

Carter Sanford Component Plant 298 Harvey Faulk Rd Sanford, NC 27332

Phone #:919-775-1450

Builder: DRB HOMES Model: MILLHAVEN 2 76 FARM AT NEILLS CREEK

THE PLACEMENT PLAN NOTES:

1. The Placement Plan is a diagram for truss installation. It is not an engineered drawing and has not been reviewed by an engineer. The Owner/Building Designer is responsible for obtaining an engineer's review if one is required by the local jurisdiction.

2. The responsibilities of the Owner, Contractor, Building Designer, Component Designer and Component Manufacturer shall be as set forth in ANSI/TPI 1. Capitalized terms shall be as defined in ANSI/TP 1 unless otherwise indicated.

3. Each Component is designed as an individual component utilizing information provided by others. The Owner/Building Designer is responsible for reviewing all Component Submittal Packages and individual Component Design Drawings for compliance with the Construction Documents and compatibility with the overall Building design.

4. Contractor will not proceed with component installation until the Owner/Building Designer has reviewed the Component Submittal Package. Questions on the suitability of any Component will be resolved by the Building Designer.

5. The Building Designer and Contractor are responsible for all temporary and permanent bracing.

6. The Placement Plan assumes the building is dimensionally correct, structurally sound, and in a suitable condition to support each Component during installation and thereafter, including but not limited to installation of all bearing points. Proper design and construction of all structural components, including foundations, headers, beams, walls and columns are the responsibility of the Owner, Building Designer and Contractor.

7. Do not cut, drill, or modify any Component without first consulting the Component Manufacturer or Building Designer. Damaged Components shall not be installed unless directed by the Building Designer or approved by the Component Manufacturer.

8. Components must be handled and installed following all applicable safety standards and best practices, including but not limited to BCSI, OSHA, TPI and local codes. Failure to properly handle, brace or otherwise install Component can result in serious injury or death.

Apprved by: _____

Date: _____

Trenco 818 Soundside Rd Edenton, NC 27932

Re: 24070012-A 76 Farm at Neills Creek-Roof-Millhaven 2 BR5 GRH

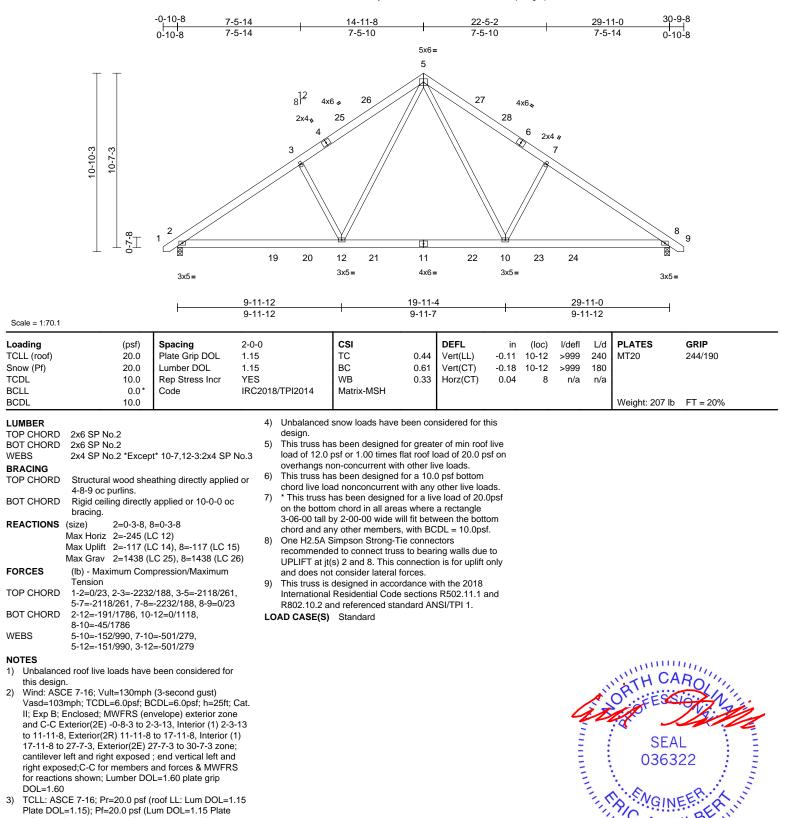
The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Carter Components (Sanford, NC)).

Pages or sheets covered by this seal: I66899230 thru I66899259

My license renewal date for the state of North Carolina is December 31, 2024.

North Carolina COA: C-0844

July 18,2024


Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	76 Farm at Neills Creek-Roof-Millhaven 2 BR5 GRH
24070012-A	A01	Common	5	1	I66899230 Job Reference (optional)

Run: 8 73 S. Jul 11 2024 Print: 8 730 S. Jul 11 2024 MiTek Industries. Inc. Tue Jul 16 12:36:45 ID:3zGhtly1P8zleGJJXcJ57uz5Pui-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

G

mm July 18,2024

Job	Truss	Truss Type	Qty	Ply	76 Farm at Neills Creek-Roof-Millhaven 2 BR5 GRH
24070012-A	A02	Common	7	1	I66899231 Job Reference (optional)

Loading

Snow (Pf)

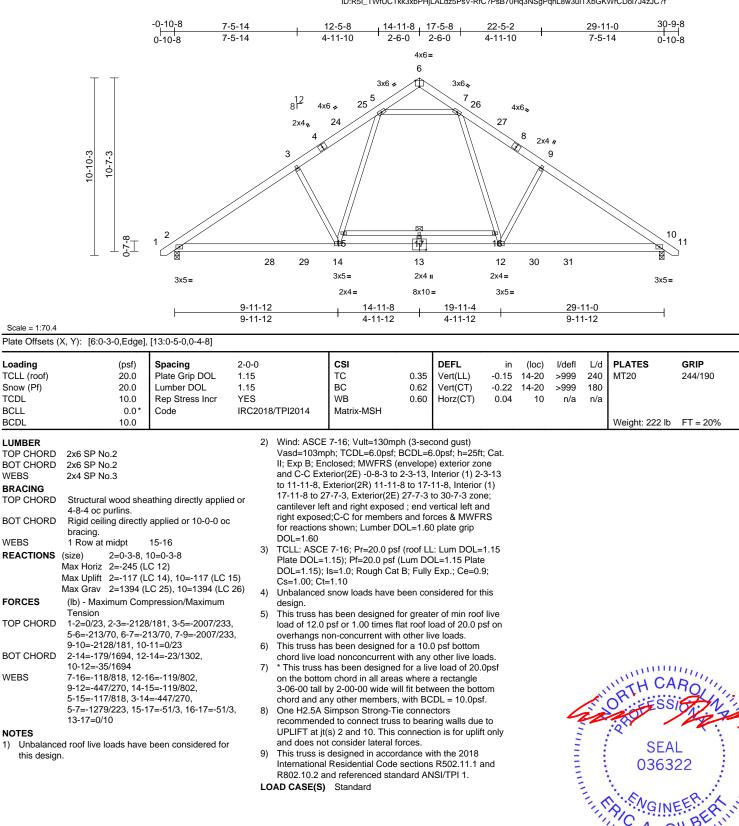
LUMBER

TCDL

BCLL

BCDL

WEBS


WEBS

FORCES

WEBS

NOTES

Run: 8 73 S. Jul 11 2024 Print: 8 730 S. Jul 11 2024 MiTek Industries. Inc. Tue Jul 16 12:36:46 ID:R5I_TWfUCTkk3xbPHjLALdz5PsV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

This truss is designed in accordance with the 2018 9) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

G mm July 18,2024

036322

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

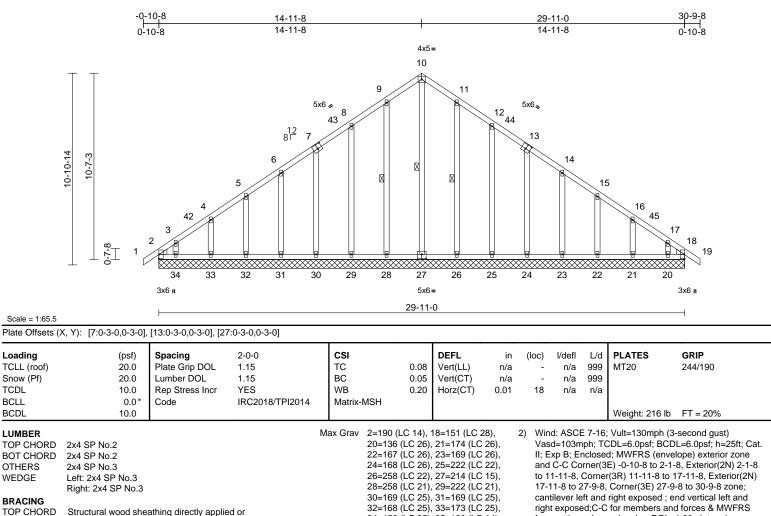
Job	Truss	Truss Type	Qty	Ply	76 Farm at Neills Creek-Roof-Millhaven 2 BR5 GRH
24070012-A	A03	Common	1	1	I66899232 Job Reference (optional)

Loading

TCDL

BCLL

BCDL


LUMBER

OTHERS

WEDGE

Run: 8,73 S Jul 11 2024 Print: 8,730 S Jul 11 2024 MiTek Industries, Inc. Tue Jul 16 12:36:46 ID:g5spwPzn4S02AwaPpBoGO6z5Ps5-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

WEDGE	Right: 2x4 SP No.3		28=258 (LC 21), 29=222 (LC 21),		17-11-8 to 27-9-8, Corner(3E) 27-9-8 to 30-9-8 zone;
BRACING			30=169 (LC 25), 31=169 (LC 25),		cantilever left and right exposed ; end vertical left and
TOP CHORD	Structural wood sheathing directly applied or		32=168 (LC 25), 33=173 (LC 25),		right exposed;C-C for members and forces & MWFRS
	6-0-0 oc purlins.		34=156 (LC 25), 35=190 (LC 14),		for reactions shown; Lumber DOL=1.60 plate grip
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc		39=151 (LC 28)		DOL=1.60
	bracing.	FORCES	(lb) - Maximum Compression/Maximum	3)	Truss designed for wind loads in the plane of the truss
WEBS	1 Row at midpt 10-27, 9-28, 11-26		Tension		only. For study exposed to wind (normal to the face),
REACTIONS	(size) 2=29-11-0, 18=29-11-0,	TOP CHORD	1-2=0/29, 2-3=-268/200, 3-4=-212/177,		see Standard Industry Gable End Details as applicable,
	20=29-11-0, 21=29-11-0,		4-5=-168/155, 5-6=-145/134, 6-8=-128/159,		or consult qualified building designer as per ANSI/TPI 1.
	22=29-11-0, 23=29-11-0,		8-9=-113/194, 9-10=-141/230,	4)	TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15
	24=29-11-0, 25=29-11-0,		10-11=-141/230, 11-12=-113/180,		Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate
	26=29-11-0, 27=29-11-0,		12-14=-88/122, 14-15=-73/48, 15-16=-94/68,		DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9;
	28=29-11-0, 29=29-11-0,		16-17=-153/90, 17-18=-205/106, 18-19=0/29	-	Cs=1.00; Ct=1.10
	30=29-11-0, 31=29-11-0,	BOT CHORD	2-34=-137/188, 33-34=-87/188,	5)	Unbalanced snow loads have been considered for this
	32=29-11-0, 33=29-11-0,		32-33=-87/188, 31-32=-87/188,		design.
	34=29-11-0, 35=29-11-0,		30-31=-87/188, 29-30=-87/188,		
	39=29-11-0		28-29=-87/188, 26-28=-87/188,		ATTITUTION AND A STATE OF A STATE
	Max Horiz 2=-248 (LC 12), 35=-248 (LC 12)		25-26=-87/188, 24-25=-87/188,		IN CARO
	Max Uplift 2=-108 (LC 12), 18=-36 (LC 11),		23-24=-87/188, 22-23=-87/188,		N' Q'
	20=-102 (LC 15), 21=-57 (LC 15),		21-22=-87/188, 20-21=-87/188,		O SEFSSION A
	22=-58 (LC 15), 23=-58 (LC 15),		18-20=-87/188		IN THE MAN
	24=-57 (LC 15), 25=-63 (LC 15),	WEBS	10-27=-194/62, 9-28=-218/77, 8-29=-182/86,		and starter
	26=-50 (LC 15), 28=-53 (LC 14),		7-30=-143/81, 6-31=-144/82, 5-32=-142/82,		
	29=-61 (LC 14), 30=-57 (LC 14),		4-33=-148/83, 3-34=-117/95, 11-26=-218/74,		= : SEAL : =
	31=-58 (LC 14), 32=-59 (LC 14),		12-25=-182/87, 13-24=-143/81,		
	33=-55 (LC 14), 34=-120 (LC 14),		14-23=-144/82, 15-22=-142/82,		- 036322 -
	35=-108 (LC 12), 39=-36 (LC 11)		16-21=-148/84, 17-20=-117/88		
		NOTES			
		1) Unbalance	d roof live loads have been considered for		1 A SNOWFER A S
		this design			AND GINEY ON
		uns design			

NOTES

G mm July 18,2024

Continued on page 2 Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE WARNING

Design valid for use only with MTeK oconnectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **AMSITPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	76 Farm at Neills Creek-Roof-Millhaven 2 BR5 GRH
24070012-A	A03	Common	1	1	I66899232 Job Reference (optional)

- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- All plates are 2x4 MT20 unless otherwise indicated. 7)
- 8) Gable requires continuous bottom chord bearing.
- 9) Gable studs spaced at 2-0-0 oc.
- 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 108 lb uplift at joint 2, 36 lb uplift at joint 18, 53 lb uplift at joint 28, 61 lb uplift at joint 29, 57 lb uplift at joint 30, 58 lb uplift at joint 31, 59 lb uplift at joint 32, 55 lb uplift at joint 33, 120 lb uplift at joint 34, 50 lb uplift at joint 26, 63 lb uplift at joint 25, 57 lb uplift at joint 24, 58 lb uplift at joint 23, 58 lb uplift at joint 22, 57 lb uplift at joint 21, 102 lb uplift at joint 20, 108 lb uplift at joint 2 and 36 lb uplift at joint 18.
- 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Run: 8 73 S. Jul 11 2024 Print: 8 730 S. Jul 11 2024 MiTek Industries. Inc. Tue Jul 16 12:36:46 ID:g5spwPzn4S02AwaPpBoGO6z5Ps5-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	76 Farm at Neills Creek-Roof-Millhaven 2 BR5 GRH
24070012-A	A04	Нір	1	1	I66899233 Job Reference (optional)

Scale = 1:69.8

Loading

TCLL (roof)

Snow (Pf)

LUMBER

BOT CHORD

TOP CHORD

BOT CHORD

REACTIONS (size)

Structural wood sheathing directly applied or

3-11, 7-11

Rigid ceiling directly applied or 10-0-0 oc

2=0-3-8.8=0-3-8

Max Uplift 2=-116 (LC 14), 8=-118 (LC 15)

Max Grav 2=1241 (LC 21), 8=1243 (LC 22)

1-2=0/23, 2-3=-1770/158, 3-5=-1245/203,

5-7=-1249/201, 7-8=-1773/162, 8-9=0/23

3-12=0/295, 3-11=-628/236, 7-11=-616/237,

2-12=-188/1393, 10-12=-180/1393,

7-10=0/295, 5-11=-64/820

Unbalanced roof live loads have been considered for

Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat.

and C-C Exterior(2E) -0-8-3 to 2-3-13, Interior (1) 2-3-13

II; Exp B; Enclosed; MWFRS (envelope) exterior zone

to 10-7-5, Exterior(2R) 10-7-5 to 19-1-2, Interior (1) 19-1-2 to 27-7-3, Exterior(2E) 27-7-3 to 30-7-3 zone; cantilever left and right exposed : end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip

Wind: ASCE 7-16; Vult=130mph (3-second gust)

(Ib) - Maximum Compression/Maximum

5-5-3 oc purlins.

1 Row at midpt

Max Horiz 2=243 (LC 13)

bracing.

Tension

8-10=-75/1393

BRACING

TCDL

BCLL

BCDL

WEBS

WEBS

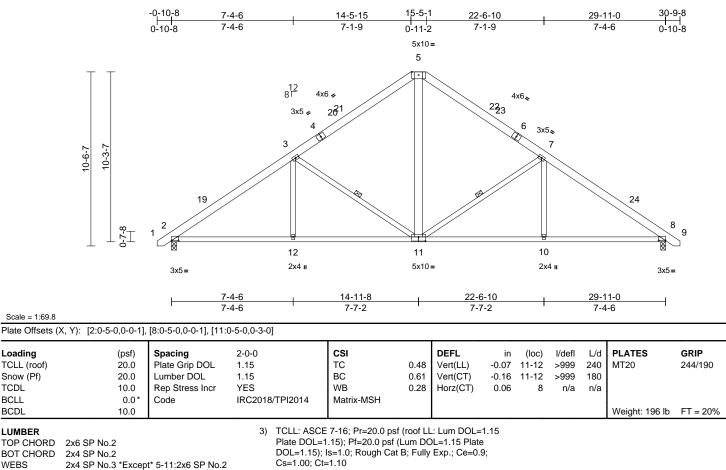
FORCES

TOP CHORD

BOT CHORD

this design.

DOL=1.60


WEBS

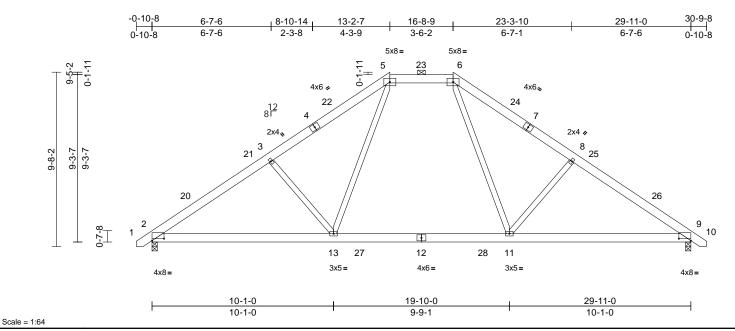
NOTES

1)

2)

Run: 8 73 S. Jul 11 2024 Print: 8 730 S. Jul 11 2024 MiTek Industries. Inc. Tue Jul 16 12:36:47 ID:SoZF8ej6Ai9cS3b4FQO1EUz5Ppr-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

- 4) Unbalanced snow loads have been considered for this desian.
 - 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- Provide adequate drainage to prevent water ponding.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf
- 8) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 8. This connection is for uplift only and does not consider lateral forces.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	76 Farm at Neills Creek-Roof-Millhaven 2 BR5 GRH
24070012-A	A05	Нір	1	1	I66899234 Job Reference (optional)

Run: 8.73 S Jul 11 2024 Print: 8.730 S Jul 11 2024 MiTek Industries, Inc. Tue Jul 16 12:36:47 ID:7kSL3d5dKjWR7al_wMRmsWz5Po3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Plate Offsets (X, Y): [2:0-8-0,0-1-5], [9:0-8-0,0-1-5]

	(;;; ;): [<u>=</u> :e e e;e : e];	[0.0 0 0;0 1 0]											
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-MSH	0.48 0.65 0.32	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.14 -0.20 0.05	(loc) 13-16 13-16 9	l/defl >999 >999 n/a	L/d 240 180 n/a		GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD	2x6 SP No.2 2x4 SP No.3 Structural wood shee 4-8-1 oc purlins, exc 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing. (size) 2=0-3-8, S Max Horiz 2=-216 (L Max Uplift 2=-123 (L Max Grav 2=1527 (L (lb) - Maximum Com Tension 1-2=0/23, 2-3=-2394 5-6=-1448/208, 6-8=	xept -0 max.): 5-6. applied or 10-0-0 or 2=0-3-8 C 12) C 14), 9=-123 (LC 1 .C 51), 9=1527 (LC pression/Maximum 4/192, 3-5=-2192/206	5) 6) 7) 5) 53) 9)	Plate DOL=1 DOL=1.15); Cs=1.00; Cti Unbalanced design. This truss ha load of 12.0 overhangs n Provide ade This truss ha chord live lo * This truss la chord live lo * This truss la chord and an One H2.5A \$ recommender	E 7-16; Pr=20.0 ps 1.15); Pf=20.0 ps 1s=1.0; Rough Cat =1.10 snow loads have I as been designed f psf or 1.00 times f ion-concurrent with quate drainage to as been designed ad nonconcurrent has been designed m chord in all area by 2-00-00 wide win ny other members, Simpson Strong-Ti ed to connect truss (s) 2 and 9. This cc	(Lum DC B; Fully been con for great lat roof I o other Ii prevent for a 10. with any d for a liv s where ill fit betw with BC e conne s to bear	DL=1.15 Plate Exp.; Ce=0. Insidered for t er of min rooi bad of 20.0 p ve loads. water pondin 0 psf bottom other live loa e load of 20. a rectangle veen the bott CDL = 10.0ps itors ing walls due	e 9; his f live sf on g. ads. 0psf om f. e to					
BOT CHORD WEBS	9-11=-55/1942 5-13=-76/840, 3-13=	-13=-5/1359,	/840,	 and does not consider lateral forces. 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 								Politi	
 8-11=-516/269 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-8-3 to 2-3-13, Interior (1) 2-3-13 to 8-11-8, Exterior(2R) 8-11-8 to 20-11-8, Interior (1) 20-11-8 to 27-7-3, Exterior(2E) 27-7-3 to 30-7-3 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip 								SIZE				SEA 0363	• -

II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-8-3 to 2-3-13, Interior (1) 2-3-13 to 8-11-8, Exterior(2R) 8-11-8 to 20-11-8, Interior (1) 20-11-8 to 27-7-3, Exterior(2E) 27-7-3 to 30-7-3 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

July 18,2024

G

minin

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	76 Farm at Neills Creek-Roof-Millhaven 2 BR5 GRH
24070012-A	A06	Нір	1	1	I66899235 Job Reference (optional)

Run: 8.73 S Jul 11 2024 Print: 8.730 S Jul 11 2024 MiTek Industries, Inc. Tue Jul 16 12:36:47

Page: 1

ounter componer		iu, iuo 27002,			ID:4w9OBlksr0C	w_jsAX?u	IBVhz5PnE-Rf	C?PsB70H	q3NSgPq	nL8w3ulT	XbGK	WrCDoi7J4zJC?f	r ago. r
	-0-10-8	5-10-6	I	11-8-7	1	18-2	2-9	1	24-0	-10	1	29-11-0	30-9-8
	0-10-8	5-10-6		5-10-1	1	6-6		1	5-10		1	5-10-6	
					5x8=			5x8=					
8 8 -5-7	0-1-11		12 8Г 2x4 ∢			22 3 🛛 🖾	2	5					
8-8-2 8-3-7	8-3-7		2 ² 20 ³	1						23	2)	⁶ 24	
8 8	ά	19 3x10 II										25	
		18						()					26
					<u> </u>	Ţ.	٦						7 8
	· • •				11 27	10		28	9				
	3)	<6 =		3	3x5 =	4>	(6=		3x5 =				3x6=
	F)-11-12		+	<u>19-1</u> 9-11						29-11-0	
Scale = 1:59.3		9)-11-12			9-1	1-7					9-11-12	
Plate Offsets (X	(, Y): [2:0-6-7,0-0-13	8], [2:0-0-6,0-8-15]											
Loading TCLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.44	DEFL Vert(LL)	in -0.25	(loc) 9-17	l/defl >999	L/d 240	PLATES MT20	GRIP 244/190
Snow (Pf)	20.0	Lumber DOL	1.15 YES		BC WB	0.75	Vert(CT)	-0.29	9-17		180		
TCDL BCLL	10.0 0.0*	Rep Stress Incr Code	IRC2018/	TPI2014	Matrix-MSH	0.31	Horz(CT)	0.05	7	n/a	n/a		
BCDL	10.0											Weight: 196 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE	2x6 SP No.2 2x6 SP No.2 2x4 SP No.3 Left: 2x4 SP No.3			Plate DOL=1 DOL=1.15); I Cs=1.00; Ct=	7-16; Pr=20.0 ps .15); Pf=20.0 psf ls=1.0; Rough Cat =1.10 snow loads have	(Lum DC t B; Fully	DL=1.15 Plate Exp.; Ce=0.	e 9;					
BRACING	Left. 274 OF 110.5		,	design.									
TOP CHORD	Structural wood she 4-8-11 oc purlins, et	xcept		load of 12.0	is been designed to psf or 1.00 times for on-concurrent with	lat roof le	oad of 20.0 p						
BOT CHORD	2-0-0 oc purlins (5-9 Rigid ceiling directly bracing.		6)	Provide adec	quate drainage to s been designed	prevent	water pondin	g.					
I	0	C 13) .C 14), 7=-127 (LC	8) 15)	* This truss h on the botton 3-06-00 tall b	ad nonconcurrent has been designed n chord in all area by 2-00-00 wide w	d for a liv is where ill fit betv	e load of 20. a rectangle veen the both	0psf .om					
FORCES	(lb) - Maximum Con Tension		n 9)	One H2.5A S	y other members Simpson Strong-Ti	e conne	ctors						
TOP CHORD	1-2=0/23, 2-3=-2373		94,	UPLIFT at jt(ed to connect truss s) 2 and 7. This c	onnectio							
BOT CHORD	4-5=-1525/220, 5-6= 6-7=-2384/196, 7-8= 2-11=-200/1941, 9-1	=0/23	10)	This truss is International	t consider lateral f designed in accor Residential Code	dance w sections	s R502.11.1 a	and				muu	110.
WEBS	7-9=-72/1939 4-11=-9/749, 3-11=-	·505/252, 5-9=-9/74	-		nd referenced star rlin representation			size			- 1	TH CA	ROUT

NOTES

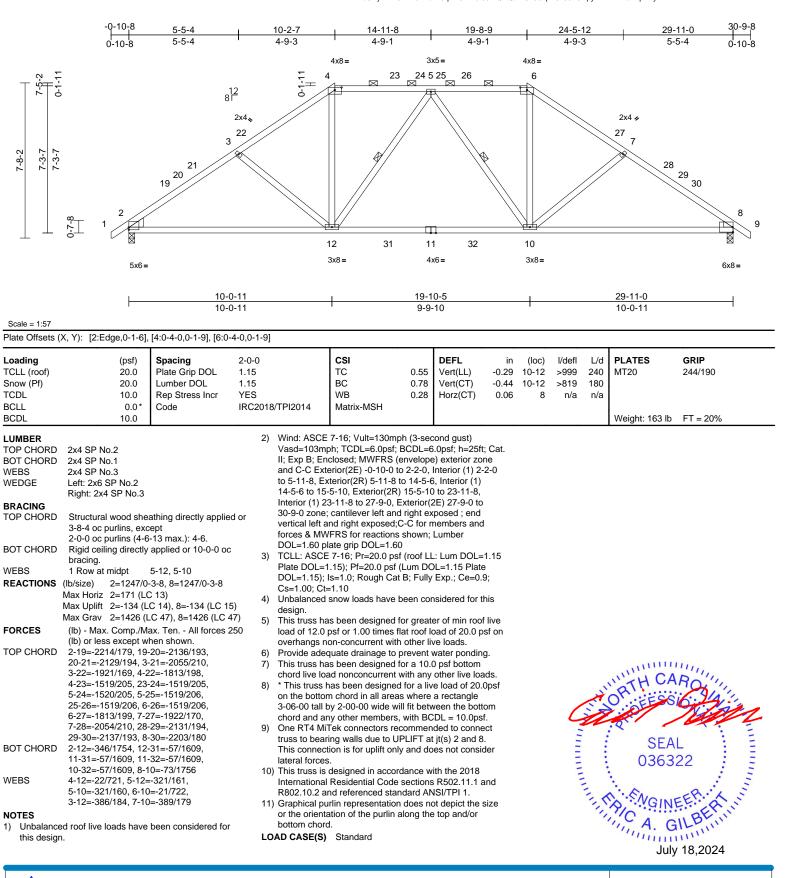
 Unbalanced roof live loads have been considered for this design.

6-9=-500/253

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-8-3 to 2-3-13, Interior (1) 2-3-13 to 7-5-8, Exterior(2R) 7-5-8 to 22-5-8, Interior (1) 22-5-8 to 27-7-3, Exterior(2E) 27-7-3 to 30-7-3 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- LOAD CASE(S) Standard

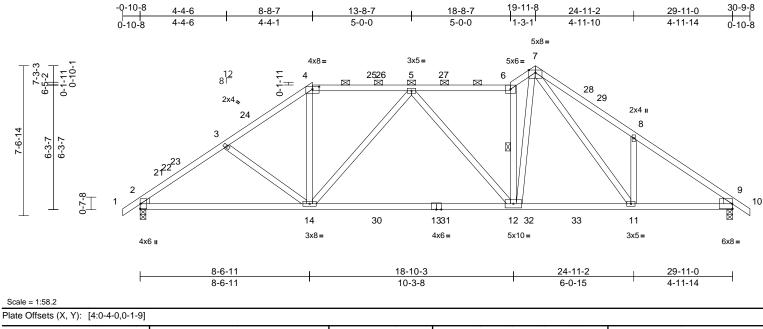
bottom chord.

or the orientation of the purlin along the top and/or



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	76 Farm at Neills Creek-Roof-Millhaven 2 BR5 GRH
24070012-A	A07	Нір	1	1	I66899236 Job Reference (optional)


Run: 8.73 E Nov 16 2023 Print: 8.730 E Nov 16 2023 MiTek Industries, Inc. Thu Jul 18 14:41:10 ID:NYcSEy1wBODWsPhox1JqTiz5Pms-6sHQPQuWS43shpHJv65Z5RpyfvPDfTKto4PpB7ywzBf Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	76 Farm at Neills Creek-Roof-Millhaven 2 BR5 GRH
24070012-A	A08	Roof Special	1	1	I66899237 Job Reference (optional)

Run: 8.73 E Nov 16 2023 Print: 8.730 E Nov 16 2023 MiTek Industries, Inc. Thu Jul 18 14:41:40 ID:NAm0eqGvAj4265UOvS8kcGz5PIG-A0DW7NHbwv5KWkjTnqf3OB8PJpJG9q?a929WJGywzB9

	7, 1). [4.0-4-0,0-1-3]													
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/T	PI2014	CSI TC BC WB Matrix-MSH	0.63 0.87 0.74	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.35 -0.62 0.07	(loc) 12-14 12-14 9	l/defl >999 >582 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 175 lb	GRIP 244/190 FT = 20%	
	3-4-7 oc purlins, exc 2-0-0 oc purlins (3-1 Rigid ceiling directly bracing. 1 Row at midpt (lb/size) 2=1249/0 Max Horiz 2=-170 (L Max Uplift 2=-168 (L Max Grav 2=1378 (I	10-8 max.): 4-6. y applied or 10-0-0 oc 6-12 -3-8, 9=1249/0-3-8 C 12) C 14), 9=-89 (LC 15) LC 5), 9=1404 (LC 35 ax. Ten All forces 2 then shown. -22=-2215/241, -23=-2136/260, 24=-2036/236, -26=-1711/235, 27=-1930/203, 7=-2310/257, -29=-2221/285, 9=-2241/179 -30=-164/1980, 3-31=-164/1980, -33=-46/1490, -33=-46/1490,	d or tt 2) V 4 d or tc 3) T 50 d 5) T 7) T 6) P C 0 4) U 550 d 6) P C 0 5) T 7) T 1 6 8) * 3 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	his design. Vind: ASCE (asd=103mg; (asd=103mg; (stap B; End nd C-C Exte (b 5-8-7, Exte (b 5-8-7, Exte (b 18-8-7, Exte (b 18-8-7, Exte (c 18-8-	snow loads have l s been designed f psf or 1.00 times f on-concurrent with quate drainage to s been designed ad nonconcurrent has been designed n chord in all area by 2-00-00 wide wi y other members. Fek connectors re- ing walls due to U ion is for uplift onl	commen ph (3-sec BCDL=6 envelope o 2-1-8, 11-8-7, I o 22-9-8 d; end v s and foi OL=1.60 f (roof LL (Lum DC B; Fully been con for great lat roof la o ther lip prevent of a sub the lip prevent a liv s where lif fit between with any f for a liv s where with BC commen PLIFT at y and do	cond gust) 3.0psf; h=25ft; a) exterior zor Interior (1) 2 interior (1) 2 interior (1) 2 interior (1) 2 interior (1) 2 a interior	Cat. 1-8 -8-7 -8; -8; -1.15 -1.	or ti boti LOAD (tation (d.) Star	of the purlin along ndard	ROLIN	1
NOTES	5-14=-535/154, 5-12 6-12=-1490/209, 7-1 7-11=-216/516, 8-11	12=-199/2064,	Ílr	nternational	Residential Code nd referenced star	sections	8 R502.11.1 a	nd			in the	A. G		

July 18,2024

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Jo	b	Truss	Truss Type	Qty	Ply	76 Farm at Neills Creek-Roof-Millhaven 2 BR5 GRH
24	4070012-A	A09	Roof Special	1	1	I66899238 Job Reference (optional)

TOP CHORD

BOT CHORD

WEBS

NOTES

this design.

1)

2-3=-862/47, 3-23=-2161/193,

4-23=-2101/214, 4-24=-1754/238

24-25=-1755/238, 5-25=-1756/238,

5-26=-2337/219, 26-27=-2335/219,

7-28=-2071/257, 28-29=-2086/237,

2-14=-160/1715, 14-30=-217/2271,

30-31=-217/2271, 13-31=-217/2271,

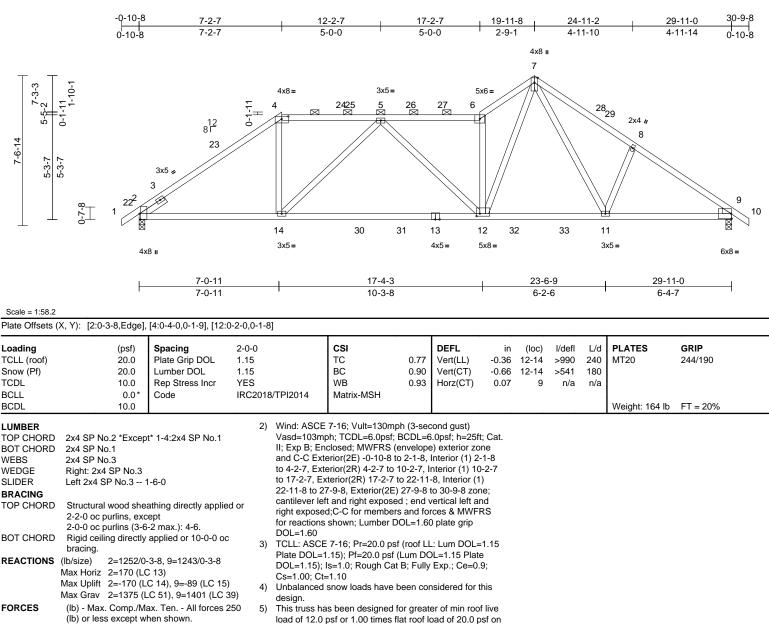
12-13=-217/2271, 12-32=-49/1440,

4-14=0/879. 5-14=-810/147. 6-12=-1793/255.

32-33=-49/1440, 11-33=-49/1440,

7-12=-232/2314, 7-11=-131/469,

Unbalanced roof live loads have been considered for


9-11=-79/1757

8-11=-340/186

6-27=-2335/219, 6-7=-2807/305,

8-29=-2142/234, 8-9=-2209/196

Run: 8 73 F. Nov 16 2023 Print: 8 730 F. Nov 16 2023 MiTek Industries. Inc. Thu Jul 18 14:42:08 ID:o0zaggVSStbCV90E4fVRQUz5Pky-LPw5?yd9KVdMt1srQiAdW5l8y5rQjS2ibPx_leywzAj

This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. Provide adequate drainage to prevent water ponding. 6)

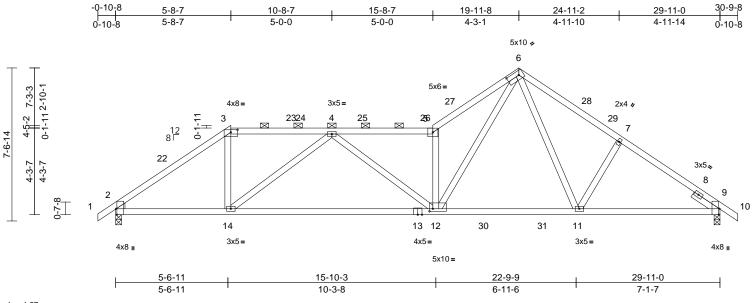
- This truss has been designed for a 10.0 psf bottom 7) chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 8) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- One RT4 MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 9. This connection is for uplift only and does not consider lateral forces.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

mining CAR STITUTE CONTRACTOR SEAL 036322 G mmm July 18,2024

Page: 1

818 Soundside Road


Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	76 Farm at Neills Creek-Roof-Millhaven 2 BR5 GRH
24070012-A	A10	Roof Special	1	1	I66899239 Job Reference (optional)

Run: 8.73 S Jul 11 2024 Print: 8.730 S Jul 11 2024 MiTek Industries, Inc. Tue Jul 16 12:36:48 ID:dRsHfXnt2xUxmhHfx_QqrKz5Pkb-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:57

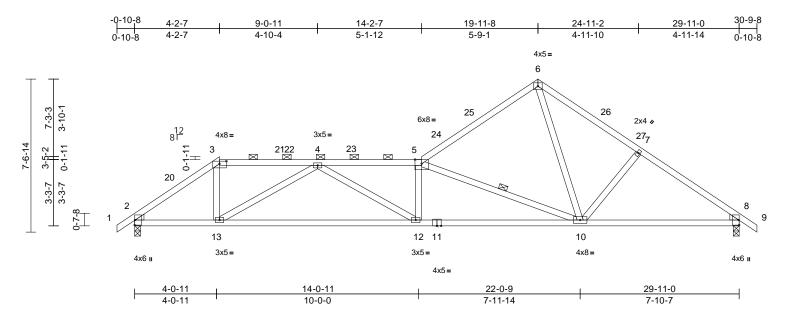
Plate Offsets (X, Y): [2:0-3-8,Edge],	[3:0-4-0,0-1-9], [6:0	-7-4,0-2-8], [9:0-3-8,Edg	e], [12:0-2-0,0-1-8]							
Loading TCLL (roof) Snow (Pf)	(psf) 20.0 20.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15		CSI TC BC	0.72 0.88	DEFL Vert(LL) Vert(CT)	in -0.32 -0.66	(loc) 12-14 12-14	l/defl >999 >541	L/d 240 180	PLATES MT20	GRIP 244/190
CDL	10.0	Rep Stress Incr	YES		WB	1.00	Horz(CT)	0.08	9	n/a	n/a		
BCLL BCDL	0.0* 10.0	Code	IRC201	8/TPI2014	Matrix-MSH							Weight: 160 lb	FT - 20%
-	10.0				I		L					Weight. Too ib	11 = 2078
JMBER	0.40DNL 0		2		7-16; Vult=130m			Cat					
OP CHORD	2x4 SP No.2				ph; TCDL=6.0psf; hclosed; MWFRS								
OT CHORD	2x4 SP No.1				terior(2E) -0-10-8								
EBS	2x4 SP No.3				terior(2R) 2-8-7 to								
EDGE	Left: 2x4 SP No.3				terior(2R) 2-6-7 to								
IDER	Right 2x4 SP No.3	- 1-6-0		,	27-9-8, Exterior(2E		, , , , , , , , , , , , , , , , , , , ,	,					
RACING					ft and right expose								
OP CHORD	Structural wood she		ed or		ed;C-C for membe								
	2-6-9 oc purlins, exc				s shown; Lumber [.0					
	2-0-0 oc purlins (3-1			DOL=1.60	S SHOWI, EURIDOR E	JOL-1.0	o plate grip						
OT CHORD	Rigid ceiling directly	applied or 10-0-0 or	с ₃		E 7-16; Pr=20.0 ps	ef (roof L		1 15					
	bracing.		0		1.15); Pf=20.0 psf								
EACTIONS	(size) 2=0-3-8, 9	9=0-3-8			Is=1.0; Rough Ca								
	Max Horiz 2=-170 (L	C 12)		Cs=1.00; Ct		a D, i uny	LAP., 00-0.	σ,					
	Max Uplift 2=-168 (L	C 14), 9=-90 (LC 15	5) 4		snow loads have	heen co	nsidered for t	his					
	Max Grav 2=1348 (L	_C 5), 9=1415 (LC 3		design.				1115					
ORCES	(lb) - Maximum Com	pression/Maximum	5		as been designed	for areat	er of min root	flive					
	Tension		U,		psf or 1.00 times								
OP CHORD	1-2=0/45, 2-3=-2265	5/214 3-4=-1835/226	6		non-concurrent wit								
	4-5=-2896/254, 5-6=	,	-, 6		quate drainage to			a					
	6-7=-2041/234, 7-9=				as been designed			9.					1.1.1
OT CHORD	2-14=-186/1821, 12-	,			ad nonconcurrent			she					1111
	11-12=-54/1409, 9-1		8		has been designe							N'TH CA	Rollin
EBS	3-14=0/962, 4-14=-1				m chord in all area			opsi			1	OR FESE	A LINE
	5-12=-2177/310, 6-1				by 2-00-00 wide w			om			1.	O FESS	Diz V.
	6-11=-90/442, 7-11=				ny other members					6	25	KP /	Cit
OTES			9		Simpson Strong-T			••				100	
	ed roof live loads have	been considered for	-		ed to connect trus			to				OF A	
this design			1		(s) 9 and 2. This c							SEA	L :
uns design					ot consider lateral					=		0363	22
			1		designed in acco		ith the 2018			1		0000	:
					Posidontial Code			and			2 S	N	

- International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 11) Graphical purlin representation does not depict the size or the competition of the purlin glange the top cod/or
- or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

TRENCO A MITEK Affiliat

818 Soundside Road Edenton, NC 27932


. GILL

July 18,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	76 Farm at Neills Creek-Roof-Millhaven 2 BR5 GRH
24070012-A	A11	Roof Special	1	1	I66899240 Job Reference (optional)

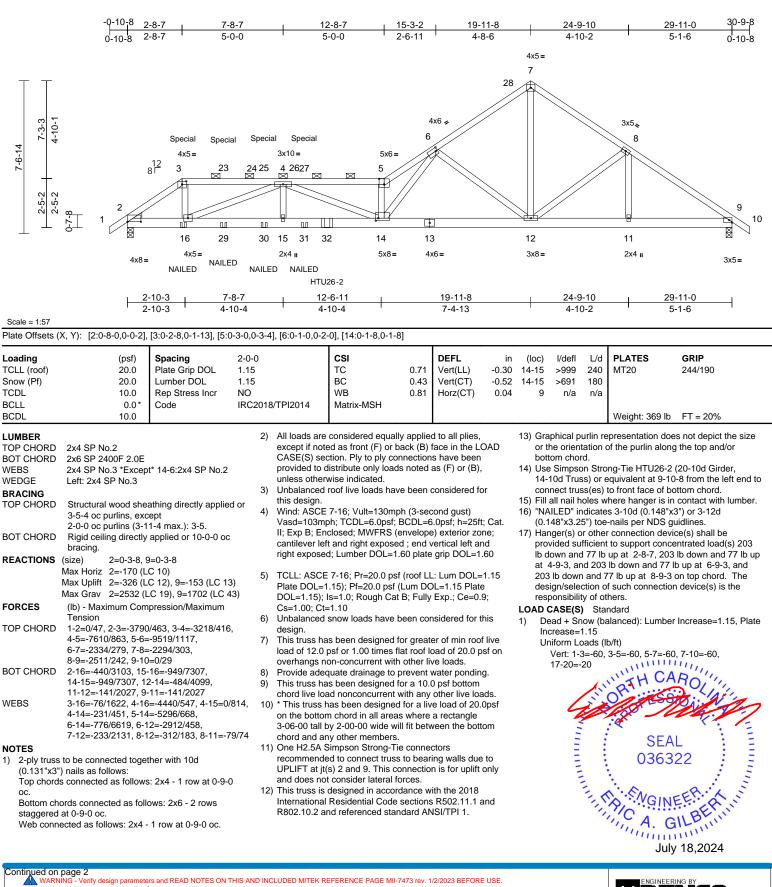
Run: 8,73 S Jul 11 2024 Print: 8,730 S Jul 11 2024 MiTek Industries, Inc. Tue Jul 16 12:36:48 ID:_gBbH22gshGpP4yuDcp_kzz5PkF-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:57

Plate Offsets (X, Y): [3:0-4-0,0-1-9]

Loading TCLL (roof) Snow (Pf) TCDL	(psf) 20.0 20.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES		CSI TC BC WB	0.96 0.75 0.96	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.26 -0.60 0.10	(loc) 12-13 12-13 8	l/defl >999 >598 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCLL BCDL	0.0* 10.0	Code	IRC2018	3/TPI2014	Matrix-MSH							Weight: 154 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES	2x4 SP No.2 2x4 SP No.1 2x4 SP No.3 Left: 2x4 SP No.3 Right: 2x4 SP No.3 Structural wood shee except 2-0-0 oc purlins (2-8 Rigid ceiling directly bracing. 1 Row at midpt (size) 2=0-3-8, § Max Horiz 2=-170 (L Max Uplift 2=-168 (L Max Grav 2=1281 (L (lb) - Maximum Com Tension 1-2=0/46, 2-3=-1980 4-5=-3204/323, 5-6= 6-7=-1736/218, 7-8= 2-13=-203/1599, 12- 10-12=-323/3174, 8- 3-13=-4/850, 4-13=- 5-12=-164/111, 5-10 6-10=-87/1264, 7-10	-1 max.): 3-5. applied or 10-0-0 oc 5-10 3=0-3-8 C 12) C 14), 8=-89 (LC 15) C 21), 8=1342 (LC 4 pression/Maximum /206, 3-4=-1594/207 -1264/179, -1914/196, 8-9=0/29 13=-370/2808, 10=-81/1527 1456/195, 4-12=0/69 =-2486/323, =-324/179	3) 4) 5) 7, 7) 9 8) 93, 9) 10	Vasd=103mg II; Exp B; En and C-C Ext to 7-2-7, Inte 16-11-8 to 22 Exterior(2E) right expose for members Lumber DOL TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct Unbalanced design. This truss ha load of 12.0 overhangs n Provide aded This truss ha chord live loa * This truss ha chord live loa * This truss ha chord and ar One H2.5A S recommende UPLIFT at jt(and does no) This truss is International R802.10.2 ai	7-16; Vult=130mp bh; TCDL=6.0psf; closed; MWFRS (erior(2E) -0-10-8 t irior (1) 7-2-7 to 11 2-11-8, Interior (1) 27-9-8 to 30-9-8 z d; end vertical lef and forces & MW =1.60 plate grip E : 7-16; Pr=20.0 psf ls=1.0; Rough Ca =1.10 snow loads have show loa	BCDL=6 envelope o 2-1-8, 6-11-8, E 22-11-8, E 22-12-8,	.0psf; h=25ft e) exterior zo Exterior(2R) to 27-9-8, titlever left ar tt exposed;C reactions shi t: Lum DOL= L=1.15 Plate Exp.; Ce=0. asidered for t er of min rooi oad of 20.0 p ve loads. water pondin 0 psf bottom other live loa e load of 20.2 p ve loads. water pondin 0 psf bottom other live loa a rectangle veen the bott ctors ng walls due n is for uplift th the 2018 R502.11.1 a ISI/TPI 1.	ne 2-1-8 -C own; 1.15 9; his f live sf on g. ads. Opsf om e to only and				ORTH CA	
			LC	or the orienta bottom choro AD CASE(S)		along the	top and/or					in min	LBE 111

July 18,2024


Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	76 Farm at Neills Creek-Roof-Millhaven 2 BR5 GRH
24070012-A	A12	Roof Special Girder	1	2	I66899241 Job Reference (optional)

Run: 8.73 S Jul 11 2024 Print: 8.730 S Jul 11 2024 MiTek Industries, Inc. Tue Jul 16 12:36:48 ID:9KPcjRbvGWwRI_uXMZ7X3Tz5PjY-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITER REFERENCE PAGE MIT-4/3 rev. 1/2/2/2/3 BEFORE USE. Design valid for use only with MiTeR& connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Crieria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

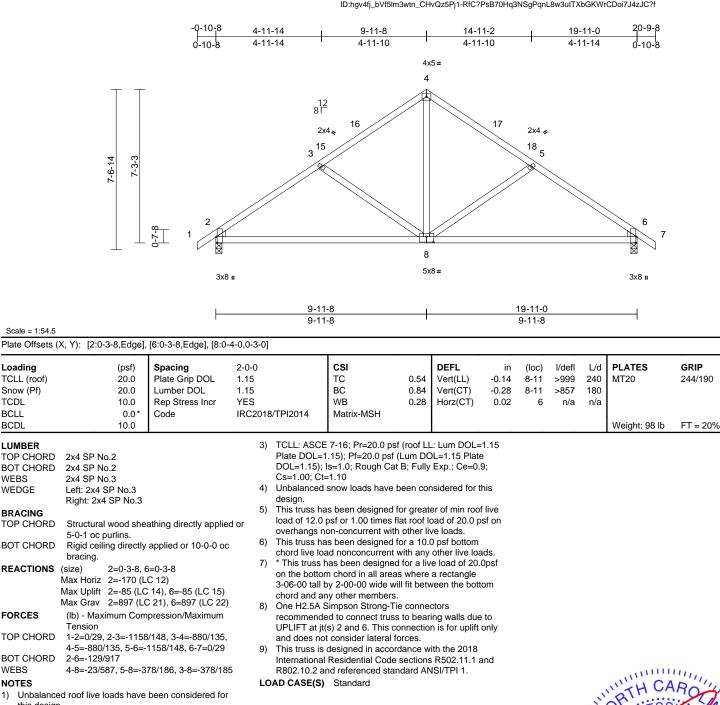
A MiTek Af 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	76 Farm at Neills Creek-Roof-Millhaven 2 E	
24070012-A	A12	Roof Special Girder	1	2	Job Reference (optional)	166899241
Carter Components (Sanford, NC), Sanford, NC - 27332,			Jul 11 2024 Print: 8.7	30 S Jul 11 2	2024 MiTek Industries, Inc. Tue Jul 16 12:36:48	Page: 2

Run: 8.73 S Jul 11 2024 Print: 8.730 S Jul 11 2024 MiTek Industries, Inc. Tue Jul 16 12:36:48 ID:9KPcjRbvGWwRI_uXMZ7X3Tz5PjY-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Concentrated Loads (lb)

Vert: 3=-175 (F), 16=-82 (F), 23=-175 (F), 25=-175 (F), 27=-175 (F), 29=-82 (F), 30=-82 (F), 31=-82 (F), 32=-625 (F)


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	76 Farm at Neills Creek-Roof-Millhaven 2 BR5 GRH
24070012-A	B01	Common	1	1	I66899242 Job Reference (optional)

Run: 8 73 S. Jul 11 2024 Print: 8 730 S. Jul 11 2024 MiTek Industries. Inc. Tue Jul 16 12:36:49 ID:hgv4fj_bVf5lm3wtn_CHvQz5Pj1-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 6-11-8. Exterior(2R) 6-11-8 to 12-11-8. Interior (1) 12-11-8 to 17-9-8, Exterior(2E) 17-9-8 to 20-9-8 zone; cantilever left and right exposed ; end vertical left and right exposed:C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

NOTES

Scale = 1:54.5

Loading

TCLL (roof)

Snow (Pf)

LUMBER

TOP CHORD

BOT CHORD

TCDL

BCLL

BCDL

WEBS

WEDGE

BRACING

TOP CHORD

BOT CHORD

REACTIONS

FORCES

WEBS

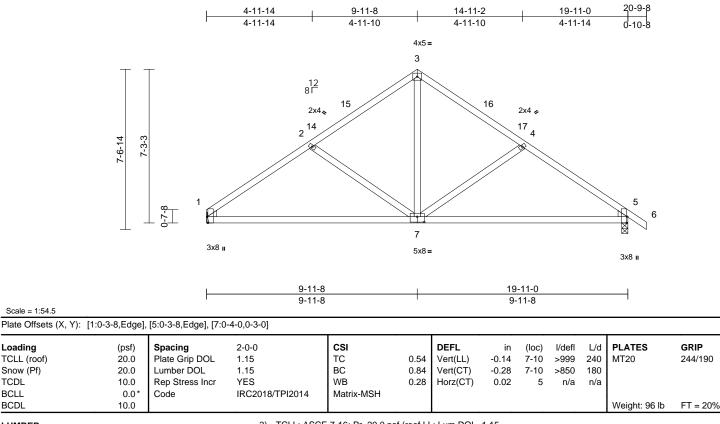
TOP CHORD

BOT CHORD

1) this design.

SEAL 036322 G mm July 18,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	76 Farm at Neills Creek-Roof-Millhaven 2 BR5 GRH
24070012-A	B02	Common	2	1	I66899243 Job Reference (optional)

Run: 8 73 S. Jul 11 2024 Print: 8 730 S. Jul 11 2024 MiTek Industries. Inc. Tue Jul 16 12:36:49 ID:LA2KTOW8ggAHa3RN?I07qCz5Pje-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

GRIP

244/190

Scale = 1:54.5

Loading

TCLL (roof)

Snow (Pf)

TCDL

BCLL

BCDL

Unbalanced roof live loads have been considered for 1) this design.

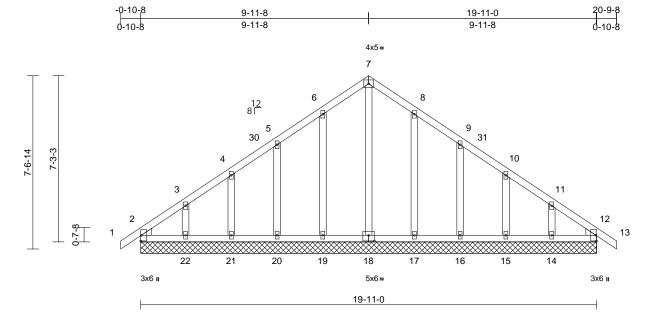
Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II: Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior (1) 3-0-0 to 6-11-8, Exterior(2R) 6-11-8 to 12-11-8, Interior (1) 12-11-8 to 17-9-8, Exterior(2E) 17-9-8 to 20-9-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10

- 4) Unbalanced snow loads have been considered for this desian.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections. 8)
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 68 lb uplift at joint
- 10) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 5. This connection is for uplift only and
- does not consider lateral forces. 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent bucking of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	76 Farm at Neills Creek-Roof-Millhaven 2 BR5 GRH
24070012-A	B03	Common Supported Gable	1	1	I66899244 Job Reference (optional)

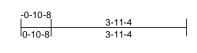
Run: 8.73 S Jul 11 2024 Print: 8.730 S Jul 11 2024 MiTek Industries. Inc. Tue Jul 16 12:36:49 ID:HNINbW9OCzrmRD_ZcxTZTNz5Pip-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

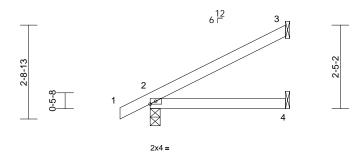
Scale = 1:50.3

Plate Offsets (X, Y): [18:0-3-0,0-3-0]

	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1	-							-	
Loading	(psf)	Spacing	1-11-4	CSI	DEFL ir	n (loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC 0.0	8 Vert(LL) n/a	a -	n/a	999	MT20	244/190	
Snow (Pf)	20.0	Lumber DOL	1.15	BC 0.0	5 Vert(CT) n/a	a -	n/a	999			
TCDL	10.0	Rep Stress Incr	YES	WB 0.1	3 Horz(CT) 0.00) 12	n/a	n/a			
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH							
BCDL	10.0								Weight: 120 lb	FT = 20%	
LUMBER			TOP CHORE							erwise indicated.	
TOP CHORD				4-5=-101/85, 5-6=-89/11					ntinuous bottom	chord bearing.	
BOT CHORD				7-8=-110/176, 8-9=-84/1					ed at 2-0-0 oc.	10.0 (1 "	
OTHERS	2x4 SP No.3			10-11=-71/39, 11-12=-1 2-22=-91/126, 21-22=-5					en designed for a		
WEDGE	Left: 2x4 SP No.3		BUT CHURL	20-21=-54/126, 21-22=-5						any other live loads.	
	Right: 2x4 SP No.3			17-19=-54/126, 16-17=-		11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle					
BRACING				15-16=-54/126, 14-15=-						between the bottom	
TOP CHORD		athing directly applied	dor	12-14=-54/126	J-7/120,				er members.	between the bottom	
	6-0-0 oc purlins.	applied at 10.0.0 as	WEBS	7-18=-134/27, 6-19=-21	2/81. 5-20=-176/88.					others) of truss to	
BOT CHORD		applied or 10-0-0 oc		4-21=-139/83, 3-22=-13						ng 39 lb uplift at joint	
	bracing.			9-16=-176/88, 10-15=-1						at joint 19, 59 lb uplift	
REACTIONS		0, 12=19-11-0,	NOTES							B lb uplift at joint 22,	
		-0, 15=19-11-0,		ed roof live loads have bee	n considered for					joint 16, 50 lb uplift at	
		-0, 17=19-11-0, -0, 19=19-11-0,	this desid			join	t 15, 81	lb upli	ft at joint 14, 39 ll	uplift at joint 2 and 2	
		-0, 21=19-11-0,		، CE 7-16; Vult=130mph (3-د	econd aust)	İb u	iplift at jo	pint 12			
		-0, 23=19-11-0,		3mph; TCDL=6.0psf; BCDL					ned in accordan		
	27=19-11			Enclosed; MWFRS (envelo						tions R502.11.1 and	
	Max Horiz 2=-164 (L			Corner(3E) -0-10-8 to 1-11-		R80	02.10.2 a	and ref	ferenced standar	d ANSI/TPI 1.	
	Max Uplift 2=-39 (LC		1-11-8 to	6-11-8, Corner(3R) 6-11-8	to 12-11-8, Exterior	LOAD	CASE(S)) Sta	ndard		
		.C 15), 15=-50 (LC 15) (2N) 12-1	1-8 to 17-9-8, Corner(3E) 1	7-9-8 to 20-9-8				OPTES		
		.C 15), 17=-55 (LC 15		ntilever left and right expose	d; end vertical left				minin	1111.	
		.C 14), 20=-59 (LC 14		exposed;C-C for members	and forces &				WHILL CA	Pall	
		.C 14), 22=-88 (LC 14		for reactions shown; Lumbe	r DOL=1.60 plate			1	allion	0111	
		C 10), 27=-2 (LC 11)	grip DOL					E.	O' . EFSE	De Alle	
	Max Grav 2=160 (LC), 3) Truss de	signed for wind loads in the				77	201-	Na ZI	
		_C 26), 15=161 (LC 2	6). only. For	studs exposed to wind (no			-	ļ	:0		
		_C 22), 17=251 (LC 2	 see Stan 	dard Industry Gable End De			-	() (
	18=161 (L	_C 28), 19=251 (LC 2		t qualified building designer					SEA	L : =	
	20=215 (L	_C 21), 21=159 (LC 2		SCE 7-16; Pr=20.0 psf (roof			=	:	0262	22 : =	
		_C 30), 23=160 (LC 2	Plate DO	L=1.15); Pf=20.0 psf (Lum			1		0303	44 <u>;</u> ; ;	
	27=141 (L	_C 22)		5); Is=1.0; Rough Cat B; Fu	iiy ⊨xp.; Ce=0.9;				1	1. 5	
FORCES	(lb) - Maximum Com Tension	pression/Maximum		Ct=1.10 ced snow loads have been of	considered for this		5	1.0	SEA 0363	L 22 ILBERTITI	
			design.					1	SUGIN	5. 24 5	
				s has been designed for gre				1	1, CAR	II BEIN	
				2.0 psf or 1.00 times flat roc					111. 0		
			overhang	s non-concurrent with othe	live loads.				20000	HIL.	


July 18,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Job	Truss	Truss Type	Qty	Ply	76 Farm at Neills Creek-Roof-Millhaven 2 BR5 GRH
24070012-A	J01	Jack-Open	4	1	l66899245 Job Reference (optional)

Run: 8.73 S Jul 11 2024 Print: 8.730 S Jul 11 2024 MiTek Industries, Inc. Tue Jul 16 12:36:50 ID:DxlrIIZekvgj3hl9E843_2z5Pja-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

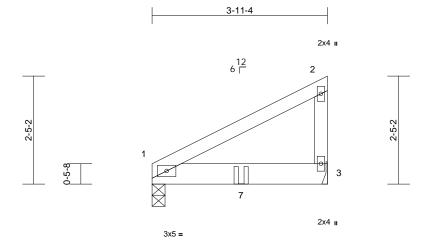
Special

Special

3-11-4

Scale = 1:33.5

Scale = 1:33.5														
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	20.0 20.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	/TPI2014	CSI TC BC WB Matrix-MP	0.32 0.21 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.02 -0.03 0.00	(loc) 4-7 4-7 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 14 lb	GRIP 244/190 FT = 20%	
BOT CHORD 3-11-4 oc Rigid ceilir bracing. REACTIONS (size) Max Horiz Max Uplift Max Grav FORCES (lb) - Maxin Tension	b.2 wood sheat purlins. ng directly a 2=0-3-8, 3= Mechanical 2=85 (LC 1- 2=-23 (LC 1- 2=-23 (LC 1- 2=-23 (LC 1- 4=-115 (LC mum Compi 2-3=-111/63 5 t=130mph (; =6.0psf; BCI WFRS (envi- zone; cantile left and righ AMVFRS fo te grip DOL= =20.0 psf (ro 20.0 psf (Lur bugh Cat B; ds have been esigned for g 0 times flat r rent with off	4) 14), 3=-81 (LC 14) 21), 3=235 (LC 21), 7) ression/Maximum 3 3-second gust) DL=6.0psf; h=25ft; (elope) exterior zone aver left and right tt exposed; C-C for or reactions shown; =1.60 bof LL: Lum DOL=1. m DOL=1.15 Plate Fully Exp.; Ce=0.9; n considered for this greater of min roof li roof load of 20.0 psf her live loads. a 10.0 psf bottom	d or 7) 8) 9) 10) 11) 12) Cat. 13) LO. 1) 15 s ive on	on the botton 3-06-00 tall b chord and ar Refer to girdt Provide mech bearing plate 3. One H2.5A S recommende UPLIFT at jt(does not com This truss is International R802.10.2 ar Hanger(s) or provided suff lb down and down at 3-10 of such conn others. In the LOAD of the truss as AD CASE(S) Dead + Snc Increase=1. Uniform Loa Vert: 1-3: Concentrate	ow (balanced): Lun 15	s where Il fit betw Joint 2 L uss con a (by oth anding 8 e connet to bear ion is for 3. dance w sections dard AN device(s oncentra 6 on top rd. The the resp loads a F) or ba	a rectangle veen the bott Jser Defined nections. ers) of truss 11 lb uplift at ctors ing walls due r uplift only a ith the 2018 & R502.11.1 a ISI/TPI 1.) shall be ated load(s) 1 chord, and 4. design/selec ponsibility of pplied to the ck (B).	to joint e to nd and 130 4 lb xtion				SEA 0363	EEPER I	Manual Contraction


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

SINEERING

Job	Truss	Truss Type	Qty	Ply	76 Farm at Neills Creek-Roof-Millhaven 2 BR5 GRH
24070012-A	J02	Jack-Closed Girder	1	2	I66899246 Job Reference (optional)

Run: 8.73 S Jul 11 2024 Print: 8.730 S Jul 11 2024 MiTek Industries, Inc. Tue Jul 16 12:36:51 ID:DxIrIIZekvgj3hl9E843_2z5Pja-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

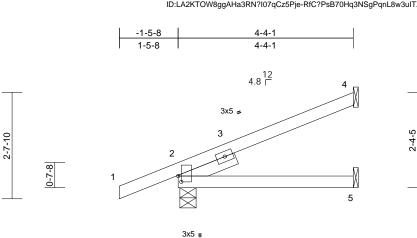
Page: 1

LUS26

3-11-4

Scale = 1:25.9

Loading TCLL (roof)(psf) 20.0Spacing Plate Grip DOL2-0-0 1.15CSI TCDEFLin(loc)l/deflTCLL (roof)20.0Plate Grip DOL1.15TC0.22Vert(LL)-0.023-6>999TCDL10.0Rep Stress IncrNOWB0.00Vert(CT)-0.033-6>999TCDL0.0*CodeIRC2018/TPI2014Matrix-MPVert(CT)-0.001n/aBCDL10.0CodeIRC2018/TPI2014Matrix-MPVert(CT)0.001n/aLUMBER TOP CHORD2x4 SP No.2SSSSSSSSBCT CHORD2x4 SP No.2SSS<	
BOT CHORD 2x6 SP No.2 WEBS 2x4 SP No.3 BRACING	L/d PLATES GRIP 240 MT20 244/190 180
 Tension TOP CHORD 1-2=-212/62, 2-3=-168/40 BOT CHORD 1-3=-35/189 UPLIFT at jt(s) 1. This connection is for uplift only and does not consider lateral forces. 12-ply truss to be connected together as follows: Top chords connected with 10d (0.131"x3") nails as follows: 2x4 - 1 row at 0-9-0 oc. Bottom chords connected with 10d (0.131"x3") nails as follows: 2x4 - 2 rows staggered at 0-9-0 oc. All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated. Winc: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed ; lum DOL=1.15 Plate DOL=1.15); Pl=20.0 psf (tum DOL=1.15 Plate DOL=1.15); Pl=20.0 psf (tum DOL=1.15 Plate DOL=1.10); Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 UPLL: ASCE 7-16; PT=20.0 psf (cord LL: Lum DOL=1.15 Plate DOL=1.10); Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 	SEAL 036322


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

July 18,2024

Job	Truss	Truss Type	Qty	Ply	76 Farm at Neills Creek-Roof-Millhaven 2 BR5 GRH
24070012-A	J03	Jack-Open	1	1	I66899247 Job Reference (optional)

Run: 8.73 S Jul 11 2024 Print: 8.730 S Jul 11 2024 MiTek Industries, Inc. Tue Jul 16 12:36:51 ID:LA2KTOW8ggAHa3RN?I07qCz5Pje-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:28.6

Plate Offsets (X, Y): [2:0-1-12,0-0-15]

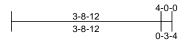
	X, 1). [2.0-1-12,0-0-1	0]											
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/	/TPI2014	CSI TC BC WB Matrix-MP	0.33 0.23 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.02 -0.04 0.01	(loc) 5-8 5-8 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 18 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD SLIDER BRACING TOP CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD NOTES 1) Wind: ASC Vasd=103 II; Exp B; E and C-C C 4-3-5 zone vertical left forces & M DOL=1.60 2) TCLL: ASC Plate DOL DOL=1.15 Cs=1.00; C	2x4 SP No.2 2x4 SP No.2 Left 2x4 SP No.3 Structural wood she 4-4-1 oc purlins. Rigid ceiling directly bracing. (size) 2=0-4-13, Mechanic Max Horiz 2=81 (LC Max Grav 2=396 (LC 5=75 (LC (Ib) - Maximum Com Tension 1-2=0/50, 2-4=-193/: 2-5=-84/125 CE 7-16; Vult=130mph mph; TCDL=6.0psf; B6 Enclosed; MWFRS (er corner (3) -1-5-8 to 2-9 e; cantilever left and rig t and right exposed; C- IWFRS for reactions s plate grip DOL=1.60 CE 7-16; Pr=20.0 psf (L :1.15); Pf=20.0 psf (L); Is=1.0; Rough Cat E	athing directly applie applied or 10-0-0 oc 4= Mechanical, 5= al 14) (10), 4=-48 (LC 14) (2 21), 4=156 (LC 21) 7) (2), 4=156 (LC 21) 7) (3)-second gust) CDL=6.0psf; h=25ft; ivelope) exterior zono- 7, Exterior(2R) 2-9- 7, exterior(2R) 2-9- 7	6) d or 7) 8) 9) 10) , 11) LO, Cat. e 7 to	chord live loa * This truss h on the bottom 3-06-00 tall b chord and ar Bearings are Refer to girdd Provide mech bearing plate 4. One H2.5A S recommende UPLIFT at jt(does not com This truss is International	s been designed fi d nonconcurrent v as been designed n chord in all areas y 2-00-00 wide wil y other members. assumed to be: , , er(s) for truss to tr nanical connection capable of withsta simpson Strong-Tie d to connect truss s) 2. This connecti sider lateral forces designed in accord Residential Code nd referenced stan Standard	with any for a liv s where Il fit betw Joint 2 I uss con (by oth anding 2 e conne to bear ion is foi s. dance w sections	other live load e load of 20.0 a rectangle ween the botti Jser Defined nections. ers) of truss t 8 lb uplift at j ctors ing walls due uplift only ar ith the 2018 s R502.11.1 a	Opsf om to joint to nd			it	SEA 0363	
load of 12.	has been designed for 0 psf or 1.00 times flat non-concurrent with c	t roof load of 20.0 psi									11	CA. C	ILBE

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	76 Farm at Neills Creek-Roof-Millhaven 2 BR5 GRH
24070012-A	M01	Monopitch	3	1	l66899248 Job Reference (optional)

1-11-3

-5-0


Run: 8.73 S Jul 11 2024 Print: 8.730 S Jul 11 2024 MiTek Industries, Inc. Tue Jul 16 12:36:51 ID:kpwBRAvCQvnw0i6yCKV0VXz5Pe_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

2x4 =

5

1-9-0

Scale = 1:28.7

												-	
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MP	0.26 0.19 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.02 0.00	(loc) 6-9 6-9 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 15 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS (M FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD NOTES 1) Wind: ASCE Vasd=103m II; Exp B; Ef	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 4-0-0 oc purlins, ex Rigid ceiling directly bracing.	cept end verticals. applied or 10-0-0 oc 6= Mechanical 13) 2 10), 6=-29 (LC 14) 2 21), 6=-224 (LC 21) apression/Maximum 6, 3-4=-8/0, 3-6=-163 (3-second gust) CDL=6.0psf; h=25ft; avelope) exterior zon	9) 10) 3/102 LO Cat.	on the bottor 3-06-00 tall b chord and ar Refer to gird Provide mec bearing plate 6. One H2.5A S recommende UPLIFT at jt(does not com) This truss is International	has been designed in chord in all areas by 2-00-00 wide wi by other members. er(s) for truss to tru hanical connection of capable of withsta Simpson Strong-Tie do to connect truss s) 2. This connect isider lateral forces designed in accord Residential Code nd referenced stan Standard	s where Il fit betw uss conr (by oth anding 2 e conne to bear ion is for s. dance w sections	a rectangle veen the bott nections. ers) of truss i 29 lb uplift at j ctors ing walls due r uplift only an ith the 2018 \$ R502.11.1 a	om to joint to nd				Weight: 15 lb	FT = 20%
 exposed ; e members ar Lumber DO 2) TCLL: ASCI Plate DOL= DOL=1.15); Cs=1.00; Ct 3) Unbalanced design. 4) This truss h load of 12.0 	nd vertical left and right nd forces & MWFRS L=1.60 plate grip DC E 7-16; Pr=20.0 psf (1.15); Pf=20.0 psf (L 1.s=1.0; Rough Cat E	ght exposed;C-Č for for reactions shown; DL=1.60 roof LL: Lum DOL=1 um DOL=1.15 Plate 3; Fully Exp.; Ce=0.9 sen considered for th r greater of min roof t roof load of 20.0 ps	.15 ; is							0.00000	THE REAL PROPERTY IN	OR FEESO SEA 0363	• –

overhangs non-concurrent with other live loads.5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

A. GILB

Job	Truss	Truss Type	Qty	Ply	76 Farm at Neills Creek-Roof-Millhaven 2 BR5 GRH
24070012-A	M02	Half Hip Girder	1	1	I66899249 Job Reference (optional)

2-0-0

2-0-0

-0-10-8

0-10-8

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Jul 11 2024 Print: 8.730 S Jul 11 2024 MiTek Industries, Inc. Tue Jul 16 12:36:51 ID:dbAiHXyjU7HMUJQjRAayfNz5Pdw-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4-0-0

2-0-0

1-5-0

Page: 1

Special 12 4 Г 4x5 = 2x4 II 3 10 A 7 • 1-1-0 2 -0-0 0 Ð 5 6 2x4 II 2x4 II 3x5 = Special

Scale = 1:32.4

CLL (roof) Snow (Pf) CDL	20.0 20.0	Plate Grip DOL			CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
CDL	20.0		1.15		TC	0.15	Vert(LL)	-0.02	6	>999	240	MT20	244/190
		Lumber DOL	1.15		BC	0.40	Vert(CT)	-0.04	6	>999	180		
	10.0	Rep Stress Incr	NO		WB	0.03	Horz(CT)	0.00	2	n/a	n/a		
SCLL	0.0*	Code	IRC2018/TP	12014	Matrix-MP								
SCDL	10.0											Weight: 15 lb	FT = 20%
UMBER OP CHORD OT CHORD	2x4 SP No.2 2x4 SP No.2		on	the bottom	as been designe chord in all are 2-00-00 wide v	as where	a rectangle	•					
VEBS	2x4 SP No.3				other members								
					r(s) for truss to t		nections.						
OP CHORD	Structural wood shea 4-0-0 oc purlins, exo 2-0-0 oc purlins: 3-4	cept end verticals, a	nd be 5.	aring plate	anical connection capable of withs	tanding 2	2 lb uplift at						
SOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 o	re	commended	mpson Strong-T d to connect trus	s to bear	ing walls due						
EACTIONS	0	8), 5=-22 (LC 8)	do 11) Th Int	es not cons is truss is d ernational F	 b) 2. This connect sider lateral force lesigned in acco Residential Code d referenced sta 	es. rdance w e sections	ith the 2018 R502.11.1 a						
ORCES	(lb) - Maximum Com Tension	pression/Maximum	,		lin representatio tion of the purlin		•	size					
OP CHORD	1-2=0/23, 2-3=-67/10	0, 3-4=-10/8, 4-5=-7		ttom chord.		along the							
OT CHORD	2-6=-13/38, 5-6=-10/	/8			other connectior	device(s) shall be						
VEBS	3-6=-153/39				cient to support			17 lb					
IOTES					lb up at 2-0-0 o								
Vasd=103 II; Exp B; cantilever	CE 7-16; Vult=130mph Bmph; TCDL=6.0psf; B(Enclosed; MWFRS (en left and right exposed sed; Lumber DOL=1.66	CDL=6.0psf; h=25ft; velope) exterior zor ; end vertical left an	Cat. de ne; res d 14) In 60 of LOAD	sign/selectionsponsibility of the LOAD (the LOAD (the truss are CASE(S)	CASE(S) sectior re noted as front Standard	ection de , loads a (F) or ba	vice(s) is the oplied to the ck (B).	face				ORTH CA	ROLIN
Plate DOL	CE 7-16; Pr=20.0 psf (l _=1.15); Pf=20.0 psf (L 5); Is=1.0; Rough Cat B Ct=1.10	um DOL=1.15 Plate	, li	ncrease=1.1 Iniform Load			rease=1.15,	Plate					L
	ed snow loads have be	en considered for th	nis C		d Loads (lb)					Ξ		0363	22 E
design.					(B), 6=-17 (B)					=			j E
	has been designed for										-		1 2
overhang	.0 psf or 1.00 times flat s non-concurrent with c	other live loads.									11	NGIN	EERA
	dequate drainage to pro		j .								11	C	BEIN
·	has been designed for	•	da									11. A. C	allun
cnora live	load nonconcurrent wi	in any other live loa	us.										1111

July 18,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	76 Farm at Neills Creek-Roof-Millhaven 2 BR5 GRH
24070012-A	M03	Jack-Open	1	1	l66899250 Job Reference (optional)

-0-10-8

0-10-8

2

0 $\stackrel{\times}{\scriptstyle \checkmark}$

2x4 =

2-0-0

2-0-0

12 4 Г

3

4

Carter Components (Sanford, NC), Sanford, NC - 27332,

1-3-3

Run: 8 73 S. Jul 11 2024 Print: 8 730 S. Jul 11 2024 MiTek Industries. Inc. Tue Jul 16 12:36:51 ID:dbAiHXyjU7HMUJQjRAayfNz5Pdw-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

2-0-0 Spacing 2-0-0 CSI DEFL l/defl L/d (psf) in (loc) 20.0 Plate Grip DOL 1.15 TC 0.07 Vert(LL) 0.00 4-7 >999 240 20.0 1 15 BC Vert(CT) Lumber DOL 0.04 0.00 4-7 >999 180 10.0 Rep Stress Incr YES WB 0.00 Horz(CT) 0.00 2 n/a n/a 0.0 Code IRC2018/TPI2014 Matrix-MP 10.0 * This truss has been designed for a live load of 20.0psf 6) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. Bearings are assumed to be: , Joint 2 User Defined . 7) Structural wood sheathing directly applied or Refer to girder(s) for truss to truss connections. 8) 2-0-0 oc purlins. Provide mechanical connection (by others) of truss to 9) Rigid ceiling directly applied or 10-0-0 oc bearing plate capable of withstanding 18 lb uplift at joint 3. 2=0-3-8, 3= Mechanical, 4= 10) One H2.5A Simpson Strong-Tie connectors Mechanical recommended to connect truss to bearing walls due to Max Horiz 2=39 (LC 10) UPLIFT at jt(s) 2. This connection is for uplift only and Max Uplift 2=-47 (LC 10), 3=-18 (LC 14) does not consider lateral forces. 2=189 (LC 21), 3=60 (LC 21), 4=34 11) This truss is designed in accordance with the 2018 (LC 7) International Residential Code sections R502.11.1 and (lb) - Maximum Compression/Maximum R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard 1-2=0/23, 2-3=-39/21

BOT CHORD NOTES

FORCES

TOP CHORD

Scale = 1:24.4 Loading

TCLL (roof)

Snow (Pf)

LUMBER

BRACING

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

REACTIONS (size)

2x4 SP No.2

2x4 SP No.2

bracing.

Max Grav

Tension

2-4=-19/30

TCDL

BCLL

BCDL

Wind: ASCE 7-16; Vult=130mph (3-second gust) 1) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 2) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

STITUTE STATE SEAL 036322 G mm July 18,2024

PLATES

Weight: 8 lb

MT20

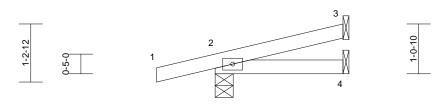
GRIP

244/190

FT = 20%

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent bucking of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932


Job	Truss	Truss Type	Qty	Ply	76 Farm at Neills Creek-Roof-Millhaven 2 BR5 GRH
24070012-A	M04	Jack-Open	1	1	l66899251 Job Reference (optional)

Run: 8.73 S Jul 11 2024 Print: 8.730 S Jul 11 2024 MiTek Industries, Inc. Tue Jul 16 12:36:51 ID:dbAiHXyjU7HMUJQjRAayfNz5Pdw-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

2-8-7

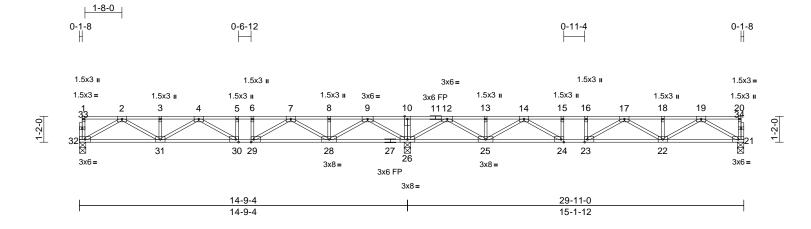
3x5 =

Scale = 1:24.4

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.13	Vert(LL)	0.00	4-7	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.06	Vert(CT)	0.00	4-7	>999	180		
CDL	10.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	2	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 10 lb	FT = 20%
UMBER OP CHORD OT CHORD RACING			on the b 3-06-00 chord ar	uss has been desig ottom chord in all a tall by 2-00-00 wide d any other membe	reas where e will fit betv ers.	a rectangle veen the botte	om					
OP CHORD		athing directly appli		are assumed to be girder(s) for truss			•					
BOT CHORD	2-8-7 oc purlins. Rigid ceiling directly bracing.	applied or 10-0-0 o	9) Provide	mechanical connect plate capable of wit	tion (by oth	ers) of truss t						
REACTIONS	0	3= Mechanical, 4=	3.		•							
	Mechanic			5A Simpson Strong ended to connect tr			to					
	Max Horiz 2=37 (LC Max Uplift 2=-69 (LC			at jt(s) 2. This conn								
	Max Grav 2=259 (LC	,, , ,	does not	does not consider lateral forces.								
	(LC 7)	5 2 1), 5-10 (LO 21)	i i i i i i i i i i i i i i i i i i i	s is designed in ac								
ORCES	(Ib) - Maximum Corr	pression/Maximum		onal Residential Co			ind					
0.1.020	Tension	procorent maximum	11002.10	.2 and referenced s	standard Ar	NSI/TPL1.						
OP CHORD	1-2=0/23, 2-3=-87/4	4	LUAD CASE	(S) Standard								
OT CHORD	2-4=-44/58											
OTES												
Vasd=103 II; Exp B; and C-C C exposed ; members Lumber D	CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; B Enclosed; MWFRS (er Corner (3) zone; cantile end vertical left and ri and forces & MWFRS IOL=1.60 plate grip DC	CDL=6.0psf; h=25ft nvelope) exterior zor ever left and right ght exposed;C-C for for reactions shown DL=1.60	ne r ı;								ORTH CA	ROLIN
Plate DOL	CE 7-16; Pr=20.0 psf (_=1.15); Pf=20.0 psf (L 5); Is=1.0; Rough Cat E Ct=1.10	um DOL=1.15 Plate	9						Z		SEA	L
) Unbalance design.	ed snow loads have be	een considered for th	his								0363	322
) This truss load of 12 overhangs	has been designed fo 0 psf or 1.00 times fla s non-concurrent with o has been designed fo	t roof load of 20.0 pather live loads.									NGIN	EERRA
<i>'</i>	load nonconcurrent w		ids.								11111	V 18 2024

SINEEDING

July 18,2024


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	76 Farm at Neills Creek-Roof-Millhaven 2 BR5 GRH
24070012-A	F01	Floor	7	1	l66899252 Job Reference (optional)

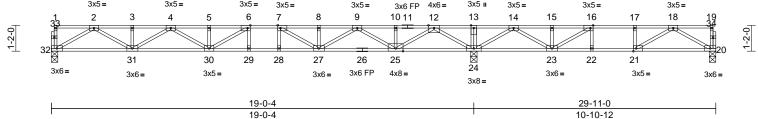
Run: 8.73 S Jul 11 2024 Print: 8.730 S Jul 11 2024 MiTek Industries. Inc. Tue Jul 16 12:36:49 ID:fCrjIltGkkqTDVyZ8TZVYuyA4Hc-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:51.9

Plate Offsets (X, Y): [23:0-1-8,Edge], [24:0-1-8,Edge], [2	9:0-1-8,Ed	dge], [30:0-1-8	,Edge]								
Loading TCLL TCDL BCLL BCDL	(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-7-3 1.00 1.00 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-MSH	0.71 0.58 0.53	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc) 22-23 22-23 21	l/defl >999 >999 n/a	L/d 480 360 n/a	PLATES MT20 Weight: 152 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing.	cept end verticals. applied or 6-0-0 oc 26=0-3-8, 32=0-3-8 .C 4), 26=1599 (LC 1	2) 3) d or 4) 5)	this design. All plates are This truss is International R802.10.2 a Recommenc 10-00-00 oc (0.131" X 3") at their outer	floor live loads ha a 3x5 MT20 unless designed in accor Residential Code nd referenced star l 2x6 strongbacks, and fastened to ex nails. Strongbac ends or restraine to not erect truss b Standard	s otherwi dance w sections ndard AN on edge ach truss ks to be d by othe	se indicated. ith the 2018 R502.11.1 a ISI/TPI 1. e, spaced at with 3-10d attached to v er means.	and					
FORCES TOP CHORD	(lb) - Maximum Com Tension 1-32=-56/0, 20-21=- 2-3=-1360/0, 3-4=-1 5-6=-1614/58, 6-7=- 8-9=-680/573, 9-10= 12-13=-683/522, 13- 14-15=-1696/0, 15-1 16-17=-1696/0, 17-1 18-19=-1411/0, 19-2	pression/Maximum 56/0, 1-2=-3/0, 360/0, 4-5=-1614/58, 1614/58, 7-8=-680/5 0/2040, 10-12=0/204 14=-683/522, 6=-1696/0, 8=-1411/0, 20=-3/0	73, 40,										
BOT CHORD	31-32=0/827, 30-31: 28-29=-308/1253, 20 25-26=-925/0, 24-25 23-24=0/1696, 22-23	6-28=-990/0,	,							4	in	ORTHOR	RO INIT
WEBS NOTES	9-28=0/1089, 2-31= 3-31=-126/0, 7-28=- 7-29=0/639, 4-30=-3 6-29=-213/0, 12-26= 12-25=0/1114, 19-2: 18-22=-124/0, 14-25	777/0, 4-31=-308/67 324/57, 5-30=-19/81, 1398/0, 19-21=-983	/0, /0, /47,										

July 18,2024



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	76 Farm at Neills Creek-Roof-Millhaven 2 BR5 GRH
24070012-A	F02	Floor	11	1	I66899253 Job Reference (optional)

Run: 8.73 S Jul 11 2024 Print: 8.730 S Jul 11 2024 MiTek Industries. Inc. Tue Jul 16 12:36:49 ID:jMnp0FGKCZsx3QOj0B8?reyA4H6-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:51.9

TOP CHORD

BOT CHORD

WEBS

OTHERS

BRACING

TOP CHORD

BOT CHORD

FORCES

TOP CHORD

BOT CHORD

WEBS

REACTIONS (size)

2x4 SP No.2(flat)

2x4 SP No.2(flat)

2x4 SP No.3(flat)

2x4 SP No.3(flat)

Max Uplift 20=-47 (LC 3)

bracing.

Max Grav

Tension

Structural wood sheathing directly applied or

20=0-3-8, 24=0-3-8, 32=0-3-8

20=376 (LC 4), 24=1636 (LC 1),

2-2-0 oc purlins, except end verticals.

32=726 (LC 3)

1-32=-57/0, 19-20=-55/2, 1-2=-3/0, 2-3=-1964/0, 3-4=-1964/0, 4-5=-2867/0, 5-6=-2867/0, 6-7=-2845/0, 7-8=-2369/0, 8-9=-2369/0, 9-10=-832/143, 10-12=-832/143, 12-13=0/2179,

13-14=0/2179, 14-15=-450/946. 15-16=-450/946, 16-17=-774/421,

17-18=-774/421. 18-19=-3/0

24-25=-710/0, 23-24=-1322/0,

18-20=-611/143, 14-23=0/846, 18-21=-346/283, 15-23=-128/72,

20-21=-124/532

22-23=-421/774, 21-22=-421/774,

(Ib) - Maximum Compression/Maximum

31-32=0/1132, 30-31=0/2523, 29-30=0/2845, 28-29=0/2845, 27-28=0/2845, 25-27=0/1721,

13-24=-160/0, 12-24=-1700/0, 2-32=-1305/0, 12-25=0/1400, 2-31=0/971, 10-25=-140/0,

17-21=-127/125, 16-23=-849/0, 16-22=0/148

3-31=-138/0, 9-25=-1082/0, 4-31=-653/0, 9-27=0/798, 4-30=0/401, 8-27=-155/41, 5-30=-210/0, 7-27=-778/0, 6-30=-258/354 6-29=-146/39, 7-28=-20/165, 14-24=-1162/0,

Rigid ceiling directly applied or 2-2-0 oc

Plate Offsets (X, Y	Plate Offsets (X, Y): [6:0-1-8,Edge], [7:0-1-8,Edge], [16:0-1-8,Edge], [21:0-1-8,Edge]											
Loading	(psf)	Spacing	1-7-3	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	0.92	Vert(LL)	-0.28	29-30	>823	480	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.99	Vert(CT)	-0.37	29-30	>609	360		
BCLL	0.0	Rep Stress Incr	YES	WB	0.67	Horz(CT)	0.05	24	n/a	n/a		
BCDL	5.0	Code	IRC2018/TPI2014	Matrix-MSH							Weight: 151 lb	FT = 20%F, 11%E
LUMBER			NOTES									

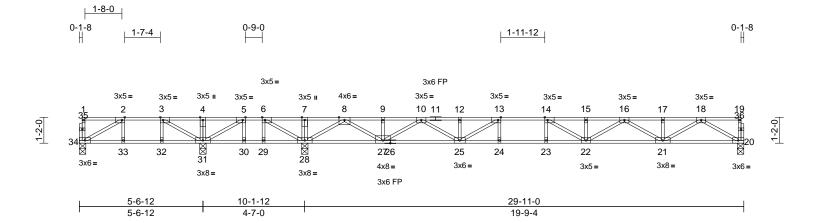
N	0
N	U

- 1) Unbalanced floor live loads have been considered for
- this design.
- 2) All plates are 1.5x3 MT20 unless otherwise indicated.
- 3) One H2.5A Simpson Strong-Tie connectors
- recommended to connect truss to bearing walls due to UPLIFT at jt(s) 20. This connection is for uplift only and does not consider lateral forces.
- This truss is designed in accordance with the 2018 4) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
 - 5) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means. 6) CAUTION, Do not erect truss backwards.

LOAD CASE(S) Standard

TH CAD RTH VIIIIIIIIIII SEAL 036322 G minin

July 18,2024


Page: 1

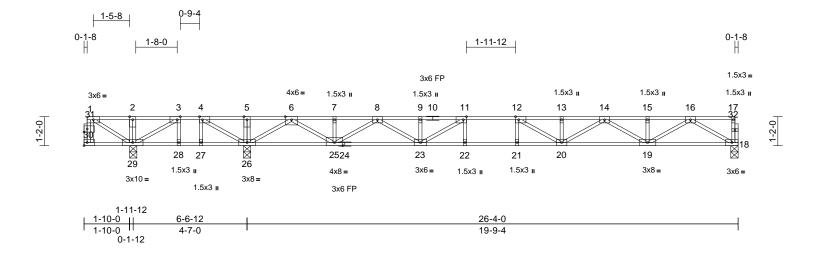
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent bucking of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	76 Farm at Neills Creek-Roof-Millhaven 2 BR5 GRH
24070012-A	F03	Floor	2	1	I66899254 Job Reference (optional)

Run: 8.73 S Jul 11 2024 Print: 8.730 S Jul 11 2024 MiTek Industries, Inc. Tue Jul 16 12:36:49 ID:BqtdnPUdz57NDBmA4zTDaRyA4Gq-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:51.9

oading	(psf)	Spacing	1-7-3		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	(psi) 40.0	Plate Grip DOL	1.00		TC	0.84	Vert(LL)	-0.31		>754	480	MT20	244/190
CDL	10.0	Lumber DOL	1.00		BC	0.93	Vert(CT)		22-23	>549	360	11120	210100
CLL	0.0	Rep Stress Incr	YES		WB	0.69	Horz(CT)	0.04	20	n/a	n/a		
BCDL	5.0	Code	IRC201	8/TPI2014	Matrix-MSH							Weight: 152 lb	FT = 20%F, 11%E
JMBER			W	/EBS	4-31=-207/0, 7-28	=-100/0,	3-31=-515/0						
OP CHORD	2x4 SP No.1(flat) *E No.2(flat)	xcept* 11-19:2x4 SP			2-34=-260/124, 2- 5-31=0/980, 6-28=).					
OT CHORD	2x4 SP No.2(flat) *E	xcept* 26-20:2x4 SP			6-29=0/256, 8-28= 8-27=0/1454, 18-2	-1805/0	18-20=-134	7/0,					
/EBS	No.1(flat) 2x4 SP No.3(flat)				17-21=-137/0, 10-2			,					
THERS	2x4 SP No.3(flat)			10-25=0/829, 16-22=0/446, 12-25=-147/72,									
RACING			15-22=-217/1, 13-25=-892/0,										
OP CHORD	Structural wood she	athing directly applied	dor		14-22=-349/298,	3-24=-1	6/185,						
	5-7-10 oc purlins, e				14-23=-158/44								
OT CHORD	Rigid ceiling directly	applied or 2-2-0 oc		OTES									
	bracing.		1)		d floor live loads ha	ve been	considered to	or					
EACTIONS		, 28=0-3-8, 31=0-3-8,	2)	this design.	re 1.5x3 MT20 unle	es other	wise indicate	Ч					
	34=0-3-8 Max Uplift 31=-66 (L		3)		Simpson Strong-T			u.					
	Max Grav 20=747 (I		-,		led to connect trus			to					
		LC 3), 34=207 (LC 3)	,,		t(s) 34 and 31. Thi			ift					
ORCES	(lb) - Maximum Com				es not consider lat								
	Tension		4)		designed in accor								
OP CHORD	1-34=-81/0, 19-20=-				al Residential Code and referenced sta			ind					
	2-3=-231/106, 3-4=0	, ,	5)		d 2x6 strongbacks								
	5-6=0/1190, 6-7=0/2		- /		and fastened to e								111.
	,	90/0, 10-12=-2357/0,			") nails. Strongbad			alls				W'UL CA	Dalle
	12-13=-2357/0, 13-1 14-15=-3013/0, 15-1	,			r ends or restraine							"aTH UA	TO 111
	,	18=-2032/0, 18-19=-3	(0 6)	CAUTION,	Do not erect truss	backwar	ds.				S	OF	1 Alin
OT CHORD	33-34=-106/231, 32		Ľ	OAD CASE(S) Standard						in	10	No St
	31-32=-106/231, 30										-	:0	K. 1.
	29-30=-1190/0, 28-2	29=-1190/0, 27-28=-6	17/0,							-		054	
		5=0/2985, 23-24=0/29								=		SEA	•
	22-23=0/2985, 21-2	2=0/2630, 20-21=0/1	168									0363	22 : 3
										-		O363	
											-	3	- 1 E
											20	N.S.NOW	FRIAN
											1	P. GIN	E. CR.
											1	1, A. G	IL BEIN
												A. G	in the second se

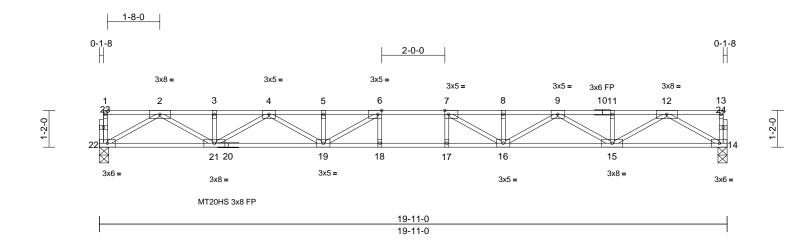

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

A. GILP

Job	Truss	Truss Type	Qty	Ply	76 Farm at Neills Creek-Roof-Millhaven 2 BR5 GRH
24070012-A	F04	Floor	2	1	I66899255 Job Reference (optional)

Run: 8.73 S Jul 11 2024 Print: 8.730 S Jul 11 2024 MiTek Industries, Inc. Tue Jul 16 12:36:50 ID:Q5ztp6?brJYHtoZR5VkJqWyA4G9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:46.4


Plate Offsets	(X, Y): [3:0-1-8,Edge],	[4:0-1-8,Edge], [11:0)-1-8,Edg	e], [12:0-1-8,E	dge], [31:0-1-8,0-1	-8]							
Loading TCLL TCDL BCLL BCDL	(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-7-3 1.00 1.00 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.88 0.93 0.69	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.31 -0.43 0.04	(loc) 20-21 20-21 18	l/defl >750 >547 n/a	L/d 480 360 n/a	PLATES MT20 Weight: 137 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	No.2(flat) 2x4 SP No.2(flat) *E No.1(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) Structural wood she 5-7-10 oc purlins, e Rigid ceiling directly bracing. (size) 18=0-3-8, Max Uplift 29=-230 (Max Grav 18=753 (I	xcept* 24-18:2x4 SP athing directly applie xcept end verticals. applied or 2-2-0 oc 26=0-3-8, 29=0-3-8 LC 5) _C 11), 26=1630 (LC	2) 3) 4) d or 5) 4)	this design. All plates are One H2.5A ½ recommend UPLIFT at jt does not cor This truss is International R802.10.2 a Recommenc 10-00-00 oc (0.131" X 3" at their outer	floor live loads have a 3x5 MT20 unless Simpson Strong-T ed to connect trus (s) 29. This conne sider lateral force designed in accoo Residential Code nd referenced sta 2 x6 strongbacks and fastened to e nails. Strongbac c ends or restraine bo not erect truss Standard	s otherwi ie conne s to bear ction is f s. rdance w e sections ndard AN , on edge each truss ks to be ed by othe	se indicated. ctors ing walls due or uplift only ith the 2018 SISUTPI 1. e, spaced at a with 3-10d attached to v er means.	e to and and					
FORCES	29=243 (l (lb) - Maximum Com												
TOP CHORD	2-3=-31/81, 3-4=0/1 5-6=0/2092, 6-7=-78 8-9=-2430/0, 9-11=- 12-13=-3051/0, 13-1	025, 4-5=0/2092, 34/0, 7-8=-784/0, 2430/0, 11-12=-3041	,									WITH CA	Route
BOT CHORD	29-30=0/0, 28-29=-1 26-27=-1025/0, 25-2	1025/0, 27-28=-1025/ 26=-547/0, 23-25=0/1 2=0/3041, 20-21=0/3	0, 735,							9	1 E	OFES	No.
WEBS	2-29=-252/0, 5-26=- 3-29=0/1105, 4-26= 4-27=0/292, 6-26=-1 6-25=0/1446, 16-19: 15-19=-136/0, 8-25=	90/0, 1-29=-95/36, -1406/0, 3-28=-282/0 1801/0, 16-18=-1359/ =0/1021, 7-25=-134/0 -1122/0, 14-19=-709 0/456, 9-23=-150/73, 3=-883/0,	, 0,), /(0,							11111111111111111111111111111111111111		SEA 0363	22 EER RUU

July 18,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	76 Farm at Neills Creek-Roof-Millhaven 2 BR5 GRH
24070012-A	F05	Floor	8	1	I66899256 Job Reference (optional)

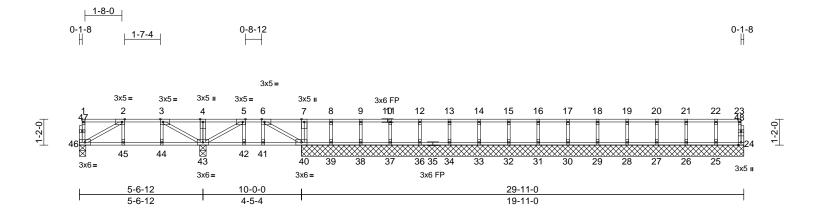
Run: 8,73 S Jul 11 2024 Print: 8,730 S Jul 11 2024 MiTek Industries, Inc. Tue Jul 16 12:36:50 ID:YsnD6MMQmXJ0TPsCroGL2qyA4Fh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:36.6

Plate Offsets (X, Y): [6:0-1-8,Edge], [7:0-1-8,Edge]

Plate Offsets (∧, Y): [6:0-1-8,Edge],	[7:0-1-8,Edge]										
Loading TCLL TCDL BCLL BCDL	(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-7-3 1.00 1.00 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MSH	0.60 0.88 0.58	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc) 17-18 17-18 14	l/defl >623 >452 n/a	L/d 480 360 n/a	PLATES MT20HS MT20 Weight: 100 lb	GRIP 187/143 244/190 FT = 20%F, 11%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD	2x4 SP No.2(flat) 2x4 SP No.2(flat) *E: No.1(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) Structural wood shea		10-00-00 oc (0.131" X 3' at their oute LOAD CASE(S	d 2x6 strongbacks, and fastened to ea) nails. Strongback r ends or restrained Standard	ich truss is to be	with 3-10d attached to w	valls					
BOT CHORD	5-7-14 oc purlins, e: Rigid ceiling directly bracing.	xcept end verticals. applied or 10-0-0 oc										
REACTIONS	· · · · · · · · · · · · · · · · · · ·											
Max Grav 14=860 (LC 1), 22=860 (LC 1) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-22=-57/0, 13-14=-57/0, 1-2=-3/0, 2-3=-2414/0, 3-4=-2414/0, 4-5=-3739/0, 5-6=-3739/0, 6-7=-4042/0, 7-8=-3739/0, 8-9=-3739/0, 9-11=-2413/0, 11-12=-2413/0, 12-13=-3/0												
BOT CHORD	21-22=0/1362, 19-2 ⁻ 17-18=0/4042, 16-17 14-15=0/1362 12-14=-1572/0, 2-22 2-21=0/1228, 11-15= 9-15=-913/0, 4-21=- 4-19=0/635, 8-16=-1 7-16=-680/80, 6-19= 7-17102/120	7=0/4042, 15-16=0/3 =-1571/0, 12-15=0/1 =-134/0, 3-21=-135/0 913/0, 9-16=0/635, 88/45, 5-19=-188/45	196, 227, ,						4		ORTH CA	ROLIN
 this design 2) All plates a 3) All plates a 4) This truss a Internation 	7-17=-102/129 ed floor live loads have are MT20 plates unless are 1.5x3 MT20 unless is designed in accorda al Residential Code se and referenced stand	s otherwise indicated otherwise indicated ance with the 2018 ections R502.11.1 ar	l.						11111111	A A A A A A A A A A A A A A A A A A A	SEA 0363	

- 2) All plates are MT20 plates unless otherwise indicated.
- 3) All plates are 1.5x3 MT20 unless otherwise indicated.
- 4) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


818 Soundside Road Edenton, NC 27932

G mmm July 18,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	76 Farm at Neills Creek-Roof-Millhaven 2 BR5 GRH
24070012-A	F07	Floor	1	1	I66899257 Job Reference (optional)

Run: 8.73 S Jul 11 2024 Print: 8.730 S Jul 11 2024 MiTek Industries, Inc. Tue Jul 16 12:36:50 ID:wSIgZyfXaPorprXmcnhRtPyA4E0-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:51.9

Plate Offsets (X	X, Y): [2:0-1-8,I	Edge], [3:0-1-8,Edge], [5:0	-1-8,Edg	je], [6:0-1-8,Edg	2]					_			
oading	(psf)	Spacing	1-7-3		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL	4		Plate Grip DOL	1.00		TC	0.52	Vert(LL)	-0.03		>999	480	MT20	244/190
CDL			Lumber DOL	1.00		BC	0.41	Vert(CT)	-0.03		>999	360		
BCLL			Rep Stress Incr	NO		WB	0.23	Horz(CT)	0.01	24	n/a	n/a		
BCDL		5.0	Code	IRC20	018/TPI2014	Matrix-MSH							Weight: 135 lb	FT = 20%F, 11%E
UMBER						45-46=0/799, 44-45								
OP CHORD	2x4 SP No.2(f					42-43=0/648, 41-42			,					
BOT CHORD	2x4 SP No.2(f					39-40=0/5, 38-39=0	,	,	,					
VEBS	2x4 SP No.3(f					34-36=0/5, 33-34=0 30-31=0/5, 29-30=0								
DTHERS	2x4 SP No.3(f	lat)				26-27=0/5, 25-26=0			5=0/5,					
	<u>.</u>					4-43=-457/0, 7-40=								
OP CHORD			thing directly applie	ed or		2-46=-904/0, 2-45=			,					
BOT CHORD			ept end verticals.	•		5-43=-756/0, 6-40=	-737/0,	5-42=-41/83	,					
	bracing.	incony a				6-41=-75/57, 8-39=	,							
REACTIONS	0	-19-11-0), 25=19-11-0,			11-37=-306/0, 12-3								
), 27=19-11-0,			14-33=-307/0, 15-3 17-30=-307/0, 18-2								
), 29=19-11-0,			20-27=-306/0, 21-2		,	,					
	30=	=19-11-C), 31=19-11-0,		NOTES	20-27=-300/0, 21-2	0=-300	0, 22-25=-50	10/0					
), 33=19-11-0,			floor live loads hav	o boon	considered f	or.					
), 36=19-11-0,		this design.	noor nee toaus nav	e been		JI					
), 38=19-11-0,), 40=19-11-0, 43=	0 2 0	0	e 1.5x3 MT20 unles	s other	vise indicate	d.					
		:0-3-8	, 40=19-11-0, 43=		, i	ully sheathed from								
,			13), 25=317 (LC 1	4)	braced agair	nst lateral movemer	nt (i.e. d	iagonal web)						
			C 13), 27=317 (LC		Gable studs	spaced at 1-4-0 oc								
			C 13), 29=317 (LC			designed in accord								
	30=	-317 (LC	C 13), 31=317 (LC	14),		Residential Code s			ind				TH CA	unin.
			C 13), 33=317 (LC			nd referenced stan						1	WAH CA	Rollin
			C 13), 36=319 (LC			I 2x6 strongbacks, and fastened to ea						N	RUSSO	11/2
			C 13), 38=339 (LC			nails. Strongback			alls		1	3.3	0.000	Dr. Vain
			C 13), 40=758 (LC .C 12), 46=625 (LC			ends or restrained			ano		-	0		No.
ORCES			ression/Maximum	, 14)		o not erect truss b					-		:Q	
OKCES	Tension	ii Comp	16551011/Iviaxi111u111		LOAD CASE(S)	Standard					Ξ		SEA	
OP CHORD		23-24=-9	91/0, 1-2=-11/0,		1) Dead + Flo	or Live (balanced):	Lumbe	Increase=1	00,		=		0202	•
			/257, 4-5=-165/257	7 .	Plate Incre						1		0363	22 : :
	5-6=-648/0, 6-	7=-5/0,	7-8=-5/0, 8-9=-5/0	,	Uniform Lo	()								
	9-11=-5/0, 11-		, ,		Vert: 24-	46=-8, 1-23=-230					S	-	SEA 0363	air S
			/0, 15-16=-5/0,									25	S GINI	EFICAN
			/0, 18-19=-5/0,									1	10	BEN
	19-20=-5/0, 20 22-23=-5/0	J-21=-5/	′U, ∠1-22 =- 5/U,										",, A. G	ILDIN
	22-23=-3/0												A. G	unn.
														18,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

INFEDING

Job	Truss	Truss Type	Qty	Ply	76 Farm at Neills Creek-Roof-Millhaven 2 BR5 GRH
24070012-A	FW19	Floor	1	1	l66899258 Job Reference (optional)

Run: 8.73 S Jul 11 2024 Print: 8.730 S Jul 11 2024 MiTek Industries, Inc. Tue Jul 16 12:36:50 ID:hXHYNJAthJ5trllr4bSHaFyA4DM-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

0-1-8 || 0-1-8 Н 3x6 FP 3x5 = 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 35 1-2-0 22 30 28 27 25 23 22 21 20 19 18 32 31 29 26 24 3x5 = 3x5 = 3x6 FP 19-11-0 19-11-0

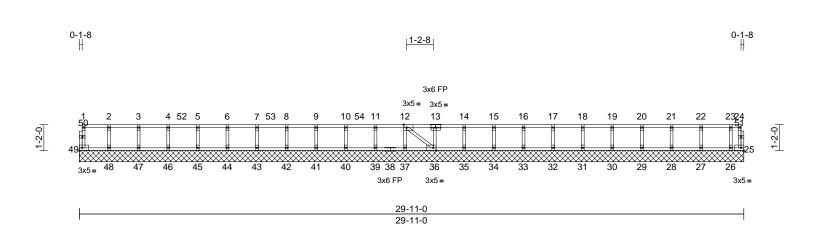
Scale = 1:36.6

Scale = 1:36.6													
Loading TCLL TCDL BCLL BCDL	(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-7-3 1.00 1.00 YES	3/TPI2014	CSI TC BC WB Matrix-MR	0.06 0.01 0.03	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 17	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 83 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER	· · · ·	_I	W		1 2-32=-103/0, 3-31								
TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	6-0-0 oc purlins, e Rigid ceiling direct bracing. (size) 17=19-1 21=19-1 23=19-1 25=19-1 27=19-1 30=19-1 30=19-1 32=19-1 130=19-1 32=19-1 19=121 21=115 23=117 25=117 25=117 25=117 30=117	eathing directly applie xcept end verticals. ly applied or 10-0-0 or 1-0, 18=19-11-0, 1-0, 20=19-11-0, 1-0, 22=19-11-0, 1-0, 26=19-11-0, 1-0, 29=19-11-0, 1-0, 31=19-11-0, 1-0, 33=19-11-0, 1-0, 33=19-11-0, (LC 1), 22=113 (LC 1), (LC 1), 24=117 (LC 1 (LC 1), 24=117 (LC 1 (LC 1), 29=117 (LC 1 (LC 1), 29=117 (LC 1 (LC 1), 31=119 (LC 1) (LC 1), 33=46 (LC 1)	ed or 1) 2) 3) 4) 5) 6) LC),),),),),),	All plates are Gable requir Truss to be f braced agair Gable studs This truss is International R802.10.2 a Recommenc 10-00-00 oc (0.131" X 3")	5-29=-107/0, 6-22 8-25=-107/0, 9-22 41-22=-107/0, 12- 14-19=-111/0, 15- e 1.5x3 MT20 unle es continuous bot ully sheathed fror nst lateral movem spaced at 1-4-0 c designed in accoo Residential Code nd referenced stat and fastened to e nails. Strongbac ends or restraine Standard	k=-107/0, -21=-104, -18=-101, ess other ttom choin n one fac ent (i.e. c oc. rdance w s sections indard AN s, on edge sach truss cks to be	10-23=-106/C /0, 13-20=-100 /0 wise indicated d bearing. the or securely liagonal web). ith the 2018 s R502.11.1 a SS/TPI 1. e, spaced at s with 3-10d attached to w), 6/0, 1.				WITH CA	NRO."
FORCES		mpression/Maximum									E.	ESS	Dr. Vie
TOP CHORD	3-4=-9/0, 4-5=-9/0 7-8=-9/0, 8-9=-9/0 11-12=-9/0, 12-14= 15-16=-5/0		0,							111111V		SEA 0363	• -
BOT CHORD	27-29=0/9, 26-27=	0/9, 30-31=0/9, 29-30 0/9, 25-26=0/9, 24-25 0/9, 21-22=0/9, 20-21 0/5, 17-18=0/5	=0/9,										EER. KINN

July 18,2024

Page: 1

1-2-0


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

A MiTek A 818 Soundside Road Edenton, NC 27932

INFEDING

Job	Truss	Truss Type	Qty	Ply	76 Farm at Neills Creek-Roof-Millhaven 2 BR5 GRH
24070012-A	FW29	Floor Supported Gable	1	1	I66899259 Job Reference (optional)

Run: 8.73 S Jul 11 2024 Print: 8.730 S Jul 11 2024 MiTek Industries, Inc. Tue Jul 16 12:36:50 ID:wGKyGOHXZ4DcQhxa6_60R9yA4DD-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:51.9

Plate Offsets (X, Y):	[12:0-1-8.Edge], [36:0-1-8.Edge]	

Plate Offsets (2	X, Y): [12:0-1-8,Edge], [36:0-1-8,Edge]									-	
Loading TCLL TCDL BCLL BCDL	(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-7-3 1.00 1.00 YES IRC2018/TPI20	CSI TC BC WB 14 Matrix-MSH	0.57 0.01 0.08	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 36	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 126 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No.2(flat) 2x4 SP No.2(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) Structural wood she 6-0-0 oc purlins, exi Rigid ceiling directly	cept end verticals.	тор сно ^{d or} вот сно	3-4=-2/0, 4-5=-2// 7-8=-2/0, 8-9=-2// 11-12=-2/0, 12-14 16-17=0/0, 17-18 20-21=0/0, 21-22 RD 48-49=0/2, 47-48 44-45=0/2, 43-44	0, 5-6=-2/ 0, 9-10=-3 4=0/5, 14 =0/0, 18- =0/0, 22- =0/2, 46- =0/2, 42-	/0, 6-7=-2/0, 2/0, 10-11=-2// -15=0/0, 15-16 19=0/0, 19-20 23=0/0, 23-24 47=0/2, 45-46 43=0/2, 41-42	0, 5=0/0, =0/0, =0/0 =0/2, =0/2,	9) Ha pro 8-7 12-	-00-00 od 131" X 3' their oute inger(s) c ovided su down at 7-8, and 3 -7-8 on to	c and fa ") nails or ends or other fficient 4-7-8, 383 lb (op chor	or restrained by r connection devi t to support conce 383 lb down at 6 down at 10-7-8, rd. The design/s	truss with 3-10d be attached to walls other means. ce(s) shall be entrated load(s) 383 5-7e, 383 lb down at and 383 lb down at election of such
REACTIONS	bracing. (size) 25=29-11 27=29-11 29=29-11 31=29-11 33=29-11 35=29-11 37=29-11 40=29-11 42=29-11 46=29-11	WEBS	35-36=0/0, 34-35 31-32=0/0, 30-31 27-28=0/0, 26-27 2-48=-116/0, 3-47 5-45=-285/0, 6-44 8-42=-282/0, 9-4' 11-39=-268/0, 12 14-35=-102/0, 15 77-32=-107/0, 18 20-29=-107/0, 21	 40-41=0/2, 39-40=0/2, 37-39=0/2, 36-37=0/2, 35-36=0/0, 34-35=0/0, 33-34=0/0, 32-33=0/0, 31-32=0/0, 30-31=0/0, 29-30=0/0, 28-29=0/0, 27-28=0/0, 26-27=0/0, 25-26=0/0 27-28=0/0, 26-27=0/0, 25-26=0/0 2-48=-116/0, 3-47=-82/27, 4-46=-296/0, 8-42=-282/0, 9-41=-336/0, 10-40=-311/0, 11-39=-268/0, 12-37=-82/24, 13-36=-112/0, 14-35=-102/0, 15-34=-108/0, 16-33=-106/0, 17-32=-107/0, 18-31=-107/0, 19-30=-107/0, 29-29=-107/0, 21-28=-106/0, 22-27=-110/0, 23-26=-88/0, 12-36=-9/0 40-41=0/2, 39-40=0/2, 37-39=0/2, 36-37=0/2, 36-37=0/2, 37-38=0/0, 29-30=0/0, 29-								
	Max Uplift 25=-6 (LC 47=-16 (L Max Grav 25=-1 (LC) 27=121 (L 31=117 (L 33=117 (L 33=117 (L 35=113 (L 40=322 (L 42=293 (L 44=346 (L 46=306 (L	C 3)	 Unbalathis de All pla Gable Truss bracec N/A N/A 	anced floor live loads ha esign. tes are 1.5x3 MT20 unle requires continuous bo to be fully sheathed froi d against lateral movem studs spaced at 1-4-0 of uss is designed in acco ational Residential Code 10.2 and referenced sta	ess other ttom choi m one fac ent (i.e. c oc. ordance w e sections	wise indicated rd bearing. ce or securely diagonal web). vith the 2018 s R502.11.1 ar	l.		/	2.2	SEA 0363	With man
FORCES	(lb) - Maximum Com Tension										July	1LBL:

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

ERGINEERING BY A MITTER A Affiliate

