

Trenco 818 Soundside Rd Edenton, NC 27932

Re: 4293514 4293514-BRAD CUMMINGS- WILDER

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Builders FirstSource (Albermarle,NC).

Pages or sheets covered by this seal: I70360524 thru I70360551

My license renewal date for the state of North Carolina is December 31, 2024.

North Carolina COA: C-0844

December 23,2024

Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	4293514-BRAD CUMMINGS- WILDER	
4293514	A01	Attic	2	1	Job Reference (optional)	170360524

Page: 1

December 23,2024

818 Soundside Road Edenton, NC 27932

Builders FirstSource (Albermarle), Albemarle, NC - 28001,

Scale = 1:75.7

Plate Offsets ((X, Y): [4:0-1-13,0-2-0], [5:0-3-12,0-2-0], [6	6:0-5-8,0-3	3-0], [7:0-1-13,0)-2-0], [12:0-4-12	2,0-2-8], [1	4:0-4-12,0-2-	-8]						
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 16.5/15.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20 ²	5/TPI2014	CSI TC BC WB Matrix-S	0.53 0.35 0.26	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.15 -0.22 0.01 0.06	(loc) 12-14 12-14 11 12-14	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 263 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD BOT CHORD BRACING TOP CHORD BOT CHORD JOINTS REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES (13) 1) Unbalance this design (2) Wind: ASC Vasd=95n	2x6 SP No.2 2x10 SP 2400F 2.0E 2x4 SP No.2 Structural wood she 5-1-14 oc purlins, e 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing. 1 Brace at Jt(s): 16, 17 (size) 11=0-3-8, Max Horiz 15=229 (L Max Grav 11=1590) (lb) - Maximum Com Tension 1-2=0/79, 2-3=-1703 4-5=-572/97, 5-6=-3 7-8=-1023/7, 8-9=-1 2-15=-1642/0, 9-11= 14-15=-230/305, 12- 11-12=-50/134 3-14=0/743, 8-12=00 16-17=-1146/48, 7-1 2-14=0/1089, 9-12=(5-17=-60/48, 6-17=0 ed roof live loads have n. CE 7-10; Vult=120mph noh: TCDI =6 0nsf: BC	E or 2x10 SP DSS athing directly applie xcept end verticals, -0 max.): 5-6. applied or 10-0-0 or 15=0-3-8 .C 11) (LC 42), 15=1590 (L or 42), 15=1500 (L or 42), 15=15	3 ed or 4 and 5 c 6 7 8 C 42) 9 9 0, 1 1 , 1 1 2 c L	 TCLL: ASCE DOL=1.15 P snow); Pf=16 Plate DOL=1 Ct=1.10, Lu= Unbalanced design. This truss ha load of 12.0 overhangs n Provide aded This truss ha chord live loa * This truss ha chord and ar Ceiling dead 16-17, 7-17; (s).3-14, 8-12 Bottom chord chord dead I Graphical pu or the orientat bottom chord Attic room cf Attic room cf This manufa building com component f responsibility referenced b 	7-10; Pr=20.0 p late DOL=1.15;; 5.5 psf (flat roof s .15); Category II =50-0-0 snow loads have as been designed psf or 2.00 times on-concurrent wi quate drainage to s been designed nonconcurrent as been designed nonconcurrent as been designed notord in all are oy 1-00-00 wide to yy other member load (5.0 psf) or Wall dead load 2 d live load (40.0 oad (5.0 psf) apy rlin representation dice load (40.0 oad (5.0 psf) apy rlin representation dive load (40.0 oad (5.0 psf) apy rlin representation dice d for L/3600 ctured truss is de ponent. The sui or any particular y of the building co Standard	sof (roof liv Pg=15.0 j snow: Lurr I; Exp B; F e been cor d for great f flat roof li ith other lin o prevent t d for a 10. It with any ed for a liv eas where will fit betw rs. n member (5.0psf) o psf) and a blied only is on does not a along the deflectior esigned as itability an is designer p de.	re load: Lumb osf (ground ober DOL=1. Partially Exp.; hsidered for t er of min roo oad of 11.5 p ve loads. water pondin 0 psf bottom other live load re load of 20. a rectangle veen the bott (s). 3-4, 7-8, n member dditional bott to room. 12-1 ot depict the s e top and/or h. s an individuad d use of this s the per ANSI TPI	ber 15 f live sf on g. ads. Opsf om 4-16, size al 1 as				SEA 0363	ROJULI 22	
II; Exp B; cantilever plate grip	Enclosed; MWFRS (er left and right exposed DOL=1.60	ivelope) exterior zon ; Lumber DOL=1.60	e;									A. G.	ER. KIN	2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component for the prevention. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	4293514-BRAD CUMMINGS- WILDER	
4293514	A01A	Attic	5	1	Job Reference (optional)	170360525

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Sat Dec 21 01:31:23 ID:P7nTKsEy5XE5W4TGDC5R4vyMd6I-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Plate Offsets (X, Y): [1:0-2-12,0-1-8], [3:0-1-13,0-2-0], [4:0-3-12,0-2-0], [5:0-5-8,0-3-0], [6:0-1-13,0-2-0], [8:0-2-12,0-1-8], [10:0-4-12,0-2-8], [12:0-4-12,0-2-8]

Scale = 1:75.7

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 16.5/15.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-S	0.56 0.35 0.27	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.15 -0.22 0.01 0.06	(loc) 10-12 10-12 9 10-12	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 253 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD JOINTS REACTIONS	2x6 SP No.2 2x10 SP 2400F 2.0E 2x4 SP No.2 Structural wood shea 5-0-2 oc purlins, ex 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing. 1 Brace at Jt(s): 14, 15 (size) 9=0-3-8, 1 Max Horiz 13=-193 (Max Grav 9=1527 (L	tor 2x10 SP DSS athing directly applie cept end verticals, ar -0 max.): 4-5. applied or 10-0-0 oc 13=0-3-8 LC 8) .C 41), 13=1527 (LC	3) hd or 4) hd 5) ; 6) 7) . 41) 8)	TCLL: ASCE DOL=1.15 P snow); Pf=16 Plate DOL=1 Ct=1.10, Lu= Unbalanced design. Provide adee This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar Ceiling dead 14-15, 6-15;	: 7-10; Pr=20.0 psi late DOL=1.15); P 3.5 psf (flat roof sn .15); Category II; I 50-0-0 snow loads have b quate drainage to p is been designed f ad nonconcurrent to has been designed n chord in all area: by 1-00-00 wide wi y other members. load (5.0 psf) on r Wall dead load (5	(roof liv g=15.0 p ow: Lum Exp B; F been cor brevent v or a 10.0 with any for a liv s where Il fit betw nember(5.0psf) oi	e load: Lumb sf (ground ber DOL=1.' artially Exp.; asidered for t water pondin.) psf bottom other live load e load of 20.1 a rectangle veen the bott s). 2-3, 6-7, ; n member	per 15 his g. dds. Opsf om 3-14,						
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Maximum Com Tension 1-2=-1707/0, 2-3=-11 4-5=-374/122, 5-6=- 7-8=-1706/0, 1-13=- 12-13=-221/262, 10- 2-12=0/740, 7-10=0/ 14-15=-1165/50, 6-1 1-12=0/1094, 8-10=(4-15=-55/45, 5-15=0)	pression/Maximum 028/6, 3-4=-567/97, 560/99, 6-7=-1029/6 1580/0, 8-9=-1579/0 :12=0/1124, 9-10=-5 736, 3-14=-1172/48 5=-1189/49, 0/1096, 4-14=0/85, /92	9) , 10 4/114 , 11 12	 (s).2-12, 7-10 Bottom chord chord dead le) Graphical pu or the orienta bottom chord) Attic room ch) This manufae building com component fr 	0 d live load (40.0 ps oad (5.0 psf) applii rlin representation ation of the purlin a d. hecked for L/360 d ctured truss is des ponent. The suita or any particular b	of) and a ed only t does no along the eflection igned as bility and uilding is	dditional bott o room. 10-1 ot depict the s top and/or : an individua d use of this the	om 2 size			in the second	WH CA	RO	
NOTES (12) 1) Unbalance this design 2) Wind: ASC Vasd=95m II; Exp B; I cantilever plate grip I	ed roof live loads have b. CE 7-10; Vult=120mph h; TCDL=6.0psf; BC Enclosed; MWFRS (en left and right exposed DOL=1.60	been considered for (3-second gust) DL=6.0psf; h=30ft; C velope) exterior zon ; Lumber DOL=1.60	LC Cat. e;	responsibility referenced b DAD CASE(S)	v of the building de y the building code Standard	signer p	er ANSI TPI	1 as		Manna and and and and and and and and and		SEA 0363	22 EREAL	Manning

G 11111111 December 23,2024

Job	Truss	Truss Type	Qty	Ply	4293514-BRAD CUMMINGS- WILDER	
4293514	A01E	Attic Supported Gable	1	1	Job Reference (optional)	170360526

Scale = 1:79.7 Plate Offsets (X, Y): [8:0-2-2,Edge], [12:0-2-2,Edge]

Loading TCLL (roof) Snow (Pf/Pg) TCDL	(psf) 20.0 16.5/15.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	12014	CSI TC BC WB Matrix S	0.24 0.12 0.37	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 20	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190	
BCDL	10.0	Code	IKG2013/171	12014	Matrix-5							Weight: 286 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS DTHERS BRACING TOP CHORD BOT CHORD	2x6 SP No.2 2x10 SP 2400F 2.0 2x4 SP No.2 2x4 SP No.2 Structural wood sh 6-0-0 oc purlins (6 Rigid ceiling directl bracing, Except: 10-0-0 oc bracing:	E or 2x10 SP DSS eathing directly applied xcept end verticals, and 0-0 max.): 8-12. y applied or 6-0-0 oc 22-24.	or		2-32=-158/328, 31- 30-31=-111/296, 24 5-24=-644/137, 15- 22-35=-117/317, 33 36-37=-100/294, 18 5-29=-20/309, 28-2 27-28=-20/311, 27- 33-34=-20/311, 14- 10-27=-42/20, 9-28 4-30=-23/76, 3-31= 11-33=0/27, 13-34= 17-36=-101/54, 21-	32=-10 1-30=-1: 22=-64: 5-36=-11 3-37=-1: 9=-20/3 33=-20, 34=-20, 34=-20, =0/27, -101/54 101/54 12/92, 37=-26	3/296, 20/319, 4/133, 38/294, 55/326, 11, 311, 309, 7-29=-12/92, , 25-32=-260, 16-35=-23/70)/175	/175, 6,	10) Trus brac 11) Gat 12) This cho 13) * Th on t 3-06 cho 14) Ceil 6-25 (5.0	ss to be sed agai le studs truss hi rd live lo is truss he botto >-00 tall rd and a ing deac 9, 28-29, psf) on r	fully sl space as bee ad nor has be m cho by 1-0 ny oth l load 27-28 member	neathed from on eral movement (ad at 2-0-0 oc. en designed for a nconcurrent with een designed for rd in all areas w 0-00 wide will fit (5.0 psf) on mer 3, 27-33, 33-34, er(s).5-24, 15-22	e face or secu i.e. diagonal w 10.0 psf botti any other live a live load of here a rectang between the 1 h BCDL = 10. nber(s). 5-6, 1 14-34; Wall d	irrely veb). om ∋ loads. 20.0psf gle bottom 0psf. 4-15, lead load
JOINTS	1 Brace at Jt(s): 27	3	NOTES 1) Un	5 (18) balanced	roof live loads have	e been (considered fo	r	15) Pro bea	/ide mea ring plat	chanic e capa	al connection (b able of withstand	y others) of tru ling 51 lb uplif	uss to t at joint
REACTIONS	(size) 20=25-4 24=25-4 Max Horiz 26=230 Max Uplift 20=-40 (22=-56 (25=-503 Max Grav 20=742 22=1151 25=131	0, 21=25-4-0, 22=25-4 0, 25=25-4-0, 26=25-4 (LC 11) LC 9), 21=-503 (LC 19) LC 13), 24=-61 (LC 12) (LC 19), 26=-51 (LC 8) (LC 30), 21=131 (LC 36) (LC 46), 24=1156 (LC LC 36), 26=749 (LC 29)	-0, this -0 2) Win -0 2) Win Va Va , car), car), pla 5), 3) Tru 44), onl 9) see	s design. nd: ASCE sd=95mph Exp B; Eno ntilever lef te grip DC uss design (y. For stu e Standard	7-10; Vult=120mp n; TCDL=6.0psf; B(closed; MWFRS (et and right exposed) DL=1.60 led for wind loads i ids exposed to wind d Industry Gable En	h (3-sec CDL=6.0 nvelope I ; Lumb n the pla d (norm	cond gust) Opsf; h=30ft; (exterior zor per DOL=1.60 ane of the true al to the face) ils as applicat	Cat. ne;) ss), ole,	26, uplit at jo 16) Gra or th bott 17) Attio	40 Ib up t at joint int 21. phical pr the orient om chor the room c	lift at jo 22, 50 urlin re ation o d. hecke	bint 20, 61 lb up 33 lb uplift at join presentation do of the purlin alor d for L/360 defle	ift at joint 24, s it 25 and 503 es not depict t g the top and/ ction.	56 lb lb uplift :he size 'or
FORCES	(lb) - Maximum Col Tension	mpression/Maximum	4) TC	consult qu LL: ASCE	alified building des 7-10; Pr=20.0 psf	igner as (roof liv	s per ANSI/TF e load: Lumb	PI1. er			11	ORIEES	TOWN	14
FOP CHORD	2-26=-358/93, 1-2= 3-4=-325/105, 4-5= 6-7=-677/86, 7-8=- 9-10=-515/67, 10-1 11-12=-515/67, 12- 13-14=-677/86, 14 15-16=-240/117, 11 17-18=-366/94, 18 25-26=-211/247, 24 22-24=-85/304, 21-	0/79, 2-3=-370/102, -240/124, 5-6=-459/51 572/81, 8-9=-515/67, 1=-515/67, 13=-572/82, 15=-459/47, 5-17=-320/96, 19=0/79, 18-20=-354/8 4-25=-211/247, 22=-17/64, 20-21=-17/	DC sn(Ct= 5) Un de: 6) Thi 86 ov(8) All 9) Ga	DL=1.15 Pl bow); Pf=16 ate DOL=1 =1.10, Lu= balanced sign. is truss ha d of 12.0 p erhangs no bovide adec plates are ble require	late DOL=1.15); Pg 5.5 psf (flat roof snot .15); Category II; E .50-0-0 snow loads have b is been designed for psf or 2.00 times fl on-concurrent with quate drainage to p 2 2x4 MT20 unless es continuous botto	g=15.0 g ow: Lum Exp B; F een cor or great at roof k other liv revent otherwi otherwi om chor	osf (ground ber DOL=1.1 artially Exp.; asidered for the er of min roof pad of 11.5 ps re loads. water ponding se indicated. d bearing.	5 live sf on g.		W. COLUMN		SEA 0363	EER.K	Manual and

818 Soundside Road Edenton, NC 27932

December 23,2024

Page: 1

Job	Truss	Truss Type	Qty	Ply	4293514-BRAD CUMMINGS- WILDER	
4293514	A01E	Attic Supported Gable	1	1	Job Reference (optional)	170360526
Builders FirstSource (Albermarle), Albemarle, NC - 28001,	Run: 8.63 S Sep 26 2	2024 Print: 8.	630 S Sep 2	6 2024 MiTek Industries, Inc. Sat Dec 21 01:31:23	Page: 2

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Sat Dec 21 01:31:23 ID:iHHPVixKQMYsT_vPdN72Q8yMd5O-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

18) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	4293514-BRAD CUMMINGS- WILDER	
4293514	A01G	Attic Girder	1	3	Job Reference (optional)	170360527

Plate Offsets (X, Y): [1:0-6-0,Edge], [2:0-6-10,Edge], [3:0-1-13,0-2-0], [4:0-3-12,0-2-0], [5:0-5-8,0-3-0], [6:0-1-13,0-2-0], [7:0-6-10,Edge], [10:0-6-8,0-3-0], [12:0-6-8,0-3-0]

Scale = 1:75.7

oading	(psf)	Spacing	8-6-0		CSI	0.05	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
CLL (roof)	20.0	Plate Grip DOL	1.15			0.65	Vert(LL)	-0.20	10-12	>999	360	MT20	244/190	
Snow (Pf/Pg)	16.5/15.0	Lumber DOL	1.15		BC	0.54	Vert(CT)	-0.30	10-12	>990	240	MT20HS	187/143	
FCDL	10.0	Rep Stress Incr	NO		WB	0.42	Horz(CT)	0.01	9	n/a	n/a			
BCLL	0.0*	Code	IRC2015	5/TPI2014	Matrix-S		Wind(LL)	0.08	10-12	>999	240			
BCDL	10.0											Weight: 758 lb	FT = 20%	
			2)	All loads are	considered equally	/ applie	d to all plies,		14) Gra	phical p	urlin re	epresentation doe	es not depict the	ne size
OP CHORD	4-5:2x6 SP 2400F 2.0E 0	or 2x6 SP DSS "Exc	ept	CASE(S) sec	tion. Ply to ply cor	nection	s have been	AD	bott	om chor	d.		y the top and/o	JI
BOT CHORD	2x10 SP 2400F 2.0E 2x4 SP No.2	or 2x10 SP DSS		provided to d unless otherv	istribute only loads vise indicated.	s noted	as (F) or (B),		15) Attio 16) This	c room c s manufa	hecke actured	d for L/360 defle d truss is designe	ction. ed as an indivi	dual
RACING			3)	Unbalanced	roof live loads have	e been o	considered for	r	buil	ding con	nponei	nt. The suitability	and use of th	nis
	2-0-0 oc purlins (6-0-	-0 max) except en	d	this design.					com	ponent	for any	y particular buildi	ng is the	
	verticals		4)	Wind: ASCE	7-10; Vult=120mp	h (3-sec	ond gust)	Cat	resp	onsibilit	ty of th	e building desigr	er per ANSI T	PI 1 as
BOT CHORD	(Switched from shee Rigid ceiling directly	eted: Spacing > 2-8-0 applied or 10-0-0 oc)). ;	II; Exp B; End	closed; MWFRS (e	envelope	e) exterior zon	ie;	LOAD	CASE(S)) Sta	ndard		
	bracing.			cantilever left plate grip DC	t and right exposed L=1.60	d ; Lumb	er DOL=1.60		1) De	ad + Sn	iow (ba 1 15	alanced): Lumbe	r Increase=1.1	5, Plate
UINT5	5, 1, 8, 14, 15		5)	TCLL: ASCE	7-10; Pr=20.0 psf	(roof liv	e load: Lumb	er	Ur	iform Lo	bads (I	b/ft)		
REACTIONS	(size) 9=0-3-8, 1	3=0-3-8		snow): Pf=16	5 nsf (flat roof sn	y=15.0 բ Դw∙ Lum	ber DOI =1 1	5		Vert: 1-2	2=-183	3, 2-3=-226, 3-4=	-183, 4-5=-220	5,
	Max Horiz 13=-821 (I	LC 8)		Plate DOL=1	.15): Category II: E	Exp B: P	artially Exp.:	•		5-6=-18	3, 6-/= 100 0	=-226, 7-8=-183,	12 - 13 = -85,	, ,
	Max Grav 9=7849 (L	.C 42), 13=6682 (LC	42)	Ct=1.10, Lu=	50-0-0; Min. flat ro	of snow	load governs	S.		10-12=- 6-15/	120, 9 2	-10=-170, 3-14=-	42, 14-15=-42	<u>,</u>
ORCES	(lb) - Maximum Com	pression/Maximum		Rain surchar	ge applied to all ex	posed s	surfaces with			Drag: 2-	∠ •12=-4	2, 7-10=-42		
TOP CHORD	1-2=-7676/0. 2-3=-46	617/0. 3-4=-2417/43	3.		nan 0.500/12 in ac	cordanc	e with IBC		3) De	ad + 0.7	75 Roc	of Live (balanced)) + 0.75 Attic F	loor:
0. 0.101.2	4-5=-1618/525, 5-6=	-2394/433, 6-7=-457	70/0, 6)	Unbalanced	snow loads have b	een cor	sidered for th	nis	Lu	mber Ind	crease	=1.15, Plate Incr b/ft)	ease=1.15	
	7-8=-7733/0, 1-13=-7	7108/0, 8-9=-7146/0	_)	design.					01		Jaus (ii		1111	
	9-10=-162/562	J-12=0/5090,	7)	Provide adeq	Juate drainage to p	orevent v	water ponding).				WAH CA	ROU	
VEBS	2-12=0/3448, 7-10=0)/3636, 3-14=-5405/3	8) 71, 9)	All plates are	NI I 20 plates unle s been designed fo	ss otner or a 10 (wise indicate	a.			S	R		1
	14-15=-5377/81, 6-1	5=-5358/118,	, 0)	chord live loa	id nonconcurrent v	vith anv	other live load	ds.			1	C. FESS	Oit	11.
	1-12=0/5049, 8-10=0	0/4892, 4-14=0/372,	10)) * This truss h	as been designed	for a liv	e load of 20.0)psf			22	11	12	2
	4-15=-230/272, 5-15	=0/366		on the botton	n chord in all areas	where	a rectangle							1
NOTES (15)				3-06-00 tall b	y 1-00-00 wide wil	l fit betv	veen the botto	om		-		SEA	1. 1	=
) 3-ply truss	to be connected toget	her with 10d		chord and an	y other members.					Ξ		0202		= =
(0.131"x3")) nails as follows:		11	Ceiling dead	load (5.0 pst) on n	nember(s). 2-3, 6-7, 3	5-14,		1		0363	22 :	-
staggered	at 0-9-0 oc. 2x4 - 1 rov	w at 0-9-0 oc.		(s).2-12, 7-10) vvan ueau ioau (5	.0051) 01	Inemper			-	8	•		E
Bottom cho	ords connected as follo	ows: 2x10 - 2 rows	12)) Bottom chord	l live load (40.0 ps	f) and a	dditional botto	om		Ś	2.	N.En	-cR. X	3
staggered	at 0-9-0 oc.			chord dead lo	oad (5.0 psf) applie	ed only t	o room. 10-12	2			25	\$ GIN	EF	5
Web conne	ected as follows: 2x4 -	1 row at 0-9-0 oc.	13)) Load case(s)	1, 3 has/have bee	en modif	ied. Building				1	CA C	BEN	
				correct for the	st review loads to very intended use of t	erity that	at they are					1114.6		
													A CONTRACTOR OF A CONTRACTOR OFTA CONTRACTOR O	

Continued on page 2

- chord dead load (5.0 psf) applied only to room. 10-12
- 13) Load case(s) 1, 3 has/have been modified. Building designer must review loads to verify that they are correct for the intended use of this truss.

A. GILBERT December 23,2024

Page: 1

818 Soundside Road

Edenton, NC 27932

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev, 1/2/2023 BEFORE USE WARNING Design valid for use only with MTek connectors. This design is based only upon parameters and property incorporate this design is based only upon parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	4293514-BRAD CUMMINGS- WILDER	
4293514	A01G	Attic Girder	1	3	Job Reference (optional)	170360527
Builders FirstSource (Albermarle), Albemarle, NC - 28001,	Run: 8.63 S Sep 26	2024 Print: 8	.630 S Sep 2	6 2024 MiTek Industries, Inc. Sat Dec 21 01:31:24	Page: 2

Vert: 1-2=-213, 2-3=-255, 3-4=-212, 4-5=-213, 5-6=-213, 6-7=-255, 7-8=-213, 12-13=-85, 10-12=-382, 9-10=-335, 3-14=-42, 14-15=-42, 6-15=-42 Drag: 2-12=-42, 7-10=-42

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Sat Dec 21 01:31:24 ID:3Wcj7DC7F6JI6Naev?XCJnyMd52-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	4293514-BRAD CUMMINGS- WILDER	
4293514	M01	Monopitch	8	1	Job Reference (optional)	170360528

Scale = 1:40

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Sat Dec 21 01:31:25 ID:?AGv6jR2myi2uIXIWUMfanyMd4I-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	4293514-BRAD CUMMINGS- WILDER	
4293514	M01E	Monopitch Supported Gable	2	1	Job Reference (optional)	170360529

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Sat Dec 21 01:31:25 ID:EAqkZclMfx_M?HWI2yqleGyMd4L-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Job	Truss	Truss Type	Qty	Ply	4293514-BRAD CUMMINGS- WILDER	
4293514	PB01	Piggyback	2	1	Job Reference (optional)	170360530

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Sat Dec 21 01:31:25 ID:krYrWBWThSYBMngelcPdSEy9LxK-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

818 Soundside Road

Edenton, NC 27932

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	4293514-BRAD CUMMINGS- WILDER	
4293514	PB02	Piggyback	16	1	Job Reference (optional)	170360531

8-9-3

Builders FirstSource (Albermarle), Albernarle, NC - 28001,

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries. Inc. Sat Dec 21 01:31:25 ID:neroO3tD99siVe7S9zyCp3y9Ly9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

17-6-5

Page: 1

18-2-0

Job	Truss	Truss Type	Qty	Ply	4293514-BRAD CUMMINGS- WILDER				
4293514	PB03	Piggyback	8	1	Job Reference (optional)	170360532			

4-5-11

Builders FirstSource (Albermarle), Albernarle, NC - 28001,

3-10-4

3-8-14

Spacing

Code

Plate Grip DOL

Rep Stress Incr

Lumber DOL

(psf)

20.0

10.0

0.0

10.0

11 5/15 0

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries. Inc. Sat Dec 21 01:31:26 ID:RBhtr3Jv1tMvcGSHfFAEvgyMd2J-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

8-11-5

Page: 1

4-5-11 4-5-11 4x6 = 3 8 12 9 Г 2 4 5 6 2x4 = 2x4 = 2x4 II 8-11-5 2-0-0 CSI DEFL l/defl L/d PLATES GRIP in (loc) 1.15 TC 0.24 Vert(LL) n/a 999 MT20 244/190 n/a 1 15 BC 0.15 Vert(TL) n/a n/a 999 YES WB 0.04 Horiz(TL) 0.00 4 n/a n/a IRC2015/TPI2014 Matrix-P Weight: 37 lb FT = 20%4) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=15.0 psf (ground snow); Pf=11.5 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10 Unbalanced snow loads have been considered for this 5) design. Gable requires continuous bottom chord bearing. 6) 7) Gable studs spaced at 4-0-0 oc. 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 1-00-00 wide will fit between the bottom chord and any other members. 10) Provide mechanical connection (by others) of truss to

- bearing plate capable of withstanding 378 lb uplift at joint 1, 343 lb uplift at joint 5, 299 lb uplift at joint 2 and 278 lb uplift at joint 4.
- 11) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.
- 12) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Scale = 1:33.3

Loading

TCDL

BCLL

BCDL

TCLL (roof)

Snow (Pf/Pg)

- LUMBER TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 2x4 SP No.2 OTHERS BRACING Structural wood sheathing directly applied or TOP CHORD 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (size) 1=10-3-11, 2=10-3-11, 4=10-3-11, 5=10-3-11, 6=10-3-11 Max Horiz 1=77 (LC 9) 1=-378 (LC 26), 2=-299 (LC 12), Max Uplift 4=-278 (LC 13), 5=-343 (LC 27) Max Grav 1=253 (LC 12), 2=612 (LC 26), 4=588 (LC 27), 5=221 (LC 13), 6=279 (LC 7) FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-175/262, 2-3=-135/60, 3-4=-134/44, 4-5=-114/194
- BOT CHORD 2-6=-22/56, 4-6=-22/56 WFBS 3-6=-165/20NOTES (12)
- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-10; Vult=120mph (3-second gust) 2) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.

Job	Truss	Truss Type	Qty	Ply	4293514-BRAD CUMMINGS- WILDER					
4293514	PB05	Piggyback	1	1	Job Reference (optional)	170360533				

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Sat Dec 21 01:31:26 ID:9wtxfw39gd2FQed?kZmYtYyMd1M-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

8-11-5

Scale = 1:33.3

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 11.5/15.0 10.0 0.0* 10.0	Spacing22Plate Grip DOL1.Lumber DOL1.Rep Stress IncrYCodeIF	-0-0 .15 .15 ES RC2015/TPI2014	CSI TC BC WB Matrix-P	0.06 0.04 0.02	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 6	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 42 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.1 2x4 SP No.1 2x4 SP No.2 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 2=8-11-5 9=8-11-5 9=8-11-5 Max Horiz 2=-77 (LC Max Uplift 2=-3 (LC 10=-78 (I Max Grav 2=117 (L (LC 27), 1 (LC 27))	eathing directly applied or y applied or 10-0-0 oc , 6=8-11-5, 8=8-11-5, , 10=8-11-5 C 10) 13), 8=-78 (LC 13), .C 12) C 2), 6=117 (LC 2), 8=23 9=104 (LC 29), 10=230	 4) TCLL: ASCI DOL=1.15 F snow); Pf=1 Plate DOL= Ct=1.10 5) Unbalanced design. 6) This truss h load of 12.0 overhangs r 7) Gable requi 8) Gable studs 9) This truss h chord live lo 10) * This truss so on the botto 3-06-00 tall 	E 7-10; Pr=20.0 p Plate DOL=1.15); 1.5 psf (flat roof s 1.15); Category I snow loads have as been designed psf or 2.00 times ion-concurrent w res continuous bo spaced at 2-0-0 as been designed an onconcurrent has been designed m chord in all are by 1-00-00 wide	esf (roof liv Pg=15.0 p snow: Lum I; Exp B; P e been cor d for greate flat roof lo th other liv th other liv th other liv th other a liv ed for a liv eas where will fit betw	e load: Lumb sf (ground ber DOL=1.1 artially Exp.; sidered for th er of min roof pad of 11.5 p; re loads. d bearing. 0 psf bottom other live loa e load of 20.0 a rectangle veen the botto	er 5 his live sf on ds. Dpsf om					
FORCES	(lb) - Maximum Con Tension	npression/Maximum	11) Provide med bearing plat	chanical connecti	s. on (by oth standing 3	ers) of truss t	0 int					
TOP CHORD	1-2=0/14, 2-3=-73/6 4-5=-64/56, 5-6=-57	6, 3-4=-70/65, 7/47, 6-7=0/14	2, 78 lb uplit	t at joint 10 and 7	78 lb uplift	at joint 8.						
BOT CHORD	2-10=-25/61, 9-10= 6-8=-25/61	-25/61, 8-9=-25/61,	Detail for Co	in industry Piggy innection to base ified building des	truss as a inner	applicable, or					mm	1111.
WEBS NOTES (13)	4-9=-72/0, 3-10=-17	7/111, 5-8=-176/110	13) This manufa building con	nctured truss is de aponent. The sui	esigned as tability and	an individua use of this	I			1	WITH CA	ROLI

- Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 13) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

LOAD CASE(S) Standard

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	4293514-BRAD CUMMINGS- WILDER		
4293514	PB06	Piggyback	21	1	Job Reference (optional)	170360534	

2 - 10 - 5

2-10-5

12 12 Г

0-6-

h-6-4

Builders FirstSource (Albermarle), Albernarle, NC - 28001,

Scale = 1:30.1 Loading

TCLL (roof)

TCDL

BCLL

BCDL

LUMBER

OTHERS

BRACING

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

FORCES

TOP CHORD

BOT CHORD

WFBS

REACTIONS (size)

bracing.

Max Horiz

Max Uplift

Max Grav

Tension

3-6=-91/7

Snow (Pf/Pg)

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries. Inc. Sat Dec 21 01:31:26 ID:IYXWFyulwdaCXdlh0c3eOnyMd6I-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

5-8-10

2-10-5

4x6 = 3

GRIP

244/190

FT = 20%

3-4-14 3-3-2 -2-0-5 6 2x4 = 2x4 : 2x4 II 5-8-10 Spacing 2-0-0 CSI DEFL l/defl L/d PLATES (psf) in (loc) 20.0 Plate Grip DOL 1.15 TC 0.10 Vert(LL) n/a n/a 999 MT20 11 5/15 0 1 15 BC 0.06 Lumber DOL Vert(TL) n/a n/a 999 10.0 Rep Stress Incr YES WB 0.02 Horiz(TL) 0.00 4 n/a n/a 0.0 Code IRC2015/TPI2014 Matrix-P 10.0 Weight: 27 lb 4) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=15.0 psf (ground 2x4 SP No.1 2x4 SP No.1 snow); Pf=11.5 psf (flat roof snow: Lumber DOL=1.15 2x4 SP No.2 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10 Unbalanced snow loads have been considered for this 5) Structural wood sheathing directly applied or design. 6-0-0 oc purlins. Gable requires continuous bottom chord bearing. 6) Rigid ceiling directly applied or 10-0-0 oc 7) Gable studs spaced at 4-0-0 oc. 8) This truss has been designed for a 10.0 psf bottom 1=6-10-0, 2=6-10-0, 4=6-10-0, chord live load nonconcurrent with any other live loads. 5=6-10-0, 6=6-10-0 9) * This truss has been designed for a live load of 20.0psf 1=-67 (LC 8) on the bottom chord in all areas where a rectangle 1=-214 (LC 26), 2=-214 (LC 12), 3-06-00 tall by 1-00-00 wide will fit between the bottom 4=-187 (LC 13), 5=-176 (LC 27) chord and any other members. 1=185 (LC 12), 2=372 (LC 26), 10) Provide mechanical connection (by others) of truss to 4=342 (LC 27), 5=151 (LC 13), bearing plate capable of withstanding 214 lb uplift at 6=173(|C7)joint 1, 176 lb uplift at joint 5, 214 lb uplift at joint 2 and (Ib) - Maximum Compression/Maximum 187 lb uplift at joint 4. 11) See Standard Industry Piggyback Truss Connection 1-2=-147/184, 2-3=-107/45, 3-4=-105/35, Detail for Connection to base truss as applicable, or 4-5=-90/121 consult qualified building designer. 2-6=-23/57, 4-6=-23/57 12) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as

- NOTES (12) 1) Unbalanced roof live loads have been considered for this design
- Wind: ASCE 7-10; Vult=120mph (3-second gust) 2) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.
- referenced by the building code. LOAD CASE(S) Standard

818 Soundside Road

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	4293514-BRAD CUMMINGS- WILDER		
4293514	PB07	Piggyback	2	3	Job Reference (optional)	170360535	

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries. Inc. Sat Dec 21 01:31:26 ID:bK2LvtBVUpBuUD?SLI?zmZyMd53-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scolo	_ 1	.20	5
		. 11/	

TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	20.0 11.5/15.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr Code	1.15 1.15 NO IRC2018	5/TPI2014	TC BC WB Matrix-P	0.08 0.08 0.01	Vert(LL) Vert(TL) Horiz(TL)	n/a n/a 0.00	- 4	n/a n/a n/a	999 999 n/a	MT20 Weight: 101 lb	244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x6 SP No.2 2x4 SP No.1 2x4 SP No.2 2-0-0 oc purlins (6-0 (Switched from shee Rigid ceiling directly bracing. (size) 1=5-8-10, 5=5-8-10, Max Horiz 1=-275 (L Max Uplift 1=-537 (L 4=-556 (L Max Grav 1=506 (LC 4=1131 (L 6=660 (LC	-0 max.) sted: Spacing > 2-8-0 applied or 10-0-0 oc 6=5-8-10 C 8) C 26), 2=-628 (LC 1: C 13), 5=-421 (LC 2: C 12), 2=1211 (LC 2: C 27), 5=401 (LC 1: C 7)	4) 5))). (), (), (), (), (), (), (), (),	Wind: ASCE Vasd=95mpl II; Exp B; En cantilever lef plate grip DC Truss desigr only. For stu see Standard or consult qu TCLL: ASCE DOL=1.15 P snow); Pf=1 ⁻ Plate DOL=1 Ct=1.10 Unbalanced design. Gable requir Gable stude	7-10; Vult=120m, n; TCDL=6.0psf; E closed; MWFRS (t and right expose DL=1.60 red for wind loads ids exposed to wi allified building de : 7-10; Pr=20.0 ps late DOL=1.15); F 1.5 psf (flat roof sr 1.15); Category II; snow loads have es continuous bot spaced at 4-0.0 o	ph (3-sec 3CDL=6.0 (envelope ad; Lumb in the pla nd (norm End Deta signer ad f (roof liv Pg=15.0 p now: Lum Exp B; P been cor tom chor	ond gust) ppsf; h=30ft; C e) exterior zomi- ver DOL=1.60 ane of the trus al to the face), ils as applicab s per ANS/ITP e load: Lumbe sof (ground ber DOL=1.15 artially Exp.; usidered for thi- d bearing.	cat. e; , le, l 1. er 5	16) This build com resp refe LOAD C	manufa ding con ponent oonsibilit renced CASE(S)	actured npone for any ty of th by the) Sta	ł truss is designe nt. The suitability y particular buildir e building design building code. ndard	d as an individual and use of this ng is the er per ANSI TPI 1 as
FORCES	(lb) - Maximum Com Tension	pression/Maximum	10) This truss ha	as been designed ad nonconcurrent	for a 10.0 with any) psf bottom other live load	ls.					
TOP CHORD BOT CHORD WEBS NOTES (15)	1-2=-411/509, 2-3=- 4-5=-193/272 2-6=-89/230, 4-6=-8 3-6=-309/16	453/193, 3-4=-443/1 9/230	^{49,} 11 12) * This truss h on the bottor 3-06-00 tall h chord and ar) Bearing at jo	nas been designed n chord in all area by 1-00-00 wide w ny other members int(s) 1, 5, 2, 4 co	d for a liv as where vill fit betw nsiders p	e load of 20.0 a rectangle veen the botto varallel to grain	psf m n				WITH CA	RO

- 1) 3-ply truss to be connected together as follows: Top chords connected with 10d (0.131"x3") nails as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Bottom chords connected with 10d (0.131"x3") nails as follows: 2x4 - 1 row at 0-9-0 oc.
- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- Unbalanced roof live loads have been considered for 3) this design.
- value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 537 lb uplift at joint 1, 421 lb uplift at joint 5, 628 lb uplift at joint 2 and 556 lb uplift at joint 4.
- 14) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.
- 15) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	4293514-BRAD CUMMINGS- WILDER		
4293514	PB08	Piggyback	2	1	Job Reference (optional)	170360536	

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Sat Dec 21 01:31:26 ID:IjcGtgvS8RAIcXAqxFaLoVyMd5R-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:32.4

Plate Offsets (X, Y):	[2:0-2-6,0-1-0], [6:0-2-6,0-1-0]	
-----------------------	----------------------------------	--

	(, .). [== .,],	[0.0 = 0,0 . 0]											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 11.5/15.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-P	0.03 0.02 0.02	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 6	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 29 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	 2x4 SP No.1 2x4 SP No.1 2x4 SP No.2 Structural wood she. 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 2=5-8-10, 9=5-8-10, 9=5-8-10, Max Horiz 2=-67 (LC Max Uplift 2=-22 (LC (LC 13), 1 Max Grav 2=64 (LC 27), 9 26) 	athing directly applied applied or 10-0-0 oc 6=5-8-10, 8=5-8-10, 10=5-8-10 : 10) : 8), 6=-11 (LC 9), 8= 0=-91 (LC 12) 28), 6=58 (LC 29), 8: =106 (LC 7), 10=167	4) d or 5) 6) 7) 8) 9) -90 9) =166 10 r (LC	TCLL: ASCE DOL=1.15 P snow); Pf=1 Plate DOL=′ Ct=1.10 Unbalanced design. This truss he load of 12.0 overhangs n Gable requir Gable studs This truss ha chord live loi) * This truss l on the bottor 3-06-00 tall H	57-10; Pr=20.0 late DOL=1.15); 1.5 psf (flat roof 1.15); Category snow loads hav as been designe psf or 2.00 time: on-concurrent w es continuous b spaced at 2-0-0 as been designe ad nonconcurrer has been design n chord in all ar by 0-00 wide	psf (roof liv ; Pg=15.0 p snow: Lum II; Exp B; P e been cor d for greate s flat roof lo <i>i</i> th other liv ottom chor 0 oc. d for a 10.0 t with any ued for a liv eas where will fit betw rs.	e load: Lumb sf (ground ber DOL=1.1 artially Exp.; sidered for th er of min roof had of 11.5 p e loads. d bearing. psf bottom other live loa e load of 20.0 a rectangle een the bottom	er 5 his live sf on ds. Dpsf					
TOP CHORD	(lb) - Maximum Com Tension 1-2=0/13, 2-3=-79/5	pression/Maximum 7, 3-4=-80/50,	11	11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 22 lb uplift at joint									
BOT CHORD	4-5=-77/40, 5-6=-69, 2-10=-23/57, 9-10=- 6-8=-23/57	/41, 6-7=0/13 23/57, 8-9=-23/57,	12	uplift at joint) See Standar Detail for Co	8. d Industry Piggy	/back Truss	Connection					TH CA	Police
WEBS NOTES (13)	4-9=-61/0, 3-10=-13	4/111, 5-8=-133/110	13	consult quali) This manufa	fied building des	signer. lesigned as	an individua	I			JAN'	OFFESS	id the second
 Unbalanc this desig Wind: AS Vasd=95i II; Exp B; cantilever plate grip Truss dee only. For see Standor or consul 	ed roof live loads have n. ICE 7-10; Vult=120mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (er r left and right exposed DOL=1.60 signed for wind loads in studs exposed to wind dard Industry Gable En- t qualified building design	been considered for (3-second gust) DL=6.0psf; h=30ft; C ivelope) exterior zone ; Lumber DOL=1.60 the plane of the truss (normal to the face), d Details as applicabl gner as per ANSI/TPI	at. >; LC s le, 1.	building com component f responsibility referenced b DAD CASE(S)	ponent. The su or any particular y of the building y the building co Standard	itability and r building is designer p ode.	l use of this the er ANSI TPI	1 as		Section 1995			EER. Kunn

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

December 23,2024

Job	Truss	Truss Type	Qty	Ply	4293514-BRAD CUMMINGS- WILDER	
4293514	T01	Piggyback Base	4	1	Job Reference (optional)	170360537

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Sat Dec 21 01:31:26 ID:SSBnAROhUxkxd_ErcNXMxyNuDe-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:82.2

Plate Offsets (X, Y): [2:0-2-12,0-2-0], [5:0-4-0,0-2-4], [8:0-2-8,0-2-0], [11:0-2-12,0-2-0]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 16.5/15.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-S	0.78 0.49 0.50	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.09 -0.17 0.03 0.04	(loc) 17-19 17-19 13 17-19	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 389 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x6 SP No.2 2x6 SP No.2 2x4 SP No.2 Structural wood shea 5-4-1 oc purlins, exc 2-0-0 oc purlins (4-1 Rigid ceiling directly bracing. 1 Row at midpt (size) 13=0-3-0, Max Horiz 21=231 (L Max Uplift 13=-49 (L 21=-56 (LC Max Grav 13=439 (L 21=1630 (athing directly applied cept end verticals, an 1-7 max.): 5-8. applied or 10-0-0 oc 3-19, 5-17, 7-17, 8-19 10-14 14=0-3-8, 21=0-3-8 C 11) C 13), 14=-8 (LC 8), C 12) C 51), 14=1797 (LC LC 2)	2) i or 3) d 3, 5, 4) 5) 6) 7) 3), 8)	Wind: ASCE Vasd=95mph II; Exp B; End cantilever left Lumber DOL TCLL: ASCE DOL=1.15 Pl snow); Pf=16 Plate DOL=1 Ct=1.10, Lu= Unbalanced design. This trush a load of 12.0 p overhangs no Provide adeo All plates are This trush a chord live loa	7-10; Vult=120mpl r; TCDL=6.0psf; BC closed; MWFRS (et and right exposed =1.60 plate grip DC 7-10; Pr=20.0 psf ate DOL=1.15); Pc .5 psf (flat roof snc .15); Category II; E 50-0-0 snow loads have b s been designed fc osf or 2.00 times fit pn-concurrent with uate drainage to p 4x6 MT20 unless s been designed fc d nonconcurrent w	h (3-sec CDL=6. nvelope J; porch DL=1.60 (roof liv j=15.0 p w: Lun Exp B; F een con or great at roof li other lir revent other wi other wi other wi othany	cond gust) Opsf; h=30ft; a) exterior zon r right expose b) re load: Lumb bosf (ground aber DOL=1.1 Partially Exp.; astidered for the er of min roof bad of 11.5 p ve loads. water ponding se indicated. D psf bottom other live load	Cat. ne; ed; her 15 f live sf on g. ds.						
TOP CHORD	(ib) - Maximum Comp Tension 1-2=0/66, 2-3=-1828, 5-7=-1501/113, 7-8= 8-10=-1134/110, 10- 2-21=-1560/90, 11-1:	/63, 3-5=-1681/116, -1500/113, 11=-295/59, 11-12=0 3=-378/86	9) //50, 10	* This truss h on the botton 3-06-00 tall b chord and an) Provide mech bearing plate	as been designed in chord in all areas y 1-00-00 wide will y other members, manical connection canable of withsta	for a liv where I fit betw with BC (by oth	e load of 20.0 a rectangle veen the botto CDL = 10.0ps ers) of truss to 6 lb unlift at it	opsf om f. io				TH CA	ROL	
BOT CHORD	20-21=-212/288, 19-2 17-19=-121/1307, 15 14-15=-4/144, 13-14 3-20=-153/66, 3-19= 5-17=-173/389, 7-17: 8-17=-138/996, 8-15: 10-15=-51/1085, 10- 2-20=0/1306, 11-14=	20=-152/1438, 5-17=-38/879, =-42/136 -374/184, 5-19=-34/5 =-859/232, =-565/137, 14=-1610/57, 67/123	11 572, 12	 21, 8 lb uplift Graphical pu or the orienta bottom chord This manufac building comp component for responsibility 	at joint 14 and 49 rlin representation titon of the purlin a ctured truss is desi ponent. The suitat or any particular bu of the building des	lb uplift does no long the gned as pility and iilding is signer p	at joint 13. ot depict the s e top and/or s an individua d use of this s the er ANSI TPI	size II 1 as		Contraction of the second seco	22	SEA 0363	22	A
NOTES (12) 1) Unbalance this design	ed roof live loads have l n.	been considered for	LC	referenced by	y the building code Standard							A. G December	ER LBER. 23,2024	ALL STREET

- 1) Unbalanced roof live loads have been considered for this design.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component for the prevention. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type			Qty	Ply	4293514-	BRAD CUM	IMINGS- W	ILDER	
4293514	T01E	Piggyback	Base		1	1	Job Refer	ence (optior	nal)		170360538
Builders FirstSource (Albermarle)), Albemarle, NC - 28001,		Ru	n: 8.63 S Sep 26	2024 Print: 8.6	630 S Sep 2	6 2024 MiTel	c Industries, Ir	nc. Sat Dec 2	1 01:31:27	Page: 1
			ID:	d3H8ALmTAq4ifL	moqLxFbsyMc	bK-RfC?Psl	370Hq3NSgF	PqnL8w3uITX	bGKWrCDoi7	'J4zJC?f	
							31-9-13		37-6-13		10 5 0
-1-8-0	6-7-5	12-11-3	18-1-0	21-10-5	28-1-11	1 29-6	-11	36-0-4 3	-0-5	45-2-0	46-5-0
1-8-0	6-7-5	6-3-13	5-1-13	3-9-5	6-3-6	1-4-	15	4-2-7	1-0-1	7-5-7	1-3-0
					6x8💊		2-0-0		0-1-12		

Plate Offsets (X, Y):	[2:0-2-12,0-2-0], [5:0-2-8,0-2-4], [8:0-4-0,0-2-4], [19:0-3-0,0-3-4], [25:0-4-8,0-2-8], [31:0-2-12,0-2-0], [34:0-2-8,0-4-0]

Loading		(psf) 20.0	Spacing Plate Grip DOI	2-0-0 1 15		CSI	0.33	DEFL Vert(II)	in -0.08	(lc 37-	oc) 38	l/defl >999	L/d 360	PLATES	GRIP 244/190	
Snow (Pf/Pa)	1	6.5/15.0	Lumber DOL	1.15		BC	0.60	Vert(CT)	-0.16	37-	38	>999	240			
TCDL		10.0	Rep Stress Incr	YES		WB	0.48	Horz(CT)	0.05		33	n/a	n/a			
BCLL		0.0*	Code	IRC2	015/TPI2014	Matrix-S		Wind(LL)	0.06	37-3	38	>999	240			
BCDL		10.0	0000						0.00	0.			2.0	Weight: 504 lb	FT = 20%	
		0.2			TOP CHORD	1-2=0/66, 2-3=-233	34/122, 3 3=-2024	3-5=-2232/18 /195	9,	3)	Truss	s desigi For st	ned fo	r wind loads in th	e plane of the tru	uss e)
BOT CHORD	2x0 SF N	0.2				8-9=-233/147 9-12	2024/ 2=-233/1	47			see S	Standar	d Indi	istry Gable End I	Details as applica	able
WERS	2x4 SP N	0.2				12-14=-233/147. 14	4-17=-2	33/147.			or co	nsult a	Jalifie	d building design	er as per ANSI/T	PI 1.
OTHERS	2x4 SP N	0.2				17-19=-233/147, 19	9-21=-2	65/137,		4)	TCLL	: ASCE	E 7-10	; Pr=20.0 psf (ro	of live load: Lum	ber
BRACINC	274 01 11	0.2				21-22=-340/129, 22	2-27=-3	60/80,		,	DOL=	=1.15 F	late D	OL=1.15); Pg=1	5.0 psf (ground	
	Structura	wood she	athing directly applied	dor		27-28=-195/24, 28-	-29=-29	0/22,			snow); Pf=1	6.5 ps	f (flat roof snow:	Lumber DOL=1.	.15
	4-8-4 oc r	nurling ev	cent end verticals an	nd		29-30=-331/12, 30-	-31=-39	1/0, 31-32=0/	50,		Plate	DOL=	1.15);	Category II; Exp	B; Partially Exp.;	;
	2-0-0 00 1	ourlins (4-1	1-1 max): 5-19 8-34	4		2-44=-1979/135, 8-	10=-21	68/230,			Ct=1.	.10, Lu:	=50-0-	0		
BOT CHORD	Rigid ceil	ina directly	applied or 10-0-0 oc			10-11=-2218/239,	11-15=-	2255/248,		5)	Unba	lanced	snow	loads have beer	considered for t	this
	bracing.					15-16=-2376/281,	16-18=-	2504/240,		_	desig	in.				
WEBS	1 Row at	midpt	6-40, 16-38, 3-41			18-20=-2567/265, 2	20-23=-	2553/257,		6)	Ihist	truss ha	as bee	en designed for g	reater of min roo	it live
JOINTS	1 Brace a	at Jt(s): 11,				23-24=-2581/246, 2	24-26=-	150/102,			load	of 12.0	pst or	2.00 times flat ro	of load of 11.5 p	ost on
	10, 15, 18	3, 20, 23,				20-34=-180/104, 3	1-33=-4	02/0			overr	nangs r	ion-co	ncurrent with oth	er live loads.	
	46, 47				BUICHURD	43-44=-215/300, 4	1-43=-2	07/1850,		<i>1)</i>		de ade		MT20 upload oth	ent water pondin	ig.
REACTIONS	(size)	33=9-3-8,	34=9-3-8, 35=0-3-8,	,		37-38-200/2228	35-37	190/1900,		0)	All pla	ates an	∃ZX4 fullv el	hostbod from on	erwise mulcaled.	•
		44=0-3-8				34-35=-45/335_33-	34-47	43/333, /175		9)	hrace	ad adai	net lat	eral movement (i	e diagonal web	y v)
	Max Horiz	44=232 (L	.C 11)		WEBS	11-12 = -61/15 9-10)=-86/16	14-15=-202	/58	10)	Gable	e studs	space	ed at 2-0-0 oc	.c. diagonal web).
	Max Uplift	34=-255 (44=-103 (LC 13), 35=-135 (LC LC 12)	; 9),	TTEBO	17-18=-105/51, 20-	-21=-19	/24, 7/7_28-451	0/64	11)	This t	truss ha	as bee	en designed for a	10.0 psf bottom	ada
	Max Grav	33=523 (L 35=2445 (C 51), 34=329 (LC 4 (LC 34), 44=2052 (LC	45), C 2)		29-46=-38/25, 30-4	-20=-12 	, 3-43=-251/8	0/04, 37, 200		CHOIC		au noi			aus.
FORCES	(lb) - Max	imum Com	pression/Maximum			2/-351007/120	24-300/ I	168/1063	309,					WAH CA	ROUL	
	Tension					8-38=-3/782 16-38	2	100/1903, 12 8-40=-54/2	237				1	R		
						5-40=-192/786. 3-4	1 = -307	/168. 2-43=0/	1685.			/	<	U. FESS	tor V:	-
						27-34=-369/184. 34	4-45=-9	4/272.	,			6	25		in	
						45-46=-90/257, 46-	47=-88	/256,				<		2		6
						31-47=-87/256						-		CE A	n 1.	=
					NOTES (17)							=	:	SLA	- :	=
					1) Unbalanced	d roof live loads have	e been (considered fo	r			=		0363	22 :	-
					this design.							-				-
					2) Wind: ASC	E 7-10; Vult=120mp	h (3-seo	cond gust)				-	2	1. Sec. 1. Sec	1 - A - A - A - A - A - A - A - A - A -	5
					Vasd=95m	oh; TCDL=6.0psf; B	CDL=6.	0psf; h=30ft; 0	Cat.				10	N. SNOW	FFR. X :	2
					II; Exp B; E	nclosed; MWFRS (e	envelope	e) exterior zor	ne;				1	P. GIN	5. 64 8	
					cantilever le	eft and right exposed	d ; Lumb	per DOL=1.60)				1	CA C	II BEIN	

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-10; Vult=120mph (3-second gust) 2) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; Lumber DOL=1.60 plate grip DOL=1.60

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITTER REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTeR% connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPH Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) with the Section of the prevent collapse contervent for the Sectional temporation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	4293514-BRAD CUMMINGS- WILDER	
4293514	T01E	Piggyback Base	1	1	Job Reference (optional)	170360538

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Sat Dec 21 01:31:27

ID:d3H8ALmTAq4ifLmoqLxFbsyMcbK-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

Builders FirstSource (Albermarle), Albemarle, NC - 28001,

- 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 1-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 103 lb uplift at joint 44, 255 lb uplift at joint 34 and 135 lb uplift at joint 35.
- 14) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

15) N/A

- 16) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.
- 17) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).
- LOAD CASE(S) Standard
- 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (lb/ft)

Vert: 1-2=-43, 2-5=-43, 5-8=-53, 8-19=-53, 19-31=-43, 31-32=-43, 41-44=-20, 35-41=-80 (F=-60), 33-35=-20

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	4293514-BRAD CUMMINGS- WILDER	
4293514	T02	Piggyback Base	2	1	Job Reference (optional)	170360539

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Sat Dec 21 01:31:27 ID:iwatPrh?D6ImW7fWM_cnXByNtzm-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

			-										
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDI	(psf) 20.0 16.5/15.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-S	0.54 0.38 0.77	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.09 -0.17 0.10 0.06	(loc) 19-20 19-20 14 20	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20	GRIP 244/190
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x6 SP No.2 2x6 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood shee 4-6-4 oc purlins, ext 2-0-0 oc purlins (4-1 Rigid ceiling directly bracing, Except: 6-0-0 oc bracing: 15 1 Row at midpt (size) 14=0-3-0, Max Horiz 23=231 (L Max Uplift 14=-158 (Max Grav 14=146 (L 23=1566 (L athing directly applied cept end verticals, an 0-12 max.): 5-9. applied or 10-0-0 oc -17. 6-19, 8-18, 8-17, 11- 15=0-3-8, 23=0-3-8 C 11) LC 48), 23=-56 (LC 1 C 51), 15=2114 (LC LC 2)	1) 2) d or (d 3) 15 4) 2) 2), 6)	Unbalanced this design. Wind: ASCE Vasd=95mph II; Exp B; Enc cantilever left Lumber DOL TCLL: ASCE DOL=1.15 Pl snow); Pf=16 Plate DOL=1 Ct=1.10, Lu= Unbalanced design. This truss ha load of 12.0 p overhangs adec	roof live loads hav 7-10; Vult=120m; n; TCDL=6.0psf; E closed; MWFRS (t and right expose =1.60 plate grip E 7-10; Pr=20.0 ps late DOL=1.15); F 8.5 psf (flat roof sr .15); Category II; .50-0-0 snow loads have s been designed psf or 2.00 times f on-concurrent with	ve been of GCDL=6.1 GCDL=6.1 envelope d; porch OCL=1.60 f (roof liv g=15.0 p ow: Lurr Exp B; F been cor for great lat roof lo o other lin prevent i	considered fc cond gust) Dpsf; h=30ft;) exterior zon n right expose) e load: Lumb ssf (ground iber DOL=1.1 'artially Exp.; nsidered for the er of min roof pad of 11.5 p re loads.	or Cat. ne; ed; der 15 his f live sf on				weight: 409 ib	FT = 20%
FORCES	(lb) - Maximum Com Tension 1-2=0/66, 2-3=-1673 5-6=-1932/165, 6-8= 8-9=-623/165, 9-11= 11-12=-80/438, 12-1 12-14=-112/200	pression/Maximum /70, 3-5=-2132/139, -1729/136, -866/147, 3=0/50, 2-23=-1513/	7) 8) 9) 83,	All plates are This truss ha chord live loa * This truss h on the botton 3-06-00 tall b	4x6 MT20 unless s been designed ad nonconcurrent has been designed n chord in all area by 1.00-00 wide w	s otherwi for a 10.0 with any d for a liv s where ill fit betv	se indicated.) psf bottom other live loa e load of 20.0 a rectangle veen the botto	ids. Opsf om				TH CA	ROUT
BOT CHORD	12-14=-112/209 22-23=-201/247, 21- 20-21=-182/1696, 15 18-19=-105/1267, 17 15-17=-299/49, 14-1 3-22=-743/130, 3-21 5-21=-126/160, 5-20 6-20=-61/613, 6-19= 8-19=-108/965, 8-18 8-17=-109/1151, 9-1 11-17=-88/1279, 11- 2-22=0/1278, 12-15=	22=-184/1399, -20=-175/1873, 7-18=-86/1150, 5=-47/109 =-73/1022, -871/185, =-356/102, 7=0/217, 15=-1895/12, 348/71	10 11 12	chord and an) Provide mecl bearing plate 23 and 158 lt) Graphical pu or the orienta bottom chord) This manufac building comp component for responsibility referenced b	<pre>vy other members hanical connectiou c capable of withsts b uplift at joint 14. rlin representation attion of the purlin i l. ctured truss is des ponent. The suits or any particular b or of the building de or the building cond with a building cond</pre>	, with BC n (by oth anding 5 n does no along the signed as ubility and uilding is esigner p	UL = 10.0ps ers) of truss t i6 lb uplift at j ot depict the s top and/or an individua d use of this the er ANSI TPI	r. to joint size Il 1 as		Contraction of the second		SEA 0363	L 22 EERATUU
NOTES (12)	, , , , , , , , , , , , , , , , ,	0.000	LC	DAD CASE(S)	Standard	e.						A. G	ILBLUM

December 23,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component for the prevention. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	4293514-BRAD CUMMINGS- WILDER	
4293514	T02C	Piggyback Base	3	1	Job Reference (optional)	170360540

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Sat Dec 21 01:31:28 ID:hvftULCXhWPUwrPRvbK0qZyNtvD-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	4293514-BRAD CUMMINGS- WILDER	
4293514	T02D	Piggyback Base	7	1	Job Reference (optional)	170360541

1)

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Sat Dec 21 01:31:28 ID:Jwx?W7gwKORvEoGPgfS5QtyNtql-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

818 Soundside Road

Edenton, NC 27932

bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	4293514-BRAD CUMMINGS- WILDER	
4293514	T02E	Piggyback Base	1	1	Job Reference (optional)	170360542

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Sat Dec 21 01:31:28 ID:H5LM1n5fCwS7PxAe0rjCOlyMcLP-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:87.2

Continued on page 2

Plate Offsets ((X, Y): [2:0-	-2-8,0-2-8],	[5:0-5-0,0-3-2], [8:0	-4-0,0-1-8],	[18:0-6-0,0-	3-0], [19:0-3-0,0-3-	4], [25:0-	4-8,0-2-8], [36	5:0-2-8,0	-4-0],	[40:0-5-4,	0-3-8],	[44:0-5-8,0-3-	8], [45:0-	7-14,Edge	<u>위</u>
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	11	(psf) 20.0 6.5/15.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2015	5/TPI2014	CSI TC BC WB Matrix-S	0.72 0.86 0.55	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.15 -0.32 0.14 0.12	(loc) 41-42 41-42 37 41-42	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 499	GRIF 244/ Ib FT =	5 190 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS JOINTS	2x6 SP N 2x6 SP N 2x4 SP N 2x4 SP N Structural 3-6-12 oc 2-0-0 oc p Rigid ceili bracing. 1 Row at 1 Brace a 10, 14, 20	0.2 0.2 0.2 0.2 I wood she: purlins, e purlins (3-1 ing directly midpt tt Jt(s): 13, 0, 22, 18	athing directly applie xcept end verticals, 0-11 max.): 5-19, 8- applied or 6-0-0 oc 11-40	TO ed or and 36. BC	DP CHORD	1-2=0/66, 2-3=-21 5-6=-2917/299, 6- 9-12=-69/246, 12- 15-17=-69/246, 12- 15-17=-69/246, 12- 19-21=-74/245, 22 23-27=-63/223, 27 28-29=-51/177, 22 31-32=0/50, 2-45= 8-10=-2641/281, 2 11-13=-2535/261, 14-18=-2653/292, 20-22=-2799/281, 24-26=-123/162, 2 44-45=-204/258, 4 42-45=-204/258, 4 42-45=-205/258, 4 42-45=-205/258	81/131, ; 8=-2916, 15=-69/2 7-19=-68, 1-23=-90, 7-28=-39, 3-30=-41, =-1925/1; 10-11=-2 13-14=-; 18-20=-; 22-24=-; 26-36=-1 13-44=-2; 41, 42=-2;	3-5=-2984/253 2/299, 8-9=-69/ 2/244, 2/244, 2/24, 2/71, 30-31=-4£ 33, 31-33=-15/ 2/594/279, 2/55/278, 2838/261, 19/49 42/1830, 272/222	3, /246, 8/50, 6/37,	3) Tr or se or 4) TC 5) Ui 5) Ui 6) Tr 6) Tr	uss desig ly. For st e Standar consult q CLL: ASC DL=1.15 F low); Pf=1 ate DOL= =1.10, Lu balancec sign. nis truss h ad of 12.0 erhangs r ovide add	ned fo tuds ex rd Indu ualified E 7-10 Plate D 6.5 ps 1.15); =50-0- d snow as bee psf or non-co	r wind loads in sposed to wind istry Gable En d building desi ; PT=20.0 psf (OL=1.15); Pg; f (flat roof sno Category II; E: 0 loads have be en designed fo 2.00 times fla ncurrent with o	the plane (normal d d Details gner as p roof live I =15.0 psf w: Lumbe xp B; Par en consi r greater t roof loar other live	e of the tru to the face as applica as applica er ANSI/TI oad: Lumb (ground r DOL=1.1 tially Exp.; dered for ti dered for ti of min root d of 11.5 p loads.	ISS)), Ible, PI 1. Der 15 his f live osf on
REACTIONS	(size) Max Horiz Max Uplift Max Grav (lb) - Max Tension	33=9-3-8, 37=0-3-8, 45=232 (L 33=-13 (L 35=-132 (45=-106 (33=176 (L 45=124 (L 45=194 (L	34=9-3-8, 35=9-3-8 45=0-3-8 .C 11) C 13), 34=-53 (LC 1 LC 50), 37=-112 (LC LC 12) .C 51), 34=157 (LC .C 45), 37=2956 (LC (LC 2) pression/Maximum	3), WE 2 9), WE 27), 2 2),	EBS	42-43=-27/3/2492, 40-41=-208/2216, 37-39=-90/167, 36 35-36=-25/54, 34- 12-13=-99/26, 92 29-35=-82/185, 30 3-44=-1017/168, 2 5-43=-310/110, 18 24-37=-2442/125, 11-40=-506/85, 18 6-42=-404/154, 5 8-42=-150/1197, 2 27-36=-85/27, 36- 29-46=-183/92, 1	41-42=- 39-40=- 3-37=-90, 35=-25;6 0=-129/3)-21=-86, 3-46=-11,)-34=-11, 2-44=-21, 3-39=-13 24-39=- 3-40=-23; 42=-203, 3-43=-59, 46=-183, -41=-32,	221/2333, 193/2109, (167, 13, 14-15=-97/ /5, 22-23=-185 (10, 4/75, 1/1681, 1/134, 190/2232, 9/0, 8-41=-10/ (1942, (775, 1/100, /356	/54 /26, 5/85, /354,	7) Fi 8) Al 9) Tr br 10) Gi 11) Tr ch	I plates ar uss to be aced agai able studs his truss h ord live lo	re 2x4 fully sl inst late s space as bee bad not	MT20 unless of heathed from of eral movemen ed at 2-0-0 oc. on designed fo hoconcurrent with OFTHO SEE	AL	indicated. or securely gonal web) sf bottom her live loa	g. /). ads.
				NC 1) 2)	DTES (17) Unbalance this design. Wind: ASC Vasd=95m II; Exp B; E cantilever la	d roof live loads ha E 7-10; Vult=120m ph; TCDL=6.0psf; E inclosed; MWFRS (ve been o ph (3-sec 3CDL=6.0 envelope	considered for cond gust) Opsf; h=30ft; C e) exterior zon per DOI =1 60	Cat. e;		1111	A A A A A A A A A A A A A A A A A A A	036	322 NEER GILB	ERIT	ninn.

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; Lumber DOL=1.60 plate grip DOL=1.60

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE WARNING Design valid for use only with MTek connectors. This design is based only upon parameters and property incorporate this design is based only upon parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

A. GILL G

December 23,2024

Job	Truss	Truss Type	Qty	Ply	4293514-BRAD CUMMINGS- WILDER	
4293514	T02E	Piggyback Base	1	1	Job Reference (optional)	170360542

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Sat Dec 21 01:31:28

ID:H5LM1n5fCwS7PxAe0rjCOlyMcLP-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

Builders FirstSource (Albermarle), Albemarle, NC - 28001,

- 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 1-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 106 lb uplift at joint 45, 13 lb uplift at joint 33, 132 lb uplift at joint 35, 53 lb uplift at joint 34 and 112 lb uplift at joint 37.
- 14) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

15) N/A

- 16) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.
- 17) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).
- LOAD CASE(S) Standard
- 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (lb/ft)

Vert: 1-2=-43, 2-5=-43, 5-8=-53, 8-19=-53, 19-31=-43, 31-32=-43, 44-45=-20, 43-44=-20, 42-43=-80 (F=-60), 40-42=-80 (F=-60), 37-40=-80 (F=-60), 33-37=-20

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	4293514-BRAD CUMMINGS- WILDER	
4293514	Т03	Piggyback Base	4	1	Job Reference (optional)	170360543

11-6-0

19 27 18 17 28 15 29 13 16 14 3x4 II 3х4 **п** 4x6= 4x6= 4x8= 4x8= 4x8= 4x6= 4x6= 6-7-5 13-0-15 18-1-0 23-1-1 29-6-11 36-2-0 4 6-7-5 6-5-9 5-0-1 5-0-1 6-5-9 6-7-5 Scale = 1:71.2

Plate Offsets (X, Y): [2:0-2-14,0-2-0], [5:0-4-0,0-1-6], [7:0-4-0,0-1-6], [10:0-2-14,0-2-0]

_														
Loa	ading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCI	LL (roof)	20.0	Plate Grip DOL	1.15		TC	0.51	Vert(LL)	-0.05	14-16	>999	360	MT20	244/190
Sno	ow (Pf/Pg)	16.5/15.0	Lumber DOL	1.15		BC	0.30	Vert(CT)	-0.10	14-16	>999	240		
TCI	DL	10.0	Rep Stress Incr	YES		WB	0.34	Horz(CT)	0.03	12	n/a	n/a		
BC	LL	0.0*	Code	IRC201	5/TPI2014	Matrix-S		Wind(LL)	0.03	18-19	>999	240		
BC	DL	10.0											Weight: 304 lb	FT = 20%
LUI	MBER			3)	TCLL: ASCE	7-10; Pr=20.0 psf	f (roof liv	e load: Lumb	ber					
TO	P CHORD	2x4 SP No.1			DOL=1.15 P	ate DOL=1.15); P	g=15.0 p	osf (ground						
BO	T CHORD	2x6 SP No.2			snow); Pf=16	6.5 psf (flat roof sn	ow: Lum	ber DOL=1.1	15					
WE	BS	2x4 SP No.2			Plate DOL=1	.15); Category II;	Exp B; P	artially Exp.;						
BR.	ACING				Ct=1.10, Lu=	50-0-0								
то	P CHORD	Structural wood shea	athing directly applie	ed or ⁴⁾	Unbalanced	snow loads have b	been cor	nsidered for t	his					
		4-2-9 oc purlins, exe	cept end verticals, a	nd 5)	This truss ha	s been designed f	or areat	er of min root	flive					
		2-0-0 oc purlins (5-7	-3 max.): 5-7.		load of 12.0	osf or 2.00 times fl	at roof lo	ad of 11.5 p	sfon					
BO	I CHORD	kigid celling directly	applied or 10-0-0 oc	2	overhangs n	on-concurrent with	other liv	/e loads.						
	BS	1 Row at midnt	1-18 6-16 8-14	6)	Provide adeo	uate drainage to p	orevent v	water pondin	g.					
			20.029	7)	This truss ha	s been designed f	or a 10.0) psf bottom						
RE/	ACTIONS	(SIZE) 12=0-3-0, Mox Horiz 20-221 (I	20=0-3-0		chord live loa	ad nonconcurrent v	with any	other live loa	ads.					
		Max Liplift 12-60 (L	C 13) 2060 (I C 1)	2) 8)	* This truss h	as been designed	l for a liv	e load of 20.	0psf					
		Max Grav 12=1544 ((LC 2) 20=1544 (LC	2) (2)	on the bottor	n chord in all area	s where	a rectangle						
FO	RCES	(lb) - Maximum Com	pression/Maximum	, _)	3-06-00 tall t	y 1-00-00 wide wi	II fit betv	veen the bott	om f					
10		Tension	pression/maximum	0)	Provide med	banical connection	with bu	DL = 10.0ps	to					
то	P CHORD	1-2=0/72. 2-4=-1650	/66. 4-5=-1473/123.	3)	bearing plate	canable of withst	anding 6	0 lb uplift at i	ioint					
		5-6=-1193/116, 6-7=	-1193/116,		20 and 60 lb	uplift at joint 12.	anango	o io apint at j	joint					
		7-8=-1474/123, 8-10	=-1652/66, 10-11=0	/72, 10) Graphical pu	rlin representation	does no	ot depict the	size					
		2-20=-1477/92, 10-1	2=-1477/91		or the orienta	ation of the purlin a	along the	top and/or						111.
BO	T CHORD	19-20=-217/292, 18-	19=-77/1347,		bottom chord	l.							W'UL CA	Dille
		16-18=-31/1115, 14-	16=0/1098,	11	1) This manufa	ctured truss is des	igned as	an individua	al				"ATH UN	TO UL
		13-14=0/1259, 12-13	3=-29/99		building com	ponent. The suita	bility and	d use of this				~	OFFERS	Nº1
VVE	BS	4-19=-143/77, 4-18=	-387/177, 5-18=-55/	467,	component fo	or any particular b	uilding is	the				33	1251	This and
		5-10=-133/334, 0-10	=-483/128,		responsibility	of the building de	signer p	er ANSI TPI	1 as		2		101 -	NUI
		7-10=-133/334, 7-14	=-33/471, - 142/77-2-10-0/11	. 217	referenced b	y the building code	э.				-			
		10-13=0/1217		217, μ	OAD CASE(S)	Standard					=	:	SEA	L : =
NO	TES (11)	10 10-0/1211									Ξ.		0363	22 E
1)	Unhalance	ed roof live loads have	been considered for	r									. 0000	: E
''	this design	n.												1 2
2)	Wind: ASC	CE 7-10; Vult=120mph	(3-second gust)									2.	N. En	Rix S
,	Vasd=95m	nph; TCDL=6.0psf; BC	DL=6.0psf; h=30ft; C	Cat.								20	S. GIN	EF. AN
	II; Exp B; I	Enclosed; MWFRS (en	velope) exterior zon	e;								1	C .	IL BEIN
	cantilever	left and right exposed	· Lumber DOI =1 60										IT A G	IL- IN

- this design.
- Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; 2) cantilever left and right exposed ; Lumber DOL=1.60 plate grip DOL=1.60

minimum) December 23,2024

A.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	4293514-BRAD CUMMINGS- WILDER	
4293514	T03E	Piggyback Base Supported Gable	1	1	Job Reference (optional)	170360544

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Sat Dec 21 01:31:29 ID:w4WBO0LuHfjj3LaTnIRMMsyMc9T-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Plate Offsets (X, Y): [10:0-3-0,0-0-1], [16:0-3-0,0-0-1]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL	16	(psf) 20.0 6.5/15.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	15/TPI2014	CS TC BC WI Ma	SI C B atrix-R	0.19 0.08 0.16	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 26	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/19	0
BCDL		10.0												Weight: 352	b FT = 20	ጋ%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP N 2x6 SP N 2x4 SP N 2x4 SP N Structural 6-0-0 oc p 2-0-0 oc p Rigid ceili	o.1 o.2 o.2 l wood shea purlins, exo purlins (10- ing directly	athing directly applie cept end verticals, ar 0-0 max.): 10-16. applied or 6-0-0 oc	d or nd	٩	Max G	Grav 26=262 28=186 30=259 32=259 35=235 37=235 40=262 42=259 44=183 46=277	(LC 26), (LC 45), (LC 45), (LC 47), (LC 40), (LC 40), (LC 40), (LC 43), (LC 43), (LC 27)	27=227 (LC 29=274 (LC 31=268 (LC 34=260 (LC 36=234 (LC 38=262 (LC 41=267 (LC 43=275 (LC 45=241 (LC	11), 45), 45), 46), 40), 48), 43), 43), 10),	NOTES 1) Un this 2) Win Vas II; I car pla 3) Tru onl	5 (16) balanced s design. nd: ASCE sd=95mp Exp B; En ntilever le te grip D iss desig y. For st	I roof I E 7-10 h; TC nclose ft and OL=1. ned fo uds ex	ive loads have ; Vult=120mph DL=6.0psf; BC d; MWFRS (en right exposed 60 r wind loads in xposed to wind	been consi (3-second g DL=6.0psf; velope) ext ; Lumber D the plane c (normal to	dered for gust) h=30ft; Cat. .erior zone; OL=1.60 of the truss the face),
	bracing.			F	ORCES	(lb) -	Maximum Co	mpressio	on/Maximum		see	Standa	rd Indu	ustry Gable End	d Details as	applicable,
WEBS	1 Row at	midpt	13-36, 12-37, 11-38, 9-40, 8-41, 14-35, 15 17-32, 18-31	5-34, Т	OP CHORD	Tens 2-46 3-4=	sion =-212/102, 1-2 -103/128, 4-5=	2=0/72, 2 =-94/163	2-3=-154/167 , 5-7=-81/198	, 3,	4) TC DC	consult q LL: ASC L=1.15 F	ualifie E 7-10 Plate E	d building desig); Pr=20.0 psf (i)OL=1.15); Pg=	iner as per roof live loa =15.0 psf (g	ANSI/TPL1. d: Lumber round
REACTIONS	(size) Max Horiz Max Uplift	26=36-2-0 29=36-2-0 32=36-2-0 40=36-2-0 43=36-2-0 46=231 (L 26=-128 (l 28=-28 (L 30=-50 (L) 35=-26 (L) 47=-26 (L) 44=-26 (L) 44=-146 (l	0, 27=36-2-0, 28=36- 0, 30=36-2-0, 31=36- 0, 34=36-2-0, 35=36- 0, 37=36-2-0, 38=36- 0, 41=36-2-0, 42=36- 0, 41=36-2-0, 45=36- 1, C 11) LC 9), 27=-164 (LC 1 C 13), 29=-62 (LC 13 C 13), 31=80 (LC 13 C 9), 36=-17 (LC 9), C 8), 41=-79 (LC 12), C 12), 43=-63 (LC 12 C 12), 45=-174 (LC 1 LC 8)	2-0, 2-0, 2-0, 2-0, 2-0, 2-0, 2-0, (13), 3), 3), (, 2), 12), V	BOT CHORD	7-8= 10-1 13-14 16-11 18-12 23-22 45-44 43-44 43-44 43-44 43-44 43-44 41-4: 38-43 31-33 29-33 27-22 13-33 11-33 7-422 32-45- 15-33 18-3 21-22 23-22	$\begin{array}{l} -68/231, 8-9=\\ 1=-9/235, 11-1\\ 4=-9/235, 14-1\\ 7=-33/231, 17\\ 9=-57/221, 19\\ 2=-82/153, 22\\ 4=-136/149, 2\\ 6=-114/120, 4\\ 4=-114/120, 4\\ 2=-114/120, 4\\ 2=-114/120, 3\\ 5=-114/120, 3\\ 5=-114/120, 3\\ 5=-114/120, 3\\ 5=-114/120, 3\\ 2=-114/120, 3\\ 2=-114/120, 3\\ 2=-114/120, 3\\ 2=-114/120, 3\\ 2=-114/120, 3\\ 2=-114/120, 3\\ 3=-114/120, 3\\ 3=-114/120, 3\\ 3=-114/120, 3\\ 3=-116/21, 3=-114/120, 3\\ 3=-162/12, 9=-114/120, 3\\ 3=-162/12, 9=-114/120, 3\\ 3=-162/12, 9=-114/120, 3\\ 3=-162/12, 9=-114/120, 3\\ 3=-162/12, 9=-114/120, 3\\ 3=-162/12, 9=-114/120, 3\\ 3=-162/12, 9=-114/120, 3\\ 3=-162/12, 9=-114/120, 3\\ 3=-162/12, 9=-114/120, 3\\ 3=-162/12, 9=-114/120, 3\\ 3=-169/12, 9=-114/120, 3\\ 3=-169/12, 9=-114/120, 3\\ 3=-127/114\\ 3=-127/$	57/280, 12=-9/23 15=-9/23 18=-45/ -21=-70/ -23=-89/ 4-45=-17 2-43=-11 0-41=-11 7-38=-11 2-34=-11 0-31=-11 8-29=-11 6-27=-11 37=-165/ 33=-169/8 -35=-165- 35=-169/8 -35=-165/ 9-30=-162/ 9-30=-	9-10=-35/23; 5, 12-13=-9/2; 5, 15-16=-9/2; 269, 188, 117, '2, 24-26=-20; 14/120, 14/1	2, 235, 235, 02/90 /102, /70,	sno Pla Ct= 5) Un des 6) Thi loa ove	ww); Pf=1 te DOL= 11.10, Lu balancec sign. s truss h d of 12.0 erhangs r	6.5 ps 1.15); =50-0 l s now as bee psf or non-cc	of (flat roof snow Category II; E)- o loads have be en designed for r 2.00 times flat oncurrent with o CH C ES SE 036	v: Lumber E p B; Partial en consider greater of 1 roof load o ther live loa AR AL 322 NEEER GILBE	DOL=1.15 Ily Exp.; red for this min roof live if 11.5 psf on ads.

Continued on page 2

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE WARNING Design valid for use only with MTek connectors. This design is based only upon parameters and property incorporate this design is based only upon parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

December 23,2024

Job	Truss	Truss Type	Qty	Ply	4293514-BRAD CUMMINGS- WILDER	
4293514	T03E	Piggyback Base Supported Gable	1	1	Job Reference (optional)	170360544
Builders FirstSource (Albermarle). Albemarle, NC - 28001.	Run: 8.63 S Sep 26 2	2024 Print: 8	630 S Sep 2	6 2024 MiTek Industries, Inc. Sat Dec 21 01:31:29	Page: 2

ID:w4WBO0LuHfjj3LaTnIRMMsyMc9T-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Builders FirstSource (Albermarle), Albemarle, NC - 28001,

- 7) Provide adequate drainage to prevent water ponding.
- 8) All plates are 2x4 MT20 unless otherwise indicated.
- 9) Gable requires continuous bottom chord bearing.
- 10) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). 11) Gable studs spaced at 2-0-0 oc.
- 12) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 13) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 1-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 14) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 146 lb uplift at joint 46, 128 lb uplift at joint 26, 17 lb uplift at joint 36, 26 Ib uplift at joint 37, 79 lb uplift at joint 41, 50 lb uplift at joint 42, 63 lb uplift at joint 43, 26 lb uplift at joint 44, 174 Ib uplift at joint 45, 26 lb uplift at joint 35, 80 lb uplift at joint 31, 50 lb uplift at joint 30, 62 lb uplift at joint 29, 28 Ib uplift at joint 28 and 164 lb uplift at joint 27.
- 15) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 16) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	4293514-BRAD CUMMINGS- WILDER	
4293514	Т04	Piggyback Base	3	1	Job Reference (optional)	170360545

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Sat Dec 21 01:31:30 ID:zANSr3?SRZVQUkop83hY5yyMcUa-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Dec 21 01:31:30 Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

A MiTek Af 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	4293514-BRAD CUMMINGS- WILDER	
4293514	T04A	Piggyback Base	1	1	Job Reference (optional)	170360546

BCDL

1)

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries. Inc. Sat Dec 21 01:31:30 ID:wecwX?rMy3JUtU8GEmyzxjyMcTU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	4293514-BRAD CUMMINGS- WILDER	
4293514	Т05	Piggyback Base	6	1	Job Reference (optional)	170360547

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Sat Dec 21 01:31:31 ID:EZaqkjyZjQHBoiW57Y_dDWyMcKJ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Plate Offsets (X, Y): [5:0-2-8,0-1-0], [7:0-2-8,0-0-12], [14:0-4-4,0-2-0], [17:0-5-8,0-3-4]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 16.5/15.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-S	0.30 0.59 0.33	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.20 -0.35 0.04 0.02	(loc) 11-12 11-12 11 15-16	l/defl >999 >852 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 239 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.1 2x4 SP No.1 *Excep 2x4 SP No.2 *Excep Structural wood shea 5-8-7 oc purlins, exc 2-0-0 oc purlins (6-0 Rigid ceiling directly bracina. Except:	t* 18-3,6-13:2x4 SP t t* 19-2,11-9:2x4 SP t athing directly applied sept end verticals, an -0 max.): 5-7. applied or 10-0-0 oc	2) No.2 No.1 H or 3) d	Wind: ASCE Vasd=95mph II; Exp B; End cantilever left plate grip DC TCLL: ASCE DOL=1.15 Pl snow); Pf=16 Plate DOL=1 Ct=1.10, Lu=	7-10; Vult=120mpł ; TCDL=6.0psf; BC closed; MWFRS (e and right exposed L=1.60 7-10; Pr=20.0 psf ate DOL=1.15); Pg .5 psf (flat roof snc .15); Category II; E 50-0-0	n (3-sec CDL=6. nvelope ; Lumb (roof liv =15.0 p w: Lum xp B; F	ond gust) Opsf; h=30ft; (o) exterior zor ver DOL=1.60 e load: Lumb vsf (ground ber DOL=1.1 artially Exp.;	Cat. ne;) er 5						
1 Row at midp WEBS REACTIONS	6-0-0 oc bracing: 13- t 6-14 1 Row at midpt (size) 11=0-3-8, Max Horiz 19=232 (L Max Uplift 11=-34 (Li Max Grav 11=1168 (-14,12-13. 5-14, 7-12, 8-11 19=0-3-8 .C 11) C 13), 19=-34 (LC 12 (LC 35), 19=1173 (LC	4) 5)) 6) ; 35) 7)	Unbalanced s design. This truss ha load of 12.0 p overhangs no Provide adeo This truss ha chord live loa	snow loads have b s been designed fo osf or 2.00 times fla on-concurrent with uate drainage to p s been designed fo d nonconcurrent w	een cor or greate at roof le other liv revent v or a 10.0 ith anv	sidered for the or of min roof oad of 11.5 ps re loads. vater ponding) psf bottom other live loa	nis live sf on g. ds.						
FORCES	(lb) - Maximum Com Tension 1-2=0/85, 2-3=-934/ ⁻ 4-5=-961/145, 5-6=-(7-8=-928/131, 8-9=-2 2-19=-1189/159, 9-1	pression/Maximum 133, 3-4=-1149/85, 613/118, 6-7=-610/11 251/165, 9-10=0/85, 1=-345/176	8) 8, 9)	* This truss h on the botton 3-06-00 tall b chord and an Provide mech bearing plate	as been designed a chord in all areas y 1-00-00 wide will y other members, y nanical connection capable of withsta	for a liv where fit betv with BC (by oth nding 3	e load of 20.0 a rectangle veen the botto DL = 10.0psf ers) of truss t 4 lb uplift at it	Opsf om o				WH CA	RO	
BOT CHORD	18-19=-20/33, 17-18 16-17=-227/842, 15- 14-15=-49/682, 13-1 12-13=-84/0, 11-12= 5-15=-104/460, 5-14 7-14=-158/482, 7-12 2-17=-37/780, 8-11-	=-1/25, 3-17=-436/11 16=-97/835, 4=-171/0, 6-14=-370, 0/617 =-116/164, 12-14=0/ =-161/222, -976/0_4-15=-342/18	3, 10) /95, 742, 11)	11 and 34 lb Graphical pu or the orienta bottom chord This manufac building component	uplift at joint 19. rlin representation tion of the purlin al tured truss is designed toonent. The suitable	does no ong the gned as ility and	t depict the s top and/or an individua use of this	size I		Contraction	A A	SEA	The second	Mann
NOTES (11)	4-16=-22/111, 3-16= 17-19=-286/266	-118/221, 8-12=-171,	/216, LO	responsibility referenced by	of the building des the building code Standard	igner p	er ANSI TPI 1	1 as		1111		0303	cR. K	ninin.

NOTES (11)

Scale = 1:73.4

1) Unbalanced roof live loads have been considered for this design.

818 Soundside Road Edenton, NC 27932

A. GILDIN A. GI

December 23,2024

B

C

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component for the prevention. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	4293514-BRAD CUMMINGS- WILDER	
4293514	T05C	Piggyback Base	2	1	Job Reference (optional)	170360548

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Sat Dec 21 01:31:31 ID:0?IrO8UEpSHAXDkV3jmPtlyMcIK-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Plate Offsets (X, Y): [4:0-2-8,0-1-0], [6:0-2-8,0-0-12], [12:0-4-4,0-2-0], [15:0-5-8,0-3-4]

Scale = 1:73.4

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 16.5/15.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-S	0.33 0.60 0.34	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.20 -0.35 0.04 0.02	(loc) 9-10 9-10 9 13-14	l/defl >999 >847 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 232 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.1 2x4 SP No.1 *Excep 2x4 SP No.2 Structural wood she 5-8-1 oc purlins, ex 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing, Except: 6-0-0 oc bracing: 11	t* 16-2,5-11:2x4 SP athing directly applie cept end verticals, ar -0 max.): 4-6. applied or 10-0-0 oc -12 10-11	2) No.2 d or 3) nd 4)	Wind: ASCE Vasd=95mpf II; Exp B; En cantilever lef plate grip DC TCLL: ASCE DOL=1.15 Pl snow); Pf=16 Plate DOL=1 Ct=1.10, Lu= Unbalanced	7-10; Vult=120mp ; TCDL=6.0psf; B(closed; MWFRS (et t and right exposed DL=1.60 7-10; Pr=20.0 psf late DOL=1.15); Pc 5.5 psf (flat roof snot .15); Category II; E :50-0-0 snow loads have b	h (3-sec CDL=6. nvelope d ; Lumb (roof liv g=15.0 p ow: Lum Exp B; F een cor	cond gust) Dpsf; h=30ft;) exterior zon per DOL=1.6(e load: Lumb ber DOL=1.1 'artially Exp.; isidered for th	Cat. ne;) eer !5					
1 Row at midpt WEBS REACTIONS	t 5-12 1 Row at midpt (size) 9=0-3-8, 1 Max Horiz 17=194 (L Max Uplift 9=-5 (LC Max Grav 9=1090 (L	4-12, 6-10, 7-9 17=0-3-8 _C 11) 13), 17=-5 (LC 12) _C 34), 17=1094 (LC	5) 6) 7) 34)	design. Provide adeo This truss ha chord live loa * This truss h on the botton	quate drainage to p is been designed for ad nonconcurrent w has been designed in chord in all areas v 1000 wide wil	orevent of or a 10.0 vith any for a liv where	water ponding 0 psf bottom other live loa e load of 20.0 a rectangle	g. Ids. Opsf					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	8)	chord and ar Provide med	by other members, hanical connection	with BC (by oth	DL = 10.0pst ers) of truss t	f. to					
TOP CHORD	1-2=-932/110, 2-3=- 4-5=-621/120, 5-6=- 7-8=-231/106, 1-17=	1166/84, 3-4=-970/14 618/120, 6-7=-940/12 =-1097/118, 8-9=-232	44, 29, 2/99 9)	bearing plate and 5 lb uplif Graphical pu	e capable of withsta t at joint 17. rlin representation	anding 5 does no	b b uplift at jo	int 9 size					in the second se
BOT CHORD	16-17=-17/31, 15-16 14-15=-240/842, 13- 12-13=-64/647, 11-1 10-11=-84/0, 9-10=0	5=0/23, 2-15=-415/10 -14=-111/822, 12=-171/0, 5-12=-371 0/630	9, /94, 10	or the orienta bottom chorc) This manufa building com	ation of the purlin a l. ctured truss is desi ponent. The suitab	long the gned as	e top and/or an individua	I		4	THE	OPTH CA	ROLLIN
WEBS	4-13=-103/463, 4-12 6-12=-165/484, 6-10 1-15=-87/800, 7-9=- 3-14=-22/112, 2-14= 7-10=-182/216, 15-1	2=-115/167, 10-12=0/)=-136/224, 992/6, 3-13=-346/18(=-114/208, 7=-243/242	708, 6, LC	component for responsibility referenced b	or any particular bu of the building dea y the building code Standard	ilding is signer p	er ANSI TPI	1 as		The second		SEA 0363	L 22
NOTES (10)											-	N	1. 5

1) Unbalanced roof live loads have been considered for this design.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component for the prevention. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	4293514-BRAD CUMMINGS- WILDER			
4293514	T05D	Piggyback Base	6	1	Job Reference (optional)	170360549		

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Sat Dec 21 01:31:31 ID:KnQKzrQb7cRTkozFRKdwM1yMcFq-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:74.8 Plate Offsets (X, Y): [3:0-2-8,0-1-0], [5:0-4-4,0-1-12], [8:0-3-0,0-1-12]

TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psi) 20.0 16.5/15.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr Code	1.15 1.15 YES IRC2015	5/TPI2014	TC BC WB Matrix-S	0.53 0.51 0.82	Vert(LL) Vert(CT) Horz(CT) Wind(LL)	-0.12 -0.32 0.02 0.04	(IOC) 11-12 11-12 9 10-13	>999 >935 n/a >999	360 240 n/a 240	MT20 Weight: 234 lb	244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS JOINTS REACTIONS FORCES TOP CHORD BOT CHORD	2x4 SP No.1 2x6 SP 2400F 2.0E of 15-11:2x4 SP No.2 2x4 SP No.2 Structural wood sheat 3-11-2 oc purlins, (c) 2-0-0 oc purlins (5-1) Rigid ceiling directly bracing. Except: 6-0-0 oc bracing: 11- 1 Row at midpt 1 Brace at Jt(s): 19 (size) 9=0-3-8, 1 Max Horiz 18=-193 (J Max Grav 9=1734 (L (lb) - Maximum Com Tension 1-2=-234/106, 2-3= 4-5=-1036/0, 5-6=-84 7-8=-1765/0, 1-18=-0 7-18=0/975, 16-17= 10-13=0/1167, 9-10= 11-12=-7/0	or 2x6 SP DSS *Exce athing directly applied xcept end verticals, ar 0-8 max.): 3-5. applied or 10-0-0 oc -15 2-18, 17-19 18=0-3-8 LC 8) _C 40), 18=1467 (LC 4 ppression/Maximum 1367/0, 3-4=-1041/0, 46/1, 6-7=-1338/0, 236/98, 8-9=-1796/0 =0/1171, 13-16=0/116 =-37/65, 12-15=-7/0,	2) ppt* 3) f or nd 4) 5) 40) 8) 9) 37, 10, 	Wind: ASCE Vasd=95mph II; Exp B; End cantilever left plate grip DC TCLL: ASCE DOL=1.15 PI snow); Pf=16 Plate DOL=1 Ct=1.10, Lu= Unbalanced : design. 500.0lb AC u 16-2-14 from apart. Provide adec All plates are This truss ha on the bottom 3-06-00 tall b chord and an) Graphical pu or the orienta bottom chord	7-10; Vult=120mph ; TCDL=6.0psf; BC closed; MWFRS (et and right exposed L=1.60 7-10; Pr=20.0 psf ate DOL=1.15); Pg 5.5 psf (flat roof snc .15); Category II; E 50-0-0 snow loads have be nit load placed on the left end, supported uate drainage to p 2x4 MT20 unless s been designed n chord in all areas y 1-00-00 wide will y other members, r lin representation tion of the purlin al	n (3-sec CDL=6 nvelope I ; Lumb (roof liv =15.0 p w: Lum Exp B; F een con the both d at two revent otherwi or a 10. vith any for a liv where fit betw with BC does no long the	ond gust) opsf; h=30ft; (h=30ft; (i)) per DOL=1.60 e load: Lumb usf (ground ber DOL=1.1 artially Exp.; usidered for th om chord, points, 1-6-0 water ponding se indicated. 0 psf bottom other live load e load of 20.0 a rectangle veen the bottt DL = 10.0psf t depict the se : top and/or	Cat. ne;) er 5 nis g. ds. opsf c. ; ize				H CA	ROL	
WEBS	2-18=-1379/0, 8-10= 5-19=0/683, 2-17=-1 7-11=0/485, 15-16=(4-19=-344/95, 3-17= 3-19=-236/482, 17-1	=0/1206, 6-19=-814/0, 101/261, 10-11=0/348 0/1044, 15-19=0/1181 =-145/849, 19=-1075/0, 12-13=-23	, 11 , 33/0) This manufact building component for responsibility referenced by	ctured truss is design ponent. The suitab or any particular bu of the building des y the building code	gned as bility an ilding is signer p	an individua d use of this the er ANSI TPI ²	l 1 as		V. T. T. T.		SEAI 03632	22	
NOTES (11) 1) Unbalance this desigr	ed roof live loads have 1.	been considered for	LC	DAD CASE(S)	Standard					111.			ERERT	nna.

> A. GIL December 23,2024

G

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component for the prevention. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	4293514-BRAD CUMMINGS- WILDER				
4293514	T05E	Piggyback Base Supported Gable	1	1	Job Reference (optional)	170360550			

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Sat Dec 21 01:31:32 ID:Rpr6vQWcXS0WHIoCEJhB3JyMcAY-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:69.7

Plate Offsets (X, Y): [8:0-2-8,Edge], [12:0-2-8,Edge]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(2 16.5/1 1	(psf) 20.0 15.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-R	0.26 0.15 0.13	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loo 2	c) l/defl - n/a - n/a 0 n/a	L/d 999 999 n/a	PLATES MT20 Weight: 243 lb	GRIP 244/190 FT = 20%	6	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	 2x4 SP No.1 2x4 SP No.1 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals, and 2-0-0 oc purlins (10-0-0 max.): 8-12. Rigid ceiling directly applied or 6-0-0 oc bracing. 1 Row at midpt 10-28, 9-29, 7-30, 6-31, 				OP CHORD 2 3 4 5 5 1 1 1 1 1 1 1 1 0 1 0 1 0 1 1 3 3 3 3 3	2-35=-351/284, 1-2= 3-4=-125/161, 4-5=- 5-7=-72/329, 7-8=-4 5-10=-6/245, 10-11= 2-13=-41/220, 13-1 4-15=-82/250, 15-1 6-17=-117/153, 17. 8-19=0/85, 18-20= 342-35=-116/110, 33. 32-33=-116/110, 33. 30-31=-116/110, 29.	=0/85, 2 107/20 1/221, =-6/245 14=-65/ 16=-10 -18=-24 -338/20 -338/20 -34=-1 -32=-1 -32=-1	2-3=-259/286, 5, 5-6=-88/25 8-9=-6/245, 1, 1-12=-6/24 323, 3/199, 42/272, 39 16/110, 16/110, 16/110,	66, 15,	 Unbalanced snow loads have been considered for this design. This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 11.5 psf or overhangs non-concurrent with other live loads. Provide adequate drainage to prevent water ponding. All plates are 2x4 MT20 unless otherwise indicated. Gable requires continuous bottom chord bearing. Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). Gable studs spaced at 2-0-0 oc. 						
WEBS	1 Row at midp (size) 20- 23= 27= 30- 33= Max Horiz 35= Max Uplift 20- 22= 24=	lpt =25-4-0 =25-4-0 =25-4-0 =25-4-0 =25-4-0 =231 (L =-473 (L =-80 (LC =-115 (L	10-28, 9-29, 7-30, 6- 11-27, 13-25, 14-24 , 21=25-4-0, 22=25- , 28=25-4-0, 29=25- , 31=25-4-0, 32=25- , 31=25-4-0, 35=25- C 11) C 9), 21=-420 (LC 8 C 13), 23=-81 (LC 18 C 13), 28=-34 (LC 8	31, 4-0, 4-0, 4-0, 4-0, 4-0, 1,), N,), N,	30-31=-116/110, 29-30=-116/110, 11) Gable studs s 28-29=-116/110, 27-28=-116/110, 12) This truss has 25-27=-116/110, 24-25=-116/110, 12) This truss has 23-24=-116/110, 22-23=-116/110, 13) * This truss has 21-22=-116/110, 22-23=-116/110, 13) * This truss has 01-28=-181/58, 9-29=-177/11, 7-30=-197/5, 01 the bottom 6-31=-187/140, 5-32=-179/102, 3-06-00 tall by 4-33=-181/115, 3-34=-202/199, 11-27=-177/9, 13-25=-194/0, 14-24=-188/140, 15-23=-179/102, 16-22=-181/115, 17-21=-192/190								en designed for a 10.0 psf bottom onconcurrent with any other live loads. been designed for a live load of 20.0psf ord in all areas where a rectangle -00-00 wide will fit between the bottom ther members, with BCDL = 10.0psf.			
FORCES	Max Opini 20-470 (LC 3), 23-481 (LC 13), 24-80 (LC 13), 23-81 (LC 13), 31-115 (LC 12), 32-81 (LC 12), 33-80 (LC 12), 32-81 (LC 12), 35-501 (LC 8) Max Grav 20-521 (LC 26), 21=475 (LC 11), 22=244 (LC 45), 23=283 (LC 45), 24=286 (LC 45), 25=295 (LC 47), 27=276 (LC 48), 30=297 (LC 49), 31=286 (LC 43), 32=284 (LC 43), 33=244 (LC 43), 34=500 (LC 10), 35=544 (LC 27) (lb) - Maximum Compression/Maximum Tension				 NOTES (16) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=15.0 psf (ground snow); Pf=16.5 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Partially Exp.; Or dot the true of the tr						SEAL 036322					

Continued on page 2

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITTER REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTeR% connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPH Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) with the Section of the prevent collapse contervent for the Sectional temporation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

December 23,2024

Job	Truss	Truss Type	Qty	Ply	4293514-BRAD CUMMINGS- WILDER				
4293514	T05E	Piggyback Base Supported Gable	1	1	Job Reference (optional)	170360550			

- 14) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 501 lb uplift at joint 35, 473 lb uplift at joint 20, 34 lb uplift at joint 28, 115 lb uplift at joint 31, 81 lb uplift at joint 32, 80 lb uplift at joint 33, 442 lb uplift at joint 34, 115 lb uplift at joint 24, 81 lb uplift at joint 23, 80 lb uplift at joint 22 and 420 lb uplift at joint 21.
- 15) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 16) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

LOAD CASE(S) Standard

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Sat Dec 21 01:31:32 ID:Rpr6vQWcXS0WHloCEJhB3JyMcAY-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	4293514-BRAD CUMMINGS- WILDER				
4293514	T05G	Piggyback Base Girder	1	3	Job Reference (optional)	170360551			

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Sat Dec 21 01:31:32 ID:gjID53?GQYkTEIb8nUxLMSyMcBC-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:79.2 Plate Offsets (X, Y): [3:0-3-12,0-2-0], [4:0-5-8,0-3-0], [10:0-6-12,0-3-0]

Loading TCLL (roof) Snow (Pf/Pg)	(psf) 20.0 16.5/15.0	Spacing Plate Grip DOL Lumber DOL	8-6-0 1.15 1.15		CSI TC BC	0.70 0.21	DEFL Vert(LL) Vert(CT)	in -0.05 -0.08	(loc) 9-10 9-10	l/defl >999 >999	L/d 360 240	PLATES MT20	GRIP 244/190			
BCLL BCDL	10.0 0.0* 10.0	Rep Stress Incr Code	NO IRC2015	/TPI2014	WB Matrix-S	0.31	Horz(CT) Wind(LL)	0.01 0.04	8 8-9	n/a >999	n/a 240	Weight: 811 lb	FT = 20%			
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD JOINTS REACTIONS FORCES	2x6 SP No.2 2x10 SP 2400F 2.0E 2x4 SP No.2 2-0-0 oc purlins (6-0- verticals (Switched from shee Rigid ceiling directly bracing. 1 Brace at Jt(s): 1, 3, 4, 7, 14 (size) 8=0-3-8, 1 Max Horiz 13=-821 (I Max Grav 8=5719 (L (lb) - Maximum Com	or 2x10 SP DSS -0 max.), except enc ted: Spacing > 2-8-0 applied or 10-0-0 oc 3=0-3-8 LC 8) C 41), 13=4976 (LC pression/Maximum	2) j 3)). 4) 5) 41)	All loads are except if note CASE(S) sec provided to d unless otherw Unbalanced i this design. Wind: ASCE Vasd=95mph II; Exp B; Enc cantilever left plate grip DO TCLL: ASCE DOL=1.15 PI snow); Pf=16 Plate DOL=1 ct=110 Lu=	considered equally ed as front (F) or ba tion. Ply to ply con istribute only loads vise indicated. roof live loads have 7-10; Vult=120mph r; TCDL=6.0psf; BC closed; MWFRS (er and right exposed vL=1.60 7-10; Pr=20.0 psf ate DOL=1.15); Pg i.5 psf (flat roof sno .15); Category II; E 50-0-0' Min flat roo	applied ack (B) f nection noted f been of (3-sec CDL=6.0 nvelope ; Lumb (roof liv =15.0 p w: Lum xp B; P of snow	d to all plies, face in the LO sonsidered for cond gust) Opsf; h=30ft; C e) exterior zon ver DOL=1.60 e load: Lumbe osf (ground ber DOL=1.1; artially Exp; ; load governs	DAD cat. le; er 5	 12) This buil con response of the second s	s manufa ding con ponesibili renced l CASE(S) ead + Sn crease=' iform Lo Vert: 1-3 a-24=-1 a-24=-1 a-24=-1 crage + ate Increation Lo Vert: 1-3 orage +	actured poner for any y of th by the . Star ow (ba .15 bads (II 3-183 30 '5 Roc 0.75 A ase=1 bads (II bads (II) bads (II) ba	d truss is designe ht. The suitability y particular buildin e building design building code. ndard alanced): Lumber b/ft) , 3-4=-226, 4-7=- f Live (balanced) ttic Floor: Lumber .15 b/ft) , 3-4=-213, 4-7=- b/ft)	d as an individual ' and use of this ng is the er per ANSI TPI 1 as ' Increase=1.15, Plate .183, 13-24=-85, + 0.75 Uninhab. Attic r Increase=1.15, -213, 13-21=-85, -213, 13-21=-85,			
TOP CHORD	Tension 1-2=-961/480, 2-3=-4 3-4=-3073/606, 4-5= 5-6=-4763/433, 6-7= 7-84635/0	4433/434, -4157/491, -4754/0, 1-13=-979/4	434, 6)	Rain surchar slopes less th 1608.3.4. Unbalanced s	1.10, Lu=50-0-0; Milh. flat foor show load governs. n surcharge applied to all exposed surfaces with bes less than 0.500/12 in accordance with IBC 18.3.4. balanced snow loads have been considered for this						21-22=-213, 12-22=-85, 12-23=-213, 10-23=-85, 10-24=-213, 9-24=-347, 8-9=-220					
BOT CHORD	12-13=-458/3368, 10 9-10=0/3084, 8-9=-1)-12=-172/2956, 18/297	7) 8)	 design. Provide adequate drainage to prevent water ponding. This trues has been designed for a 10.0 pst better 						H CARO						
WEBS	3-12=-215/1632, 3-1 10-14=-78/2050, 4-1 2-13=-4397/0, 7-9=0 6-9=-1675/1103, 5-1	chord live loa * This truss h on the bottom 3-06-00 tall b	ad nonconcurrent with any other live loads. Ias been designed for a live load of 20.0psf n chord in all areas where a rectangle y 1-00-00 wide will fit between the bottom						10 The							
NOTES (11) 1) 3-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc, 2x4 - 1 row at 0-9-0 oc. Bottom chords connected as follows: 2x10 - 2 rows staggered at 0-9-0 oc. Web connected as follows: 2x4 - 1 row at 0-9-0 oc.				chord and any other members, with BCDL = 10.0psf. 10) Load case(s) 1, 3 has/have been modified. Building designer must review loads to verify that they are correct for the intended use of this truss. 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. SEAL 036322 <i>NGINEE</i>								EER.K				

818 Soundside Road Edenton, NC 27932

December 23,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component for the prevention. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

