

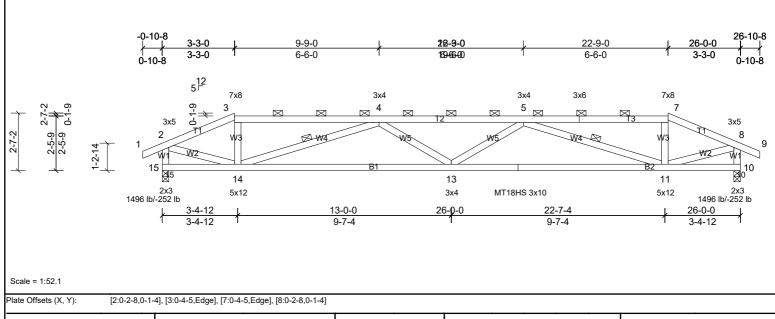
THESE VALUES ARE APPROXIMATE ONLY	This drawing is properly of UFP Site Built, LLC. Any unauthorized use of this document without written permission is prohibited. UFP relinquishes ownership of delivered product upon delivery. Owner of product must be held responsible for any unauthorized modification for outs without prior written authorization from the any alteration of product UFP will not be held responsible for any unauthorized modification for UFP. The first of a stantification for UFP will not be held responsible for any unauthorized modification for UFP.
53.07 ft	Chean Chean
HIP LINES: 53.07 ft	e Built, LLC. Imment without 7 relinquishes on delivery. authorization n of product, ble for any osts incurred m UFP.
VALLEY LINES: 127.49 ft	This drawing is properly of UFP Site Built, LLC. Any unauthorized use of this document without written permission is prohibited. UFP relinquishes ownership of delivered product upon delivery. Owner of product must obtain UFP's authorization prior to any alteration or modification of product UFP will not be held responsible for any unauthorized modifications done or costs incurred without prior written authorization from UFP.
VALLEY LINI	AT AT WW W O O O O O O O O O O O O O O O O O
139.51 ft	PARKS BUILD
RIDGE LINE:	ADE RESIDENCE -
² sqft	SL/
5807.27 ft² sqft	D C C C C C C C C C C C C C C C C C C C
ROOF AREA:	Umbed by the second s

Roof Hanger List							
TYPE	QTY						
US26	7						
JS26	52						
HJU26	1						
HUS26-2	2						
HUS210-2	1						
GUS210-4	1						

Job	Truss	Truss Type		Qty	Ply				
24061831	A1L	Truss		1	2	Job Reference	(optional)		
UFP Mid Atlantic LLC, 5631 S. N	IC 62, Burlington, NC, Heidi Ouzts	3	Run: 8.73 S	Jan 4 2024 F	Print: 8.730 S	S Jan 4 2024 MiTe	(1)	Inc. Tue Jul 02 1	4:31:02 Page: 1
				ID:uGd	9bDEEW4Qy	/QZSNYuCAU5z0	OII-yU4l8dAG	Gwg3_821bftzcc6	w0H_91uyDzbl_Zu5z05AP
-0-10-8 ∤──∱ 0-10-8	3 2-0-10 1 7-7- 3 2-0-10 5-6-	3 9		<u>3-1,1-6</u> -10-13	<u>18-4-13</u> 5-4-13	+	<u>23-1</u> 5-6		<u>↓ 26-0-0</u> 26-10-8 1 2-0-10 1 1 0-10-8
	NAILED	NAILED	NAILED		NAILED		NAILED		ILED
	NAILED	NAILED	NAILED	NAILED		NAILED 2x3		NAILED	
	5 ¹² 5x10	2x3		3x8		3x6		5x	
2-1-2 2-1-2 1 1 1 1 1 2-1-2 1 3	3x4 3	¥ ₩3	12 W4	5 W3		W3		T3₩ ₩4 ₩	8 3x4 3 TT 9 10
, , k	10 00 188 17 x5 5x4 1 lb	16 5x10	B1 _{nn nn}	15 2x5	M18AHS	13 5x10 5x10	 	1	11 2 ⊠1 5x4 2x5 2046 lb/-410 lb
	NAILED	NAILED	NAILED	NAILED		NAILED		NAILED	
	NAILED	NAILED	NAILED		NAILED	1	NAILED		ILED
Scale = 1:48.8	<u>2-2-6 7-7-</u> 2-2-6 5-4-		<u>13-0-0 2</u> 5-4-13	<u>6-0-0</u> 1	<u>18-4-13</u> 5-4-13		<u>23-9</u> 5-4-		<u>26-0-0</u> 2-2-6
Plate Offsets (X, Y): [3:0	0-2-0,0-1-12], [8:0-2-0,0-1-12], [1:	3:0-2-0,0-2-12], [16:0-4-8,0-2	2-12]						
Loading	(psf) Spacing	2-0-0	CSI	DEF		. ,	/defl L/d	PLATES	GRIP
TCLL (roof) TCDL	30.0Plate Grip DOL10.0Lumber DOL	1.15 1.15	TC BC	0.80 Vert 0.86 Vert	. ,		>999 240 >608 180	MT20 M18AHS	244/190 186/179
BCLL BCDL	0.0* Rep Stress Incr 15.0 Code	NO IRC2015/TPI2014	WB Matrix-MSH	0.82 Horz	(CT)	0.06 11	n/a n/a	Weight: 304 lb	FT = 20%
LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x6 SP No.2 WEBS 2x4 SP No.3 REACTIONS (lb/siz Max H Max L	2 3 ze) 11=2046/0-3-8, (min. 0-1- Horiz 18=-34 (LC 6)	8), 18=2049/0-3-8, (min. 0-	тс	RACING OP CHORD OT CHORD	ver	uctural wood shea ticals, and 2-0-0 o jid ceiling directly a	c purlins (4-0-	-14 max.): 3-8.	oc purlins, except end
FORCES TOP CHORD BOT CHORD	(lb) - Max. Comp./Max. Ten All 2-3=-2550/503, 3-19=-6072/1183 24-25=-6070/1182, 6-25=-6070// 17-28=-433/2284, 28-29=-433/22 14-34=-1416/7502, 13-34=-1416	forces 250 (lb) or less exce 8, 19-20=-6072/1183, 4-20= 182, 6-7=-6070/1182, 7-26 184, 16-29=-433/2284, 16-3 1/7502, 13-35=-423/2279, 35	-6072/1183, 4-21=-607 =-6070/1182, 26-27=-6 0=-1416/7502, 30-31=- 5-36=-423/2279, 12-36	070/1182, 8-2 1416/7502, 3 =-423/2279	27=-6070/118 1-32=-1416/7	32, 8-9=-2545/502 7502, 15-32=-1416	, 2-18=-2119/ 6/7502, 15-33	/421, 9-11=-2115/ =-1416/7502, 14-	420 33=-1416/7502,
WEBS NOTES	3-17=-624/210, 3-16=-759/3969,	4-16=-612/266, 5-16=-1502	2/281, 5-15=0/426, 5-1	3=-1505/281,	7-13=-612/20	66, 8-13=-760/397	1, 8-12=-624/	/209, 2-17=-475/2	495, 9-12=-475/2490
 Top chords connected Bottom chords connected Web connected as fol All loads are consider Ply to ply connections Unbalanced roof live I Wind: ASCE 7-10; Vu MWFRS (envelope) e grip DOL=1.60 Provide adequate dra All plates are MT20 pl This truss has been d * This truss has been d * This truss has been d Provide mechanical c uplift at joint 11. This truss is designed referenced standard A Graphical purlin repre "NAILED" indicates 3- LOAD CASE(S) Standa Dead + Roof Live (balan Uniform Loads (lb/ft) 	esentation does not depict the -10d (0.148"x3") or 3-12d (0. and heed): Lumber Increase=1.15, Pla 2=-80, 2-3=-80, 3-8=-80, 8-9=-80,	9-0 oc. staggered at 0-9-0 oc. staggered at 0-9-0 oc. bute only loads noted a for this design. /asd=91mph; TCDL=6.0 nd right exposed ; end v ng. ted. n chord live load noncor 0.0ps fon the bottom cho any other members. s to bearing plate capab 5 International Residenti e size or the orientation 148"x3.25") toe-nails per	s (F) or (B), unless Opsf; BCDL=6.0psf; vertical left and right nourrent with any oth ord in all areas whe le of withstanding 4 ial Code sections R of the purlin along t	otherwise in h=35ft; Cat. exposed; L ner live load: re a rectang 11 lb uplift a 502.11.1 and	dicated. II; Exp C; umber DOI s. le 3-06-00 It joint 18 a d R802.10.	Enclosed; L=1.60 plate tall by nd 410 lb 2 and			

Job	Truss	Truss Type	Qty	Ply	
24061831	A1L	Truss	1	2	Job Reference (optional)

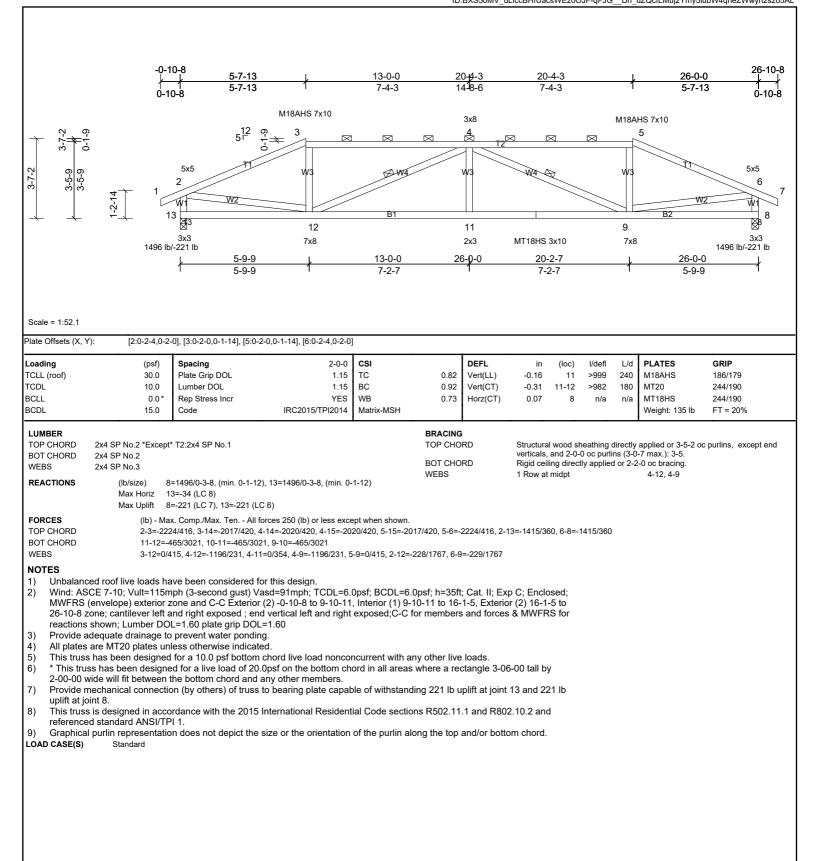
Run: 8.73 S Jan 4 2024 Print: 8.730 S Jan 4 2024 MiTek Industries, Inc. Tue Jul 02 14:31:02 Page: 2 ID:uGd9bDEEW4QyQZSNYuCAU5z0OII-yU4l8dAGwg3_821bftzcc6w0H_91uyDzbl_Zu5z05AP

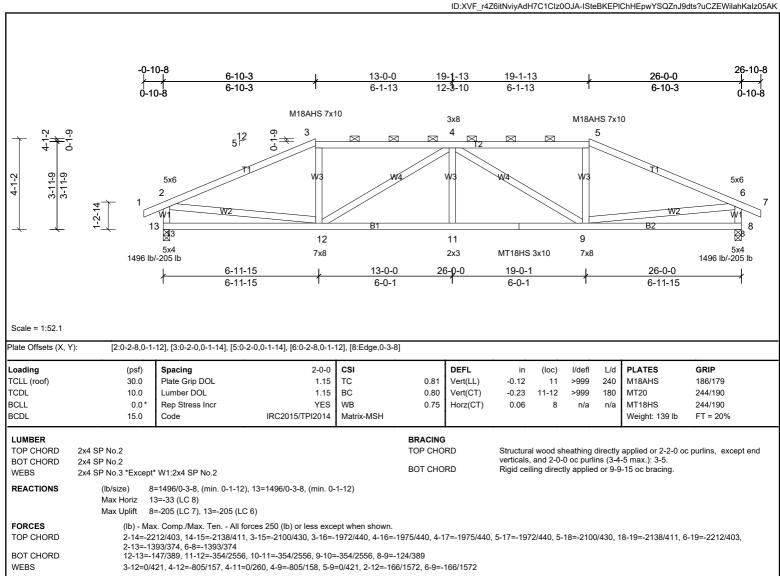

Vert: 3=-59 (F), 6=-56 (F), 8=-59 (F), 14=-32 (F), 17=-55 (F), 12=-55 (F), 19=-56 (F), 20=-56 (F), 21=-56 (F), 22=-56 (F), 23=-56 (F), 24=-56 (F), 25=-56 (F), 26=-56 (F), 26=-32 (F), 29=-32 (F), 30=-32 (F), 31=-32 (F), 32=-32 (F), 33=-32 (F), 34=-32 (F), 35=-32 (F), 36=-32 (F)

Job	Truss	Truss Type	Qty	Ply	
24061831	A2	Truss	1	1	Job Reference (optional)

Run: 8.73 S Jan 4 2024 Print: 8.730 S Jan 4 2024 MiTek Industries, Inc. Tue Jul 02 14:31:03

Page: 1 ID:ypPivHOK?acu1o5wSByleLz0OJO-M3lumeD9DbRZ?VmAL?XJDkYUeC9v5JIPHGCDVPz05AM


	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL (roof)	30.0	Plate Grip DOL	1.15	TC	0.98	Vert(LL)	-0.29	13	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		0.98	Vert(CT)	-0.61	11-13	>507	180	MT18HS	244/190
BCLL	0.0*	Rep Stress Incr	YES	WB	0.80	Horz(CT)	0.11	10	n/a	n/a		
BCDL	15.0	Code	IRC2015/TPI2014	Matrix-MSH							Weight: 129 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS REACTIONS		10=1496/0-3-8, (min. 0-1-1	2), 15=1496/0-3-8, (min. ()-1-12)	BRACING TOP CHO BOT CHO WEBS	RD	verticals,	and 2-0-0 ling direct	0 oc purli	ns (2-2-	applied or 3-10-10 0 max.): 3-7. -0 oc bracing. 4-14, 5-11) oc purlins, except e
		15=-37 (LC 8) 10=-252 (LC 7), 15=-252 (I	_C 6)									
TOP CHORD BOT CHORD WEBS NOTES	13-14=-	054/325, 3-16=-1897/323, 4 -728/3967, 12-13=-729/397 /418, 4-14=-2220/490, 4-13	76, 11-12=-729/3976						95/301, 8	10=-14	95/300	
 Wind: AS MWFRS 26-10-8 : reactions Provide a All plates 	SCE 7-10; Vult=115r (envelope) exterior zone; cantilever left s shown; Lumber DC adequate drainage t s are MT20 plates un	ave been considered finph (3-second gust) V. zone and C-C Exterior and right exposed; en DL=1.60 plate grip DOL o prevent water pondir nless otherwise indicat d for a 10.0 psf bottom ed for a live load of 20	asd=91mph; TCDL=6. (2) -0-10-8 to 7-5-15, d vertical left and right .=1.60 g. ed. chord live load noncol	Interior (1) 7-5- exposed;C-C f	15 to 18-6- or members ny other live	l, Exterior (and forces	2) 18-6-1 & MWFR	to S for				


Job	Truss	Truss Type	Qty	Ply	
24061831	A4	Truss	1	1	Job Reference (optional)

Run: 8.73 S Jan 4 2024 Print: 8.730 S Jan 4 2024 MiTek Industries, Inc. Tue Jul 02 14:31:05 Page: 1 ID:BXS5oMV_uLlccBHfUacsWEz0OJF-qFJG__Dn_uZQcfLMuj2Ymy5iubW4qneZWwyn2sz05AL

Job	Truss	Truss Type	Qty	Ply		
24061831	A5	Truss	1	1	Job Reference (optional)	
LIEP Mid Atlantic LLC, 5631 S, NC 62, Burlington, NC, Heidi Ouzts			73 S. Jan 4 2024	Print: 8 730	S.Jan. 4 2024 MiTek Industries. Inc. Tue Jul 02 14:31:05	Page: 1

NOTES

1) Unbalanced roof live loads have been considered for this design.

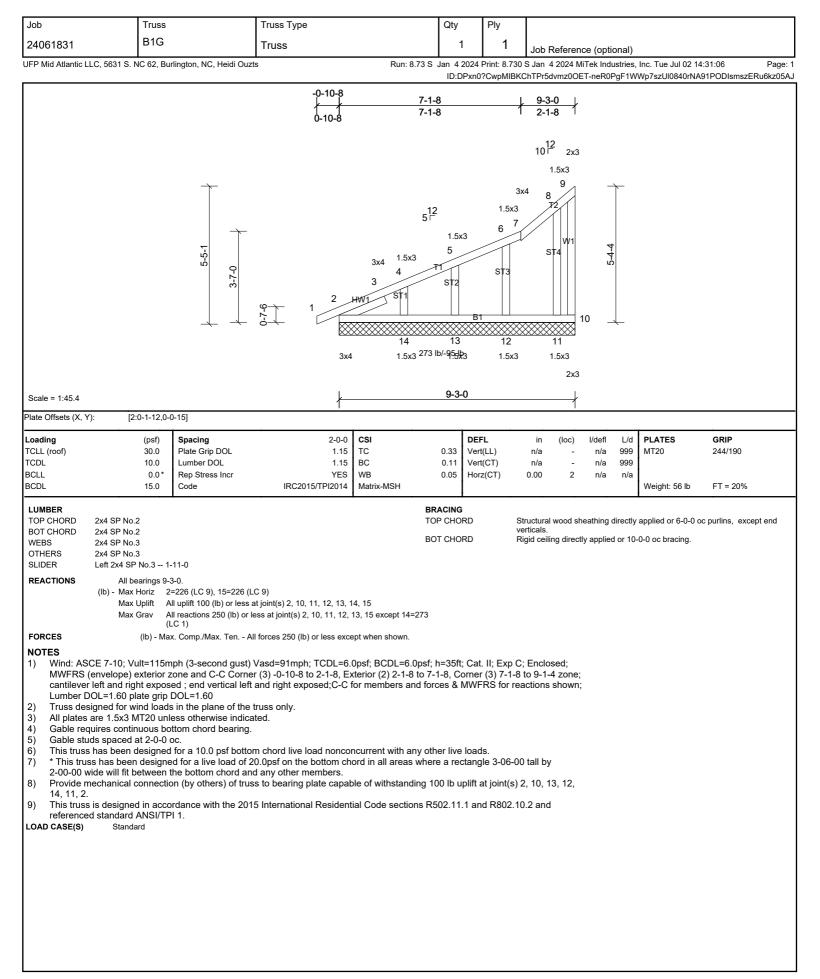
2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 2-7-5, Exterior (2) 2-7-5 to 11-1-2, Interior (1) 11-1-2 to 14-10-14, Exterior (2) 14-10-14 to 23-4-11, Interior (1) 23-4-11 to 23-10-8, Exterior (2) 23-10-8 to 26-10-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

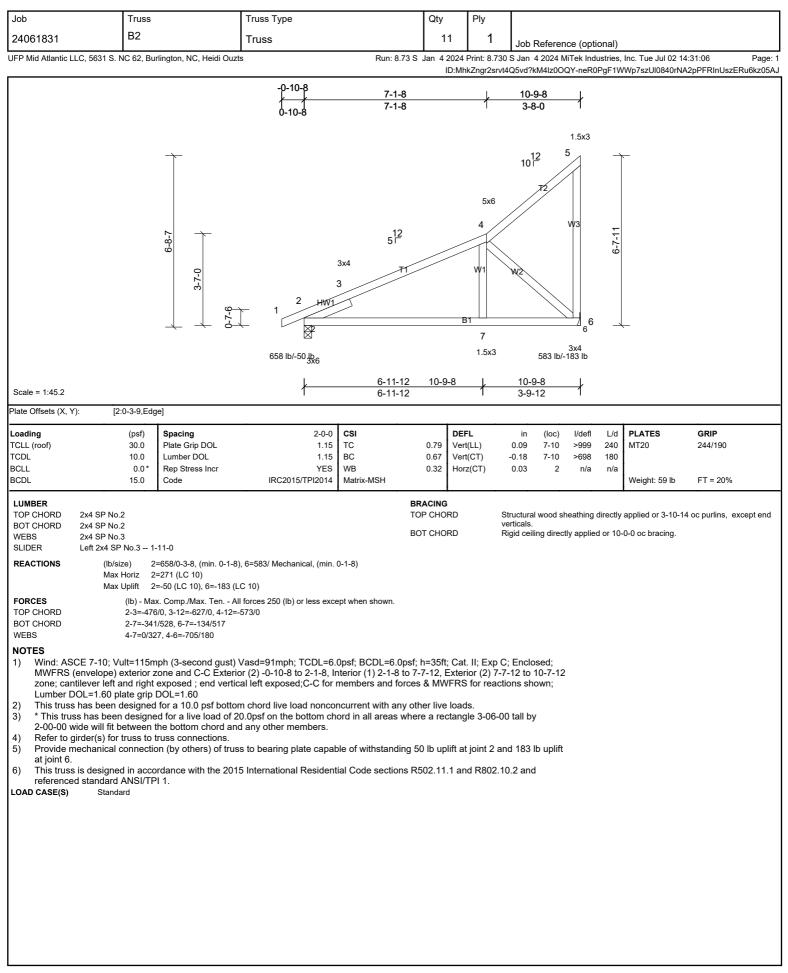
All plates are MT20 plates unless otherwise indicated.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

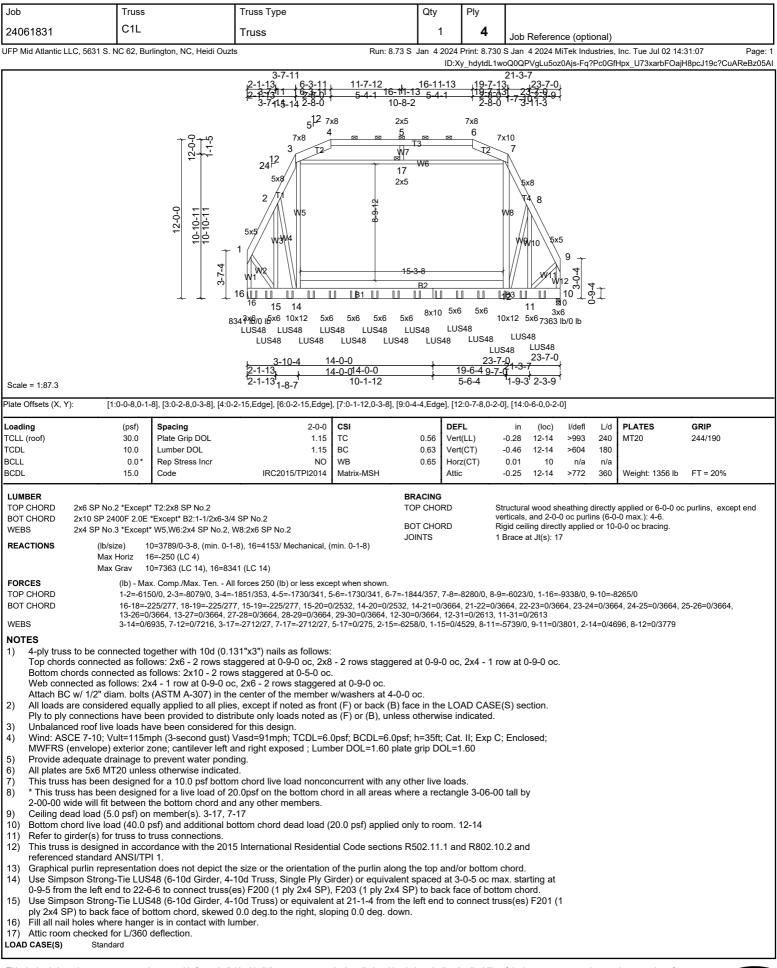
6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by


2-00-00 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 205 lb uplift at joint 13 and 205 lb uplift at joint 8.


8) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

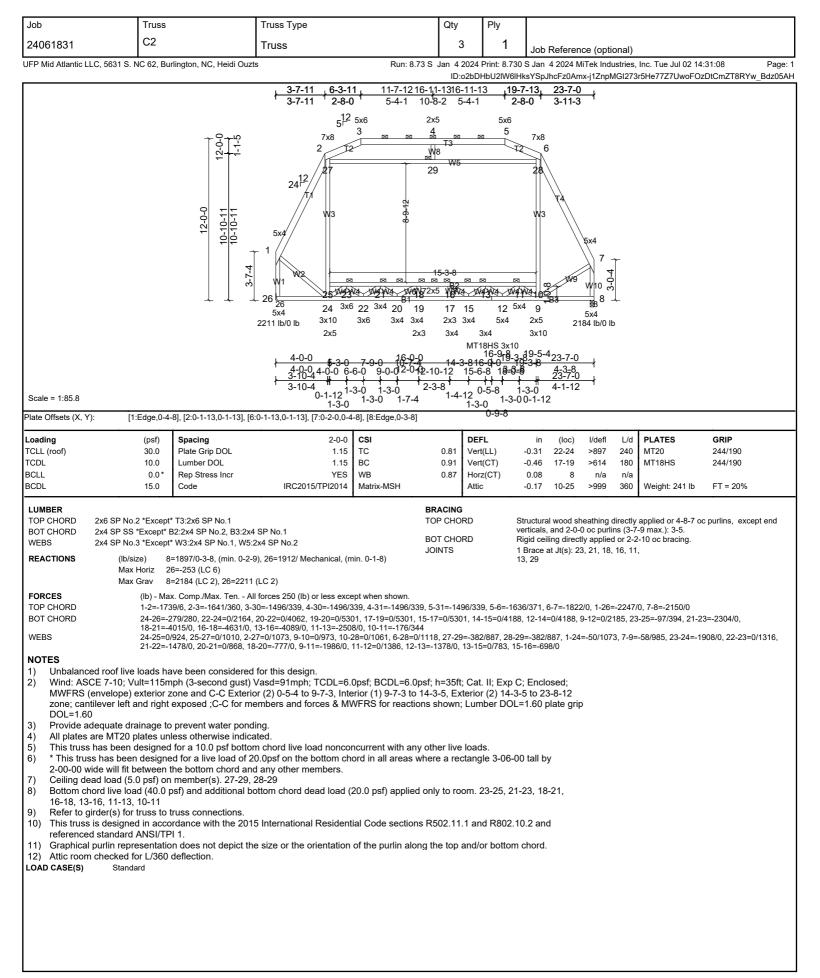
9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. LOAD CASE(S) Standard



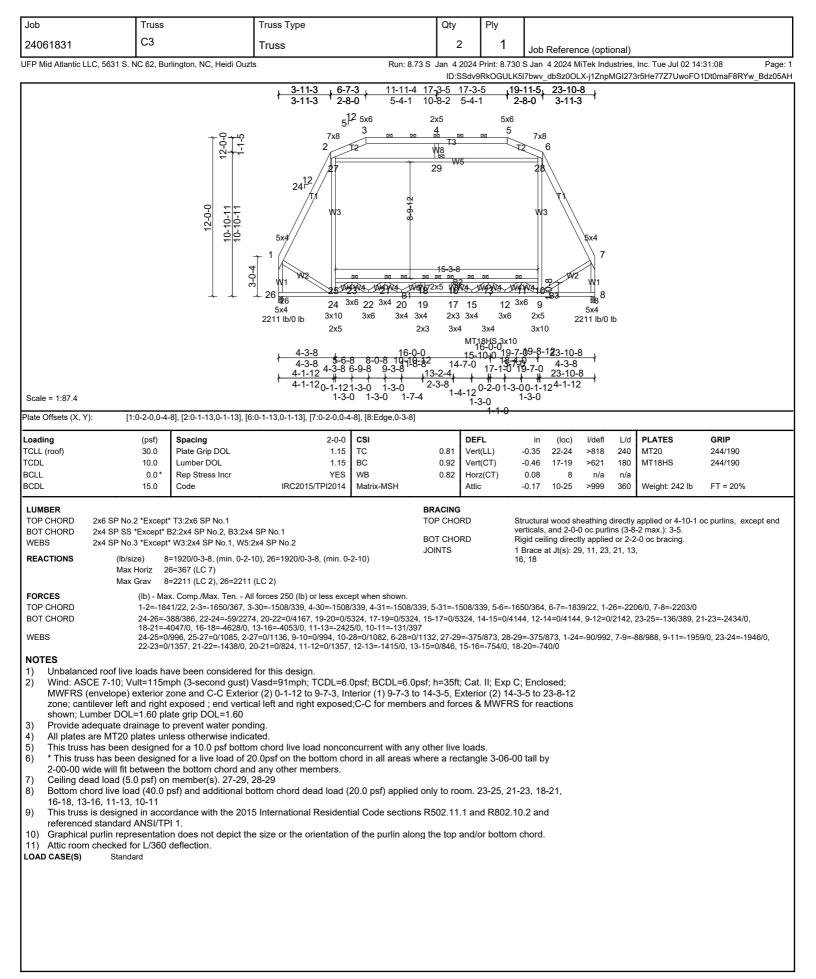
Job	Truss	Truss Type		Qty	Ply		
24061831	C1L	Truss		1	4	Job Reference (optional)	
UFP Mid Atlantic LLC, 5631 S. NC 62, Burlington, NC, Heidi Ouzts			Run: 8.73 S	Jan 4 2024 I	Print: 8.730	S Jan 4 2024 MiTek Industries, Inc. Tue Jul 02 14:31:07	Page: 2

or F Initia Atlantic EEG, 3031 3. NG 02, Burnington, NG, Heidi Odzis

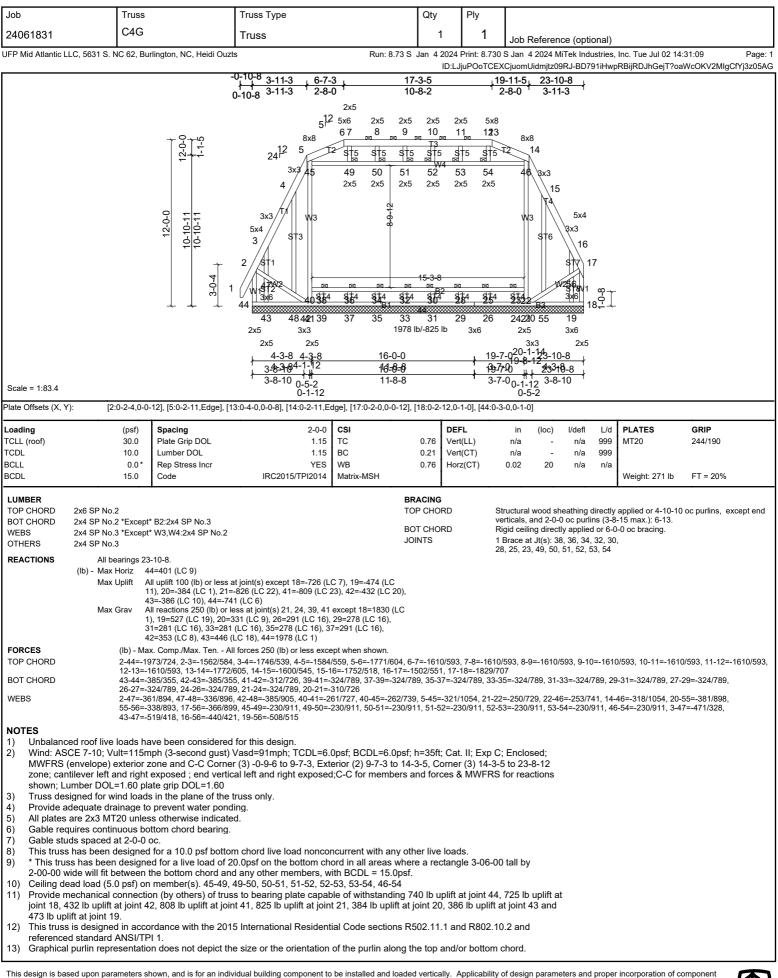
Run: 8.73 S Jan 4 2024 Print: 8.730 S Jan 4 2024 MiTek Industries, Inc. Tue Jul 02 14:31:07 Page: 2 ID:Xy_hdytdL1woQ0QPVgLu5oz0Ajs-Fq?Pc0GfHpx_U73xarbFOajH8pcJ19c?CuAReBz05AI

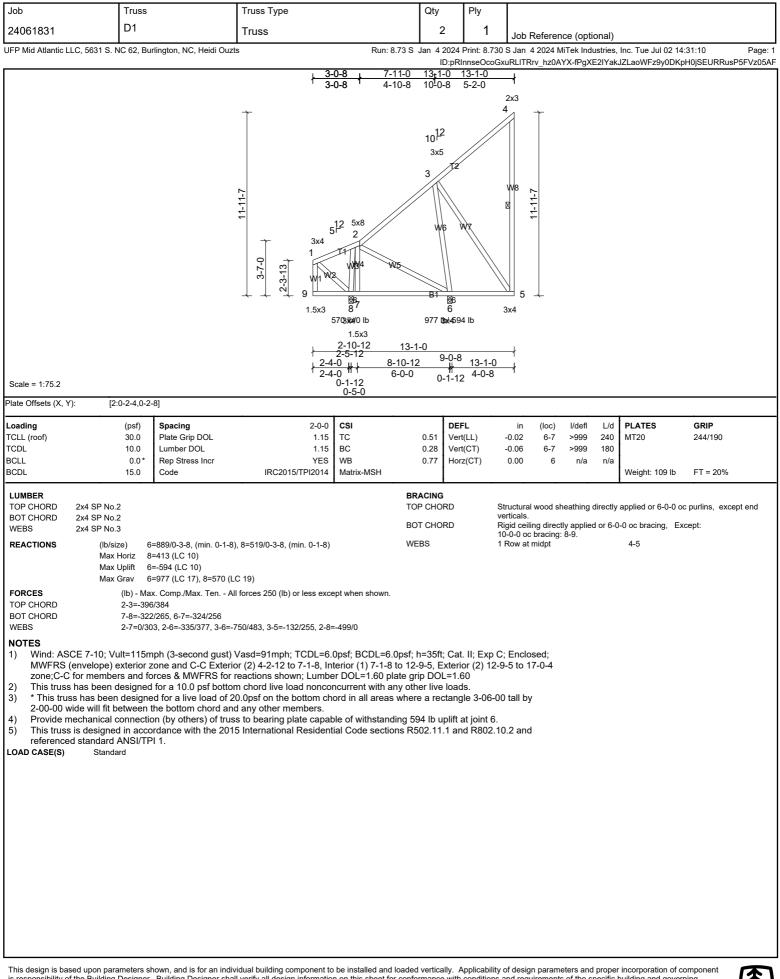

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (Ib/ft)

Vert: 1-3=-80, 3-4=-80, 4-6=-80, 6-7=-80, 7-9=-80, 14-16=-30, 12-14=-70, 10-12=-30, 3-17=-10, 7-17=-10

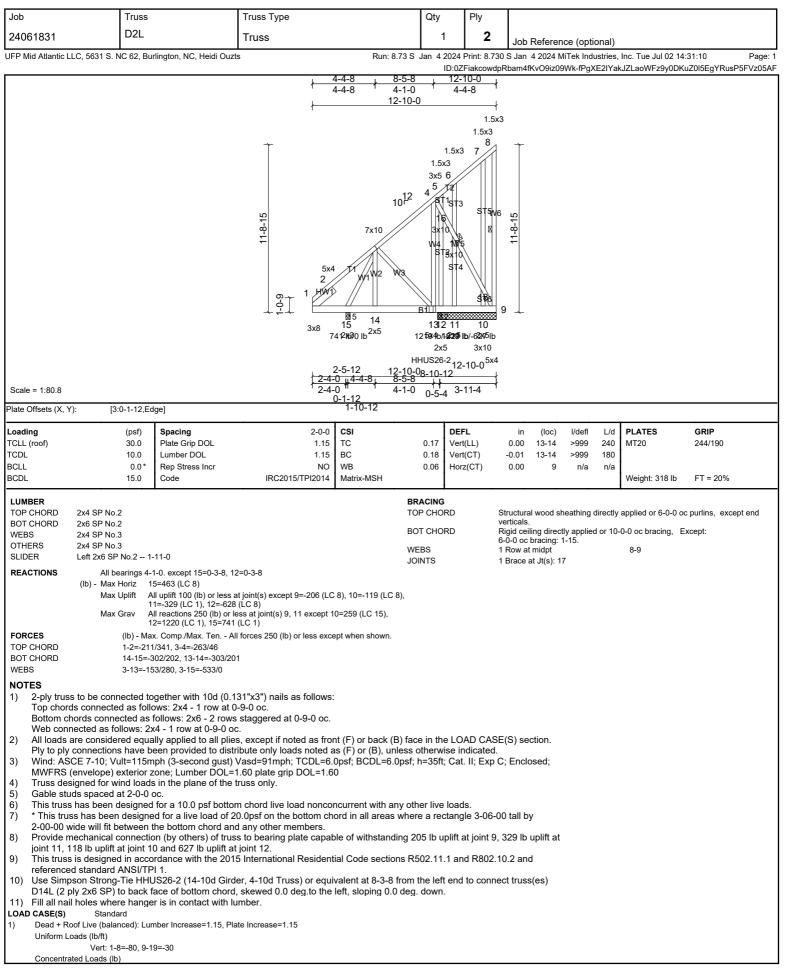

Concentrated Loads (lb)

Vert: 18=-315 (B), 19=-315 (B), 20=-315 (B), 21=-315 (B), 22=-315 (B), 23=-315 (B), 24=-315 (B), 25=-315 (B), 26=-315 (B), 27=-315 (B), 28=-315 (B), 29=-315 (B), 30=-315 (B), 31=-380 (B), 32=-116 (B)

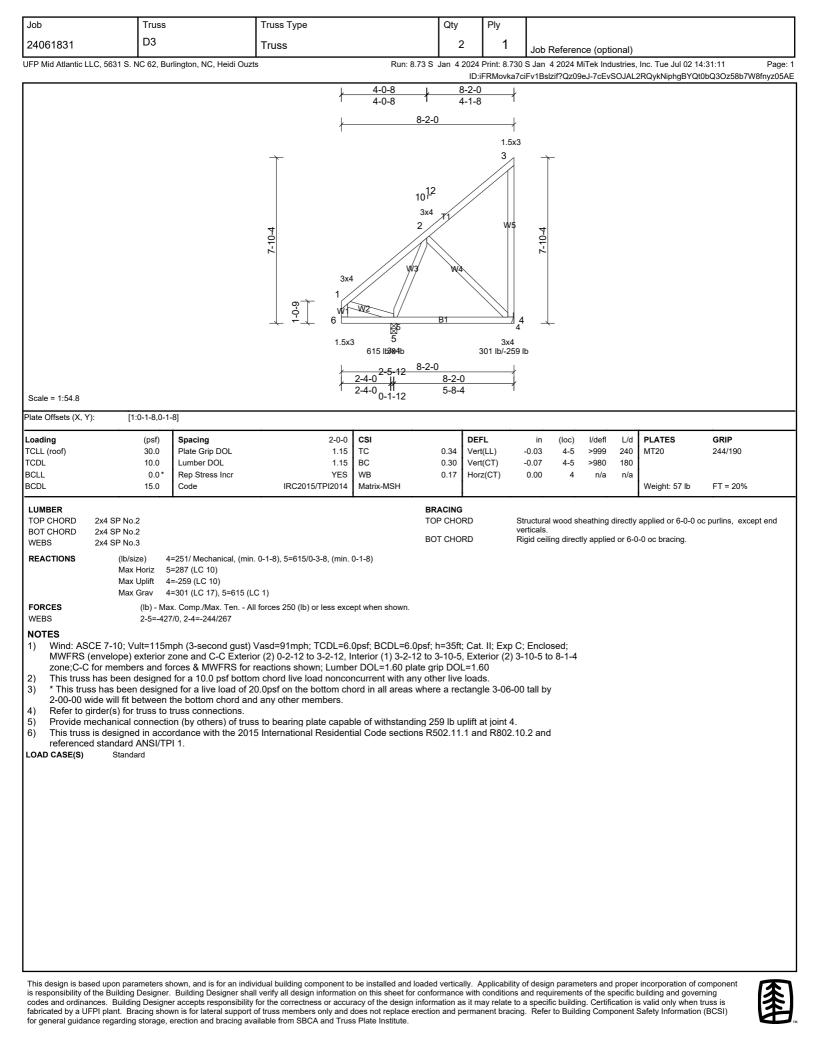


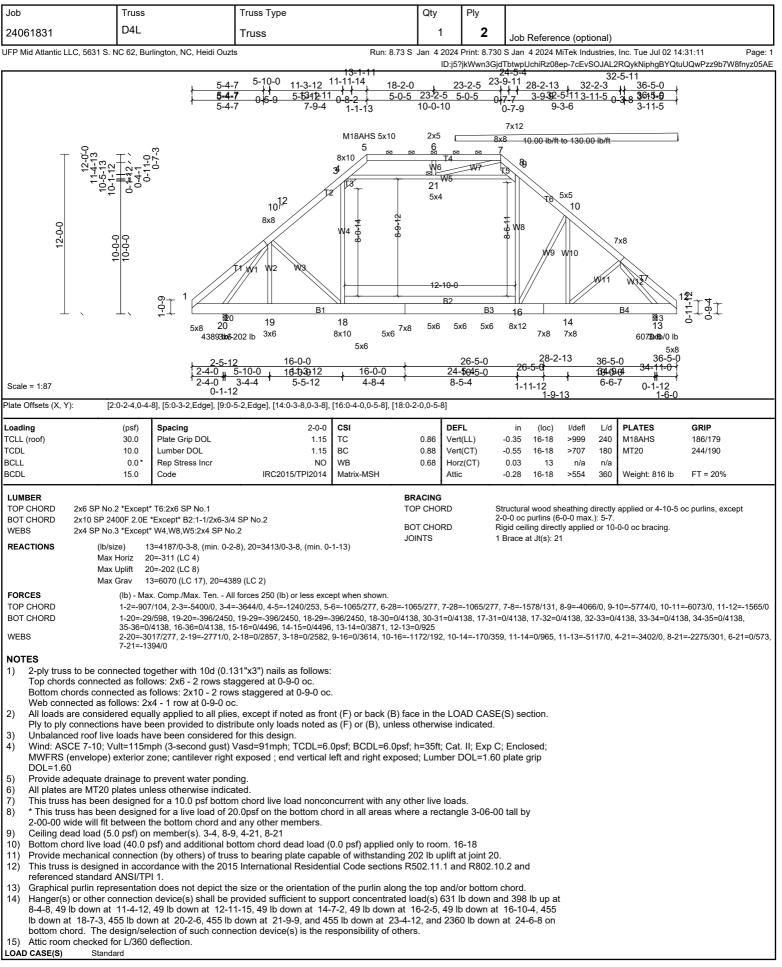


Job	Truss	Truss Type	Qty	Ply	
24061831	C4G	Truss	1	1	Job Reference (optional)


Run: 8.73 S Jan 4 2024 Print: 8.730 S Jan 4 2024 MiTek Industries, Inc. Tue Jul 02 14:31:09 Page: 2 ID:LJjuPOoTCEXCjuomUidmjtz09RJ-BD791iHwpRBijRDJhGejT?oaWcOKV2MIgCfYj3z05AG

14) Attic room checked for L/360 deflection. LOAD CASE(S) Standard




Job	Truss	Truss Type	Qty	Ply	
24061831	D2L	Truss	1	2	Job Reference (optional)

Vert: 13=-615 (B)

Run: 8.73 S Jan 4 2024 Print: 8.730 S Jan 4 2024 MiTek Industries, Inc. Tue Jul 02 14:31:10 Page: 2 ID:0ZFiakcowdpRbam4fKvO9iz09Wk-fPgXE2IYakJZLaoWFz9y0DKuZ0I5EgYRusP5FVz05AF

Job Truss	ss	Truss Type	Qty	Ply	
24061831 D4L		Truss	1	2	Job Reference (optional)

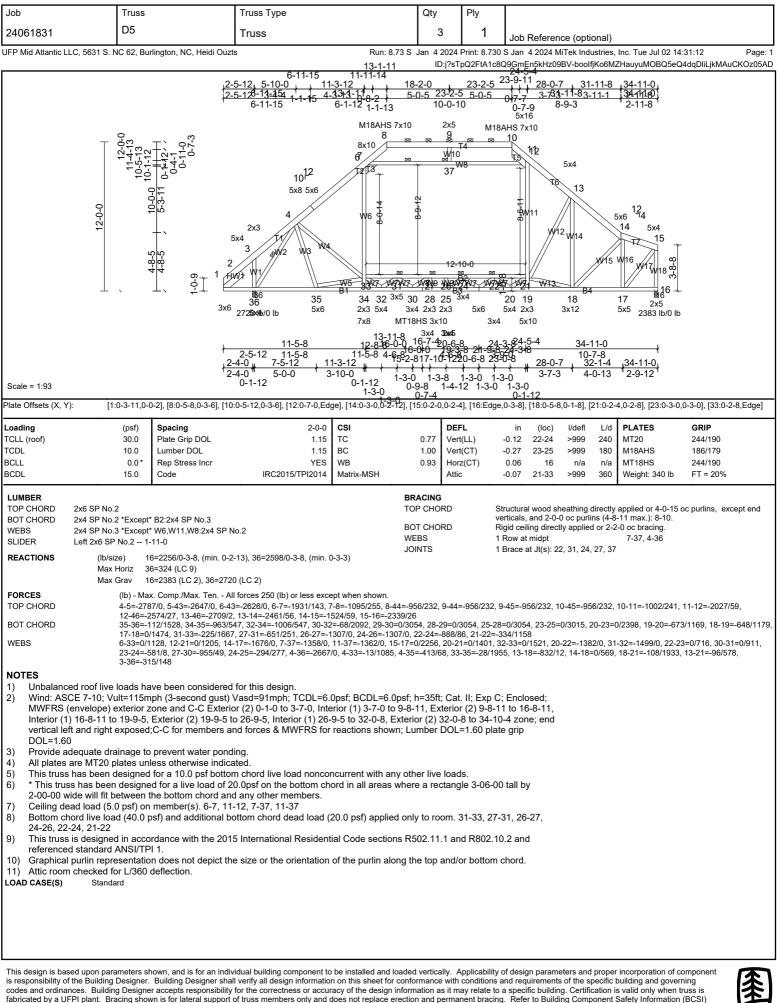
Run: 8.73 S Jan 4 2024 Print: 8.730 S Jan 4 2024 MiTek Industries, Inc. Tue Jul 02 14:31:11 Page: 2 ID:j5?jkWwn3GjdTbtwpUchiRz08ep-7cEvS0JAL2RQykNiphgBYQtuUQwPzz9b7W8fnyz05AE

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

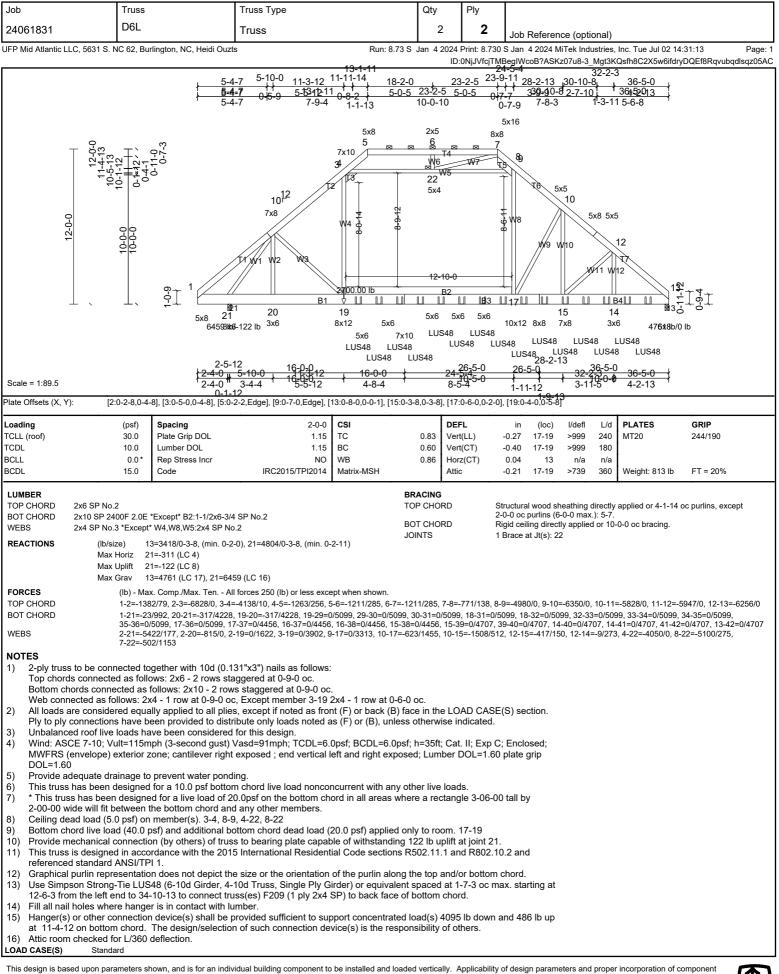
Uniform Loads (lb/ft)

Vert: 1-3=-80, 3-4=-90, 4-5=-80, 5-28=-80, 22-25=-30, 4-21=-10, 8-21=-10

Concentrated Loads (lb)


Vert: 17=-5 (F), 18=-5 (F), 16=-1000 (F), 29=-631 (F), 30=-5 (F), 31=-5 (F), 32=-5 (F), 33=-161 (F), 34=-161 (F), 35=-161 (F), 36=-161 (F), 36=-161

Trapezoidal Loads (lb/ft)


Vert: 28--90-to-7=-115, 7=-115-to-8=-121, 8=-131-to-9=-134, 9=-124-to-10=-151, 10=-151-to-11=-181, 11=-181-to-26=-207, 26=-207-

to-12=-210

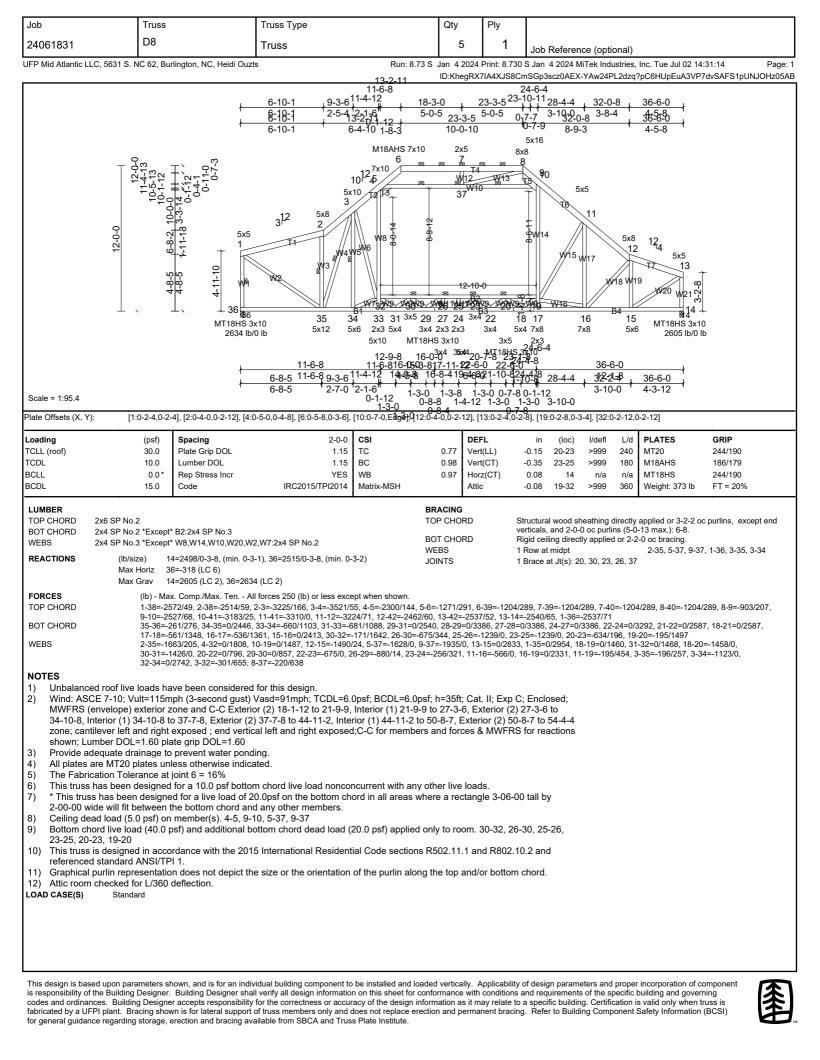
for general guidance regarding storage, erection and bracing available from SBCA and Truss Plate Institute

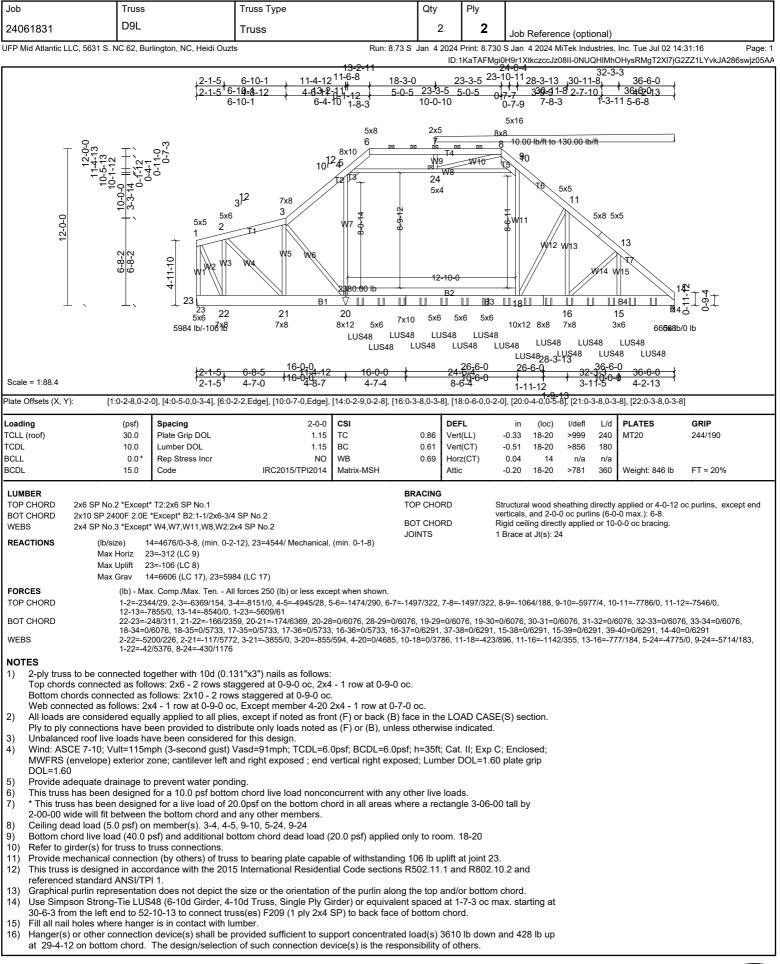
This design is based upon parameters shown, and is for an individual bulking component to be instanted and loaded vertically. Applicability of design parameters and proper instanted proper instanted is and proper instanted bulking besigner accepts responsibility of the specific building and governing codes and ordinances. Building Designer accepts responsibility for the correctness or accuracy of the design information as it may relate to a specific building. Certification is valid only when truss is fabricated by a UFPI plant. Bracing shown is for lateral support of truss members only and does not replace erection and permanent bracing. Refer to Building Component Safety Information (BCSI) for general guidance regarding storage, erection and bracing available from SBCA and Truss Plate Institute.

Job	Truss	Truss Type	Qty	Ply	
24061831	D6L	Truss	2	2	Job Reference (optional)

Run: 8.73 S Jan 4 2024 Print: 8.730 S Jan 4 2024 MiTek Industries, Inc. Tue Jul 02 14:31:13 Page: 2 ID:0NjJVfcjTMBegIWcoB?ASKz07u8-3_Mgt3KQsfh8C2X5w6ifdryDQEf8Rqvubqdlsqz05AC

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (lb/ft)


Vert: 1-3=-80, 3-4=-90, 4-5=-80, 5-7=-80, 7-8=-80, 8-9=-90, 9-13=-80, 19-23=-30, 17-19=-70, 17-26=-30, 4-22=-10, 8-22=-10 Concentrated Loads (lb)


Vert: 9=-2700 (F), 15=-57 (B), 29=-57 (B), 30=-57 (B), 31=-57 (B), 32=-57 (B), 33=-57 (B), 34=-57 (B), 35=-57 (B), 36=-57 (B), 37=-57 (B), 38=-57 (B), 40=-57 (B), 41=-57 (B), 42=-57 (B)

Job	Truss		Truss Type		Qty	Ply	/					
24061831	D7		Truss		2		1	Job Deferer	aa (antia	n al)		
UFP Mid Atlantic LI	_C, 5631 S. NC 62, Bu	rlington, NC, Heidi Ouzt		Run: 8.73	3 S Jan 4 202	4 Print:	: 8.730 S	Job Referer Jan 4 2024 M		,	Inc. Tue Jul 02 14:	31:14 Page: 1
				5-6-8		jO0AjFs 2-0	sUy_hvF	NcoGVJz09Z	t-YAw24PL	2dzq?	pC6HUpEuA3VSo	dyXAO11pUNJOHz05AB
			/	5-6-8		<u>2-0</u> 7-8	ł					
			∤	11	-2-0							
							3x3 3					
			Ť					Ť				
				10	12							
				3 2	x4 T1		W5					
			10-4-4		$\langle \langle \rangle$		×	10-4-4				
			0		\mathcal{M}			10				
				/ wz	WA							
			3x4			$\langle \rangle$						
							\mathbb{N}					
					B1		4	4 🖵				
			2x3 7	5 /54 ვ ხტე Ib		52	3x5 22 lb/-32	16 lb				
					-2-0		ł					
Scale = 1:65.7			<u> 2-4</u> 2-4	-0 11	11-2-0 8-8-4							
Plate Offsets (X, Y)): [1:0-1-0,0-1	8]		0-1-12								
Loading	(psf)	Spacing	2-0-0	CSI		EFL		in (loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	30.0	Plate Grip DOL	1.15	тс	0.60 V	ert(LL)		0.15 4-5	>682	240	MT20	244/190
TCDL BCLL	10.0 0.0*	Lumber DOL Rep Stress Incr	1.15 YES	BC WB		ert(CT) orz(CT)		0.38 4-5 0.00 4	>274 n/a	180 n/a		
BCDL	15.0	Code	IRC2015/TPI2014	Matrix-MSH							Weight: 77 lb	FT = 20%
	0.400.11.0						<u>.</u>					
TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2				TOP CHORD		ver	ictural wood s icals. id ceiling direc	-			purlins, except end
WEBS	2x4 SP No.3				BOT CHORD			a ceilina airec			-U oc pracind.	
			0.4.0) 5 754/0.0.0 (min	0.4.0	WEBS			ow at midpt	appilou	0100	3-4	
REACTIONS	(lb/size) 4 Max Horiz 5	=397 (LC 10)	. 0-1-8), 5=754/0-3-8, (min.	0-1-8)					.,			
	(lb/size) 4 Max Horiz 5 Max Uplift 4	=397 (LC 10) =-326 (LC 10)		0-1-8)					aj appiloa			
REACTIONS	(Ib/size) 4 Max Horiz 5 Max Uplift 4 Max Grav 4 (Ib) - Ma	=397 (LC 10) =-326 (LC 10) =522 (LC 17), 5=754 (Li k. Comp./Max. Ten Al										
REACTIONS	(Ib/size) 4 Max Horiz 5 Max Uplift 4 Max Grav 4 (Ib) - Ma 2-7=-42/	=397 (LC 10) =-326 (LC 10) =522 (LC 17), 5=754 (Li k. Comp./Max. Ten Al	C 1) I forces 250 (Ib) or less exce						., app			
FORCES TOP CHORD BOT CHORD WEBS	(lb/size) 4 Max Horiz 5 Max Uplift 4 Max Grav 4 (lb) - Ma 2-7=-42/ 5-9=-24'	=397 (LC 10) =-326 (LC 10) =522 (LC 17), 5=754 (L & Comp./Max. Ten Al 252	C 1) I forces 250 (Ib) or less exce						.,			
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Wind: ASC	(lb/size) 4 Max Horiz 5 Max Uplift 4 Max Grav 4 (lb) - Ma 2-7=-42/ 5-9=-24 2-5=-482 CE 7-10; Vult=115m	=397 (LC 10) =-326 (LC 10) =522 (LC 17), 5=754 (L1 x. Comp./Max. Ten Al 252 /279, 9-10=-241/279, 4- //0, 2-4=-375/334 uph (3-second gust)	C 1) I forces 250 (Ib) or less exc -10=-241/279 Vasd=91mph; TCDL=6.	ept when shown. 0psf; BCDL=6.0p	webs sf; h=35ft; C		1 R	ow at midpt Enclosed;				
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Wind: ASG MWFRS ((lb/size) 4 Max Horiz 5 Max Uplift 4 Max Grav 4 (lb) - Ma 2-7=-42/ 5-9=-24' 2-5=-482 CE 7-10; Vult=115m envelope) exterior z	=397 (LC 10) =-326 (LC 10) =522 (LC 17), 5=754 (L(x. Comp./Max. Ten Al 252 /279, 9-10=-241/279, 4. /0, 2-4=-375/334 ph (3-second gust) 1 one and C-C Exterio	C 1) I forces 250 (Ib) or less exci -10=-241/279	ept when shown. 0psf; BCDL=6.0p nterior (1) 3-2-12	WEBS sf; h=35ft; C to 6-10-5, E	xterior	1 R	ow at midpt Enclosed;				
REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Wind: AS(MWFRS (zone;C-C 2) This truss	(lb/size) 4 Max Horiz 5 Max Uplift 4 Max Grav 4 (lb) - Ma 2-7=-42/ 5-9=-24' 2-5=-482 CE 7-10; Vult=115m envelope) exterior 2 for members and fo has been designed	=397 (LC 10) =-326 (LC 10) =522 (LC 17), 5=754 (L' <. Comp./Max. Ten Al 252 /279, 9-10=-241/279, 4- /0, 2-4=-375/334 who (3-second gust) ione and C-C Exterior cres & MWFRS for 1 for a 10.0 psf bottor	C 1) I forces 250 (Ib) or less exc -10=-241/279 Vasd=91mph; TCDL=6. or (2) 0-2-12 to 3-2-12, I reactions shown; Lumbe n chord live load nonco	ept when shown. 0psf; BCDL=6.0p nterior (1) 3-2-12 er DOL=1.60 plate ncurrent with any	WEBS sf; h=35ft; C to 6-10-5, E e grip DOL= other live lo	xterior 1.60 ads.	1 R Exp C; 1 (2) 6-1	ow at midpt Enclosed; 0-5 to 11-1-4				
REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Wind: AS(MWFRS (zone;C-C 2) This truss 3) * This trus 2-00-00 w	(lb/size) 4 Max Horiz 5 Max Uplift 4 Max Grav 4 (lb) - Ma 2.7=-42/ 5-9=-24' 2-5=-482 CE 7-10; Vult=115m envelope) exterior 2 for members and fo has been designed is has been designed is has been designed	=397 (LC 10) =-326 (LC 10) =522 (LC 17), 5=754 (L1 x. Comp./Max. Ten Al 252 /279, 9-10=-241/279, 4- /0, 2-4=-375/334 uph (3-second gust) ione and C-C Exterior rces & MWFRS for I for a 10.0 psf bottor d for a live load of 2 he bottom chord and	C 1) I forces 250 (Ib) or less exc -10=-241/279 Vasd=91mph; TCDL=6. or (2) 0-2-12 to 3-2-12, I reactions shown; Lumbo	ept when shown. 0psf; BCDL=6.0p nterior (1) 3-2-12 er DOL=1.60 plate ncurrent with any ord in all areas w	webs sf; h=35ft; C to 6-10-5, E e grip DOL= other live lo here a recta	xterior 1.60 ads.	1 R Exp C; 1 (2) 6-1	ow at midpt Enclosed; 0-5 to 11-1-4				
REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Wind: ASC MWFRS (zone;C-C 2) This truss 3) * This trus 2-00-00 w 4) Refer to g 5) Provide m	(lb/size) 4 Max Horiz 5 Max Uplift 4 Max Grav 4 (lb) - Ma 2-7=-42/ 5-9=-24: 2-5=-482 CE 7-10; Vult=115m envelope) exterior z for members and fo has been designed s has been designed ide will fit between irder(s) for truss to echanical connection	=397 (LC 10) =-326 (LC 10) =522 (LC 17), 5=754 (L1 & Comp./Max. Ten Al 252 /279, 9-10=-241/279, 4 /0, 2-4=-375/334 and C-C Exterior roes & MWFRS for 1 for a 10.0 psf bottor d for a live load of 2 he bottom chord and russ connections. on (by others) of trus	C 1) I forces 250 (Ib) or less exc -10=-241/279 Vasd=91mph; TCDL=6. or (2) 0-2-12 to 3-2-12, I reactions shown; Lumber n chord live load nonco 0.0psf on the bottom ch d any other members, w s to bearing plate capal	ept when shown. 0psf; BCDL=6.0p nterior (1) 3-2-12 er DOL=1.60 plate ncurrent with any ord in all areas w vith BCDL = 15.0p ole of withstandin	WEBS sf; h=35ft; C to 6-10-5, E e grip DOL= other live lo here a recta osf. g 326 lb upli	xterior 1.60 ads. ngle 3- t at joir	1 R Exp C; I ∙ (2) 6-1 -06-00 1 int 4.	Enclosed; 0-5 to 11-1-4 all by				
REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Wind: ASG MWFRS (zone;C-C 2) This truss 2-00-00 w 4) Refer tog 5) Provide m 6) This truss referenced	(lb/size) 4 Max Horiz 5 Max Uplift 4 Max Grav 4 (lb) - Ma 2-7=-42/ 5-9=-24: 2-5=-482 CE 7-10; Vult=115m envelope) exterior z for members and fo has been designed s has been designed ide will fit between irder(s) for truss to echanical connection	=397 (LC 10) =-326 (LC 10) =522 (LC 17), 5=754 (L ¹ (C. Comp./Max. Ten Al 252 /279, 9-10=-241/279, 4 /0, 2-4=-375/334 who (3-second gust) ' cone and C-C Exterior roes & MWFRS for 1 for a 10.0 psf bottor d for a live load of 2 he bottom chord and russ connections. In (by others) of frus rdance with the 2019	C 1) I forces 250 (lb) or less exce -10=-241/279 Vasd=91mph; TCDL=6. or (2) 0-2-12 to 3-2-12, l reactions shown; Lumbe n chord live load nonco 0.0psf on the bottom ch d any other members, w	ept when shown. 0psf; BCDL=6.0p nterior (1) 3-2-12 er DOL=1.60 plate ncurrent with any ord in all areas w vith BCDL = 15.0p ole of withstandin	WEBS sf; h=35ft; C to 6-10-5, E e grip DOL= other live lo here a recta osf. g 326 lb upli	xterior 1.60 ads. ngle 3- t at joir	1 R Exp C; I ∙ (2) 6-1 -06-00 1 int 4.	Enclosed; 0-5 to 11-1-4 all by				
REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Wind: AS(MWFRS (zone;C-C 2) This truss 3) * This trus 2-00-00 w 4) Refer to g 5) Provide m 6) This truss	(lb/size) 4 Max Horiz 5 Max Uplift 4 Max Grav 4 (lb) - Ma 2-7=-42/ 5-9=-24' 2-5=-482 CE 7-10; Vult=115m envelope) exterior 2 for members and fc has been designed s has been designed s has been designed ide will fit between 1 irder(s) for truss to echanical connectit is designed in according	=397 (LC 10) =-326 (LC 10) =522 (LC 17), 5=754 (L ¹ (C. Comp./Max. Ten Al 252 /279, 9-10=-241/279, 4 /0, 2-4=-375/334 who (3-second gust) ' cone and C-C Exterior roes & MWFRS for 1 for a 10.0 psf bottor d for a live load of 2 he bottom chord and russ connections. In (by others) of frus rdance with the 2019	C 1) I forces 250 (Ib) or less exc -10=-241/279 Vasd=91mph; TCDL=6. or (2) 0-2-12 to 3-2-12, I reactions shown; Lumber n chord live load nonco 0.0psf on the bottom ch d any other members, w s to bearing plate capal	ept when shown. 0psf; BCDL=6.0p nterior (1) 3-2-12 er DOL=1.60 plate ncurrent with any ord in all areas w vith BCDL = 15.0p ole of withstandin	WEBS sf; h=35ft; C to 6-10-5, E e grip DOL= other live lo here a recta osf. g 326 lb upli	xterior 1.60 ads. ngle 3- t at joir	1 R Exp C; I ∙ (2) 6-1 -06-00 1 int 4.	Enclosed; 0-5 to 11-1-4 all by				
REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Wind: ASG MWFRS (zone;C-C 2) This truss 2-00-00 w 4) Refer tog 5) Provide m 6) This truss referenced	(lb/size) 4 Max Horiz 5 Max Uplift 4 Max Grav 4 (lb) - Ma 2-7=-42/ 5-9=-24' 2-5=-482 CE 7-10; Vult=115m envelope) exterior 2 for members and fc has been designed s has been designed s has been designed ide will fit between 1 irder(s) for truss to echanical connection is designed in acco d standard ANSI/TF	=397 (LC 10) =-326 (LC 10) =522 (LC 17), 5=754 (L ¹ (C. Comp./Max. Ten Al 252 /279, 9-10=-241/279, 4 /0, 2-4=-375/334 who (3-second gust) ' cone and C-C Exterior roes & MWFRS for 1 for a 10.0 psf bottor d for a live load of 2 he bottom chord and russ connections. In (by others) of frus rdance with the 2019	C 1) I forces 250 (Ib) or less exc -10=-241/279 Vasd=91mph; TCDL=6. or (2) 0-2-12 to 3-2-12, I reactions shown; Lumber n chord live load nonco 0.0psf on the bottom ch d any other members, w s to bearing plate capal	ept when shown. 0psf; BCDL=6.0p nterior (1) 3-2-12 er DOL=1.60 plate ncurrent with any ord in all areas w vith BCDL = 15.0p ole of withstandin	WEBS sf; h=35ft; C to 6-10-5, E e grip DOL= other live lo here a recta osf. g 326 lb upli	xterior 1.60 ads. ngle 3- t at joir	1 R Exp C; I ∙ (2) 6-1 -06-00 1 int 4.	Enclosed; 0-5 to 11-1-4 all by				
REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Wind: ASG MWFRS (zone;C-C 2) This truss 2-00-00 w 4) Refer tog 5) Provide m 6) This truss referenced	(lb/size) 4 Max Horiz 5 Max Uplift 4 Max Grav 4 (lb) - Ma 2-7=-42/ 5-9=-24' 2-5=-482 CE 7-10; Vult=115m envelope) exterior 2 for members and fc has been designed s has been designed s has been designed ide will fit between 1 irder(s) for truss to echanical connection is designed in acco d standard ANSI/TF	=397 (LC 10) =-326 (LC 10) =522 (LC 17), 5=754 (L ¹ (C. Comp./Max. Ten Al 252 /279, 9-10=-241/279, 4 /0, 2-4=-375/334 who (3-second gust) ' cone and C-C Exterior roes & MWFRS for 1 for a 10.0 psf bottor d for a live load of 2 he bottom chord and russ connections. In (by others) of frus rdance with the 2019	C 1) I forces 250 (Ib) or less exc -10=-241/279 Vasd=91mph; TCDL=6. or (2) 0-2-12 to 3-2-12, I reactions shown; Lumber n chord live load nonco 0.0psf on the bottom ch d any other members, w s to bearing plate capal	ept when shown. 0psf; BCDL=6.0p nterior (1) 3-2-12 er DOL=1.60 plate ncurrent with any ord in all areas w vith BCDL = 15.0p ole of withstandin	WEBS sf; h=35ft; C to 6-10-5, E e grip DOL= other live lo here a recta osf. g 326 lb upli	xterior 1.60 ads. ngle 3- t at joir	1 R Exp C; I ∙ (2) 6-1 -06-00 1 int 4.	Enclosed; 0-5 to 11-1-4 all by				
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Wind: ASG MWFRS (zone;C-C 2) This truss 2-00-00 w 4) Refer tog 5) Provide m 6) This truss referenced	(lb/size) 4 Max Horiz 5 Max Uplift 4 Max Grav 4 (lb) - Ma 2-7=-42/ 5-9=-24' 2-5=-482 CE 7-10; Vult=115m envelope) exterior 2 for members and fc has been designed s has been designed s has been designed ide will fit between 1 irder(s) for truss to echanical connection is designed in acco d standard ANSI/TF	=397 (LC 10) =-326 (LC 10) =522 (LC 17), 5=754 (L ¹ (C. Comp./Max. Ten Al 252 /279, 9-10=-241/279, 4 /0, 2-4=-375/334 who (3-second gust) ' cone and C-C Exterior roes & MWFRS for 1 for a 10.0 psf bottor d for a live load of 2 he bottom chord and russ connections. In (by others) of frus rdance with the 2019	C 1) I forces 250 (Ib) or less exc -10=-241/279 Vasd=91mph; TCDL=6. or (2) 0-2-12 to 3-2-12, I reactions shown; Lumber n chord live load nonco 0.0psf on the bottom ch d any other members, w s to bearing plate capal	ept when shown. 0psf; BCDL=6.0p nterior (1) 3-2-12 er DOL=1.60 plate ncurrent with any ord in all areas w vith BCDL = 15.0p ole of withstandin	WEBS sf; h=35ft; C to 6-10-5, E e grip DOL= other live lo here a recta osf. g 326 lb upli	xterior 1.60 ads. ngle 3- t at joir	1 R Exp C; I ∙ (2) 6-1 -06-00 1 int 4.	Enclosed; 0-5 to 11-1-4 all by				
REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Wind: AS(MWFRS (zone;C-C 2) This truss 2-00-00 w 4) Refer to g 5) Provide m 6) This truss referenced	(lb/size) 4 Max Horiz 5 Max Uplift 4 Max Grav 4 (lb) - Ma 2-7=-42/ 5-9=-24' 2-5=-482 CE 7-10; Vult=115m envelope) exterior 2 for members and fc has been designed s has been designed s has been designed ide will fit between 1 irder(s) for truss to echanical connection is designed in acco d standard ANSI/TF	=397 (LC 10) =-326 (LC 10) =522 (LC 17), 5=754 (L ¹ (C. Comp./Max. Ten Al 252 /279, 9-10=-241/279, 4 /0, 2-4=-375/334 who (3-second gust) ' cone and C-C Exterior roes & MWFRS for 1 for a 10.0 psf bottor d for a live load of 2 he bottom chord and russ connections. In (by others) of frus rdance with the 2019	C 1) I forces 250 (Ib) or less exc -10=-241/279 Vasd=91mph; TCDL=6. or (2) 0-2-12 to 3-2-12, I reactions shown; Lumber n chord live load nonco 0.0psf on the bottom ch d any other members, w s to bearing plate capal	ept when shown. 0psf; BCDL=6.0p nterior (1) 3-2-12 er DOL=1.60 plate ncurrent with any ord in all areas w vith BCDL = 15.0p ole of withstandin	WEBS sf; h=35ft; C to 6-10-5, E e grip DOL= other live lo here a recta osf. g 326 lb upli	xterior 1.60 ads. ngle 3- t at joir	1 R Exp C; I ∙ (2) 6-1 -06-00 1 int 4.	Enclosed; 0-5 to 11-1-4 all by				
REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Wind: ASG MWFRS (zone;C-C 2) This truss 2-00-00 w 4) Refer tog 5) Provide m 6) This truss referenced	(lb/size) 4 Max Horiz 5 Max Uplift 4 Max Grav 4 (lb) - Ma 2-7=-42/ 5-9=-24' 2-5=-482 CE 7-10; Vult=115m envelope) exterior 2 for members and fc has been designed s has been designed s has been designed ide will fit between 1 irder(s) for truss to echanical connection is designed in acco d standard ANSI/TF	=397 (LC 10) =-326 (LC 10) =522 (LC 17), 5=754 (L ¹ (C. Comp./Max. Ten Al 252 /279, 9-10=-241/279, 4 /0, 2-4=-375/334 who (3-second gust) ' cone and C-C Exterior roes & MWFRS for 1 for a 10.0 psf bottor d for a live load of 2 he bottom chord and russ connections. In (by others) of frus rdance with the 2019	C 1) I forces 250 (Ib) or less exc -10=-241/279 Vasd=91mph; TCDL=6. or (2) 0-2-12 to 3-2-12, I reactions shown; Lumber n chord live load nonco 0.0psf on the bottom ch d any other members, w s to bearing plate capal	ept when shown. 0psf; BCDL=6.0p nterior (1) 3-2-12 er DOL=1.60 plate ncurrent with any ord in all areas w vith BCDL = 15.0p ole of withstandin	WEBS sf; h=35ft; C to 6-10-5, E e grip DOL= other live lo here a recta osf. g 326 lb upli	xterior 1.60 ads. ngle 3- t at joir	1 R Exp C; I ∙ (2) 6-1 -06-00 1 int 4.	Enclosed; 0-5 to 11-1-4 all by				
REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Wind: ASG MWFRS (zone;C-C 2) This truss 2-00-00 w 4) Refer tog 5) Provide m 6) This truss referenced	(lb/size) 4 Max Horiz 5 Max Uplift 4 Max Grav 4 (lb) - Ma 2-7=-42/ 5-9=-24' 2-5=-482 CE 7-10; Vult=115m envelope) exterior 2 for members and fc has been designed s has been designed s has been designed ide will fit between 1 irder(s) for truss to echanical connection is designed in acco d standard ANSI/TF	=397 (LC 10) =-326 (LC 10) =522 (LC 17), 5=754 (L ¹ (C. Comp./Max. Ten Al 252 /279, 9-10=-241/279, 4 /0, 2-4=-375/334 who (3-second gust) ' cone and C-C Exterior roes & MWFRS for 1 for a 10.0 psf bottor d for a live load of 2 he bottom chord and russ connections. In (by others) of frus rdance with the 2019	C 1) I forces 250 (Ib) or less exc -10=-241/279 Vasd=91mph; TCDL=6. or (2) 0-2-12 to 3-2-12, I reactions shown; Lumber n chord live load nonco 0.0psf on the bottom ch d any other members, w s to bearing plate capal	ept when shown. 0psf; BCDL=6.0p nterior (1) 3-2-12 er DOL=1.60 plate ncurrent with any ord in all areas w vith BCDL = 15.0p ole of withstandin	WEBS sf; h=35ft; C to 6-10-5, E e grip DOL= other live lo here a recta osf. g 326 lb upli	xterior 1.60 ads. ngle 3- t at joir	1 R Exp C; I ∙ (2) 6-1 -06-00 1 int 4.	Enclosed; 0-5 to 11-1-4 all by				
REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Wind: ASG MWFRS (zone;C-C 2) This truss 2-00-00 w 4) Refer tog 5) Provide m 6) This truss referenced	(lb/size) 4 Max Horiz 5 Max Uplift 4 Max Grav 4 (lb) - Ma 2-7=-42/ 5-9=-24' 2-5=-482 CE 7-10; Vult=115m envelope) exterior 2 for members and fc has been designed s has been designed s has been designed ide will fit between 1 irder(s) for truss to echanical connection is designed in acco d standard ANSI/TF	=397 (LC 10) =-326 (LC 10) =522 (LC 17), 5=754 (L ¹ (C. Comp./Max. Ten Al 252 /279, 9-10=-241/279, 4 /0, 2-4=-375/334 aph (3-second gust) ' one and C-C Exterior roes & MWFRS for 1 for a 10.0 psf bottor d for a live load of 2 he bottom chord and russ connections. n (by others) of frus rdance with the 2019	C 1) I forces 250 (Ib) or less exc -10=-241/279 Vasd=91mph; TCDL=6. or (2) 0-2-12 to 3-2-12, I reactions shown; Lumber n chord live load nonco 0.0psf on the bottom ch d any other members, w s to bearing plate capal	ept when shown. 0psf; BCDL=6.0p nterior (1) 3-2-12 er DOL=1.60 plate ncurrent with any ord in all areas w vith BCDL = 15.0p ole of withstandin	WEBS sf; h=35ft; C to 6-10-5, E e grip DOL= other live lo here a recta osf. g 326 lb upli	xterior 1.60 ads. ngle 3- t at joir	1 R Exp C; I ∙ (2) 6-1 -06-00 1 int 4.	Enclosed; 0-5 to 11-1-4 all by				
REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Wind: ASG MWFRS (zone;C-C 2) This truss 2-00-00 w 4) Refer tog 5) Provide m 6) This truss referenced	(lb/size) 4 Max Horiz 5 Max Uplift 4 Max Grav 4 (lb) - Ma 2-7=-42/ 5-9=-24' 2-5=-482 CE 7-10; Vult=115m envelope) exterior 2 for members and fc has been designed s has been designed s has been designed ide will fit between 1 irder(s) for truss to echanical connection is designed in acco d standard ANSI/TF	=397 (LC 10) =-326 (LC 10) =522 (LC 17), 5=754 (L ¹ (C. Comp./Max. Ten Al 252 /279, 9-10=-241/279, 4 /0, 2-4=-375/334 aph (3-second gust) ' one and C-C Exterior roes & MWFRS for 1 for a 10.0 psf bottor d for a live load of 2 he bottom chord and russ connections. n (by others) of frus rdance with the 2019	C 1) I forces 250 (Ib) or less exc -10=-241/279 Vasd=91mph; TCDL=6. or (2) 0-2-12 to 3-2-12, I reactions shown; Lumber n chord live load nonco 0.0psf on the bottom ch d any other members, w s to bearing plate capal	ept when shown. 0psf; BCDL=6.0p nterior (1) 3-2-12 er DOL=1.60 plate ncurrent with any ord in all areas w vith BCDL = 15.0p ole of withstandin	WEBS sf; h=35ft; C to 6-10-5, E e grip DOL= other live lo here a recta osf. g 326 lb upli	xterior 1.60 ads. ngle 3- t at joir	1 R Exp C; I ∙ (2) 6-1 -06-00 1 int 4.	Enclosed; 0-5 to 11-1-4 all by				
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Wind: ASG MWFRS (zone;C-C 2) This truss 2-00-00 w 4) Refer tog 5) Provide m 6) This truss referenced	(lb/size) 4 Max Horiz 5 Max Uplift 4 Max Grav 4 (lb) - Ma 2-7=-42/ 5-9=-24' 2-5=-482 CE 7-10; Vult=115m envelope) exterior 2 for members and fc has been designed s has been designed s has been designed ide will fit between 1 irder(s) for truss to echanical connection is designed in acco d standard ANSI/TF	=397 (LC 10) =-326 (LC 10) =522 (LC 17), 5=754 (L ¹ (C. Comp./Max. Ten Al 252 /279, 9-10=-241/279, 4 /0, 2-4=-375/334 aph (3-second gust) ' one and C-C Exterior roes & MWFRS for 1 for a 10.0 psf bottor d for a live load of 2 he bottom chord and russ connections. n (by others) of frus rdance with the 2019	C 1) I forces 250 (Ib) or less exc -10=-241/279 Vasd=91mph; TCDL=6. or (2) 0-2-12 to 3-2-12, I reactions shown; Lumber n chord live load nonco 0.0psf on the bottom ch d any other members, w s to bearing plate capal	ept when shown. 0psf; BCDL=6.0p nterior (1) 3-2-12 er DOL=1.60 plate ncurrent with any ord in all areas w vith BCDL = 15.0p ole of withstandin	WEBS sf; h=35ft; C to 6-10-5, E e grip DOL= other live lo here a recta osf. g 326 lb upli	xterior 1.60 ads. ngle 3- t at joir	1 R Exp C; I ∙ (2) 6-1 -06-00 1 int 4.	Enclosed; 0-5 to 11-1-4 all by				
REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Wind: ASG MWFRS (zone;C-C 2) This truss 2-00-00 w 4) Refer to g 5) Provide m 6) This truss referenced LOAD CASE(S)	(lb/size) 4 Max Horiz 5 Max Uplift 4 Max Grav 4 (lb) - Ma 2-7=-42/ 5-9=-24' 2-5=-482 CE 7-10; Vult=115m envelope) exterior 2 for members and fc has been designed is has been designed is has been designed ide will fit between irder(s) for truss to echanical connection is designed in acco d standard ANSI/TF Standard	=397 (LC 10) =-326 (LC 10) =522 (LC 17), 5=754 (Li & Comp./Max. Ten Al 252 /279, 9-10=-241/279, 4- /0, 2-4=-375/334 aph (3-second gust) \ one and C-C Exterior rces & MWFRS for r for a 10.0 psf bottor d for a live load of 2 he bottom chord and russ connections. on (by others) of trus rdance with the 2019 1.	C 1) I forces 250 (Ib) or less exc -10=-241/279 Vasd=91mph; TCDL=6. or (2) 0-2-12 to 3-2-12, I reactions shown; Lumber n chord live load nonco 0.0psf on the bottom ch d any other members, w s to bearing plate capal	ept when shown. 0psf; BCDL=6.0p nterior (1) 3-2-12 er DOL=1.60 plate ncurrent with any ord in all areas w vith BCDL = 15.0p ole of withstandin- tial Code sections	WEBS sf; h=35ft; C to 6-10-5, E e grip DOL= other live lo here a recta sf. g 326 lb upli s R502.11.1	xterior I.60 ads. ngle 3- ît at join and R8	Exp C; 1 -06-00 1 -06-00 1	Enclosed; 0-5 to 11-1-4 all by 2 and	4		3.4	mponent

Job	Truss	Truss Type	Qty	Ply	
24061831	D9L	Truss	2	2	Job Reference (optional)

Run: 8.73 S Jan 4 2024 Print: 8.730 S Jan 4 2024 MiTek Industries, Inc. Tue Jul 02 14:31:16 Page: 2 ID:1KaTAFMgi0H9r1XtkczccJ208II-0NUQHIMhOHysRMgT2XI7jG2ZZ1LYvkJA286swjz05AA

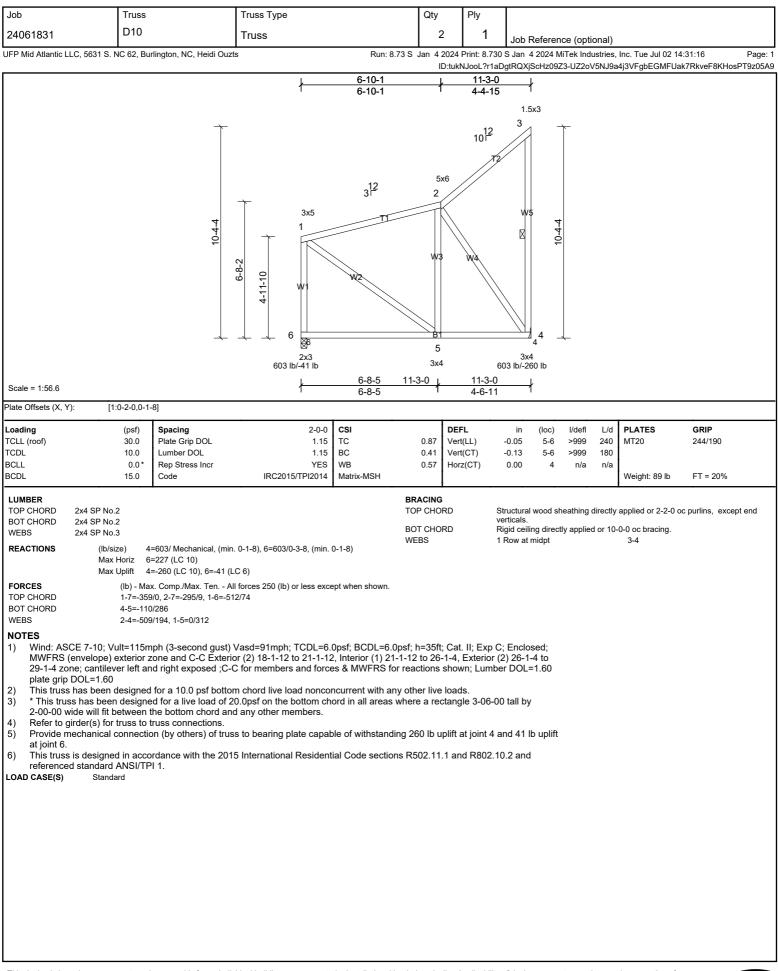
17) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard

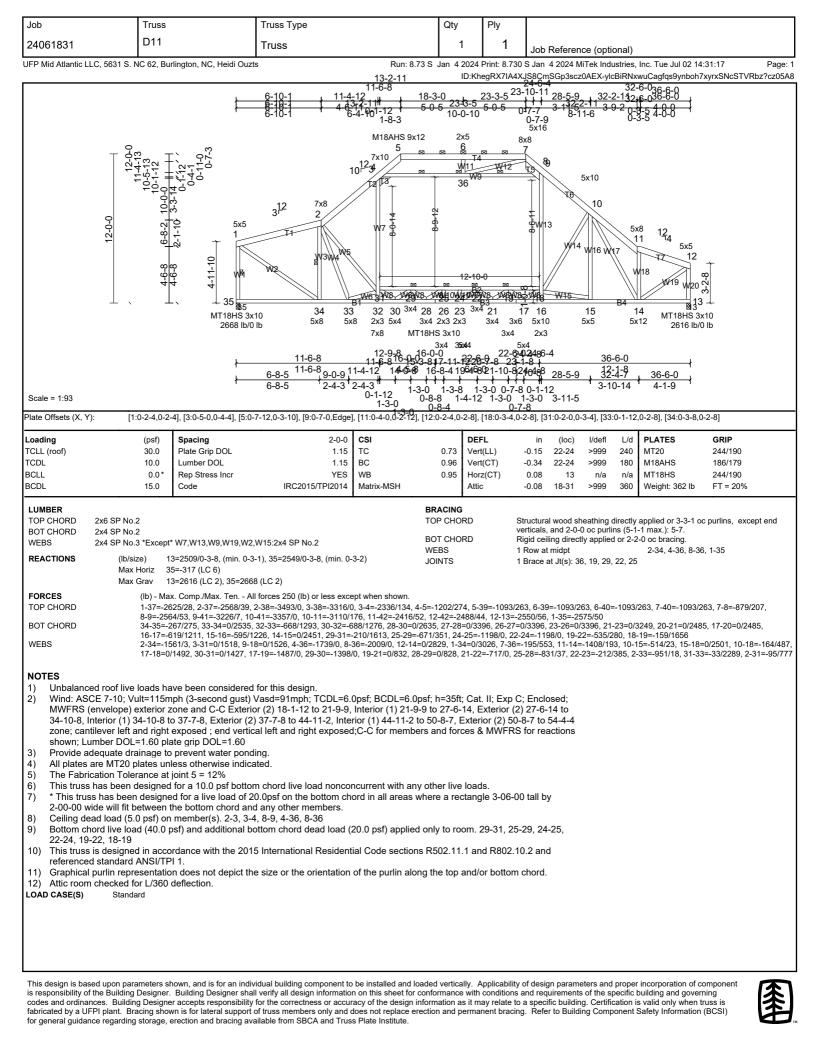
1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

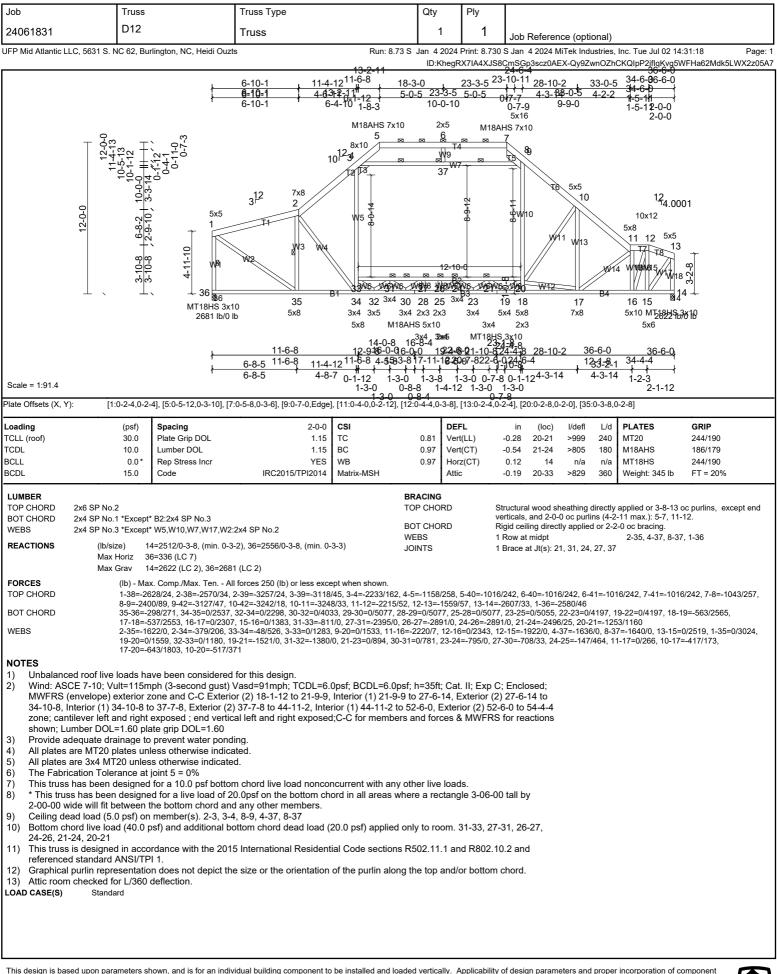
Uniform Loads (lb/ft)

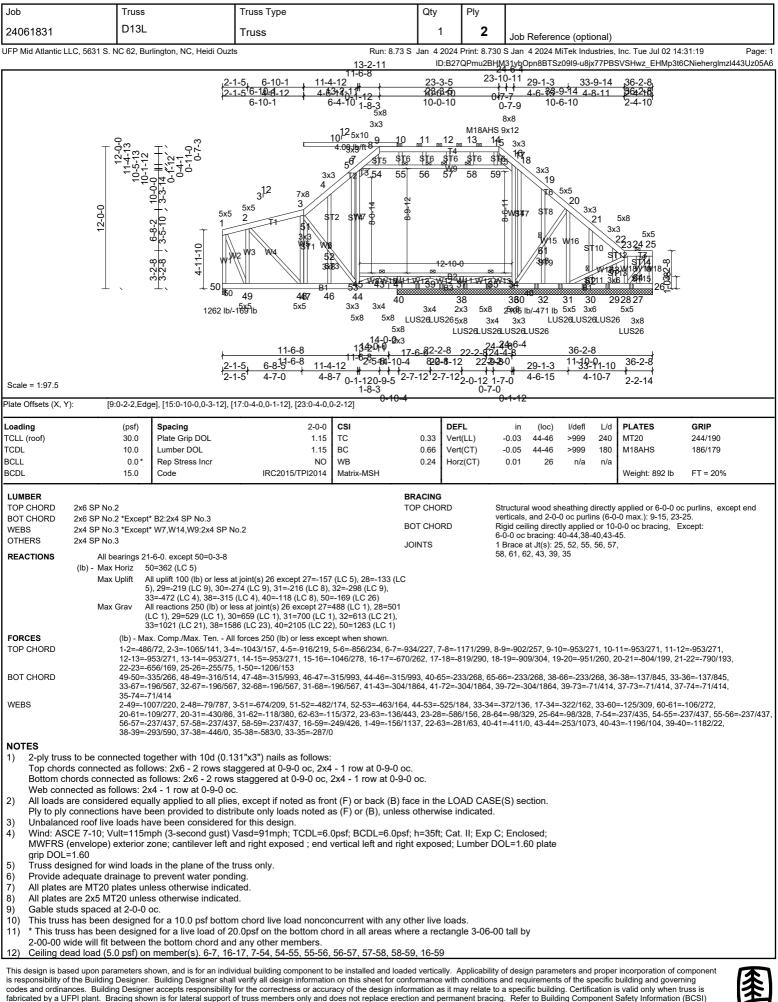
Vert: 1-3=-80, 3-5=-90, 5-6=-80, 6-7=-80, 20-23=-30, 18-20=-70, 18-25=-30, 5-24=-10, 9-24=-10


Concentrated Loads (lb)

Vert: 19-57 (B), 20=-2380 (F), 16=-57 (B), 28=-57 (B), 29=-57 (B), 30=-57 (B), 31=-57 (B), 32=-57 (B), 33=-57 (B), 34=-57 (B), 35=-57 (B), 36=-57 (B),

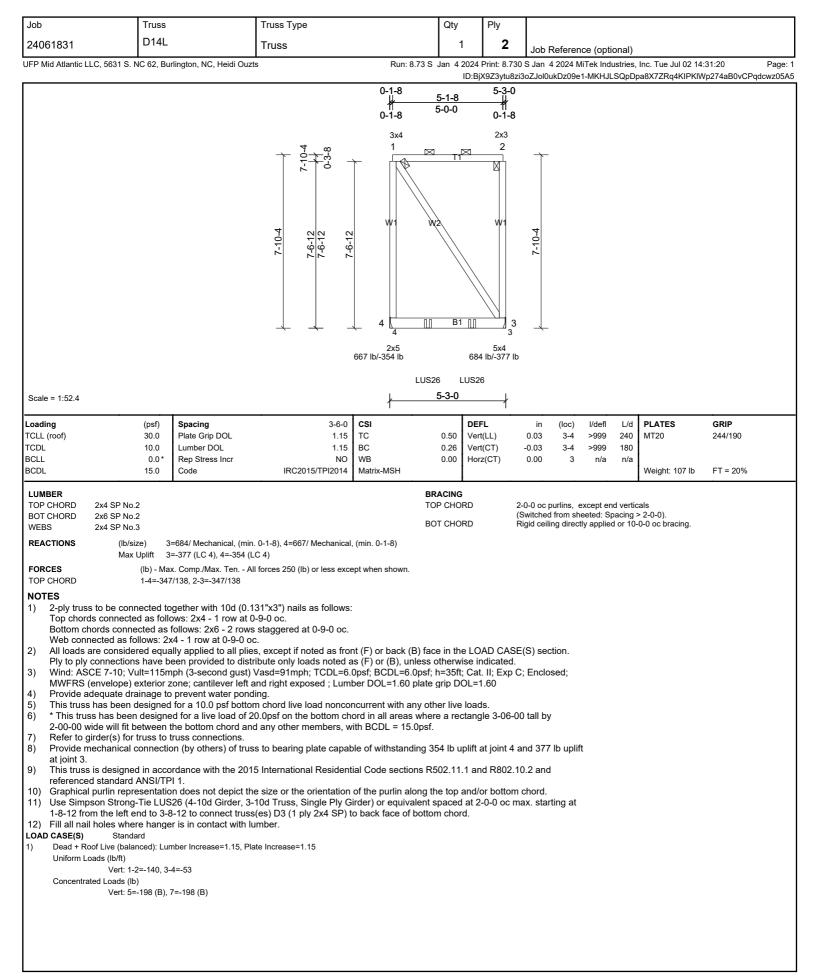

Trapezoidal Loads (lb/ft)


Vert: 7=-90-to-8=-123, 8=-123-to-9=-129, 9=-139-to-10=-141, 10=-131-to-11=-156, 11=-156-to-12=-173, 12=-173-to-13=-182, 13=-182-to-26=-207, 26=-207, 26=-207, 14=-210

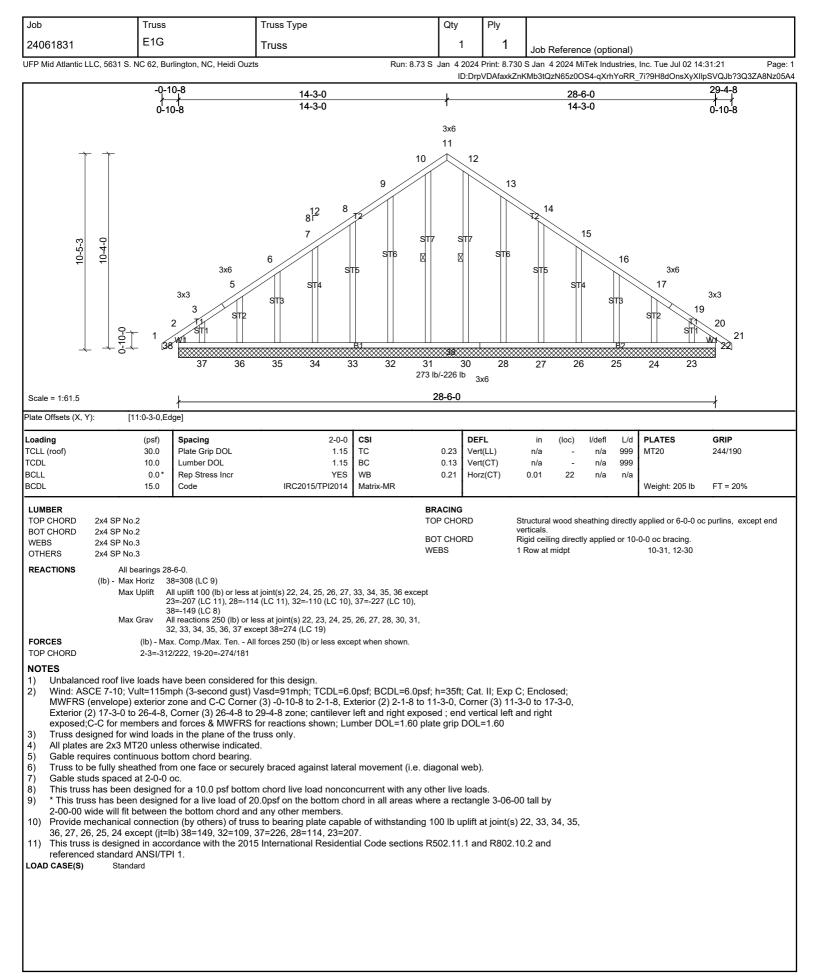


for general guidance regarding storage, erection and bracing available from SBCA and Truss Plate Institute Continued on page 2

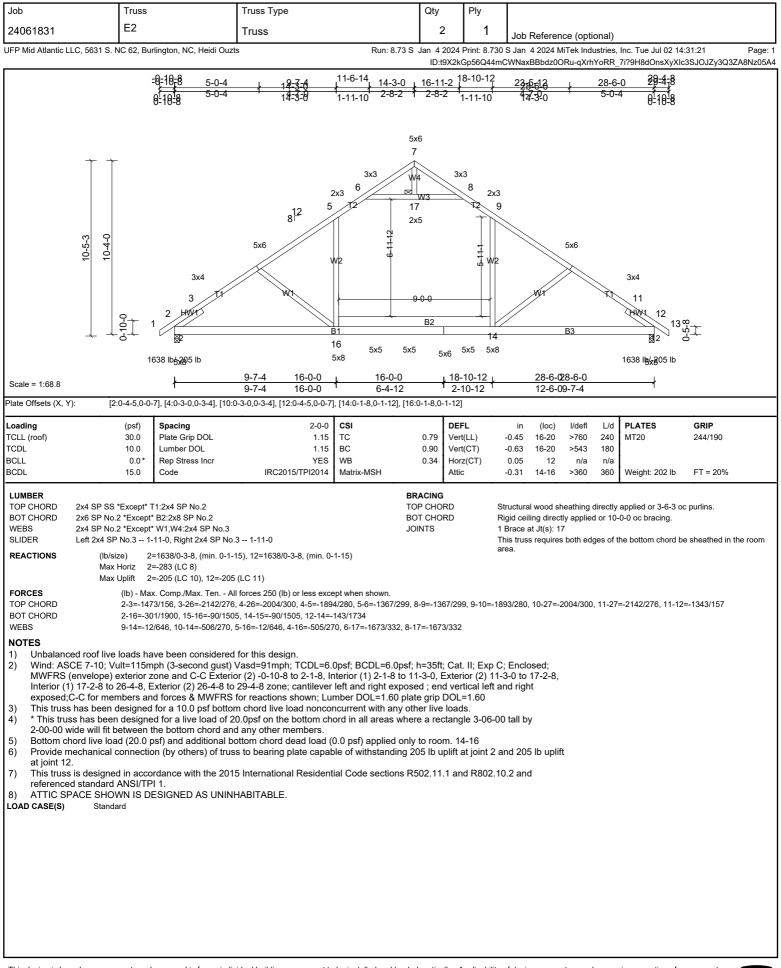
Job	Truss	Truss Type	Qty	Ply	
24061831	D13L	Truss	1	2	Job Reference (optional)

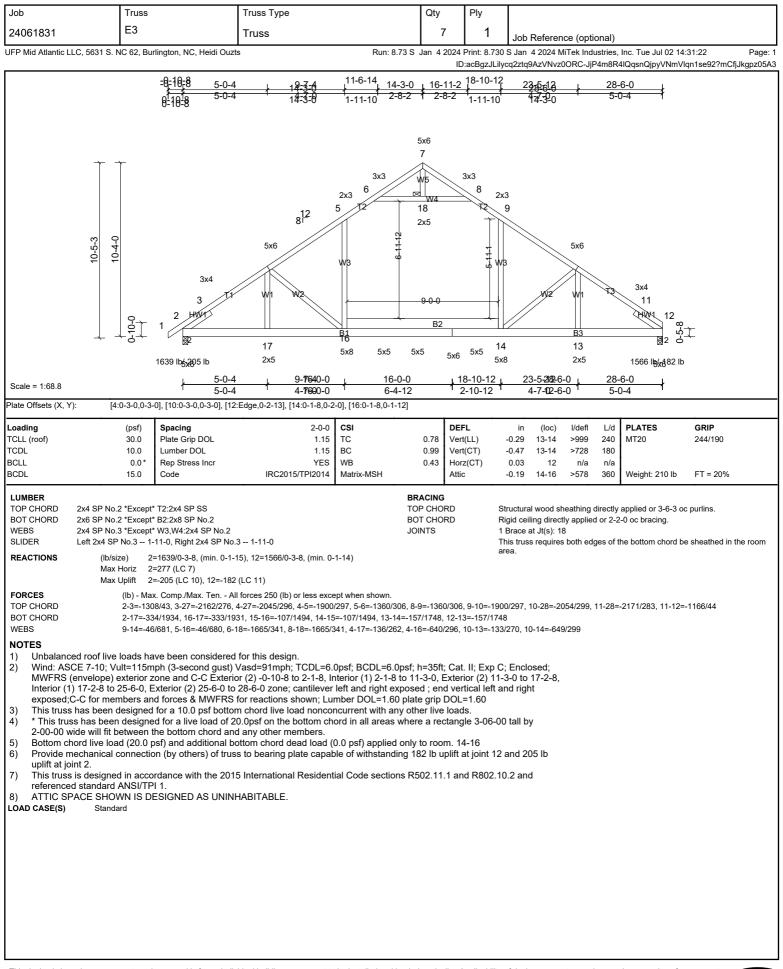

Run: 8.73 S Jan 4 2024 Print: 8.730 S Jan 4 2024 MiTek Industries, Inc. Tue Jul 02 14:31:19 Page: 2 ID:B27QPmu2BHM31ybOpn8BTSz09I9-u8jx77PBSVSHwz EHMp3t6CNiehergImzl443Uz05A6

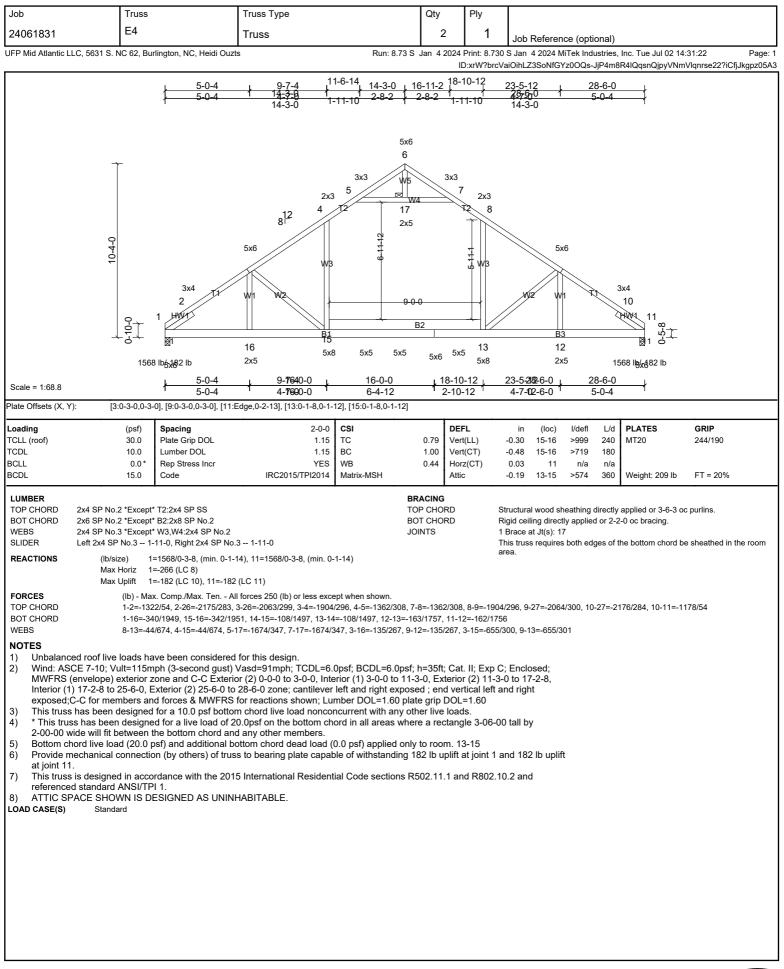
- 13) Bottom chord live load (40.0 psf) and additional bottom chord dead load (20.0 psf) applied only to room. 43-45, 41-43, 39-41, 37-39, 35-37, 34-35
- 14) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 26 except
- (jt=lb) 50=169, 33=471, 31=216, 28=133, 32=297, 30=274, 29=218, 27=156, 40=118, 38=314. 15) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and
- referenced standard ANSI/TPI 1.
- 16) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- Use Simpson Strong-Tie LUS26 (4-10d Girder, 3-10d Truss, Single Ply Girder) or equivalent spaced at 2-0-0 oc max. starting at 17)
- 34-5-4 from the left end to 52-5-4 to connect truss(es) T25 (1 ply 2x4 SP) to back face of bottom chord.
- 18) Fill all nail holes where hanger is in contact with lumber.
- 19) Attic room checked for L/360 deflection. Standard


LOAD CASE(S)

- Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 1)
 - Uniform Loads (lb/ft)
 - Vert: 1-3=-80, 3-6=-84 (F=-4), 6-7=-94 (F=-4), 7-9=-84 (F=-4), 9-10=-84 (F=-4), 10-15=-80, 15-16=-80, 16-17=-90, 17-23=-80, 23-25=-80, 26-50=-30, 34-45=-70, 7-54=-10, 54-55=-10, 55-56=-10, 56-57=-10, 57-58=-10, 58-59=-10, 16-59=-10
 - Concentrated Loads (lb)
 - Vert: 33=-398 (B), 38=-398 (B), 36=-398 (B), 65=-398 (B), 66=-398 (B), 67=-398 (B), 68=-398 (B), 69=-398 (B), 70=-398 (B), 71=-398 (B)

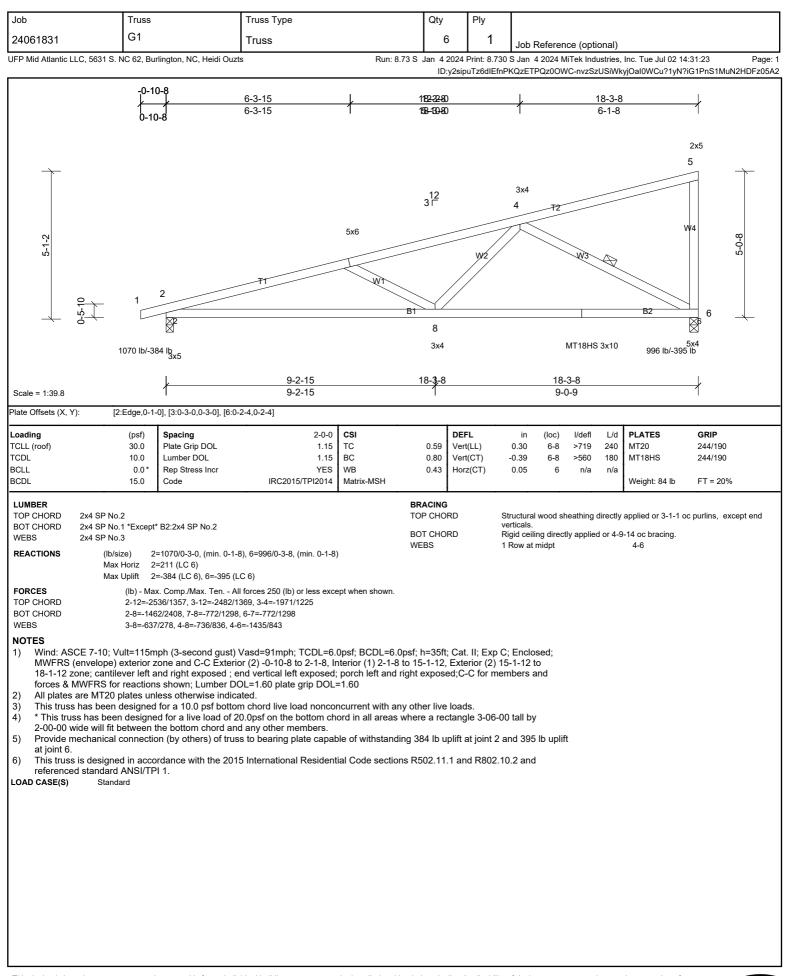




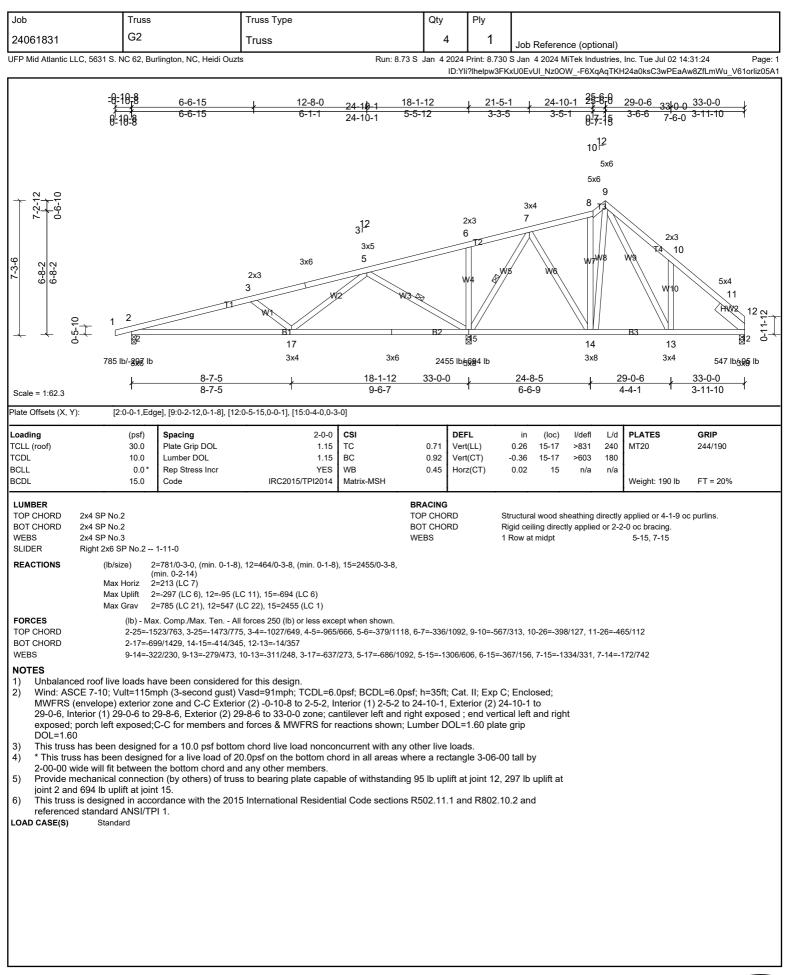


Job	Truss	Truss Type	Qty	Ply	
24061831	E5L	Truss	1	3	Job Reference (optional)

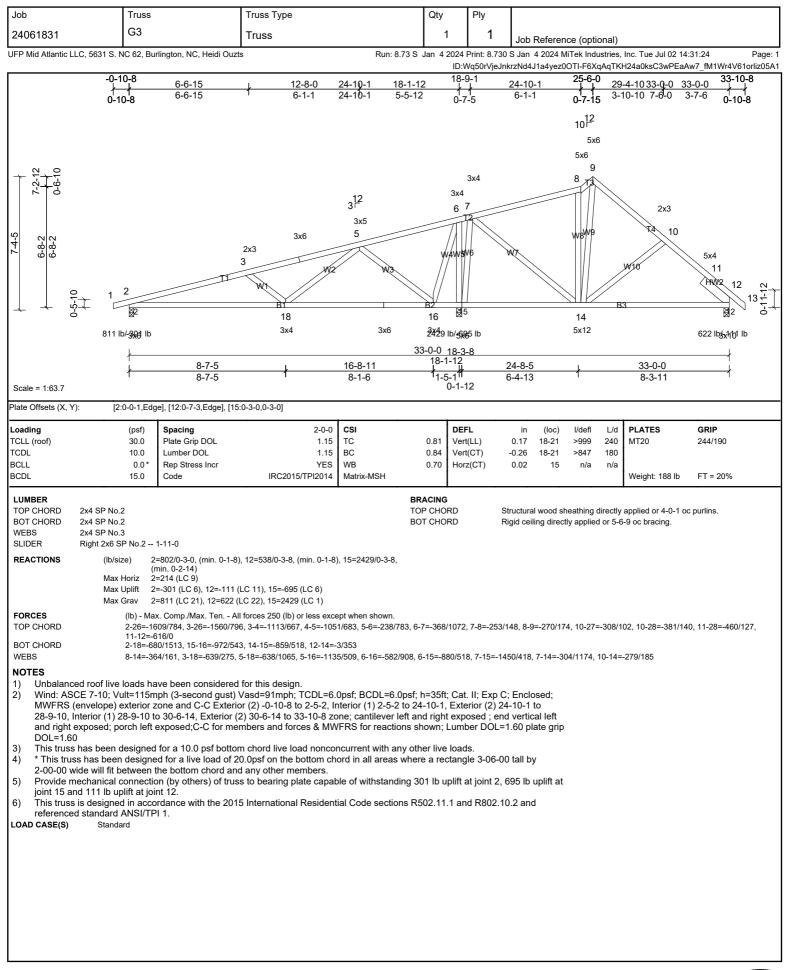
UFP Mid Atlantic LLC, 5631 S. NC 62, Burlington, NC, Heidi Ouzts

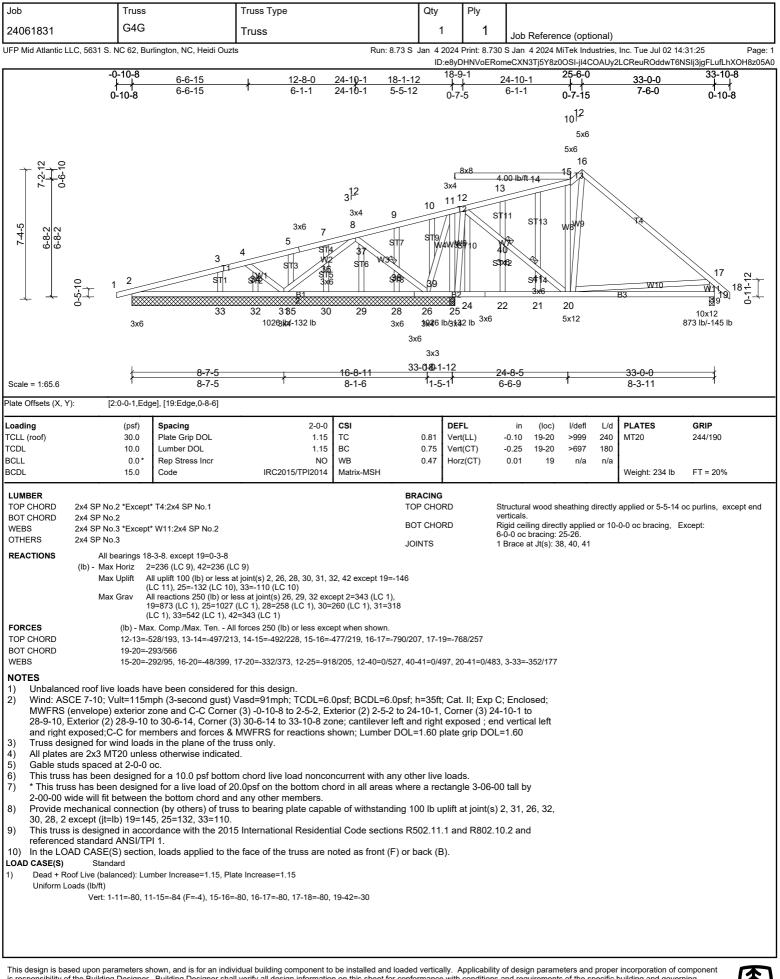

Run: 8.73 S Jan 4 2024 Print: 8.730 S Jan 4 2024 MiTek Industries, Inc. Tue Jul 02 14:31:23 Page: 2 ID:NQevqcVVHnNHxWbea0oHwjz07t?-nvzSzUSiWkyjOaI0WCu?1yN4KG8EnMpMuN2HDFz05A2

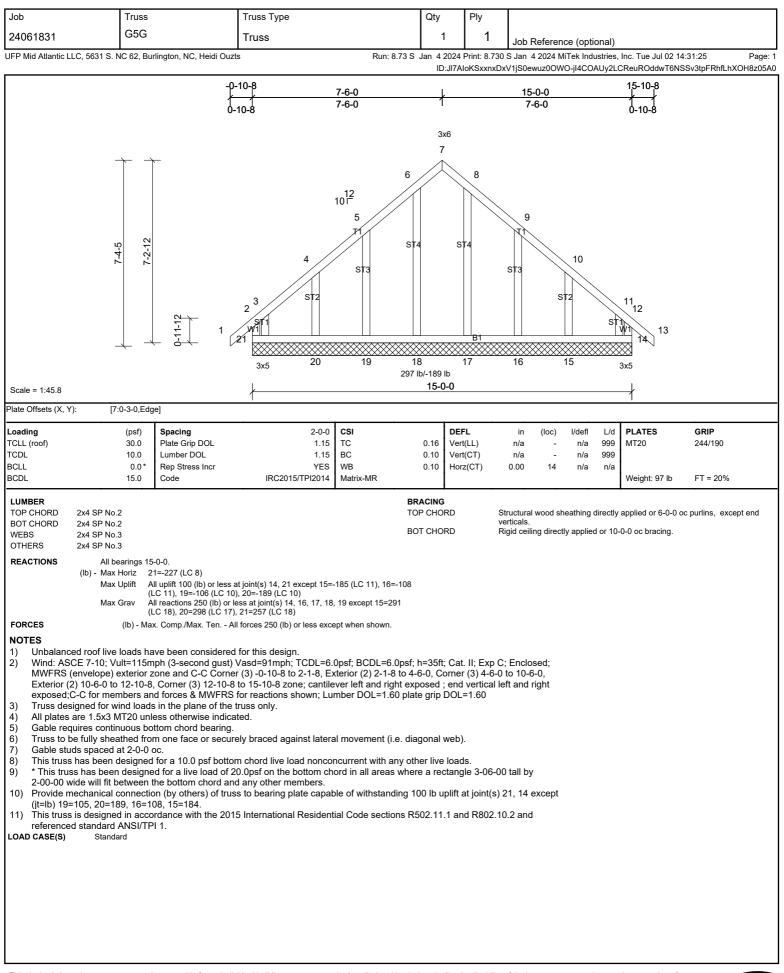
Uniform Loads (lb/ft)

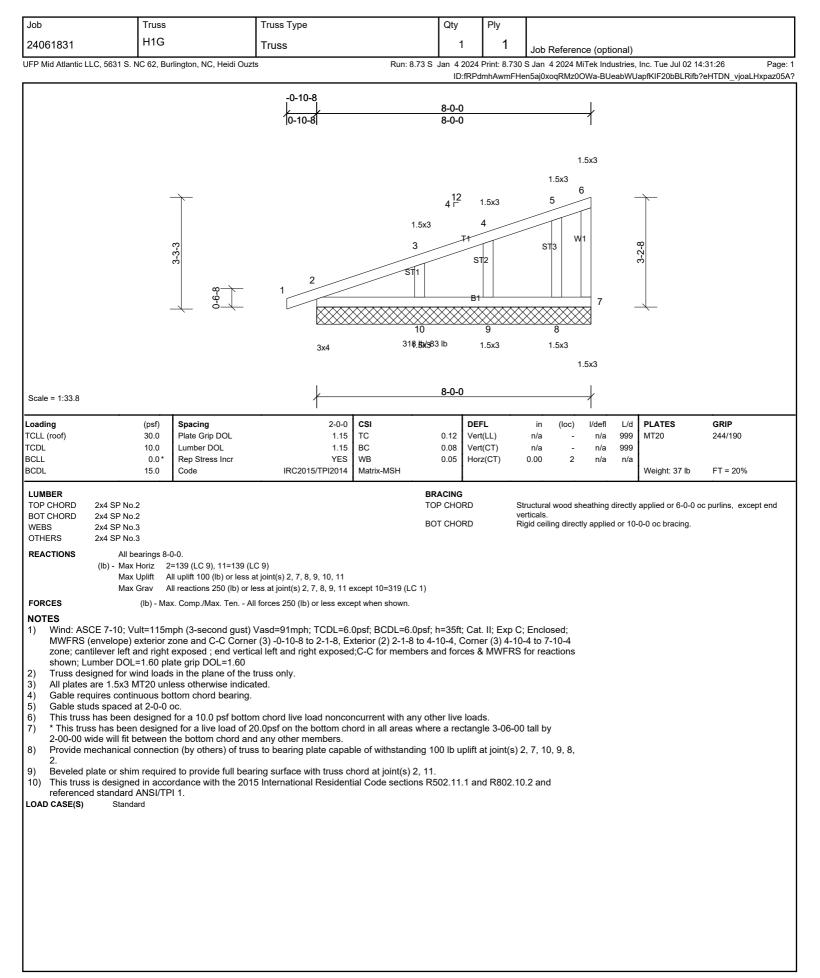

Vert: 1-2=-80, 2-5=-80, 5-7=-80, 7-9=-80, 10-18=-30 Concentrated Loads (lb)

Vert: 10=-584 (F), 21=-2485 (F), 22=-2485 (F), 23=-2485 (F), 24=-4514 (F)

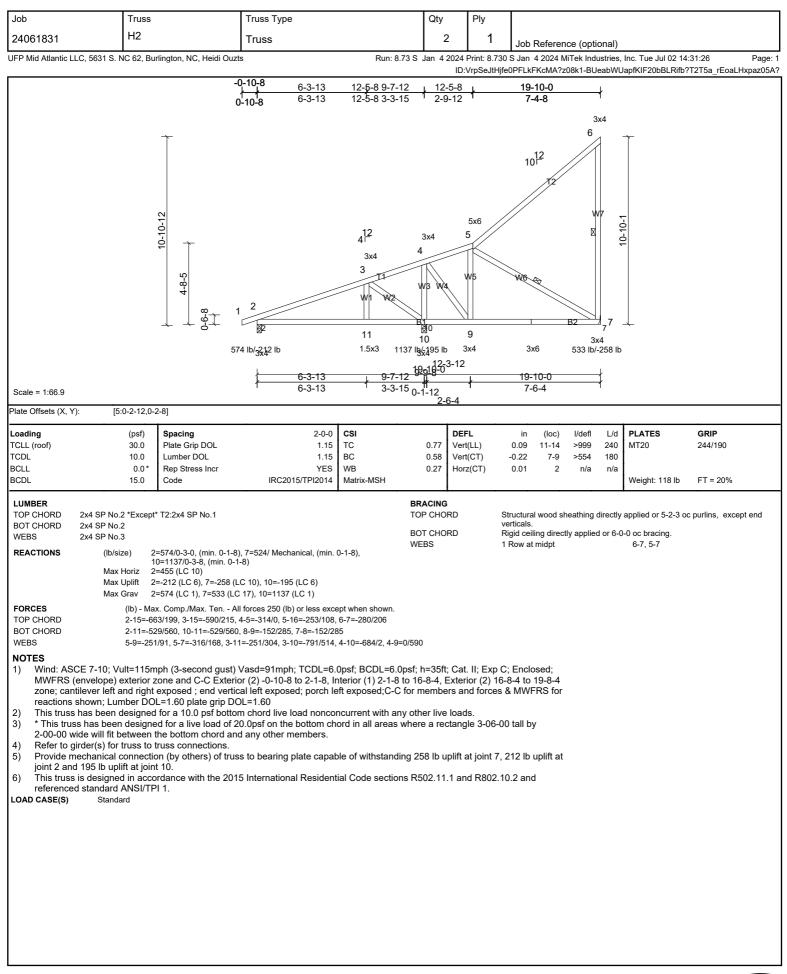


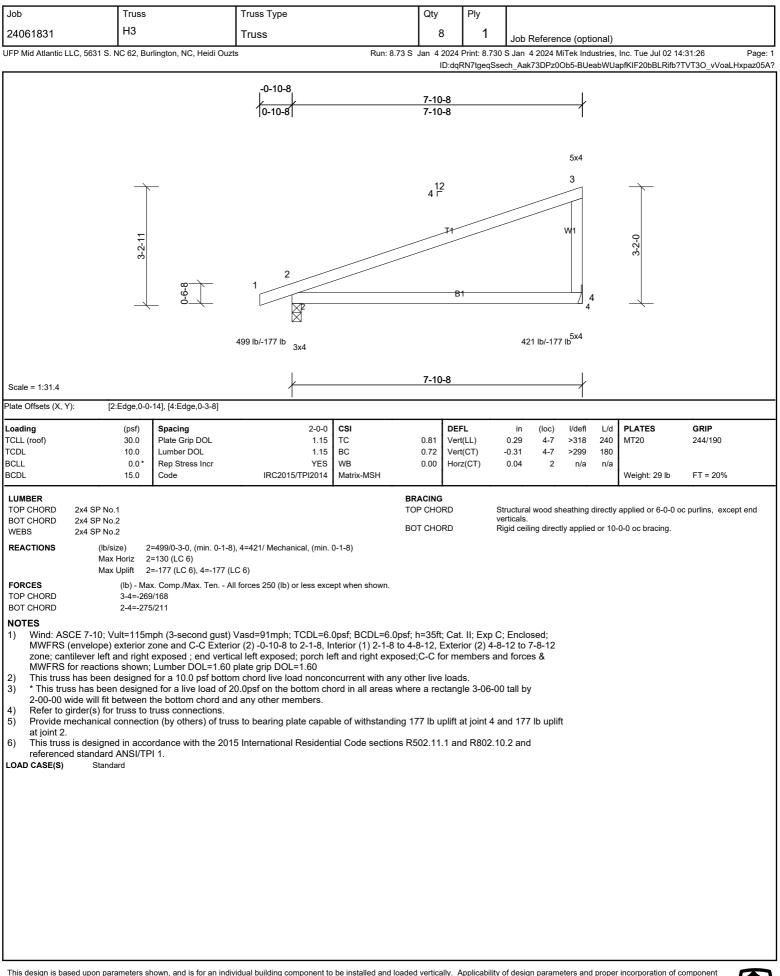


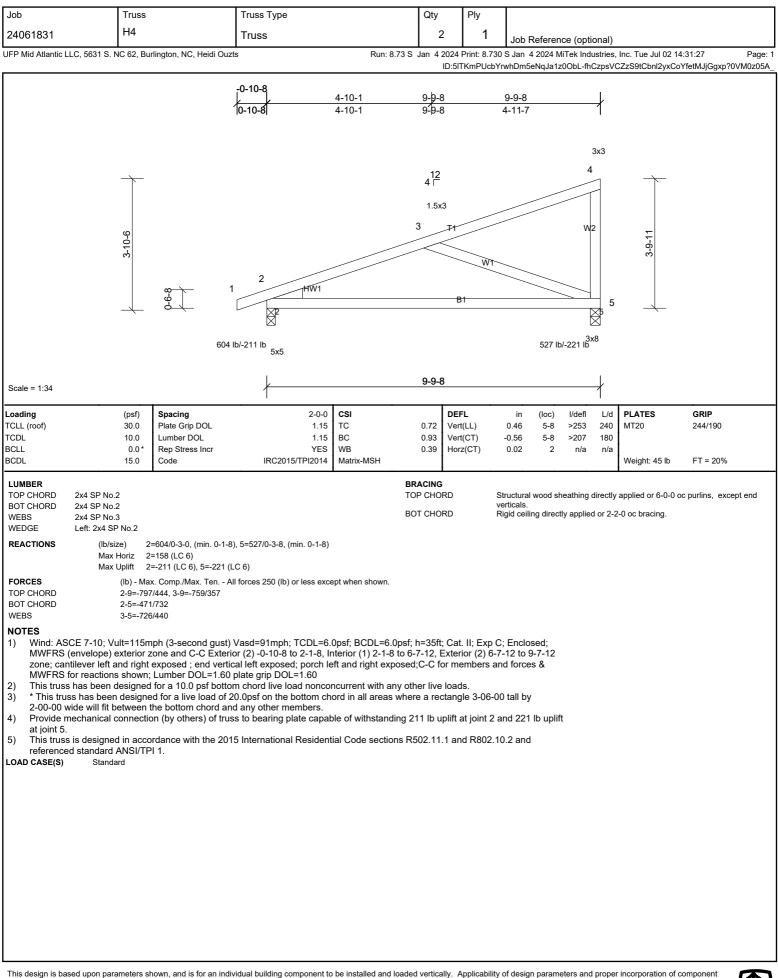


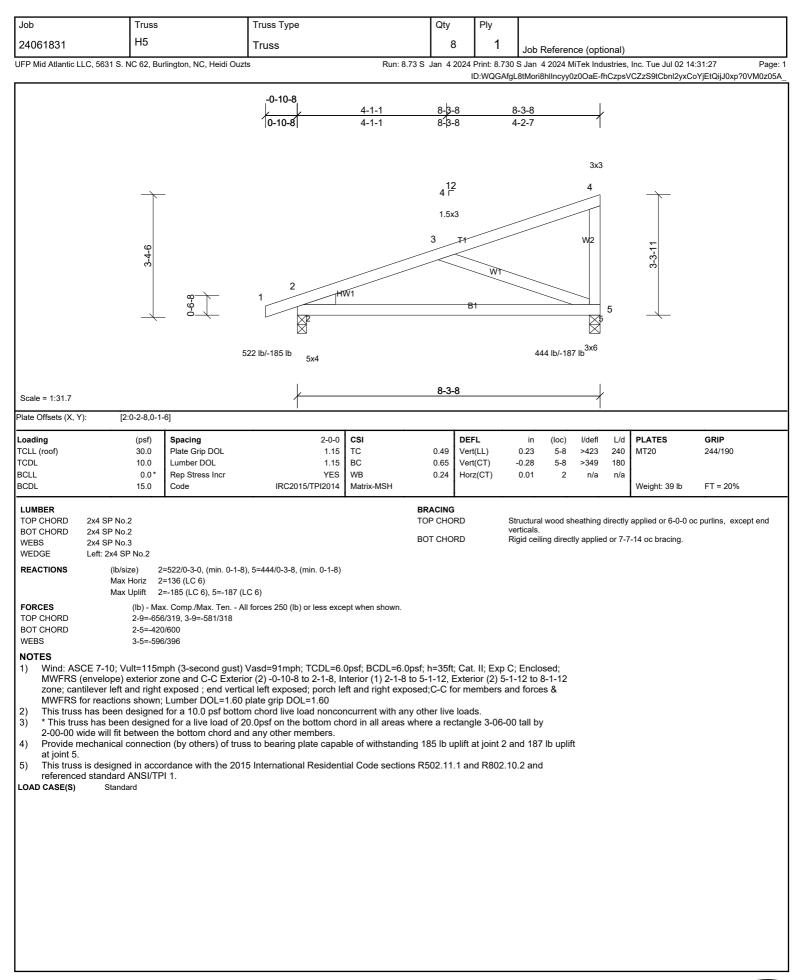


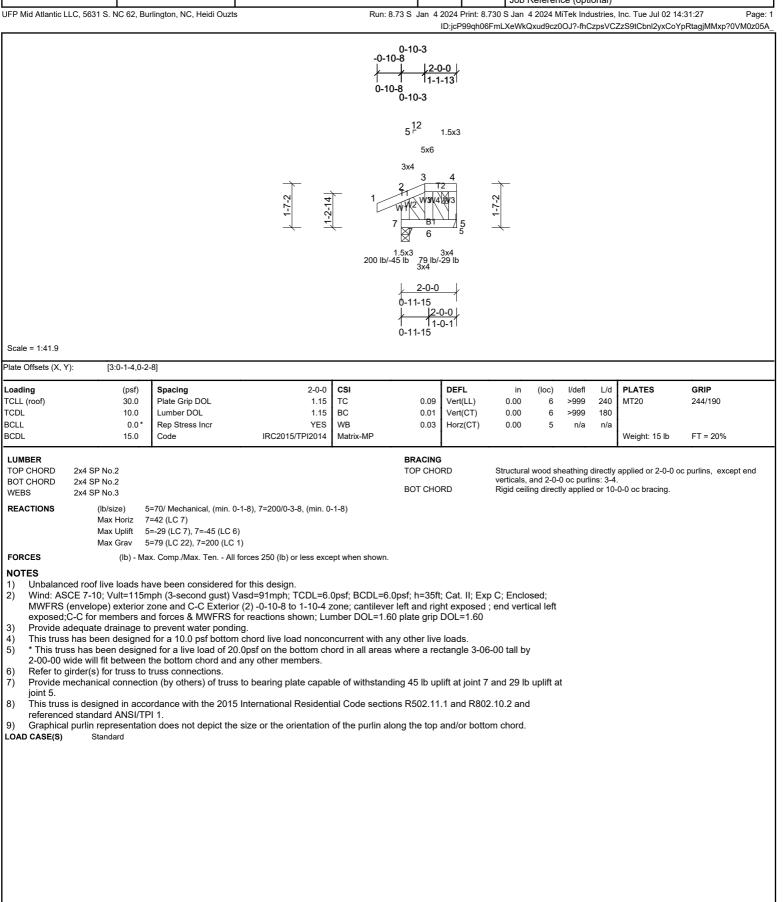
is responsibility of the Building Designer. Building Designer shall verify all design information on this sheet for conformance with conditions and requirements of the specific building and governing codes and ordinances. Building Designer accepts responsibility for the correctness or accuracy of the design information as it may relate to a specific building. Certification is valid only when truss is fabricated by a UFPI plant. Bracing shown is for lateral support of truss members only and does not replace erection and permanent bracing. Refer to Building Component Safety Information (BCSI) for general guidance regarding storage, erection and bracing available from SBCA and Truss Plate Institute.

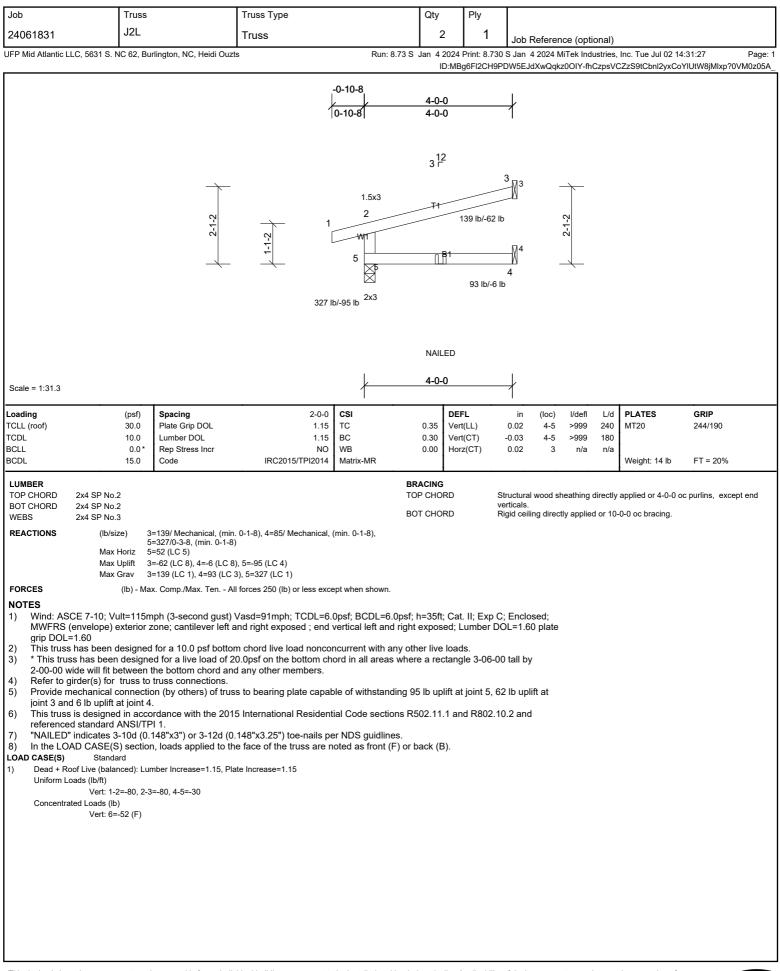


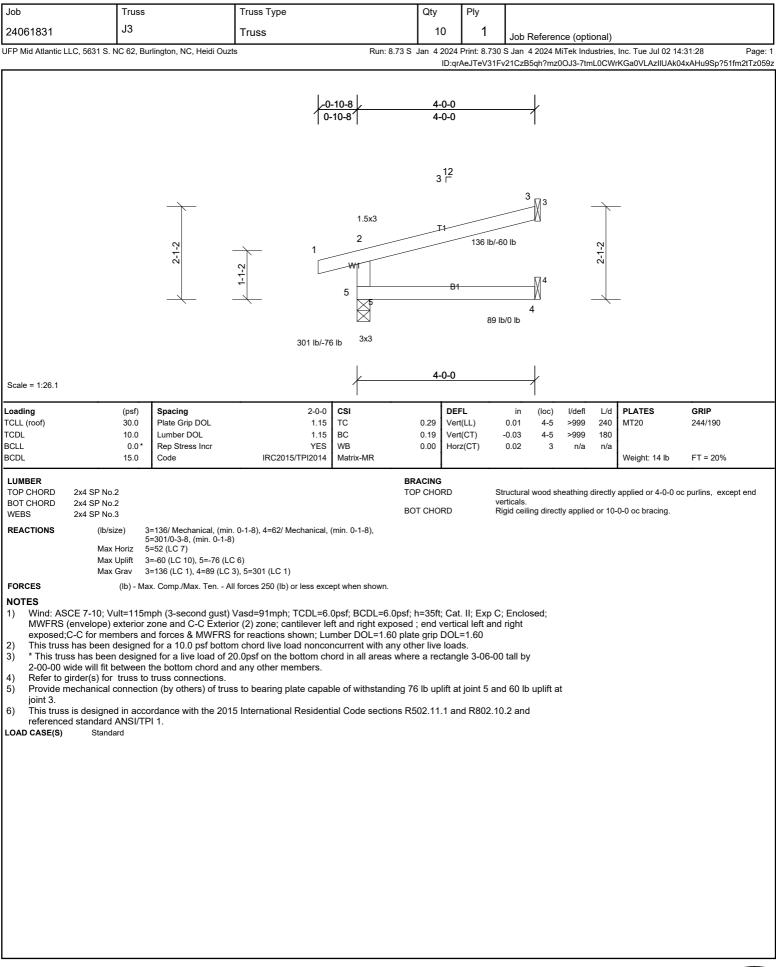


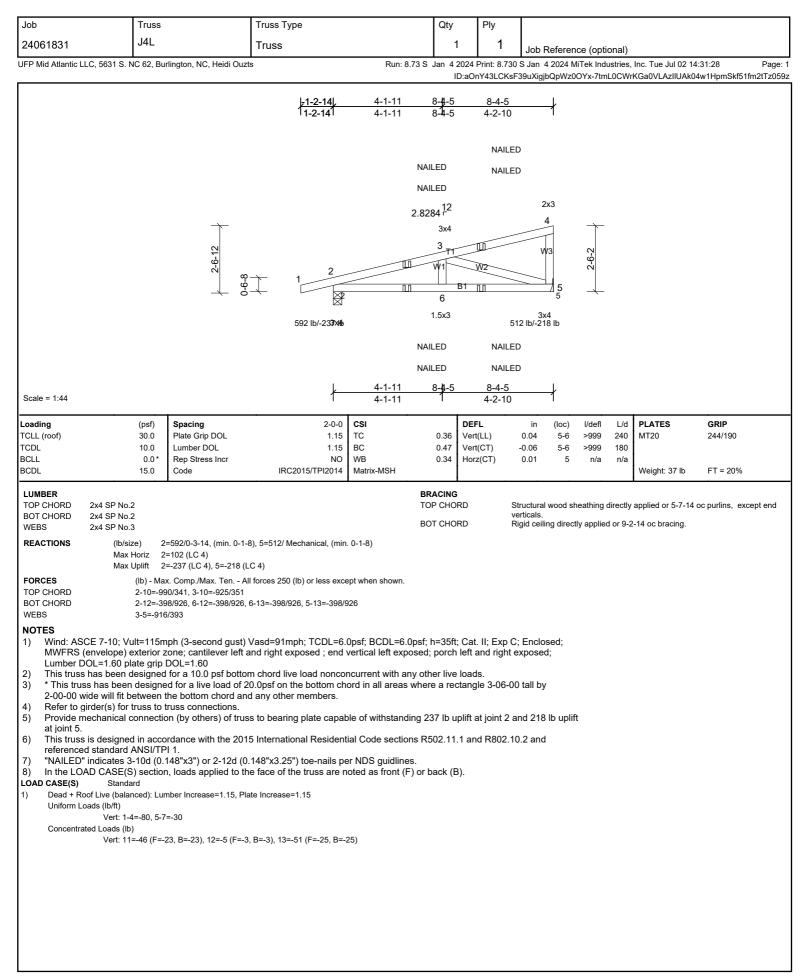


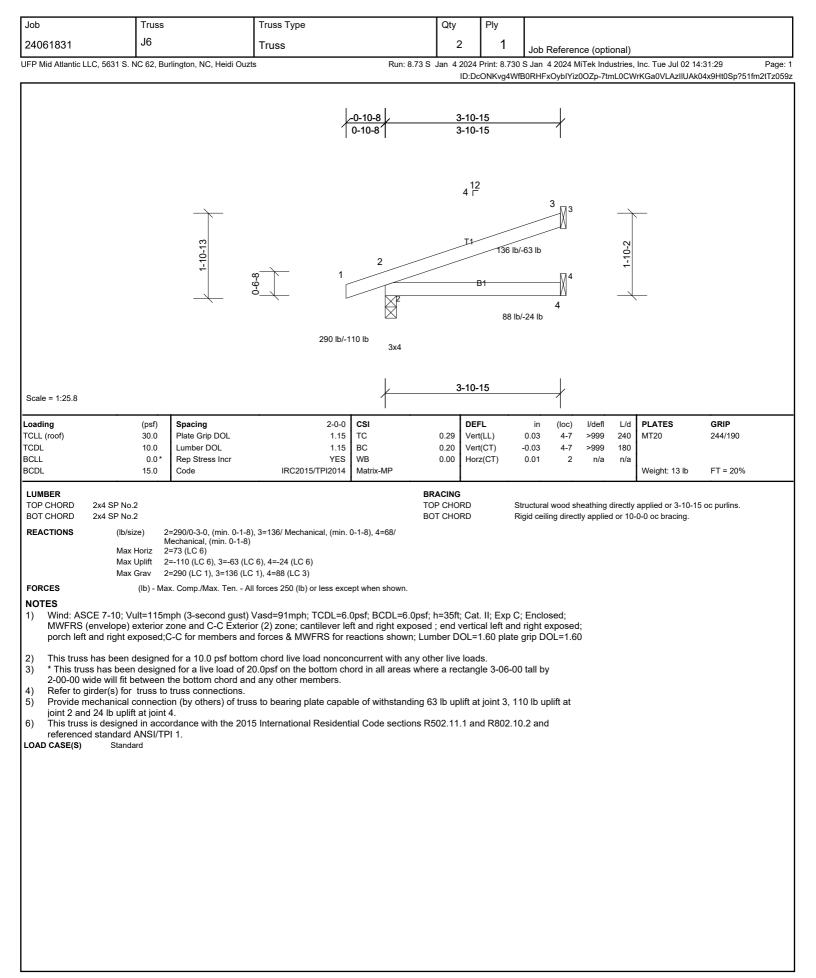


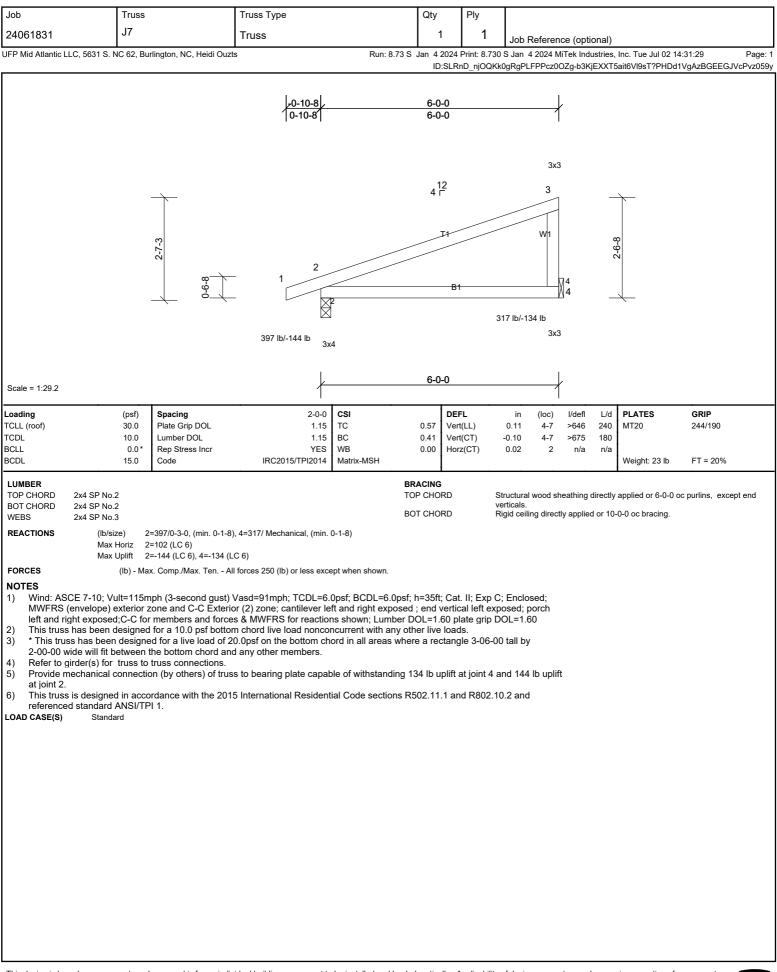




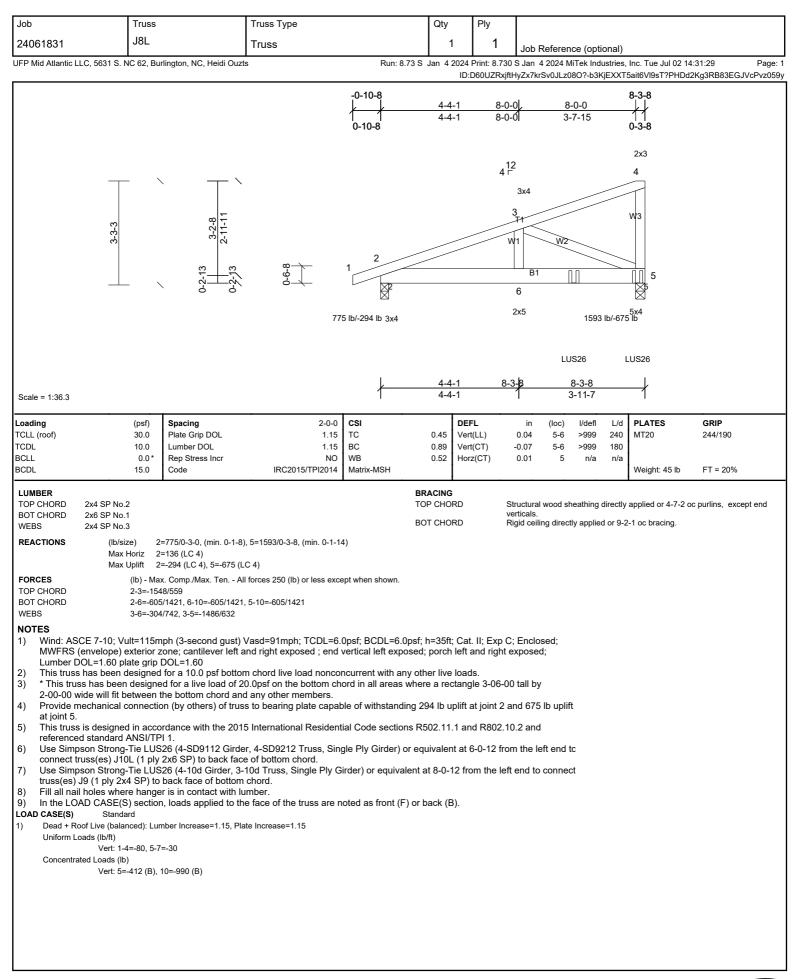

Job Truss Truss Type Qty	Ply	
24061831 J1 Truss 2	2 1	Job Reference (optional)

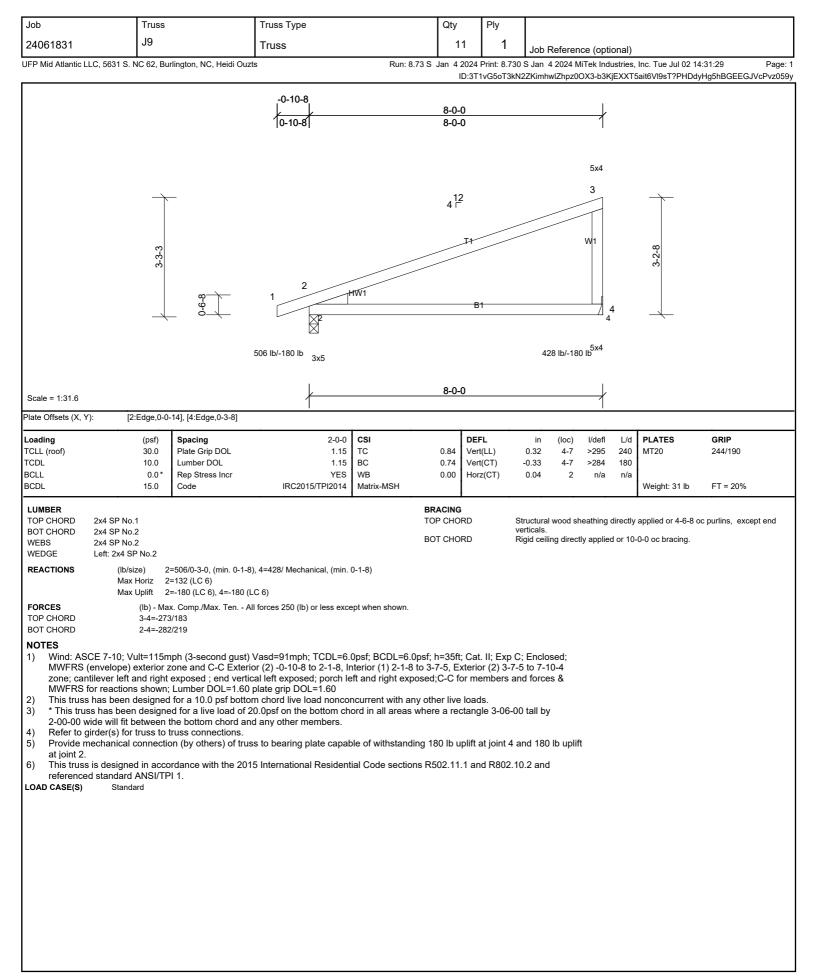


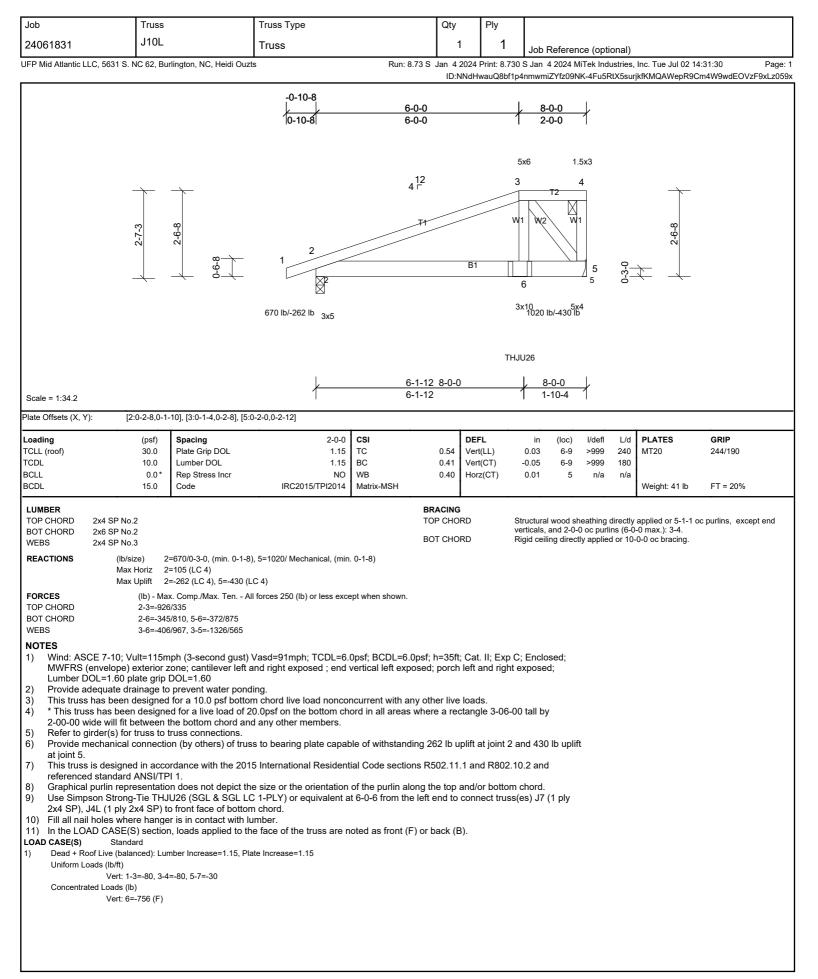


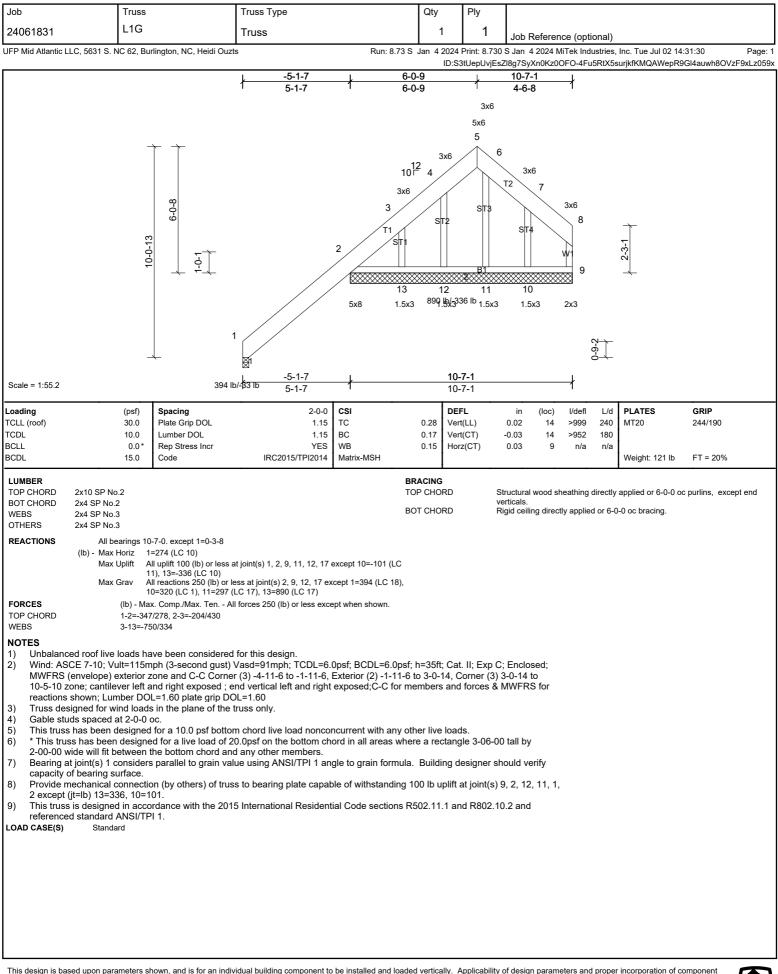


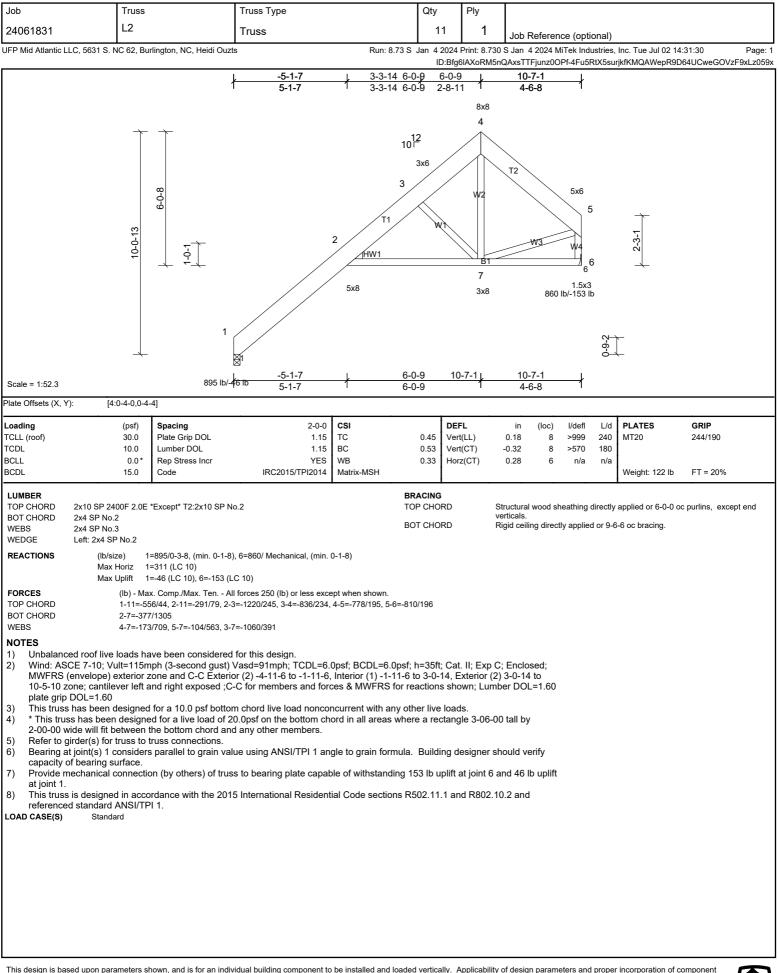
Job Truss Truss Type Qty Ply 24061831 J5 Truss 2 1 Job Reference (optional Job Reference (optional Instructional) UFP Mid Atlantic LLC, 5631 S. NC 62, Burlington, NC, Heidi Ouzts Run: 8.73 S Jan 4 2024 Print: 8.730 S Jan 4 2024 MiTek Industrin ID: dut/(027)/lot ID: 2020E75010. In: 2020E750000. In: 2020E75000. In: 2020E75000. In: 2020E75000. In: 2020E750									
UFP Mid Atlantic LLC, 5631 S. NC 62, Burlington, NC, Heidi Ouzts Run: 8.73 S Jan 4 2024 Print: 8.730 S Jan 4 2024 MiTek Industrie									
UFP Mid Atlantic LLC, 5631 S. NC 62, Burlington, NC, Heidi Ouzts Run: 8.73 S Jan 4 2024 Print: 8.730 S Jan 4 2024 MiTek Industri	I)								
ID:dwY4U/VIpLR?m88F20L0_lz0Oa1-7tmL0C	WrKGa0VLAzIIUAk04_aHwXSp?51fm2tTz059z								
-0-10-8, 1-10-15									
│0-10-8│ 1-10-15									
4									
\rightarrow 3 3 \rightarrow									
└──── 42 lb/-11 lb									
191 lb/-79 lb 3x4									
1-10-15									
Scale = 1:29.7									
	· · · · · · · · · · · · · · · · · · ·								
Loading (psf) Spacing 2-0-0 CSI DEFL in (loc) I/defl L TCLL (roof) 30.0 Plate Grip DOL 1.15 TC 0.07 Vert(LL) 0.00 4-7 >999 24	/d PLATES GRIP 10 MT20 244/190								
TCDL 10.0 Lumber DOL 1.15 BC 0.04 Vert(CT) 0.00 4-7 >999 18									
BCLL 0.0* Rep Stress Incr YES WB 0.00 Horz(CT) 0.00 3 n/a n. BCDL 15.0 Code IRC2015/TPI2014 Matrix-MP Matrix-Matr	/a Weight: 7 lb FT = 20%								
LUMBER BRACING									
TOP CHORD 2x4 SP No.2 TOP CHORD Structural wood sheathing direct	ctly applied or 1-10-15 oc purlins.								
BOT CHORD 2x4 SP No.2 BOT CHORD Rigid ceiling directly applied or REACTIONS (lb/size) 2=191/0-3-0, (min. 0-1-8), 3=60/ Mechanical, (min. 0-1-8), 4=28/ BOT CHORD Rigid ceiling directly applied or	10-0-0 oc bracing.								
Max Horiz 2=45 (LC 6) Max Horiz 2=45 (LC 6)									
Max Uplift 2=-79 (LC 6), 3=-28 (LC 6), 4=-11 (LC 7)									
Max Grav 2=191 (LC 1), 3=60 (LC 1), 4=42 (LC 3) FORCES (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown.									
FORCES (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. NOTES									
1) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Cat. II; Exp C; Enclosed;									
MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60									
2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.									
3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by									
 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 4) Refer to girder(s) for truss to truss connections. 									
 * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. Refer to girder(s) for truss to truss connections. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 28 lb uplift at joint 3, 79 lb uplift at joint 4. 									
 * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. Refer to girder(s) for truss to truss connections. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 28 lb uplift at joint 3, 79 lb uplift at joint 2 and 11 lb uplift at joint 4. This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and 									
 * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. Refer to girder(s) for truss to truss connections. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 28 lb uplift at joint 3, 79 lb uplift at joint 4. 									
 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 4) Refer to girder(s) for truss to truss connections. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 28 lb uplift at joint 3, 79 lb uplift at joint 4. 6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 									
 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 4) Refer to girder(s) for truss to truss connections. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 28 lb uplift at joint 3, 79 lb uplift at joint 4. 6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 									
 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 4) Refer to girder(s) for truss to truss connections. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 28 lb uplift at joint 3, 79 lb uplift at joint 4. 6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 									
 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 4) Refer to girder(s) for truss to truss connections. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 28 lb uplift at joint 3, 79 lb uplift at joint 4. 6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 									
 * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. Refer to girder(s) for truss to truss connections. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 28 lb uplift at joint 3, 79 lb uplift at joint 4. This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 									
 * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. Refer to girder(s) for truss to truss connections. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 28 lb uplift at joint 3, 79 lb uplift at joint 4. This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 									
 * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. Refer to girder(s) for truss to truss connections. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 28 lb uplift at joint 3, 79 lb uplift at joint 4. This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 									
 * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. Refer to girder(s) for truss to truss connections. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 28 lb uplift at joint 3, 79 lb uplift at joint 4. This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 									
 * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. Refer to girder(s) for truss to truss connections. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 28 lb uplift at joint 3, 79 lb uplift at joint 4. This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 									
 * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. Refer to girder(s) for truss to truss connections. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 28 lb uplift at joint 3, 79 lb uplift at joint 4. This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 									

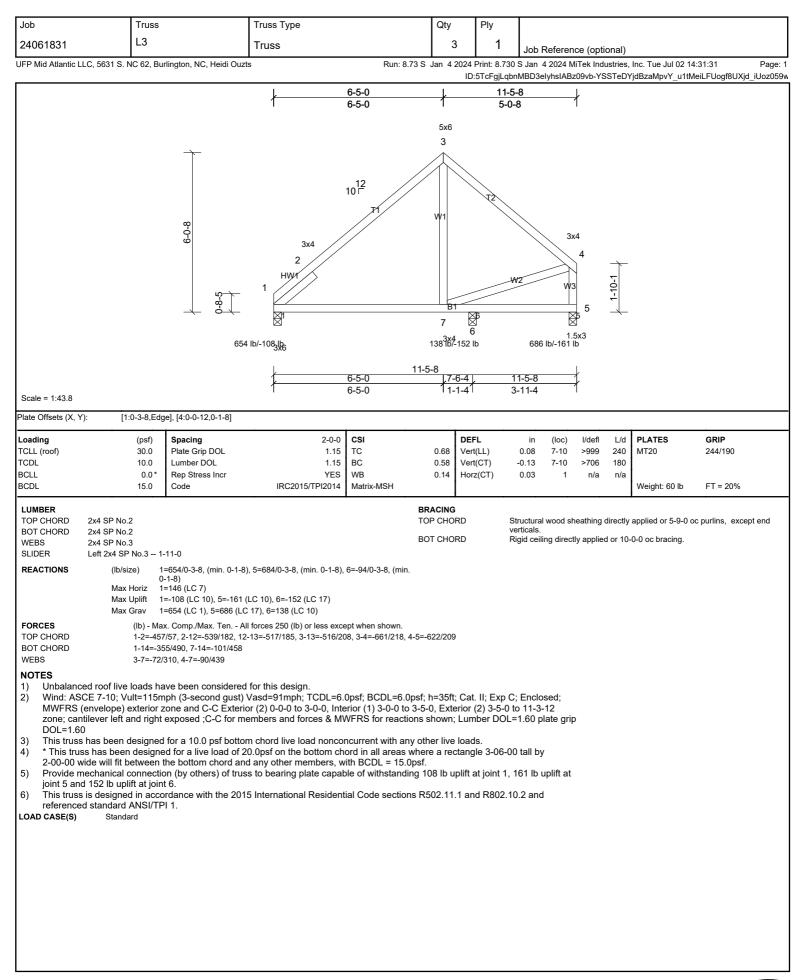








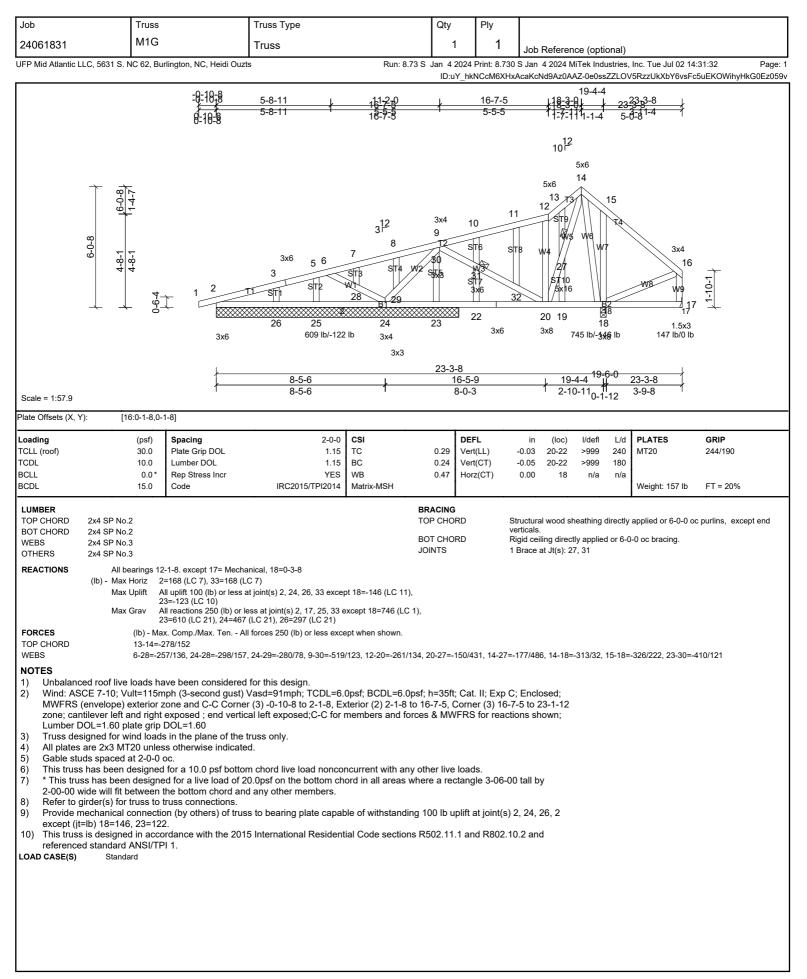




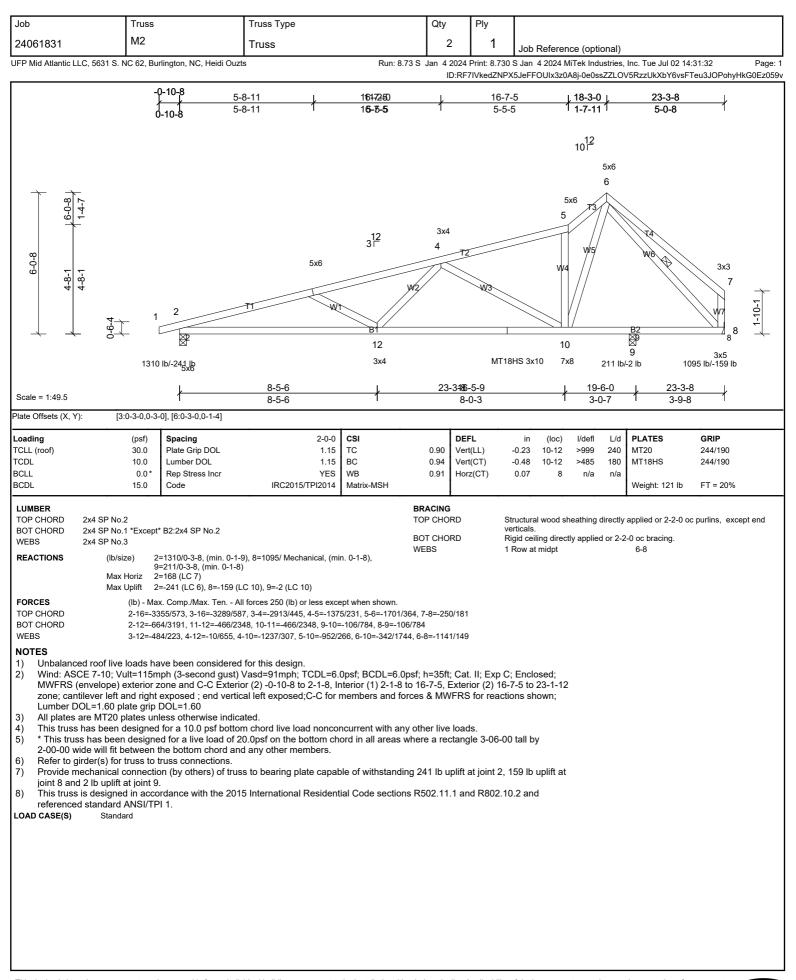
24001031	4L	Tuura								
		Truss		1	2	Joh Pofor	ence (option			
JFP Mid Atlantic LLC, 5631 S. NC 6	2, Burlington, NC, Heidi Ouzt		Run: 8.73	S Jan 4 202			<u>, , , , , , , , , , , , , , , , , , , </u>	tries, Inc. Tue Jul 02 1	4:31:31 Page	
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}{} \\ $ } \\ } } } } } } } } } } } } }										
Scale = 1:41.8			*	3-1	<u>5-5-8</u> 11-4 11-4	4-1-0 <u> 5-5-8</u> 11 1-4-8 0-1-12		_		
TCLL (roof) 30 TCDL 10	sf) Spacing 0.0 Plate Grip DOL 0.0 Lumber DOL 0.0* Rep Stress Incr	3-6-0 1.15 1.15 NO	CSI TC BC WB	0.33 V 0.49 V	ert(LL) ert(CT) orz(CT)	in (loc -0.01 5-1 -0.02 5-1 0.00 5	5 >999 2 5 >999 7	L/d PLATES 240 MT20 180 n/a	GRIP 244/190	
3CDL 15	5.0 Code	IRC2015/TPI2014	Matrix-MSH					Weight: 64 lb	FT = 20%	

Job	Ттира		Truce T				Otv		-						
-	Truss L5L		Truss T	уре			Qty 1	Ply							
24061831			Truss					2	_	Refere		, ,			
UFP Mid Atlantic LLC, 5631 S. I	NC 62, Burlin	ngton, NC, Heidi C	uzts		Ru	n:8.73 S J							Inc. Tue Jul (YjdBzaMpvY_		Page: 1 CfxHXjd_iUoz059w
		<u>} 3-6-6</u> 3-6-6	7-0 <u>-13</u> 7-0-13	7-0-13 3-6-6		<u>1-11-4</u> I-10-7	5x6 4		<u>5-9-11</u> -10-7		+	<u>20-2-6</u> 3-4-10		<u>23-10-8</u> 3-8-2	
+ -0-15 + 2-0-9 + 4-0-15 2-0-9 + 2-0-6	60 0 2 5814 Ib/Ч	5x10 1 1 1 1 1 1 1 1 1 1 1 1 1	2x3 2 11 w1 14 7x16 6 LUS2	W2 W 11: 2:		LUS26	W4 12 M18AH3				18AHS	7x10	2x3 6 7 9 7x16 LUS26	1 W6 11 5907 lk	5x10 7 7 7 8 8 8 <u>M1892HS</u> 5x10
		LU32	6 LU32	6 LU326	LU320	LU320	LUS2	:6 LU	S26	LUS2		LU320	LU326	LU320	
		3-6-6		6-11-1 3-4-10		<u>1-11-4</u> 5-0-3	23-10-	-	<u>6-11-7</u> 5-0-3	7	+	<u>20-2-6</u> 3-2-14	Ă	23-10-8 3-8-2	/
		0-0-0		2.10								5 2-1-		5 0-Z	
Scale = 1:48.8															
Plate Offsets (X, Y): [3	:0-3-12,0-3-4	4], [5:0-4-0,0-3-4],	[8:Edge,0-3-8	3], [12:0-5-4,0-4-8]	_	_						-		
Loading TCLL (roof) TCDL BCLL BCDL	30.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	IR	2-0-0 1.15 1.15 NO C2015/TPI2014	CSI TC BC WB Matrix-MSH		1.00 Vei	FL t(LL) t(CT) rz(CT)	in -0.41 -0.74 0.12	10-12 10-12	l/def >69 >382 n/a	1 240 2 180	PLATES M18AHS MT20 Weight: 288	GRII 186/ 244/ 3 lb FT =	179
BOT CHORD 2x6 SP SS WEBS 2x4 SP No. REACTIONS (lb/si Max	3 *Except* V ze) 8=5 Horiz 15=	2:2x4 SP SS V2,W6:2x4 SP No 907/0-3-8, (min. 0 64 (LC 7) 1092 (LC 9), 15=-	-3-8), 15=581		3-7)	TOP	CHORD CHORD CHORD SS	۱ ۲	/ertical Rigid c	s, and 2-0)-0 oc pi	urlins (2-1	applied or 3-4 0-6 max.): 1-3 0-0 oc bracin 3-12, 5-12	3, 5-7. g.	s, except end
FORCES TOP CHORD BOT CHORD WEBS	TOP CHORD 1-15=-5292/997, 1-2=-10559/1930, 2-3=-10559/1930, 3-4=-11218/2011, 4-5=-11218/2011, 5-6=-10950/2001, 6-7=-10950/2001, 7-8=-5263/993 BOT CHORD 14-17=-3221/17780, 17-18=-3221/17780, 13-18=-3221/17780, 13-19=-3202/17660, 19-20=-3202/17660, 12-20=-3202/17660, 11-12=-3201/17535, 11-21=-3201/17535, 10-21=-3201/17535, 10-22=-3217/17642, 9-23=-66/260, 8-23=-66/260											5,			
NOTES 1) 2-ply truss to be coning Top chords connected Bottom chords connected Web connected as for oc.	ed as follow ected as fol	/s: 2x4 - 1 row a llows: 2x6 - 2 ro	at 0-9-0 oć. ws staggere	ed at 0-9-0 oc.		at 0-8-0 o	c, membe	er 6-9 2x4	- 1 ro	w at 0-2-	-0				
 oc. All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated. Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 Provide adequate drainage to prevent water ponding. 															
 6) All plates are MT20 p 7) This truss has been 8) * This truss has been 2-00-00 wide will fit b 9) Provide mechanical of uplift at joint 8. 10) This truss is designe 	designed fo a designed between the connection d in accord	or a 10.0 psf bo for a live load o e bottom chord (by others) of t lance with the 2	ttom chord I if 20.0psf or and any oth russ to bear	n the bottom ch er members. ing plate capal	ord in all are	eas where anding 10	a rectang 73 lb uplif	gle 3-06-0 t at joint 1	5 and	1092 lb	ı				
referenced standard 11) Graphical purlin reprint 12) Use Simpson Strong 2-0-12 from the left e 13) Fill all nail holes whe	esentation -Tie LUS26 nd to 22-0- re hanger i	does not depic 6 (4-10d Girder -12 to connect	3-10d Trus russ(es) L2	s, Single Ply G	irder) or equ	ivalent sp	aced at 2				I				
LOAD CASE(S) Standa 1) Dead + Roof Live (bala		er Increase=1.15	Plate Increas	e=1.15											
Uniform Loads (lb/ft)	,	80, 4-5=-80, 5-7=													
veit. I-	J00, J-4(, - , :,:,:,:,:,:,:,:,::,:													

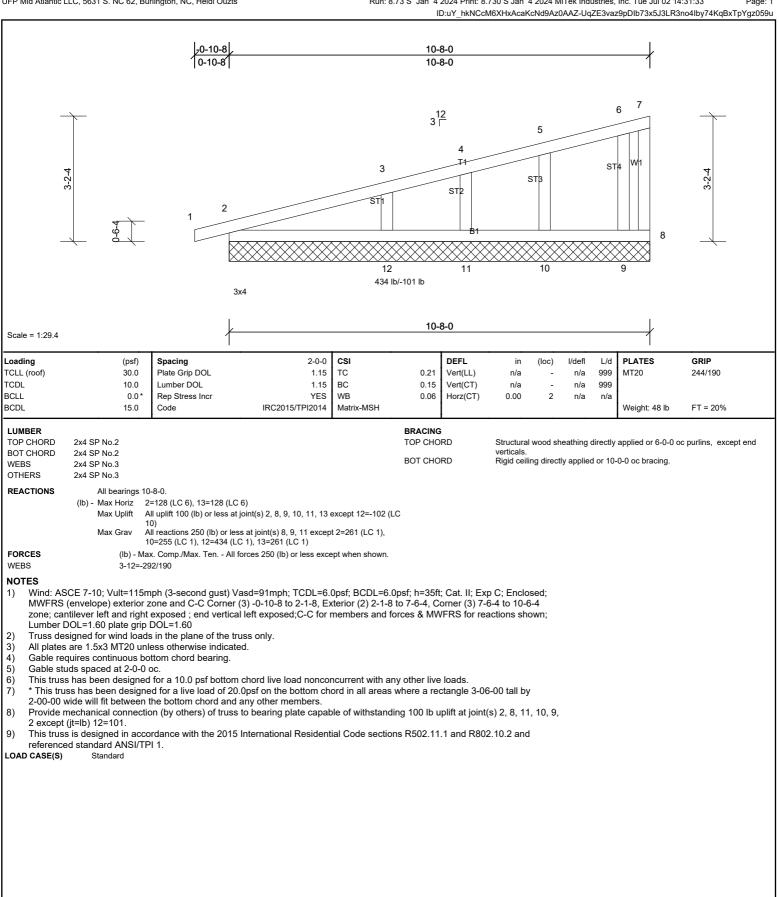
Job	Truss	Truss Type	Qty	Ply	
24061831	L5L	Truss	1	2	Job Reference (optional)

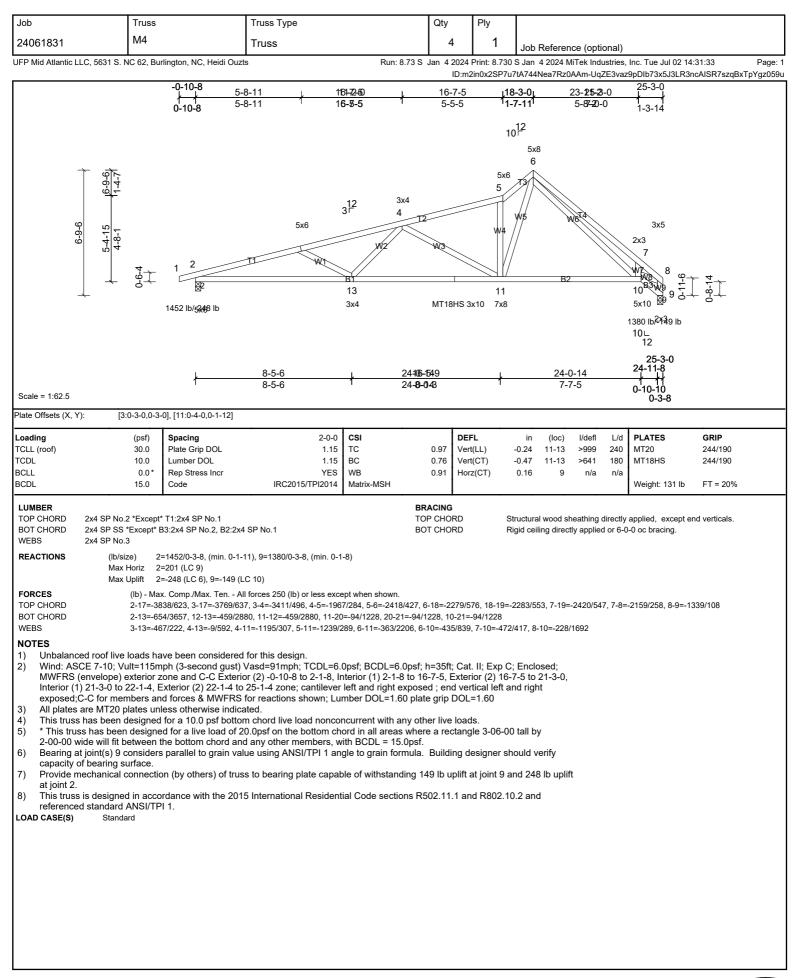

UFP Mid Atlantic LLC, 5631 S. NC 62, Burlington, NC, Heidi Ouzts

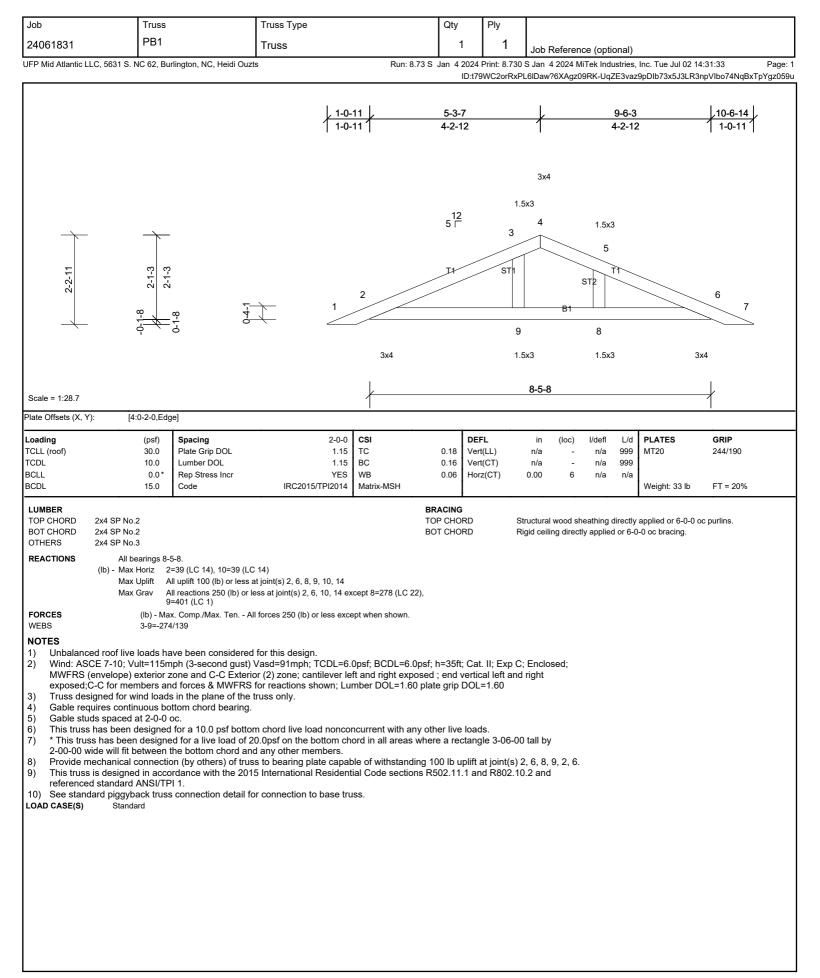
Run: 8.73 S Jan 4 2024 Print: 8.730 S Jan 4 2024 MiTek Industries, Inc. Tue Jul 02 14:31:31 Page: 2 ID:avoXCKgOeLCfVC9zBXIm_z0ODs-YSSTeDYjdBzaMpvY_u1tMeilHUicfxHXjd_iUoz059w


Concentrated Loads (lb)

Vert: 11=-830 (B), 12=-830 (B), 9=-830 (B), 16=-830 (B), 17=-830 (B), 18=-830 (B), 19=-830 (B), 20=-830 (B), 21=-830 (B), 22=-830 (B), 23=-830 (B)






Job	Truss	Truss Type	Qty	Ply		
24061831	M3G	Truss	5	1	Job Reference (optional)	
LIEP Mid Atlantic LLC 5631 S N	IC 62 Burlington NC Heidi Ouzt	s Bun: 8.73 S	lan / 202/	Print: 8 730	S Jan / 2024 MiTek Industries Inc. Tue Jul 02 14:31:33	Page: 1

