

Carter Sanford Component Plant 298 Harvey Faulk Rd Sanford, NC 27332

Phone #:919-775-1450

Builder: DR Horton Inc

Model: Robie L LFT GLH

THE PLACEMENT PLAN NOTES:

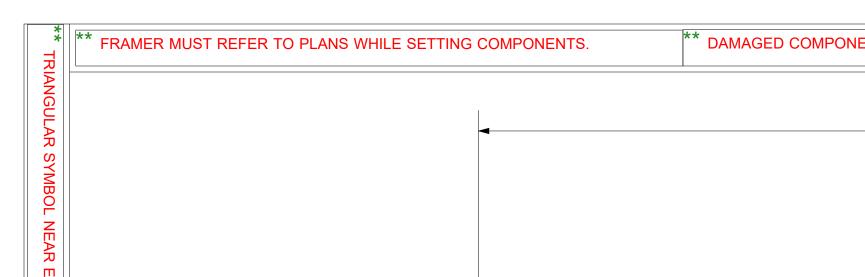
1. The Placement Plan is a diagram for truss installation. It is not an engineered drawing and has not been reviewed by an engineer. The Owner/Building Designer is responsible for obtaining an engineer's review if one is required by the local jurisdiction.

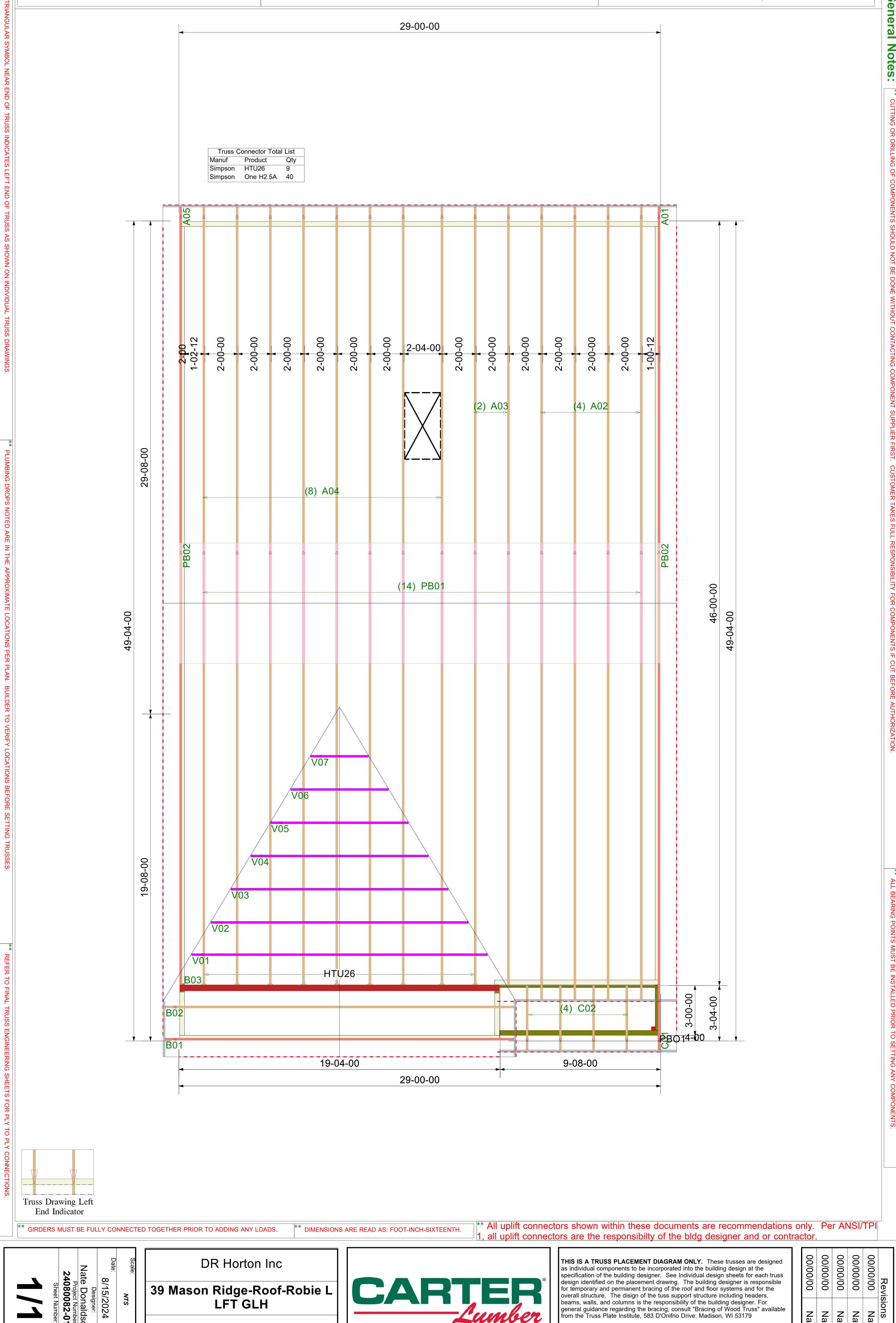
2. The responsibilities of the Owner, Contractor, Building Designer, Component Designer and Component Manufacturer shall be as set forth in ANSI/TPI 1. Capitalized terms shall be as defined in ANSI/TP 1 unless otherwise indicated.

3. Each Component is designed as an individual component utilizing information provided by others. The Owner/Building Designer is responsible for reviewing all Component Submittal Packages and individual Component Design Drawings for compliance with the Construction Documents and compatibility with the overall Building design.

4. Contractor will not proceed with component installation until the Owner/Building Designer has reviewed the Component Submittal Package. Questions on the suitability of any Component will be resolved by the Building Designer.

5. The Building Designer and Contractor are responsible for all temporary and permanent bracing.


6. The Placement Plan assumes the building is dimensionally correct, structurally sound, and in a suitable condition to support each Component during installation and thereafter, including but not limited to installation of all bearing points. Proper design and construction of all structural components, including foundations, headers, beams, walls and columns are the responsibility of the Owner, Building Designer and Contractor.


7. Do not cut, drill, or modify any Component without first consulting the Component Manufacturer or Building Designer. Damaged Components shall not be installed unless directed by the Building Designer or approved by the Component Manufacturer.

8. Components must be handled and installed following all applicable safety standards and best practices, including but not limited to BCSI, OSHA, TPI and local codes. Failure to properly handle, brace or otherwise install Component can result in serious injury or death. 9. All uplift connectors shown within these documents are recommendations only. Per ANSI/TPI 1, all uplift connectors are the responsibility of the building designer and or contractor.

Approved By: _____

Date: _____

** ALL BEARING POINTS

MUST BE INSTALLED PRIOR TO SETTING ANY COMPONENTS.

Nate Donaldson Project Number: 24080082-01 CARTER[®] Lumber 8/15/2024 Designer NTS LFT GLH beams, walls, and columns is the responsibility of the building designer. For general guidance regarding the bracing, consult "Bracing of Wood Truss" available from the Truss Plate Institute, 583 D'Onifrio Drive: Madison, WI 53179 Name Name Name Name Name **ROOF PLACEMENT PLAN**

RE: 24080082 39 Mason Ridge - Roof - Robie L LFT GLH

Site Information:

Customer: DR Horton IncProject Name:24080082Lot/Block: 39Model:Address: 212 Calebs CornerSubdivision: Mason RidgeCity: Spring LakeState: NC

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2018/TPI2014 Wind Code: ASCE 7-16 Roof Load: 40.0 psf

Design Program: MiTek 20/20 8.7 Wind Speed: 130 mph Floor Load: N/A psf

This package includes 24 individual, dated Truss Design Drawings and 0 Additional Drawings.

No. 1	Seal# I66103873	Truss Name A01	Date 6/10/2024	No. 21	Seal# l66103893	Truss Name V04	Date 6/10/2024
2	l66103874	A02	6/10/2024	22	166103894	V05	6/10/2024
3	l66103875	A03	6/10/2024	23	166103895	V06	6/10/2024
4	166103876	A04	6/10/2024	24	166103896	V07	6/10/2024
5	166103877	A05	6/10/2024				
6	166103878	B01	6/10/2024				
7	166103879	B02	6/10/2024				
8	166103880	B03	6/10/2024				
9	166103881	C01	6/10/2024				
10	166103882	C02	6/10/2024				
11	166103883	CJ01	6/10/2024				
12	166103884	D01	6/10/2024				
13	166103885	D02	6/10/2024				
14	166103886	D03	6/10/2024				
15	166103887	J01	6/10/2024				
16	166103888	PB01	6/10/2024				
17	166103889	PB02	6/10/2024				
18	166103890	V01	6/10/2024				
19	166103891	V02	6/10/2024				
20	166103892	V03	6/10/2024				

The truss drawing(s) referenced above have been prepared by

Truss Engineering Co. under my direct supervision

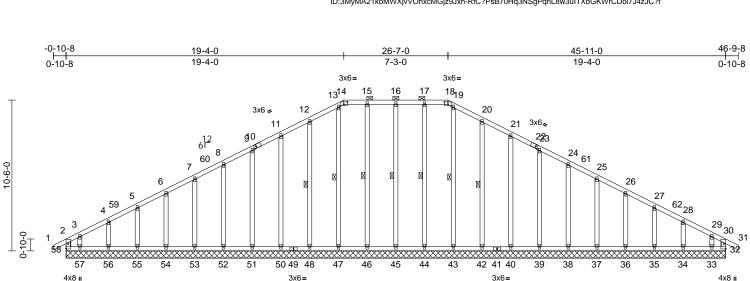
based on the parameters provided by Carter Components (Sanford, NC)).

Truss Design Engineer's Name: Gilbert, Eric

My license renewal date for the state of North Carolina is December 31, 2024

North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.


818 Soundside Rd Edenton, NC 27932

Trenco

Gilbert, Eric

Job	Truss	Truss Type	Qty	Ply	39 Mason Ridge - Roof - Robie L LFT GLH	
24080082	A01	Piggyback Base Supported Gable	1	1	l66103873 Job Reference (optional)	

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri Jun 07 11:13:05 ID:3MyMA21koMWXjvVOhxcMGjz9Jxh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

45-11-0	

Scale = 1:80.2

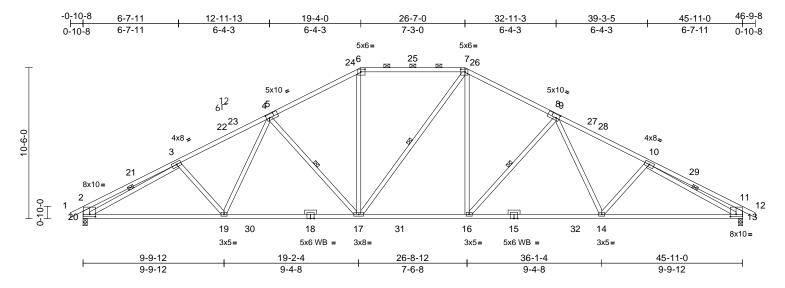
Plate Offsets (X, Y): [10:0-1-11,0-1	-8], [14:0-3-0,0-2-0],	[18:0-3-0,0-2-0], [22:	0-1-11,0-1-8]								
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-	0.16 0.08 0.22 MR	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01	(loc) - - 32	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 349 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS	6-0-0 oc purlins, ex 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing. 1 Row at midpt	y applied or 6-0-0 oc 16-45, 15-46, 13-47 12-48, 17-44, 19-43 20-42	nd 7,		$\begin{array}{c} 32 = -13 \ (LC \ 11), \\ 34 = -38 \ (LC \ 15), \\ 36 = -43 \ (LC \ 15), \\ 38 = -44 \ (LC \ 15), \\ 40 = -43 \ (LC \ 15), \\ 40 = -43 \ (LC \ 11), \\ 50 = -43 \ (LC \ 14), \\ 50 = -43 \ (LC \ 14), \\ 54 = -43 \ (LC \ 14), \\ 56 = -35 \ (LC \ 14), \\ 58 = -66 \ (LC \ 10) \\ 32 = 156 \ (LC \ 33), \\ 34 = 169 \ (LC \ 24), \\ 36 = 161 \ (LC \ 41), \\ \end{array}$	35=-45 (LC 37=-44 (LC 39=-44 (LC 42=-55 (LC 48=-54 (LC 51=-44 (LC 53=-44 (LC 53=-44 (LC 55=-46 (LC 57=-177 (LC 33=98 (LC 35=158 (LC	15), 15), 15), 15), 10), 14), 14), 14), 14), 2 14), 53), 2 45),	TOP CH	IORD	3-4=-' 6-7=-6 9-11= 12-13 14-15 16-17 18-19 20-21 23-24 25-26 28-29	62/125, 7-8=-52/1 -79/241, 11-12=- =-118/336, 13-14 =-110/320, 15-16 =-110/320, 17-18 =-112/303, 19-20 =-97/286, 21-23 =-65/195, 24-25= =-35/105, 26-27=	87, 5-6=-87/102, 50, 8-9=-65/195, 97/286, =-112/303, =-110/320, =-110/320, =-118/336, -79/241,
REACTIONS	34=45-1' 36=45-1' 38=45-1' 40=45-1' 43=45-1' 45=45-1' 45=45-1' 50=45-1' 52=45-1' 54=45-1'		FORCES	(lb) - Max Tension	38=214 (LC 45), 40=221 (LC 45), 43=182 (LC 22), 45=218 (LC 40), 47=184 (LC 57), 50=221 (LC 43), 52=214 (LC 43), 52=214 (LC 43), 54=161 (LC 41), 56=169 (LC 21), 58=200 (LC 27) cimum Compressi	39=223 (LC 42=229 (LC 44=218 (LC 46=218 (LC 48=229 (LC 51=223 (LC 53=164 (LC 55=158 (LC 57=126 (LC	C 45), C 45), C 40), C 40), C 40), C 43), C 43), C 43), C 43), C 43), C 43), C 51),		4		SEA 0363	

A. GILDIN June 10,2024

GILB

Continued on page 2

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MTek connectors. This design is based only upon parameters and property incorporate this design is based only upon parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Job		Truss	Truss Type	Qty	Ply	39 Mason Ridge - Roof - Robie L LFT GLH	166103973
24080082		A01	Piggyback Base Supported Gable	1	1	Job Reference (optional)	l66103873
Carter Componer	nts (Sanford, N	C), Sanford, NC - 27332,				2024 MiTek Industries, Inc. Fri Jun 07 11:13:05	Page: 2
OT CHORD	$\begin{array}{l} 55\text{-}56\text{-}32/1\\ 53\text{-}54\text{-}32/1\\ 51\text{-}52\text{-}32/1\\ 48\text{-}50\text{-}32/1\\ 48\text{-}50\text{-}32/1\\ 44\text{-}45\text{-}32/1\\ 42\text{-}43\text{-}32/1\\ 42\text{-}43\text{-}32/1\\ 42\text{-}43\text{-}32/1\\ 37\text{-}38\text{-}32/1\\ 35\text{-}36\text{-}32/1\\ 35\text{-}36\text{-}32/1\\ 35\text{-}36\text{-}32/1\\ 16\text{-}45\text{-}178,\\ 13\text{-}47\text{-}144\\ 11\text{-}50\text{-}181,\\ 7\text{-}53\text{-}126/7\\ 4\text{-}56\text{-}131/1\\ 17\text{-}44\text{-}178,\\ 20\text{-}42\text{-}189,\\ 23\text{-}39\text{-}183,\\ 25\text{-}37\text{-}126/7\end{array}$	63, 56-57=-32/163, 63, 54-55=-32/163, 63, 52-53=-32/163, 63, 50-51=-32/163, 63, 47-48=-32/163, 63, 43-44=-32/163, 63, 43-44=-32/163, 63, 40-42=-32/163, 63, 36-37=-32/163, 63, 36-37=-32/163, 63, 32-33=-32/163, 76, 15-46=-178/37, 76, 15-46=-178/37, 77, 2-43=-142/0, 91, 21-40=-181/76, 77, 24-38=-174/77, 78, 28-34=-132/116,	 16) Graphical purlin representation do or the orientation of the purlin alor bottom chord. LOAD CASE(S) Standard 77, 	es not depi	t the size	sB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f	
	29-33=-89/1						
I OTES) Unbalance	d roof live loa	ds have been considered for					
 Vasd=103r II; Exp B; E and C-C C 3-8-10 to 1 Exterior(2N 46-9-8 zon vertical left forces & M DOL=1.60 Truss desi only. For s see Standa or consult c TCLL: ASC Plate DOL= DOL=1.15) 	E 7-16; Vult= mph; TCDL=6 inclosed; MW orner(3E) -0- 4-8-14, Corne i) 30-11-8 to 4 e; cantilever I and right exp WFRS for rea plate grip DO gned for winc tuds exposed ard Industry G qualified build E 7-16; Pr=2 =1.15); Pf=20 ; Is=1.0; Rou	130mph (3-second gust) .0psf; BCDL=6.0psf; h=25ft; C FRS (envelope) exterior zone 10-8 to 3-8-10, Exterior(2N) org(3R) 14-8-14 to 30-11-8, 42-2-6, Corner(3E) 42-2-6 to eft and right exposed ; end losed;C-C for members and actions shown; Lumber L=1.60 Hoads in the plane of the truss to wind (normal to the face), iable End Details as applicable ing designer as per ANSI/TPI .0.0 psf (roof LL: Lum DOL=1.15 Plate gh Cat B; Fully Exp.; Ce=0.9;	5 9, 1.				
Cs=1.00; C 5) Unbalance		have been considered for this					
 load of 12. overhangs Provide ad All plates a Bable requility Truss to be braced aga Cable studies This truss for the bottom of the bottom o	D psf or 1.00 t non-concurre equate draina re 2x4 MT20 irres continuo fully sheather inst lateral m s spaced at 2 as been des oad nonconcu s has been des oad nonconcu s has been de om chord in a by 2-00-00 v any other mel achanical con lift at joint 32 t 46, 54 lb up blift at joint 51 t 45, 34 lb up blift at joint 55 t 44, 55 lb up blift at joint 36 tt 37, 43 lb up blift at joint 39 tt 37, 43 lb up	igned for a 10.0 psf bottom urrent with any other live loads signed for a live load of 20.0p Il areas where a rectangle vide will fit between the bottom	on s s f n nt nt nt nt nt				

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

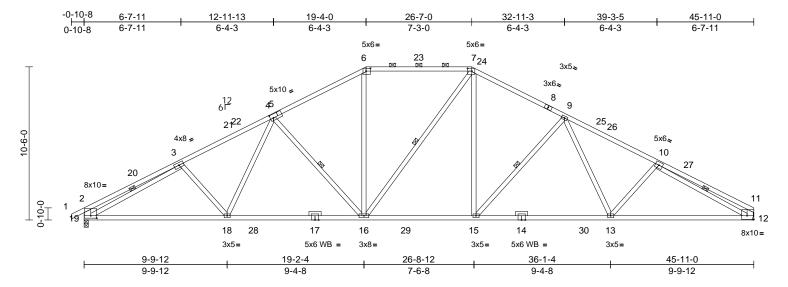
Job	Truss	Truss Type	Qty	Ply	39 Mason Ridge - Roof - Robie L LFT GLH
24080082	A02	Piggyback Base	4	1	Job Reference (optional)

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri Jun 07 11:13:06 ID:y7Cs0P4Fsb0zCWp9wmhIQZz9Jxd-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:80.2

Scale = 1.00.2													
Plate Offsets (2	X, Y): [2:0-4-12,0-2-0), [5:0-2-8,0-3-0], [6:0	-3-8,0-2-4	4], [7:0-3-8,0-2	-4], [8:0-2-8,0-3-0]	, [13:0-4	-12,0-2-0]					-	
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.70 0.56 0.88	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc) 14-16 14-16 13	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 283 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	20-2,13-11:2x6 SP M 2x4 SP No.3 Structural wood she 4-0-12 oc purlins, e 2-0-0 oc purlins (4-3 Rigid ceiling directly	athing directly applied xcept end verticals, a		Vasd=103mp II; Exp B; En and C-C Ext 3-8-10 to 12- Interior (1) 3: 46-9-8 zone; vertical left a forces & MW DOL=1.60 pl TCLL: ASCE	7-16; Vult=130mp bh; TCDL=6.0psf; closed; MWFRS (erior(2E) -0-10-8 to 10-1, Exterior(2R) 2-11-3 to 42-2-6, E cantilever left and nd right exposed;(VFRS for reactions ate grip DOL=1.60 5 7-16; Pr=20.0 psf .15); Pf=20.0 psf	BCDL=6 envelope o 3-8-10 12-10-1 Exterior(2 I right ex C-C for n shown;) f (roof LL	:.0psf; h=25ft; e) exterior zor , Interior (1) to 32-11-3, 2E) 42-2-6 to posed ; end nembers and Lumber .: Lum DOL=	ne 1.15					
		(LC 15), 20=-202 (LC	4) 14) ⁵⁾	DOL=1.15); Cs=1.00; Ct= Unbalanced design. This truss ha load of 12.0	ls=1.0; Rough Cat	B; Fully been cor or greated	Exp.; Ce=0.9 nsidered for the er of min roof bad of 20.0 ps); nis live					
FORCES TOP CHORD BOT CHORD	(lb) - Maximum Corr Tension 1-2=0/30, 2-3=-1075 4-6=-3144/385, 6-7= 7-9=-3154/385, 9-10 10-11=-1063/181, 1 2-20=-721/183, 11-1 19-20=-353/3449, 1	5/181, 3-4=-3903/362, 2710/381, D=-3911/363, 1-12=0/30, 13=-716/191 7-19=-227/3202,	6) 7) 8)	Provide adec This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar One H2.5A \$	quate drainage to p is been designed f ad nonconcurrent v has been designed in chord in all area: by 2-00-00 wide wi y other members, Simpson Strong-Ti	orevent for a 10.0 with any I for a liv s where II fit betw with BC e conne	water ponding 0 psf bottom other live loa e load of 20.0 a rectangle veen the botto DL = 10.0psf ctors	ds.)psf om		G	55	ORTH CA	ROJU
WEBS NOTES	16-17=-21/2634, 14 13-14=-213/3455 3-19=-157/184, 4-19 4-17=-848/225, 6-17 7-17=-260/262, 7-16 9-16=-849/225, 9-14 10-14=-157/184, 3-2 10-13=-3015/191	9=-15/504, 7=-29/986, 6=-71/1003, 4=-15/502, 20=-2996/207,	11	UPLIFT at jt(only and doe) This truss is International R802.10.2 at) Graphical pu or the orienta bottom chore		connec eral force dance w sections dard AN does no	tion is for upli es. ith the 2018 s R502.11.1 a ISI/TPI 1. ot depict the s	ft nd				SEA 0363	ER.K.
 Unbalance this design 	ed roof live loads have n.	been considered for	LC	DAD CASE(S)	Standard							A. G	ILL IIII

June 10,2024


Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	39 Mason Ridge - Roof - Robie L LFT GLH
24080082	A03	Piggyback Base	2	1	I66103875 Job Reference (optional)

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri Jun 07 11:13:07 ID:BbjrLg_EI705EICcS5YQ6tz9JxI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:79

Plate Offsets ((X, Y): [2:0-4-12,0-2-0], [5:0-2-8,0-3-0], [6:0-3-	8,0-2-4],	[7:0-3-8,0-2-	-4], [12:Edge,0-3-	0]							
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Plate Grip DOL1Lumber DOL1Rep Stress IncrY	-0-0 .15 .15 ES RC2018/T	PI2014	CSI TC BC WB Matrix-MSH	0.70 0.56 0.95	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.32 -0.54 0.15	(loc) 13-15 13-15 12	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 282 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS	19-2,12-11:2x6 SP N 2x4 SP No.3 Structural wood she 4-0-13 oc purlins, e 2-0-0 oc purlins (4-3 Rigid ceiling directly bracing.	athing directly applied o xcept end verticals, and	V II 3 II 4 V fc 3) T S C C	/asd=103mp l; Exp B; Enu and C-C Exte J-8-10 to 12- toterior (1) 32 t5-8-4 zone; vertical left a orces & MW 20L=1.60 pl rCLL: ASCE Plate DOL=1 20L=1.15); l Cs=1.00; Ct=		BCDL=6 envelope o 3-8-10) 12-10- ⁻ Exterior(: d right ex C-C for r s shown; 0 f (roof LI (Lum DC t B; Fully	5.0psf; h=25ft e) exterior zoi , Interior (1) I to 32-11-3, 2E) 41-1-2 to ; posed ; end nembers and Lumber .: Lum DOL= DL=1.15 Plate Exp.; Ce=0.9	ne 1.15 9;	or t bott		tation (rd.	of the purlin along	s not depict the size the top and/or
REACTIONS	TO-12 REACTIONS (size) 12= Mechanical, 19=0-3-8 Max Horiz 19=149 (LC 18) Max Uplift 12=-180 (LC 15), 19=-202 (LC 14) Max Grav 12=2137 (LC 47), 19=2189 (LC 47)			 Unbalanced snow loads have been considered for this design. This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on 									
FORCES	(lb) - Maximum Com		6) F	Provide adec	on-concurrent with quate drainage to	prevent	water pondin	g.					
TOP CHORD	Tension			 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 							ALL	OR FESS	ROLIN
BOT CHORD	18-19=-362/3447, 10 15-16=-53/2632, 13- 12-13=-234/3469	,	9) F 10) F	Refer to girde Provide mecl	er(s) for truss to tr hanical connection capable of withst	uss conr n (by oth	nections. ers) of truss	to		4	N		
WEBS NOTES 1) Unbalance this design	3-18=-157/184, 4-18 4-16=-849/225, 6-16 7-16=-261/256, 7-15 9-15=-848/224, 9-13 10-13=-172/188, 3-1 10-12=-3255/247 ed roof live loads have h.	1 11) C rd U 12) T li	2. Dne H2.5A S ecommende JPLIFT at jt(loes not con This truss is nternational	Simpson Strong-Ti ed to connect truss (s) 19. This conne (sider lateral force designed in accor Residential Code nd referenced star	ie conne s to bear ction is fe s. dance w sections	ctors ing walls due or uplift only a ith the 2018 \$ R502.11.1 a	to and		THURS		SEA 0363		

June 10,2024

Page: 1

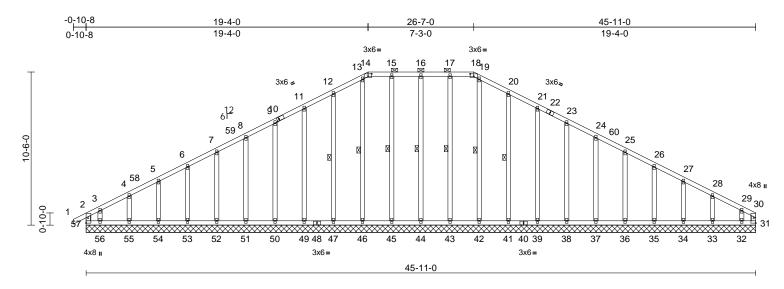
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	39 Mason Ridge - Roof - Robie L LFT GLH
24080082	A04	Piggyback Base	8	1	I66103876 Job Reference (optional)

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri Jun 07 11:13:07 ID:RolbS?ozoBN92ZDIM1oAnAz9L6s-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

-0-10-8 6-7-11 12-11-13 19-4-0 26-7-0 32-11-3 39-3-5 45-11-0 0-10-8 6-7-11 6-4-3 6-4-3 7-3-0 6-4-3 6-4-3 6-7-11 6x10= 6x10= 6 31 7₃₂ 8x10 🚽 8x10 6¹² 5 8 ³³34 29^{30} 10-7-6 10-6-0 2x4 🖌 2x4。 9 4 35 28 4x5 💋 3 10 0-10-0 Þ 3719 1**8**8 40 4**1**3 1242 20 36 39 14 43 11 5x8= 4x5= 6x8= 5x6= 2x4 I 2x4 =6x8= 4x5= 8x10= 4x80-0-0 27-2-12 18-21/04-5 2x4 I 18-8-10 <u>18-8-4</u> ∦ 27-0-1127-2-6 9-9-12 15-10-0 22-11-8 36-1-4 45-11-0 9-9-12 6-0-4 2-10-4 4-1-3 9-9-12 4-1-3 0-1-11 6-1-4 0-0-6 0-0-6 0-1-11 2 - 9 - 4Scale = 1:80.6 Plate Offsets (X, Y): [2:Edge,0-3-12], [5:0-5-0,0-4-8], [8:0-5-0,0-4-8], [10:Edge,0-0-15], [18:0-3-0,0-3-8] 2-0-0 CSI DEFL in l/defl L/d PLATES GRIP Loading (psf) Spacing (loc) TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.34 Vert(LL) -0.43 11-13 >999 240 MT20 244/190 Snow (Pf) 20.0 Lumber DOL 1.15 BC 0.53 Vert(CT) -0.57 11-13 >972 180 TCDL Rep Stress Incr WB Horz(CT) 10.0 YES 0.61 0.12 10 n/a n/a BCLL 0.0 IRC2018/TPI2014 Matrix-MSH Code BCDL 10.0 Weight: 332 lb FT = 20% LUMBER 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) 13) This truss is designed in accordance with the 2018 Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. International Residential Code sections R502.11.1 and TOP CHORD 2x6 SP 2400F 2.0E II; Exp B; Enclosed; MWFRS (envelope) exterior zone R802.10.2 and referenced standard ANSI/TPI 1. 2x6 SP 2400F 2.0E *Except* 17-15:2x4 SP BOT CHORD and C-C Exterior(2E) -0-10-8 to 3-8-10, Interior (1) 14) Graphical purlin representation does not depict the size No.2 3-8-10 to 12-10-1, Exterior(2R) 12-10-1 to 33-0-8, WEBS 2x4 SP No.3 or the orientation of the purlin along the top and/or Interior (1) 33-0-8 to 41-3-14, Exterior(2E) 41-3-14 to WEDGE Right: 2x4 SP No.3 bottom chord. 45-11-0 zone; cantilever left and right exposed ; end SLIDER Left 2x4 SP No.3 -- 1-2-1 LOAD CASE(S) Standard vertical left and right exposed;C-C for members and BRACING forces & MWFRS for reactions shown; Lumber TOP CHORD Structural wood sheathing directly applied or DOL=1.60 plate grip DOL=1.60 4-5-8 oc purlins, except TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) 2-0-0 oc purlins (5-7-9 max.): 6-7. Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate BOT CHORD Rigid ceiling directly applied or 10-0-0 oc DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; bracing, Except: Cs=1.00; Ct=1.10 6-0-0 oc bracing: 16-17,15-16. 4) Unbalanced snow loads have been considered for this WEBS 1 Row at midpt 5-18.8-13 desian. REACTIONS (size) 2=0-3-8, 10= Mechanical 5) This truss has been designed for greater of min roof live Max Horiz 2=168 (LC 18) load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on Max Uplift 2=-50 (LC 14), 10=-32 (LC 15) overhangs non-concurrent with other live loads. Max Grav 2=2522 (LC 47), 10=2467 (LC 47) 6) 200.0lb AC unit load placed on the bottom chord, FORCES (lb) - Maximum Compression/Maximum 22-11-8 from left end, supported at two points, 5-0-0 Tension apart. 1-2=0/27, 2-4=-4806/77, 4-6=-4630/74 TOP CHORD Provide adequate drainage to prevent water ponding. 7) RT CAR 6-7=-3414/99, 7-9=-4701/82, 9-10=-4911/88 0 This truss has been designed for a 10.0 psf bottom 8) BOT CHORD 2-20=-124/4162, 18-20=0/3924, chord live load nonconcurrent with any other live loads. 14-18=0/3321, 13-14=0/3321, 11-13=0/3950, * This truss has been designed for a live load of 20.0psf 9) - ununununun 10-11=-71/4263, 16-17=-10/0, 15-16=-10/0 on the bottom chord in all areas where a rectangle WEBS 4-20=-184/175, 5-20=-92/390, WILLIAM DATE 3-06-00 tall by 2-00-00 wide will fit between the bottom 5-18=-889/314, 17-18=0/1283, 6-17=0/1379, chord and any other members, with BCDL = 10.0psf. SEAL 7-15=0/1388, 13-15=0/1292, 8-13=-927/313, 10) Refer to girder(s) for truss to truss connections. 036322 8-11=-94/455, 9-11=-235/184, 14-16=-268/0 11) Provide mechanical connection (by others) of truss to NOTES bearing plate capable of withstanding 32 lb uplift at joint 10. Unbalanced roof live loads have been considered for 1) 12) One H2.5A Simpson Strong-Tie connectors this design. recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces. G minin June 10,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


818 Soundside Road

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	39 Mason Ridge - Roof - Robie L LFT GLH	
24080082	A05	Piggyback Base Supported Gable	1	1	I661038 Job Reference (optional)	377

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri Jun 07 11:13:07 ID:uWJdR55VOCGgRqzX2BjmW_z9Jxb-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

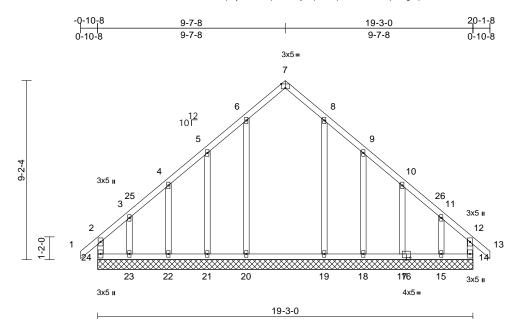
Scale = 1:79

Plate Offsets (X, Y):	[10:0-1-11,0-1-8], [14:0-3-0,0-2-0], [18:0-3-0,0-2-0]

	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	- - - - - - - - - -	[10.0 0 0,0 2 0]									
Loading TCLL (roof)	(psf 20.0		2-0-0 1.15	CSI TC	0.16	DEFL Vert(LL)	in n/a	(loc) -	l/defl n/a	L/d 999	PLATES MT20	GRIP 244/190
Snow (Pf)	20.0		1.15	BC	0.09	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0		YES	WB	0.22	Horz(CT)	0.01	31	n/a	n/a		
BCLL BCDL	0.0 10.0		IRC2018/TPI2014	Matrix-	MR						Weight: 347 lb	ET - 20%
BCDL	10.0)									Weight. 347 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood 6-0-0 oc purlins, 2-0-0 oc purlins, Rigid ceiling dire bracing, 1 Row at midpt	sheathing directly appli except end verticals, a 6-0-0 max.): 14-18. ctly applied or 6-0-0 oc 16-44, 15-45, 13-46 12-47, 17-43, 19-42 20-41	and 6,	Max Uplift Max Grav	$\begin{array}{c} 31 = -26 \ (LC \ 13), \\ 33 = -37 \ (LC \ 15), \\ 35 = -43 \ (LC \ 15), \\ 37 = -44 \ (LC \ 15), \\ 39 = -43 \ (LC \ 15), \\ 43 = -14 \ (LC \ 11), \\ 45 = -14 \ (LC \ 11), \\ 45 = -14 \ (LC \ 11), \\ 51 = -44 \ (LC \ 11), \\ 51 = -44 \ (LC \ 14), \\ 51 = -44 \ (LC \ 14), \\ 55 = -35 \ (LC \ 14), \\ 55 = -35 \ (LC \ 14), \\ 57 = -64 \ (LC \ 10), \\ 31 = 167 \ (LC \ 15), \\ 33 = 166 \ (LC \ 22), \\ 35 = 161 \ (LC \ 41), \\ \end{array}$	34=-45 (LC 36=-44 (LC 38=-44 (LC 41=-55 (LC 47=-53 (LC 50=-44 (LC 52=-44 (LC 54=-46 (LC 56=-179 (LC 32=130 (LC 34=159 (LC	15), 15), 15), 15), 10), 14), 14), 14), 14), 14), 253), 253), 245),	TOP CH	IORD	3-4=-' 6-7=-6 9-11= 12-13 14-15 16-17 18-19 20-21 23-24 25-26 28-29	160/75, 4-5=-120 66/122, 7-8=-56/ -83/237, 11-12= =-122/333, 13-1. =-114/317, 15-1 =-114/317, 17-1 =-115/301, 19-2 =-101/282, 21-2 =-69/192, 24-25	4=-115/301, 6=-114/317, 8=-114/317, 0=-122/333, 3=-83/237, =-51/147, =-51/57, 27-28=-74/39,
REACTIONS	33=45 35=45 37=45 39=45 42=45 44=45 46=45 49=45 51=45 53=45		FORCES	(Ib) - Max Tension	37=214 (LC 45), 39=221 (LC 45), 42=180 (LC 22), 44=218 (LC 40), 46=182 (LC 57), 49=219 (LC 43), 51=208 (LC 43), 53=161 (LC 41), 55=169 (LC 21), 57=206 (LC 32) timum Compressi	38=223 (LC 41=229 (LC 43=217 (LC 45=217 (LC 47=227 (LC 50=223 (LC 52=161 (LC 56=122 (LC	2 45), 2 45), 2 40), 2 40), 2 43), 2 43), 2 43), 2 43), 2 43), 2 43), 2 51),		4		OR FESS	- Alexandre

Continued on page 2 WARNING - Verify

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouclings with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria and DSE2** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbaccomponents.com)


	Truss	Truss Type	Qty	Ply	39 Mason Ridge - Roof - Robie L LFT GLH	100400077
24080082	A05	Piggyback Base Supported Gable	1	1	Job Reference (optional)	l66103877
Carter Component	ts (Sanford, NC), Sanford, NC - 27332,			•	2024 MiTek Industries, Inc. Fri Jun 07 11:13:07	Page: 2
VEBS	56-57=-33/142, 55-56=-33/142, 54-55=-33/142, 53-54=-33/142, 52-53=-33/142, 51-52=-33/142, 50-51=-33/142, 46-47=-33/142, 47-49=-33/142, 46-47=-33/142, 43-44=-33/142, 42-43=-33/142, 43-44=-33/142, 39-41=-33/142, 38-39=-33/142, 37-38=-33/142, 36-37=-33/142, 33-34=-33/142, 36-37=-33/142, 33-34=-33/142, 32-33=-33/142, 31-32=-33/142, 32-33=-33/142, 31-32=-33/142, 16-44=-178/76, 15-45=-177/38, 13-46=-142/0, 12-47=-187/91, 11-49=-179/76, 9-50=-183/77, 8-51=-1662, 7-52=-126/77, 6-53=-127/77, 5-54=-125/ 4-55=-131/117, 3-56=-94/125, 17-43=-177/38, 19-42=-140/0, 20-41=-189/91, 21-39=-181/76, 23-38=-183/77, 24-37=-174/77,	 16) Graphical purlin representation or the orientation of the purlin a bottom chord. LOAD CASE(S) Standard 	n does not depic	t the size	PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f	
	25-36=-126/78, 26-35=-127/75, 27-34=-126/99, 28-33=-130/125,					
	29-32=-113/151					
NOTES 1) Unbalanced	I roof live loads have been considered for					
this design.						
	E 7-16; Vult=130mph (3-second gust) ph; TCDL=6.0psf; BCDL=6.0psf; h=25ft;	Cat.				
	nclosed; MWFRS (envelope) exterior zon					
	rner(3E) -0-10-8 to 3-8-10, Exterior(2N)					
	I-8-14, Corner(3R) 14-8-14 to 30-11-8,) 30-11-8 to 40-11-8, Corner(3E) 40-11-8	to				
	; cantilever left and right exposed ; end					
	and right exposed;C-C for members and					
	VFRS for reactions shown; Lumber					
	plate grip DOL=1.60 gned for wind loads in the plane of the true					
only. For st see Standar	uds exposed to wind (normal to the face) rd Industry Gable End Details as applicab	le,				
4) TCLL: ASCI Plate DOL= DOL=1.15);	ualified building designer as per ANSI/TP E 7-16; Pr=20.0 psf (roof LL: Lum DOL=1 1.15); Pf=20.0 psf (Lum DOL=1.15 Plate Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9;	15				
Cs=1.00; Ct 5) Unbalanced	≔1.10 I snow loads have been considered for thi	s				
design.	as been designed for greater of min roof I					
load of 12.0	psf or 1.00 times flat roof load of 20.0 ps non-concurrent with other live loads.					
7) Provide ade	quate drainage to prevent water ponding					
	e 2x4 MT20 unless otherwise indicated. res continuous bottom chord bearing.					
, ,	fully sheathed from one face or securely					
	nst lateral movement (i.e. diagonal web).					
11) Gable studs	spaced at 2-0-0 oc.					
chord live lo	as been designed for a 10.0 psf bottom ad nonconcurrent with any other live load has been designed for a live load of 20.0					
on the botto 3-06-00 tall	m chord in all areas where a rectangle by 2-00-00 wide will fit between the botto ny other members.					
14) Provide met bearing plat 57, 26 lb up uplift at joint 49, 44 lb up uplift at joint 54, 35 lb up uplift at joint 39, 44 lb up uplift at joint	chanical connection (by others) of truss to e capable of withstanding 64 lb uplift at jo lift at joint 31, 34 lb uplift at joint 44, 14 lb t 45, 53 lb uplift at joint 47, 43 lb uplift at jo lift at joint 50, 44 lb uplift at joint 51, 44 lb i 52, 43 lb uplift at joint 53, 46 lb uplift at jo lift at joint 55, 179 lb uplift at joint 56, 14 ll t 43, 55 lb uplift at joint 41, 43 lb uplift at j lift at joint 38, 44 lb uplift at joint 37, 44 lb t 36, 43 lb uplift at joint 35, 45 lb uplift at jo lift at joint 33 and 147 lb uplift at joint 36	int pint p pint				
	designed in accordance with the 2018 Residential Code sections R502.11.1 ar					

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

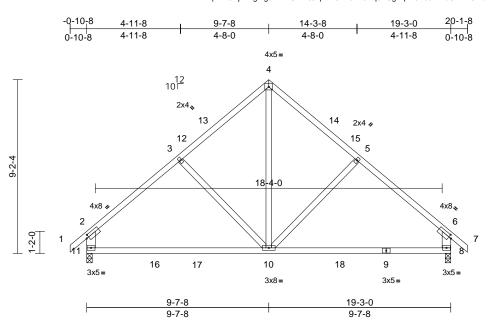
Job	Truss	Truss Type	Qty	Ply	39 Mason Ridge - Roof - Robie L LFT GLH
24080082	B01	Common Supported Gable	1	1	I66103878 Job Reference (optional)

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri Jun 07 11:13:08 ID:qdvylzw5wbNp8WJffYyFPp29Jxq-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Scale	= 1:59.1	

Plate Offsets (X, Y): [7:0-2-8,Edge],	[16:0-2-8,0-1-4]											
Loading TCLL (roof) Snow (Pf) TCDL BCLL	(psf) 20.0 20.0 10.0 0.0*	Plate Grip DOL Lumber DOL Rep Stress Incr	1-11-4 1.15 1.15 YES IRC2018	/TPI2014	CSI TC BC WB Matrix-MR	0.35 0.21 0.25	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01	(loc) - - 14	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0											Weight: 125 lb	FT = 20%
	6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 14=19-3-(24=19-3-(24=19-3-(24=231 (L Max Horiz 24=231 (L 17=-37 (L 21=-118 (23=-244 (Max Grav 14=289 (L 17=207 (L 19=359 (L 21=-170 (L))	applied or 10-0-0 oc), 15=19-3-0, 17=19-3), 19=19-3-0, 20=19-3), 22=19-3-0, 23=19-3)	NO 1) or 2) -0, -0, -0, -0, -0, -0, -0, -0, -0, -0,	TES Unbalanced this design. Wind: ASCE Vasd=103m; II; Exp B; En and C-C Cor to 6-7-8, Cor to 6-7-8, Cor to 17-1-8, Cc left and right exposed;C-C reactions shû DOL=1.60 Truss design only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); I	5-20=-253/34, 5-2 3-23=-141/183, 8- 3-18=-148/154, 10 11-15=-131/197 roof live loads hav 7-16; Vult=130m ph; TCDL=6.0psf; closed; MWFRS (ner(3E) -0-10-8 to ner(3E) 0-7-8 to former(3E) 17-1-8 t exposed; end vec for members and pown; Lumber DOL ned for wind loads ids exposed to wid d Industry Gable B talified building de 7-16; Pr=20.0 ps 15); Pf=20.0 psf Is=1.0; Rough Ca	19=-253, -17=-14: ve been of ph (3-sec BCDL=6 envelope > 2-1-8, E o 20-1-8, ritical left d forces a .=1.60 pl s in the p nd (norm End Deta ssigner as if (roof LL (Lum DC	 '30, '30,<td>or ; Cat. he -1-8 2-7-8 ver r uss), ble, PI 1. 1.15</td><td>on t 3-00 cho 13) Pro bea 24, upli join 15. 14) This Inte</td><td>the botto 6-00 tall rd and a vide me iring pla 65 lb up ft at join t 18, 37 s truss is rnationa 02.10.2 a</td><td>om cho by 2-0 iny oth chanic te capa lift at ju t 22, 2- Ib uplif s desig al Resig and ref</td><td>rd in all areas wh 10-00 wide will fit I ter members, with 1al connection (by able of withstandii oint 14, 118 lb up 14 lb uplift at joint 14 at joint 17 and 2 uned in accordance dential Code sect ferenced standard</td><td>between the botton BCDL = 10.0psf. others) of truss to ng 76 lb uplift at joint 23, 119 lb uplift at 41 lb uplift at joint e with the 2018 ions R502.11.1 ar</td>	or ; Cat. he -1-8 2-7-8 ver r uss), ble, PI 1. 1.15	on t 3-00 cho 13) Pro bea 24, upli join 15. 14) This Inte	the botto 6-00 tall rd and a vide me iring pla 65 lb up ft at join t 18, 37 s truss is rnationa 02.10.2 a	om cho by 2-0 iny oth chanic te capa lift at ju t 22, 2- Ib uplif s desig al Resig and ref	rd in all areas wh 10-00 wide will fit I ter members, with 1al connection (by able of withstandii oint 14, 118 lb up 14 lb uplift at joint 14 at joint 17 and 2 uned in accordance dential Code sect ferenced standard	between the botton BCDL = 10.0psf. others) of truss to ng 76 lb uplift at joint 23, 119 lb uplift at 41 lb uplift at joint e with the 2018 ions R502.11.1 ar
FORCES	(lb) - Maximum Com Tension	pression/Maximum	5)		snow loads have	been cor	nsidered for th	his			55	OFESS	Children and State
TOP CHORD	9-10=-124/51, 10-11	30/59, 5-6=-121/85, 152/106, 8-9=-121/85, =-148/77, -13=0/38, 12-14=-215/ -23=-107/270, -21=-107/270, -19=-107/270,	56 7) 8) 9) 10)	load of 12.0 overhangs no All plates are Gable require Truss to be f braced again Gable studs This truss ha	is been designed psf or 1.00 times i on-concurrent with 2x4 MT20 unless es continuous bot ully sheathed from sst lateral movemus paced at 2-0-0 c is been designed ad nonconcurrent	flat roof k h other liv s otherwi tom chor n one fac ent (i.e. d c. for a 10.0	bad of 20.0 ps ve loads. se indicated. d bearing. e or securely iagonal web) 0 psf bottom	sf on		Jan 11111		SEA 0363 A. G	L 22 ILBERT

June 10,2024


Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	39 Mason Ridge - Roof - Robie L LFT GLH
24080082	B02	Common	1	1	Job Reference (optional)

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri Jun 07 11:13:08 ID:IqTKVJwjhvVgmgurDFTUx1z9Jxp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:60.9

Plate Offsets (X, Y): [2:0-1-9,0-1-12], [6:0-1-9,0-1-12]

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.89 0.91 0.22	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.22 -0.38 0.02	(loc) 8-10 8-10 8	l/defl >999 >600 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 106 lb	GRIP 244/190 FT = 20%
BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS (FORCES TOP CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 *Excep Structural wood she 2-2-0 oc purlins, ex Rigid ceiling directly bracing. size) 8=0-3-8, 1 Max Horiz 11=-241 (Max Uplift 8=-72 (LC Max Grav 8=928 (LC (Ib) - Maximum Com Tension 1-2=0/42, 2-3=-1004 4-5=-840/158, 5-6= 2-11=-838/151, 6-8= 10-11=-90/701, 8-10 4-10=-81/649, 5-10=	athing directly applie cept end verticals. applied or 10-0-0 oc [1=0-3-8 LC 12] C 15), 11=-72 (LC 14) C 6), 11=926 (LC 5) pression/Maximum [/132, 3-4=-840/157, 1003/133, 6-7=0/42, 839/148)=-3/673	d or 6) 7) , 8) 9) L4	design. This truss ha load of 12.0 overhangs n This truss ha chord live loa * This truss l on the bottoo 3-06-00 tall l chord and au One H2.5A S recommende UPLIFT at jtt and does no This truss is International	snow loads have b as been designed for psf or 1.00 times fla on-concurrent with as been designed for ad nonconcurrent w has been designed n chord in all areas by 2-00-00 wide will by other members, Simpson Strong-Tie ed to connect truss (s) 11 and 8. This c t consider lateral for designed in accord Residential Code s and referenced stan Standard	or great at roof le other li or a 10. vith any for a liv s where l fit betw with BC e conne to bear onnection rces. lance w sections	er of min roop bad of 20.0 p ve loads. 0 psf bottom other live loa re load of 20. a rectangle veen the bott DL = 10.0ps ctors ing walls due on is for uplif ith the 2018 \$ R502.11.1 a	f live ssf on ads. Opsf fom f. e to t only					
this design. 2) Wind: ASCE	l roof live loads have E 7-16; Vult=130mph nph; TCDL=6.0psf; B6	(3-second gust)								4	and a	OR CEESS	ROUT

II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 6-7-8, Exterior(2R) 6-7-8 to 12-7-8, Interior (1) 12-7-8 to 17-1-8, Exterior(2E) 17-1-8 to 20-1-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

"annununu MILLION MANUNE SEAL 036322 GI minim June 10,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	39 Mason Ridge - Roof - Robie L LFT GLH	
24080082	B03	Common Girder	1	3	Job Reference (optional)	166103880

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri Jun 07 11:13:09 ID:jghui9AGz21q9IQhOSqAIFz9JxV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

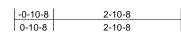
Page: 1

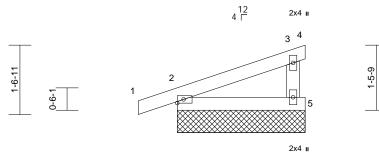
Scale = 1:63.1 Plate Offsets (X, Y): [1:0-5-8,Edge], [7:0-6-13,Edge], [10:0-4-12,0-5-0]

													-
Loading	(psf)	Spacing	1-11-4		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.63	Vert(LL)	-0.11	8-10	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.55	· · ·	-0.20	8-10	>999	180	MT18HS	244/190
TCDL	10.0	Rep Stress Incr	NO		WB	0.91	Horz(CT)	0.05	7	n/a	n/a		
BCLL	0.0*	Code	IRC2018/1	FPI2014	Matrix-MSH				-				
BCDL	10.0		11(02010/1									Weight: 474 lb	FT = 20%
	6-0-0 oc purlins. Rigid ceiling directly bracing.	2-0-0, Right 2x6 SP N athing directly applied applied or 10-0-0 oc 7=0-3-8 C 8) C 12), 7=-385 (LC 13	lo.2 3) t dor 4) 1 5) -	except if note CASE(S) sec provided to d unless othery Unbalanced i this design. Wind: ASCE Vasd=103mp II; Exp B; Enc cantilever lefi right exposed TCLL: ASCE Plate DOL=1	considered equally ad as front (F) or ba tion. Ply to ply cor istribute only loads vise indicated. roof live loads have 7-16; Vult=130mp bh; TCDL=6.0psf; E closed; MWFRS (et and right exposed t; Lumber DOL=1.1 7-16; Pr=20.0 psf (1 s=1.0; Rough Cat	ack (B) anection s noted e been o h (3-sec 3CDL=6 anvelope d ; end v 60 plate (roof LL Lum DC	face in the LC s have been as (F) or (B), considered fo cond gust) .0psf; h=25ft;) exterior zor vertical left an grip DOL=1. .: Lum DOL= ⁻	r r Cat. ne; d 60 1.15	11- enc 14) Fill LOAD (1) De In Ur	10dx1 1, d to conn all nail h CASE(S ead + Sr crease= hiform Lo Vert: 1-4 oncentra Vert: 10 24=-213	/2 Trus nect tru noles w) Sta now (ba 1.15 bads (l 4=-58, tted Lo 0=-213- 34 (B),	ss(es) to back fau here hanger is in ndard alanced): Lumber b/ft) 4-7=-58, 12-16=- ads (lb) 4 (B), 22=-2134 (l	at 17-9-8 from the left ce of bottom chord. contact with lumber. Increase=1.15, Plate 19 B), 23=-2134 (B), =-2134 (B), 27=-2134
FORCES	(lb) - Maximum Com Tension	pression/Maximum	(Cs=1.00; Ct=			•						
TOP CHORD	1-3=-12839/328, 3-4	I=-9254/327,		design.	Show loads have b	een cor		115					
	4-5=-9251/329, 5-7=				MT20 plates unle	ss other	wise indicate	d.					
BOT CHORD	1-11=-278/9589, 10- 8-10=-219/9383, 7-8	,	8) -	This truss ha	s been designed for	or a 10.0) psf bottom						
(0.131"x3" Top chord staggered Bottom cho staggered Web conno	4-10=-309/11164, 5- 5-8=-101/4641, 3-10 3-11=-60/4994 to be connected toge) nails as follows: s connected as follows at 0-9-0 oc. ords connected as foll at 0-4-0 oc. ected as follows: 2x4 - ember 4-10 2x4 - 1 row)=-3497/230, ther with 10d s: 2x6 - 2 rows ows: 2x6 - 3 rows 1 row at 0-9-0 oc,	9) * 10) (11) - 11) - 12) (* This truss h on the bottom 3-06-00 tall b chord and an One H2.5A S recommende UPLIFT at jt(and does not This truss is International R802.10.2 ar Use Simpsor 11-10dx1 1/2	as been designed in chord in all areas by 2-00-00 wide will y other members. Simpson Strong-Tie do connect truss s) 1 and 7. This co consider lateral for designed in accord Residential Code s and referenced stan of Strong-Tie HTU2 Prruss) or equivale	for a liv s where I fit betw connectio to bear nnectio rces. lance w sections dard AN 6 (20-16 ent space	e load of 20.0 a rectangle veen the botto ctors ing walls due n is for uplift of ith the 2018 : R502.11.1 a ISJ/TPI 1. dd Girder, xed at 2-4-0 o	Opsf om to only nd		Contraction of the second seco	ż	SEA 0363	ROLL 22
					at 1-5-8 from the l s(es) to back face of						11	CA. G	ILBETTIT

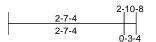
818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)




June 10,2024

Job	Truss	Truss Type	Qty	Ply	39 Mason Ridge - Roof - Robie L LFT GLH	
24080082	C01	Monopitch Supported Gable	1	1	I66103881 Job Reference (optional)	


Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri Jun 07 11:13:09 ID:IqTKVJwjhvVgmgurDFTUx1z9Jxp-RtC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

2x4 =

Scale = 1:25.9

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Lumber DOL Rep Stress Incr	1-11-4 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MP	0.09 0.05 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 12 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD FORCES TOP CHORD BOT CHORD	2x4 SP No.3 Structural wood shea 2-10-8 oc purlins, ex Rigid ceiling directly a bracing. (size) 2=2-10-8, 4 6=2-10-8 Max Horiz 2=46 (LC 1 Max Uplift 2=44 (LC 5=-64 (LC Max Grav 2=203 (LC	teept end verticals. applied or 10-0-0 oc 4=2-10-8, 5=2-10-8, 13), 6=46 (LC 13) 10), 4=-127 (LC 21), 14), 6=-44 (LC 10) 21), 4=35 (LC 14), 21), 6=203 (LC 21) pression/Maximum	7) 8) 9) 10	design. This truss ha load of 12.0 overhangs n Gable requir Gable studs This truss ha chord live loa * This truss ha chord live loa * This truss ha chord live loa * This truss ha chord and ar) Provide mec bearing plate 2, 127 lb upl uplift at joint) This truss is International	designed in accord Residential Code nd referenced stan	or great at roof l other li om chor : or a 10. vith any for a liv s where I fit betw (by oth anding 2 plift at ju dance w sections	er of min roof oad of 20.0 p ve loads. d bearing. D psf bottom other live loa e load of 20.1 a rectangle veen the botti ers) of truss f 44 lb uplift at j point 5 and 44 ith the 2018 s R502.11.1 a	f live sf on ads. Opsf om to joint Ib					
Vasd=103 II; Exp B; I and C-C C	CE 7-16; Vult=130mph (imph; TCDL=6.0psf; BC Enclosed; MWFRS (env Corner(3E) -0-10-8 to 2- zone: carliever left and	DL=6.0psf; h=25ft; C velope) exterior zone 1-8, Exterior(2N) 2-1-									A. L.	ORTH CA	ROUT

- II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-10-8 to 2-1-8, Exterior(2N) 2-1-8 to 2-10-8 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TP1 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSVTPH Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

A. GILD

June 10,2024

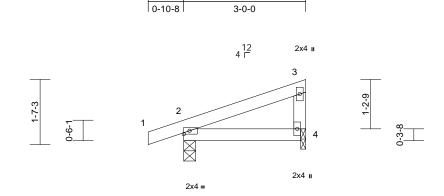
SEAL

036322

anninnin an

Contraction and

Job	Truss	Truss Type	Qty	Ply	39 Mason Ridge - Roof - Robie L LFT GLH	
24080082	C02	Monopitch	4	1	l66103882 Job Reference (optional)	


3-0-0

-0-10-8

Carter Components (Sanford, NC), Sanford, NC - 27332,

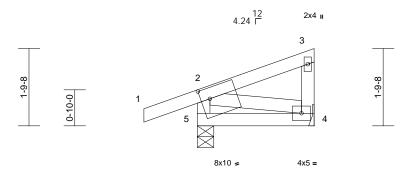
Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri Jun 07 11:13:09 ID:IqTKVJwjhvVgmgurDFTUx1z9Jxp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:28.3

Loading (psf) Spacing 2-0-0 CSI DEFL in (loc) l/defl L/defl <thl defl<="" th=""> L/defl L/defl</thl>	
TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.14 Vert(LL) 0.00 4-7 >999 240	0 MT20 244/190
Snow (Pf) 20.0 Lumber DOL 1.15 BC 0.09 Vert(CT) -0.01 4-7 >999 180	30
TCDL 10.0 Rep Stress Incr YES WB 0.00 Horz(CT) 0.00 2 n/a n/a	/a
BCLL 0.0* Code IRC2018/TPI2014 Matrix-MP	
BCDL 10.0	Weight: 12 lb FT = 20%
 LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 BRACING TOP CHORD Structural wood sheathing directly applied or 3-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (size) 2=0-3-8, 4=0-1-8 Max Horiz 2=49 (LC 13) Max Uplift 2=-51 (LC 10), 4=-20 (LC 14) Max Grav 2=236 (LC 21), 4=139 (LC 21) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/24, 2-3=-83/60, 3-4=-101/81 BOT CHORD 2-4=-31/58 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0ps; BCDL=6.0ps; h=25f; Cat. 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 7) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 8) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4. 9) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 4. This connection is for uplift only and does not consider lateral forces. 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard 	TH CARO

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


818 Soundside Road Edenton, NC 27932

A. GILB A. GILD June 10,2024

Job	Truss	Truss Type	Qty	Ply	39 Mason Ridge - Roof - Robie L LFT GLH	
24080082	CJ01	Diagonal Hip Girder	2	1	I66103883 Job Reference (optional)	

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri Jun 07 11:13:09 ID:Kqpmh2D18uG1BT?FjMKBhLz92cN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

2-8-7

Scale =	1:26.7

Plate Offsets (X, Y): [5:0-2-8,0-3-0]

Plate Offsets ((X, Y): [5:0-2-8,0-3-0]											-		
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018/	TPI2014	CSI TC BC WB Matrix-MP	0.21 0.07 0.01	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 4-5 4-5 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 16 lb	GRIP 244/190 FT = 20%	
 Vasd=103 II; Exp B; cantilever right expo 2) TCLL: AS Plate DOL DOL=1.15 Cs=1.00; 3) Unbalanci design. 4) This truss load of 12 overhangs 5) This truss 	2x4 SP No.2 2x4 SP No.3 Structural wood she 2-8-7 oc purlins, ex Rigid ceiling directly bracing. (size) 4= Mecha Max Horiz 5=64 (LC Max Grav 4=94 (LC (lb) - Maximum Com Tension 2-5=-257/88, 1-2=0/ 3-4=-70/21 4-5=-62/7 2-4=-7/49 CE 7-16; Vult=130mph Banph; TCDL=6.0psf; B/ Enclosed; MWFRS (er left and right exposed used; Lumber DOL=1.6 CE 7-16; Pf=20.0 psf (L =1.15); Pf=20.0 psf (L	cept end verticals. applied or 10-0-0 oc inical, 5=0-4-9 9) 5 9), 5=-74 (LC 8) 19), 5=282 (LC 19) ipression/Maximum 40, 2-3=-46/16, (3-second gust) CDL=6.0psf; h=25ft; ivelope) exterior zon ; end vertical left and 0 plate grip DOL=1.6 roof LL: Lum DOL=1 um DOL=1.15 Plate b; Fully Exp.; Ce=0.9 een considered for th r greater of min roof t roof load of 20.0 ps ther live loads. r a 10.0 psf bottom	7) ed or 8) 9) 10) 11) LOA Cat. le; d 30 1.15 ; iis live sf on	on the botton 3-06-00 tall b chord and ar All bearings a Refer to girdt Provide meci bearing plate 4. One H2.5A S recommende UPLIFT at jt(does not con This truss is International	has been designeen in chord in all area by 2-00-00 wide w by other members are assumed to be er(s) for truss to tri hanical connectio a capable of withsi Simpson Strong-T d to connect truss s) 5. This connec sider lateral force designed in accor Residential Code do referenced star Standard	is where ill fit betw e User D uss conr n (by oth tanding 1 ie conne s to bear tion is for s. dance w sections	a rectangle veen the bott efined . hections. ers) of truss f 7 lb uplift at j ctors ing walls due r uplift only ar ith the 2018 \$ R502.11.1 a	om to joint to nd			- III	SEA 0363	EEP. K	
												June	e 10,2024	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

TRENCO A Mi Tek Atfiliate

⁸¹⁸ Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	39 Mason Ridge - Roof - Robie L LFT GLH
24080082	D01	Common	2	1	I66103884 Job Reference (optional)

5-0-0

5-0-0

12 6 Г

10

Carter Components (Sanford, NC), Sanford, NC - 27332,

3-4-0

Run: 8,73 S Apr 25 2024 Print: 8,730 S Apr 25 2024 MiTek Industries, Inc. Fri Jun 07 11:13:10 ID:usXeH5bDfIWeII2?fAZ9CSz92Ef-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

> 4x5 = 3

10-0-0

5-0-0

11

10-10-8

0-10-8

12

6 X

4x8 I

L/d

240

180

PLATES

Weight: 40 lb

MT20

GRIP

244/190

FT = 20%

l/defl

>999

>999

n/a n/a

7-8

6

5

4-6-12 4-6-12 2 0-10-0 Ŕ 7 4x8 I 2x4 🛛 5-0-0 10-0-0 5-0-0 5-0-0 2-0-0 CSI DEFL in (psf) Spacing (loc) 20.0 Plate Grip DOL 1.15 TC 0.66 Vert(LL) -0.02 0.25 20.0 1 15 BC Vert(CT) Lumber DOL -0.03 7-8 10.0 Rep Stress Incr YES WB 0.07 Horz(CT) 0.01 0.0 Code IRC2018/TPI2014 Matrix-MR 10.0 5) This truss has been designed for greater of min roof live

-0-10-8

0-10-8

- LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SP No.3 WFBS BRACING TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. **REACTIONS** (size) 6=0-3-8, 8=0-3-8 Max Horiz 8=-54 (LC 12) Max Uplift 6=-56 (LC 15), 8=-56 (LC 14) Max Grav 6=564 (LC 22), 8=564 (LC 21) FORCES (Ib) - Maximum Compression/Maximum Tension 1-2=0/35, 2-3=-498/203, 3-4=-498/202, TOP CHORD 4-5=0/35, 2-8=-513/251, 4-6=-513/250 BOT CHORD 7-8=-43/353, 6-7=-43/353 WEBS 3-7=0/193
- NOTES

Scale = 1:34 Loading

TCLL (roof)

Snow (Pf)

TCDL

BCLL

BCDL

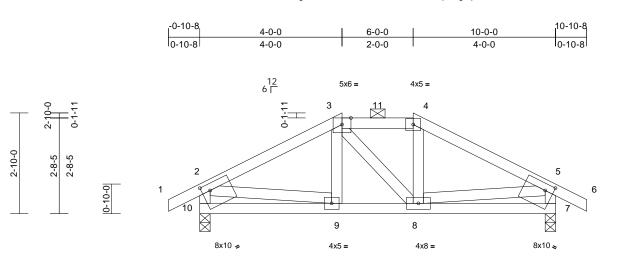
1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Exterior(2R) 2-1-8 to 7-10-8, Exterior(2E) 7-10-8 to 10-10-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10

4) Unbalanced snow loads have been considered for this design.

- load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. This truss has been designed for a 10.0 psf bottom 6)
- chord live load nonconcurrent with any other live loads. 7) * This truss has been designed for a live load of 20.0psf
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 8) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at it(s) 8 and 6. This connection is for uplift only and does not consider lateral forces.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	39 Mason Ridge - Roof - Robie L LFT GLH	
24080082	D02	Нір	1	1	I66103885 Job Reference (optional)	

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri Jun 07 11:13:10 ID:o0N9uOEgvBOtodZRH4rQEYz92cM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

3-10-4	6-1-12	10-0-0
3-10-4	2-3-8	3-10-4

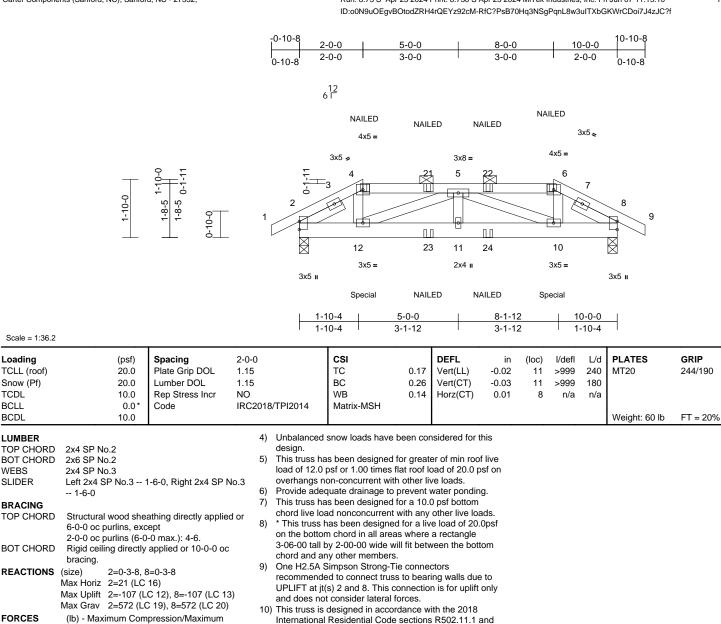
Scale = 1:32.4	
Plate Offsets (X, Y):	[7:0-2-12,0-2-4], [10:0-2-12,0-2-4]

Plate Offsets	(X, Y): [7:0-2-12,0-2-4	·], [10:0-2-12,0-2-4]										-	
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.31 0.13 0.12	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.02 0.00	(loc) 7-8 7-8 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 57 lb	GRIP 244/190 FT = 20%
, this desig	 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex. 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing. (size) 7=0-3-8, 1 Max Horiz 10=48 (LC Max Uplift 7=-59 (LC Max Grav 7=560 (LC (Ib) - Maximum Com Tension 1-2=0/40, 2-3=-553/ 4-5=-554/170, 5-6=C 5-7=-520/213 9-10=-56/208, 8-9= 3-9=0/84, 3-8=-63/6i 2-9=-10/299, 5-8=-1. xed roof live loads have 	cept end verticals, a -0 max.): 3-4. applied or 10-0-0 or 10=0-3-8 C 13) C 15), 10=-59 (LC 14 C 41), 10=560 (LC 4 pression/Maximum 168, 3-4=-444/188, /40, 2-10=-520/215, 35/434, 7-8=-38/197 8, 4-8=-35/87, /299 been considered fo	nd 5) c 6) 7) 1) 8) 1) , 9) , 7 1(1 ⁻ r	Plate DOL=1 DOL=1.15); Cs=1.00; Cti Unbalanced design. This truss ha load of 12.0 overhangs n Provide ader This truss ha chord live loa * This truss ha chord live loa * This truss ha chord and ar One H2.5A S recommende UPLIFT at jtt and does no)) This truss is International R802.10.2 a I) Graphical pu	snow loads have I as been designed f psf or 1.00 times fi on-concurrent with quate drainage to p is been designed an onconcurrent in has been designed in chord in all area by 2-00-00 wide wi by other members. Simpson Strong-Ti ed to connect truss (s) 10 and 7. This of t consider lateral fit designed in accord Residential Code ind referenced star rich representation ation of the purlin a d.	(Lum DC B; Fully been cor or great lat roof lin o other lin prevent i for a 10. with any d for a liv s where ill fit betw e connect s to bear connect orces. dance w sections hadre An	DL=1.15 Plate Exp.; Ce=0. asidered for t er of min roo pad of 20.0 p ve loads. water pondin 0 psf bottom other live loa e load of 20.0. pasf bottom other live loa e load of 20.0. a rectangle veen the bott ctors ing walls due on is for uplif ith the 2018 it the 2018 it SI/TPI 1. ot depict the	e 9; this f live psf on g. ads. 0psf tom tom t only and		2	24	WITH CA	ROUNT
II; Exp B; and C-C I to 7-10-8, cantilever right expo	3mph; TCDL=6.0psf; B(Enclosed; MWFRS (er Exterior(2E) -0-10-8 to : , Exterior(2E) 7-10-8 to : r left and right exposed osed; C-C for members a	velope) exterior zon 2-1-8, Exterior(2R) 2 10-10-8 zone; ; end vertical left an and forces & MWFR	ne 2-1-8 d							111111		SEA 0363	• -

right exposed;C-C for members and forces & MWF for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

TRENCO


A. GILP.... June 10,2024

ſ	Job	Truss	Truss Type	Qty	Ply	39 Mason Ridge - Roof - Robie L LFT GLH
	24080082	D03	Hip Girder	1	1	I66103886 Job Reference (optional)

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri Jun 07 11:13:10

Page: 1

Tension TOP CHORD 1-2=0/35. 2-4=-685/126. 4-5=-594/121. 5-6=-594/121, 6-8=-685/126, 8-9=0/35 BOT CHORD 2-12=-95/611, 11-12=-154/1050, 10-11=-154/1050, 8-10=-87/611 WEBS 4-12=-12/183, 5-12=-498/78, 5-11=0/130, 5-10=-498/78, 6-10=-12/183

NOTES

FORCES

Scale = 1:36.2

Loading

TCLL (roof)

Snow (Pf)

LUMBER

TOP CHORD BOT CHORD

TCDL

BCLL

BCDL

WFBS

SLIDER

BRACING

TOP CHORD

BOT CHORD

- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10

- R802.10.2 and referenced standard ANSI/TPI 1.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 12) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.
- 13) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 65 lb down and 34 lb up at 2-0-0, and 65 lb down and 34 lb up at 7-11-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 14) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).
- LOAD CASE(S) Standard
- Dead + Snow (balanced): Lumber Increase=1.15, Plate 1) Increase=1.15
 - Uniform Loads (lb/ft)
 - Vert: 1-4=-60, 4-6=-60, 6-9=-60, 13-17=-20 Concentrated Loads (lb)
 - Vert: 4=-4 (B), 6=-4 (B), 12=-65 (B), 10=-65 (B), 21=-4 (B), 22=-4 (B), 23=0 (B), 24=0 (B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

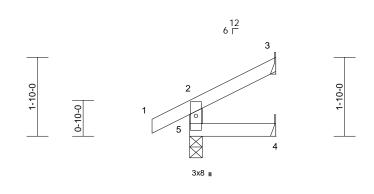
Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	39 Mason Ridge - Roof - Robie L LFT GLH	
24080082	J01	Jack-Open	4	1	I66103887 Job Reference (optional)	

2-0-0

2-0-0

2-0-0


-0-10-8

0-10-8

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri Jun 07 11:13:10 ID:o0N9uOEgvBOtodZRH4rQEYz92cM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:26.8

Scale = 1:26.8												
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MR	0.10 0.04 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 9 lb	GRIP 244/190 FT = 20%
	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 2-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 3= Mecha 5=0-3-8 Max Horiz 5=42 (LC Max Uplift 3=-30 (LC Max Grav 3=59 (LC (LC 21)	cept end verticals. • applied or 10-0-0 or anical, 4= Mechanica 14) 2 14), 5=-16 (LC 14)	on the bo 3-06-00 t chord anu ad or 8) Refer to 9) Provide r c al, 10) One H2.5 recomme UPLIFT a does not 11) This trus: Internation	ss has been design, ttom chord in all are all by 2-00-00 wide d any other member gs are assumed to girder(s) for truss to nechanical connect it late capable of with GA Simpson Strong- inded to connect tru at jt(s) 5. This conne consider lateral force is designed in accord nal Residential Cod 2 and referenced st	eas where will fit betw rs. be User D truss conr ion (by oth standing 3 Tie conne iss to bear ection is for ces. ordance w de sections	a rectangle veen the botto efined . ections. ers) of truss to 0 lb uplift at jo ctors ing walls due t uplift only and ith the 2018 R502.11.1 ar	m o vint d					
FORCES	(lb) - Maximum Com Tension 2-5=-191/103, 1-2=0			(S) Standard								
BOT CHORD	2-5=-191/103, 1-2=0 4-5=0/0	0/40, 2-3=-45/23										
 Vasd=103/ II; Exp B; E and C-C E exposed; members a Lumber D0 2) TCLL: ASC Plate D0L DOL=1.15 Cs=1.00; C 3) Unbalance design. 4) This truss load of 12. overhangs 5) This truss 	CE 7-16; Vult=130mph imph; TCDL=6.0psf; B Enclosed; MWFRS (er Exterior(2E) zone; cant end vertical left and ria and forces & MWFRS OL=1.60 plate grip DC OL=1.61; Pr=20.0 psf (L =1.15); Pf=20.0 psf (L =1.15); Pf=20.0 psf (L =1.15); Pf=20.0 psf (L =1.10; Rough Cat E Ct=1.10 ed snow loads have be has been designed fo .0 psf or 1.00 times fla s non-concurrent with o load nonconcurrent with	CDL=6.0psf; h=25ft; tyelope) exterior zor ilever left and right ght exposed;C-C for for reactions shown DL=1.60 roof LL: Lum DOL=- um DOL=1.15 Plate 3; Fully Exp.; Ce=0.9 een considered for th r greater of min roof t roof load of 20.0 ps other live loads. r a 10.0 psf bottom	ne ; 1.15); his live sf on								SEA 0363	S22

June 10,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	39 Mason Ridge - Roof - Robie L LFT GLH	
24080082	PB01	Piggyback	14	1	Job Reference (optional)	166103888

2-7-15

-0-11-1

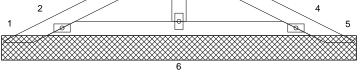
0-11-1

Carter Components (Sanford, NC), Sanford, NC - 27332,

1-8-2

1-9-12

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri Jun 07 11:13:10 ID:VQer1JnjGZ7RoF3MEcmiilz9L6u-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f



2-7-15 2-7-15 0-11-1 4x5 = 12 6 Г 3

5-3-14

6-2-15

2x4 =

2x4 II

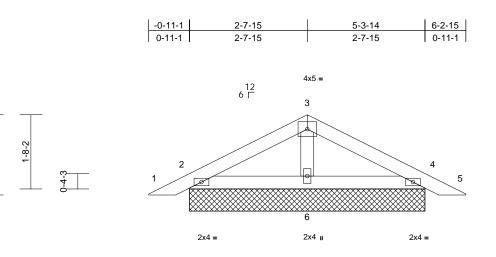
5-3-14

2x4 =

Scale = 1:23.5

Loading	((psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		20.0	Plate Grip DOL	1.15		тс	0.14	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)		20.0	Lumber DOL	1.15		BC	0.08	Vert(TL)	n/a	-	n/a	999		
FCDL		10.0	Rep Stress Incr	YES		WB	0.02	Horiz(TL)	0.00	4	n/a	n/a		
BCLL		0.0*	Code	IRC20	18/TPI2014	Matrix-MP								
BCDL		10.0		-							_		Weight: 21 lb	FT = 20%
UMBER OP CHORD OT CHORD OT HERS BRACING OP CHORD	2x4 SP No.2 2x4 SP No.3 Structural wo 6-0-0 oc purli	ins.	athing directly applie	ed or	 only. For stusee Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct= 		nd (norm End Deta ssigner a of (roof Ll (Lum DC t B; Fully	al to the face ils as applical s per ANSI/TF .: Lum DOL= DL=1.15 Plate Exp.; Ce=0.9), ble, PI 1. 1.15 9;					
01 0110110	bracing.	anoony		, ,	 Unbalanced design. 	snow loads have	been co	nsidered for th	nis					
REACTIONS	6=1 Max Horiz 1=2 Max Uplift 1=- 7=- Max Grav 1=2 4=3 6=1 105	7-3-0, 7 26 (LC -67 (LC -54 (LC -53 (LC 28 (LC 303 (LC 179 (LC =303 (L	21), 2=-53 (LC 14), 15), 5=-64 (LC 22), 14), 10=-54 (LC 15 14), 2=317 (LC 21), 22), 5=18 (LC 15), 22), 7=317 (LC 21))	 7) Gable studs 8) This truss ha chord live loa 8) * This truss h on the bottor 3-06-00 tall b chord and ar 10) Provide mec bearing plate 2, 54 lb uplifi 	es continuous bol spaced at 4-0-0 c is been designed ad nonconcurrent has been designe n chord in all area by 2-00-00 wide w hanical connection e capable of withs at joint 4, 67 lb u	oc. for a 10. with any d for a liv as where vill fit betw s. n (by oth tanding 5 plift at jo	D psf bottom other live loa e load of 20.0 a rectangle veen the botto ers) of truss t i3 lb uplift at j nt 1, 64 lb up	Dpsf Dm o oint lift at					
TOP CHORD	Tension		/59, 3-4=-72/58,		11) This truss is	uplift at joint 2 an designed in acco Residential Code	rdance w	ith the 2018					mm	ш _{и,}
BOT CHORD WEBS NOTES	3-6=-95/45				R802.10.2 a 12) See Standar Detail for Co consult quali	nd referenced sta d Industry Piggyb nnection to base fied building desig	ndard Al ack Trus truss as	ISI/TPI 1. s Connection			4	- AL	ORTH CA	ROUN
this design 2) Wind: ASC Vasd=103 II; Exp B; and C-C E exposed ; members	n. CE 7-16; Vult=13 3mph; TCDL=6.0 Enclosed; MWF Exterior(2E) zono end vertical left	30mph 0psf; B0 FRS (en le; canti t and rig WFRS 1	been considered for (3-second gust) CDL=6.0psf; h=25ft; velope) exterior zon lever left and right ht exposed;C-C for for reactions shown; L=1.60	Cat. e	LOAD CASE(S)	Standard					THUNNE.	A A A A A A A A A A A A A A A A A A A	SEA 0363	• –

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


G١ 100000 June 10,2024

Job	Truss	Truss Type	Qty	Ply	39 Mason Ridge - Roof - Robie L LFT GLH	
24080082	PB02	Piggyback	2	1	I66 Job Reference (optional)	5103889

1-9-12

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri Jun 07 11:13:11 ID:n01iifxLSCdWNqT1nz_jUEz9Jxo-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

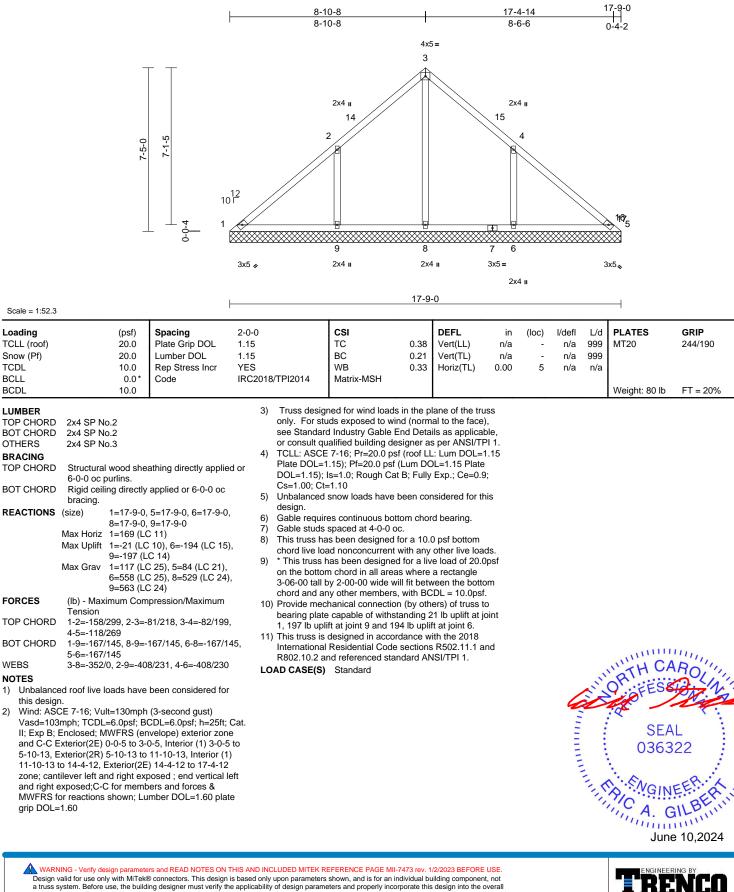
Page: 1

5-3-14

Scale = 1:26

Scale = 1:26													
Loading	(psf)	Spacing	2-0-0		CSI	0.44	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0 20.0	Plate Grip DOL Lumber DOL	1.15		TC BC	0.11	Vert(LL) Vert(CT)	n/a	-	n/a	999 999	MT20	244/190
Snow (Pf) TCDL	20.0	Rep Stress Incr	1.15 YES		WB	0.12 0.02	Horz(CT)	n/a 0.00	- 2	n/a n/a	999 n/a		
BCLL	0.0*	Code	IRC2018/1	TPI2014	Matrix-MP	0.02		0.00	2	n/a	n/a		
BCDL	10.0	Code	1602010/1	1 F12014	IVIAUIX-IVIF							Weight: 21 lb	FT = 20%
this desig 2) Wind: AS: Vasd=100 II; Exp B; and C-C E exposed ; members Lumber D 3) Truss det only. For see Stance	2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 2=5-3-14, 7=5-3-14, Max Horiz 2=-26 (LC (LC 14), 7 15) Max Grav 2=206 (LC (1=206 (LC (1=206 (LC (1=206 (LC))) (LC 14), 7 15) Max Grav 2=206 (CC) 1=206 (LC) 2=206 (applied or 10-0-0 oc 4=5-3-14, 6=5-3-14 11=5-3-14 2 15), 7=-26 (LC 15), 7=-32 (LC 14), 11=-3 C 21), 4=-37 (LC 15), 7=-32 (LC 14), 11=-3 C 21), 4=206 (LC 22), C 22), 7=206 (LC 21), C 22) pression/Maximum 0, 3-4=-63/60, 4-5=0 been considered for (3-second gust) CDL=6.0psf; h=-25ft; ivelope) exterior zon ilever left and right ght exposed; C-C for for reactions shown; L=1.60 the plane of the tru (normal to the face) d Details as applicab	5) (d or 6) - 5, 7) (6=-3 10) 7 7 (LC 10) 7 13) 5 13) 5 LOA Cat. e	Plate DOL=1 DOL=1.15); I Cs=1.00; Ct= Unbalanced i design. This truss ha load of 12.0 p overhangs no Gable require Gable studs s This truss ha chord live loa * This truss ha chord live loa * This truss ha chord live loa * This truss ha chord and an One H2.5A S recommende uPLIFT at jt(only and doe This truss is a International R802.10.2 ar See Standard	snow loads have s been designed osf or 1.00 times on-concurrent wit as continuous boil spaced at 2-0-0 û s been designed id nonconcurrent as been designed id nonconcurrent as been designed n chord in all arec y 2-00-00 wide w y 0 ther members timpson Strong-T d to connect trus s) 2, 4, and 6. Th s not consider lat designed in acco Residential Code d referenced sta d Industry Piggyb nection to base tied building designed	(Lum DC t B; Fully been cor for great flat roof l h other li ttom chor oc. for a 10. with any d for a 10. with any d for a liv as where vill fit betw : ie conne s to bear is connet s to bear is connet eral force real force mark Trus ack Trus truss as a	DL=1.15 Plate Exp.; Ce=0.9 Insidered for the er of min roof pad of 20.0 ps ve loads. d bearing. D psf bottom other live loa e load of 20.0 e); live sf on ds. 0psf om to lift nd				SEA 0363	EER-R

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Job	Truss	Truss Type	Qty	Ply	39 Mason Ridge - Roof - Robie L LFT GLH	
24080082	V01	Valley	1	1	Job Reference (optional)	

1)

2)

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri Jun 07 11:13:11 ID:n01iifxLSCdWNqT1nz_jUEz9Jxo-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	39 Mason Ridge - Roof - Robie L LFT GLH
24080082	V02	Valley	1	1	I66103891 Job Reference (optional)

Scale = 1:45.3 Loading

TCLL (roof)

Snow (Pf)

LUMBER

OTHERS

BRACING

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

FORCES

TOP CHORD

BOT CHORD

this design.

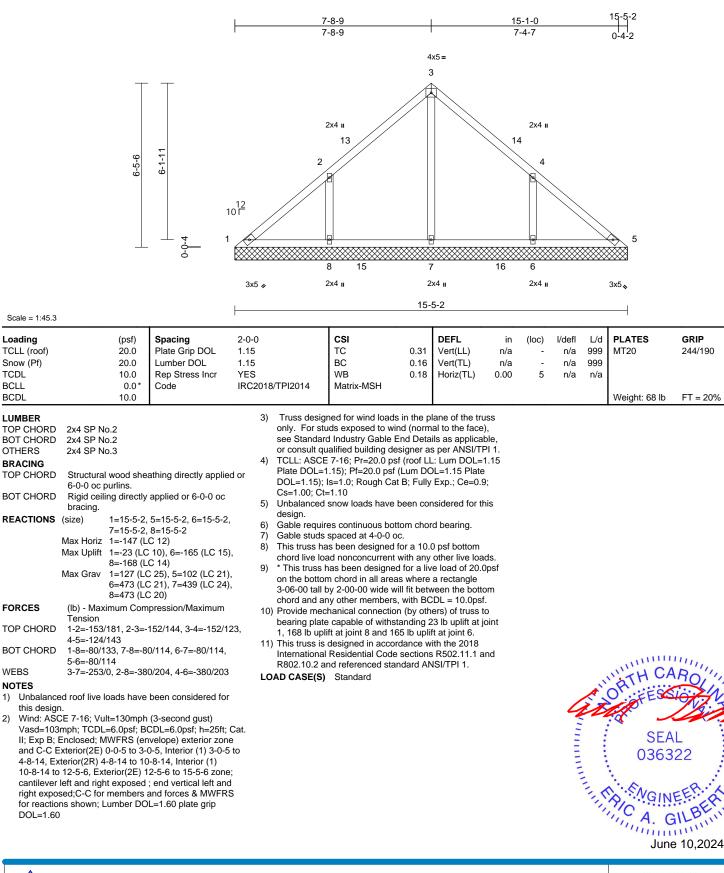
DOL=1.60

WEBS

NOTES

1)

2)


TCDL

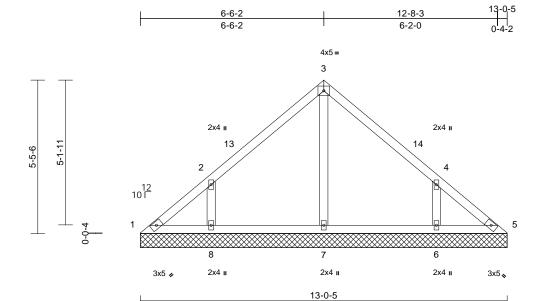
BCLL

BCDL

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri Jun 07 11:13:11 ID:n01iifxLSCdWNqT1nz_jUEz9Jxo-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



818 Soundside Road

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	39 Mason Ridge - Roof - Robie L LFT GLH	
24080082	V03	Valley	1	1	Job Reference (optional)	

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri Jun 07 11:13:11 ID:n01iifxLSCdWNqT1nz_jUEz9Jxo-RtC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:40.9

Loading		(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		20.0	Plate Grip DOL	1.15		тс	0.32	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)		20.0	Lumber DOL	1.15		BC	0.12	Vert(TL)	n/a	-	n/a	999		
TCDL		10.0	Rep Stress Incr	YES		WB	0.10	Horiz(TL)	0.00	5	n/a	n/a		
BCLL		0.0*	Code	IRC201	8/TPI2014	Matrix-MSH								
BCDL		10.0					-						Weight: 55 lb	FT = 20%
LUMBER				3)	Truss desig	ned for wind load	s in the p	lane of the tru	JSS					
TOP CHORD	2x4 SP N	lo.2		,	only. For stu	ids exposed to wi	nd (norm	al to the face),					
BOT CHORD	2x4 SP N	0.2			see Standard	d Industry Gable I	End Deta	ils as applica	ble,					
OTHERS	2x4 SP N	lo.3				alified building de								
BRACING				4)		7-16; Pr=20.0 ps								
TOP CHORD	Structura	al wood she	athing directly applie	d or		.15); Pf=20.0 psf								
	6-0-0 oc		0 7 11			ls=1.0; Rough Ca	t B; Fully	Exp.; Ce=0.9	9;					
BOT CHORD	Rigid ceil	ling directly	applied or 10-0-0 oc	;	Cs=1.00; Ct=									
	bracing.			5)		snow loads have	been cor	nsidered for th	าเร					
REACTIONS	(size)	1=13-0-5,	5=13-0-5, 6=13-0-5		design.	aa aantinuuuu ha								
		7=13-0-5,	8=13-0-5	' 6) 7)		es continuous bot spaced at 4-0-0 c		d bearing.						
		1=-123 (L	,	8)		is been designed) nef hottom						
	Max Uplift		10), 6=-142 (LC 15)), 0)		ad nonconcurrent			de					
		8=-145 (L	,	9)		nas been designe								
	Max Grav		25), 5=85 (LC 24),	-,		n chord in all area								
			21), 7=275 (LC 21)	,		y 2-00-00 wide w			om					
		8=437 (LC	,		chord and ar	y other members	5.							
FORCES		kimum Com	pression/Maximum	10) Provide mec	hanical connectio	n (by oth	ers) of truss t	0					
	Tension	440.00	004/445 0 4 004/4		bearing plate	e capable of withs	tanding 2	28 lb uplift at j	oint					
TOP CHORD		,	204/115, 3-4=-204/1	,		ft at joint 8 and 1								
BOT CHORD	4-5=-106		1/02 0 7 44/02	11		designed in acco								
BOICHORD	5-6=-41/8	,	1/83, 6-7=-41/83,			Residential Code			ind				TH CA	111.
WEBS			9/199, 4-6=-379/199			nd referenced sta	ndard AN	ISI/TPI 1.					N''LL CA	D'''
	5-7 180	, 0, ∠ -0 - -37	5,155, 4-0-513/199	LC	DAD CASE(S)	Standard							N'TH UA	NO I'I
NOTES													A SPECO	25/1

- Unbalanced roof live loads have been considered for this design.
 Wind: ASCE 7-16; Vult=130mph (3-second gust)
- 2) White ASCE 7-16, Vulle (Schripting) (SSECOND gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Interior (1) 3-0-5 to 3-6-7, Exterior(2E) 10-0-10 to 13-0-10 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	39 Mason Ridge - Roof - Robie L LFT GLH	
24080082	V04	Valley	1	1	l6 Job Reference (optional)	6103893

5-3-12

5-3-12

Carter Components (Sanford, NC), Sanford, NC - 27332,

Scale = 1:36.5 Loading

TCLL (roof)

Snow (Pf)

LUMBER

OTHERS

BRACING

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

FORCES

WFBS

1)

2)

NOTES

TOP CHORD

BOT CHORD

this design

REACTIONS (size)

TCDL

BCLL

BCDL

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri Jun 07 11:13:11 ID:n01iifxLSCdWNqT1nz_jUEz9Jxo-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

> 4x5 = 2

10-3-6

4-11-10

Page: 1

GRIP

244/190

FT = 20%

10 11 4-1-11 4-5-6 12 10 Г 12 3 4 3x5 🖌 2x4 u 3x5 💊 10-7-8 2-0-0 CSI DEFL l/defl L/d PLATES Spacing in (loc) 20.0 Plate Grip DOL 1.15 TC 0.56 Vert(LL) n/a 999 MT20 n/a 20.0 1 15 BC Lumber DOL 0.50 Vert(TL) n/a n/a 999 10.0 Rep Stress Incr YES WB 0.25 Horiz(TL) 0.01 4 n/a n/a 0.0 Code IRC2018/TPI2014 Matrix-MSH 10.0 Weight: 41 lb TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 Unbalanced snow loads have been considered for this 5) desian. Structural wood sheathing directly applied or Gable requires continuous bottom chord bearing. 6) 10-0-0 oc purlins. 7) Gable studs spaced at 4-0-0 oc. Rigid ceiling directly applied or 6-0-0 oc 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 1=10-7-8, 3=10-7-8, 4=10-7-8 9) Max Horiz 1=-100 (LC 10) on the bottom chord in all areas where a rectangle 1=-70 (LC 21), 3=-70 (LC 20), 3-06-00 tall by 2-00-00 wide will fit between the bottom 4=-132 (LC 14) chord and any other members. 1=78 (LC 20), 3=78 (LC 21), 4=882 10) Provide mechanical connection (by others) of truss to (LC 20) bearing plate capable of withstanding 70 lb uplift at joint (lb) - Maximum Compression/Maximum 1, 70 lb uplift at joint 3 and 132 lb uplift at joint 4. 11) This truss is designed in accordance with the 2018 1-2=-138/438, 2-3=-138/438 International Residential Code sections R502.11.1 and 1-4=-293/193, 3-4=-293/193 R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard Unbalanced roof live loads have been considered for Wind: ASCE 7-16; Vult=130mph (3-second gust) OR Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Exterior(2R) 3-0-5 to 7-7-13, Exterior(2É) 7-7-13 to 10-7-13 zone; the state of the s cantilever left and right exposed ; end vertical left and

DOL=1.60 Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.

right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip

(psf)

2x4 SP No.2

2x4 SP No.2

2x4 SP No.3

bracing.

Max Uplift

Max Grav

Tension

2-4=-745/305

G mm June 10,2024

SEAL

036322

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	39 Mason Ridge - Roof - Robie L LFT GLH
24080082	V05	Valley	1	1	I66103894 Job Reference (optional)

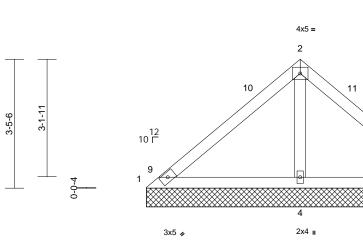
4-1-6 4-1-6

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri Jun 07 11:13:12 ID:paE_qTT6WXmsNpJ6_t6_3Lz90CP.RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

8-2-11

7-10-9


3-9-4

8-2-11 0-4-2

> 12 3

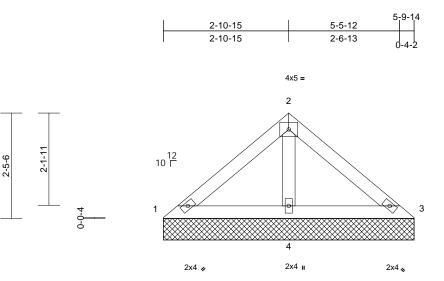
3x5 💊

Page: 1

Scale = 1:30.8

Loading TCLL (roof) Snow (Pf) TCDL BCLL	20.0 F 20.0 L 10.0 F	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MP	0.36 0.35 0.12	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0											Weight: 31 lb	FT = 20%
FORCES TOP CHORD BOT CHORD	Max Horiz 1=76 (LC 11 Max Uplift 1=-39 (LC 2 4=-95 (LC 14 Max Grav 1=92 (LC 20 (LC 20) (Ib) - Maximum Compre Tension 1-2=-116/294, 2-3=-110 1-4=-227/178, 3-4=-227	or 5-11 pplied or 6-0-0 oc =8-2-11, 4=8-2-11 1) 1), 3=-39 (LC 20), 4) 3), 3=92 (LC 21), 4= ression/Maximum 6/294	5 dor 7 8 9 =648 1	 Plate DOL=1 DOL=1.15); Cs=1.00; Ct Cs=1.00; Ct Cs=1.00; Ct Gable required Gable studs This truss hat chord live loa * This truss hat chord live loa * This truss hat chord live loa * This truss hat chord and ar Provide mech bearing plate 1, 39 lb uplift This truss is International R802.10.2 ar 	snow loads have es continuous be spaced at 4-0-0 s been designed ad nonconcurren has been designed n chord in all are y 2-00-00 wide y other member hanical connecti capable of with at joint 3 and 95 designed in acco Residential Cod nd referenced st	of (Lum DC at B; Fully be been cor bottom chor oc. d for a 10.0 t with any ed for a liv ass where will fit betw standing 3 5 lb uplift a ordance w le sections	DL=1.15 Plate Exp.; Ce=0. asidered for t d bearing. D psf bottom other live loa e load of 20. a rectangle veen the bott ers) of truss 19 lb uplift at t joint 4. ith the 2018 i R502.11.1 a	e 9; his dos. 0psf om to joint					
WEBS	2-4=-522/242		L	OAD CASE(S)	Standard								
NOTES													
 Unbalance this design 	ed roof live loads have be n.	een considered for										WHILL CA	11111

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Exterior(2R) 3-0-5 to 5-3-0, Exterior(2E) 5-3-0 to 8-3-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60


 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. SEAL 036322 June 10,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	39 Mason Ridge - Roof - Robie L LFT GLH	
24080082	V06	Valley	1	1	I66103895 Job Reference (optional)	

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri Jun 07 11:13:12 ID:HmnM1pUkHquj?zuIYbdDcZz90CO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

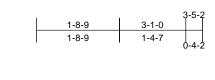
5-9-14

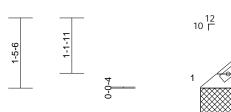
Scale = 1:26.8

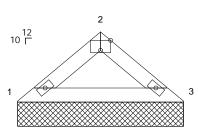
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.14	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.17	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES		WB	0.05	Horiz(TL)	0.00	4	n/a	n/a		
BCLL	0.0*	Code		8/TPI2014	Matrix-MP								
BCDL	10.0			0, 11 12011								Weight: 21 lb	FT = 20%
LUMBER TOP CHORE BOT CHORE OTHERS BRACING TOP CHORE BOT CHORE REACTIONS	 2x4 SP No.2 2x4 SP No.3 Structural wood she 5-9-14 oc purlins. Rigid ceiling directly bracing. 	applied or 6-0-0 oc 3=5-9-14, 4=5-9-14 : 12) 15), 4=-47 (LC 14)	9	 design. Gable requir Gable studs This truss ha chord live loa * This truss for on the bottor 3-06-00 tall b chord and ar Provide mec bearing plate and 47 lb up 		om chor c. for a 10. with any I for a liv s where Il fit betw h (by oth anding 4	d bearing. D psf bottom other live loa e load of 20.0 a rectangle veen the bott ers) of truss t I b uplift at jo	ads. Opsf om to					
	Max Grav 1=98 (LC (LC 20)	20), 3=98 (LC 21), 4	⁴⁼³⁸⁴ 1		designed in accord Residential Code								
FORCES	(lb) - Maximum Corr	pression/Maximum			nd referenced stan			and					
TOP CHORI BOT CHORI WEBS			L	OAD CASE(S)	Standard								
NOTES													
	ced roof live loads have	been considered for	r										
this desi		been considered to											
 2) Wind: AS Vasd=10 II; Exp B and C-C exposed members Lumber 3) Truss di only. Fo see Star or consultation 	ŠCE 7-16; Vult=130mph)3mph; TCDL=6.0psf; B ;; Enclosed; MWFRS (er Exterior(2E) zone; cant ; end vertical left and ri, s and forces & MWFRS DOL=1.60 plate grip DC esigned for wind loads in or studs exposed to wind dard Industry Gable En It qualified building desi	CDL=6.0psf; h=25ft; ivelope) exterior zor ilever left and right ght exposed;C-C for for reactions shown iL=1.60 n the plane of the tru (normal to the face) d Details as applicat gner as per ANSI/TF	ne ; iss), ble, Pl 1.								È	SEA 0363	
Plate DC DOL=1.1	SCE 7-16; Pr=20.0 psf (DL=1.15); Pf=20.0 psf (L 15); Is=1.0; Rough Cat E r Ct=1 10	um DOL=1.15 Plate									and the	A CA	EERER

4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


818 Soundside Road Edenton, NC 27932


GI 11111111 June 10,2024


Job	Truss	Truss Type	Qty	Ply	39 Mason Ridge - Roof - Robie L LFT GLH
24080082	V07	Valley	1	1	I66103896 Job Reference (optional)

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri Jun 07 11:13:12 ID:HmnM1pUkHquj?zuIYbdDcZz90CO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

3-5-2

2x4 🍫

3x5 =

2x4 💊

Scale = 1:23.8

Plate Offsets (X, Y): [2:0-2-8,Edge]

BCDL 10.0 Weight: 10 lb FT = 20% LUMBER TOP CHORD 2x4 SP No.2 7) Gable study spaced at 40-0 oc. 7) BOT CHORD 2x4 SP No.2 7) This truss has been designed for a 10.0 psf bottom chord live load on concurrent with any other live loads. 7) TOP CHORD Structural wood sheathing directly applied or 3-5-2 co putins. 7) This truss has been designed for a 10.0 psf bottom chord live load on concurrent with any other live loads. BOT CHORD Rigid ceiling directly applied or 10-0-0 co bracing. 7) This truss has been designed for a 10.0 psf bottom chord and any other members. BOT CHORD 1=3-52, 3=-3-52. 3-6-52. 0) Provide methods. Max Upitt 1=-11 (LC 14), 3=-411 (LC 15). Max Upitt 1=-11 (LC 14), 3=-411 (LC 14). 10) Provide methods. TOP CHORD 1-32-207/80. Edit application accordance with the 2018 international Residential Concelloc sections R502.11.1 and R802.10.2 and referenced standard ANSI/TP11. LOAD CASE(S) Standard 10) Max Lipitt 1=-160. This truss is designed for wind loads in the plane of the truss only. For stude seposed to wind (normal to the face), see Standard Industry Cable Find Psita is a splicable, or consult qualified building designer as per ANSI/TP1 1. SEAL 0366322 10) This truss is applicable, or consult qualifi
June 10,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

