

Carter Sanford Component Plant 298 Harvey Faulk Rd Sanford, NC 27332

Phone #:919-775-1450

Builder: DRB Homes NC LLC

Model: Callaway 1 BR4 GRH 196 FaNC

THE PLACEMENT PLAN NOTES:

1. The Placement Plan is a diagram for truss installation. It is not an engineered drawing and has not been reviewed by an engineer. The Owner/Building Designer is responsible for obtaining an engineer's review if one is required by the local jurisdiction.

2. The responsibilities of the Owner, Contractor, Building Designer, Component Designer and Component Manufacturer shall be as set forth in ANSI/TPI 1. Capitalized terms shall be as defined in ANSI/TP 1 unless otherwise indicated.

3. Each Component is designed as an individual component utilizing information provided by others. The Owner/Building Designer is responsible for reviewing all Component Submittal Packages and individual Component Design Drawings for compliance with the Construction Documents and compatibility with the overall Building design.

4. Contractor will not proceed with component installation until the Owner/Building Designer has reviewed the Component Submittal Package. Questions on the suitability of any Component will be resolved by the Building Designer.

5. The Building Designer and Contractor are responsible for all temporary and permanent bracing.

6. The Placement Plan assumes the building is dimensionally correct, structurally sound, and in a suitable condition to support each Component during installation and thereafter, including but not limited to installation of all bearing points. Proper design and construction of all structural components, including foundations, headers, beams, walls and columns are the responsibility of the Owner, Building Designer and Contractor.

7. Do not cut, drill, or modify any Component without first consulting the Component Manufacturer or Building Designer. Damaged Components shall not be installed unless directed by the Building Designer or approved by the Component Manufacturer.

8. Components must be handled and installed following all applicable safety standards and best practices, including but not limited to BCSI, OSHA, TPI and local codes. Failure to properly handle, brace or otherwise install Component can result in serious injury or death. 9. All uplift connectors shown within these documents are recommendations only. Per ANSI/TPI 1, all uplift connectors are the responsibility of the building designer and or contractor.

Approved By: _____

Date: _____

Trenco 818 Soundside Rd Edenton, NC 27932

Re: 24060196-B 196 Farm at Neills Creek-2nd Floor-Callaway 1 BR4 GRH

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Carter Components (Sanford, NC)).

Pages or sheets covered by this seal: I66879684 thru I66879708

My license renewal date for the state of North Carolina is December 31, 2024.

North Carolina COA: C-0844

July 16,2024

Tony Miller

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	196 Farm at Neills Creek-2nd Floor-Callaway 1 BR4 GRH
24060196-B	F01	Floor	14	1	l66879684 Job Reference (optional)

Run: 8.73 S Jul 11 2024 Print: 8.730 S Jul 11 2024 MiTek Industries, Inc. Mon Jul 15 18:22:04 ID:kw0_lcw3LxOch2qP7ECb61yyC0k-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Scale = 1:45.1

Load TCLL TCDL BCLL BCDL	ing	(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-4-0 1.00 1.00 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MSH	0.64 0.83 0.65	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.51 -0.71 0.11	(loc) 15-16 15-16 13	l/defl >598 >429 n/a	L/d 480 360 n/a	PLATES MT20HS MT20 Weight: 131 lb	GRIP 187/143 244/190 FT = 20%F, 1	1%E
LUME TOP BOT WEB OTHE BRAC TOP	BER CHORD CHORD S ERS CING CHORD	2x4 SP No.2(flat) 2x4 SP No.1(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) Structural wood shea 5-3-4 oc purlins, exx	athing directly applie cept end verticals.	ed or										
BOL	CHORD	bracing.	applied or 10-0-0 of	2										
REAC	CTIONS	(size) 13=0-3-8, Max Grav 13=925 (L	19=0-3-8 .C 1), 19=925 (LC 1)										
FOR	CES	(lb) - Maximum Com	pression/Maximum											
TOP	CHORD	1-19=-69/0, 12-13=-(2-3=-2815/0, 3-4=-2) 5-6=-4147/0, 6-7=-4 9-10=-2815/0, 10-11	69/0, 1-2=-3/0, 815/0, 4-5=-4147/0, 153/0, 7-9=-4153/0, =-2815/0, 11-12=-3	/0										
вот	CHORD	18-19=0/1609, 16-18	3=0/3648, 15-16=0/4	1284,										
WEB	S	14-15=0/3646, 13-14 11-13=-1813/0, 2-19	4=0/1609)=-1813/0, 11-14=0/ [.]	1369,										
		2-18=0/1369, 10-14=	=-163/0, 3-18=-162/0	Ο,										
		4-16=0/567, 7-15=-1	71/0, 5-16=-150/0,									mun	IIII.	
NOT	-	6-15=-148/0, 6-16=-7	162/0									WTH CA	ROIL	
NO11 1) A	: 5 Il plates a	are MT20 plates unless	s otherwise indicated	d.							3	OFFERS	Br.M.	2
2) A	ll plates a	are 1.5x3 MT20 unless	otherwise indicated	1.							15	1.1	alles?	2
3) T	his truss	is designed in accorda	ance with the 2018	ha						-		:2	1 K 1	1
Ir R	102 10 2	and referenced stand	ard ANSI/TPI 1	na						Ξ		SEA		Ξ
4) R	ecomme	nd 2x6 strongbacks, or	n edge, spaced at							=	:	0225	24	=
່ 1	0-00-00 c	oc and fastened to eac	h truss with 3-10d							=		0235	⁹⁴ :	E

4) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

LOAD CASE(S) Standard

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	196 Farm at Neills Creek-2nd Floor-Callaway 1 BR4 GRH
24060196-B	F02	Floor Girder	1	1	I66879685 Job Reference (optional)

Run: 8.73 S Jul 11 2024 Print: 8.730 S Jul 11 2024 MiTek Industries, Inc. Mon Jul 15 18:22:04 ID:?_VDjhKJAHokvDpP4IIV?HyyByL-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

NOTES

- 7-17=0/243, 2-21=-4508/0 All plates are MT20 plates unless otherwise indicated. 1)
- 2) All plates are 3x6 MT20 unless otherwise indicated.
- 3) The Fabrication Tolerance at joint 18 = 11%
- 4) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 5) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	196 Farm at Neills Creek-2nd Floor-Callaway 1 BR4 GRH
24060196-B	F03	Floor	3	1	l66879686 Job Reference (optional)

Run: 8.73 S Jul 11 2024 Print: 8.730 S Jul 11 2024 MiTek Industries, Inc. Mon Jul 15 18:22:04 ID: V0ZtZzRPSrhfkV2Ta3zSptyyC04-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?ff

Scale = 1:38.6

Plate Offsets (X, Y): [14:0-1-8,Edge], [15:0-1-8,Edge], [16:0-3-0,Edge]

Loading	(psf)	Spacing	1-4-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	0.36	Vert(LL)	-0.27	14-15	>936	480	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.81	Vert(CT)	-0.37	13-14	>678	360	MT20HS	187/143
BCLL	0.0	Rep Stress Incr	YES	WB	0.50	Horz(CT)	0.07	12	n/a	n/a		
BCDL	5.0	Code	IRC2018/TPI2014	Matrix-MSH		- (-)					Weight: 111 lb	FT = 20%F, 11%E
		•		•				-				
LUMBER												
TOP CHORD	2x4 SP No.2(flat)											
BOT CHORD	2x4 SP No.2(flat)											
WEBS	2x4 SP No.3(flat)											
UTHERS	2x4 SP No.3(IIat)											
BRACING												
TOP CHORD	Structural wood she	athing directly applie	ed or									
	Bigid coiling directly	cept end verticals.	•									
BOT CHORD	hracing	applied of 10-0-0 of										
PEACTIONS	(size) 12-0-3-8	17– Mechanical										
REACTIONS	Max Grav 12=770 (L	_C 1). 17=775 (LC 1)									
FORCES	(lb) - Maximum Com	pression/Maximum	,									
	Tension											
TOP CHORD	1-17=-70/0. 11-12=-	69/0.1-2=0/0.										
	2-3=-2235/0, 3-4=-2	235/0, 4-5=-2992/0,										
	5-6=-2992/0, 6-7=-2	992/0, 7-9=-2235/0,										
	9-10=-2235/0, 10-11	=-3/0										
BOT CHORD	15-17=0/2780, 14-15	5=0/2992, 13-14=0/2	2780,									
	12-13=0/1315											
WEBS	10-12=-1481/0, 2-17	/=-1486/0, 10-13=0/	1044,									
	2-16=0/1043, 9-13=-	-163/0, 3-16=-162/0	,									llin.
	7-13=-618/0, 4-16=-	618/0, 7-14=-80/425	5,								A LINE	DUL
	4-15=-80/425, 5-15=	-115/0, 6-14=-115/0)								THUA	HO W
NOTES										5	05-1599	in All
1) Unbalance	ed floor live loads have	been considered fo	or							32	A OF	Mille
this design	n.											1 com
2) All plates	are MI20 plates unles	s otherwise indicate	d.						2			
3) Refer to g	irder(s) for truss to trus	s connections.									SEA	L : =
 I his truss 	is designed in accorda	ance with the 2018	a al						=	:	0025	o4 : =
	and referenced stand		na						=	:	0235	94 : :
5) Recomme	and 2x6 strongbacks o	aiu ANOI/IFI I. n edge snaced at							-		÷.	1 5
10-00-00	no and fastened to eac	h trues with 3-10d								-	·	a: 3
(0 131" X	3") nails Strongbacks	to be attached to w	alls							21	NGINE	ELAN
at their ou	ter ends or restrained l	by other means								11,	UNA	1. 1. 1.
6) CAUTION	, Do not erect truss ba	ckwards.									IN R I	MILLIN
LOAD CASE(S) Standard										111111	in the second se

Page: 1

July 16,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	196 Farm at Neills Creek-2nd Floor-Callaway 1 BR4 GRH
24060196-B	F04	Floor	5	1	I66879687 Job Reference (optional)

Run: 8.73 S Jul 11 2024 Print: 8.730 S Jul 11 2024 MiTek Industries, Inc. Mon Jul 15 18:22:05 ID:szMichVXGNJxqGwRNcYdWxyyC0?-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Scale = 1:39.1

Plate Offsets (X, Y): [14:0-1-8,Edge], [15:0-1-8,Edge]

Loading	(psf)	Spacing	1-4-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	тс	0.42	Vert(LL)	-0.29	14-15	>901	480	MT20HS	187/143
TCDL	10.0	Lumber DOL	1.00	BC	0.83	Vert(CT)	-0.39	15-17	>654	360	MT20	244/190
BCLL	0.0	Rep Stress Incr	YES	WB	0.51	Horz(CT)	0.07	12	n/a	n/a		
BCDL	5.0	Code	IRC2018/TPI2014	Matrix-MSH							Weight: 112 lb	FT = 20%F, 11%E
LUMBER												
TOP CHORD	2x4 SP No.2(flat)											
BOT CHORD	2x4 SP No.2(flat)											
WEBS	2x4 SP No.3(flat)											
OTHERS	2x4 SP No.3(flat)											
BRACING												
TOP CHORD	Structural wood she	athing directly applie	ed or									
	6-0-0 oc purlins, ex	cept end verticals.										
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 or	0									
REACTIONS	(size) 12=0-3-8,	18=0-3-8										
	Max Grav 12=781 (L	_C 1), 18=781 (LC 1)									
FORCES	(lb) - Maximum Com	pression/Maximum										
	Tension											
TOP CHORD	1-18=-69/0, 11-12=-	69/0, 1-2=-3/0,										
	2-3=-2276/0, 3-4=-2	276/0, 4-5=-3069/0,										
	5-6=-3069/0, 6-7=-3	069/0, 7-9=-2276/0,										
	9-10=-2276/0, 10-11	=-3/0										
BOT CHORD	17-18=0/1336, 15-1	7=0/2840, 14-15=0/3	3069,									
	13-14=0/2840, 12-1	3=0/1336	4007									
WEBS	10-12=-1504/0, 2-18	3=-1504/0, 10-13=0/	1067,									
	Z-17=0/1007, 9-13= 7-13=-640/0 4-17=-	-102/0, 3-17=-102/0, 640/0 7-1471/450									minin	1111
	1-15=-040/0, 4-17=- 1-15=-71/150 5-15-	-136/0 6-14=-7 1/458	<i>,</i> ,								I'L'H CA	Pall
NOTES	+ 10= 1 1/400, 0 10-	- 100/0, 0 14= 100/0								1	a	01/1
1) Unholonoo	ad floor live loode hove	been considered fo								5.	OFFESS	in All
this design		been considered to	1							25		. 7 -
 All plates a 	n. are MT20 plates uples	s otherwise indicate	Ч						-	./0	1. 11	and in the
 All plates a 	are 1.5x3 MT20 unless	s otherwise indicated	u. I								OFA	1 1 2
 This truss 	is designed in accorda	ance with the 2018							- E		SEA	L <u>1</u> 2 .
Internation	al Residential Code s	ections R502.11.1 a	nd						- E		0235	94 : Ξ
R802.10.2	and referenced stand	ard ANSI/TPI 1.							-		. 0200	1 5
5) Recomme	nd 2x6 strongbacks, o	n edge, spaced at										1 2
10-00-00 c	oc and fastened to eac	h truss with 3-10d								2	X. ENO	eftin S
(0.131" X 3	3") nails. Strongbacks	to be attached to w	alls							21	GIN	1. 18 8
at their out	ter ends or restrained	by other means.								1	~//·	and the state

LOAD CASE(S) Standard

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	196 Farm at Neills Creek-2nd Floor-Callaway 1 BR4 GRH
24060196-B	F05	Floor	1	1	I66879688 Job Reference (optional)

Run: 8.73 S Jul 11 2024 Print: 8.730 S Jul 11 2024 MiTek Industries, Inc. Mon Jul 15 18:22:05 ID:LzVQXT791MsZ3FvQQXUpdvyyC?B-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Scale = 1:39.1

Plate Offsets (X, Y): [4:0-1-8,Edge], [16:0-1-8,Edge]

Loa TCL TCC BCL BCC	ding L DL L DL	(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-4-0 1.00 1.00 YES IRC2018/	TPI2014	CSI TC BC WB Matrix-MSH	0.27 0.64 0.41	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.16 -0.22 0.05	(loc) 15-16 15-16 14	l/defl >999 >977 n/a	L/d 480 360 n/a	PLATES MT20 Weight: 117 lb	GRIP 244/190 FT = 20%F. 1	1%E
LUN TOF BOT WEI OTH BRA	MBER P CHORD F CHORD BS HERS ACING P CHORD	2x4 SP No.2(flat) 2x4 SP No.2(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) Structural wood shea 6-0-0 oc purlins, exc	athing directly applic	6) 7) LO/	Recommend 10-00-00 oc a (0.131" X 3") at their outer CAUTION, D AD CASE(S)	2x6 strongbacks, and fastened to ea nails. Strongback ends or restrained o not erect truss b Standard	on edge ach truss is to be a d by othe ackward	e, spaced at s with 3-10d attached to w er means. ds.	valls					·····, ·	
BOT	CHORD	Rigid ceiling directly bracing, Except: 6-0-0 oc bracing: 13-	applied or 10-0-0 oc	:											
REA	ACTIONS	(size) 13=0-3-8, Max Uplift 13=REL Max Grav 14=922 (L	14=0-3-8, 20=0-3-8 .C 1), 20=660 (LC 3)											
FOF	RCES	(lb) - Maximum Com Tension	pression/Maximum												
TOF	P CHORD	1-20=-71/0, 12-13=-4 2-3=-1801/0, 3-4=-18 5-6=-2146/0, 6-7=-13 8-10=0/257, 10-11=0	46/0, 1-2=0/0, 801/0, 4-5=-2146/0, 769/0, 7-8=-1769/0, 0/257, 11-12=-2/0												
вот	CHORD	19-20=0/1096, 17-19 15-16=0/2119, 14-15)=0/2146, 16-17=0/2 5=0/1042, 13-14=-6	2146, I/0											
	BS	10-14=-153/0, 8-14= 8-15=0/859, 2-19=0/ 3-19=-175/0, 6-15= 6-16=-133/264, 4-17 11-13=0/82, 11-14=-	-1253/0, 2-20=-123 800, 7-15=-169/0, 429/0, 4-19=-425/0, =-113/66, 5-16=-7/2 263/0	7/0, 7,								and a	NITH CA	RO	
1)	Unbalance this design	ed floor live loads have n.	been considered fo	r									SEA	- 1	
2) 3)	All plates a Bearings a Joint 13 S	are 3x5 MT20 unless o are assumed to be: , Jo P No.3 .	therwise indicated. bint 13 User Defined	,							THUR.		0235	94	unu,

4) "/\" indicates Released bearing: allow for upward movement at joint(s) 13.

5) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

July 16,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	196 Farm at Neills Creek-2nd Floor-Callaway 1 BR4 GRH
24060196-B	F06	Floor	1	1	l66879689 Job Reference (optional)

Run: 8.73 S Jul 11 2024 Print: 8.730 S Jul 11 2024 MiTek Industries, Inc. Mon Jul 15 18:22:05 ID:hCqk8_Oyr7eRieafi9tzWYyyC_r-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:45.1

Plate Offsets (X, Y): [6:0-1-8,Edge], [18:0-1-8,Edge]

	··; ·)· [•·• •;=•g•]	,[
Loading	(psf)	Spacing	1-4-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL	40.0	Plate Grip DOL	1.00		тс	0.50	Vert(LL)	-0.07	17-18	>999	480	MT20	244/190	
TCDL	10.0	Lumber DOL	1.00		BC	0.34	Vert(CT)	-0.11	17-18	>999	360			
BCLL	0.0	Rep Stress Incr	YES		WB	0.40	Horz(CT)	0.01	16	n/a	n/a			
BCDI	5.0	Code	IRC2018	/TPI2014	Matrix-MSH		()					Weight: 139 lb	FT = 20%F 11%	=
DODL	0.0	0000	11(02010)	/11/12/01/1	manx morr							Wolght. Too lb	11 - 20/01, 11/0	-
LUMBER			4)	One H2.5A S	impson Strong-Ti	e connec	ctors							
TOP CHORD	2x4 SP No.2(flat)			recommende	d to connect truss	s to beari	ing walls due	to						
BOT CHORD	2x4 SP No.2(flat)			UPLIFT at jt(s) 23. This conne	ction is fo	or uplift only a	and						
WEBS	2x4 SP No.3(flat)			does not con	sider lateral force	s.								
OTHERS	2x4 SP No.3(flat)		5)	This truss is	designed in accor	dance w	ith the 2018							
BRACING				International	Residential Code	sections	R502.11.1 a	and						
TOP CHORD	Structural wood she	athing directly applie	dor	R802.10.2 ar	nd referenced star	ndard AN	ISI/TPI 1.							
	6-0-0 oc purlins, ex	cept end verticals.	6)	Recommend	2x6 strongbacks,	on edge	e, spaced at							
BOT CHORD	Rigid ceiling directly	applied or 6-0-0 oc		10-00-00 oc (0.131" X 3")	and fastened to ea nails. Strongbacl	ach truss ks to be a	s with 3-10d attached to w	valls						
DEACTIONS		16 0 2 0 22 0 2 0		at their outer	ends or restraine	d by othe	er means.							
REACTIONS	(SIZE) 15=0-3-8	, 10=0-3-8, 22=0-3-8	' 7)	CAUTION, D	o not erect truss b	backward	ds.							
	23=0-3-0 Max Liplift 15- 475	(1 C 6) 22- 240 (1 C)	E) LO	AD CASE(S)	Standard									
	Max Opint 15475	(LO 0), 20 = 0+3 (LO 0)	0)											
	22-1108	(I C 3) 23-27 (I C 5)	·),											
FORCES	(lb) Maximum Con	(LO 3), 23–27 (LO 3)												
FORCES	Tension	npression/maximum												
TOP CHORD	1-23=-71/0 14-15=	-42/0 1-2=-3/0												
	2-3-0/1092 3-4-0/	1092 4-5683/0												
	5-6=-683/0 6-7=-10	1002, 40 = 000/0,												
	8-10=-645/0 10-11	=-645/0 11-12=0/117	74											
	12-13=0/1174 13-1	4=-2/0	.,											
BOT CHORD	22-23=-709/0 21-2	2=-143/79 19-21=0/1	026									minin	1111.	
	18-19=0/1026. 17-1	8=0/996. 16-17=-134	l/1.									WH CA	Rollin	
	15-16=-567/0	,										A	City.	
WEBS	3-22=-123/0, 12-16	-159/0, 11-161225	5/0,								50	OFFESS	Gir Nº	
	4-22=-1196/0, 11-1	7=0/831, 4-21=0/798,	,								:5	Con /	1.7 %	
	10-17=-170/0, 5-21	-179/0, 8-17=-400/0	,									:0/	K. 2	
	6-21=-428/0, 8-18=	-132/191, 6-19=-88/7	3,							-		0.54		
	7-18=0/26, 2-23=0/2	801, 2-22=-666/0,									:	SEA	L : :	
	13-16=-859/0, 13-1	5=0/752								=		0235	ал : :	
NOTES										=		0233	J4	
1) Unbalance	ed floor live loads have	e been considered fo	r									•	1 E	
, this design	۱.										-	. A.	all i	
2) All plates a	are 3x5 MT20 unless	otherwise indicated.									21	GING	E. A.	
3) Provide m	echanical connection	(by others) of truss to)								11	An	1141	
bearing pla	ate capable of withsta	nding 475 lb uplift at	joint									B. R. I	MILTIN	
15.												111111	m	

July 16,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

RENCO

Job	Truss	Truss Type	Qty	Ply	196 Farm at Neills Creek-2nd Floor-Callaway 1 BR4 GRH
24060196-B	F07	Floor	1	1	I66879690 Job Reference (optional)

Run: 8.73 S Jul 11 2024 Print: 8.730 S Jul 11 2024 MiTek Industries, Inc. Mon Jul 15 18:22:05 ID:I5EPI6aMJkWJ?xEX5ofUdiyyC_c-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:45.1

Plate Offsets	(X, Y): [14:Edge,0-1-8	3], [17:0-1-8,Edge], [1	8:0-1-8,Edge]										
Loading TCLL TCDL BCLL BCDL	(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-4-0 1.00 1.00 YES IRC2018/TPI201	CSI TC BC WB 4 Matrix-MSH	0.79 0.87 0.67	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.27 -0.39 0.04	(loc) 18-20 18-20 15	l/defl >967 >679 n/a	L/d 480 360 n/a	PLATES MT20HS MT20 Weight: 133 lb	GRIP 187/143 244/190 FT = 20%F, 11 ¹	%Е
LUMBER TOP CHORE BOT CHORE WEBS OTHERS BRACING TOP CHORE BOT CHORE FORCES TOP CHORE BOT CHORE	 2x4 SP No.2(flat) 2x4 SP No.2(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 14=0-3-8, Max Uplift 14=-888 (Max Grav 14=-141 (21=667 (I (1b) - Maximum Conr Tension 1-21=-68/0, 13-14=- 2-3=-1850/0, 3-4=-1 5-6=-2143/0, 6-7=-2 9-10=-673/0, 10-11= 12-13=-2/0 20-21=0/1122, 18-2 16-17=0/1539, 15-11 11-15=-165/0, 10-15 	eathing directly applie cept end verticals. r applied or 6-0-0 oc , 15=0-3-8, 21=0-3-8 (LC 3) (LC 4), 15=1999 (LC LC 3) (LC 4), 15=1999 (LC LC 3) 197ession/Maximum 42/0, 1-2=-3/0, 850/0, 4-5=-2143/0, 143/0, 7-9=-673/0, =0/2167, 11-12=0/21 0=0/2201, 17-18=0/2 6=-572/0, 14-15=-10 5=-1805/0, 2-21=-12	6) This true Interna R802.1 7) Recom 10-00-1 (0.131' at their 8) CAUTI LOAD CAS 1), 1), 67, 2143, 51/0 54/0.	uss is designed in acco tional Residential Code 0.2 and referenced sta mend 2x6 strongbacks 00 oc and fastened to e 'X 3") nails. Strongbac outer ends or restraine ON, Do not erect truss SE(S) Standard	ordance w e sections andard AN s, on edge aach truss cks to be ed by othe backward	ith the 2018 s R502.11.1 a ISI/TPI 1. e, spaced at s with 3-10d attached to w er means. ds.	nd alls					Boline	
NOTES 1) Unbalan, this desig 2) All plates 3) All plates 4) Bearings Joint 14 5) Provide I bearing p 14.	10-16=0/1408, 2-20 3-20=-152/0, 7-16=- 7-17=0/738, 4-18=-2 6-17=-244/0, 12-14= ced floor live loads have gn. s are MT20 plates unless s are 1.5x3 MT20 unless s are assumed to be: , Jo SP No.3 . mechanical connection I plate capable of withstar	=0/825, 9-16=-178/0, 983/0, 4-20=-398/0, 246/230, 5-18=-77/42 =0/1393, 12-15=-151 = been considered fo s otherwise indicated s otherwise indicated oint 14 User Defined (by others) of truss to nding 898 lb uplift at	, , 8/0 r d. , joint						2011111111111	and a start of the	SEA 02359	94 54 16,2024	MANDERIN
A WAF	RNING - Verify design paramete	ers and READ NOTES ON	THIS AND INCLUDED M	ITEK REFERENCE PAGE MI	I-7473 rev. 1	/2/2023 BEFORE	USE.				ENGINEER	NG BY	

WARNING - Verity design parameters and READ NOTES ON THIS AND INCLUDED MITTER REFERENCE PAGE MIT-4/3 fev. 1/2/2/2/3 EFCPAGE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	196 Farm at Neills Creek-2nd Floor-Callaway 1 BR4 GRH
24060196-B	F08	Floor	1	1	I66879691 Job Reference (optional)

7-9-2

7-9-2

Run: 8.73 S Jul 11 2024 Print: 8.730 S Jul 11 2024 MiTek Industries, Inc. Mon Jul 15 18:22:05 ID:Px0oyr7DUsJnX0INnSTHUPyyBzu-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

22-4-0

7-3-7

Page: 1

25-7-0

3-3-0

15-0-9

7-3-7

Scale = 1:45.1

00010 - 1.40.1														
Loading		(psf)	Spacing	1-4-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL		40.0	Plate Grip DOL	1.00		тс	0.28	Vert(LL)	-0.01	34-35	>999	480	MT20	244/190
TCDI		10.0	Lumber DOI	1.00		BC	0.23	Vert(CT)	-0.05	34-35	>999	360		
BCU		0.0	Ren Stress Incr	NO		WB	0.20	Horz(CT)	0.00	32	n/a	n/a	1	
BCDI		0.0 E 0	Codo			Motrix MCU	0.21	11012(01)	0.00	52	n/a	n/a	Wajaht 120 lh	ET - 209/ E 119/ E
BCDL		5.0	Code	IRC20	J18/1P12014	Matrix-IVISH							weight: 129 lb	FI = 20%F, II%E
					WEBS	4-32=-409/0, 16-2	0=-143/0), 5-31=-225/	0,					
TOP CHORD	2x4 SP No.2	2(flat)				0-29=-229/0, 7-28	=-222/0,	8-27=-223/0	,					
BOT CHORD	2x4 SP No.2	2(flat)				9-26=-222/0, 10-2	5=-222/(), 12-24=-222	2/0,					
WEBS	2x4 SP No.3	3(flat)				13-23=-222/0, 14-2	22=-226	/0, 15-21=-21	16/0,					
OTHERS	2x4 SP No.3	3(flat)				2-35=-399/0, 2-34	=-70/59,	3-33=-181/0	,					
BRACING						4-33=0/440, 17-19	9=-84/14	17-20=-123	/0					
TOP CHORD	Structural w	ood shea	athing directly applie	ed or	NOTES									
	6-0-0 oc pu	rlins, exc	cept end verticals.		1) Unbalanced	floor live loads have	ve been	considered f	or					
BOT CHORD	Rigid ceiling	g directly	applied or 6-0-0 oc		this design.									
	bracing, E	xcept:			All plates are	e 1.5x3 MT20 unle	ss other	wise indicate	d.					
	10-0-0 oc b	racing: 34	4-35,33-34.		Truss to be f	fully sheathed from	n one fac	e or securely	/					
REACTIONS	(size) 1	9=0-3-8,	20=14-6-14, 21=14	-6-14,	braced agair	nst lateral moveme	ent (i.e. c	liagonal web)).					
	2	2=14-6-1	4, 23=14-6-14,		Gable studs	spaced at 1-4-0 o	с.							
	2	4=14-6-1	4, 25=14-6-14,		This truss is	designed in accor	dance w	ith the 2018						
	2	6=14-6-1	4, 27=14-6-14,		International	Residential Code	sections	s R502.11.1 a	and					
	2	8=14-6-1	4, 29=14-6-14,		R802.10.2 a	nd referenced star	ndard AN	ISI/TPI 1.						
	3	1=14-6-1	4, 32=14-6-14, 35=	0-3-8	Load case(s) 1 has/have been	modifie	d. Building						
	Max Grav 1	9=103 (L	C 4), 20=244 (LC 1),	designer mu	st review loads to	verify the	at they are co	orrect					
	2	1=215 (L	C 3), 22=237 (LC 7),	for the intend	ded use of this trus	SS.							
	2	3=230 (L	C 3), 24=232 (LC 7),	Recomment	2x6 strongbacks,	on edge	e, spaced at						
	2	5=231 (L	C 3), 26=231 (LC 7),	10-00-00 oc	and fastened to ea	ach truss	s with 3-10d						
	2	7=232 (L	C 3), 28=231 (LC 7).	(0.131" X 3")) nails. Strongbacl	ks to be	attached to v	valls					
	2	9=238 (L	C 3), 31=234 (LC 7).	at their outer	r ends or restraine	d by othe	er means.						
	3	2=416 (L	C 1), 35=268 (LC 3)	8) CAUTION, E	Do not erect truss b	backware	ds.						11.
FORCES	(lb) - Maxim		nression/Maximum	, ,	LOAD CASE(S)	Standard							UNU CA	D'''
	Tension		processing		1) Dead + Flo	or Live (balanced)	: Lumbe	r Increase=1	.00,				N'TH UA	HOM
TOP CHORD	1-35=-68/0	18-19=-4	40/0 1-2=-3/0		Plate Increa	ase=1.00							A seco	in lain
	2-3=-342/0	3-4=-342	2/0 4-5=0/47 5-6=0	/47	Uniform Lo	ads (lb/ft)						50	FEOD	QAL MARK
	$6_{-7} = 0/47$ 7	-8-0/47	8-9-0/47 9-10-0/47	7	Vert: 19-	35=-7, 1-4=-67, 4-	-16=-167	. 16-18=-67				50	6. A	Martin -
	10-12-0/47	12-13-0	0 3-0/47, 5 10-0/47	,		,, .		,				10		
	14-15-0/47	15-16-0)/47 16-17-0/47										CEA	1 1 1
	17-182/0	, 10 10-0	<i>,</i> , , , , , , , , , , , , , , , , , , ,								=		SEA	L <u>i i</u>
	34-35-0/35	7 33-34-	-0/3/2 32-3347/0										0235	94 : =
	21 22- 17/0	1,00-04-	47/0 28 20- 47/0	,							-		. 0200	: 5
	27 29- 47/0), 28-31=	47/0, 20-29=-47/0,								-		1	2 - E
	21-20=-47/0	3, 20 - 21 =	47/0, 23-20=-47/0,									-	A	a: 3
	24-20=-47/0	J, ZJ-Z4=	-41/0, 22-23=-41/0,									11	VGINI	FERRES
	21-22=-47/(J, ZU-Z I=	-41/0, 19-20=-11/00	,								11	Un	1. V.N
													INY PI	MILLON
													The star	in the second se

July 16,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	196 Farm at Neills Creek-2nd Floor-Callaway 1 BR4 GRH
24060196-B	F09	Floor	1	1	I66879692 Job Reference (optional)

2-6-0

1-2-9

0-1-8 ∦

Run: 8.73 S Jul 11 2024 Print: 8.730 S Jul 11 2024 MiTek Industries, Inc. Mon Jul 15 18:22:05 ID:LbgzxLM8?ij5Jxi1PyJkmPyyBzb-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

0-1-8 ||

0-4-7

Scale = 1:45.1

															4
Plate Offsets (X, Y): [2:0-1-8,Edge],	[3:0-1-8,Edge], [10:	0-1-8,Edg	e], [17:0-1-8,E	dge]										
Loading TCLL TCDL BCLL BCDL	(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-4-0 1.00 1.00 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.64 0.58 0.48	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.15 -0.22 0.04	(loc) 17-18 17-18 14	l/defl >999 >999 n/a	L/d 480 360 n/a	PLATES MT20 Weight: 135 lb	GRIP 244/190 FT = 20%	F, 11%E	
LUMBER TOP CHORD BOT CHORD WEBS DTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2(flat) 2x4 SP No.2(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 14=0-3-8, Max Uplift 23=-97 (L Max Grav 14=627 (I 23=193 (I (b) - Maximum Com	athing directly applie cept end verticals. applied or 6-0-0 oc 20=0-4-14, 23=0-3- C 4) _C 7), 20=1159 (LC _C 3) upression/Maximum	3 4 ^{ed or} 5 -8 6 8), L	 One H2.5A strecommendue UPLIFT at jt does not cor This truss is International R802.10.2 a Recommendation R802.10.2 a Recommendation R802.10.2 a Recommendation R802.10.2 a CAUTION, E CAUTION, E CA	Simpson Strong-Ti ed to connect truss (s) 23. This connect sider lateral forces designed in accorr Residential Code nd referenced star 2x6 strongbacks, and fastened to er) nails. Strongback o not erect truss to Standard	e conne s to bear ction is fo s. dance w sections ndard AN on edge ach truss ks to be d by othe backward	tors or a walls due or uplift only a R502.11.1 a ISI/TPI 1. a, spaced at with 3-10d attached to w ar means. ds.	e to and and valls							
TOP CHORD	Tension 1-23=-98/0, 13-14=- 2-3=-193/314, 3-4=(5-6=-1389/0, 6-7=-1 9-10=-1985/0, 10-11 12-13=-3/0	69/0, 1-2=-4/0,)/898, 4-5=0/898, 389/0, 7-9=-1985/0, =-1695/0, 11-12=-10	695/0,												
BOT CHORD	22-23=-314/193, 21- 20-21=-314/193, 18- 16-17=0/1985, 15-10	-22=-314/193, -20=0/543, 17-18=0/ 6=0/1985, 14-15=0/1	/1858, 1041									TH CA	RO	4.	
WEBS NOTES 1) Unbalance this design 2) All plates a	4-20=-162/0, 3-20=- 2-22=-110/0, 3-21=(12-14=-1171/0, 5-18 6-18=-166/0, 11-15= 10-15=-415/5, 7-17= 10-16=-87/73 ad floor live loads have here 1.5x3 MT20 unless	780/0, 2-23=-212/35 //138, 5-20=-1401/0, 3=0/1000, 12-15=0/7 181/0, 7-18=-568/0 73/323, 9-17=-59/6 a been considered for s otherwise indicated	55, ,42,), 3, 5, or 1.							V VIIIIIIII		SEA 0235		in the second se	

this design.

Minimum Minimum July 16,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	196 Farm at Neills Creek-2nd Floor-Callaway 1 BR4 GRH
24060196-B	F11	Floor	5	1	I66879693 Job Reference (optional)

Run: 8.73 S Jul 11 2024 Print: 8.730 S Jul 11 2024 MiTek Industries, Inc. Mon Jul 15 18:22:05 ID:eybdPkSXMrb5e?kNJwxNYuyyBzU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:45.1

Plate Offsets ((X, Y): [2:0-1-8,Edge],	[3:0-1-8,Edge], [10:0)-1-8,Edge], [17:0-1-	3,Edge]									
Loading TCLL TCDL BCLL BCDL	(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-4-0 1.00 1.00 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MSH	0.77 0.65 0.55	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.15 -0.22 0.03	(loc) 17-18 17-18 14	l/defl >999 >999 n/a	L/d 480 360 n/a	PLATES MT20 Weight: 135 lb	GRIP 244/190 FT = 20%F, 1	1%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2(flat) 2x4 SP No.2(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) Structural wood shee 6-0-0 oc purlins, exc Rigid ceiling directly bracing. (size) 14=0-3-8, Max Uplift 23=-306 (athing directly applied cept end verticals. applied or 6-0-0 oc 20=0-3-8, 23=0-3-8 LC 4)	4) This trus Internation R802.10 5) Recomm 10-00-00 (0.131*) at their c 6) CAUTIO LOAD CASE	s is designed in acco onal Residential Code 2 and referenced sta end 2x6 strongbacks oc and fastened to e (3") nails. Strongbac uter ends or restraine V, Do not erect truss (S) Standard	ordance w e sections andard AN s, on edge each truss cks to be ed by othe backward	ith the 2018 R502.11.1 a ISI/TPI 1. e, spaced at s with 3-10d attached to w er means. Is.	und valls						
FORCES	Max Grav 14=608 (L 23=99 (LC (lb) - Maximum Com	.C 7), 20=1406 (LC 1 C 3) pression/Maximum),										
TOP CHORD	1-23=-89/0, 13-14=-7 2-3=-26/694, 3-4=0/ 5-6=-923/0, 6-7=-92 9-10=-1858/0, 10-11 12-13=-3/0	70/0, 1-2=-4/0, 1536, 4-5=0/1536, 3/0, 7-9=-1858/0, =-1627/0, 11-12=-16	327/0,										
BOT CHORD	22-23=-694/26, 21-2 20-21=-694/26, 18-2 16-17=0/1858, 15-16	2=-694/26, 0=-160/0, 17-18=0/1 6=0/1858, 14-15=0/1	557, 004								WITH CA	Rollin	
WEBS	4-20=-171/0, 3-20=- 2-22=-252/0, 3-21=0 12-14=-1130/0, 5-18 6-18=-168/0, 11-15= 10-15=-396/11, 7-17 10-16=-70/56	1110/0, 2-23=-25/78 //272, 5-20=-1568/0, =0/1161, 12-15=0/7(-199/0, 7-18=-731/0, 2=0/461, 9-17=-133/0	1,)7, ,								SEA	MAS	any man
NOTES 1) Unbalance this design 2) All plates 3) One H2.5. recommen UPLIFT at does not of	ed floor live loads have n. are 1.5x3 MT20 unless A Simpson Strong-Tie t nded to connect trust t jt(s) 23. This connecti consider lateral forces.	been considered for otherwise indicated. connectors o bearing walls due t on is for uplift only ar	o nd						111W		02359		WILLING .

July 16,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	196 Farm at Neills Creek-2nd Floor-Callaway 1 BR4 GRH
24060196-B	F12	Floor	5	1	I66879694 Job Reference (optional)

Run: 8.73 S Jul 11 2024 Print: 8.730 S Jul 11 2024 MiTek Industries, Inc. Mon Jul 15 18:22:05 ID:T5yufnWlxhLFMwBXfB2nn9yyBzO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1


```
Scale = 1:45.1
```

Ocale = 1.45.1														
Plate Offsets (2	X, Y): [2:0-1-8,Edge],	[3:0-1-8,Edge], [10:	:0-1-8,Edge], [1	7:0-1-8,Ed	ge]									
Loading TCLL TCDL BCLL BCDL	(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-4-0 1.00 1.00 YES IRC2018/TP	912014	CSI TC BC WB Matrix-MSH	0.77 0.65 0.55	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.15 -0.22 0.03	(loc) 17-18 17-18 14	l/defl >999 >999 n/a	L/d 480 360 n/a	PLATES MT20 Weight: 135 lb	GRIP 244/190 FT = 20%F, 1	1%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2(flat) 2x4 SP No.2(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) Structural wood she 6-0-0 oc purlins, exi Rigid ceiling directly bracing. (size) 14=0-3-8, Max Uplift 23=-306 (Max Grav 14=608 (L 22=00 (L	athing directly applie cept end verticals. applied or 6-0-0 oc 20=0-3-8, 23=0-3-8 LC 4) - C 7), 20=1406 (LC	4) Th Int R8 5) Re 10 (0. ed or at 6) C/ LOAD	his truss is c ternational f 302.10.2 an ecommend -00-00 oc a .131" X 3") their outer AUTION, Do CASE(S)	designed in accor Residential Code Id referenced star 2x6 strongbacks, and fastened to e nails. Strongbac ends or restraine o not erect truss h Standard	dance wi sections ndard AN on edge ach truss ks to be a d by othe backward	ith the 2018 R502.11.1 a ISI/TPI 1. s, spaced at with 3-10d attached to w er means. ds.	nd alls						
FORCES	(lb) - Maximum Com Tension 1-23=-89/0, 13-14=- 2-3=-26/694, 3-4=0/ 5-6=-923/0, 6-7=-92 9-10=-1858/0, 10-11	npression/Maximum 70/0, 1-2=-4/0, 1536, 4-5=0/1536, 3/0, 7-9=-1858/0, =-1627/0, 11-12=-10	627/0,											
BOT CHORD	22-23=-694/26, 21-2 20-21=-694/26, 18-2 16-17=0/1858, 15-1(4-20=-171/0, 3-20=- 2-22=-252/0, 3-21=0 12-14=-1130/0, 5-18	22=-694/26, 20=-160/0, 17-18=0/ ⁻ 6=0/1858, 14-15=0/1 1110/0, 2-23=-25/78 0/272, 5-20=-1568/0, 3=0/1161, 12-15=0/7	1557, 1004 31, 707,									OR CESS	ROIN	1/1
NOTES 1) Unbalance this design 2) All plates a 3) Provide m bearing pla 23.	6-18=-168/0, 11-15= 10-15=-396/11, 7-17 10-16=-70/56 ed floor live loads have are 1.5x3 MT20 unless echanical connection (ate capable of withstar	199/0, 7-18=-731/0 '=0/461, 9-17=-133/0 been considered for s otherwise indicated (by others) of truss to hding 306 lb uplift at), 0, or d. o joint							100000		SEA 0235		munn

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

July 16,2024

Job	Truss	Truss Type	Qty	Ply	196 Farm at Neills Creek-2nd Floor-Callaway 1 BR4 GRH
24060196-B	F13	Floor	3	1	l66879695 Job Reference (optional)

Run: 8.73 S Jul 11 2024 Print: 8.730 S Jul 11 2024 MiTek Industries, Inc. Mon Jul 15 18:22:06 ID:MtBPV9Zo?wshrYVIu07jy?yyBzK-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:36.1

Plate Offsets (X, Y): [4:0-1-8,Edge], [13:0-1-8,Edge]

		-										
Loading TCLL	(psf) 40.0	Spacing Plate Grip DOL	1-4-0 1.00	CSI TC	0.61	DEFL Vert(LL)	in -0.26	(loc) 12-13	l/defl >907	L/d 480	PLATES MT20HS	GRIP 187/143
TCDL	10.0	Lumber DOL	1.00	BC	0.88	Vert(CT)	-0.37	12-13	>631	360	MT20	244/190
BCLL	0.0	Rep Stress Incr	YES	WB	0.44	Horz(CT)	0.06	11	n/a	n/a		
BCDL	5.0	Code	IRC2018/TPI2014	Matrix-MSH							Weight: 102 lb	FT = 20%F, 11%E
LUMBER												
TOP CHORD	2x4 SP No.2(flat)											
BOT CHORD	2x4 SP No.2(flat)											
WEBS	2x4 SP No.3(flat)											
OTHERS	2x4 SP No.3(flat)											
BRACING												
TOP CHORD	Structural wood she	eathing directly applie	ed or									
	6-0-0 oc puriins, ex Bigid ceiling directly	cept end verticals.										
BOTCHORD	bracing.		,									
REACTIONS	(size) 11=0-3-8,	, 17=0-3-8										
	Max Grav 11=714 (I	LC 1), 17=714 (LC 1))									
FORCES	(lb) - Maximum Com	npression/Maximum										
	Tension											
TOP CHORD	1-17=-69/0, 10-11=-	68/0, 1-2=-3/0, 0012/0, 4 = -2518/0										
	2-3=-2013/0, 3-4=-2 5-62518/0 6-82	2013/0, 4-3=-2516/0, 2025/0, 8-9=-2025/0										
	9-10=-3/0	.020/0, 0 0= 2020/0,										
BOT CHORD	16-17=0/1206, 14-1	6=0/2518, 13-14=0/2	2518,									
	12-13=0/2464, 11-1	2=0/1210										
WEBS	9-11=-1363/0, 2-17=	-1357/0, 9-12=0/924	4,									
	2-16=0/916, 8-12=-1	155/0, 3-16=-187/16,	F								minin	lin.
	0-12=-498/0, 4-10=-	·084/0, 0-13=-100/32 05/11	ю,								W'LL CA	Pall
NOTES	+ 1+= 00/110, 0 10-	- 55/11								S	R	U.S.
1) Unbalance	ed floor live loads have	e been considered fo	r							5.	OFESS	QA: K
this design	1.									3		The second second
2) All plates a	are MT20 plates unles	s otherwise indicated	d.						-			
3) All plates a	are 1.5x3 MT20 unless	s otherwise indicated	l.							:	SEAL	1 E
4) This truss	is designed in accorda	ance with the 2018							E		00050	5. E E
Internation	al Residential Code s	ections R502.11.1 ai	nd						=		0235	94 : =
5) Recommo	and referenced stand	alu ANSI/TPTT.							-			1 2
10-00-00 c	nd 2x0 strongbacks, o	ch truss with 3-10d								2	. A.	all S
(0.131" X 3	3") nails. Strongbacks	s to be attached to wa	alls							21	~ VGINE	ENRS
at their out	er ends or restrained	by other means.								11	Mr -	in LENY
LOAD CASE(S	S) Standard										11, R. N	MIL'III
												mu.

July 16,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component component to the prevent collapse with possible for the Studyer Building Component Advance and Adva and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	196 Farm at Neills Creek-2nd Floor-Callaway 1 BR4 GRH
24060196-B	F14	Floor Girder	1	1	I66879696 Job Reference (optional)

Run: 8,73 S Jul 11 2024 Print: 8,730 S Jul 11 2024 MiTek Industries, Inc. Mon Jul 15 18:22:06 ID:nQgEN7t_Flojel1p1wXHf3yyBwM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:36.1

Plate Offsets (X, Y): [4:0-1-8,Edge], [13:0-1-8,Edge]

Loading TCLL TCDL BCLL	(psf) 40.0 10.0 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	1-4-0 1.00 1.00 NO		CSI TC BC WB	0.73 0.99 0.44	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.26 -0.38 0.06	(loc) 12-13 12-13 11	l/defl >889 >622 n/a	L/d 480 360 n/a	PLATES MT20HS MT20	GRIP 187/143 244/190	
BCDL	5.0	Code	IRC2018	/TPI2014	Matrix-MSH		,					Weight: 102 lb	FT = 20%F, 11%	Ε
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS	2x4 SP No.2(flat) 2x4 SP No.2(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) Structural wood shea 6-0-0 oc purlins, exx Rigid ceiling directly bracing. (size) 11=0-3-8, Max Grav 11=716 (L (lb) - Maximum Com Tension 1-17=-69/0, 10-11=-1 2-3=-2014/0, 3-4=-24 5-6=-2520/0, 6-8=-21 9-10=-3/0 16-17=0/1206, 14-16 12-13=0/2466, 11-12 9-11=-1367/0, 2-17= 2-16=0/917, 8-12=-1 6-12=-497/0, 4-16=-1 4-14=-39/116, 5-13=	athing directly applie cept end verticals. applied or 10-0-0 oc 17=0-3-8 .C 1), 17=714 (LC 1) pression/Maximum 68/0, 1-2=-3/0, 014/0, 4-5=-2520/0, 029/0, 8-9=-2029/0, 3=0/2520, 13-14=0/2 2=0/1214 -1358/0, 9-12=0/92/ 55/0, 3-16=-187/16, 694/0, 6-13=-175/32 -94/13	6) 7) 8) ed or LO 1) 2 2520, 4, 4,	Use Simpson or equivalent (es) to front f Fill all nail hc In the LOAD of the truss a AD CASE(S) Dead + Flo Plate Increa Uniform Lo. Vert: 11- Concentrate Vert: 20=	n Strong-Tie THA4 tat 16-8-4 from the face of top chord. oles where hanger CASE(S) section, are noted as front (Standard or Live (balanced): aase=1.00 ads (lb/ft) 17=-7, 1-10=-67 ed Loads (lb) 2 (F)	22 (Sing e left end is in con loads ap F) or ba	le Chord Giri I to connect t tact with lum pplied to the l ck (B). Increase=1.	der) russ ber. face 00,				Weight: 102 ID	Roj 4	<u> </u>
 Unbalance this design All plates a 	d floor live loads have are MT20 plates unless	r d.								Y	COFESS OFFESS	Mille		

- 3) All plates are 1.5x3 MT20 unless otherwise indicated.
- 4) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 5) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

CHARLEN WINDOW 2. Lannannann SEAL 023594 Juli July 16,2024

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component component to the prevent collapse with possible for the Studyer Building Component Advance and Adva and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	196 Farm at Neills Creek-2nd Floor-Callaway 1 BR4 GRH
24060196-B	F15	Floor	1	1	I66879697 Job Reference (optional)

Run: 8.73 S Jul 11 2024 Print: 8.730 S Jul 11 2024 MiTek Industries, Inc. Mon Jul 15 18:22:06 ID:3ooBbah4e?6G24GDU7I3M6yyBzA-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

Scale =	1:32
---------	------

Plate Offsets (X, Y): [2:0-1-8,Edge], [3:0-1-8,Edge]

											-	
Loading	(psf)	Spacing	1-4-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	тс	0.29	Vert(LL)	-0.01	5-6	>999	480	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.14	Vert(CT)	-0.02	5-6	>999	360		
BCLL	0.0	Rep Stress Incr	YES	WB	0.08	Horz(CT)	0.00	5	n/a	n/a		
BCDL	5.0	Code	IRC2018/TPI2014	Matrix-MSH							Weight: 37 lb	FT = 20%F, 11%E
LUMBER												

TOP CHORD BOT CHORD	2x4 SP N 2x4 SP N	o.2(flat) o.2(flat)
WEBS	2x4 SP N	o.3(flat)
OTHERS	2x4 SP N	o.3(flat)
BRACING		
TOP CHORD	Structura	I wood sheathing directly applied or
	6-0-0 oc p	ourlins, except end verticals.
BOT CHORD	Rigid ceil	ing directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(size)	5=0-3-8, 8=0-3-8
	Max Grav	5=212 (LC 1), 8=208 (LC 1)
FORCES	(lb) - Max Tension	imum Compression/Maximum
TOP CHORD	1-8=-75/0	, 4-5=-76/0, 1-2=-3/0, 2-3=-258/0,
	3-4=0/0	
BOT CHORD	7-8=0/258	8, 6-7=0/258, 5-6=0/258
WEBS	3-5=-290/	/0, 2-8=-287/0, 2-7=-58/86,
	3-6=-62/8	2

NOTES

- Unbalanced floor live loads have been considered for this design.
- 2) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 3) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

4) CAUTION, Do not erect truss backwards.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	196 Farm at Neills Creek-2nd Floor-Callaway 1 BR4 GRH			
24060196-B	F17	Floor Girder	1	1	I66879698 Job Reference (optional)			

Run: 8.73 S Jul 11 2024 Print: 8.730 S Jul 11 2024 MiTek Industries, Inc. Mon Jul 15 18:22:06 ID:I3uRdHC2WCX9ih2UVfa8bAyyByV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3x6 "

THA422 THA422

3x6 u

3x6 =

1-6-0

Scale = 1:25.4													
Loading	(psf)	Spacing	1-4-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL	40.0	Plate Grip DOL	1.00	тс	0.74	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
TCDL	10.0	Lumber DOL	1.00	BC	0.52	Vert(CT)	-0.04	4-5	>999	360			
BCLL	0.0	Rep Stress Incr	NO	WB	0.41	Horz(CT)	0.01	4	n/a	n/a			
BCDL	5.0	Code	IRC2018/TPI2014	Matrix-MP							Weight: 34 lb	FT = 20%F, 11%E	
LUMBER													

- TOP CHORD 2x4 SP No.2(flat)
- BOT CHORD 2x4 SP No.2(flat) WEBS 2x4 SP No.3(flat)
- BRACING

 BRACING

 TOP CHORD
 Structural wood sheathing directly applied or 4-7-0 oc purlins, except end verticals.

 BOT CHORD
 Rigid ceiling directly applied or 10-0-0 oc bracing.

 REACTIONS
 (size)
 4=0-3-8, 5= Mechanical Max Grav

 Max Grav
 4=1233 (LC 1), 5=1275 (LC 1)

FORCES	(lb) - Maximum Compression/Maximum Tension
TOP CHORD	1-5=-429/0, 3-4=-387/0, 1-2=0/0, 2-3=0/0

 BOT CHORD
 4-5=0/1372

 WEBS
 2-4=-1605/0, 2-5=-1605/0

NOTES

1) Refer to girder(s) for truss to truss connections.

- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 3) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- Use Simpson Strong-Tie THA422 (6-16d Girder, 6-10d Truss) or equivalent spaced at 1-7-8 oc max. starting at 0-10-12 from the left end to 3-6-12 to connect truss(es) to back face of top chord.
- 5) Fill all nail holes where hanger is in contact with lumber.
- 6) In the LOAD CASE(S) section, loads applied to the face
- of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

- 1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00
 - Uniform Loads (lb/ft)
 - Vert: 4-5=-7, 1-3=-67

Concentrated Loads (lb)

Vert: 2=-730 (B), 6=-730 (B), 7=-730 (B)

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

ERENCO A MITek Atfiliate

Job	Truss	Truss Type	Qty	Ply	196 Farm at Neills Creek-2nd Floor-Callaway 1 BR4 GRH			
24060196-B	F18	Floor	1	1	I66879699 Job Reference (optional)			

Run: 8,73 S Jul 11 2024 Print: 8,730 S Jul 11 2024 MiTek Industries, Inc. Mon Jul 15 18:22:06 ID:RStLKPprRm9RYz8sENx6y0yyBwR-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

1-0-0

Scale =	1:32.3
---------	--------

Plate Offsets (X, Y): [3:Edge,0-1-8], [4:Edge,0-1-8]												
Loading	(psf)	Spacing	1-4-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	тс	0.02	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.00	Vert(CT)	0.00	4	>999	360		
BCLL	0.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCDL	5.0	Code	IRC2018/TPI2014	Matrix-MP							Weight: 12 lb	FT = 20%F, 11%E

LUMBER

TOP CHORD	2x4 SP No.2(flat)
BOT CHORD	2x4 SP No.2(flat)
WEBS	2x4 SP No.3(flat)
OTHERS	2x4 SP No.3(flat)
BRACING	
TOP CHORD	Structural wood sheathing directly applied or
	1-0-0 oc purlins, except end verticals.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc
	bracing.
REACTIONS	(size) 3=0-3-8, 4= Mechanical
	Max Grav 3=24 (LC 1), 4=27 (LC 1)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-4=-25/0, 2-3=-23/0, 1-2=-1/0
BOT CHORD	3-4=0/0
WEBS	1-3=0/2

NOTES

1) Refer to girder(s) for truss to truss connections.

2) This truss is designed in accordance with the 2018

International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 3) Recommend 2x6 strongbacks, on edge, spaced at

10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means. 4) CAUTION, Do not erect truss backwards.

LOAD CASE(S) Standard

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	196 Farm at Neills Creek-2nd Floor-Callaway 1 BR4 GRH
24060196-B	FW16	Floor Supported Gable	1	1	I66879700 Job Reference (optional)

Run: 8.73 S Jul 11 2024 Print: 8.730 S Jul 11 2024 MiTek Industries, Inc. Mon Jul 15 18:22:06 ID:ca1VeAxIr8YtMgUzNBehuKyyBwG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:31.1															
Loading TCLL TCDL BCLL BCDL		(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-4-0 1.00 1.00 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-MR	0.05 0.02 0.02	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 15	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 78 lb	GRIP 244/190 FT = 20%F,	11%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No 2x4 SP No 2x4 SP No 2x4 SP No Structural 6-0-0 oc p Rigid ceili bracing. (size)	0.2(flat) 0.3(flat) 0.3(flat) 0.3(flat) 0.3(flat) 0.3(flat) 15=16-6-8 21=16-6-8 24=16-6-8 24=16-6-8 28=16-6-8 15=16 (LC 17=103 (L 19=98 (LC 21=97 (LC (LC 1), 24 1), 27=98 29=34 (LC	athing directly applie cept end verticals. applied or 10-0-0 oc 3, 16=16-6-8, 17=16- 3, 19=16-6-8, 20=16- 3, 22=16-6-8, 23=16- 3, 29=16-6-8 C 1), 16=60 (LC 1), C 1), 20=100 (LC 1), C 1), 20=100 (LC 1), C 1), 22=98 (LC 1), 2 I=98 (LC 1), 26=98 ((LC 1), 28=99 (LC 1) C 1), 28=99 (LC 1)	3 4 5 6d or 6-8, 6-8, -6	 Truss to be fibraced again Gable studs : This truss is International R802.10.2 ar Recommend 10-00-00 oc. (0.131" X 3") at their outer CAUTION, D CAD CASE(S) 	ully sheathed from st lateral moveme spaced at 1-4-0 or designed in accor Residential Code nd referenced star 2x6 strongbacks, and fastened to ea nails. Strongback ends or restrainer o not erect truss to Standard	n one fac ent (i.e. d c. dance w sections ndard AN , on edge ach truss ks to be d by othe backward	e or securely liagonal web). ith the 2018 s R502.11.1 at SIJTPI 1. a, spaced at s with 3-10d attached to ware means. ds.	nd						
FORCES	(lb) - Maxi Tension 1-29=-32/ 3-4=-3/0, 7-8=-3/0,	imum Com 0, 14-15=- 4-5=-3/0, 5 8-9=-3/0, 9	npression/Maximum 7/0, 1-2=-3/0, 2-3=-3 5-6=-3/0, 6-7=-3/0, 9-11=-5/0, 11-12=-5/0	3/0, 0,								and a	WITH CA	RO	11
BOT CHORD	12-13=-5/ 28-29=0/3 23-24=0/3 19-20=0/3 15-16=0/5	0, 13-14=- 3, 27-28=0/ 3, 22-23=0/ 3, 18-19=0/ 5	5/0 /3, 26-27=0/3, 24-26 /3, 21-22=0/3, 20-21 /5, 17-18=0/5, 16-17	=0/3, =0/3, =0/5,									SEA	L	and the second
WEBS	2-28=-89/ 5-24=-89/ 8-21=-88/ 11-18=-86	0, 3-27=-8 0, 6-23=-8 0, 9-20=-9 6/0, 12-17=	9/0, 4-26=-89/0, 9/0, 7-22=-89/0, 1/0, 10-19=-89/0, 93/0, 13-16=-63/0								1111		0235	94 EER.CR	Annun
 All plates Gable req 	are 1.5x3 M juires continu	T20 unless uous bottor	s otherwise indicated m chord bearing.	I.									July R.	MILL	1

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	196 Farm at Neills Creek-2nd Floor-Callaway 1 BR4 GRH
24060196-B	FW25	Floor Supported Gable	1	1	l66879701 Job Reference (optional)

Run: 8.73 S Jul 11 2024 Print: 8.730 S Jul 11 2024 MiTek Industries, Inc. Mon Jul 15 18:22:06 ID:vwy86Z18CIRtikWJH9GKgpyyBw9-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:45.1

Plate Offsets (X	Y).	[10:0-1-8 Edge]	[30:0-1-8 Edge]	

Plate Olisets (X, Y): [10:0-1-8,Edge]], [30:0-1-8,Edge]												
Loading TCLL TCDL BCLL BCDL	(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-4-0 1.00 1.00 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.61 0.01 0.09	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 21	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 119 lb	GRIP 244/190 FT = 20%F	⁻ , 11%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2(flat) 2x4 SP No.2(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) Structural wood shea 6-0-0 oc purlins, exc Rigid ceiling directly bracing, Except: 6-0-0 oc bracing: 29- (size) 21=25-7-0 24=25-7-0	athing directly applied cept end verticals. applied or 10-0-0 oc -30,28-29.), 22=25-7-0, 23=25-), 25=25-7-0, 26=25-	Br W d or 7-0, N	EBS	40-41=0/4, 39-40=0 36-37=0/4, 35-36=0 31-32=0/4, 30-31=0 27-28=0/6, 26-27=0 23-24=0/6, 22-23=0 2-40=-375/0, 3-39=- 5-37=-352/0, 6-36=- 3-34=-352/0, 9-32=- 11-30=-351/0, 12-29 14-27=-346/0, 15-21 17-24=-360/0, 18-23 10-30=-5/0	/4, 38-; /4, 34-; /6, 25-; /6, 21-; 333/0, 330/0, 330/0, 330/0, 3333/ 3=-297/	39=0/4, 37-38 35=0/4, 32-34 30=0/1, 28-29 26=0/6, 24-25 22=0/6 4-38=-182/0, 7-35=-183/0, 10-31=-179/0 0, 13-28=-185 0, 19-22=-367	=0/4, =0/4, =0/1, =0/6, , , , , , , , , , , , , , , , , , ,	LOAD C 1) De Pla Un Co	ASE(S) ad + Floc iform Loc Vert: 21- ncentra: Vert: 3= (B), 15= (B), 46= (B), 50=	Star oor Live ase=1 bads (lt -41=-7 ted Loa -186 (E -186 (E -187 (E	ndard e (balanced): Lui .00 ./ft) , 1-20=-67 ads (lb) 3), 6=-186 (B), 9 3), 18=-186 (B), 3), 47=-186 (B), 3)	nber Increase 186 (B), 12 44=-187 (B), 18=-186 (B),	e=1.00, =-186 45=-186 49=-186
F ORCES TOP CHORD	27=25-7-0 30=25-7-0 37=25-7-0 40=25-7-0 40=25-7-0 Max Grav 21=130 (L 25=189 (L 27=354 (L 31=188 (L 34=361 (L 40=385 (L (lb) - Maximum Com Tension 1-41=-84/0, 20-21= 3-4=-4/0, 4-5=-4/0, 9 11-12=-1/0, 12-14=-6 15-16=-6/0, 16-17=-6 18-19=-6/0, 19-20=-6	(28=25-7-0, 29=25-), 31=25-7-0, 32=25-), 35=25-7-0, 32=25-), 35=25-7-0, 39=25-), 41=25-7-0), 24=369 (LC 4), C 4), 26=342 (LC 4), C 4), 26=342 (LC 4), C 4), 30=364 (LC 4), C 4), 32=339 (LC 4), C 4), 35=192 (LC 4), C 4), 35=192 (LC 4), C 4), 37=361 (LC 4), C 4), 37=361 (LC 4), C 4), 39=342 (LC 4), C 4), 41=87 (LC 4) pression/Maximum 126/0, 1-2=-4/0, 2-3= i-6=-4/0, 6-7=-4/0, i-10=-4/0, 10-11=-1/0 6/0, 14-15=-6/0, 6/0	7-0, 1) 7-0, 2) 7-0, 2) 7-0, 3) (5) (6) (7) (7) (8) (7) (8) (7) (7) (8) (7) (7) (8) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7	Unbalanced this design. All plates are Gable requir. Truss to be f braced agair Gable studs This truss is International R802.10.2 ar Recommend 10-00-00 cc (0.131" X 3") at their outer Hanger(s) or provided suff Ib down at 1 4-11-8, 372 I 372 Ib down down at 14- at 18-11-8, 3 22-11-8, and design/selec responsibility In the LOAD of the truss a	floor live loads have a 1.5x3 MT20 unless es continuous botto ully sheathed from o statateral movemen spaced at 1-4-0 oc. designed in accorda Residential Code s nd referenced stanc 2x6 strongbacks, c and fastened to eac nails. Strongbacks ends or restrained other connection d icient to support co -0-4, 372 lb down a b down at 6-11-8, 3 at 10-11-8, 372 lb down at 20- 374 lb down at 24 tion of such connect of others. CASE(S) section, li re noted as front (F	s othern m chor one fact t (i.e. d ance w ections lard AN n edge by othe vice(s ncentra t 2-11. 372 lb c down a t 16-12 o tion de pads aj) or ba	considered for wise indicated d bearing. e or securely iagonal web). ith the 2018 R502.11.1 ar (SI/TPI 1. spaced at with 3-10d attached to wa er means.) shall be uted load(s) 37 8, 372 lb dow down at 8-11- t 12-11-8, 37: 1-8, 372 lb dow n top chord. □ vice(s) is the opplied to the fack (B).	r alls 74 n at 8, 2 lb wn n at The ace				SEA 0235	RO 1 94 94 16,2024	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	196 Farm at Neills Creek-2nd Floor-Callaway 1 BR4 GRH
24060196-B	A01	Common	17	1	l66879702 Job Reference (optional)

Run: 8.73 S Jul 11 2024 Print: 8.730 S Jul 11 2024 MiTek Industries, Inc. Mon Jul 15 18:22:02 ID:j97jP69sgrd5veAkaODY7wzhJJm-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:75.5

Plate Offsets	(X,	Y):	[6:0-4-0,0-2-4]	
---------------	-----	-----	-----------------	--

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MSH	0.37 0.43 0.47	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.08 -0.12 0.03	(loc) 12-14 12-14 10	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 199 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	 2x6 SP No.2 2x6 SP No.2 2x4 SP No.2 *Excep Left 2x4 SP No.3 1 1-6-0 Structural wood sheat 5-8-2 oc purlins. Rigid ceiling directly bracing. (size) 2=0-3-8, 1 Max Horiz 2=260 (LC Max Gray 2=1240 (I 	t* 12-8,14-4:2x4 SP I-6-0, Right 2x4 SP I athing directly applie applied or 10-0-0 oc 10=0-3-8 2 13) : 14), 10=-87 (LC 15 C 25) 10=1240 (LC	3) No.3 4) 5) ed or 5 7)	TCLL: ASCE Plate DOL=1 DOL=1.15); I Cs=1.00; Ct= Unbalanced design. This truss ha load of 12.0 j overhangs m This truss ha chord live loa * This truss ha chord live loa * This truss ha chord live loa * This truss ha on the bottor 3-06-00 tall b	7-16; Pr=20.0 psf .15); Pf=20.0 psf (ls=1.0; Rough Cat =1.10 snow loads have b s been designed for psf or 1.00 times file on-concurrent with s been designed for an onconcurrent with as been designed for an chord in all areas by 2-00-00 wide will y other members,	(roof LL Lum DC B; Fully eeen cor or greatu at roof k other lin or a 10.0 vith any for a liv s where I fit betw with BC	: Lum DOL= $J_L=1.15$ Plate Exp.; Ce=0.1 asidered for the er of min roof and of 20.0 p ve loads. 0 psf bottom other live loas e load of 20.1 a rectangle veen the bott DL = 10.0ps	1.15 e 9; his f live sf on ads. 0psf om f.						
FORCES	(lb) - Maximum Com Tension	pression/Maximum	, 0)	recommende UPLIFT at it(ed to connect truss s) 2 and 10. This c	to bear	ing walls due	e to t only						
TOP CHORD	0 1-2=0/27, 2-4=-1587 6-8=-1528/270, 8-10	/153, 4-6=-1528/270 =-1587/153, 10-11=), :0/27 9)	and does not This truss is	t consider lateral for designed in accord	rces. lance w	ith the 2018	,						
BOT CHORD	2-14=-208/1148, 12- 10-12=-46/1111	14=0/784,	,	International R802.10.2 ar	Residential Code s	sections dard AN	R502.11.1 a ISI/TPI 1.	and					<u>н.</u>	
WEBS	6-12=-189/739, 8-12 6-14=-188/739, 4-14	e=-347/285, =-347/284	LC	AD CASE(S)	Standard							TH CA	Ro	
NOTES 1) Unbaland this desig 2) Wind: AS Vasd=10 II: Exp B:	ced roof live loads have n. CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; B(Enclosed: MWERS (en	been considered for (3-second gust) CDL=6.0psf; h=25ft;	Cat.									SEA	Matt	

Vind: ASCE 7-10, Vulte 130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-8-5 to 2-3-11, Interior (1) 2-3-11 to 9-9-8, Exterior(2R) 9-9-8 to 15-9-8, Interior (1) 15-9-8 to 23-3-5, Exterior(2E) 23-3-5 to 26-3-5 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 SEAL 023594 *NGINEER Bully* July 16,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

TREERING BT A MITCH Affiliate 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	196 Farm at Neills Creek-2nd Floor-Callaway 1 BR4 GRH
24060196-B	A02	Common	8	1	I66879703 Job Reference (optional)

Run: 8.73 S Jul 11 2024 Print: 8.730 S Jul 11 2024 MiTek Industries, Inc. Mon Jul 15 18:22:03 ID:8MzQR?Qjx6sC?nivExcAt3zhJI7-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:76

Plate Offsets	(X, Y):	[7:0-3-1,Edge], [15:0-5-0,0-4-8]
---------------	---------	----------------------------------

Loading TCLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.15 1.15		CSI TC BC	0.32	DEFL Vert(LL)	in -0.09	(loc) 16-22	l/defl >999	L/d 240	PLATES MT20	GRIP 244/190	
TCDI	10.0	Rep Stress Incr	YES		WB	0.49	Horz(CT)	0.13	13-10	>999 n/a	n/a			
BCLL	0.0*	Code	IRC2018/TPI	12014	Matrix-MSH	0		0.0.1		1.0				
BCDL	10.0											Weight: 211 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS FORCES	2x6 SP No.2 2x6 SP No.2 2x4 SP No.3 Left 2x4 SP No.3 1 1-6-0 Structural wood shea 5-5-6 oc purlins. Rigid ceiling directly bracing. (size) 2=0-3-8, 1 Max Horiz 2=260 (LC Max Grav 2=1298 (L (lb) - Maximum Com Tension 1-2=0/27, 2-4=-1667 6-7=-196/86, 7-8=-11 10-12=-1667/0, 12-1	1-6-0, Right 2x4 SP No athing directly applied applied or 10-0-0 oc 12=0-3-8 C 13) C 25), 12=1298 (LC 2 pression/Maximum 7/0, 4-6=-1585/91, 96/87, 8-10=-1585/91, 3=0/27	3) TCl Pla DO CS= 5) Thi: des 5) Thi: loac 6) 200 fror 7) Thi: cho 8) *Th 3-0 cho 9) Thi: 8, *Th 8,	LL: ASCE ate DOL=1 balanced s sign. is truss have d of 12.0 p erhangs nc 0.0lb AC u m left end, is truss have ord live loa his truss have ord live loa his truss have ord live loa his truss is c ernational 02.10.2 ar	7-16; Pr=20.0 psf 15); Pf=20.0 psf (I s=1.0; Rough Cat I 1.10 snow loads have be s been designed for sof or 1.00 times flan- concurrent with nit load placed on 1 supported at two p s been designed for d nonconcurrent w as been designed for a chord in all areas y 2-00-00 wide will y other members, 1 designed in accord Residential Code s d referenced stand	(roof LL Jum DC B; Fully een cor or greate at roof l6 to ther list the bott boints, § or a 10.0 'ith any for a liv where fit betw with BC ance wisections dard AN	: Lum DOL= :L=1.15 Plate Exp.; Ce=0.9 isidered for the er of min roof bad of 20.0 ps re loads. om chord, 12 5-0-0 apart. 0 psf bottom other live load e load of 20.0 a rectangle ween the botto DL = 10.0psf th the 2018 R502.11.1 a ISI/TPI 1.	1.15); live sf on -9-8 ds.)psf om nd				-		
BOT CHORD WEBS	2-16=-142/1197, 14- 8-18=-71/708, 14-18 10-14=-302/308, 16- 6-17=-71/707, 4-16= 17-19=-1/5, 18-19=-	-16=0/951, 12-14=-1/1 }=-81/696, -17=-80/696, 302/308, 6-8=-990/97 1/5, 15-19=0/28	¹⁵⁹ LOAD (CASE(S)	Standard						and a	WITH CA	ROLI	
NOTES	d roof live loode have	haan appaidered for									2 R		N/L	7 2
 Unbalance this design Wind: ASC Vasd=103 II; Exp B; E and C-C E to 9-9-8, E to 23-3-5, left and rig exposed;C reactions s DOL=1.60 	ad roof live loads have L CE 7-16; Vult=130mph mph; TCDL=6.0psf; BG Enclosed; MWFRS (en ixterior(2E) -0-8-5 to 2- ixterior(2R) 9-9-8 to 15 Exterior(2R) 9-9-8 to 15 Exterior(2R) 9-9-8 to 15 Exterior(2R) 9-9-8 to 15 Composed; end vertion Loc for members and for shown; Lumber DOL=1	been considered for (3-second gust) CDL=6.0psf; h=25ft; C vvelope) exterior zone -3-11, Interior (1) 2-3-1 5-9-8, Interior (1) 15-9- 26-3-5 zone; cantileve cal left and right orces & MWFRS for 1.60 plate grip	at. 11 8 97							CONTRACTOR OF		SEA 0235 WGINI July	94 E.R. E.R. 16,2024	The second second

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	196 Farm at Neills Creek-2nd Floor-Callaway 1 BR4 GRH
24060196-B	A04	Common	1	1	I66879704 Job Reference (optional)

Run: 8,73 S Jul 11 2024 Print: 8,730 S Jul 11 2024 MiTek Industries, Inc. Mon Jul 15 18:22:03 ID:UOz0qTq2DxjYgjXtYN8XdqzhJCR-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:77.4				2-9-	-8	3-1-4		9-2	-1	1		10-6-3			1	
Plate Offsets ((X, Y): [5:0	-2-8,0-2-0],	[7:0-3-0,0-3-0]													
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL		(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11 1.15 1.15 YES IRC2	-4 2018/TI	PI2014	С Т В М М	SI C C VB Matrix-MSH	0.70 0.80 0.71	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.33 -0.56 0.02	(loc) 21-22 21-22 21	l/defl >702 >417 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 211 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD JOINTS	2x4 SP N 2x4 SP N 2x4 SP N 2x4 SP N Structura 6-0-0 oc I Rigid ceil bracing, 6-0-0 oc I 1 Brace a 13, 10, 8	lo.2 lo.1 lo.3 lo.3 l wood she purlins, ex ing directly Except: bracing: 26 at Jt(s): 14,	athing directly appl cept end verticals. applied or 10-0-0 c -27.	ied or oc	WEBS NOTE 1) U th 2) W V II a a	ES Inbalancec ins design. Vind: ASCE Vasd=103m ; Exp B; Er nd C-C Co 9-9-8 Co	14- 7-8= 3-26 16-2 11-2 18-2 d roo E 7-1 nph; nclos	15=-20/18, 1 =-152/96, 5-3 6=-159/108, 22=-108/648 24=-738/135 21=-462/0, 2 of live loads h 16; Vult=130 TCDL=6.0ps sed; MWFRS r(3E) 0-0-914	2-13=-191/ 25=-75/78, 6-24=-294/ , 11-22=-86 , 18-22=-26 -26=-173/3 nave been of mph (3-sec sf; BCDL=6 S (envelope to 2-2-2, E	(131, 9-10=-9 (131, 9-10=-9 (4-5=-154/10) (176, (3/115, (55/221, (51, 5-26=-10) (20) (20) (20) (20) (20) (20) (20) (2	29/66, 2, 08/126 or ;; Cat. ne 2-2-2 5-0-8	11) * Tr on t 3-00 cho 12) One recc UPI for t 13) This Inte R80 14) Gra or tt bott	his truss he botto 6-00 tall rd and a H2.5A promence LIFT at j uplift onl s truss is rnationa 02.10.2 a phical p phical p pho orien om choi	has be om choi by 2-0 iny oth Simpsi led to c t(s) 27, y and c s desig al Resic and refu urlin re tation c rd.	een designed for ir rd in all areas wh 0-00 wide will fit I er members, with on Strong-Tie cor connect truss to b , 21, 25, 26, and i does not conside ned in accordance dential Code sect erenced standarce opresentation doe of the purlin along	a live load of 20.0psf ere a rectangle between the bottom BCDL = 10.0psf. nnectors earing walls due to 24. This connection is r lateral forces. e with the 2018 ions R502.11.1 and I ANSI/TPI 1. s not depict the size the top and/or
REACTIONS	(size) Max Horiz Max Uplift Max Grav	21=0-3-8, 26=6-0-8, 27=-290 (21=-43 (L 25=-218 (27=-24 (L 21=944 (l 25=-41 (L 27=351 (l	24=6-0-8, 25=6-0- 27=6-0-8 LC 12) C 15), 24=-140 (LC LC 23), 26=-222 (L C 12) LC 31), 24=1139 (L C 36), 26=297 (LC C 27)	8, C 14), C 14), C 25), 25),	to c: fo D 3) T o s	 b) 23-4-14, i c) antilever leght expose c) reactions c) CL=1.60 c) Fruss designly. For stee Standard 	Corr eft ar ed;C s sho gned tuds ird In	(GR) 9-9-6 (ner(3E) 23-4 nd right expo -C for memb own; Lumber d for wind loa exposed to idustry Gable	-14 to 26-4 sed ; end v pers and for r DOL=1.60 wind (norm e End Detai	rentical left ar reces & MWFF) plate grip ane of the tru al to the face ils as applica	nd RS uss e), uble,	LOAD	CASE(S) Star	ndard	1110.
FORCES TOP CHORD	(lb) - Max Tension 2-27=-31. 6-8=-257. 10-11=-1 13-14=-7 2-3=-371. 9-12=-11 16-18=-8 19-20=0/	kimum Com 2/97, 19-21 /232, 8-10= 05/138, 11: 00/192, 14: /162, 3-4=- 1/27, 12-15 29/134, 18 36	pression/Maximum =-527/239, 5-6=-8 -165/177, -13=-822/269, -16=-712/204, 1-2= 282/112, 4-9=-206/ 5=-129/51, 15-16=- -19=-575/225,	0/36, 69, 139/49,	 4) T P D C 5) U di 6) T lo o 	r consult q CLL: ASCI late DOL= DOL=1.15); S=1.00; Cl Inbalancec esign. his truss h bad of 12.0 verhangs r	qualif E 7- =1.15 ; Is= :t=1.1 d sno nas b) psf non-	Field building 16; Pr=20.0 p 5); Pf=20.0 p 1.0; Rough C 10 bw loads hav been designe or 1.00 time concurrent w 1000000000000000000000000000000000000	designer as psf (roof LL sf (Lum DC Cat B; Fully re been cor ed for greate s flat roof k vith other in	s per ANSI/T : Lum DOL= DL=1.15 Plate Exp.; Ce=0.1 asidered for t er of min roof pad of 20.0 p ve loads.	PI 1. 1.15 9; his f live osf on		· Vunnu	in the second se	SEA 0235	ROLA IONICAL 94
BOT CHORD	26-27=-2 24-25=-7	68/282, 25 4/257, 22-2	-26=-75/270, 24=0/578, 21-22=0/	678	7) A 8) T b 9) G 10) T cl	II plates ar russ to be raced agai Gable studs his truss h hord live lo	re 2x fully inst l s spa nas b pad r	4 MT20 unle sheathed fr lateral move aced at 2-0-0 een designe nonconcurre	ess otherwis om one fac ment (i.e. d) oc. ed for a 10.0 nt with any	se indicated. e or securely iagonal web)) psf bottom other live loa	/). ads.				WGINY NY R. M	MILLER

July 16,2024

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component component to the prevent collapse with possible for the Studyer Building Component Advance and Adva and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	196 Farm at Neills Creek-2nd Floor-Callaway 1 BR4 GRH
24060196-B	A05	Common	1	1	l66879705 Job Reference (optional)

Run: 8.73 S Jul 11 2024 Print: 8.730 S Jul 11 2024 MiTek Industries, Inc. Mon Jul 15 18:22:04 ID:_qrWsZJexwYTmDiG3xJcR3zhJ9E-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

-0-10-8 0-10-8 13-2-7 0-9-14 26-5-8 0-10-8 12-4-9 25-7-0 12-4-9 12-4-9 4x8= 9 8 10 12 10⊏ 7 11 5x6 5x6💊 6 12 11-5-13 X 5 13 X 14 34 网 X 4 33 3 15 2 16 -2-0 17 18 31 30 29 28 27 26 25 24 23 22 21 20 19 3x5 II 5x6= 3x5 II

25-7-0

Scale = 1:70.9

Plate Offsets (X, Y): [6:0-3-0,0-3-0], [12:0-3-0,0-3-0], [25:0-3-0,0-3-0]

Н

Loading TCLL (roof) Snow (Pf) TCDL BCLL		(psf) 20.0 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	018/TPI2014	CSI TC BC WB Matrix-MR	0.26 0.14 0.23	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01	(loc 18) l/defl - n/a - n/a 3 n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190	
BCDL		10.0											Weight: 207	lb FT = 20%)
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS	2x4 SP N 2x4 SP N 2x4 SP N 2x4 SP N Structura 6-0-0 oc Rigid ceil bracing. 1 Row at	lo.2 lo.2 lo.3 lo.3 *Excep I wood she: purlins, ex ing directly midpt	t* 25-9:2x4 SP No.2 athing directly applie cept end verticals. applied or 6-0-0 oc 9-25, 8-26, 7-27, 10	ed or	TOP CHORD	1-2=0/37, 2-3=-291 4-5=-154/154, 5-7= 8-9=-186/358, 9-10 10-11=-148/295, 1 13-14=-108/110, 1 15-16=-245/195, 10 16-18=-206/140 31-32=-138/158, 20 27-28=-139/158, 20 24-26=-139/158, 20 22-23=-139/158, 20 22-23=-139/1	1/258, 3- 132/21)=-186/3 1-13=-11 4-15=-1: 6-17=0/: 0-31=-1: 8-29=-1: 6-27=-1: 3-24=-1: 1-22=-1:	4=-177/174, 4=-177/174, 58, 58, 50/213, 34/128, 37, 2-32=-260 38/158, 38/158, 38/158, 39/158, 39/158, 32/157	295, 0/194,	4) Tr P D C 5) U 6) Ti 6) Ti 10 0 ⁰ 7) A 8) G	CLL: ASC late DOL= OL=1.15); s=1.00; C nbalancec esign. his truss h ad of 12.0 verhangs i ll plates ari able requi	E 7-16 1.15); Is=1.0 =1.10 I snow as bee psf or non-co re 2x4 res co fully s	s; Pr=20.0 psf (Pf=20.0 psf (L); Rough Cat E r loads have be en designed fo r 1.00 times fla oncurrent with MT20 unless of ntinuous botto heathed from	roof LL: Lum I um DOL=1.15 3; Fully Exp.; C en considered r greater of mi t roof load of 2 other live loads otherwise indic m chord beari one face or se	DOL=1.15 Plate >e=0.9; I for this n roof live 20.0 psf on 3. rated. ng.
REACTIONS	(size) Max Horiz Max Uplift	18=25-7-0 21=25-7-0 24=25-7-0 30=25-7-0 32=-299 (18=-241 (20=-70 (L 22=-75 (L) 24=-62 (L)	11-23), 19=25-7-0, 20=25-), 25=25-7-0, 23=25-), 25=25-7-0, 28=25-), 28=25-7-0, 28=25-), 31=25-7-0, 32=25- LC 12) LC 13), 19=-294 (LC C 15), 21=-73 (LC 11) C 15), 23=-87 (LC 11) C 15), 26=-63 (LC 11)	-7-0, -7-0, -7-0, -7-0 2 15), 5), 5), 4),	WEBS S	22-23-139/136, 2 20-21=-137/157, 19 18-19=-137/157 9-25=-388/137, 8-2 7-27=-169/110, 6-2 5-29=-143/95, 14-30 3-31=-172/195, 10- 11-23=-169/111, 11 13-21=-143/95, 14- 15-19=-144/181	9-20=-1: 26=-229, 28=-149, 0=-157/1 -24=-22: 2-22=-1: -20=-15	87,137, 37/157, '100, 03, 9/86, 49/99, 8/103,		9) 11 10) G 11) T1 ch 12) * 01 3. ch	raced agai able studs his truss h nord live lo This truss n the botto -06-00 tall nord and a	inst lat space as bee pad no has be m cho by 2-0 iny oth	eral movemen eral movemen ed at 2-0-0 oc. en designed fo nconcurrent w een designed f ord in all areas 00-00 wide will her members.	r a 10.0 psf bo ith any other liv or a live load c where a rectai fit between the	web). ttom ve loads. of 20.0psf ngle e bottom
	Max Grav	27=-87 (L 29=-73 (L 31=-324 (18=328 (L 20=176 (L 22=173 (L 24=269 (L 26=269 (L 28=173 (L 30=174 (L 32=410 (L	C 14), 28=-75 (LC 1- C 14), 30=-69 (LC 1- LC 14), 32=-327 (LC C 10), 19=285 (LC - C 26), 21=167 (LC 2- C 26), 23=209 (LC 2- C 22), 25=339 (LC 2- C 22), 25=339 (LC 2- C 21), 27=209 (LC 2- C 25), 29=167 (LC 2- C 25), 31=344 (LC 2- C 21).	4), 4), 2 12) 13), 26), 22), 15), 21), 25), 12),	 Unbalanced this design. Wind: ASCE Vasd=103mp II; Exp B; En and C-C Cor to 9-9-8, Cor to 23-4-14, C cantilever lef right exposer for reactions 	roof live loads have 7-16; Vult=130mp bh; TCDL=6.0psf; E closed; MWFRS (e ner(3E) -0-9-14 to ner(3R) 9-9-8 to 15 Corner(3E) 23-4-14 t and right exposed c;C-C for members shown; Lumber D	e been (BCDL=6 envelope 2-2-2, E 5-9-8, E to 26-4 d; end v s and for OL=1.60	considered fo cond gust) .0psf; h=25ft; e) exterior zor :xterior(2N) 2- xterior(2N) 15 -14 zone; vertical left an ces & MWFR 0 plate grip	r Cat. ne -2-2 5-9-8 d SS		Wannus		SE 023	AR Signal AL 594	
FORCES	(lb) - Max Tension	kimum Com	pression/Maximum	:	DOL=1.60 3) Truss design only. For stu see Standard or consult qu	ned for wind loads ids exposed to win d Industry Gable E ialified building des	in the p d (norm nd Deta signer as	lane of the tru al to the face) ils as applicat s per ANSI/TF	uss), ble, Pl 1.			in in	NY R	MILLE	in the second

July 16,2024

Page: 1

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and RCSI Building Component Safety (Information, available from the Structural Building Component Association (www.shearcomponent Safety Information, available from the Structural Building Component Association (www.shearcomponent Safety Information, available from the Structural Building Component Association (www.shearcomponent Association). and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	196 Farm at Neills Creek-2nd Floor-Callaway 1 BR4 GRH
24060196-B	A05	Common	1	1	l66879705 Job Reference (optional)

- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 327 lb uplift at joint 32, 241 lb uplift at joint 18, 63 lb uplift at joint 26, 87 lb uplift at joint 27, 75 lb uplift at joint 28, 73 lb uplift at joint 29, 69 lb uplift at joint 30, 324 lb uplift at joint 31, 62 lb uplift at joint 24, 87 lb uplift at joint 23, 75 lb uplift at joint 22, 73 lb uplift at joint 21, 70 lb uplift at joint 20 and 294 lb uplift at joint 19.
- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Run: 8.73 S Jul 11 2024 Print: 8.730 S Jul 11 2024 MiTek Industries, Inc. Mon Jul 15 18:22:04 ID:_qrWsZJexwYTmDiG3xJcR3zhJ9E-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	196 Farm at Neills Creek-2nd Floor-Callaway 1 BR4 GRH
24060196-B	B01	Common	2	1	I66879706 Job Reference (optional)

Run: 8,73 S Jul 11 2024 Print: 8,730 S Jul 11 2024 MiTek Industries, Inc. Mon Jul 15 18:22:04 ID:poo3p3?OWRjN6_ZDvPrzF4zhJ8L-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

10-6-3

Page: 1

20-8-8 4-7-15 9-3-13 13-11-8 19-10-0 4-7-14 0-10-8 4-7-15 4-7-11 5-10-8 4x5 =4 12 10 4x5 🍫 13 14 4x5、 15 12 3 5 9-11-3 2x4 2 3x5 II 2-2-0 6 -2-0 7 8 ₿ 16 17 10.9 18 19 3x6= 3x8= 3x8= 4x8= 9-3-13 19-10-0

9-3-13

Scale = 1:67.2	
	-

Plate Offsets (X, Y): [9:0-3-3,Edge]

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.69 0.85 0.76	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.32 -0.55 0.02	(loc) 8-10 8-10 8	l/defl >725 >430 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.1 2x4 SP No.3 Structural wood sheat 6-0-0 oc purlins, exce Rigid ceiling directly a bracing. (size) 8=0-3-8, 11 Max Horiz 11=-268 (L Max Uplift 8=-74 (LC Max Grav 8=960 (LC	thing directly applie ept end verticals. applied or 10-0-0 oc 1=0-3-8 C 12) 15), 11=-66 (LC 14 6), 11=958 (LC 5)	3) ed or 5) c 6)) 7)	TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct: Unbalanced design. This truss ha load of 12.0 overhangs n This truss ha chord live loa * This truss ha chord live loa * This truss ha	7-16; Pr=20.0 psf .15); Pf=20.0 psf (I Is=1.0; Rough Cat I =1.10 snow loads have b as been designed for psf or 1.00 times fla on-concurrent with is been designed for ad nonconcurrent w nas been designed n chord in all areas no 2-00-00 wide will	(roof Ll Lum DC B; Fully een cor or great at roof li other li other li other li other li other li other li other li other li other li for a liv where fit bety	L: Lum DOL= DL=1.15 Plate Exp.; Ce=0.9 Isidered for the pad of 20.0 pp re loads. D psf bottom other live loa e load of 20.0 a rectangle recent the bottom	1.15); live sf on ds.)psf					
FORCES TOP CHORD BOT CHORD	(lb) - Maximum Comp Tension 1-2=0/39, 2-3=-243/10 4-5=-884/170, 5-6=-5 2-11=-286/122, 6-8=-4 10-11=-79/663, 8-10=	oression/Maximum 07, 3-4=-879/168, 73/185, 6-7=0/39, 530/189 =0/715	8)	chord and ar One H2.5A S recommende UPLIFT at jt(and does no This truss is	y other members, Simpson Strong-Tie ed to connect truss s) 11 and 8. This co t consider lateral fo designed in accord	with BC conne to bear onnecti rces. ance w	DL = 10.0psf ctors ing walls due on is for uplift ith the 2018	to only					
WEBS	3-10=-148/204, 4-10= 5-10=-278/230, 3-11=	102/741, 795/53, 5-8=-589/	/28 L	International R802.10.2 a	Residential Code s nd referenced stand Standard	dard AN	R502.11.1 a ISI/TPI 1.	nd				TH CA	ROUNT

this design.

Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 6-3-13, Exterior(2R) 6-3-13 to 12-3-13, Interior (1) 12-3-13 to 17-8-8, Exterior(2E) 17-8-8 to 20-8-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Vinninnin July 16,2024

SEAL

023594

and a support of the second se

"Continues of the second

Job	Truss	Truss Type	Qty	Ply	196 Farm at Neills Creek-2nd Floor-Callaway 1 BR4 GRH
24060196-B	B02	Common	1	1	I66879707 Job Reference (optional)

Run: 8.73 S Jul 11 2024 Print: 8.730 S Jul 11 2024 MiTek Industries, Inc. Mon Jul 15 18:22:04 ID:QwOCt908BImgeeqJB_K8WIzhJ5k-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

8-3-4

3-1-12

H

8-5-0

Scale -	1.72 1	

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL		(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MSH	0.39 0.59 0.50	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.10 -0.20 0.01	(loc) 24-25 24-25 21	l/defl >999 >982 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 160 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD JOINTS REACTIONS	2x4 SP N 2x4 SP N 2x4 SP N 2x4 SP N Structural 6-0-0 oc p Rigid ceill bracing, 5-3-9 oc h 1 Brace a 11, 13, 16 (size)	0.2 0.2 0.3 0.3 I wood sheat purlins, exc ing directly Except: pracing: 18 tt Jt(s): 8, 5 18=3-3-8, 25=0-3-8	athing directly applied cept end verticals. applied or 10-0-0 oc -21. 21=3-3-8, 22=3-3-8,	1) 2) d or 3)	Unbalanced this design. Wind: ASCE Vasd=103mg II; Exp B; En and C-C Cor to 6-3-13, Cc 12-3-13 to 17 cantilever lef right exposed for reactions DOL=1.60 Truss design only. For stu see Standarc	roof live loads have 7-16; Vult=130mpt h; TCDL=6.0psf; B closed; MWFRS (en ner(3E) -0-10-8 to 2 rmer(3R) 6-3-13 to 7-8-8, Corner(3E) 1 t and right exposed d;C-C for members shown; Lumber DC ned for wind loads i ds exposed to wind l Industry Gable Er alifed building desi	e been of CDL=6 nvelope 2-1-8, E 12-3-1; 7-8-8 to ; end v and for DL=1.60 n the pi d norm id Deta	considered for ond gust) .0psf; h=25ft; e) exterior zon xterior(2N) 2- 3, Exterior(2N) o 20-8-8 zone; ertical left and ccs & MWFR 0 plate grip ane of the tru- al to the face) ils as applicab s or ANS/CP	Cat. e 1-8) 5 S S ss , , ele, 1	 13) One reccupies of the reccup	e H2.5A ommence LIFT at j ft only a s truss is rnationa 02.10.2 a phical p ne orien om choi CASE(S	Simps led to c (s) 18, nd doe s desig I Resic and ref urlin re tation c d.) Star	on Strong-Tie co connect truss to b 22, and 25. This s not consider lat ned in accordanc dential Code sect erenced standard presentation doe of the purlin along ndard	inectors earing walls connection eral forces. e with the 2 ions R502.1 I ANSI/TPI s not depict the top and	s due to h is for 2018 11.1 and 1. t the size d/or
FORCES TOP CHORD BOT CHORD WEBS	Max Horiz Max Uplift Max Grav (lb) - Max Tension 1-2=0/38, 4-5=-150, 10-12=-14 15-17=-22 2-25=-229, 9-11=-46, 14-16=-63 24-25=-11 18-22=-33 5-6=-126, 12-13=-10	25=-260 (18=-199 (22=-178 (18=963 (L 22=723 (L imum Com 2-3=-170/' (159, 5-7=-' 40/35, 12-1 31/112, 17- 9/168, 19-2 (142, 6-8=-' 1/42, 6-8=-' 9/40, 16-18 00/466, 22- 7/235, 18-2 (69, 7-8=-11) 00/72, 15-1	LC 12) LC 13), 21=-890 (LC LC 15), 25=-41 (LC 1 C 15), 25=760 (LC 21 pression/Maximum 116, 3-4=-575/181, 174/145, 7-10=-214/7 5=-177/30, 19=-58/68, 19-20=0/ 19=-58/68, 19-20=0/ 1=-99/171, 462/91, 8-9=-496/118 -84/63, 13-14=-135/1 =-97/87 24=0/424, 1=-1138/275 63/89, 10-11=-220/10 6=-205/203,	15), 4) 14), 11, 11, 5) 6) 6) 73, 7) 38, 7) 38, 7) 109, 10 109, 10 207, 11	TCLL: ASCE Plate DOL=1 DOL=1.15); I Cs=1.00; Ct= Unbalanced design. This truss ha load of 12.0 p overhangs no All plates are Truss to be fi braced again Gable studs i) This truss ha chord live loa) * This truss h on the bottom 3-06-00 tall b chord and an	T-16; Pr=20.0 psf T-16; Pr=20.0 psf 1.5); Pf=20.0 psf t.15); Pf=20.0 psf t.10 snow loads have be s been designed for s been designed for tak MT20 unless tak MT20 unless tak MT20 unless tak MT20 unless tak atteral movement spaced at 2-0-0 oc. s been designed for d nonconcurrent with as been designed for the north of the members.	(roof LL .um DC 3; Fully een cor or great to roof k other liv other liv for a 10.0 (ith any fit betw	: Lum DOL=1 :Lum DOL=1 L=1.15 Plate Exp.; Ce=0.9 isidered for th er of min roof 1 pad of 20.0 ps ve loads. se indicated. e or securely iagonal web). D psf bottom other live loac e load of 20.0 a rectangle veen the botto	.15 ; is live f on ds. psf m				SEA 0235	ROL POL	
NOTES	17-21=-20 4-24=-94/ 9-24=-149	69/34, 14-2 /328, 3-24= 9/102, 3-25	12=-264/240, 122/181, i=-623/35, 9-22=-526	12 /129) Provide mech bearing plate 21.	nanical connection capable of withsta	(by oth nding 8	ers) of truss to 90 lb uplift at	o joint				ONY R.	EFY. FR	A LEAST

July 16,2024

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	196 Farm at Neills Creek-2nd Floor-Callaway 1 BR4 GRH
24060196-B	C01	Common Supported Gable	1	1	I66879708 Job Reference (optional)

Run: 8.73 S Jul 11 2024 Print: 8.730 S Jul 11 2024 MiTek Industries, Inc. Mon Jul 15 18:22:04 ID:802r6CYIqGJRwPBnmD7SIazhJ52-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

_

16-10-0

Scale = 1:57	
--------------	--

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL		(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC20 ⁻	18/TPI2014	CSI TC BC WB Matrix-MR	0.31 0.18 0.22	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 12	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 127 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS				10), 4 5), 4 6), 5 10), 5 2), 6 6), 5 2), 6 1), 6 0),	 NOTES Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-10-8 to 2-5-0, Exterior(2N) 2-5-0 to 5-5-0, Corner(3R) 5-5-0 to 11-5-0, Exterior(2N) 11-5-0 to 14-5-0, Corner(3E) 14-5-0 to 17-8-8 zone; cantilever left and right exposed; c-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 Unbalanced snow loads have been considered for this design. Tive studes of the grign of the truss for reaction to the solution of the truss only is truss has been designed for greater of min roof live load of 12.0 psf r.000 the solution of the truss only. 					 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 150 lb uplift at joint 21, 143 lb uplift at joint 12, 71 lb uplift at joint 18, 57 lb uplift at joint 19, 168 lb uplift at joint 20, 70 lb uplift at joint 15, 58 lb uplift at joint 14 and 163 lb uplift at joint 13. This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard 					
FORCES	(lb) - Maximum Compression/Maximum Tension			7 8 0) All plates are) Gable requir	e 2x4 M120 unless es continuous bot	s otherwi tom choi	se indicated. d bearing.			1	20	y.	Nall	-
TOP CHORD BOT CHORD WEBS	2-21=-180/195, 1-2=0/38, 2-3=-153/157, 3-4=-80/230, 4-5=-113/326, 5-6=-154/402, 6-7=-154/402, 7-8=-114/324, 8-9=-75/236, 9-10=-147/151, 10-11=0/38, 10-12=-176/161 20-21=-125/118, 19-20=-125/118, 18-19=-125/118, 17-18=-125/118, 13-14=-125/118, 14-15=-125/118, 13-14=-125/118, 12-13=-125/118, 6-17=-434/103, 5-18=-225/96, 4-19=-158/126, 3-20=-194/143, 7=15=-25/08, 8-14=-158/114, 9-12=-102/156, 4-19=-158/126, 3-20=-194/143, 7=15=-25/08, 8-14=-158/114, 9-12=-102/156, 4-158/114, 9-12=-102/156, 4-158/114, 9-12=-102/156, 4-158/114, 9-12=-102/156, 4-158/126, 3-20=-194/143, 7=15=-25/168, 8-14, 9-12=-102/156, 4-158/114, 9-12=-102/156, 4-158/114, 9-12=-102/156, 4-158/114, 9-12=-102/156, 4-158/114, 9-12=-102/156, 4-158/114, 9-12=-102/156, 4-158/114, 9-12=-102/156, 4-158/114, 9-12=-102/156, 4-158/114, 9-12=-102/156, 4-158/126, 4-158/114, 9-12=-102/156, 4-158/114, 9-12=			2, 1 5, 1 161 1	 Huss to be again braced again Gable studs This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar 	spaced at 2-0-0 o iss been designed ad nonconcurrent has been designed n chord in all area by 2-00-00 wide w hy other members	for a 10. c. for a 10. with any d for a liv is where ill fit betv	0 psf bottom other live load e load of 20.0 a rectangle veen the botto	ls. psf m		THUNK .		SEA 0235	EER. FR.	WILLIAM STATE

July 16,2024

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

