 0-7-	x10= 1-0 4 34- 2 6-1 12	<u>10-10</u> 1-10	8x10. 8 12 2x4	32	4x5 # 9 10 12 9 6x10 11 6x10 11
0-3-8 0-3-8 cale = 1:78.4 ate Offsets (X, Y): [2:0-2-11 ading (r SLL (roof) 2 iow (Pf) 2 iDL 1 iCL 1 iMBER	8-9-12 ,Edge], [5:0-5-0,0-4-8], bsf) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	, [8:0-5-0,0-4-8 2-0-0 - 1.15 1.15 rr YES	8-9-12	2x4= 18-3-2 18-2-10 22-8-14 0-3-10 4-5-13 0-0-8 2-8], [13:0-5-0,0-4-4 CSI	2x4 u 5 3 8], [18:0-4	8 27-1 <u>27-2-2</u> 27-3- 4-5-3 0-1-2 0-7-	x10= 1-0 4 34- 2 6-1 12		2x4	42-0-0	6x10 и
0-3-8 Cale = 1:78.4 ate Offsets (X, Y): [2:0-2-11 Dading (F CLL (roof) 2: now (Pf) 2: CDL 1: CDL 1: CDL 1: JMBER	8-9-12 ,Edge], [5:0-5-0,0-4-8], bsf) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	, [8:0-5-0,0-4-8 2-0-0 - 1.15 1.15 rr YES	8-9-12	18-2-10 22-8-15 0-3-10 4-5-13 0-0-8 2-8], [13:0-5-0,0-4-6 CSI	8], [18:0-4	<u>27-2-2</u> 27-3- 4-5-3 0-1-2 0-7-	4 <u>34-</u> 26-1 12				
Plate Offsets (X, Y): [2:0-2-11] Loading (p TCLL (roof) 2 Snow (Pf) 2 TCDL 1 SCDL 1 JCDL 1 JCDL 1 JCDL 1 JCDL 1 JCDL 1	Spacing 0.0 Plate Grip DOL 0.0 Lumber DOL 0.0 Rep Stress Inc 0.0* Code	2-0-0 - 1.15 1.15 rr YES	8], [10:0-5-6,0-	2-8], [13:0-5-0,0-4- CSI		-					
CLL (roof) 2 now (Pf) 2 CDL 1 CLL 1 CDL 1 UMBER	0.0 Plate Grip DOL 0.0 Lumber DOL 0.0 Rep Stress Inc 0.0* Code	- 1.15 1.15 r YES				+ 0,0 0 0], [10.	0-5-11,0-4-0]			
			3/TPI2014	TC BC WB Matrix-MSH	0.85 0.91	Vert(CT) -0	in (loc) 0.38 16-17 0.77 16-17 0.29 10	l/defl >999 >654 n/a		PLATES MT20 Weight: 326 lb	GRIP 244/190 FT = 20%
No.2 LIDER Left 2x6 SP No	Except* 19-5,18-6,13-6 b.2 4-0-0, Right 2x4 3 d sheathing directly ap ns. irectly applied or 2-2-0 t 5-18 -3-8, 10=0-3-8 70 (LC 14), 10=-3 (LC - 122 (LC 3), 10=2174 (I n Compression/Maximu -6842/129, 4-6=-6834, 7-10=-4085/2, 10-11=1 7, 18-19=0/3822, 12-14=0/3552, 10-12= 5-16=-69/0 5-19=-65/3487, 6, 17-18=-19/1248, 6-15=-66/1678, 62, 7-13=-569/251, 0, 8-12=-51/58, 14-16=-	SP No.3 oplied or 3) oc 4) 15) 5) LC 3) um 6) /68, 7) 0/17 8) =0/3551, 9) -240/0 10) d for 11)	to 16-9-11, E 25-2-5 to 38. cantilever lef right expose for reactions DOL=1.60 TOLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct: Unbalanced design. This truss he load of 12.0 overhangs n 200.0lb AC u from left end This truss he chord live loa * This truss he chord live loa * This truss he on the bottor 3-06-00 tall I chord and ar Bearing at jo using ANSI/ designer sho O Che H2.5A S recommended UPLIFT at jit and does no) This truss is International	snow loads have b as been designed for psf or 1.00 times fit on-concurrent with unit load placed on i l, supported at two p as been designed for ad nonconcurrent w has been designed for ad nonconcurrent w has been designed will ny other members, oint(s) 2 considers p TPI 1 angle to grain build verify capacity Simpson Strong-Tie ed to connect truss (s) 10 and 2. This c t consider lateral for designed in accord Residential Codes and referenced stand	1 to 25-2- 8-3-9 to 4 d; end ves and forc DL=1.60 (roof LL: Lum DOL B; Fully E een cons or greater at roof loa other live the botto points, 5- or a 10.0 vith any o for a live s where a l fit betwe with BCD barallel to n formula. of bearin o connect to bearin cores. lance with	-5, Interior (1) 42-5-14 zone; prical left and ess & MWFRS plate grip Lum DOL=1.1! =1.15 Plate Exp.; Ce=0.9; sidered for this r of min roof live ad of 20.0 psf o e loads. m chord, 22-9-1 0-0 apart. psf bottom ther live loads. load of 20.0 psf rectangle een the bottom DL = 10.0 psf. grain value Building g surface. ors ig walls due to n is for uplift on h the 2018 R502.11.1 and	e n 0	Manutan .			22 EER ALU

a duss system. Belore use, the building designer must verify the application of design plantiteters and properly incorporate rule design must remove and building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality** Criteria and DBS-22 available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	41 Mason Ridge-Roof-Wilmington B FLEX VMB GRH
24080083	A05	Common	4	1	l66369488 Job Reference (optional)

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Thu Jun 20 08:26:11 ID:e5mM9kSiL8V3Za2pN8N0Y8zvUOt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1



Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

A MITIEK 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	41 Mason Ridge-Roof-Wilmington B FLEX VMB GRH
24080083	A06	Common	1	1	I66369489 Job Reference (optional)

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Thu Jun 20 08:26:11 ID:ka8lyh7OIYpx1IIEB?qJtEzvUK7-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

818 Soundside Road

Edenton, NC 27932

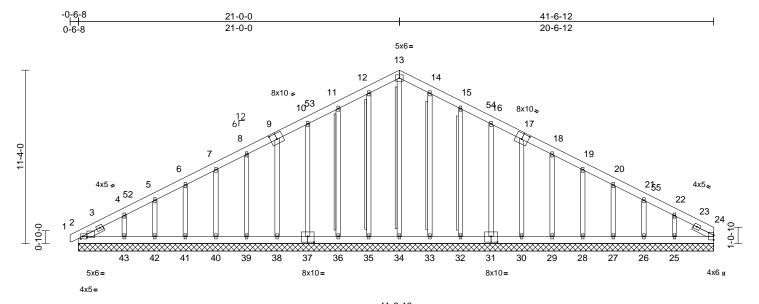
Job	Truss	Truss Type	Qty	Ply	41 Mason Ridge-Roof-Wilmington B FLEX VMB GRH
24080083	A07	Common	4	1	I66369490 Job Reference (optional)

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Thu Jun 20 08:26:12 ID:WTFSTUFjr6Wkhbv681?78szvUIg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

	-0-6-8	7-2-5	14-1-	3 .	21-0-0		27-10-13	. :	34-9-11	41-8	3-8
	0-6-8	7-2-5	6-10-		6-10-13		6-10-13		6-10-13	6-10	
						5x6=					
т						6					
				4x5 ≠	24		20	8x10👟			
				23	24		29	30			
			1 <u>2</u> 6	5				7			
0			01								
11-4-0			8x10 =	< // ``				/ \\ `	\sim	2x4 🍫	
-		,	4							8	
	4x5 .	, 22	tt f							31	4x5 👟
	3			//				/	\backslash //		9 10
0-10-0	12			/					\mathbb{Y}		
⊥ - ⊥ 1			13	25	26	12	27	28	11		ł
	6x8 II		8x1		20	8x10=	21	20	8x10=		6x8 I
	0,0 1										
		<u>10-7-12</u> 10-7-12			-0-0		<u> </u>			41-8-8 10-4-4	
Scale = 1:76.2		10-7-12		10	-4-4		10-4	4-4		10-4-4	
Plate Offsets (X	, Y): [2:0-3-12	,0-2-9], [4:0-5-0,	0-4-8], [7:0-5-0,0-	4-8], [11:0-5-0,0-	4-8], [12:0-5-0,0-	4-8], [13:0	-5-0,0-4-8]				
Loading		osf) Spacing			CSI	0.50	DEFL	in (loc)	l/defl L/		GRIP
TCLL (roof) Snow (Pf)		0.0 Plate Gr 0.0 Lumber			TC BC	0.58 0.86	Vert(LL) Vert(CT)	-0.23 11-12 -0.40 11-12	>999 24 >999 18		244/190
TCDL		0.0 Rep Stre			WB	0.44	Horz(CT)	0.11 10	n/a n/a	а	
BCLL BCDL		0.0* Code 0.0	IRC2	018/TPI2014	Matrix-MSH					Weight: 295 lb	FT = 20%
BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD WEBS REACTIONS (M FORCES TOP CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Unbalanced	Left 2x4 SP No 1-6-0 Structural wood 3-3-3 oc purlin Rigid ceiling d bracing. 1 Row at midp size) 2=0 Aax Horiz 2=1 Aax Uplift 2= Max Grav 2=1 (lb) - Maximun 1-2=0/17, 2-5= 6-8=-3259/342 2-10=-351/342 6-12=-122/171 7-11=-18/568, 5-13=-26/622,	rectly applied of t 7-12, 5-12 -3-8, 10= Mecha 77 (LC 14) 172 (LC 14), 10= 868 (LC 3), 10= n Compression/f -3520/336, 5-6= 0, 8-10=-3472/33 4 5, 7-12=-849/25 8-11=-272/195, 4-13=-298/200	4 SP No.2 ht 2x4 SP No.3 ectly applied or 10-0-0 oc 2 anical =-158 (LC 15) 1837 (LC 3) Maximum =-2425/350, 36 57, 5-12=-866/258,	 DOL=1.15); Cs=1.00; Ct: Unbalanced design. This truss ha load of 12.0 overhangs n This truss ha chord live loa * This truss h on the bottor 3-06-00 tall t chord and ar Refer to gird Provide mec bearing plate 10. One H2.5A S recommended UPLIFT at jut does not cors in the truss is International 	1.15); Pf=20.0 ps Is=1.0; Rough C =1.10; Rough C =1.10 snow loads have as been designed psf or 1.00 times on-concurrent wi as been designed ad nonconcurren has been designed m chord in all are by 2-00-00 wide to yo other member ler(s) for truss to chanical connectitie e capable of with Simpson Strong- ed to connect true (s) 2. This connec rue (s) 2. This connec rue (s) 2. This connect rue (s) 2. This connect rue (s) 2. This connect rue (s) 2. This connect asigned in accor Aesidential Cod nd referenced sta	f (Lum DC at B; Fully be been cor d for greate flat roof le ith other ling d for a 10.0 t with any ed for a liv as where will fit betw s, with BC truss conr on (by oth standing 1 Tie connee ss to bear ction is for es. ordance w e sections	DL=1.15 Plate Exp.; Ce=0.9; isidered for thi er of min roof I and of 20.0 psi ve loads. 0 psf bottom other live load e load of 20.0 a rectangle veen the botto DL = 10.0psf. tections. ers) of truss to 58 lb uplift at j ctors ng walls due t uplift only and the 2018 R502.11.1 ar	is ive fon Is. psf m joint o d		ORTH CA	ROL
Vasd=103rr II; Exp B; Er and C-C Ex to 16-10-1, 25-1-15 to 3 cantilever le right expose	ph; TCDL=6.0 nclosed; MWFF terior(2E) -0-5- Exterior(2R) 16 37-6-9, Exterior ft and right exp ed;C-C for men	Omph (3-second osf; BCDL=6.0p; RS (envelope) ex 14 to 3-8-2, Inte 5-10-1 to 25-1-15 (2E) 37-6-9 to 4 oosed ; end verti bbers and forces er DOL=1.60 pla	sf; h=25ft; Cat. kterior zone rior (1) 3-8-2 5, Interior (1) 1-8-8 zone; cal left and 5 & MWFRS						Common and the		EER A LUI

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

June 21,2024


Page: 1

NGINEERING B

Job	Truss	Truss Type	Qty	Ply	41 Mason Ridge-Roof-Wilmington B FLEX VMB GRH
24080083	A08	Common Supported Gable	1	1	I66369491 Job Reference (optional)

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Thu Jun 20 08:26:12 ID:3_zLxHIk22pmSZKbX0XIUUzvUG1-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:75.4

41-6-12

Plate Offsets (2	X, Y): [2:0-1-9,0-2-0],	[2:0-3-7,0-0-13], [9:0-5	5-0,0-4-8], [17:0-5-0,	,0-4-8], [31	:0-5-0,0-4-8]	, [37:0	-5-0,0-4-8]						
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix		0.06 0.05 0.17	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01	(loc) - - 24	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 373 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS SLIDER BRACING TOP CHORD BOT CHORD WEBS	2x6 SP No.2 2x6 SP No.2 2x4 SP No.3 *Excep 34-13,0-0,0-0,0-0,0-0 Left 2x4 SP No.3 1 1-6-0 Structural wood shee 6-0-0 oc purlins. Rigid ceiling directly bracing. T-Brace: Fasten (2X) T and I web with 10d (0.131 3in minimum end dis Brace must cover 9 (size) 2=41-6-12 25=41-6-1 29=41-6-1 31=41-6-1 35=41-6-1 35=41-6-1 37=41-6-1 39=41-6-1	0,0-0:2x4 SP No.2 1-6-0, Right 2x4 SP No.2 1-6-0, Right 2x4 SP No athing directly applied of applied or 10-0-0 oc 2x4 SP No.2 - 12-35, 11-36, 14-33, 15-32, 13-34 braces to narrow edge "x3") nails, 6in o.c.,with stance. 30% of web length. 2, 24=41-6-12, 12, 26=41-6-12, 12, 30=41-6-12, 12, 34=41-6-12, 12, 34=41-6-12, 12, 38=41-6-12, 12, 38=41-6-12, 12, 40=41-6-12, 12, 42=41-6-12, 12, 44=41-6-12, 12, 44=41-6-	or e of	(lb) - Ma Tension 1-2=0/11 5-6=-12/ 8-10=-7 11-12=- 13-14=- 15-16=- 18-19=-	28=-43 (LC 30=-44 (LC 32=-53 (LC 35=-23 (LC 35=-23 (LC 35=-23 (LC 35=-23 (LC 35=-23 (LC 23=-41 (LC 25=208 (L) 25=208 (L) 25=208 (L) 25=208 (L) 25=208 (L) 25=208 (L) 33=237 (L) 35=235 (L) 35=235 (L) 35=235 (L) 35=235 (L) 35=235 (L) 35=237 (L) 43=237 (L) 48=127 (L) ximum Comp	C 15), C 15), C 15), C 15), C 15), C 14), C 14), C 14), C 14), C 24), C 25), C 27), C	27=-48 (LC 29=-41 (LC 31=-46 (LC 33=-15 (LC 38=-15 (LC 38=-44 (LC 40=-43 (LC 42=-23 (LC 24=127 (LC 26=147 (LC 28=160 (LC 30=160 (LC 32=236 (LC 34=183 (LC 36=232 (LC 38=160 (LC 38=160 (LC 44=168 (LC) 44=168 (LC) 44=1	15), 15), 15), 15), 14), 14), 14), 27), 22), 24),	this	palanceo design.	41-42 39-40 36-38 34-35 32-33 29-30 27-28 25-26 12-35 10-37 7-40= 12-35 10-37 7-40= 15-32 21-26 13-34 d roof li	-46/150, 42-43=- -46/150, 40-41= -46/150, 38-39= -46/152, 35-36= -46/152, 30-32= -46/150, 28-29= -46/150, 26-27= =-46/150, 24-25= =-195/47, 11-36= -145/80, 9-38=- -121/78, 6-41=-1: -156/155, 14-33= =-196/89, 16-31= =-120/77, 18-29= =-121/78, 20-27= =-115/79, 22-25= =-115/79, 22-25= =-1173/38	46/150, -46/150, -46/150, -46/152, -46/152, -46/152, -46/150, -46/150, -46/150, -46/150, -192/89, 120/77, 8-39=-116/74, 120/77, 8-39=-116/74, -197/39, -150/80, -116/74, -121/77, -142/171, en considered for
											THE STREET	201111	21,2024

Page: 1

Continued on page 2

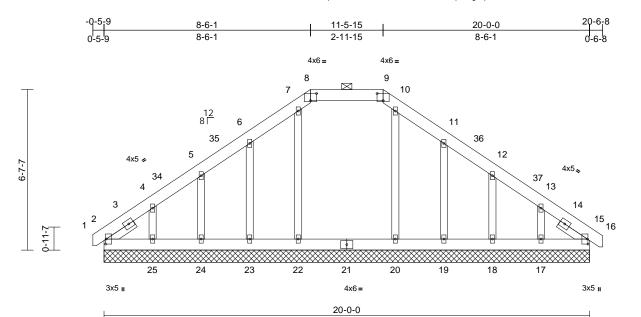
Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MTek connectors. This design is based only upon parameters and property incorporate this design is based only upon parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	41 Mason Ridge-Roof-Wilmington B FLEX \	
24080083	A08	Common Supported Gable	1	1	Job Reference (optional)	166369491
Carter Components (Sanford, N	C), Sanford, NC - 27332,	Run: 8.73 S Apr 25 2	Page: 2			

ID:3_zLxHIk22pmSZKbX0XIUUzvUG1-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Carter Components (Sanford, NC), Sanford, NC - 27332,

- Wind: ASCE 7-16: Vult=130mph (3-second aust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-5-14 to 3-8-2, Exterior(2N) 3-8-2 to 16-10-1, Corner(3R) 16-10-1 to 25-0-0, Exterior(2N) 25-0-0 to 37-4-13, Corner(3E) 37-4-13 to 41-6-12 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this 5) design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- All plates are 2x4 MT20 unless otherwise indicated. 7)
- Gable requires continuous bottom chord bearing. 8)
- 9) Gable studs spaced at 2-0-0 oc.
- 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 12) N/A
- 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802 10 2 and referenced standard ANSI/TPI 1
- 14) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.


LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

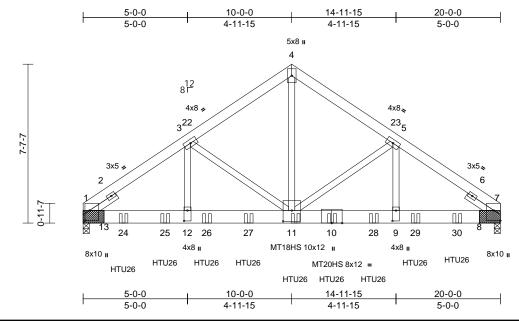
Job	Truss	Truss Type	Qty	Ply	41 Mason Ridge-Roof-Wilmington B FLEX VMB GRH
24080083	B01	Hip Supported Gable	1	1	I66369492 Job Reference (optional)

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Thu Jun 20 08:26:12 ID:3svb5hhSXbq1LmTDC3xnuAzwPrT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:47.5

Plate Offsets ()	X, Y): [2:0-2-8,0-0-5]	, [4:0-0-0,Edge], [5:0-0-	0,Edge]	, [6:0-0-0,Edg	je], [7:0-0-0,Edge],	[8:0-3-0	0-3-8], [9:0-3	-0,0-3-8], [15:0-2	2-8,0-0-5	5]			
Loading TCLL (roof) Snow (Pf) TCDL BCLL	(psf) 20.0 20.0 10.0 0.0*	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-MSH	0.09 0.06 0.14	Vert(CT)	in n/a n/a 0.00	(loc) - - 15	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190	
BCDL	10.0											Weight: 150 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS SLIDER BRACING TOP CHORD	1-4-2	1-4-2, Right 2x4 SP No eathing directly applied	.3 W	DT CHORD	2-25=-56/128, 24 23-24=-56/128, 2 20-22=-56/128, 1 18-19=-56/128, 1 15-17=-56/128 10-20=-229/23, 1 12-18=-194/87, 1 7-22=-229/49, 6-2 4-25=-186/110	2-23=-56 9-20=-56 7-18=-56 1-19=-19 3-17=-18	/128, /128, /128, 4/99, 6/109,	/87,	11) This cho 12) * Th 01 1 3-0 cho 13) Pro	s truss h and live lo his truss the botto 6-00 tall and and a vide me	has bee bad no has be om cho by 2-0 any oth chanic	een designed for ord in all areas wh 00-00 wide will fit er members, with al connection (by	any other live loads. a live load of 20.0ps	
BOT CHORD	2-0-0 oc purlins (6- Rigid ceiling directly			 NOTES Unbalanced roof live loads have been considered for this design. 						2, 19 lb uplift at joint 15, 81 lb uplift at joint 19, 47 lb upl at joint 18, 99 lb uplift at joint 17, 7 lb uplift at joint 22, 7 lb uplift at joint 23, 46 lb uplift at joint 24, 106 lb uplift at				
Max Uplift 2=-20 0.0 15=20 0.0 17=20 0.0 18=20 0.0 18=20 0.0 18=20 0.0 18=20 0.0 20=20 0.0 20=20 0.0 22=20 0.0 22=20 0.0 25=20 0.0 25=20 0.0 25=20 0.0 26=20 0.0 22=20 0.0 22=20 0.0 22=20 0.0 22=20 0.0 22=20 0.0 22=20 0.0 25=20 0.0 25=20 0.0 25=20 0.0 25=20 0.0 25=20 0.0 25=20 0.0 25=20 0.0 25=20 0.0 25=20 0.0 25=20 0.0 25=20 0.0 25=20 0.0 25=20 0.0 20=20 0.0 20=20 0.0 20=20 0.0 20=20 0.0 20=20 0.0 20=20 0.0 20=20 0.0 20=20 0.0 20=20 0.0 20=20 0.0 20=20 20=20 0.0			0, 0, 0	Vasd=103rr II; Exp B; E and C-C Cc to 5-6-1, Cc 14-5-15 to 1 cantilever le right expose for reactions DOL=1.60	E 7-16; Vult=130m hpt; TCDL=6.0psf; hclosed; MWFRS orner(3E) -0-4-11 to orner(3R) 5-6-1 to 17-5-10, Corner(3E off and right exposed; C-C for members s shown; Lumber I aned for wind load	BCDL=6 (envelope (2-7-5, E 14-5-15, 1 (2) 17-5-10 (ed ; end v rs and fo () 00L=1.60	6.0psf; h=25ft; e) exterior zor Exterior(2N) 2 Exterior(2N) 0 to 20-5-10 z vertical left an rces & MWFR 0 plate grip	ne -7-5 cone; d S	14) This Inte R80 15) Gra or t	s truss is rnationa 02.10.2 a phical p he orien tom cho	s desig al Resid and ref ourlin re tation rd.) Sta	ined in accordance dential Code sect ferenced standare apresentation doe of the purlin along ndard	ions R502.11.1 and d ANSI/TPI 1. s not depict the size g the top and/or	
	Max Grav 2=173 (L 17=271 (19=224 (22=346 (24=249 (C 27), 15=176 (LC 22), (LC 53), 18=251 (LC 53) (LC 53), 20=346 (LC 6), (LC 5), 23=221 (LC 51), (LC 51), 25=281 (LC 51)), 4)	only. For si see Standa or consult q TCLL: ASC Plate DOL=	tuds exposed to wi tuds exposed to wi lualified building de E 7-16; Pr=20.0 ps 1.15); Pf=20.0 ps ; Is=1.0; Rough Ca	nd (norm End Deta esigner as of (roof Ll (Lum DC	al to the face ils as applical s per ANSI/TF .: Lum DOL= DL=1.15 Plate), ble, Pl 1. 1.15			2 5			
FORCES				Cs=1.00; C		-	-					0363	22 : 3	
TOP CHORD	5-6=-141/91, 6-7=- 8-9=-128/151, 9-10 10-11=-144/145, 11	24=249 (LC 51), 25=281 (LC 51), 26=173 (LC 27), 30=176 (LC 22) (b) - Maximum Compression/Maximum Tension 1-2=0/13, 2-4=-161/114, 4-5=-134/94, 5-6=-141/91, 6-7=-144/145, 7-8=-191/145, 3-9=-128/151, 9-10=-191/145, 10-11=-144/145, 11-12=-141/78, 12-13=-134/54, 13-15=-139/70, 15-16=0/16			as been designed psf or 1.00 times non-concurrent wit equate drainage to re 2x4 MT20 unles res continuous bo	for great flat roof le h other lin prevent s otherwi	er of min roof bad of 20.0 ps ve loads. water ponding se indicated.	live sf on			A MARTINE AND	SEA 0363		

June 21,2024


TREEACO A MITek Affiliate 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	41 Mason Ridge-Roof-Wilmington B FLEX VMB GRH
24080083	B02	Common Girder	1	2	I66369493 Job Reference (optional)

Scale = 1:55.2

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Thu Jun 20 08:26:12 ID:PTv5C6lkKROx2GY0tKS8s4zvUAt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Plate Offsets (X, Y): [1:0-5-13,0-2-11], [7:Edge,0-3-11], [9:0-6-0,0-2-0], [11:0-6-4,0-5-0], [12:0-6-0,0-2-0]

				1.1	, ,, ,	· ·								
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in		l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.69	Vert(LL)		11-12		240	MT20	244/190	
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.53	Vert(CT)		11-12	>937	180	MT20HS	187/143	
TCDL	10.0	Rep Stress Incr	NO		WB	0.86	Horz(CT)	0.06	7	n/a	n/a	MT18HS	244/190	
BCLL	0.0*	Code	IRC201	8/TPI2014	Matrix-MSH									
BCDL	10.0											Weight: 344 lb	FT = 20%	
BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD	$\begin{array}{llllllllllllllllllllllllllllllllllll$				considered equa ed as front (F) or l ction. Ply to ply cc distribute only load wise indicated.)F 2.0E bearing bl each face with 4 r l 3" o.c. 16 Total fi to be SP 2400F 2)F 2.0E bearing bl each face with 4 r l 3" o.c. 16 Total fi to be SP 2400F 2 roof live loads ha F7-16; Vult=130m ph; TCDL=6.0psf; iclosed; MWFRS 0 ft and right exposed d; Lumber DOL=1 E7-16; Pr=20.0 psf 1.15); Pf=20.0 psf	back (B) ponnection ds noted lock 12" rows of 1 asteners .0E. lock 12" nows of 1 asteners .0E. ve been ph (3-sec (enveloped ed; end 1 1.60 plate	face in the LC is have been as (F) or (B), ong at jt. 1 0d (0.131"x3' per block. Be ong at jt. 7 0d (0.131"x3' per block. Be considered for considered for cond gust) 3.0psf; h=25ft e) exterior zon vertical left ar e grip DOL=1. L: Lum DOL=) earing aring aring or ; Cat. ne; id 60 1.15	 14) Use Simpson Strong-Tie HTU26 (20-10d Girder, 11-10dx1 1/2 Truss) or equivalent spaced at 2-3-0 oc max. starting at 1-11-3 from the left end to 10-2-3 to connect truss(es) to back face of bottom chord. 15) Use Simpson Strong-Tie HTU26 (20-10d Girder, 11-10dx1 1/2 Truss, Single Ply Girder) or equivalent spaced at 2-0-0 oc max. starting at 11-11-3 from the left end to 17-11-3 to connect truss(es) to back face of bottom chord. 16) Fill all nail holes where hanger is in contact with lumber. LOAD CASE(S) Standard 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (lb/ft) Vert: 1-4=-60, 4-7=-60, 14-18=-20 Concentrated Loads (lb) Vert: 10=-1642 (B), 11=-1851 (B), 24=-1851 (B), 25=-1851 (B), 26=-1851 (B), 27=-1851 (B), 28=-1642 (B), 29=-1642 (B), 30=-1642 (B) 					
WEBS	4-11=0/9840, 5-11=- 5-9=-611/3269, 3-11		ngn	Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9;						TH CARO				
NOTES	0 0 - 011/0200, 0-11	= 0.104/0, 0.12=0/40	8)	Cs=1.00; Ct Unbalanced		been co	nsidered for t	his		/	S.	O'. FESS	10/ Nim	
 1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Bottom chords connected as follows: 2x8 - 2 rows staggered at 0-5-0 oc. Web connected as follows: 2x4 - 1 row at 0-9-0 oc, Except member 4-11 2x4 - 1 row at 0-7-0 oc.) Unbalanced snow loads have been considered for this design.) All plates are MT20 plates unless otherwise indicated. (0) The Fabrication Tolerance at joint 11 = 12% (1) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. (2) * This truss has been designed for a live load of 20.0psf on the bottom chord and any other members. (3) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 						EER A LU				

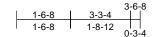
June 21,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component for the prevention. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	41 Mason Ridge-Roof-Wilmington B FLEX VMB GRH
24080083	C01	Monopitch Supported Gable	2	1	I66369494 Job Reference (optional)


1-6-8

Carter Components (Sanford, NC), Sanford, NC - 27332,


Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Thu Jun 20 08:26:13 ID:U5QFVIeIxXRFdnTjJFF5o7zw9dU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3-6-8

Page: 1

-1-0-0

Scale = 1:33.1

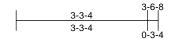
		i											
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.10	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.02	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES		WB	0.04	Horz(CT)	0.00	5	n/a	n/a		
BCLL	0.0*	Code	IRC201	8/TPI2014	Matrix-MP								
BCDL	10.0											Weight: 15 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 Structural wood she 3-6-8 oc purlins, exi Rigid ceiling directly bracing. (size) 2=3-6-8, 5 8=3-6-8 Max Horiz 2=60 (LC Max Uplift 2=-40 (LC 8=-40 (LC 8=-40 (LC Max Grav 2=184 (LC	cept end verticals. applied or 10-0-0 oc 5=3-6-8, 6=3-6-8, 7=3 10), 8=60 (LC 10) 10), 5=-36 (LC 21), 10), 7=-30 (LC 14), 10) 2 21), 5=11 (LC 10), 2 21), 7=169 (LC 21)	5) 3-6-8, 6) 7) 8) 9)	Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalancet Unbalancet Unbalancet design. This truss ha load of 12.0 overhangs n Gable requir Gable studs This truss ha chord live loa * This truss ha chord live loa * This truss to on the bottor 3-06-00 tall b chord and ar 0) Provide mec	snow loads have b is been designed for psf or 1.00 times fit on-concurrent with es continuous botto spaced at 2-0-0 oc is been designed for ad nonconcurrent v has been designed in chord in all areas by 2-00-00 wide will y other members. hanical connection	Lum DC B; Fully peen cor or greate at roof le other lin om chor bor a 10.0 vith any for a 10.0 vith any for a liv s where I fit betv	DL=1.15 Plate Exp.; Ce=0.9 nsidered for the er of min roof bad of 20.0 ps re loads. d bearing. D psf bottom other live loa e load of 20.0 a rectangle ween the botto ers) of truss t); live sf on ds. Dpsf om					
FORCES	(lb) - Maximum Com Tension	pression/Maximum		2, 36 lb uplift	e capable of withsta at joint 5, 35 lb up	lift at joi							
TOP CHORD	1-2=0/28, 2-3=-119/ 4-5=-19/11, 4-6=-13		11	 This truss is International 	0 lb uplift at joint 2. designed in accord Residential Code	dance w sections	R502.11.1 a	nd					00
WEBS	3-7=-139/149				nd referenced stan	dard AN	ISI/TPI 1.					White CA	Dalle
NOTES			L	OAD CASE(S)	Standard						1	atrior	10/11/
 Nortes Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -1-0-0 to 2-0-0, Exterior(2N) 2-0-0 to 3-6-8 zone; cantilever left and right exposed; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 													

- to 3-6-8 zone; cantilever left and right exposed ; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component for the prevention. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

GI 1000 minut June 21,2024


Job	Truss	Truss Type	Qty	Ply	41 Mason Ridge-Roof-Wilmington B FLEX VMB GRH
24080083	C02	Monopitch	8	1	I66369495 Job Reference (optional)

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Thu Jun 20 08:26:13 ID:m4jm85hMIZcJHoWkltroegzw9ei-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

1-8-3

Page: 1

-1-0-0 3-6-8 1-0-0 3-6-8 2x4 II 12 4 Г 3 4 P 1-9-14 2 6 ,-9-0 P \bigotimes 5 2x4 🛛 2x4 =

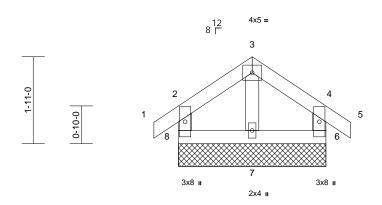
Scale = 1:28.7

LUMBER TOP CHORD BOT CHORD BOT CHORD BATCIMOR WEBS 2x4 SP No.2 2x4 SP No.2 - BRACING TOP CHORD TOP CHORD STRUCTURI wood sheathing directly applied or 3-6-8 oc puritins, except end verticals. BOT CHORD Rigid celling directly applied or 10-0-0 brazing. 6) *This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-0-60-00 tail by 2-0-00 wide will fit between the bottom chord and any other members. BOT CHORD REACTIONS Structural wood sheathing directly applied or brazing. - REACTIONS 2=0-3-0, 6= Mechanical Max Horiz 2=59 (LC 10) Max Grav 2=276 (LC 21), 6=-56 (LC 10) Max Grav 2=276 (LC 21), 6=-193 (LC 21) Max Grav 2=276 (LC 21), 6=-193 (LC 21) - FORCES (b) - Maximum Compression/Maximum Tension This truss is designed in accordance with the 2018 Intratutional Residential Code section SR02.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. FORCES (b) - Maximum Compression/Maximum Tension This truss is designed in accordance with the 2018 Intratutional Residential Code section SR02.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. FORCES F - 1-6; Vult=130mph (3-second gust) Vsad-103mph; TCDL=6.0psf; BcDL=6.0psf; BcDEs (Stif; Cad-1; exposed; C- for members and forces & MWFRS (or reactions shown; Lumber DOL=1.60 plate grip DOL=1.60; PH=20.0 psf (nord LL: Lum DOL=1.15 Plate DOL=1.61; PH=20.0 psf (nord LL:	Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MP	0.19 0.18 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.02 0.02 0.00	(loc) 6-9 6-9 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 14 lb	GRIP 244/190 FT = 20%
 DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 3) Unbalanced snow loads have been considered for this design. 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 	TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD NOTES 1) Wind: ASC Vasd=103; II; Exp B; and C-C E exposed; exposed;C reactions s DOL=1.60 2) TCLL: ASC Plate DOL DOL=1.15 Cs=1.00; C 3) Unbalance design. 4) This truss	2x4 SP No.2 2x4 SP No.3 Structural wood she 3-6-8 oc purlins, ex Rigid ceiling directly bracing. (size) 2=0-3-0, 6 Max Horiz 2=59 (LC Max Upliff 2=-81 (LC Max Grav 2=276 (LC (lb) - Maximum Com Tension 1-2=0/28, 2-3=-50/8 2-6=-54/50, 5-6=0/0 CE 7-16; Vult=130mph mph; TCDL=6.0psf; Bi Enclosed; MWFRS (er exterior(2E) zone; cant end vertical left expos 2-C for members and f shown; Lumber DOL=1 CE 7-16; Pr=20.0 psf (L =1.15); Pf=20.0 psf (L =1.15); IS=1.0; Rough Cat E Ct=1.10 dd snow loads have be has been designed for 0 psf or 1.00 times flat is non-concurrent with of has been designed for	cept end verticals. applied or 10-0-0 oc 5= Mechanical 10) 2 10), 6=-56 (LC 10) 2 21), 6=193 (LC 21) pression/Maximum 6, 3-4=-8/0, 3-6=-144 (3-second gust) CDL=6.0psf; h=25ft; ivelope) exterior zon lever left and righ rocs & MWFRS for 1.60 plate grip roof LL: Lum DOL=1 um DOL=1.15 Plate b; Fully Exp.; Ce=0.9; een considered for thi r greater of min roof I t roof load of 20.0 ps ther live loads. r a 10.0 psf bottom	on the b 3-06-00 chord an 7) Refer to 8) Provide bearing 6. 9) On H2 recomm UPLIFT does no 10) This trus Internati R802.10 LOAD CASi 4/121 Cat. e ht .15 ; is ive	ottom chord in all are tall by 2-00-00 wide v id any other members girder(s) for truss to i plate capable of withs 5A Simpson Strong- ended to connect trus at jt(s) 2. This connect consider lateral force s is designed in accco onal Residential Cod .2 and referenced sta	as where will fit betw s. truss com on (by oth standing f Tie conne ss to bear ction is fo es. ordance w e sections	a rectangle ween the botto nections. ers) of truss t 56 lb uplift at j ctors ing walls due r uplift only ar with the 2018 \$ R502.11.1 a	to to to to nd				0363	ER A

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

GINEERING


Job	Truss	Truss Type	Qty	Ply	41 Mason Ridge-Roof-Wilmington B FLEX VMB GRH
24080083	D01	Common Supported Gable	1	1	I66369496 Job Reference (optional)

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Thu Jun 20 08:26:13 ID:fIG?DolQzsmG5QC5xg?Krkz4Siq-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

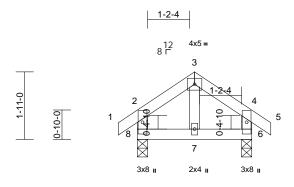
Page: 1

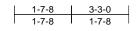
3-3-0

Scale = 1:25.4

Scale = 1:25.4											
Loading (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0* BCDL 10.0	Plate Grip DOL1.1Lumber DOL1.1Rep Stress IncrYE	5	CSI TC BC WB Matrix-MR	0.07 0.02 0.01	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 6	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 16 lb	GRIP 244/190 FT = 20%
BOT CHORD 3-3-0 oc purlins, ex Rigid ceiling directly bracing.	applied or 6-0-0 oc 7=3-3-0, 8=3-3-0 (2) (15), 8=-34 (LC 14) (2), 7=102 (LC 1), (2), 7=102 (LC 1), (3, 8=-34, (LC 14), (3, 8=-34, (LC 14), (4, 4, 4, (LC 14), (3, 8=-34, (LC 14), (4, 4, (LC 14), (4, 14), (5, 16), (4, 14), (5, 16), (5, 16), (6, 16), (6, 16), (7, 16),	 Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced design. This truss hat load of 12.0 j overhangs nr Gable requir; Truss to be f braced agair Gable studs This truss hat chord live load * This truss hat on the bottor 3-06-00 tall b chord and ar Provide mect bearing plate 8 and 34 lb u This truss hat International 	snow loads have be solved to be a solved to be solved to be a solved to be solved to be a solved to be a solved to be a solved to be solved to be a solved to be a solved to be solved to be a solved to be a solved to be solved to be a solved to be a solved to be solved to be a solved to be a solved to be solved to be a solved to be a solved to be solved to be a solved to be a solved to be solved to be a solved to be a solved to be a solved to be solved to be a solved to be a solved to be a solved to be a solved to be solved to be a solved to be	um DC 3; Fully een cor r greati t roof k t toof k t toof k t (i.e. c t (i.e. c t (i.e. c t (i.e. d t (i.e. d) (i.e.	DL=1.15 Plate Exp.; Ce=0.9 asidered for the er of min roof pad of 20.0 ps re loads. d bearing. e or securely iagonal web). D psf bottom other live load e load of 20.0 a rectangle reen the bottot ers) of truss to 4 lb uplift at jo ith the 2018 R502.11.1 a); live sf on ds. psf om o pint				ORTH CA ORTH CA ORTH SS SEA 0363	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component for the prevention. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)




GI 1000 minut June 21,2024

Job	Truss	Truss Type	Qty	Ply	41 Mason Ridge-Roof-Wilmington B FLEX VMB GRH
24080083	D02	Common	4	1	I66369497 Job Reference (optional)

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Thu Jun 20 08:26:13 ID:cgOleTngUT0_KjLT251ox9z4Sio-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:32.7

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.07	Vert(LL)	0.00	7	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.04	Vert(CT)	0.00	7	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.02	Horz(CT)	0.00	6	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MR								
BCDL	10.0										Weight: 16 lb	FT = 20%
	2x4 SP No.2 2x4 SP No.3 Structural wood she 3-3-0 oc purlins, ex Rigid ceiling directly bracing. (size) 6=0-3-8, Max Horiz 8=-55 (LC Max Uplift 6=-23 (LC	ccept end verticals. / applied or 10-0-0 c 8=0-3-8 C 12) C 15), 8=-23 (LC 14)	chord live 7) * This true on the bo 3-06-00 th chord and 8) One H2.5 recomme UPLIFT a and does 9) This truss Internatio 880.2 10.	has been designed load nonconcurren ss has been designed tom chord in all are all by 2-00-00 wide v any other member A Simpson Strong- nded to connect tru- t jt(s) 8 and 6. This not consider lateral is designed in acco nal Residential Cod 2 and referenced st	t with any ed for a liv eas where will fit betw s. Tie conne ss to bear connectio forces. ordance w e sections	other live loa ve load of 20.0 a rectangle ween the botto ctors ing walls due n is for uplift o vith the 2018 s R502.11.1 a	Opsf om to only					
	Max Grav 6=203 (L	C 22), 8=203 (LC 21	1)	(S) Standard								
FORCES	(lb) - Maximum Con Tension	npression/Maximum										
TOP CHORD	1-2=0/33, 2-3=-97/5 2-8=-173/110, 4-6=-		0/33,									
BOT CHORD WEBS	7-8=-7/67, 6-7=-7/6 3-7=-2/41	7										
NOTES												
	ed roof live loads have	been considered fo	or									
this design												11
	CE 7-16; Vult=130mph	n (3-second gust)										in the
Vasd=103	Bmph; TCDL=6.0psf; B	CDL=6.0psf; h=25ft	; Cat.								TH UF	ROY
II; Exp B; I	Enclosed; MWFRS (er	nvelope) exterior zo	ne							5	A	in the
	Exterior(2E) zone; can									~~	FESS	ON STA
	end vertical left and ri								6	12	121	1 hr m
	and forces & MWFRS		ז;						-			
	OL=1.60 plate grip DC										SEA	
	CE 7-16; Pr=20.0 psf _=1.15); Pf=20.0 psf (L								=		0000	
	5); Is=1.0; Rough Cat I								1		0363	522 : 2
Cs=1.00; (5, 1 ully Exp., Ce=0.	э,							2 8		1
	ed snow loads have be	een considered for t	his							5		all S
design.									111100	3.5	NGIN	EERA
	has been designed for									11	10	BEN
	.0 psf or 1.00 times fla		sf on								CA. C	ALLOW
overhangs	s non-concurrent with	other live loads.									in min	11111
											lun	0.21.2024

June 21,2024

Page: 1

TRENGINEERING BY A MITEK Attiliate

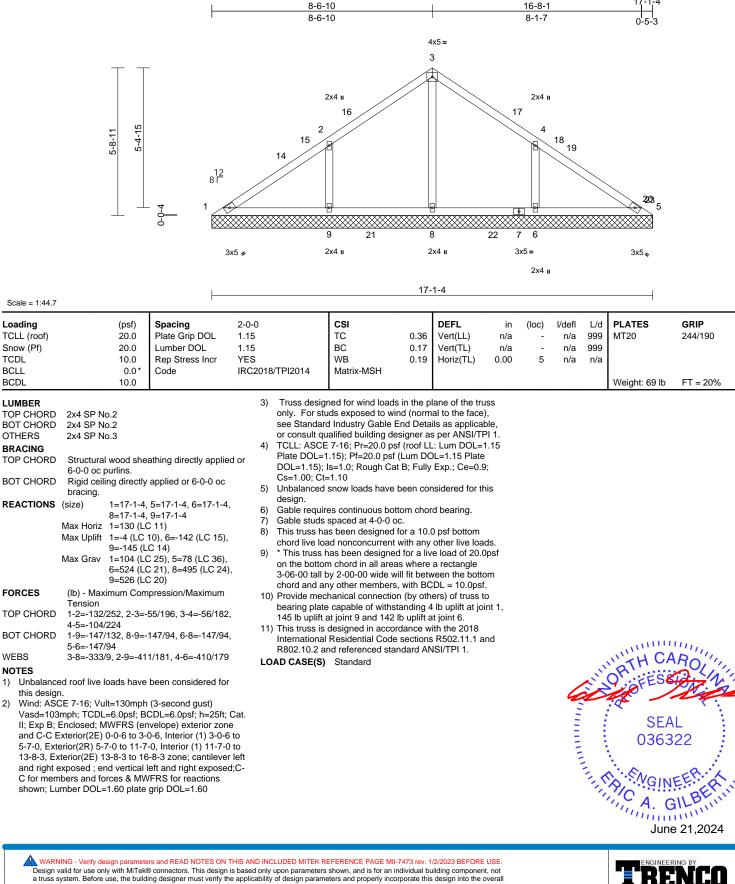
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	41 Mason Ridge-Roof-Wilmington B FLEX VMB GRH
24080083	VL1	Valley	1	1	I66369498 Job Reference (optional)

TCDL

BCLL

BCDL


WEBS

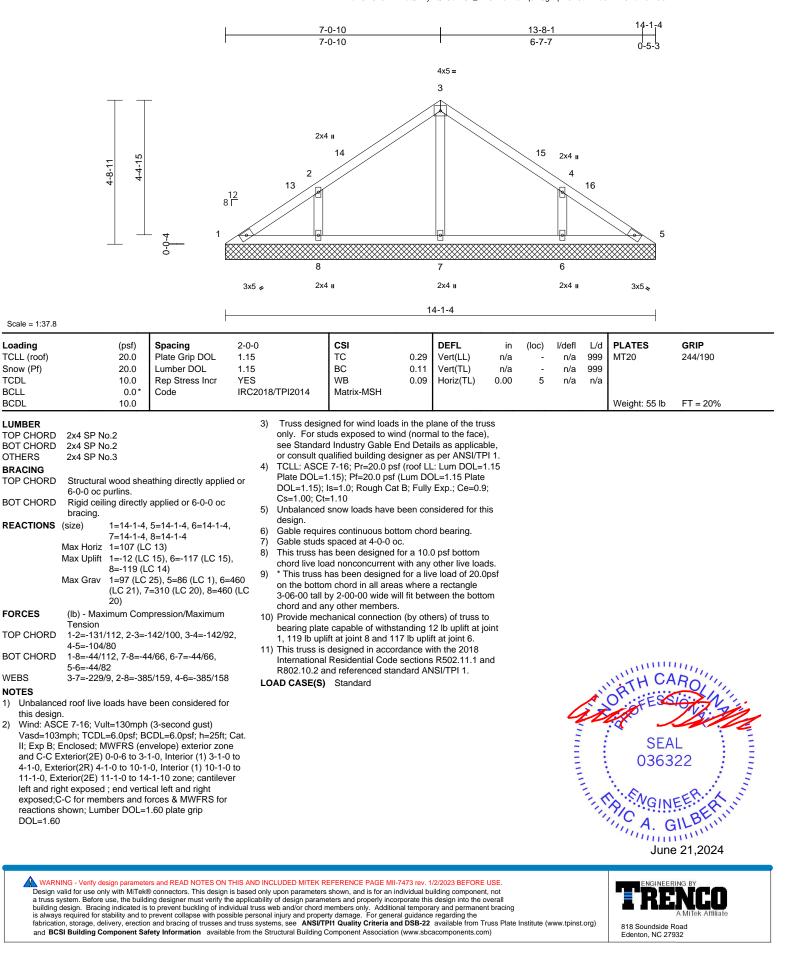
1)

2)

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Thu Jun 20 08:26:13 ID:4IUA5n6tT0ltV4so0m7npDzvU7E-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	41 Mason Ridge-Roof-Wilmington B FLEX VMB GRH
24080083	VL2	Valley	1	1	I66369499 Job Reference (optional)

1)

2)

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Thu Jun 20 08:26:14 ID:cNSDSFJwhxmcQX4ty7QXSbzvU7_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Job	Truss	Truss Type	Qty	Ply	41 Mason Ridge-Roof-Wilmington B FLEX VMB GRH
24080083	VL3	Valley	1	1	I66369500 Job Reference (optional)

5-6-10

5-6-10

Carter Components (Sanford, NC), Sanford, NC - 27332,

3-8-11

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Thu Jun 20 08:26:14 ID:KI3?ZgRBL00Bd4roYDbtsizvU6q-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

> 4x5 = 2

10-8-1

5-1-7

Page: 1

9 10 3-4-15 12 8 Г 3 0-0-4 4 2x4 II 3x5 🍫 3x5 💊 11-1-4 D 190 20% 111111 0 COULONDANIA SEAL 036322 G

Scale = 1:33.4

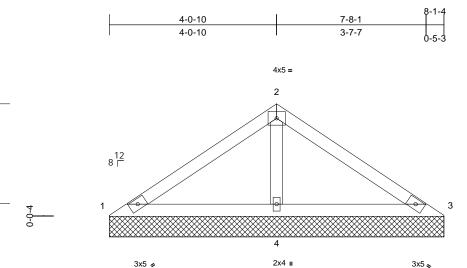
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-MSH	0.59 0.54 0.21	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 39 lb	GRIP 244/19 FT = 2
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.3 Structural wood she 10-0-0 oc purlins. Rigid ceiling directly bracing.	eathing directly applie y applied or 6-0-0 oc 4, 3=11-1-4, 4=11-1-4	6) 7) 8)	Plate DOL=1 DOL=1.15); I Cs=1.00; Ct= Unbalanced design. Gable requiri Gable studs This truss ha chord live loa	snow loads have b es continuous bott spaced at 4-0-0 oc s been designed f ad nonconcurrent v	Eum DC B; Fully been cor om chor c. or a 10.0 with any	DL=1.15 Plate Exp.; Ce=0.9 Insidered for t rd bearing. 0 psf bottom other live loa	e 9; his ads.					
FORCES TOP CHORD BOT CHORD WEBS NOTES	4=-103 (I Max Grav 1=111 (L 4=930 (L (lb) - Maximum Cor Tension 1-2=-120/497, 2-3=	C 21), 3=-81 (LC 20), LC 14) C 20), 3=111 (LC 21) C 21) npression/Maximum -120/497	, 10 11	on the bottor 3-06-00 tall b chord and ar Provide mec bearing plate 1, 81 lb uplift) This truss is International	has been designed in chord in all areas by 2-00-00 wide wi by other members. The state of withstand to a state of withstand to and 103 designed in accorr Residential Code and referenced stand Standard	s where Il fit betv (by oth anding 8 Ib uplift dance w sections	a rectangle ween the bott ers) of truss t 31 lb uplift at j at joint 4. vith the 2018 s R502.11.1 a	om to joint					

1) Unbalanced roof live loads have been considered for this design.

Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-6 to 3-0-6, Exterior(2R) 3-0-6 to 8-1-10, Exterior(2É) 8-1-10 to 11-1-10 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


mmm June 21,2024 VIIIIIIIIIIIIII

ſ	Job	Truss	Truss Type	Qty	Ply	41 Mason Ridge-Roof-Wilmington B FLEX VMB GRH
	24080083	VL4	Valley	1	1	I66369501 Job Reference (optional)

2-4-15

2-8-11

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Thu Jun 20 08:26:14 ID:1Efnf5YT_4Hmqccj7JnDGpzvU6g-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

8-1-4

Scale = 1:27.9	
----------------	--

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL		(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-MP	0.32 0.32 0.10	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 28 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP N Structural 8-1-4 oc p Rigid ceill bracing. (size) Max Horiz Max Uplift Max Grav (lb) - Max Tension 1-2=-96/2	0.2 0.2 0.3 I wood sheapurlins. ing directly 1=8-1-4, 3 1=-60 (LC 1=-27 (LC 4=-66 (LC 1=105 (LC 4=608 (LC ctimum Com 293, 2-3=-9 /149, 3-4=-3	2 21), 3=-27 (LC 20) 2 14) 2 20), 3=105 (LC 21 2 21) apression/Maximum 6/293	5) ed or 6) 7) 8) 9) , 11	Plate DOL=1 DOL=1.15); I Cs=1.00; Ct= Unbalanced design. Gable requiri Gable studs This truss ha chord live loa * This truss ha chord live loa * This truss ha chord and ar) Provide mec bearing plate 1, 27 lb uplift) This truss is International	snow loads have es continuous bo spaced at 4-0-0 d s been designed ad nonconcurrent ias been designe n chord in all are y 2-00-00 wide v y other members hanical connectio capable of withs at joint 3 and 66 designed in acco Residential Code nd referenced sta	the function of the function o	DL=1.15 Plate Exp.; Ce=0.9 asidered for the d bearing. D psf bottom other live loa e load of 20.0, a rectangle veen the botto ers) of truss t t, joint 4. t joint 4. the the 2018 s R502.11.1 a	ds. Dpsf om oint					
NOTES 1) Unbalance this design		loads have	been considered fo	r										uun.

Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-6 to 3-0-6, Exterior(2R) 3-0-6 to 5-1-10, Exterior(2E) 5-1-10 to 8-1-10 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

THE ADDRESS OF THE PARTY OF SEAL 036322 G minin June 21,2024

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	41 Mason Ridge-Roof-Wilmington B FLEX VMB GRH
24080083	VL5	Valley	1	1	I66369502 Job Reference (optional)

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Thu Jun 20 08:26:14 ID:k9GZIWgkd9YL08NejQyZgwzvU6W-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

5-1-4

5-1-4

3

2x4 💊

2-6-10 4-8-1 2-6-10 2-1-7 4x5 = 2 12 8 Г 1-4-15 1-8-11 1 0-0-4 4 2x4 🛛 2x4 🍫

Scale = 1:23.8

Scale = 1:23.8												
Loading (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0* BCDL 10.0	Plate Grip DOL1.1Lumber DOL1.1Rep Stress IncrYE	15 ES C2018/TPI2014	CSI TC BC WB Matrix-MP	0.09 0.11 0.04	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 17 lb	GRIP 244/190 FT = 20%	
REACTIONS 5-1-4 oc purlins. RIGID ceiling directly bracing. REACTIONS (size) 1=5-1-4, 3 Max Horiz 1=-36 (LC Max Uplift 1=-5 (LC (LC 14)	3=5-1-4, 4=5-1-4 2 10) 14), 3=-11 (LC 15), 4=-27 20), 3=89 (LC 21), 4=302 pression/Maximum 7/116 00/81 been considered for (3-second gust) CDL=6.0psf; h=25ft; Cat. velope) exterior zone ilever left and right ght exposed; C-C for for reactions shown; DL=1.60 n the plane of the truss I (normal to the face), gner as per ANSI/TPI 1. roof LL: Lum DOL=1.15 um DOL=1.15 Plate	 design. 6) Gable requir 7) Gable studs 8) This truss ha chord live loc 9) * This truss h on the bottor 3-06-00 tall b chord and ar 10) Provide mec bearing plate 11) This truss is International R802.10.2 ar LOAD CASE(S) 	snow loads have b es continuous botto spaced at 4-0-0 oc is been designed for ad nonconcurrent v has been designed in chord in all areas by 2-00-00 wide will y other members. hanical connection e capable of withsta joint 3 and 27 lb u designed in accord Residential Code in nd referenced stan Standard	om chor c. or a 10.0 vith any for a liv s where Il fit betw (by oth anding 5 plift at jo dance w sections	d bearing.) psf bottom other live load e load of 20.0 a rectangle veen the botto ers) of truss to lb uplift at joi pint 4. It the 2018 R502.11.1 at	ds. Ipsf om ot 1,				SEA 0363	22 EERBERT	Name and Antonio and An

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

