

RE: Belhaven DEF Belhaven DEF Trenco 818 Soundside Rd Edenton, NC 27932

Site Information:Customer:Project Name: Belhaven DEFLot/Block:Model:Address:Subdivision:City:State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2015/TPI2014 Wind Code: ASCE 7-10 Roof Load: 40.0 psf Design Program: MiTek 20/20 8.7 Wind Speed: 130 mph Floor Load: N/A psf

This package includes 21 individual, dated Truss Design Drawings and 0 Additional Drawings.

No. 1 2 3 4 5 6 7 8 9 10 11 2 3 14 15 16 17 18	Seal# I61952849 I61952850 I61952851 I61952852 I61952853 I61952855 I61952855 I61952856 I61952857 I61952858 I61952860 I61952861 I61952863 I61952863 I61952865 I61952865 I61952866 I61952867	Truss Name A01 A01E A01M A02 A02E A02M A03M B01 B01E B01G M1 M1G M2 V1 V1E V2 V3 V4 V5	Date 11/14/2023 11/14/2023 11/14/2023 11/14/2023 11/14/2023 11/14/2023 11/14/2023 11/14/2023 11/14/2023 11/14/2023 11/14/2023 11/14/2023 11/14/2023 11/14/2023 11/14/2023 11/14/2023	No. 21	Seal# I61952869	Truss Name V7	Date 11/14/2023
18	161952866	V4	11/14/2023				
19 20	l61952867 l61952868	V5 V6	11/14/2023 11/14/2023				

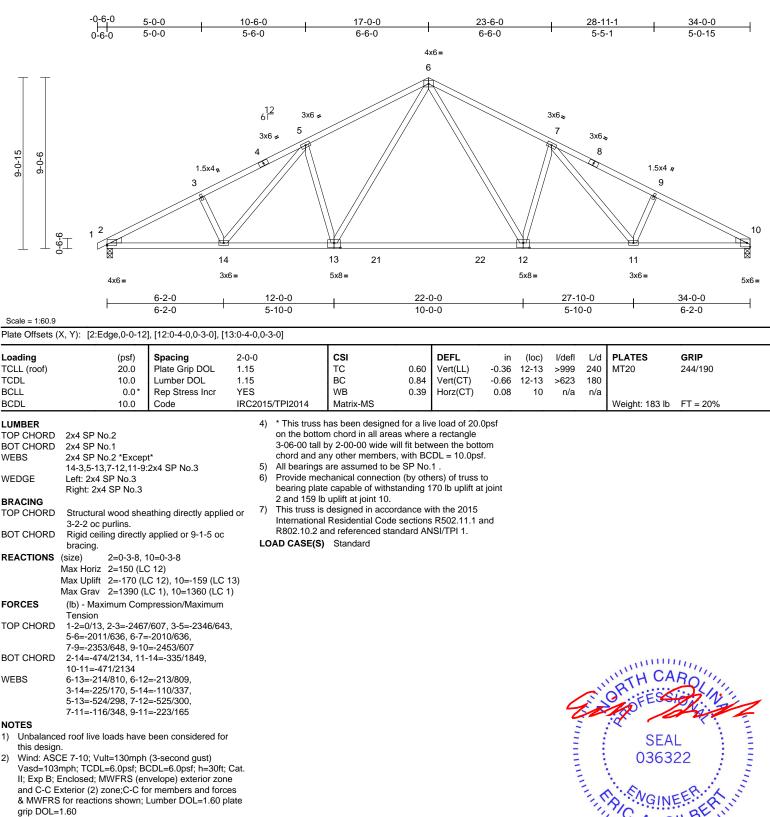
The truss drawing(s) referenced above have been prepared by Truss Engineering Co. under my direct supervision

based on the parameters provided by 84 Components - #2383.

Truss Design Engineer's Name: Gilbert, Eric

My license renewal date for the state of North Carolina is December 31, 2024

North Carolina COA: C-0844


IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	Belhaven DEF	
Belhaven DEF	A01	Common	6	1	Job Reference (optional)	161952849

Run: 8.72 S Oct 5 2023 Print: 8.720 S Oct 5 2023 MiTek Industries. Inc. Fri Nov 10 10:51:35 ID:uudXsR2jkNbtYs13u3t6cTz6mEm-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

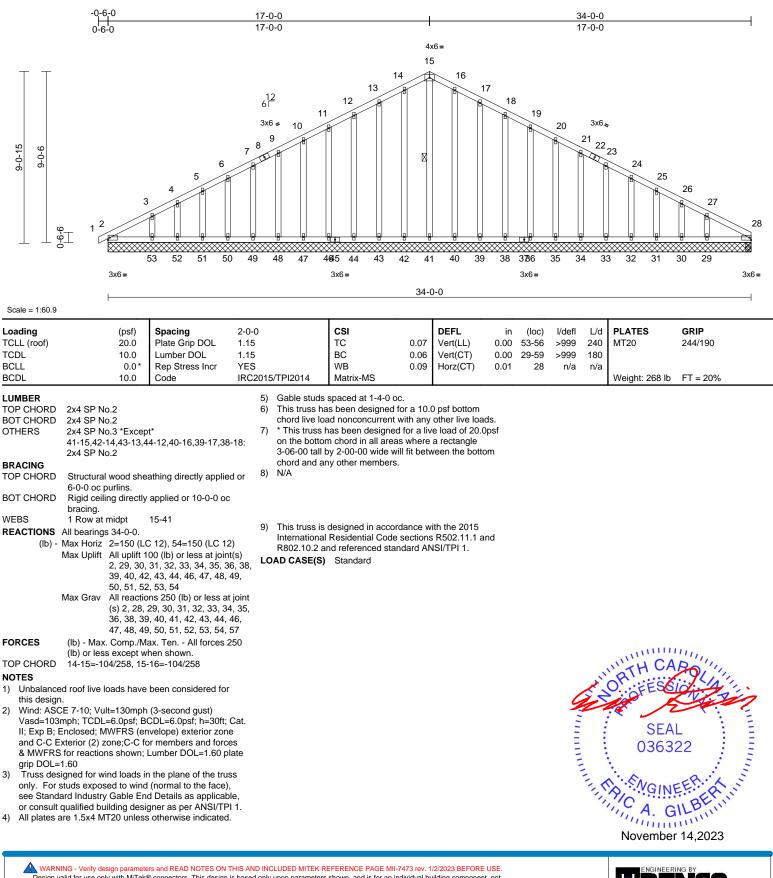
& MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom

chord live load nonconcurrent with any other live loads.

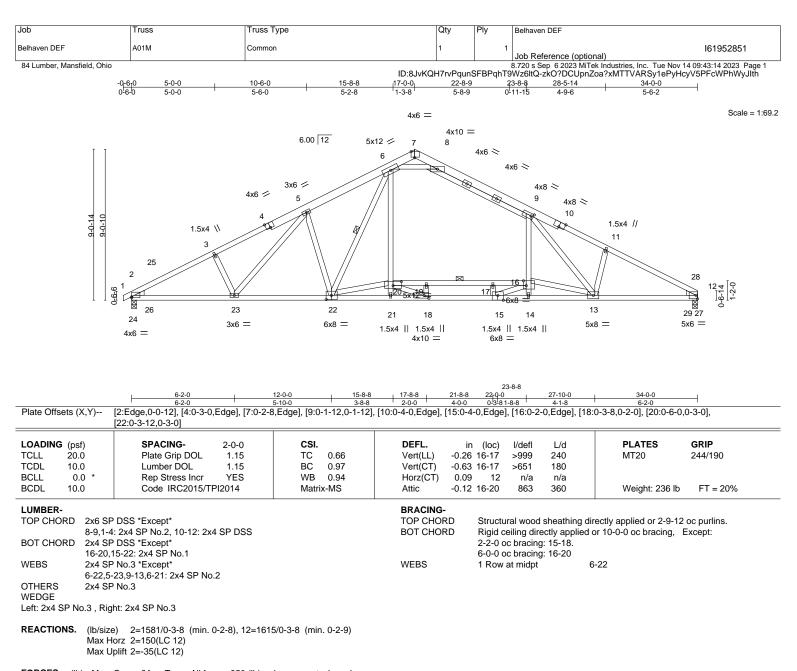
G 40000

November 14,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent bucking of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Job	Truss	Truss Type	Qty	Ply	Belhaven DEF	
Belhaven DEF	A01E	Common Supported Gable	1	1	Job Reference (optional)	161952850

Run: 8.72 E Sep 21 2023 Print: 8.720 E Sep 21 2023 MiTek Industries, Inc. Tue Nov 14 09:40:16 ID:7Akou8Zhca0nCTpJva9CrXz6mE5-7CclVjtNespKEeiicUp5HaFEe1IbS6zMDSASnYyJULI


Page: 1

818 Soundside Road

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

- FORCES.
 (lb) Max. Comp./Max. Ten. All forces 250 (lb) or less except when shown.

 TOP CHORD
 2-25=-788/8, 3-25=-2853/329, 3-4=-2716/349, 4-5=-2601/365, 5-6=-2422/335, 6-7=-51/799, 7-8=-70/485, 8-9=-2172/240, 9-10=-2802/293, 10-11=-2901/285, 11-28=-2957/235, 12-28=-1186/60

 BOT CHORD
 24-26=-189/537, 23-26=-230/2473, 22-23=-85/2228, 21-22=-30/600, 18-21=-38/590,
- BOT CHORD
 24+26=-103/337, 25+26=-250/2473, 22+25=-63/2263, 21+22=-30/390, 15-18=0/2452, 14-15=-246/3140, 13-14=-231/3062, 13-29=-137/2580, 27-29=-82/926, 19-20=-559/9, 17-19=-559/9, 16-17=-595/44

 WEBS
 6-22=-264/434, 5-23=-113/299, 5-22=-532/260, 9-13=-269/899, 11-13=-396/196, 6-20=0/1092, 9-16=-354/319, 18-19=-515/0, 18-20=0/2276, 15-16=-1035/410, 13-16=-1336/406, 6-8=-2727/343, 20-22=-16/1608, 2-24=-570/18, 24+25=-848/90,

2-26=0/399, 12-27=-885/67, 27-28=-1108/73, 12-29=-57/1038

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

- 5) Ceiling dead load (5.0 psf) on member(s). 8-9, 6-8; Wall dead load (5.0 psf) on member(s).6-20, 9-16
- 6) Bottom chord live load (20.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 19-20, 17-19, 16-17
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 35 lb uplift at joint 2.

8) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

9) ATTIC SPACE SHOWN IS DESIGNED AS UNINHABITABLE.

LOAD CASE(S) voltandard parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Belhaven DEF	
Belhaven DEF	A02	Common	5	1	Job Reference (optional)	161952852

9-0-15 9-0-6

Loading

TCDL

BCLL

BCDL

WEBS

WEDGE

SLIDER

BRACING

LUMBER

TCLL (roof)

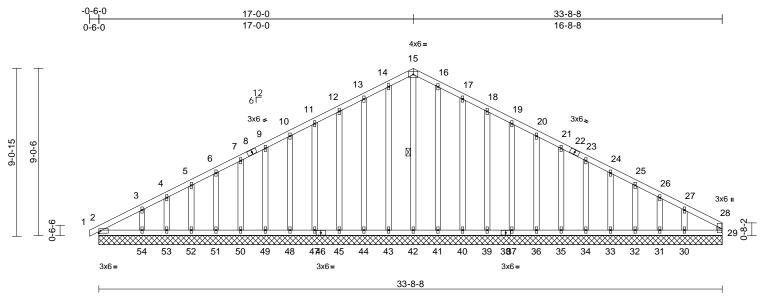
0-8-3

Run: 8.72 S Oct 5 2023 Print: 8.720 S Oct 5 2023 MiTek Industries. Inc. Fri Nov 10 10:51:38 Page: 1 ID:c_SkWMpIME_93IB6RjVLWFz6mCU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 5-0-0 10-6-0 17-0-0 23-6-0 29-0-0 33-8-8 5-0-0 6-6-0 5-6-0 4-8-8 5-6-0 6-6-0 4x6= 6 12 61 3x6👟 3x6 -5 3x6 🚽 3x6. Δ 8 1.5x4 v 1.5x4 // 3 9 3x6 10 11 to 9-9-0 15 14 23 24 13 12 4x6 II 3x6= 5x8= 5x8= 3x6= 4x6 =22-0-0 6-2-0 12-0-0 27-10-0 33-8-8 6-2-0 5-10-0 10-0-0 5-10-0 5-10-8 Scale = 1:62.3 Plate Offsets (X, Y): [2:Edge,0-0-12], [11:0-4-0,0-0-7], [13:0-4-0,0-3-0], [14:0-4-0,0-3-0] 2-0-0 CSI DEFL in l/defl L/d PLATES GRIP (psf) Spacing (loc) 20.0 Plate Grip DOL 1.15 TC 0.73 Vert(LL) -0.36 13-14 >999 240 MT20 244/190 10.0 Lumber DOL 1.15 BC 0.84 Vert(CT) -0.65 13-14 >622 180 Rep Stress Incr YES WB Horz(CT) 0.0 0.39 0.09 11 n/a n/a 10.0 Code IRC2015/TPI2014 Matrix-MS Weight: 184 lb FT = 20% 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle TOP CHORD 2x4 SP No.2 2x4 SP No.1 3-06-00 tall by 2-00-00 wide will fit between the bottom BOT CHORD 2x4 SP No.2 *Except* chord and any other members, with BCDL = 10.0psf. Bearings are assumed to be: Joint 2 SP No.1 5) 15-3,14-5,13-7,12-9:2x4 SP No.3 Refer to girder(s) for truss to truss connections. Left: 2x4 SP No.3 6) Provide mechanical connection (by others) of truss to Right 2x4 SP No.3 -- 1-6-0 7) bearing plate capable of withstanding 169 lb uplift at joint

- 2 and 156 lb uplift at joint 11. TOP CHORD Structural wood sheathing directly applied or This truss is designed in accordance with the 2015 8) 2-6-9 oc purlins International Residential Code sections R502.11.1 and BOT CHORD Rigid ceiling directly applied or 9-1-1 oc R802.10.2 and referenced standard ANSI/TPI 1. bracing. LOAD CASE(S) Standard
- REACTIONS (size) 2=0-3-8, 11= Mechanical Max Horiz 2=153 (LC 12) Max Uplift 2=-169 (LC 12), 11=-156 (LC 13) Max Grav 2=1379 (LC 1), 11=1348 (LC 1) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/13, 2-3=-2443/602, 3-5=-2323/637. 5-6=-1986/630, 6-7=-1968/626, 7-9=-2200/612, 9-11=-2304/577
- BOT CHORD 2-15=-475/2113, 12-15=-336/1826, 11-12=-445/1993 WEBS 6-14=-214/810, 6-13=-206/782, 3-15=-225/170, 5-15=-111/339, 5-14=-525/299, 7-13=-494/292, 7-12=-90/245, 9-12=-168/149

NOTES

- Unbalanced roof live loads have been considered for 1) this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent bucking of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Belhaven DEF	
Belhaven DEF	A02E	Common Supported Gable	1	1	Job Reference (optional)	161952853

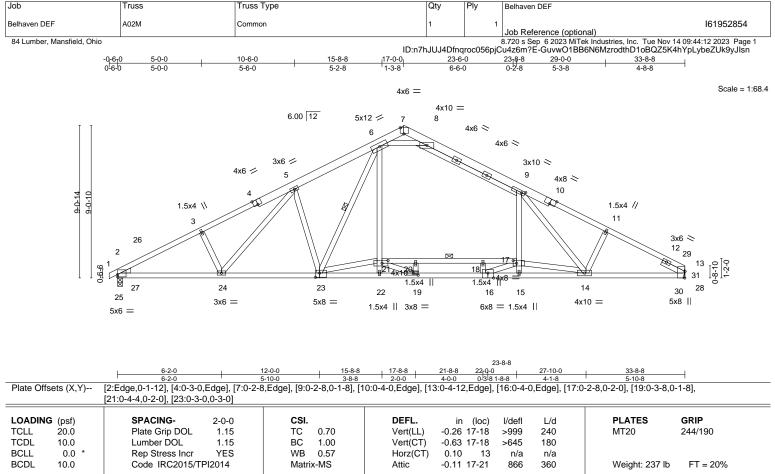
Run: 8.72 S Oct 5 2023 Print: 8.720 S Oct 5 2023 MiTek Industries. Inc. Fri Nov 10 10:51:38 ID:zUJThhHmADvdFHgcDPiVbTz6mBt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale - 1.62 3

Scale = 1:62.3												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-MS	0.07 0.06 0.09	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01	(loc 29	- n/a - n/a	L/d 999 999 n/a	PLATES MT20 Weight: 267 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 Structural wood she 6-0-0 oc purlins, ex	45-12,41-16,40-17,39 eathing directly applie	d or	$\begin{array}{c} 32 = 110 \ (l\\ 34 = 107 \ (l\\ 36 = 107 \ (l\\ 39 = 107 \ (l\\ 41 = 109 \ (l\\ 43 = 109 \ (l\\ 43 = 107 \ (l\\ 48 = 107 \ (l\\ 50 = 107 \ (l\ (l\ 10 \ (l\ 1$	LC 24), LC 24), LC 24), LC 24), LC 24), LC 24), LC 24), LC 23), LC 1), 4 LC 23), LC 23), LC 23),	29=91 (LC 22), 31=93 (LC 1), 33=106 (LC 1) 35=107 (LC 1) 37=106 (LC 1) 40=107 (LC 24) 42=167 (LC 1) 44=107 (LC 2) 47=106 (LC 1), 49=107 (LC 1) 51=105 (LC 1),),),), 3), 3), 3),),	ŕth	E S Inbalance	12-45 9-49= 5-52= 16-41 19-37 23-34 26-31 d roof li	=-80/55, 11-47=- -80/55, 7-50=-80 -83/57, 4-53=-65 =-82/29, 17-40=- =-80/55, 20-36=- =-80/55, 24-33=- =-71/43, 27-30=-	een considered for
	1 Row at midpt (size) 2=33-8-8 31=33-8- 37-33-8- 41=33-8- 41=33-8- 44=33-8- 44=33-8- 44=33-8- 51=32-(1)=32-8- (1)	15-42 5, 29=33-8-8, 30=33-8 8, 32=33-8-8, 33=33-8 8, 39=33-8-8, 40=33- 8, 42=33-8-8, 40=33- 8, 42=33-8-8, 47=33- 8, 42=33-8-8, 50=33- 8, 42=33-8-8, 50=33- 8, 55=33-8-8, 53=33- 8, 55=33-8-8, 51=55 (LC 12 C 13), 30=-92 (LC 13) LC 13), 32=-37 (LC 12 LC 13), 34=-33 (LC 12 LC 13), 34=-33 (LC 12 LC 13), 41=-11 (LC 12 LC 12), 47=-32 (LC 12 LC 12), 47=-32 (LC 12 LC 12), 49=-32 (LC 12 LC 12), 55=-24 (LC 13) 1, 55=-24 (LC 12) 1, 55=-24 (LC 13) 1, 55=-24 (LC 12) 1, 55=-24 (LC 13) 1, 55=-24 (LC 12) 1, 55=-24 (LC 13) 1, 55=-24	8-8, 8-8, 8-8, 8-8, 8-8, 8-8, 8-8, 8-8,		LC 23), npression 78, 3-4 10/105, 55/155 13=-88/ -15=-10 -17=-10 19=-77/ 21=-55/ 4=-34/5 7=-64/1 52=-25 52=-25 54=-25 54=-25 54=-25 54=-25 54=-25 54=-25 54=-25 54=-25 54=-25 54=-25 54=-25 54=-25 55=-25=-25 55=-25 55=-25 55=-25 55=-25 55=-25 55=-25 55=-2	55=133 (LC 2 on/Maximum =-130/79, 6-7=-71/122, , 10-11=-66/17 215, 08/271, 01/250, 183, 120, 6, 24-25=-35/3 4, 27-28=-109 105,	71, 71, 35, /32,	V II: au & gr 3) T or sr o o 4) A 5) G 6) G	Yasd=103r ; Exp B; E nd C-C Es MWFRS rip DOL=1 Truss desi nly. For s ee Standa r consult o Il plates a Sable requ Sable stud	nph; TC nclose (terior (for read 1.60 gned fo tuds ex ard Indu qualified re 1.5x ires col	CDL=6.0psf; BCC d; MWFRS (enve 2) zone;C-C for r ctions shown; Lu or wind loads in th cposed to wind (n istry Gable End I d building design	DL=6.0psf; h=30ft; Cat. slope) exterior zone members and forces mber DOL=1.60 plate he plane of the truss iormal to the face), Details as applicable, er as per ANSI/TPI 1. therwise indicated.
				innin .	un	TITLE					Novembe	r 14,2023

Continued on page 2

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITTER REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTeR% connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPH Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) with the Section of the prevent collapse contervent for the Sectional temporation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Job	Truss	Truss Type	Qty	Ply	Belhaven DEF		
Belhaven DEF	A02E	Common Supported Gable	1	1	Job Reference (optional)	161952853	

- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 8) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SP No.2 . 9)
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 24 lb uplift at joint 2, 18 lb uplift at joint 43, 38 lb uplift at joint 44, 32 lb uplift at joint 45, 32 lb uplift at joint 47, 33 lb uplift at joint 48, 32 lb uplift at joint 49, 33 lb uplift at joint 50, 31 lb uplift at joint 51, 37 lb uplift at joint 52, 9 lb uplift at joint 53, 90 lb uplift at joint 54, 11 lb uplift at joint 41, 40 lb uplift at joint 40, 32 lb uplift at joint 39, 32 lb uplift at joint 37, 33 lb uplift at joint 36, 32 lb uplift at joint 35, 33 lb uplift at joint 34, 32 lb uplift at joint 33, 37 lb uplift at joint 32, 12 lb uplift at joint 31, 92 lb uplift at joint 30 and 24 lb uplift at joint 2.
- 11) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Run: 8 72 S. Oct. 5 2023 Print: 8 720 S. Oct. 5 2023 MiTek Industries. Inc. Fri Nov 10 10:51:38 ID:zUJThhHmADvdFHgcDPiVbTz6mBt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

LUMBER-		BRACING-		
TOP CHORD	2x6 SP DSS *Except*	TOP CHORD	Structural wood sheath	ing directly applied or 2-8-12 oc purlins.
	8-9,1-4: 2x4 SP No.2, 10-13: 2x4 SP DSS	BOT CHORD	Rigid ceiling directly ap	plied or 10-0-0 oc bracing, Except:
BOT CHORD	2x4 SP No.2 *Except*		2-2-0 oc bracing: 24-27	
	13-16,16-23: 2x4 SP DSS		5-1-0 oc bracing: 17-21	
WEBS	2x4 SP No.2	WEBS	1 Row at midpt	6-23
WEDGE				
Left: 2x4 SP N	No.3			
SLIDER	Right 2x4 SP No.2 1-6-3			
REACTIONS	. (lb/size) 2=1567/0-3-8 (min. 0-2-7), 13=1605/Mechani	cal		
	Max Ham 0, 450/10,40			

Max Horz 2=153(LC 12)

- Max Uplift 2=-36(LC 12)
- FORCES. (lb) Max. Comp./Max. Ten. All forces 250 (lb) or less except when shown.
- TOP CHORD
 2-26=-746/7, 3-26=-2826/327, 3-4=-2689/346, 4-5=-2574/363, 5-6=-2394/333, 6-7=-59/820, 7-8=-72/492, 8-9=-2147/240, 9-10=-2597/258, 10-11=-2704/244, 11-12=-2794/232, 12-29=-843/17, 13-29=-1069/0

 BOT CHORD
 25-27=-182/541, 24-27=-235/2447, 23-24=-89/2204, 22-23=-36/625, 19-22=-45/616,

WEBS 6-23=-263/454, 5-24=-114/301, 5-23=-538/261, 9-14=-246/700, 11-14=-270/178, 6-21=-0/1087, 15-17=0/276, 9-17=-359/326, 19-20=-479/0, 6-8=-2708/347, 16-17=-1080/437, 14-17=-1416/429, 19-21=0/2303, 21-23=-23/1563, 2-25=-552/25,

10-17=-1000/407, 14-17=-1410/423, 14-21=0/2303, 21-23=-23/1563, 2-25=-552/25, 26-27=-311/189, 25-26=-837/91, 2-27=-8/413, 13-28=-949/5, 30-31=0/307, 29-31=0/470, 13-31=0/681, 28-31=-780/106, 12-31=-2059/206

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

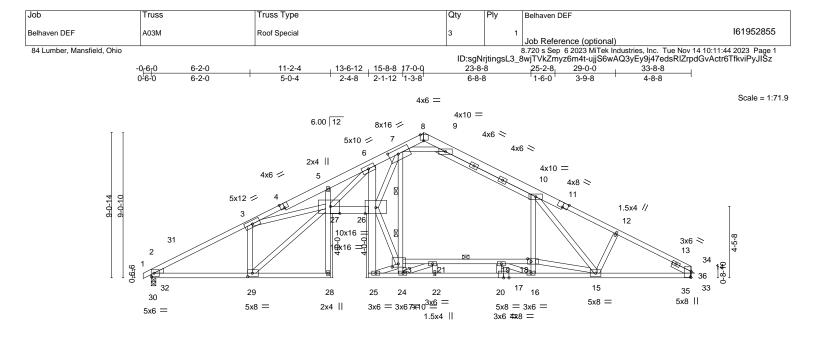
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Ceiling dead load (5.0 psf) on member(s). 8-9, 6-8; Wall dead load (5.0 psf) on member(s).6-21, 9-17
- 6) Bottom chord live load (20.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 20-21, 18-20, 17-18
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 36 lb uplift at joint 2.
- 9) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

CONTATELCOSPAGE SHOWN IS DESIGNED AS UNINHABITABLE.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbaccomponents.com)

818 Soundside Road

Edenton, NC 27932


Job	Truss	Truss Type	Qty	Ply	Belhaven DEF
Belhaven DEF	A02M	Common	1	1	Job Reference (optional)
84 Lumber, Mansfield, Ohio					8.720 s Sep 6 2023 MiTek Industries, Inc. Tue Nov 14 09:44:12 2023 Page 2

8.720 s Sep 6 2023 MiTek Industries, Inc. Tue Nov 14 09:44:12 2023 Page 2 ID:n7hJUJ4Dfnqroc056pjCu4z6m?E-GuvwO1BB6N6MzrodthD1oBQZ5K4hYpLybeZUk9yJIsn

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

 6-2-0
 11-2-4
 13-6-12
 15-8-8
 17-8-8
 20-2-3
 21-8-8
 23-8-8
 27-10-0
 33-8-8

 Plate Offsets (X,Y)- [4:0-3-0,Edge], [7:0-7-1,0-3-8], [8:0-2-8,Edge], [11:0-4-0,Edge], [14:0-4-8,0-0-3], [18:0-2-8,0-2-0], [23:0-4-8,0-2-8], [26:0-8-0,0-4-8], [27:0-7-0,0-5-4],

	[29:0-3-8,0-2-8]		, 1, 1		-,,,	- ··· - 1/L ··· - 1/		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.93 BC 0.94 WB 0.92 Matrix-MS	Vert(LL) -0.43 Vert(CT) -1.05 Horz(CT) 0.65	5 19 >386	L/d 240 180 n/a 360	PLATES GRIP MT20 244/190 Weight: 262 lb FT = 20%		
BOT CHORD 2x4 SF 26-27: 14-17, WEBS 2x4 SF 27-29, WEDGE Left: 2x4 SP No.3	x4 SP No.2, 1-4: 2x4 SP DSS, 11-14: 2	: 2x4 SP No.1	BRACING- TOP CHORD BOT CHORD WEBS	Rigid ceiling d	irectly applied (ng: 25-26,24-29 ng: 20-22. ng: 18-23	rectly applied or 1-7-8 oc purlins. or 10-0-0 oc bracing, Except: 5		
REACTIONS. (Ib/size Max H	 a) 2=1567/0-3-8 (min. 0-2-7), 14=160 b) orz 2=153(LC 12) b) plift 2=-36(LC 12) 	4/Mechanical						
TOP CHORD 2-31= 6-7=- 11-12 BOT CHORD 30-33 24-21 15-10	Comp./Max. Ten All forces 250 (lb) or =-1210/98, 3-31=-2803/308, 3-4=-8034/3 4821/237, 7-8=-56/727, 8-9=-149/459, 9 2=-2685/245, 12-13=-2786/233, 13-34=- 2=-104/888, 29-32=-200/2433, 26-27=0/ 5=-747/73, 22-24=0/2159, 20-22=0/2159 5=-267/3050, 15-35=-145/2417, 33-35=- =-1429/483	394, 4-5=-7918/416, 5-6=- 9-10=-2191/235, 10-11=-2 863/2, 14-34=-1183/0 4648, 25-26=-287/27, 6-26 9, 17-20=0/2159, 16-17=0/	579/259, 6=-1540/183, 2159,					
WEBS 3-29= 23-24 21-22 16-19 30-31	9=-1429/463 1904/224, 27-29=-260/3072, 3-27=0/4 4=0/1089, 7-23=-2803/11, 16-18=-290/2 2=-2/317, 21-24=-3058/0, 7-9=-2576/33 9=-458/1332, 23-26=0/4106, 7-26=-2/55 1=-985/100, 2-32=-103/1021, 14-33=-10 3=0/776, 33-36=-731/106, 13-36=-2087/	01, 10-18=-343/315, 12-15 9, 15-18=-1304/431, 23-25 30, 2-30=-915/131, 31-32= 118/7, 35-36=0/352, 34-36=	5=-260/176, =-60/929, =-289/157,		Win	SEAL		
 2) Wind: ASCE 7-10; V gable end zone and DOL=1.60 3) This truss has been * This truss has bee will fit between the b 5) Ceiling dead load (5 6) Bottom chord live lo 	 Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip 							
WARNING - Verify d Design valid for use or a truss system. Before building design. Braci	Fruss to truss connections. esign parameters and READ NOTES ON THIS AND hy with MITEK® connectors. This design is based of b use, the building designer must verify the applicat ng indicated is to prevent buckling of individual trus stability and to prevent collapse with possible perso	only upon parameters shown, and bility of design parameters and pro ss web and/or chord members onl	is for an individual building co operly incorporate this design i y. Additional temporary and p	omponent, not into the overall permanent bracing		TRENGT		

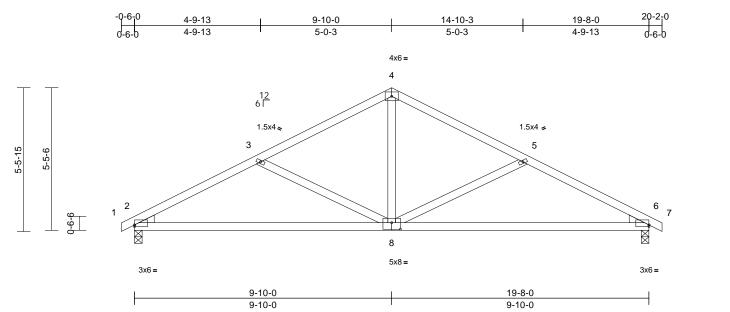
is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria and DSR-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Belhaven DEF
Belhaven DEF	A03M	Roof Special	3	1	Job Reference (optional)
84 Lumber, Mansfield, Ohio			ID:sgN		8720 S Sep 6 2023 MiTrak Industries, Inc. Tue Nov 14 10:11:44 2023 Page 2 BwjTVkZmyz6m4t-ujjS6wAQ3yEy9j47edsRIZrpdGvActr6TfkviPyJISz

NOTES-

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 36 lb uplift at joint 2.

9) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 10) ATTIC SPACE SHOWN IS DESIGNED AS UNINHABITABLE.


LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job		Truss	Truss Type	Qty	Ply	Belhaven DEF	
Belhave	n DEF	B01	Common	1	1	Job Reference (optional)	161952856

Run: 8.72 S Oct 5 2023 Print: 8.720 S Oct 5 2023 MiTek Industries, Inc. Fri Nov 10 10:51:40 ID:z3UdWtvFkozd_2kHC9kNcr26mIp-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

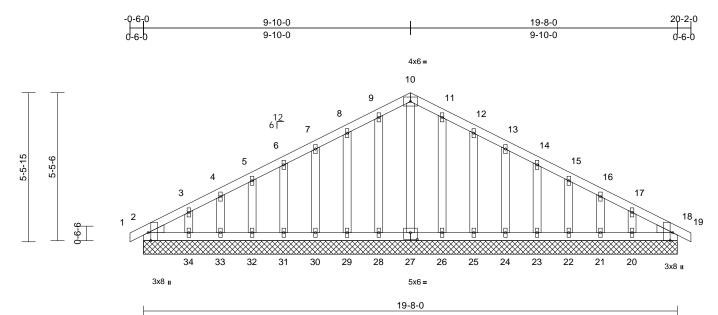
Scale = 1:44

Plate Offsets (X, Y): [2:Edge,0-0-12], [6:Edge,0-0-12], [8:0-4-0,0-3-0]

	(, .). [=.=.ge,ee=],[===g=,= =],[
Loading TCLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.15	CSI TC	0.31	DEFL Vert(LL)	in -0.14	(loc) 8-14	l/defl >999	L/d 240	PLATES MT20	GRIP 244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.88	Vert(CT)	-0.29	8-14	>807	180	-	
BCLL	0.0*	Rep Stress Incr	YES	WB	0.23	Horz(CT)	0.03	6	n/a	n/a		
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-MS							Weight: 89 lb	FT = 20%
LUMBER			6) Provide	mechanical connecti	on (by oth	ers) of truss t	to					
TOP CHORD	2x4 SP No.2			plate capable of with	standing 1	02 lb uplift at	t joint					
BOT CHORD				2 lb uplift at joint 6.								
WEBS	2x4 SP No.3			s is designed in acc								
WEDGE	Left: 2x4 SP No.3			onal Residential Cod 2 and referenced st			and					
	Right: 2x4 SP No.3				anuaru An	NOI/TELT.						
BRACING	•			(S) Standard								
TOP CHORD		athing directly applie	ed or									
BOT CHORD	5-0-1 oc purlins. Rigid ceiling directly	applied or 10-0-0 o										
BOT CHOILD	bracing.											
REACTIONS	0	6=0-3-8										
	Max Horiz 2=-86 (LC											
	Max Uplift 2=-102 (L		13)									
	Max Grav 2=817 (LC		- /									
FORCES	(lb) - Maximum Com	pression/Maximum										
	Tension											
TOP CHORD												
	4-5=-963/259, 5-6=-	1294/363, 6-7=0/13	5									
BOT CHORD		07/040 5 0 007/0	40									
WEBS	4-8=-65/551, 3-8=-3	67/218, 5-8=-367/2	18									
NOTES											TH CA	11111
 Unbalance this design 	ed roof live loads have	been considered to	or							3	"TH CA	Rollin
	n. CE 7-10; Vult=130mph	(3-second quet)								-	R	in the
	Bmph; TCDL=6.0psf; B		· Cat							55	FEE	ON STATE
	Enclosed; MWFRS (er								4	D		Bille
and C-C E	Exterior (2) zone;C-C fo	or members and for	ces						-	2 12	.4	1.12
	S for reactions shown;	Lumber DOL=1.60 p	plate						=		SEA	
grip DOL=									=	:		• –
	has been designed for		de						1		0363	22 : :
	load nonconcurrent wi is has been designed f									8		1 3
	tom chord in all areas		opoi							1	·	Airs
	all by 2-00-00 wide will		om							25	A CA	EFRAN
	any other members.		-							11	10	ILBEITT
	are assumed to be	SP No 2									A C	ILP IN

5) All bearings are assumed to be SP No.2 .

November 14,2023


Page: 1

A MiTek Affiliate B18 Soundside Road Edenton, NC 27932

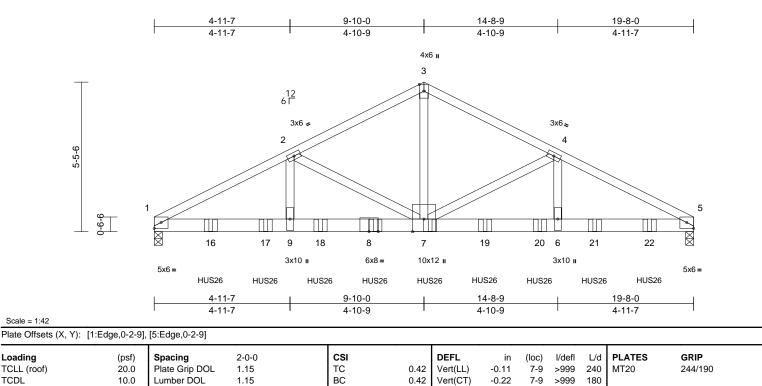
Job	Truss	Truss Type	Qty	Ply	Belhaven DEF	
Belhaven DEF	B01E	Common Supported Gable	1	1	Job Reference (optional)	161952857

Run: 8.72 E Oct 5 2023 Print: 8.720 E Oct 5 2023 MiTek Industries, Inc. Tue Nov 14 10:13:34 ID:NNeKZ5kT1VCclvfbODU52uz6mJ1-gtM1CXVQ9l5LMdVG5kqEDmPqlcgCNrkImmOja1yJIRF

Scale = 1:42.4

Plate Offsets (X, Y): [2:0-3-8,Edge], [18:0-3-8,Edge], [27:0-3-0,0-3-0]

· · · · · · · · · · · · · · · · · · ·									
Loading (psf)	Spacing	2-0-0	csi	DEFL	n (loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof) 20.0	Plate Grip DOL	1.15	TC 0.04	1 Vert(LL) n/	a -	n/a	999	MT20	244/190
TCDL 10.0	Lumber DOL	1.15	BC 0.02	2 Vert(CT) n/	a -	n/a	999		
BCLL 0.0*	Rep Stress Incr	YES	WB 0.04	· · ·		n/a	n/a		
BCDL 10.0	Code	IRC2015/TPI2014	Matrix-S		• ••		, ci	Weight: 126 lb	FT - 20%
10.0	Code	11(02013/1112014	Matrix 0					Weight. 120 lb	11 = 2070
6-0-0 oc purlins. BOT CHORD Rigid ceiling directly bracing. REACTIONS All bearings 19-8-0. (lb) - Max Horiz 2=86 (LC Max Uplift All uplift 1	00 (lb) or less at joint 22, 23, 24, 25, 26, 28	 chord live lo. 8) * This truss I on the bottoo 3-06-00 tall chord and at 9) Provide met bearing plate (s) 2, 28, 29 20. 10) Beveled plat surface with 11) This truss is International (s) 8, 8802 10, 2 a 	as been designed for a 11 ad nonconcurrent with ar has been designed for a 1 no chord in all areas wher by 2-00-00 wide will fit be y other members. hanical connection (by o e capable of withstanding 30, 31, 32, 33, 34, 26, 2 e or shim required to pro truss chord at joint(s) 18 designed in accordance Residential Code section of referenced standard A Standard	y other live loads. live load of 20.0psf e a rectangle tween the bottom thers) of truss to 100 lb uplift at joint 5, 24, 23, 22, 21, vide full bearing with the 2015 ns R502.11.1 and					
27, 28, 29	20, 21, 22, 23, 24, 25 9, 30, 31, 32, 33, 34 ax. Ten All forces 2	, 26,							
NOTES								MILLI	Uni
 Unbalanced roof live loads have this design. Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; B II; Exp B; Enclosed; MWFRS (er and C-C Exterior (2) zone;C-C fd & MWFRS for reactions shown; grip DOL=1.60 Truss designed for wind loads i only. For studs exposed to wind see Standard Industry Gable En or consult qualified building desi 4) All plates are 1.5x4 MT20 unless Gable requires continuous botto Gable studs spaced at 1-2-0 oc. 	(3-second gust) CDL=6.0psf; h=30ft; (ivelope) exterior zone or members and force Lumber DOL=1.60 pli h the plane of the trus (normal to the face), d Details as applicabl gner as per ANSI/TPI s otherwise indicated.	e ss ate s e, 1.					A STATE OF	SEA 0363	EER.K.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

binst.org) 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Belhaven DEF	
Belhaven DEF	B01G	Common Girder	1	3	Job Reference (optional)	161952858

Run: 8 72 S. Oct. 5 2023 Print: 8 720 S. Oct. 5 2023 MiTek Industries, Inc. Fri Nov 10 10:51:40 ID:RCtq1JdZF?_4Clt4Jxw4J9z6lsn-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

BCLL		0.0*	Rep Stress Incr	NO		
BCDL		10.0	Code	IRC2	015/	TPI2014
LUMBER TOP CHORD BOT CHORD WEBS BRACING	2x4 SP N 2x6 SP D 2x4 SP N	SS			4)	Wind: AS Vasd=10 II; Exp B; and C-C & MWFR
TOP CHORD	6-0-0 oc p	ourlins.	athing directly applied	1 or	5)	grip DOL This trust
BOT CHORD	Rigid celli bracing.	ng directly	applied or 10-0-0 oc		6)	* This tru on the bo
REACTIONS		1=-837 (L		,	7)	3-06-00 t chord and All bearin
FORCES		`	pression/Maximum		8)	Provide r bearing p 1 and 86
TOP CHORD		,	3=-8299/1217, =-11829/1662		9)	This truss Internatio
BOT CHORD	6-7=-142	1/10525, 5-	9=-1431/10607, 6=-1421/10525		10)	R802.10. Use Simp
WEBS		7/583, 4-6=	-334/3108, -322/3007,			Truss) or 2-0-12 fro to back fa
NOTES					11)	Fill all na
(0.148"x3 Top chord oc. Bottom ch	 nails as fo ls connected 	llows: d as follows cted as follo	her with 10d :: 2x4 - 1 row at 0-9-0 ows: 2x6 - 2 rows		LO / 1)	AD CASE Dead + Plate In Uniform Vert:

TCDL

staggered at 0-7-0 oc. Web connected as follows: 2x4 - 1 row at 0-9-0 oc,

- Except member 3-7 2x4 1 row at 0-8-0 oc. 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- Unbalanced roof live loads have been considered for 3) this design.

4) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Horz(CT)

0.05

5

n/a n/a

Weight: 324 lb

FT = 20%

0.97

- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6) * This truss has been designed for a live load of 20.0psf
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SP DSS . 7)

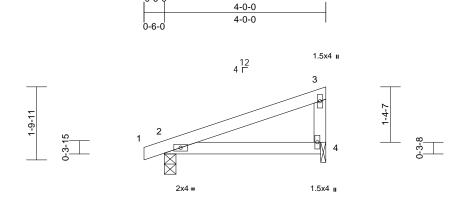
WB

Matrix-MS

- Provide mechanical connection (by others) of truss to 8) bearing plate capable of withstanding 837 lb uplift at joint 1 and 864 lb uplift at joint 5.
- This truss is designed in accordance with the 2015 9) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 10) Use Simpson Strong-Tie HUS26 (14-10d Girder, 4-10d Truss) or equivalent spaced at 2-0-0 oc max. starting at 2-0-12 from the left end to 18-0-12 to connect truss(es) to back face of bottom chord.
- 11) Fill all nail holes where hanger is in contact with lumber.
- LOAD CASE(S) Standard
- Dead + Roof Live (balanced): Lumber Increase=1.15, 1) Plate Increase=1.15 Uniform Loads (lb/ft) Vert: 1-3=-60, 3-5=-60, 10-13=-20 Concentrated Loads (lb) Vert: 8=-1328 (B), 7=-1328 (B), 16=-1328 (B),
 - 17=-1328 (B), 18=-1328 (B), 19=-1328 (B), 20=-1328 (B), 21=-1328 (B), 22=-1328 (B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent bucking of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road


Edenton, NC 27932

Job	Truss	Truss Type	Qty Ply Belhaven DEF		Belhaven DEF	
Belhaven DEF	M1	Monopitch	6	1	Job Reference (optional)	161952859

-0-6-0

84 Components (Dunn, NC), Dunn, NC - 28334,

Run: 8.72 S Oct 5 2023 Print: 8.720 S Oct 5 2023 MiTek Industries, Inc. Fri Nov 10 10:51:41 ID:jADp4I9ItFhC4m8PDCdNEGz6mL4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

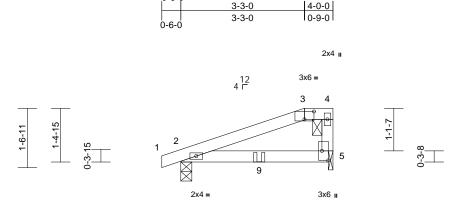
Scale = 1:28.5

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.19	Vert(LL)	0.01	4-7	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.18	Vert(CT)	-0.02	4-7	>999	180		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	2	n/a	n/a		
BCDL	10.0	Code	IRC2015/TPI201	4 Matrix-MP							Weight: 15 lb	FT = 20%
LUMBER			7) One H2	2.5A Simpson Strong-T	Tie conne	ctors						
TOP CHORD	2x4 SP No.2		recomn	nended to connect trus	s to bear	ing walls due	e to					
BOT CHORD	2x4 SP No.2			at jt(s) 2 and 4. This of		n is for uplift	only					
WEBS	2x4 SP No.3			es not consider lateral								
BRACING				ss is designed in acco								
TOP CHORD	Structural wood she 4-0-0 oc purlins, ex		20.01	ional Residential Code 0.2 and referenced sta			and					
BOT CHORD			C LOAD CAS	E(S) Standard								
REACTIONS	()											
	Max Horiz 2=58 (LC											
	Max Uplift 2=-41 (LC											
	Max Grav 2=186 (LC											
FORCES	(lb) - Maximum Com	pression/Maximum										
	Tension	2 4 00/70										
TOP CHORD BOT CHORD		, 3-4=-99/76										
	2-4=-43/12											
NOTES		(2 accord suct)										
	CE 7-10; Vult=130mph 3mph; TCDL=6.0psf; B		Cat									
	Enclosed; MWFRS (er											
	Exterior (2) zone;C-C for											
	S for reactions shown;											1122
grip DOL=		·										in the second se
	has been designed fo										IN THUA	ROUL
	load nonconcurrent w	,								N	ORIFESE	12. In. 1
	ss has been designed f)psf						/	22	OFE	Prisin
	ttom chord in all areas all by 2-00-00 wide will		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						2	V	:0	1201
	any other members.	in between the bolic	זוו						2	1 1		
	are assumed to be: Jo	int 2 SP No 2 Joint	4						1111111	:	SEA	L : =
SP No.3 .			-						=	:	0363	• –
5) Bearing a	t joint(s) 4 considers pa	arallel to grain value							-		0303	
using ANS	SI/TPI 1 angle to grain	formula. Building							6	-	N	1 8
designer s	should verify capacity of	of bearing surface.								-	·	airs

Provide mechanical connection (by others) of truss to 6) bearing plate at joint(s) 4.

C A. GILB A. GILLIN November 14,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Job	Truss	Truss Type	Qty	Ply	Belhaven DEF	
Belhaven DEF	M1G	Half Hip Girder	1	1	Job Reference (optional)	161952860

-0-6-0

84 Components (Dunn, NC), Dunn, NC - 28334,

Run: 8.72 S Oct 5 2023 Print: 8.720 S Oct 5 2023 MiTek Industries. Inc. Fri Nov 10 10:51:41 ID:zXQmNFVwkLgSuq7ID07PEgz6mJL-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

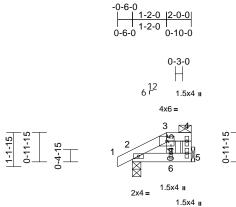
Page: 1

Scale = 1:30.3

Plate Offsets (X, Y): [3:0-3-0,0-2-8], [5:Edge,0-2-0]

	(X, 1): [5:5 5 6;6 2 6];	[0.Edge,0 2 0]				-							
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.28	Vert(LL)	0.01	5-8	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.20	Vert(CT)	-0.01	5-8	>999	180	-	
BCLL	0.0*	Rep Stress Incr	NO		WB	0.00	Horz(CT)	0.00	5	n/a	n/a		
BCDL	10.0	Code		5/TPI2014	Matrix-MR							Weight: 14 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 Structural wood she 4-0-0 oc purlins, ex 2-0-0 oc purlins: 3-4 Rigid ceiling directly bracing.	cept end verticals, a applied or 10-0-0 or 5=0-1-8 8) : 8), 5=-45 (LC 8)	nd C 10	using ANSI/ designer sho Provide mec bearing plate One H2.5A S recommendu UPLIFT at jt and does no D) This truss is International R802.10.2 a	bint(s) 5 considers TPI 1 angle to gra buld verify capacit chanical connectio e at joint(s) 5. Simpson Strong-T ed to connect trus (s) 2 and 5. This c to consider lateral 1 designed in accoil I Residential Code and referenced sta urlin representation ation of the purlin	in formul y of bear n (by oth ie conne s to bear connectio forces. rdance w e sections ndard Al n does n	a. Building ing surface. ers) of truss t ctors ing walls due n is for uplift (ith the 2015 \$ R502.11.1 a VSI/TPI 1. ot depict the s	o to only nd					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	12	2) "NAILED" in	dicates 3-10d (0.1 5") toe-nails per N								
TOP CHORD	1-2=0/9, 2-3=-142/4	6, 3-4=-124/63,	13	3) In the LOAD	CASE(S) section	, loads a	pplied to the f	ace					
BOT CHORD	4-5=-91/75 2-5=-63/124				are noted as front	(F) or ba	ск (В).						
	2-3=-03/124			DAD CASE(S)									
NOTES			1)		of Live (balanced)	: Lumbe	Increase=1.	15,					
	ed roof live loads have	been considered fo	r	Plate Incre									
Vasd=103 II; Exp B; and C-C E & MWFRS grip DOL=	CE 7-10; Vult=130mph Bmph; TCDL=6.0psf; B Enclosed; MWFRS (er Exterior (2) zone;C-C fc S for reactions shown; =1.60	CDL=6.0psf; h=30ft; ivelope) exterior zor or members and forc Lumber DOL=1.60 p	ie es blate		8=-60, 3-4=-60, 5-6 ed Loads (lb)	6=-20				4	A.L.	ORTH CA	ROLLING
 4) This truss chord live 5) * This trus on the bot 3-06-00 tag 	dequate drainage to pr has been designed for load nonconcurrent wi s has been designed f tom chord in all areas all by 2-00-00 wide will	r a 10.0 psf bottom th any other live loa or a live load of 20.0 where a rectangle	ds.)psf							THUNKS.		SEA 0363	22 E

- grip DOL=1.60 Provide adequate drainage to prevent water ponding. 3)
- This truss has been designed for a 10.0 psf bottom 4) chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Bearings are assumed to be: Joint 2 SP No.2 , Joint 5 SP No.3 . 6)


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

G 11111111 November 14,2023

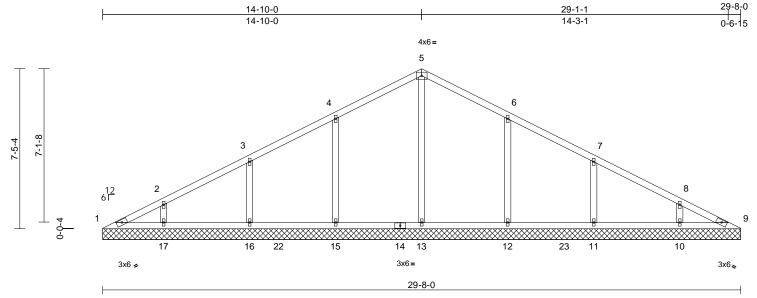
Job	Truss	Truss Type	Qty	Ply	Belhaven DEF	
Belhaven DEF	M2	Half Hip	1	1	Job Reference (optional)	161952861

Run: 8.72 S Oct 5 2023 Print: 8.720 S Oct 5 2023 MiTek Industries. Inc. Fri Nov 10 10:51:41 ID:kFKWLY_yt8GYEDLUCUrK_cz6mK0-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:39.2

											i	
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.02	Vert(LL)	0.00	6-9	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.05	Vert(CT)	0.00	6-9	>999	180		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.01	Horz(CT)	0.00	2	n/a	n/a		
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-MP							Weight: 8 lb	FT = 20%
			8) One H2	A Simpson Strong-T		otore						
LUMBER TOP CHORD	2x4 SP No.2			ended to connect true			to					
BOT CHORD				at it(s) 5 and 2. This								
WEBS	2x4 SP No.3			not consider lateral			only					
BRACING				s is designed in acco		ith the 2015						
TOP CHORD	Structural wood she	athing directly applie	Intornatio	nal Residential Code			and					
	2-0-0 oc purlins, ex			2 and referenced sta	andard Al	NSI/TPI 1.						
	2-0-0 oc purlins: 3-4		10) Graphica	I purlin representatio			size					
BOT CHORD				entation of the purlin	along the	e top and/or						
	bracing.		bottom c									
REACTIONS	(size) 2=0-3-8, \$	5= Mechanical	LOAD CASE	(S) Standard								
	Max Horiz 2=31 (LC	12)										
	Max Uplift 2=-18 (LC	C 12), 5=-11 (LC 9)										
	Max Grav 2=108 (L0	C 1), 5=70 (LC 1)										
FORCES	(lb) - Maximum Corr	pression/Maximum										
	Tension											
TOP CHORD			7									
BOT CHORD	,											
WEBS	3-6=-54/44											
NOTES												
	ed roof live loads have	been considered for	r									
this desig		(*)										
,	CE 7-10; Vult=130mph	· · · · ·	0-1								minin	11111
	Bmph; TCDL=6.0psf; B Enclosed; MWFRS (er										IN'TH CA	ROUL
	Exterior (2) zone;C-C fo									-	a	
	S for reactions shown;									5.	O'	SIG. N'S
grip DOL=			hate						2	20	200	1 horas
	dequate drainage to pr	event water ponding	1.								:2	K. C.
	has been designed fo										054	n <u>1</u> E
	load nonconcurrent wi		ds.						=		SEA 0363	• –
	ss has been designed f)psf						=	:	0363	322 : =
	ttom chord in all areas								-			
	all by 2-00-00 wide will	fit between the botto	om							-		1. 5
	any other members.									21	N. ENG	-ERIX S
	are assumed to be: Joi									1	S, GIN	EF. AN
Refer to g	irder(s) for truss to tru	iss connections.								1	CA C	BEIN
											11, A. C	212111
												TITE
											م مأمور م رما ۸	- 44 0000

- on the bottom chord in all areas where a rectang 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 6) Bearings are assumed to be: Joint 2 SP No.2 .
- 7) Refer to girder(s) for truss to truss connections.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

November 14,2023

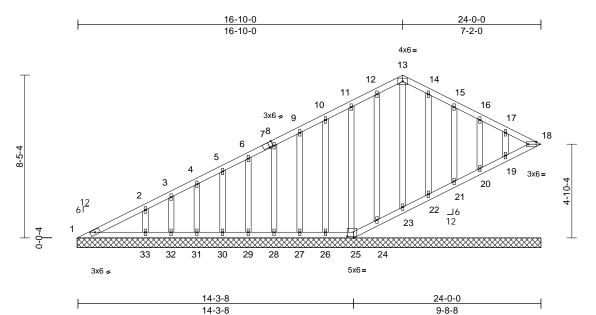
Job	Truss	Truss Type	Qty	Ply	Belhaven DEF	
Belhaven DEF	V1	Valley	1	1	Job Reference (optional)	161952862

Run: 8.72 S Oct 5 2023 Print: 8.720 S Oct 5 2023 MiTek Industries, Inc. Fri Nov 10 10:51:41 ID:mi_LOMJONkt7h0oy6VNyOVz6mMA-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

) = 1	:53.6
	e = 1

	()								(1)					
Loading	(psf)	Spacing	2-0-0		CSI	0.40	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.19	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15		BC	0.16	Vert(TL)	n/a	-	n/a	999			
BCLL	0.0*	Rep Stress Incr	YES		WB	0.19	Horiz(TL)	0.01	9	n/a	n/a			
BCDL	10.0	Code	IRC20	15/TPI2014	Matrix-MS							Weight: 127 lb	FT = 20%	
LUMBER			2		7-10; Vult=130mp									
TOP CHORD	2x4 SP No.2				oh; TCDL=6.0psf;									
BOT CHORD	2x4 SP No.2				closed; MWFRS (
OTHERS	2x4 SP No.3 *Exce	ot* 13-5:2x4 SP No.2			erior (2) zone;C-C									
BRACING					or reactions shown	n; Lumbe	er DOL=1.60 p	olate						
TOP CHORD	Structural wood she 6-0-0 oc purlins.	eathing directly applied	dor 3	grip DOL=1.0) Truss design	50 ned for wind loads	in the p	lane of the tru	ISS						
BOT CHORD		/ applied or 6-0-0 oc		see Standard	ids exposed to wir d Industry Gable E	nd Deta	ils as applical	ole,						
REACTIONS	0	. 9=29-8-0. 10=29-8-0)		alified building de									
	(0, 12=29-8-0, 13=29-8	8-0 ⁴	/ I	1.5x4 MT20 unle			1.						
		0, 16=29-8-0, 17=29-8	8-0 5		es continuous bott		d bearing.							
	Max Horiz 1=-121 (L		6		spaced at 4-0-0 o									
	Max Uplift 1=-15 (L	C 13), 10=-77 (LC 13)	, 7		s been designed f			-1 -						
	11=-99 (I	_C 13), 12=-107 (LC 1	3),		ad nonconcurrent									
	15=-107	(LC 12), 16=-98 (LC 1	2), 8	,	nas been designed n chord in all area			psi						
	17=-79 (l	_C 12)			by 2-00-00 wide wi									
	Max Grav 1=91 (LC	21), 9=83 (LC 1), 10=	=304		ly other members,									
		1=321 (LC 1), 12=416			are assumed to be									
		399 (LC 22), 15=416 (LC 1		hanical connection			0						
	25), 16=3	321 (LC 1), 17=304 (L	C1) '		capable of withst									
FORCES		npression/Maximum			ft at joint 15, 98 lb									
	Tension				17, 107 lb uplift at									
TOP CHORD		05/95, 3-4=-69/133,			77 lb uplift at joint							minin	Ullin.	
		38/205, 6-7=-61/106,	1		designed in accor		ith the 2015					W'TH CA	Roll	
	7-8=-65/55, 8-9=-11				Residential Code			nd			1	A	ali'r	
BOT CHORD					nd referenced star						13.	O .: ESS	DR. V.	
	15-16=-33/106, 13-		L	OAD CASE(S)	Standard						à	CP)	Mine.	7
	12-13=-33/106, 11-	,	-							-		:0	K	-
	10-11=-33/106, 9-1									-				1
WEBS	,	-259/173, 3-16=-241/1	169,									SEA	L :	=
	2-17=-220/140, 6-1											0363	22	Ξ
	7-11=-241/169, 8-1	0=-220/140										0303	~~ :	Ξ
NOTES											2	1		WITH HILL
 Unbalance 	ed roof live loads have	been considered for									-	·	air S	1

 Unbalanced roof live loads have been considered for this design.


November 14,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	Belhaven DEF	
Belhaven DEF	V1E	Roof Special	1	1	Job Reference (optional)	161952863

Run: 8.72 S Oct 5 2023 Print: 8.720 S Oct 5 2023 MiTek Industries, Inc. Fri Nov 10 10:51:42 ID:bPPTn1oUy1wSU9seSv5L0xz6mLY-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:59.7		

Plate Offsets (X, Y): [7:0-2-4,Edge], [18:0-4-13,Edge], [25:0-4-0,0-1-0]

·				-								1	
Loading	(pst) Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.	Plate Grip DOL	1.15		тс	0.12	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.) Lumber DOL	1.15		BC	0.13	Vert(TL)	n/a	-	n/a	999		
BCLL	0.)* Rep Stress Incr	YES		WB	0.08	Horiz(TL)	0.00	18	n/a	n/a		
BCDL	10.) Code	IRC2015	5/TPI2014	Matrix-MS							Weight: 168 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.3 *Ex SP No.2 Structural wood 10-0-0 oc purling	cept* 23-13,24-12,25 sheathing directly app ctly applied or 6-0-0 c	11:2x4 lied or BC)T CHORD	1-2=-216/103, 2-3= 4-5=-115/53, 5-6=- 8-9=-29/61, 9-10=- 11-12=-26/108, 12- 13-14=-36/135, 14- 15-16=-14/74, 16-1 1-33=-82/136, 32-3 30-31=-29/35, 29-3 27-28=-29/35, 26-2 24-25=-39/44, 23-2	86/54, 6 8/67, 10 13=-36 15=-26 7=-7/58 33=-29/3 0=-29/3 27=-29/3 24=-40/4	5-8=-57/55, -11=-15/78, /135, /108, 3, 17-18=-40/57 35, 31-32=-29/3 35, 28-29=-29/3 35, 25-26=-30/3 14, 22-23=-40/4	7 35, 35, 35, 35, 13,	10) Pro bea 18, upli 28, upli 33, upli 11) Bev	vide me aring pla 26 lb up ift at join 33 lb up ift at join 25 lb up ift at join veled pla	chanic te capa blift at jo t 26, 33 blift at jo t 31, 19 blift at jo t 20 an ate or s	able of withstandi oint 24, 30 lb upli 3 lb uplift at joint 3 oint 29, 32 lb upli 9 lb uplift at joint oint 22, 36 lb upli dd 35 lb uplift at jo him required to p	others) of truss to ng 13 lb uplift at joint ft at joint 25, 29 lb 27, 32 lb uplift at joint ft at joint 30, 35 lb 32, 65 lb uplift at joint ft at joint 21, 31 lb bint 19. rovide full bearing
REACTIONS	20=24 23=24 26=24 29=24	D-8, 18=24-0-8, 19=24 -0-8, 21=24-0-8, 22=2 -0-8, 24=24-0-8, 25=2 -0-8, 27=24-0-8, 28=2 -0-8, 30=24-0-8, 31=2 -0-8, 33=24-0-8 (U C 12)	24-0-8, WE 24-0-8, WE 24-0-8,	EBS	 21-22=-40/43, 20-21=-40/44, 19-20=-38/43, 18-19=-46/44 13-23=-97/0, 12-24=-86/44, 11-25=-79/60, 10-26=-80/55, 9-27=-80/55, 8-28=-80/55, 6-29=-80/55, 5-30=-79/55, 4-31=-88/58, 3-32=-37/42, 2-33=-177/91, 14-22=-85/44, 15-21=-81/60, 16-20=-76/54, 17-19=-97/58 surface with truss chord at joint(s) 1 20, 19. 12) This truss is designed in accordance International Residential Code sect R802.10.2 and referenced standard LOAD CASE(S) Standard 						e with the 2015 ions R502.11.1 and		
	Max Uplift 18=-1 20=-3 22=-2 25=-3 27=-3 29=-3 31=-3	3 (LC 12), 19=-35 (LC 1 (LC 13), 21=-36 (LC 5 (LC 13), 24=-26 (LC 0 (LC 12), 26=-29 (LC 3 (LC 12), 28=-32 (LC 3 (LC 12), 30=-32 (LC 5 (LC 12), 32=-19 (LC 5 (LC 12)	13), 1) 13), 1) 12), 2) 12), 2) 12), 12),	this design. Wind: ASCE Vasd=103m II; Exp B; Er and C-C Ex & MWFRS f	roof live loads have 7-10; Vult=130mp ph; TCDL=6.0psf; E closed; MWFRS (e terior (2) zone;C-C f or reactions shown;	h (3-seo 3CDL=6 envelope for men	cond gust) 5.0psf; h=30ft; (e) exterior zone nbers and force	e es				TH CA	ROUT
FORCES	19=14 21=10 23=12 25=11 27=10 29=10 31=12 33=25	(LC 21), 18=51 (LC 2 7 (LC 24), 20=95 (LC 9 (LC 24), 22=111 (L1 4 (LC 22), 24=112 (L1 4 (LC 23), 26=110 (L1 6 (LC 1), 28=107 (LC 8 (LC 1), 30=102 (LC 7 (LC 1), 32=18 (LC 2 1 (LC 1) compression/Maximur	1), 3) C 1), 23), C 1), 23), 2 3), 4) 2 3), 5) 2 3), 6) 7) 7)	only. For st see Standau or consult q All plates ar Gable requi Gable studs This truss h chord live lo * This truss on the botto 3-06-00 tall	.60 gned for wind loads uds exposed to win rd Industry Gable Er ualified building des e 1.5x4 MT20 unles res continuous botto spaced at 1-4-0 oc cas been designed for ad nonconcurrent w has been designed m chord in all areas by 2-00-00 wide wil ny other members.	d (norm nd Deta signer a ss other om chor s. or a 10. vith any for a liv s where	al to the face), ills as applicables s per ANSI/TPI wise indicated. rd bearing. 0 psf bottom other live load re load of 20.0p a rectangle	e, 1. s. osf			2 ANNI ANNI ANNI ANNI ANNI ANNI ANNI ANN	SEA 0363	22 EER C

November 14,2023

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Belhaven DEF	
Belhaven DEF	V2	Valley	1	1	Job Reference (optional)	161952864

Run: 8.72 S Oct 5 2023 Print: 8.720 S Oct 5 2023 MiTek Industries, Inc. Fri Nov 10 10:51:42

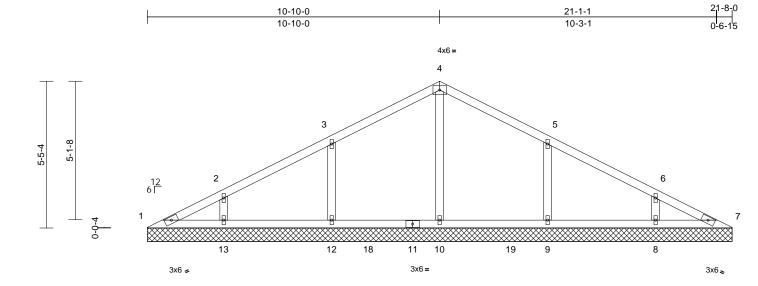
84 Components (Dunn, NC), Dunn, NC - 28334,

Page: 1 ID:ipagEE7_v7_GOi84kscRHLz6mMP-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 25-8-0 0-6-15 12-10-0 25-1-1 12-10-0 12-3-1 4x6= 4 Ŧ 3 5 6-1-8 6-5-4 2 6 12 6 Г 0-0-4 • \boxtimes 13 12 11 10 9 8 3x6 = 3x6 ≠ 3x6 👟 25-8-0 Scale = 1:47.2

Scale = 1:47.2											-	
Scale = 1:47.2 Loading TCLL (roof) TCDL BCLL BCDL LUMBER TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 Structural wood she 10-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=25-8-0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code eathing directly applied applied or 6-0-0 oc ,7=25-8-0, 8=25-8-0 , 10=25-8-0, 12=25-8	only. Fo see Stat or consu 4) All plate 5) Gable s 7) This trus chord liv 8) * This tru chord liv 8) * This trus	esigned for wind load or studs exposed to w adard Industry Gable itit qualified building d s are 1.5x4 MT20 uni- equires continuous bo- cuds spaced at 4-0-0 ss has been designed e load nonconcurren uss has been designed toom chord in all are	ind (norm End Deta esigner a ess other oc. I for a 10. t with any ed for a liv as where	al to the face ils as applical s per ANSI/TF wise indicated d bearing. 0 psf bottom other live loa re load of 20.0 a rectangle), ble, PI 1. d. ds. Opsf	(loc) - - 8	l/defl n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 105 lb	GRIP 244/190 FT = 20%
 3=25-8-0, 10=25-8-0, 12=25-8-0, 13=25-8-0, 13=25-8-0 Max Horiz 1=-105 (LC 13) Max Uplift 1=-9 (LC 13), 7=-1 (LC 13), 8=-112 (LC 13), 9=-103 (LC 13), 12=-103 (LC 12), 13=-103 (LC 12), 14=-103 (LC 12), 15=-103 (LC 12),												
FORCES	(lb) - Maximum Con Tension	npression/Maximum	R802.10	0.2 and referenced sta E(S) Standard								
TOP CHORD	1-2=-185/181, 2-3=- 4-5=0/183, 5-6=0/16		LOAD CAS	-() Stanuaru							mm	um.
BOT CHORD	1-13=-103/164, 12- 10-12=-103/115, 9- 8-9=-103/115, 7-8=-	10=-103/115,								1 mil	OR EFS	ROLIN
WEBS	4-10=-319/0, 3-12=- 5-9=-249/172, 6-8=-	·249/172, 2-13=-272/ ·272/170	170,						4	2		2000
this design 2) Wind: ASC Vasd=103 II; Exp B; I and C-C E	CE 7-10; Vult=130mph mph; TCDL=6.0psf; B Enclosed; MWFRS (er Exterior (2) zone;C-C fr S for reactions shown;	n (3-second gust) CDL=6.0psf; h=30ft; hvelope) exterior zon or members and forc	Cat. e es						THINKS.		SEA 0363 WGIN C A. G November	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Belhaven DEF	
Belhaven DEF	V3	Valley	1	1	Job Reference (optional)	161952865


10-10-0

84 Components (Dunn, NC), Dunn, NC - 28334,

Run: 8.72 S Oct 5 2023 Print: 8.720 S Oct 5 2023 MiTek Industries, Inc. Fri Nov 10 10:51:42 ID:iY3FgQwKvvrgr5LpEnoS5lz6mMg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

21-1-1

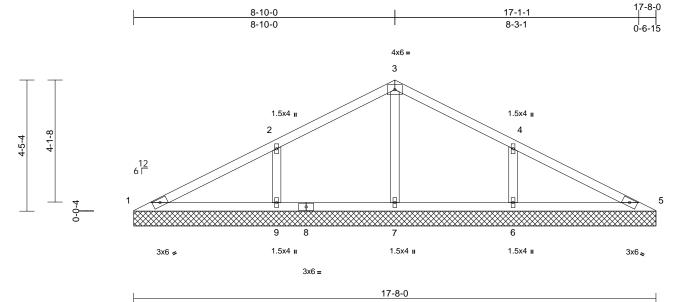
21-8-0

Scale = 1:42.7

Ocale = 1.42.1													
Loading TCLL (roof) TCDL BCLL BCDL LUMBER TOP CHORD	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code		CSI TC BC WB Matrix-MS gned for wind loads uds exposed to wind				(loc) - - 7	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 85 lb	GRIP 244/190 FT = 20%	
BOT CHORE OTHERS BRACING TOP CHORE BOT CHORE REACTIONS	 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=21-8-0, 9=21-8-0, 13=21-8-C Max Horiz 1=-88 (LC Max Uplift 1=-12 (LC 9=-112 (L 13=-79 (L Max Grav 1=83 (LC (LC 1), 9= 	, 7=21-8-0, 8=21-8-0, , 10=21-8-0, 12=21-8-0 , 10=21-8-0, 12=21-8-0 , 17) , 17) , 13), 8=-78 (LC 13), , C 13), 12=-112 (LC 1 ,C 12)	d or d	rd Industry Gable E ualified building de e 1.5x4 MT20 unle res continuous bot s spaced at 4-0-0 o as been designed and nonconcurrent has been designed im chord in all area by 2-00-00 wide w iny other members are assumed to bi- chanical connection e capable of withst lift at joint 12, 79 lb t 9 and 78 lb uplift as designed in accor il Residential Code and referenced stat	signer as so other tom chor c. for a 10. with any d for a liv s where all fit betw , with BC e SP No. n (by oth tanding 1 o uplift at at joint 8 dance w sections	s per ANSI/TF wise indicated d bearing. 0 psf bottom other live loa re load of 20.0 a rectangle veen the botto CDL = 10.0psf 2. ers) of truss t 2 lb uplift at ji joint 13, 112 tith the 2015 s R502.11.1 a	PI 1. ds.)psf om oint Ib						
FORCES		0/91, 3-4=-63/141,	LOAD CASE(S									11.	
BOT CHORD	9-10=-26/76, 8-9=-2	8=-26/76, 10-12=-26/7 6/76, 7-8=-26/88 266/180, 2-13=-213/1	,							Tru	ORTH CA	ROUT	7
this desig 2) Wind: AS Vasd=10 II; Exp B; and C-C	ced roof live loads have gn. SCE 7-10; Vult=130mph (3mph; TCDL=6.0psf; B ; Enclosed; MWFRS (er Exterior (2) zone;C-C ft (S for reactions shown;	been considered for (3-second gust) CDL=6.0psf; h=30ft; C nvelope) exterior zone or members and force	e es								SEA 0363	• -	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932


GI November 14,2023

Job	Truss	Truss Type	Qty	Ply	Belhaven DEF	
Belhaven DEF	V4	Valley	1	1	Job Reference (optional)	161952866

Run: 8,72 S Oct 5 2023 Print: 8,720 S Oct 5 2023 MiTek Industries, Inc. Fri Nov 10 10:51:42 ID:XRu5MfnQVXSE1P?h5z6t9Rz6mMr-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:39

Scale = 1:39												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-MS	0.29 0.19 0.12	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 9	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 65 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 10-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=17-8-0, 7=17-8-0, Max Horiz 1=-71 (LC Max Uplift 1=-5 (LC 6=-127 (L Max Grav 1=109 (LC	athing directly applie applied or 6-0-0 oc 5=17-8-0, 6=17-8-0, 9=17-8-0 2 13), 5=-10 (LC 13), C 13), 9=-128 (LC 12) 2 23), 5=109 (LC 24) 2 24), 7=393 (LC 1),	 6) This trust chord live 7) * This true on the bo 3-06-00 t 8) All bearin 9) Provide r 9) Provide r 10 lb upli 10) This trust Internation (R802.10.) 2) LOAD CASE 	has been designed load nonconcurrent ss has been designe ttom chord in all are all by 2-00-00 wide v d any other members gs are assumed to b nechanical connection late capable of withs ft at joint 5, 128 lb up	t with any ed for a liv as where will fit betv s. be SP No on (by oth standing f olift at join ordance w e sections	other live load e load of 20.0 a rectangle veen the botto 2. ers) of truss to 5 lb uplift at joi t 9 and 127 lb ith the 2015 5 R502.11.1 a	Opsf om o int 1,					
FORCES	(lb) - Maximum Com	,										
TOP CHORD	Tension 1-2=-150/223, 2-3=0 4-5=-150/223)/201, 3-4=0/201,										
BOT CHORD		140/98, 6-7=-140/98	,									
WEBS	3-7=-339/62, 2-9=-29	96/183, 4-6=-296/183	3								TH CA	1111,
NOTES											W'TH CA	Rollin
,	ed roof live loads have	been considered for								AN	R	11/4
this desig 2) Wind: AS Vasd=10 II; Exp B; and C-C1 & MWFR grip DOL 3) Truss de only. For see Stand	n. CE 7-10; Vult=130mph 3mph; TCDL=6.0psf; B(Enclosed; MWFRS (en Exterior (2) zone;C-C fc S for reactions shown; I	(3-second gust) CDL=6.0psf; h=30ft; hvelope) exterior zono or members and force Lumber DOL=1.60 pl n the plane of the trus (normal to the face), d Details as applicab	Cat. e es late ss ole,						Contraction of the second	i	SEA 0363	L

- Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 4)
- 5) Gable studs spaced at 4-0-0 oc.

G

11111111 November 14,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Belhaven DEF	
Belhaven DEF	V5	Valley	1	1	Job Reference (optional)	161952867

Loading

TCDI

BCLL

BCDL

LUMBER

OTHERS

BRACING

FORCES

TOP CHORD

BOT CHORD

this design.

grip DOL=1.60

WEBS

NOTES

1)

2)

3)

4) 5) Tension

4-5=-85/55

5-6=-18/70

Gable studs spaced at 4-0-0 oc.

1-2=-88/65, 2-3=-67/90, 3-4=-67/90,

1-8=-18/79, 7-8=-18/41, 6-7=-18/41,

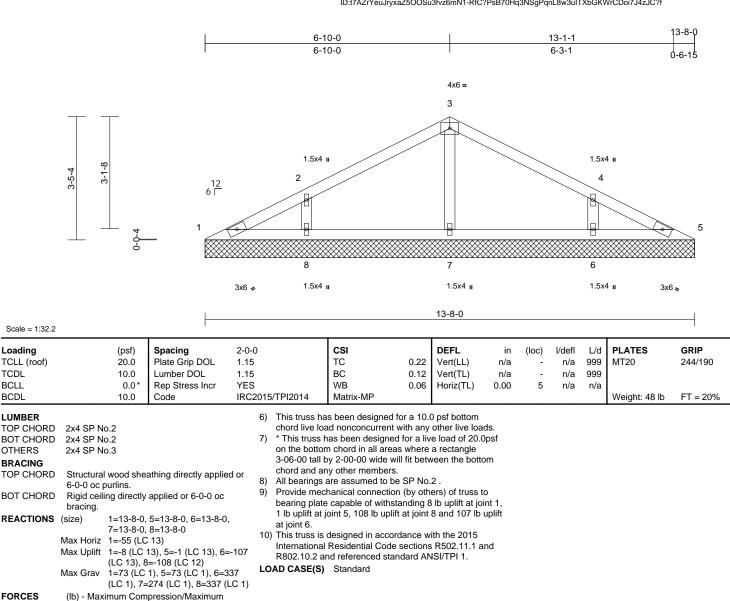
Unbalanced roof live loads have been considered for

Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone;C-C for members and forces

& MWFRS for reactions shown; Lumber DOL=1.60 plate

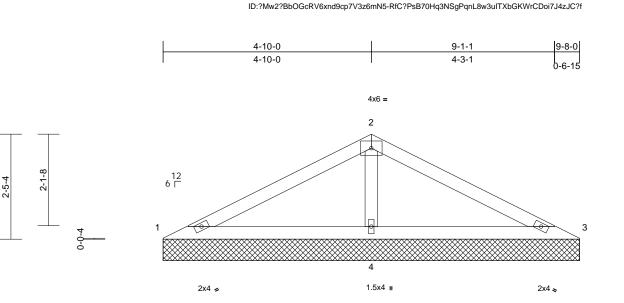
Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing.

Wind: ASCE 7-10; Vult=130mph (3-second gust)


3-7=-190/35, 2-8=-264/193, 4-6=-264/193

TCLL (roof)

Run: 8.72 S Oct 5 2023 Print: 8.720 S Oct 5 2023 MiTek Industries, Inc. Fri Nov 10 10:51:43 ID:t7AZrYeuJryxaZ5OOSu3fvz6mN1-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

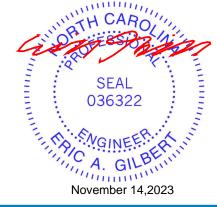

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent bucking of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Belhaven DEF				
Belhaven DEF	V6	Valley	1	1	Job Reference (optional)	161952868			

9-8-0

Run: 8.72 S Oct 5 2023 Print: 8.720 S Oct 5 2023 MiTek Industries, Inc. Fri Nov 10 10:51:43


Scale =	1.26.7

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	15/TPI2014	CSI TC BC WB Matrix-MP	0.30 0.28 0.11	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 31 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	Max Horiz 1=38 (LC Max Uplift 1=-19 (LC 4=-78 (LC	applied or 6-0-0 oc 3=9-8-0, 4=9-8-0 16) 2 24), 3=-19 (LC 23),	1 L	 on the bottor 3-06-00 tall li chord and an All bearings Provide mec bearing plate 1, 19 lb uplif This truss is International 	has been designe in chord in all are: by 2-00-00 wide v hy other members are assumed to b thanical connection capable of withs t at joint 3 and 78 designed in acco Residential Code nd referenced sta Standard	as where vill fit betw s. be SP No. on (by oth standing 1 Ib uplift a ordance w e sections	a rectangle veen the botto 2 . ers) of truss t 9 lb uplift at j t joint 4. ith the 2015 R502.11.1 a	om oo oint						
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Maximum Com Tension 1-2=-142/375, 2-3=- 1-4=-303/192, 3-4=- 2-4=-511/241	142/375												

NOTES

 Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

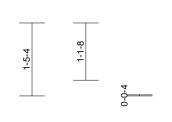
Job	Truss	Truss Type	Qty	Ply	Belhaven DEF	
Belhaven DEF	V7	Valley	1	1	Job Reference (optional)	161952869

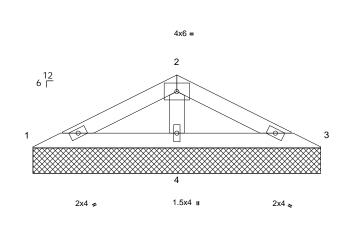
2-10-0

2-10-0

84 Components (Dunn, NC), Dunn, NC - 28334,

Run: 8.72 S Oct 5 2023 Print: 8.720 S Oct 5 2023 MiTek Industries, Inc. Fri Nov 10 10:51:43 ID:6ahX9pYtCNx4dKUrwnIBLDz6mN9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


5-1-1


2-3-1

5-8-0

0-6-15

5-8-0

Scale = 1:22.7

ecale - HEEH												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI2014	BC 0	0.08 0.09 0.04	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 17 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	5-8-0 oc purlins. Rigid ceiling directly bracing. (size) 1=5-8-0, 3 Max Horiz 1=21 (LC Max Uplift 1=-12 (LC 4=-31 (LC	3=5-8-0, 4=5-8-0 12) C 12), 3=-16 (LC 13), C 12) 23), 3=72 (LC 24), 4=	on the bottor 3-06-00 tall b chord and ar 8) All bearings 9) Provide mec bearing plate 1, 16 lb uplift 10) This truss is International R802.10.2 at LOAD CASE(S)	has been designed for n chord in all areas will by 2-00-00 wide will fit ny other members. are assumed to be SF hanical connection (by e capable of withstand at at joint 3 and 31 lb uf designed in accordan Residential Code sec nd referenced standar Standard	P No. Y No. Y oth ing 1 plift a ce w	a rectangle veen the botto 2 . ers) of truss to 2 lb uplift at jo t joint 4. ith the 2015 5 R502.11.1 ar	om o point					
TOP CHORD BOT CHORD	Tension 1-2=-77/133, 2-3=-7	7/133										

BOT CHORD 1-4=-102/83, 3-4=-102/83 WEBS 2-4=-207/103 NOTES

 Unbalanced roof live loads have been considered for this design.
 Wind: ASCE 7-10; Vult=130mph (3-second gust)

- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

SEAL 036322

November 14,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

