

Trenco 818 Soundside Rd Edenton, NC 27932

Re: 24-4246-A RVF-LOT #13 ROOF

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Riverside Roof Truss.

Pages or sheets covered by this seal: I66946632 thru I66946671

My license renewal date for the state of North Carolina is December 31, 2024.

North Carolina COA: C-0844

July 22,2024

Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	RVF-LOT #13 ROOF
					166946632
24-4246-A	HG01	Roof Special Girder	1	2	
				_	Job Reference (optional)
Riverside Roof Truss, LLC,	Danville, Va - 24541,			8.730 s Ju	n 13 2024 MiTek Industries, Inc. Thu Jul 18 08:02:11 2024 Page 2

ID:DIJU_rm8eUvAVtjXeNVKK9zicl6-5eCDldDT_yxT3qVtqTbdJ77stytoVO?DJW8dn6ywuUg

NOTES-

13) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-6=-53, 6-7=-43, 7-8=-43, 9-15=-20 Concentrated Loads (lb)

Vert: 12=-174(B) 10=-174(B) 21=-179(B) 22=-174(B) 23=-174(B) 24=-174(B) 25=-174(B) 26=-174(B) 27=-174(B) 28=-174(B) 29=-174(B) 30=-174(B) 31=-147(B) 32=-202(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

 	6-4-8		12-10-11 6-6-4	19-4	-15	25-	9-7 L-8		<u>31-5-8</u> 5-8-1	
Plate Offsets (X,Y) [6:0-2-8,0	0-2-4], [9:Edge,0-6-	8]		-	0 -			001	
LOADING (ps TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	f) 20.0 16.5/15.0 10.0 0.0 * 10.0	SPACING- Plate Grip D Lumber DOI Rep Stress I Code IRC20	2-0-0 OL 1.15 - 1.15 ncr NO 018/TPI2014	CSI. TC 0.92 BC 0.72 WB 0.95 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT	in (loc) -0.20 11-13 -0.36 11-13) 0.05 9	l/defl >999 : >999 : n/a	L/d 240 180 n/a	PLATES MT20 Weight: 390 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD BOT CHORD WEBS REACTIONS.	2x4 SP No.2 2x6 SP No.2 2x4 SP No.3 (size) 15=(Max Horz 15=- Max Uplift 15=- Max Grav 15=2	D-3-8, 9=0-3-8 .127(LC 8) .488(LC 8), 9=-518(2694(LC 31), 9=252	LC 12) !7(LC 31)	E	BRACING- TOP CHORD BOT CHORD	Structural wood except end vert Rigid ceiling dir	sheathing c icals, and 2- ectly applied	lirectly app 0-0 oc purl I or 10-0-0	lied or 6-0-0 oc purlins lins (4-1-5 max.): 1-6. oc bracing.	i,
FORCES. (IIL TOP CHORD BOT CHORD WEBS	 Max. Comp./N 1-15=-2440/46 6-7=-4016/753 13-14=-981/59 1-14=-830/458 6-11=-430/262 	4ax. Ten All forces 61, 1-2=-4073/747, 3, 7-9=-2283/474 980, 11-13=-981/59 85, 2-14=-507/159, 29, 6-10=-129/347,	s 250 (lb) or less exc 2-4=-4073/747, 4-5= 80, 10-11=-575/354 4-14=-2159/399, 4-1 7-10=-480/3051	eept when shown. 5853/1072, 5-6=-5853/ 3, 9-10=-138/663 3=-93/713, 5-11=-517/1	/1072, 121,					
NOTES- 1) 2-ply truss t Top chords Bottom cho Webs connu- 2) All loads ard ply connect 3) Wind: ASCI II; Exp B; E: plate grip 20 4) TCLL: ASC DOL=1.15); surcharge a 5) Unbalanced 6) This truss h non-concur 7) Provide add 8) This truss h 9) * This truss will fit betwe 10) Provide m at joint 9. 11) This truss	o be connected to connected as foll rds connected as lected as follows: 2 ected as follows: 2 econsidered equa- ions have been pi E 7-16; Vult=130n nclosed; MWFRS OL=1.60 E 7-16; Pr=20.0 p Is=1.0; Rough C; piplied to all expo Is now loads have as been designed rent with other live equate drainage to as been designed has been designed has been designed is designed in acc d standard ANSI/T aggig representat	begether with 10d (0. ows: 2x4 - 1 row at follows: 2x6 - 2 row 2x4 - 1 row at 0-9-0 ally applied to all pli rovided to distribute nph (3-second gust; (directional); cantile set (roof LL: Lum DC at B; Partially Exp.; sed surfaces with s a been considered f d for greater of min is a been considered f d for greater of min is a loads. b prevent water pond d for a live load of ord and any other n tion (by others) of the cordance with the 2 IPI 1. tion does not depict	131"x3") nails as fol 0-9-0 oc. rs staggered at 0-9-0 oc. es, except if noted a only loads noted as Vasd=103mph; TC ever left and right ex DL=1.15 Plate DOL= Ce=1.0; Cs=1.00; C lopes less than 0.50 or this design. roof live load of 12.0 ding. om chord live load of 12.0 ding. om chord live load of 12.0 ding. the size or the orier	lows:) oc. s front (F) or back (B) fa (F) or (B), unless othen DL=6.0psf; BCDL=6.0ps posed ; end vertical left 1.15); Pg=15.0 psf; Pf=1 t=1.10, Lu=50-0-0; Min. 0/12 in accordance with psf or 1.00 times flat roo onconcurrent with any of m chord in all areas whe capable of withstanding isidential Code sections itation of the purlin along	the in the LOAD C wise indicated. sf; h=25ft; B=45ft; and right exposed 16.5 psf (Lum DO flat roof snow loa IBC 1608.3.4. of load of 11.6 psi ther live loads. are a rectangle 3-4 g 488 lb uplift at jo R502.11.1 and R g the top and/or bo	ASE(S) section. L=31ft; eave=4ft l; Lumber DOL=1 L=1.15 Plate d governs. Rain f on overhangs 6-0 tall by 2-0-0 v int 15 and 518 lb 802.10.2 and ottom chord.	Ply to Cat. .60 vide uplift		SEAL 036322	2024
WARNIN Design va a truss sys building de is always	IG - Verify design para lid for use only with Mi stem. Before use, the t esign. Bracing indicate required for stability an	meters and READ NOTES Tek® connectors. This d building designer must ve ed is to prevent buckling id to prevent collapse wit	S ON THIS AND INCLUDE esign is based only upon erify the applicability of de of individual truss web an h possible personal injury	D MITEK REFERENCE PAGE parameters shown, and is for a sign parameters and properly in d/or chord members only. Add and property damage. For ge	MII-7473 rev. 1/2/2023 an individual building c ncorporate this design ditional temporary and eneral guidance record	BEFORE USE. omponent, not into the overall permanent bracing ing the				Affiliate

818 Soundside Road Edenton, NC 27932

Is aways required for stability and to prevent conlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria and DSR-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

	Job	Truss	Truss Type	Qty	Ply	RVF-LOT #13 ROOF	
						16	6946633
	24-4246-A	HG02	Roof Special Girder	1	2		
					-	Job Reference (optional)	
Ì	Riverside Roof Truss, LLC.	Danville, Va - 24541.			8.730 s Ju	n 13 2024 MiTek Industries. Inc. Thu Jul 18 08:02:12 2024 Pa	ade 2

ID:DIJU_rm8eUvAVtjXeNVKK9zicl6-ZrmbzyE5lG3Kh_43OA6ssKgxILB6EpsMYAtAKYywuUf

NOTES-

13) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-6=-53, 6-7=-43, 7-8=-43, 9-15=-20 Concentrated Loads (lb)

Vert: 12=-174(F) 10=-174(F) 22=-174(F) 23=-174(F) 24=-174(F) 25=-174(F) 26=-174(F) 27=-174(F) 28=-174(F) 29=-174(F) 30=-174(F) 31=-174(F) 32=-174(F) 33=-174(F) 34=-202(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Scale = 1:17.9

	4-4-0 8-8-0 4 4 0							
Ploto Offecto (X X) [2:0.4.8				4-4-0			•	
Fiale Olisels (A, I) [2:0-4-8,	<u>.0-2-0j, [4.0-4-0,0-2-8j, [8:0-8-0,0-4-12]</u>						1	
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 16.5/15.0 TCDL 10.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO	CSI. TC 0.52 BC 0.90 WB 0.75 Motrix MB	DEFL. Vert(LL) -0. Vert(CT) -0. Horz(CT) 0.	in (loc) 08 8-9 15 8-9 00 7	l/defl >999 >671 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCDL 10.0	Code IRC2018/1FI2014	IVIAUIX-IVIP					weight. 102 lb	FT = 20%
LUMBER- TOP CHORD 2x4 SP No.2 BOT CHORD 2x6 SP No.2 WEBS 2x4 SP No.3 *E 2-8,4-8: 2x4 SP	xcept* 2 No.2	BI TC BC	RACING- DP CHORD Struc exce DT CHORD Rigic	tural wood pt end verti ceiling dire	sheathin icals, and ectly appl	g directly ap 2-0-0 oc pu ied or 10-0-0	plied or 6-0-0 oc purlins rlins (4-3-1 max.): 2-4.) oc bracing.	з,
REACTIONS. (size) 7=0- Max Horz 9=-4 Max Uplift 7=-3 Max Grav 7=30	-3-8, 9=0-3-8 11(LC 10) 324(LC 9), 9=-262(LC 9) 025(LC 3), 9=3270(LC 40)							
FORCES. (lb) Max. Comp./N TOP CHORD 2-3=-6850/59 BOT CHORD 8-9=-99/1017 WEBS 2-8=-515/610	/lax. Ten All forces 250 (lb) or less exc 1, 3-4=-6850/591 , 7-8=-89/1006 9, 3-8=-281/182, 4-8=-514/6120, 2-9=-2	ept when shown. 228/221, 4-7=-2204/194						
 NOTES- 1) 2-ply truss to be connected to Top chords connected as foll Bottom chords connected as Webs connected as follows: 2) All loads are considered equidly connections have been p 3) Unbalanced roof live loads hield wind: ASCE 7-16; Vult=1307 II; Exp B; Enclosed; NWFRS b) TCLL: ASCE 7-16; Pr=20.0 p DOL=1.15); Is=1.0; Rough C surfaces with slopes less that 6) Unbalanced snow loads have 7) This truss has been designed 10) This truss has been designed 10) * This truss has been designed 11) Provide mechanical connection at joint 9. 12) This truss is designed in action for the standard ANSI/7 ClähtGreehingbaudig representation 	ogether with 10d (0.131"x3") nails as foll lows: 2x4 - 1 row at 0-9-0 oc. follows: 2x6 - 2 rows staggered at 0-6-0 2x4 - 1 row at 0-9-0 oc. ally applied to all plies, except if noted as rovided to distribute only loads noted as ave been considered for this design. mph (3-second gust) Vasd=103mph; TCI (directional); cantilever left and right ex obsf (roof LL: Lum DOL=1.15 Plate DOL= at B; Partially Exp.; Ce=1.0; Cs=1.00; C n 0.500/12 in accordance with IBC 1608 e been considered for this design. d for greater of min roof live load of 12.0 e loads. o prevent water ponding. d for a 10.0 psf bottom chord live load no ned for a live load of 20.0psf on the bott chord and any other members. tion (by others) of truss to bearing plate cordance with the 2018 International Re FPI 1.	ows: ows: foc. s front (F) or back (B) face (F) or (B), unless otherwi DL=6.0psf; BCDL=6.0psf; posed ; end vertical left ar 1.15); Pg=15.0 psf; Pf=16 t=1.10, Lu=50-0-0 Rain s i.3.4. psf or 1.00 times flat roof ponconcurrent with any other on chord in all areas where capable of withstanding 3 sidential Code sections R tation of the purlin along t	e in the LOAD CASE(se indicated. h=25ft; B=45ft; L=24f nd right exposed; Lum 5.5 psf (Lum DOL=1.15 urcharge applied to al load of 11.6 psf on ov er live loads. re a rectangle 3-6-0 ta 324 lb uplift at joint 7 a 502.11.1 and R802.10 he top and/or bottom o	5) section. ;; eave=4ft; ber DOL=1 ; Plate erhangs erhangs II by 2-0-0 nd 262 lb u 0.2 and chord.	Ply to Cat. .60 wide		SEAL 036322	
WARNING - Verify design para Design valid for use only with M a truss system. Before use, the i building design. Bracing indicat is always required for stability ar fabrication, storage, delivery, er and BCSI Building Componer	Interest and READ NOTES ON THIS AND INCLUDE ITek® connectors. This design is based only upon p building designer must verify the applicability of des ed is to prevent buckling of individual truss web and nd to prevent collapse with possible personal injury ection and bracing of trusses and truss systems, se at Safety Information available from the Structura	D MITEK REFERENCE PAGE MI barameters shown, and is for an sign parameters and properly inc Jor chord members only. Additi and property damage. For gene e ANS/ITPI Quality Criteria a I Building Component Associatic	I-7473 rev. 1/2/2023 BEFOR individual building compone orporate this design into the onal temporary and permanu- ral guidance regarding the ind DSB-22 available from on (www.sbcacomponents.co	E USE. nt, not overall ent bracing Truss Plate In om)	stitute (www	v.tpinst.org)	ENGINEERING BY A MITEK 818 Soundside Road Edenton, NC 27932	LO Affiliate

Job	Truss	Truss Type	Qty	Ply	RVF-LOT #13 ROOF	
						166946634
24-4246-A	HG03	Hip Girder	1	2		
				_	Job Reference (optional)	
Riverside Roof Truss, LLC,	Danville, Va - 24541,			8.730 s Ju	n 13 2024 MiTek Industries, Inc. Thu Jul 18 08:02:13 2024	Page 2

ID:DIJU_rm8eUvAVtjXeNVKK9zicl6-11K_AIEjWaBBI7fFytd5PYDCGIUVzJDWmqdks?ywuUe

NOTES-

14) Use Simpson Strong-Tie HUS26 (14-16d Girder, 4-16d Truss) or equivalent spaced at 2-0-0 oc max. starting at 1-2-8 from the left end to 7-2-8 to connect truss(es) to back face of bottom chord.

15) Fill all nail holes where hanger is in contact with lumber.
16) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-2=-43, 2-4=-53, 4-5=-43, 5-6=-43, 7-9=-20

Concentrated Loads (lb)

Vert: 8=10(F) 12=8(F) 13=-1284(B) 14=10(F) 15=-1269(B) 16=-1313(B) 17=10(F) 18=-1151(B) 19=8(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	RVF-LOT #13 ROOF	
					16	6946635
24-4246-A	M01	Monopitch	5	1		
					Job Reference (optional)	
Riverside Roof Truss 11 C	Danville Va - 24541			8 730 s. Jui	n 13 2024 MiTek Industries, Inc., Thu, Jul 18 08:02:14 2024, Pa	ane 1

8.730 s Jun 13 2024 MiTek Industries, Inc. Thu Jul 18 08:02:14 2024 Page 1 ID:DIJU_rm8eUvAVtjXeNVKK9zicl6-VDuMOeFMHJ2wHERWb8LxIIUy92dixlf?UMHORywuUd

1-0-0

LOADING (psf) TCLL (roof) SPACING- 20.0 Snow (Pf/Pg) 2-0-0 Plate Grip DOL CSI. DEFL. in (loc) I/defl L/d Snow (Pf/Pg) 11.6/15.0 TCDL Plate Grip DOL 1.15 TC 0.08 Vert(LL) -0.00 5 >999 240 MT20 244/190 TCDL 10.0 Rep Stress Incr YES WB 0.03 Horz(CT) -0.00 4 n/a n/a BCDI 10.0 Code IRC2018/TPI2014 Matrix-MP Watrix-MP FT = 20% Weight: 8 lb FT = 20%

LUMBER-

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2WEBS2x4 SP No.3

BRACING-TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 1-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 5=0-3-8, 4=Mechanical Max Horz 5=59(LC 15) Max Uplift 5=-60(LC 16), 4=-41(LC 29)

Max Grav 5=140(LC 2), 4=27(LC 17)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 60 lb uplift at joint 5 and 41 lb uplift at joint 4.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

LUMBER-

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2WEBS2x4 SP No.3

BRACING-TOP CHORD

 TOP CHORD
 Structural wood sheathing directly applied or 4-8-12 oc purlins, except end verticals.

 BOT CHORD
 Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 5=0-3-8, 4=Mechanical Max Horz 5=127(LC 13) Max Uplift 5=-37(LC 16), 4=-39(LC 13) Max Grav 5=249(LC 2), 4=194(LC 21)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. BOT CHORD 4-5=-282/173

NOTES-

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -0-11-0 to 2-1-0, Interior(1) 2-1-0 to 4-7-0 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 37 lb uplift at joint 5 and 39 lb uplift at joint 4.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

A MiTek Affilia 818 Soundside Road

1-8-1 1-8-1

DEFL.

Vert(LL)

Vert(CT)

Horz(CT)

BRACING-

TOP CHORD

BOT CHORD

in (loc)

-0.00

-0.00

-0.00

L/d

240

180

n/a

Structural wood sheathing directly applied or 1-8-1 oc purlins,

I/defl

>999

n/a

Rigid ceiling directly applied or 10-0-0 oc bracing.

5 >999

5

4

except end verticals.

PLATES

Weight: 11 lb

MT20

GRIP

244/190

FT = 20%

REACTIONS. (size) 5=0-3-8, 4=Mechanical

20.0

10.0

10.0

2x4 SP No.2

2x4 SP No.2

2x4 SP No.3

0.0

Max Horz 5=57(LC 15) Max Uplift 5=-38(LC 16), 4=-25(LC 13)

Max Grav 5=144(LC 21), 4=42(LC 28)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

SPACING-

Plate Grip DOL

Rep Stress Incr

Code IRC2018/TPI2014

Lumber DOL

NOTES-

LOADING (psf)

Snow (Pf/Pg) 11.6/15.0

TCLL (roof)

TCDI

BCLL

BCDL

WEBS

LUMBER-

TOP CHORD

BOT CHORD

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

2-0-0

1.15

1.15

YES

CSI.

тс

BC

WB

Matrix-MF

0.08

0.02

0.04

- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 38 lb uplift at joint 5 and 25 lb uplift at joint 4.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

A MiTek Affili 818 Soundside Road

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

A MiTek Af 818 Soundside Road

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria and DSR-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

ENGINEERING BY RENCO

A MiTek 818 Soundside Road Edenton, NC 27932

1-4-12
1-4-12

LOADING (psf) SPACING- 2-0-0 CSI. E TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.08 W Snow (Pf/Pg) 11.6/15.0 Lumber DOL 1.15 TC 0.08 W TCDL 10.0 Rep Stress Incr YES WB 0.04 H BCDL 10.0 Code IRC2018/TPI2014 Matrix-MP Matrix-MP H	DEFL. in Vert(LL) -0.00 Vert(CT) -0.00 Horz(CT) -0.00	(loc) 5 5 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 11 lb	GRIP 244/190 FT = 20%
--	---	----------------------	-------------------------------	--------------------------	---------------------------------	------------------------------------

LUMBER-

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2WEBS2x4 SP No.3

BRACING-TOP CHORD

 TOP CHORD
 Structural wood sheathing directly applied or 1-4-12 oc purlins, except end verticals.

 BOT CHORD
 Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 5=0-3-8, 4=Mechanical Max Horz 5=59(LC 15)

Max Uplift 5=-35(LC 16), 4=-35(LC 13)

Max Grav 5=140(LC 21), 4=39(LC 14)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 35 lb uplift at joint 5 and 35 lb uplift at joint 4.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

- 6) Gable requires continuous bottom chord bearing.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 45 lb uplift at joint 6 and 32 lb uplift at joint 2.

10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

- 11) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

		4-9-0						
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 11.6/15.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.26 BC 0.16 WB 0.00 Matrix-P	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc 0.00 0.00 0.00) l/defl 3 n/r 4 n/r 5 n/a	L/d 120 120 n/a	PLATES MT20 Weight: 16 lb	GRIP 244/190 FT = 20%
		DD	ACINIC					

LUMBER-

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2WEBS2x4 SP No.3

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 4-9-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 5=3-9-7, 2=3-9-7 Max Horz 2=77(LC 13) Max Uplift 5=-29(LC 16), 2=-22(LC 16) Max Grav 5=187(LC 21), 2=186(LC 21)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-3-15 to 3-3-15, Interior(1) 3-3-15 to 5-0-8 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 29 lb uplift at joint 5 and 22 lb uplift at joint 2.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

		5-0-8							
	•	5-0-8					•		
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 11.6/15.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC2018/TPI2014	CSI. TC 0.31 BC 0.18 WB 0.00 Matrix-P	DEFL. Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.01 0.00	(loc) 1 1 4	l/defl n/r n/r n/a	L/d 120 120 n/a	PLATES MT20 Weight: 17 lb	GRIP 244/190 FT = 20%

LUMBER-

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2WEBS2x4 SP No.3

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 5-0-8 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 4=4-0-15, 2=4-0-15 Max Horz 2=74(LC 13) Max Uplift 4=-11(LC 16), 2=-29(LC 16) Max Grav 4=168(LC 21), 2=200(LC 21)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-3-15 to 3-3-15, Interior(1) 3-3-15 to 4-10-12 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 11 lb uplift at joint 4 and 29 lb uplift at joint 2.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Max Horz 2=43(LC 13) Max Uplift 5=-17(LC 13), 2=-31(LC 16), 6=-9(LC 13)

Max Grav 5=81(LC 35), 2=159(LC 36), 6=155(LC 2)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=16.5 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 5) Provide adequate drainage to prevent water ponding.
- 6) Gable requires continuous bottom chord bearing.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 17 lb uplift at joint 5, 31 lb uplift at joint 2 and 9 lb uplift at joint 6.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

L	6-7-1	13-3-7	19-10-12		26-6-1	31-2-8	
	6-7-1	6-8-5	6-7-5		6-7-5	4-8-7	
Plate Offsets (X,Y) [8:0-2-8,0	-3-8]						
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 16.5/15.0	SPACING-2-0-Plate Grip DOL1.1Lumber DOL1.1	0 CSI. 5 TC 0.99 5 BC 0.88	DEFL. Vert(LL) Vert(CT)	in (loc) -0.17 8-9 -0.32 8-9	l/defl L/ >999 24 >999 18	d PLATES GRIF 0 MT20 244/1 0) 190
BCLL 0.0 * BCDL 10.0	Rep Stress Incr No Code IRC2018/TPI2014	D WB 0.85 Matrix-MS	Horz(CT) 0.04 7	′n/an/	a Weight: 220 lb FT	= 20%
LUMBER- TOP CHORD 2x4 SP No.1 *Ex 3-5: 2x4 SP No.2 BOT CHORD 2x6 SP No.2 WEBS 2x4 SP No.3 *Ex 6-8: 2x4 SP No.2	cept* 2, 5-6: 2x6 SP No.2 cept* 2		BRACING- TOP CHORD BOT CHORD WEBS	Structural woo 2-0-0 oc purlin Rigid ceiling di 1 Row at midp	d sheathing dire s (3-11-2 max.) irectly applied o t 4-	ectly applied, except end verticals, an : 2-3, 5-6. r 10-0-0 oc bracing. 11, 5-9	ıd
REACTIONS. (size) 13=0 Max Horz 13=-2 Max Uplift 13=-7 Max Grav 13=1	-3-8, 7=Mechanical 213(LC 10) 9(LC 12), 7=-114(LC 12) 370(LC 80), 7=1386(LC 70)						
FORCES. (lb) - Max. Comp./Ma TOP CHORD 1-2=-1072/140 1-13=-1278/11: 1-13=-1278/11: BOT CHORD 11-12=0/965, 9 WEBS 2-12=-462/103 5-8=-1000/140	ax. Ten All forces 250 (lb) or , 2-3=-1340/184, 3-4=-1569/17 3 I-11=-97/2175, 8-9=-228/3529 , 2-11=-39/700, 3-11=0/386, 4- , 6-8=-227/3610, 1-12=-16/114	ess except when shown. 4, 4-5=-2516/176, 5-6=-3434/2 11=-1112/130, 4-9=0/594, 5-9= 5, 6-7=-1262/103	:17, =-1416/135,				
 NOTES- 1) Unbalanced roof live loads hai 2) Wind: ASCE 7-16; Vult=130m II; Exp B; Enclosed; MWFRS (plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=20.0 ps DOL=1.15); Is=1.0; Rough Ca surfaces with slopes less than 4) Unbalanced snow loads have 5) Provide adequate drainage to 6) This truss has been designed 7) * This truss has been designed 7) * This truss has been designed 7) * This truss has been designed 7) This truss is designed in acc referenced standard ANSI/TI 11) Graphical purlin representatii 12) "NAILED" indicates 3-10d (0 13) In the LOAD CASE(S) section 	ve been considered for this des ph (3-second gust) Vasd=103n (directional); cantilever left and sf (roof LL: Lum DOL=1.15 Plat t B; Partially Exp.; Ce=1.0; Cs= 0.500/12 in accordance with II been considered for this desig prevent water ponding. for a 10.0 psf bottom chord live d for a live load of 20.0psf on the rd and any other members, with russ connections. n (by others) of truss to bearing ordance with the 2018 Internation on does not depict the size or t 1.48°x3°) or 3-12d (0.148°x3.22 n, loads applied to the face of the second se	ign. ph; TCDL=6.0psf; BCDL=6.0p right exposed ; end vertical left a DOL=1.15); Pg=15.0 psf; Pf= 1.00; Ct=1.10, Lu=50-0-0 Rai 3C 1608.3.4. load nonconcurrent with any of the bottom chord in all areas wh h BCDL = 10.0psf. plate capable of withstanding onal Residential Code sections the orientation of the purlin alon ") toe-nails per NDS guidlines. he truss are noted as front (F)	osf; h=25ft; B=45ft; t and right exposed =16.5 psf (Lum DO) n surcharge applie other live loads. here a rectangle 3-ft 79 lb uplift at joint s R502.11.1 and R ng the top and/or bo	L=31ft; eave=4 t; Lumber DOL= L=1.15 Plate d to all exposed 6-0 tall by 2-0-0 13 and 114 lb u 802.10.2 and ottom chord.	ft; Cat. 1.60 wide plift at	SEAL 036322 WGINEEP A. GILDE	and an an an an an
WARNING - Verify design param	eters and READ NOTES ON THIS AND		= MII-7473 rev. 1/2/2023	BEFORE USE.		ENGINEERING BY	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	RVF-LOT #13 ROOF	
	0.5.00				IE	66946648
24-4246-A	SD02	Roof Special Girder	1	1		
					Job Reference (optional)	
Riverside Roof Truss, LLC,	Danville, Va - 24541,			8.730 s Ju	n 13 2024 MiTek Industries, Inc. Thu Jul 18 08:02:21 2024 P	2 age 2
		ID:DIJU	J rm8eUv	AVtjXeNVł	Kyzicl6-oap?s1Lle1B2GMGoQZm jEYTu Ebrvbhc4Z98Xyw	wuUW

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-2=-43, 2-3=-53, 3-5=-43, 5-6=-53, 7-13=-20 Concentrated Loads (lb)

Vert: 20=-2(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

₁ 1-11-1 ₁	9-11-4	17-11-7	23-1-7	28-3-8
1-11-1	8-0-3	8-0-3	5-2-1	5-2-1
Plate Offsets (X,Y) [8:0-2-1	15,0-2-0]			
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 16.5/15.0 TCDL 10.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. DEFL. TC 0.68 Vert(LL BC 0.92 Vert(CT WB 0.57 Horz(C	in (loc) l/defl L/d) -0.15 12-14 >999 240) -0.28 12-14 >999 180 T) 0.05 10 n/a n/a	PLATES GRIP MT20 244/190
BCDL 10.0	Code IRC2018/TPI2014	Matrix-MS		Weight: 181 lb FT = 20%
LUMBER-		BRACING-		
TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2		TOP CHORD	Structural wood sheathing directly a except end verticals, and 2-0-0 oc p	pplied or 4-2-9 oc purlins, urlins (4-6-12 max.): 2-6.
WEBS 2x4 SP No.3		BOT CHORD	Rigid ceiling directly applied or 10-0- 2-2-0 oc bracing: 12-14.	-0 oc bracing, Except:
		WEBS	1 Row at midpt 3-15	

REACTIONS. (size) 16=0-3-8, 10=0-3-8 Max Horz 16=-194(LC 14) Max Uplift 16=-85(LC 12), 10=-99(LC 16) Max Grav 16=1284(LC 50), 10=1316(LC 29)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-469/130, 2-3=-429/122, 3-5=-1497/175, 5-6=-1454/187, 6-7=-1680/184,

7-8=-1874/160, 1-16=-1345/85, 8-10=-1221/175

 BOT CHORD
 14-15=-26/1297, 12-14=-51/1601, 11-12=-78/1603

 WEBS
 3-15=-1254/141, 3-14=0/622, 5-14=-275/107, 5-12=-302/62, 6-12=0/477, 7-12=-323/90, 1-15=-103/1252, 8-11=-63/1404

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=28ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-1-12 to 1-11-1, Exterior(2R) 1-11-1 to 6-2-0, Interior(1) 6-2-0 to 17-11-7, Exterior(2R) 17-11-7 to 22-2-5, Interior(1) 22-2-5 to 29-2-8 zone; cantilever left and right exposed ; end vertical left and right

- exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=16.5 psf (Lum DOL=1.15 Plate DOL=1.15); Pg=16.0 psf (Lum DOL=1.15 Plate DOL=1.15); Pg=16.0 psf (Lum DOL=1.15); Pg=16.0 psf (Lu
- DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4. 4) Unbalanced snow loads have been considered for this design.

5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.

6) Provide adequate drainage to prevent water ponding.

- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members, with BCDL = 10.0psf.
9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 85 lb uplift at joint 16 and 99 lb uplift at joint 10.

10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

6-8-9	13-6-14		20-3-7		28-3-8		
Plate Offsets (X,Y) [8:0-9-12	2,0-2-12]		0-0-9		0-0-1		
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 16.5/15.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.90 BC 0.62 WB 0.64 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) l. -0.10 11 > -0.20 8-9 > 0.05 8	/defl L/d 999 240 999 180 n/a n/a	PLATES MT20 MT20HS Weight: 159 lb	GRIP 244/190 187/143 FT = 20%
LUMBER- TOP CHORD 2x4 SP No.2 *E 5-7: 2x4 SP No BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 *E 6-8: 2x4 SP No	xcept* .1 xcept* .2	Bi Ti Bi W	RACING- DP CHORD S E DT CHORD F EBS 1	Structural wood sh except end vertical Rigid ceiling direct I Row at midpt	eathing directly applie ls, and 2-0-0 oc purlin ly applied or 10-0-0 oc 2-13	ed or 3-8-6 oc purlins s (2-2-0 max.): 1-5. c bracing.	,
REACTIONS. (size) 13= Max Horz 13= Max Uplift 13= Max Grav 13=	0-3-8, 8=0-3-8 -166(LC 14) -119(LC 12), 8=-99(LC 16) 1285(LC 35), 8=1185(LC 2)						
FORCES. (lb) - Max. Comp./h TOP CHORD 2-4=-1972/23 BOT CHORD 12-13=-58/14 WEBS 2-13=-1770/1	Aax. Ten All forces 250 (lb) or less exc 6, 4-5=-1975/237, 5-6=-1692/188, 6-8=- 82, 11-12=-58/1482, 9-11=-75/1442, 8-9 67, 2-12=0/292, 2-11=-91/590, 4-11=-56	ept when shown. 111/205 =-132/607 1/133, 5-11=-54/643, 6-9	=0/1168				
 NOTES- 1) Unbalanced roof live loads h 2) Wind: ASCE 7-16; Vult=130r II; Exp B; Enclosed; MWFRS 23-3-7, Interior(1) 23-3-7 to 2 forces & MWFRS for reaction 3) TCLL: ASCE 7-16; Pr=20.0 p DOL=1.15); Is=1.0; Rough C surcharge applied to all expc 4) Unbalanced snow loads haw 5) This truss has been designer non-concurrent with other liv 6) Provide adequate drainage to 7) All plates are MT20 plates ur 8) This truss has been designer will fit between the bottom cf 10) Provide mechanical connect at joint 8. 11) This truss is designed in act referenced standard ANSI/ 	ave been considered for this design. mph (3-second gust) Vasd=103mph; TCI (directional) and C-C Exterior(2E) 0-1-1 29-2-8 zone; cantilever left and right exponses is shown; Lumber DOL=1.60 plate grip I sof (roof LL: Lum DOL=1.15 Plate DOL= at B; Partially Exp.; Ce=1.0; Cs=1.00; Cr ised surfaces with slopes less than 0.500 e been considered for this design. d for greater of min roof live load of 12.0 e loads. o prevent water ponding. Ness otherwise indicated. d for a live load of 20.0psf on the bottor lord and any other members. tion (by others) of truss to bearing plate cordance with the 2018 International Re FPI 1.	DL=6.0psf; BCDL=6.0psf; 2 to 3-1-12, Interior(1) 3- osed ; end vertical left and OCL=1.60 1.15); Pg=15.0 psf; Pf=16 =1.10, Lu=50-0-0; Min. fl //12 in accordance with II psf or 1.00 times flat roof onconcurrent with any oth n chord in all areas when capable of withstanding - sidential Code sections R	h=25ft; B=45ft; L= 1-12 to 20-3-7, Exi d right exposed;C- 3.5 psf (Lum DOL= at roof snow load g 3C 1608.3.4. load of 11.6 psf o er live loads. e a rectangle 3-6-0 119 lb uplift at joint 502.11.1 and R80	=28ft; eave=4ft; Ca terior(2R) 20-3-7 t C for members an 1.15 Plate governs. Rain n overhangs D tall by 2-0-0 wide t 13 and 99 lb uplit 02.10.2 and	at. o Id	SEAL 036322	A State of the sta

- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide
- will fit between the bottom chord and any other members. 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 119 lb uplift at joint 13 and 99 lb uplift
- at joint 8. 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB Building Component Scitut Information**. Building from the Structure Building Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

G

minin July 22,2024

and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

	4-11-4	9-11-4	14-11-4	1	23-11-7	,		1	31-5-	-8	
	4-11-4	5-0-0	5-0-0	I	9-0-3			I	7-6-1	1 '	
Plate Offsets (X,Y) [7:0-2-0,0)-1-12], [9:Edge,0-1-8]									
LOADING (ps TCLL (roof) Snow (Pf/Pg) TCDL BCLL	sf) 20.0 16.5/15.0 10.0 0.0 *	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 CS 1.15 TC 1.15 BC YES WE	I. 0.94 0.92 3 0.71	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.39 -0.66 0.04	(loc) 13 15 9	l/defl >949 >565 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0		FI2014 IVIa	1112-1113						weight. 215 lb	F1 = 20%
LUMBER- TOP CHORD	2x4 SP No.2 *E>	<cept*< td=""><td></td><td>B</td><td>RACING- OP CHORD</td><td>Structura</td><td>al wood</td><td>sheathin</td><td>g directly app</td><td>lied, except end vertion</td><td>als, and</td></cept*<>		B	RACING- OP CHORD	Structura	al wood	sheathin	g directly app	lied, except end vertion	als, and
BOT CHORD	4-5: 2x4 SP No. ² 2x4 SP No.2 *Ex 16-19: 2x4 SP N	1 <cept* lo.1, 11-16: 2x4 SP DSS</cept* 		В	OT CHORD	2-0-0 oc Rigid cei 2-2-0 oc	purlins ling dire bracing	(3-4-15 r ectly appl j: 13-18.	nax.): 2-4. ied or 10-0-0	oc bracing, Except:	
WEBS	2x4 SP No.3			v	/EBS	6-0-0 oc 1 Row at	bracing midpt	j: 14-17	3-17, 4-12	2, 1-19	
REACTIONS.	(size) 19=0 Max Horz 19=-3 Max Uplift 19=-3	-3-8, 9=0-3-8 240(LC 14) 4(LC 16) 990(LC 16)									

Max Grav 19=1661(LC 30), 9=1637(LC 29)

 FORCES.
 (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 TOP CHORD
 1-2=-1182/117, 2-3=-959/151, 3-4=-1678/141, 4-6=-2469/239, 6-7=-2440/120, 1-19=-1648/69, 7-9=-1516/185

 BOT CHORD
 13-18=0/1546, 12-13=0/1546, 10-12=0/1636, 9-10=-28/395

 WEBS
 2-18=0/352, 17-18=-1094/44, 3-17=-927/87, 3-14=0/623, 12-14=-17/459, 4-12=-62/346,

4-10=-149/826, 6-10=-550/202, 1-18=-3/1420, 7-10=0/1721

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=31ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-1-12 to 3-3-8, Interior(1) 3-3-8 to 6-7-1, Exterior(2R) 6-7-1 to 11-0-8, Interior(1) 11-0-8 to 16-5-7, Exterior(2R) 16-5-7 to 20-10-13, Interior(1) 20-10-13 to 32-10-8 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=16.5 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.

4) Unbalanced snow loads have been considered for this design.

5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.

6) Provide adequate drainage to prevent water ponding.

7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 4 lb uplift at joint 19 and 90 lb uplift at joint 9.

10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

L	4-3-1	9-11-4	14-11-4	1	23-2-6		1	31-5-8		
1	4-3-1	5-8-3	5-0-0	I	8-3-2		1	8-3-2		
Plate Offsets (X,Y) [7:0-2-0,0)-1-12]								
LOADING (ps TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	sf) 20.0 16.5/15.0 10.0 0.0 * 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2018/TPI	2-0-0 CSI. 1.15 TC 1.15 BC YES WB 2014 Matr	0.74 1.00 0.61 ix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.48 15-17 -0.83 15-17 0.07 9	l/defl L >779 24 >451 18 n/a r	/d 40 80 //a	PLATES MT20 Weight: 215 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.2 *Ex 16-19,11-16: 2x4 2x4 SP No.3	kcept* 4 SP DSS		B T(B(RACING- DP CHORD S OT CHORD F G S EBS 1	Structural wood except end verti Rigid ceiling dire 5-0-0 oc bracing 3-10-0 oc bracin I Row at midot	sheathing di cals, and 2-0 ectly applied : 18-19. g: 14-17	rectly applied o -0 oc purlins (or 10-0-0 oc bi	or 2-2-0 oc purlins 3-11-6 max.): 2-5. racing, Except:	,
REACTIONS.	(size) 19=0 Max Horz 19=-2 Max Uplift 9=-8 Max Grav 19=1	-3-8, 9=0-3-8 219(LC 14) 9(LC 16) 658(LC 30), 9=1625(LC 29	9)					10, 110, 00		
FORCES. (It TOP CHORD	 Max. Comp./M 1-2=-1097/99, 6-7=-511/84, 1 12, 18=0/1760 	ax. Ten All forces 250 (lt 2-3=-955/112, 3-4=-1954/ -19=-1701/44, 7-9=-445/1- 12, 13=-0/1760, 10, 12=-0/1	b) or less except when sł 127, 4-5=-1955/128, 5-6= 46 724, 0, 10– 20/2018	nown. =-2307/165,						

 BOT CHORD
 13-18=0/1760, 12-13=0/1760, 10-12=0/1734, 9-10=-30/2018

 WEBS
 2-18=0/281, 17-18=-1267/62, 3-17=-1101/113, 3-14=0/624, 12-14=-19/462, 4-12=-347/84, 5-12=0/593, 5-10=-55/552, 6-10=-286/158, 1-18=-16/1510, 6-9=-1963/83

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=31ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-1-12 to 3-3-8, Interior(1) 3-3-8 to 4-3-1, Exterior(2R) 4-3-1 to 8-8-8, Interior(1) 8-8-8 to 18-9-7, Exterior(2R) 18-9-7 to 23-2-13, Interior(1) 23-2-13 to 32-10-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=16.5 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.

4) Unbalanced snow loads have been considered for this design.

5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.

6) Provide adequate drainage to prevent water ponding.

7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 89 lb uplift at joint 9.10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and

referenced standard ANSI/TPI 1. 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

TRENCO A MiTek Affiliate

	1-11-1	11-6-4	. 2	1-1-7	1	26-3-7	1 31-5-8	1
	1-11-1	9-7-3	1	9-7-3	I	5-2-1	5-2-1	
Plate Offsets (X,Y) [8:0-2-15,	0-2-0]						
LOADING (ps TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	sf) 20.0 16.5/15.0 10.0 0.0 * 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2018/TPI2014	CSI. TC 0.87 BC 0.95 WB 0.66 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT	in (loc) -0.26 12-14) -0.48 12-14) 0.07 10	l/defl L/d >999 240 >787 180 n/a n/a	PLATES MT20 Weight: 194 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.2 *Ex 13-16: 2x4 SP N 2x4 SP No.3	cept* o.1	BI TC BC W	RACING- DP CHORD DT CHORD EBS	Structural wood s except end vertica Rigid ceiling direc 2-2-0 oc bracing: 1 Row at midpt	heathing direc als, and 2-0-0 tly applied or 1 12-14. 3-15	tly applied or 3-10-15 oc pur oc purlins (3-7-11 max.): 2-6 10-0-0 oc bracing, Except: 5, 5-12	lins,).

REACTIONS. (size) 16=0-3-8, 10=0-3-8 Max Horz 16=-198(LC 14) Max Uplift 16=-77(LC 16), 10=-123(LC 16) Max Grav 16=1454(LC 50), 10=1491(LC 29)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-534/127, 2-3=-497/121, 3-5=-1930/187, 5-6=-1718/196, 6-7=-1974/193,

7-8=-2109/167, 1-16=-1563/77, 8-10=-1391/207

 BOT CHORD
 14-15=-33/1657, 12-14=-62/2031, 11-12=-69/1809

 WEBS
 3-15=-1541/161, 3-14=0/685, 5-14=-265/120, 5-12=-478/55, 6-12=0/583, 7-12=-283/91, 1-15=-99/1466, 8-11=-96/1626

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=31ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-1-12 to 1-11-1, Exterior(2R) 1-11-1 to 6-4-8, Interior(1) 6-4-8 to 21-1-7, Exterior(2R) 21-1-7 to 25-6-13, Interior(1) 25-6-13 to 32-10-8 zone; cantilever left and right exposed ; end vertical left and

right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=16.5 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.

4) Unbalanced snow loads have been considered for this design.

5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.

6) Provide adequate drainage to prevent water ponding.

7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members, with BCDL = 10.0psf.

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 77 lb uplift at joint 16 and 123 lb uplift at joint 10.

10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

A MiTek Affiliate

818 Soundside Road

7-9-4		15-8-3	23-5-7		31-5-8		
Plate Offsets (X,Y) [8:0-9-9,	0-3-0]	7-11-0	7-5-4		0-0-1		
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 16.5/15.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.11 Lumber DOL 1.11 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. 5 TC 0.92 55 BC 0.72 WB 0.90 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.13 11 = -0.28 11-13 = 0.07 8	l/defl L/d >999 240 >999 180 n/a n/a	PLATES GRIP MT20 244/190 MT20HS 187/143 Weight: 174 lb FT = 2	20%
LUMBER- TOP CHORD 2x4 SP No.2 *E 5-7: 2x4 SP No. BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 *E 6-8: 2x4 SP No.	xcept* 1, 3-5: 2x4 SP DSS xcept* 2		BRACING- TOP CHORD BOT CHORD WEBS	Structural wood sh except end vertica Rigid ceiling direct 1 Row at midpt	neathing directly appl als, and 2-0-0 oc purli tly applied or 10-0-0 o 2-14	ed or 3-5-8 oc purlins, ns (2-2-0 max.): 1-5. oc bracing.	
REACTIONS. (size) 14= Max Horz 14= Max Uplift 14= Max Grav 14=)-3-8, 8=0-3-8 170(LC 14) 108(LC 12), 8=-124(LC 16) 1409(LC 35), 8=1343(LC 2)						
FORCES. (lb) - Max. Comp./N TOP CHORD 1-14=-255/69, BOT CHORD 13-14=-54/18 WEBS 2-14=-2108/1	lax. Ten All forces 250 (lb) or 2-4=-2416/245, 4-5=-2418/246, 50, 11-13=-54/1850, 9-11=-60/1 72, 2-13=0/336, 2-11=-89/654, 4	ess except when shown. 5-6=-1930/186, 6-8=-1270/2 661, 8-9=-117/554 -11=-620/148, 5-11=-51/878,	227 , 6-9=0/1409				
 NOTES- 1) Unbalanced roof live loads in: 2) Wind: ASCE 7-16; Vult=130n II; Exp B; Enclosed; MWFRS 26-7-3, Interior(1) 26-7-3 to 3 forces & MWFRS for reaction 3) TCLL: ASCE 7-16; Pr=20.0 p DOL=1.15); Is=1.0; Rough C surcharge applied to all expo 4) Unbalanced snow loads have 5) This truss has been designed non-concurrent with other live 6) Provide adequate drainage to 7) All plates are MT20 plates un 8) This truss has been designed 9) * This truss has been designed 9) * This truss is designed in ac referenced standard ANSI/T 12) Graphical purlin representation 	ave been considered for this des ph (3-second gust) Vasd=103m (directional) and C-C Exterior(2 2-10-8 zone; cantilever left and is shown; Lumber DOL=1.60 pla sf (roof LL: Lum DOL=1.15 Plat at B; Partially Exp.; Ce=1.0; Cs= sed surfaces with slopes less the been considered for this design f or greater of min roof live load b loads. > prevent water ponding. less otherwise indicated. f or a 10.0 psf bottom chord live ed for a live load of 20.0psf on th ord and any other members. tion (by others) of truss to bearin cordance with the 2018 Internati TPI 1. tion does not depict the size or t	ign. hph; TCDL=6.0psf; BCDL=6.0 E) 0-1-12 to 3-3-8, Interior(1) right exposed ; end vertical le tte grip DOL=1.60 a DOL=1.15); Pg=15.0 psf; P r1.00; Ct=1.10, Lu=50-0-0; M an 0.500/12 in accordance w h of 12.0 psf or 1.00 times flat e load nonconcurrent with any he bottom chord in all areas w hg plate capable of withstand onal Residential Code section he orientation of the purlin alcon	Dpsf; h=25ft; B=45ft; 3-3-8 to 23-5-7, Ext and right exposed f=16.5 psf (Lum DOI in. flat roof snow loa- ith IBC 1608.3.4. roof load of 11.6 psf / other live loads. /here a rectangle 3-6 ing 108 lb uplift at jo ns R502.11.1 and Ri- ong the top and/or bo	L=31ft; eave=4ft; C erior(2R) 23-5-7 to ;C-C for members a _=1.15 Plate d governs. Rain on overhangs 6-0 tall by 2-0-0 wide nt 14 and 124 lb up 302.10.2 and ottom chord.	e e plift	SEAL 036322	Nanning.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

A MiTek Affilia

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

⁸¹⁸ Soundside Road Edenton, NC 27932

Design valid for use only with MiTek® connectors. This design is based only upon parameters have been and the connectors. This design is based only upon parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent pracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TFI1 Quality Crieria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSB Building Component Safety Information** available from the Structural Building Component Addet sociation (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	RVF-LOT #13 ROOF	
						166946658
24-4246-A	SM02G	Half Hip Girder	2	1	Ich Reference (antional)	
Riverside Roof Truss 11 C	Danville Va - 24541			8 730 s.Ju	n 13 2024 MiTek Industries Inc. Thu Jul 18 08:02:28 2024	Page 2

ID:DIJU_rm8eUvAVtjXeNVKK9zicl6-5wkeKRQ8_B43bRI8KXOdWiKq?op1_GijDfl0udywuUP

LOAD CASE(S) Standard

Uniform Loads (plf) Vert: 1-2=-43, 2-3=-43, 3-4=-53, 5-7=-20 Concentrated Loads (lb) Vert: 6=-16(F) 8=-16(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	RVF-LOT #13 ROOF	
	0.40005					166946659
24-4246-A	SM03GE	GABLE COMMON	1	1		
					Job Reference (optional)	
Riverside Roof Truss, LLC,	Danville, Va - 24541,			8.730 s Ju	n 13 2024 MiTek Industries, Inc. Thu Jul 18 08:02:30 2024	Page 2
		ID:DIJU	rm8eUvA	VtjXeNVKI	K9zicl6-1IrPk6SOWoKmrlSWSyQ5b7Q20cQaS8S0hzE7yVy	wuUN

NOTES-

14) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 35, 20, 33, 32, 31, 30, 29, 28, 26, 25, 24, 23, 22 except (jt=lb) 34=119, 21=120.

15) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

16) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see AMSVTPH1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component.scom)

LUMBER-		BRACING-			
TOP CHORD	2x4 SP No.2	TOP CHORD	Structural wood sheath	ning directly applied or 3-11-13 oc purlins,	
BOT CHORD	2x4 SP No.2 *Except*		except end verticals, ar	nd 2-0-0 oc purlins (6-0-0 max.): 6-7.	
	10-12: 2x4 SP No.1, 8-14: 2x4 SP DSS	BOT CHORD	Rigid ceiling directly ap	pplied or 9-1-10 oc bracing. Except:	
WEBS	2x4 SP No.3 *Except*		6-0-0 oc bracing: 10-12	2	
	7-8: 2x4 SP No.2	WEBS	1 Row at midpt	7-8, 5-13, 3-16	
			2 Rows at 1/3 pts	6-8	

REACTIONS. (size) 8=Mechanical, 16=0-3-8 Max Horz 16=387(LC 13) Max Uplift 8=-30(LC 13), 16=-64(LC 16) Max Grav 8=1623(LC 28), 16=1364(LC 28)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-559/114, 3-5=-1877/176, 5-6=-1273/190, 2-16=-457/155

BOT CHORD 15-16=-395/1783, 13-15=-290/1402, 9-13=-195/846, 8-9=-195/846

 BOT CHORD
 15-16=-395/1783, 13-15=-290/1402, 9-13=-195/846, 8-9=-195/846

 WEBS
 5-15=-66/576, 5-13=-705/196, 12-13=-38/1182, 6-12=-2/1382, 6-10=-1279/199, 8-10=-1484/143, 3-16=-1476/22

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=27ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -0-11-0 to 2-1-0, Interior(1) 2-1-0 to 20-4-10, Exterior(2R) 20-4-10 to 24-7-9, Interior(1) 24-7-9 to 26-10-12 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=16.5 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.

4) Unbalanced snow loads have been considered for this design.

5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.

6) Provide adequate drainage to prevent water ponding.

7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

9) Refer to girder(s) for truss to truss connections

10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 16.

11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

a duss system: Broche use, investigate in that were the approximation of design plantitets and properly incorporate in the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI QualityCriteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	RVF-LOT #13 ROOF	
						66946664
24-4246-A	SM08GE	GABLE	1	1		
					Job Reference (optional)	
Riverside Roof Truss, LLC,	Danville, Va - 24541,		8	3.730 s Ju	n 13 2024 MiTek Industries, Inc. Thu Jul 18 08:02:33 2024 F	Page 2
		ID:DIJU	J rm8eUv	AVtjXeNVI	KK9zicl6-RtXXN8UGpjiLiCB574 oDm2ZDpSNfVBSNxTnZqy	/wuUK

NOTES-

14) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 34, 19, 32, 31, 30, 29, 28, 27, 25, 24, 23, 22, 21, 20 except (jt=lb) 33=119.

15) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

16) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall a futs system. Before use, the building designer must verify the applications of design had the property incorporate into design into the overall building design. Bracing indicated is to prevent building of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

		4-11-4	5-0-0	4-10-13		3-2-0	0-0-11			0-0-11		
Plate Offsets ()	K,Y) [4:0-2-8,E0	dge], [5:0-2-8,0-2-4], [8	:0-2-4,0-1-12], [1	0:Edge,0-1	-8]							
LOADING (pst TCLL (roof) Snow (Pf/Pg) TCDL	f) 20.0 16.5/15.0 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	CSI. TC BC WB	0.98 0.99 0.90	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.46 -0.75 0.05	(loc) 17 17 10	l/defl >817 >497 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0	Code IRC2018/T	PI2014	Matrix	-MS						Weight: 233 lb	FT = 20%
LUMBER-						BRACING-						
TOP CHORD	2x4 SP No.2					TOP CHORD	Structura	al wood	sheathin	g directly appl	ied or 2-2-0 oc purlins	,
BOT CHORD	2x4 SP No.2 *Exc	cept*					except e	nd verti	cals, and	2-0-0 oc purli	ns (4-3-7 max.): 4-5.	
	13-20: 2x4 SP No	o.1				BOT CHORD	Rigid ce	iling dire	ectly appl	ied or 2-2-0 oc	c bracing. Except:	
WEBS	2x4 SP No.3						6-0-0 oc	bracing	j: 16-18			
						WEBS	1 Row a	t midpt		3-18, 4-14		

REACTIONS. (size) 20=0-3-8, 10=0-3-8 Max Horz 20=-267(LC 14) Max Uplift 20=-5(LC 16), 10=-74(LC 16) Max Grav 20=1651(LC 30), 10=1569(LC 29)

 FORCES.
 (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 TOP CHORD
 1-2=-1184/121, 2-3=-1218/211, 3-4=-2011/243, 4-5=-1769/176, 5-7=-1937/187, 7-8=-2413/155, 1-20=-1646/85, 8-10=-1462/175

 BOT CHORD
 15-19=0/1194, 14-15=0/1194, 12-14=0/1648, 11-12=-59/2075, 10-11=-43/337

 WEBS
 2-19=-340/146, 18-19=-502/22, 3-18=-369/67, 3-16=-87/1545, 14-16=-132/1408, 4-14=-1060/179, 5-14=0/361, 5-12=-29/359, 7-12=-574/108, 1-19=-50/1458,

NOTES-

1) Unbalanced roof live loads have been considered for this design.

8-11=-16/1749

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=31ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-1-12 to 3-3-8, Interior(1) 3-3-8 to 9-11-4, Exterior(2R) 9-11-4 to 13-1-0, Interior(1) 13-1-0 to 18-0-1, Exterior(2R) 18-0-1 to 21-1-13, Interior(1) 21-1-13 to 32-4-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=16.5 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 6) Provide adequate drainage to prevent water ponding.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 20, 10.
 This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

2x4 💋

 $2x4 \ge$

Rigid ceiling directly applied or 10-0-0 oc bracing.

0- <u>0-10</u> 0-0-10 Plate Offsets (X,Y) [2:0-2-0,E	dge]	4-3-1 4-3-	3					
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 11.6/15.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC2018/TPI2014	CSI. TC 0.05 BC 0.10 WB 0.00 Matrix-P	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) n/a - n/a - 0.00 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 11 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SP No.2		BR TO	ACING- PCHORD S	tructural wood	sheathin	g directly app	blied or 4-3-13 oc purli	ns.

BOT CHORD

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

REACTIONS. 1=4-2-10, 3=4-2-10 (size) Max Horz 1=-8(LC 14) Max Uplift 1=-7(LC 16), 3=-7(LC 16) Max Grav 1=112(LC 2), 3=112(LC 2)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate
- DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) Unbalanced snow loads have been considered for this design.

5) Gable requires continuous bottom chord bearing.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design and the second design much reacting of design and the second design much reacting and and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

