

Trenco 818 Soundside Rd Edenton, NC 27932

Re: B0924-5192 Lot 6 River Road

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Comtech, Inc - Fayetteville.

Pages or sheets covered by this seal: I69041271 thru I69041334

My license renewal date for the state of North Carolina is December 31, 2024.

North Carolina COA: C-0844

October 21,2024

Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Max Grav All reactions 250 lb or less at joint(s) 8, 12 except 10=313(LC 11), 9=264(LC 18), 11=267(LC 17)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable studs spaced at 2-0-0 oc.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 10 except (jt=lb) 8=120, 12=178, 9=203, 11=205.
- 8) Non Standard bearing condition. Review required.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 576 lb uplift at joint 13 and 552 lb uplift at joint 9.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

TRENCO

Job	Truss	ss Type	Qty	Ply	Lot 6 River Road		
B0924-5192	B04 COM	MMON TRUSS	3	1		l69041275	
Comtech Inc Fav	etteville NC - 28314	le NC - 28314			Job Reference (option	al) ies Inc. Mon Oct 21 09:19:27 2024 Page 1	
	ID:1jr0aUZI522uyMJe9JV52yy9ks9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f						
		2-4-4 4-3-12	2 6-0-)	-1		
		6x6 =				Scale = 1:71.2	
		2					
	11 14 14	3x4 1 3x4 1 3x4	$2x4^{12} 00 $ 3 7 10 4x8 =	3x1	0 % 4 (92-1- 5 =		
		6-8-0	12-8-	0	-1		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.32 BC 0.34 WB 0.50 Matrix-S	DEFL. ir Vert(LL) -0.09 Vert(CT) -0.14 Horz(CT) 0.00 Wind(LL) 0.02	n (loc) 7-8 7-8 8 8 7	l/defl L/d >999 360 >999 240 n/a n/a >999 240	PLATES GRIP MT20 244/190 Weight: 124 lb FT = 20%	
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x4 SP WEBS 2x4 SP 1-8: 2x0		BRACING- TOP CHORD BOT CHORD WEBS	Structur except Rigid ce 1 Row a	ral wood sheathing dir end verticals. Siling directly applied o at midpt 2	ectly applied or 6-0-0 oc purlins, or 9-1-6 oc bracing. -8, 2-7, 1-8		
REACTIONS. (size Max H Max U Max G	e) 8=0-3-8, 6=0-3-8 orz 6=-414(LC 11) plift 8=-317(LC 11) rav 8=668(LC 18), 6=498(LC 17)						
FORCES. (lb) - Max. TOP CHORD 2-3=- BOT CHORD 6-7=- WEBS 2-8=-	Comp./Max. Ten All forces 250 (lb) 559/354, 3-4=-488/9, 4-6=-458/3 474/404 500/317, 2-7=-501/747, 3-7=-555/47{) or less except when shown. 8, 4-7=-57/322					
 NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-10; V gable end zone and DOL=1.60 3) This truss has been 4) * This truss has been between the bottom 5) Provide mechanical 	I loads have been considered for this ult=130mph Vasd=103mph; TCDL=6 C-C Exterior(2) zone;C-C for membe designed for a 10.0 psf bottom chord n designed for a live load of 20.0psf o chord and any other members, with E connection (by others) of truss to bea	design. 3.0psf; BCDL=5.0psf; h=15ft; Cat ers and forces & MWFRS for read 1 live load nonconcurrent with any on the bottom chord in all areas v BCDL = 10.0psf. aring plate capable of withstandir	II; Exp C; Enclosed ctions shown; Lumbu y other live loads. with a clearance greating ang 317 lb uplift at join g 317 lb uplift at join	t; MWFR: er DOL=1 ater than ht 8.	S (envelope) .60 plate grip 6-0-0	SEAL 036322	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

RENCO 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Lot 6 River Road	1600/11276
B0924-5192	B05	GABLE	1	1		169041276
Comtech Inc Eavett			8	30 s Ser	Job Reference (option	al) ies. Inc. Mon Oct 21 09:19:27 2024. Page 1
Connech, inc, i ayeu	evine, NC - 20314,	2-4-4 6- 2-4-4 4-	ID:1jr0aUZI522 -8-0 12-8- 3-12 6-0-0	yMJe9J\ 0 0	/52yy9ks9-RfC?PsB70F	Iq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f
		4x4 =				Scale = 1:71.2
		2				
		3x10 / 1	2x4 3x6 12.00 3x6 2x4 2x4 6 4x4 =	55	45 4 8-2 8-2 1 8-2 1 8-2 5 × 4	
		2-4-4 6-	-8-0 12-8-	0	_	
Plate Offsets (X,Y) [4	0-1-12.0-1-8]	2-4-4 4-3	3-12 ' 6-0-()		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.34 BC 0.19 WB 0.41	DEFL. in Vert(LL) -0.03 Vert(CT) -0.06 Horz(CT) 0.01	(loc) 5-6 5-6 8	l/defl L/d >999 360 >999 240 n/a n/a	PLATES GRIP MT20 244/190
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S	Wind(LL) 0.01	6-7	>999 240	Weight: 141 lb FT = 20%
LUMBER- TOP CHORD 2x4 SP N BOT CHORD 2x4 SP N WEBS 2x4 SP N 1-8: 2x6 S OTHERS 2x4 SP N	o.1 o.2 *Except* SP No.1 o.2		BRACING- TOP CHORD BOT CHORD WEBS	Structur except Rigid ce 1 Row a	ral wood sheathing dire end verticals. eiling directly applied o at midpt 1-	ectly applied or 6-0-0 oc purlins, r 9-0-6 oc bracing. -8, 2-7, 3-7
REACTIONS. (size) Max Hor. Max Upli Max Gra	5=0-3-8, 8=0-3-8 z 5=-420(LC 11) ft 8=-317(LC 11) v 5=497(LC 17), 8=674(LC 18)				
FORCES. (lb) - Max. Cd TOP CHORD 3-4=-48 BOT CHORD 6-7=-23 WEBS 4-6=-62	omp./Max. Ten All forces 25 7/11, 4-5=-446/10, 1-8=-638/3 6/354, 5-6=-485/414 /307, 1-7=-238/511, 3-7=-511	0 (lb) or less except when shown. 118 /359				
NOTES- 1) Unbalanced roof live lo 2) Wind: ASCE 7-10; Vul	ads have been considered fo =130mph Vasd=103mph; TCI	this design. DL=6.0psf; BCDL=5.0psf; h=15ft; (Cat. II; Exp C; Enclosed	; MWFR	S (envelope)	

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) Gable studs spaced at 2-0-0 oc.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 317 lb uplift at joint 8.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/ITP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/JTP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com) TRENCO AMITEK AMITEK AMITI

LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	n (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.43	Vert(LL) -0.0	3 4-5	>999	360	MT20	244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.25	Vert(CT) -0.0	5 4-5	>999	240		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.06	Horz(CT) -0.0) 4	n/a	n/a		
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S	Wind(LL) 0.0	0 5	>999	240	Weight: 79 lb	FT = 20%
ICDL 10.0 BCLL 0.0 * BCDL 10.0	Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	BC 0.25 WB 0.06 Matrix-S	Vert(CT) -0.0 Horz(CT) -0.0 Wind(LL) 0.0	5 4-5) 4) 5	>999 n/a >999	240 n/a 240	Weight: 79 lb	FT = 20%

LUMBER-

TOP CHORD2x4 SP No.1BOT CHORD2x4 SP No.1WEBS2x4 SP No.2

REACTIONS. (size) 6=0-3-8, 4=0-3-8 Max Horz 6=185(LC 7) Max Uplift 6=-105(LC 11), 4=-105(LC 10) Max Grav 6=495(LC 1), 4=495(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-452/171, 2-3=-452/171, 1-6=-440/174, 3-4=-440/174

BOT CHORD 5-6=-239/284

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 105 lb uplift at joint 6 and 105 lb uplift at joint 4.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

BRACING-TOP CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

(lb) -

Max Uplift All uplift 100 lb or less at joint(s) except 11=-159(LC 10), 12=-105(LC 11), 9=-157(LC 11), 8=-102(LC 10) Max Grav All reactions 250 lb or less at joint(s) 11, 12, 9, 8 except 10=255(LC 20)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 7) between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 159 lb uplift at joint 11, 105 lb uplift at joint 12, 157 lb uplift at joint 9 and 102 lb uplift at joint 8.
- 9) Non Standard bearing condition. Review required.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

0.00

BRACING-TOP CHORD

BOT CHORD

>999

240

Rigid ceiling directly applied or 6-0-0 oc bracing.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

LU	M	в	E	R-
----	---	---	---	----

BCDL

2x4 SP No.1 TOP CHORD 2x4 SP No.1 BOT CHORD WEBS 2x4 SP No.2

REACTIONS. 8=0-3-8, 6=0-3-8 (size) Max Horz 8=-142(LC 6) Max Uplift 8=-95(LC 10), 6=-95(LC 11) Max Grav 8=450(LC 1), 6=450(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. 2-8=-380/221, 4-6=-380/221 WEBS

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 4) between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 95 lb uplift at joint 8 and 95 lb uplift at joint 6.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design and the second design much reacting of design and the second design much reacting and and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

6) * This truss has been designed for a 10.0 psi bottom chord live load nonconcurrent with any other live loads.
 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

 Bearing at joint(s) 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 111 lb uplift at joint 9 and 107 lb uplift at joint 5.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

A MiTek A 818 Soundside Road

Job	Truss	Truss Type	Qtv	Plv	Lot 6 River Road	
B0024-5102	E03		4	1		169041284
D0924-0192			7	<u>'</u>	Job Reference (optio	nal)
Comtech, Inc, Faye	tteville, NC - 28314,		8. ID:1jr0aUZI522	.630 s Sep uyMJe9J'	p 26 2024 Mi⊺ek Indust V52yy9ks9-RfC?PsB70	rries, Inc. Mon Oct 21 09:19:30 2024 Page 1 Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f
	ł	1-11-0 7-7-8 1-11-0 5-8-8		13-3-6 5-7-14	<u>13-7</u> -8 0-4-2	
					0.12	Carle 1:40 C
			4x6 =			Scale = 1:49.6
			3			
	Ī		\mathbf{A}			
		_ //				
		12.00 12				
	8				5x5 \\	
	ŭ	3x6 //			4	
		, //	7			
			5x8 =	\sim	4	
	1				2-11	
	0-5-				i și d	
	3:	$4 = \boxed{\bigotimes}_{8} 6.00$	-			
		5x5 =			3x4	
		1-7-81-11-0 7-7-8	I	13-7-8	1	
Plate Offsets (X,Y)	1:0-2-4.0-1-8]. [4:0-1-12.0-1-8]	1-7-8 0-3-8 5-8-8 [8:0-2-8.0-2-4]		6-0-0	1	
				(100)	/dof /d	
TCLL 20.0	Plate Grip DOL 1.1	5 TC 0.34	Vert(LL) -0.04	6-7	>999 360	MT20 244/190
TCDL 10.0 BCLL 0.0 *	Lumber DOL 1.1 Rep Stress Incr YE	5 BC 0.23 S WB 0.07	Vert(CT) -0.08 Horz(CT) 0.02	6-7 5	>999 240 n/a n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S	Wind(LL) 0.02	6-7	>999 240	Weight: 80 lb FT = 20%
LUMBER-			BRACING-			
TOP CHORD 2x4 SP BOT CHORD 2x4 SP	No.1 No.1		TOP CHORD	Structu except	ral wood sheathing di end verticals.	rectly applied or 6-0-0 oc purlins,
WEBS 2x4 SP	No.2		BOT CHORD	Rigid c	eiling directly applied	or 6-0-0 oc bracing.
REACTIONS. (size) 8=0-3-8, 5=0-3-8					
Max Ho Max Ur	orz 8=223(LC 7) Jift 8108(LC 11) 5103(LC	10)				
Max G	av 8=628(LC 1), 5=429(LC 1)					
FORCES. (Ib) - Max. (Comp./Max. Ten All forces 2	50 (lb) or less except when shown.				
TOP CHORD 2-3=-{	643/142, 3-4=-560/189, 4-6=-4	36/183				
WEBS 2-8=-{	68/341, 3-7=-51/328, 2-7=0/3	36, 4-7=-96/282				
NOTES-						
1) Unbalanced roof live 2) Wind: ASCE 7-10: V	loads have been considered fo	or this design. DI –6 0psf: BCDI –5 0psf: h–15ft: C	at II: Exp.C: Enclosed	· MWER	S (envelope)	
gable end zone and	C-C Exterior(2) zone; cantileve	r left and right exposed ;C-C for mer	mbers and forces & M	NFRS for	r reactions	
 Shown; Lumber DOL This truss has been of 	=1.60 plate grip DOL=1.60 lesigned for a 10.0 psf bottom	chord live load nonconcurrent with a	any other live loads.			
 4) * This truss has been between the bottom 	designed for a live load of 20.	Opsf on the bottom chord in all areas	s with a clearance grea	ater than	6-0-0	
5) Bearing at joint(s) 5 c	onsiders parallel to grain value	e using ANSI/TPI 1 angle to grain for	rmula. Building design	er should	d verify	MATTIN
capacity of bearing s 6) Provide mechanical of	urtace. connection (by others) of truss	to bearing plate capable of withstan	ding 108 lb uplift at ioir	nt 8 and 1	103 lb uplift at	TH CARO
joint 5.			J		•	A OFFESSION VI
					4	with the
						OF AL

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

CO

October 21,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

LOADING (psf) TCLL 20.0 TCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15	CSI. TC 0.28 BC 0.33	DEFL. in Vert(LL) -0.07 Vert(CT) -0.14	(loc) 7-8 7-8	l/defl >999 >999	L/d 360 240	PLATES MT20	GRIP 244/190
BCLL 0.0 * BCDL 10.0	Rep Stress Incr YES Code IRC2015/TPI2014	WB 0.33 Matrix-S	Horz(CT) -0.01 Wind(LL) 0.03	5 6-7	n/a >999	n/a 240	Weight: 108 lb	FT = 20%
LUMBER-			BRACING-	<u> </u>				

Brace must cover 90% of web length.

LUMBER-		BRACING-			
TOP CHORD	2x4 SP No.1	TOP CHORD	Structural wood sheat	hing directly applied or 6-0-0 oc purlins,	
BOT CHORD	2x4 SP No.1		except end verticals.		
WEBS	2x4 SP No.2	BOT CHORD	Rigid ceiling directly a	pplied or 10-0-0 oc bracing, Except:	
			6-0-0 oc bracing: 1-8.		
		WEBS	T-Brace:	2x4 SPF No.2 - 4-6, 3-6	
			Fasten (2X) T and I b	races to narrow edge of web with 10d	
			(0.131"x3") nails, 6in c	o.c.,with 3in minimum end distance.	

REACTIONS.	(size)	5=0-3-8, 8=0-3-8
	Max Horz	8=462(LC 10)
	Max Uplift	5=-271(LC 10)
	Max Grav	5=495(LC 17), 8=615(LC 1)

 FORCES.
 (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 TOP CHORD
 2-3=-305/42

 BOT CHORD
 7-8=-324/407

WEBS 2-7=-331/325, 3-7=-192/430, 3-6=-547/331, 2-8=-497/110

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 271 lb uplift at joint 5.

7) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

LOADING TCLL TCDL BCLL BCDI	G (psf) 20.0 10.0 0.0 * 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code, IRC2015/TPI2014	CSI. TC 0.38 BC 0.26 WB 0.46 Matrix-S	DEFL. Vert(LL) · Vert(CT) · Horz(CT) ·	in -0.06 -0.08 -0.00 0.02	(loc) 6-7 6-7 6 7	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20	GRIP 244/190 FT = 20%
BCDL	10.0	Code IRC2015/TPI2014	Matrix-S	Wind(LL)	0.02	7	>999	240	Weight: 127 lb	FT = 20%

LUMBER-

TOP CHORD	2x4 SP No.1
BOT CHORD	2x4 SP No.1
WEBS	2x4 SP No.2 *Except*
	5-6: 2x6 SP No.1

BRACING- TOP CHORD
BOT CHORD

WEBS

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

Rigid ceiling directly applied or 6-0-0 oc bracing. T-Brace: 2x4 SPF No.2 - 5-6, 4-7, 4-6 Fasten (2X) T and I braces to narrow edge of web with 10d (0.131"x3") nails, 6in o.c., with 3in minimum end distance. Brace must cover 90% of web length.

(size)	6=Mechanical, 8=0-3-8
Max Horz	8=539(LC 10)
Max Uplift	6=-397(LC 10)
Max Grav	6=595(LC 17), 8=598(LC 1)
	(size) Max Horz Max Uplift Max Grav

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

- TOP CHORD 2-4=-425/130
- BOT CHORD 7-8=-322/413
- WEBS 4-7=-393/593, 2-8=-533/0, 4-6=-611/465, 2-7=-462/459

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 397 lb uplift at joint 6.

8) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

app2245132 EP MONOPTICH TRUSS 1 1 2000000000000000000000000000000000000	Job	Truss	Truss Type	Qty	Ply	Lot 6 River Road			
Control, Inc. Frynteinin, NC - 2014, Control, Inc. Frynteinin, NC - 2	B0924-5192	E07	MONOPITCH TRUSS	1	1			169041288	
$\begin{array}{c c c c c c c } \hline Diright Link Diright L$	Comtech, Inc, Faye	etteville, NC - 28314,		8.	630 s Sep	Job Reference (optional 26 2024 MiTek Industrie	al) es, Inc. Mon Oct 21 09):19:32 2024 Page 1	
9-115 6-515 Solid = 177.6. July 10 July 10 <td col<="" td=""><td></td><td></td><td>5-1-15</td><td>ID:1jr0aUZI522 11-7-14</td><td>uyMJe9J\</td><td>/52yy9ks9-RfC?PsB70H</td><td>q3NSgPqnL8w3uITXb</td><td>GKWrCDoi7J4zJC?f</td></td>	<td></td> <td></td> <td>5-1-15</td> <td>ID:1jr0aUZI522 11-7-14</td> <td>uyMJe9J\</td> <td>/52yy9ks9-RfC?PsB70H</td> <td>q3NSgPqnL8w3uITXb</td> <td>GKWrCDoi7J4zJC?f</td>			5-1-15	ID:1jr0aUZI522 11-7-14	uyMJe9J\	/52yy9ks9-RfC?PsB70H	q3NSgPqnL8w3uITXb	GKWrCDoi7J4zJC?f
LUMBER: 68 P No.1 LUMBER: 20 SP No.1 LUMBER: 20 SP No.1 LUMBER: 20 SP No.1 LUMBER: 20 SP No.1 VEES 24 SP No.2 VEAS CP			5-1-15	6-5-15	1				
LUMER SPACING- 2000 2000 10000 10000 1000				3x4	1 4			Scale = 1:75.8	
UNDER: 1000 Sign 2-460 million 2-00 m			12.0	00 12					
ADDMG (pd) SPACING 2-00 5-115				/					
4.6 % 30 %									
Image: specific control of the specific control			4x6 1⁄2						
$\frac{1}{9} \frac{1}{9} \frac{1}$			3x6 1/ 3						
Image: constraint of the second se				×	⊠				
$\frac{466}{9} \frac{1}{90} $									
46 ° 1 0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
Image: constraint of the set of the			4x6 1/ 1						
Image: Structural wood sheathing directly applied or 6-0-0 oc purlins. ECOL 10:0 SPACING- 11:5 CSI. 51:15 DEFL 51:15 in (icc) Identify applied or 6-0-0 oc purlins. ECOL 10:0 Cell IRC2015/TPI2014 Matrix-S BRACING- 50:0 SPACING- 50:0 CSI. 50:0 DEFL. 50:10 in (icc) Identify applied or 6-0-0 oc purlins. ECOL 10:0 Cell IRC2015/TPI2014 Matrix-S BRACING- 50:0 Structural wood sheathing directly applied or 6-0-0 oc purlins. ECOL 10:0 2:65 SP No.1 Structural wood sheathing directly applied or 6-0-0 oc purlins. Except 4:5: 2x8 SP No.2 Structural wood sheathing directly applied or 6-0-0 oc purlins. ECOL 10:0 2:64 SP No.1 Structural wood sheathing directly applied or 6-0-0 oc purlins. Except 4:5: 2x8 SP No.2 Structural wood sheathing directly applied or 6-0-0 oc purlins. ECOL 10:0 X:4 SP No.1 Structural wood sheathing directly applied or 6-0-0 oc purlins. Except 4:5: 2x8 SP No.2 Structural wood sheathing directly applied or 6-0-0 oc purlins. ECOL 10:0 X:4 SP No.1 Structural wood sheathing directly applied or 6-0-0 oc purlins. Except 4:5: 2x8 SP No.2 Structural wood sheathing directly applied or 10-0-0 oc bracing. IV BOT CHORD Y:4: 2x MS Z Structural wood sheathing directly applied or 10-0-0 oc bracing.									
$\frac{8}{3 \text{ sd } } = \frac{51 \text{ fs }}{3 \text{ sd } } = \frac{117 \text{ fs }}{666} = \frac{51 \text{ fs }}{117 \text{ fs } 117 \text{ fs } 1$									
3x4 3x4 = 6x6 = LOADING (ps1) SPACING- 2-0-0 CSI. 05115 06-15 TCLL 200 Plate Gin DOL 1.15 TC 0.19 Vert(LI) -0.03 5-6 3-999 360 MT20 244/190 TCDL 10.0 Lumber DOL 1.15 TC 0.19 Vert(LI) -0.03 5-6 3-999 240 Watch 2.244/190 BCLL 0.0 * Rep Stress Inc. YES WB 0.25 Horz(CT) -0.00 5 n/a Match 2.244/190 LUMBER- Code IRC2015/TPI2014 Matrix-S Wind(LL) 0.0 6 s.999 240 Weight: 127 Ib FT = 20% LUMBER- TOP CHORD 2x6 SP No.1 TOP CHORD 2x6 SP No.1 BTACINC- TOP CHORD 2x6 SP No.1 FT = 20% WEBS 2x4 SP No.2 *Except* BOT CHORD X4 SP No.2 S.5 ToP CHORD Rigide drift derild and information of the second sec			7 6		⁸ 5				
Light 11-7:14 5-1-15 LOADING (pf) TCLL 20:0 TCLL 20:0 TCLL 0:0 Code IRC2015/TPI2014 SPACING- 1.15 BC 0.17 2-0.0 TC 0.19 Wer(L1) -0.03 DEFL 5-6 >999 in (loc) I/deft Light L/deft Light PLATES GRIP MT20 LUMBER- TOP CHORD 2x6 SP No.1 BCT CHORD 2x6 SP No.1 BRAING- TOP CHORD STUCUTURE work of the transmitted			3x4 3x4 =	=	6x6 =	=			
LOADING (psf) TCL SPACING- 200 2-0-0 Plate Gip DOL T.15 1.15 1.5 TC 0.19 BC DEFL Vert(CT) in (loc) Videft L/d PLATES GRIP MT20 BCL 0.0 * Rep Stress Incr YES WB 0.25 Horz(CT) -0.00 5 r/d n/d BCDL 10.0 Code IRC2015/TPI2014 Matrix-S WB 0.25 Horz(CT) -0.00 5 r/d n/d LUMBER- TOP CHORD 2x6 SP No.1 SPACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 cc purlins, except end verticals. Structural wood sheathing directly applied or 10-0-0 cc bracing. WEBS 2x4 SP No.2 Except* 4-5 T-Brace: 2x4 SP No.2-2-2-5 Faste (2X) T and b Toraces to narrow edge of web with 10d (0.131*X3*) nails, 6in o.c., with 3m minimum end distance. BEACIND: Max Horz 7-520(LC 10) Max Horz 7-520(LC 10) Nar Horz Structural wood sheathing directly applied or 10-0-0 cc bracing. Max Horz 7-2-524(LC 10) Max Horz 7-2-524(SS) Structural wood sheathing directly applied or 10-0-0 cc bracing. Max Horz 2-2-489(D, 1-7484(LC 10) Max Horz 7-2-			5-1-15 5-1-15	11-7-14 6-5-15					
TCLL 20.0 Plate Grip DOL 1.15 TC 0.19 Vert(L) -0.03 5-6 >999 360 MT20 244/190 CDL 10.0 Rep Stress Incr YES WB 0.25 Horz(CT) -0.00 5 n/a n/a BCDL 10.0 Code IRC2015/TPI2014 Matrix-S Wind(LL) 0.00 6 >999 240 Weight: 127 Ib FT = 20% LUMBER- TOP CHORD 2x6 SP No.1 BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 cc purlins, except end verticals. BOT CHORD Structural wood sheathing directly applied or 10-0-0 cc bracing. BCT CHORD 2x4 SP No.2 EXC SP No.1 BOT CHORD WEBS 1 Row at midpt 4-5 WEBS 5=Mechanical, 7=0-3-8 Max Horz BOT CHORD Nacing Sing Sing Sing Sing Sing Sing Sing S	LOADING (psf)	SPACING- 2-0-	0 CSI. DI	E FL. in	(loc)	l/defl L/d	PLATES	GRIP	
BCLL 0.0 Rep Stress Incr YES WB 0.25 Horz(CT) -0.00 5 n/a n/a BCDL 10.0 Code IRC2015/TPI2014 Matrix-S Wind(LL) 0.00 6 >999 240 Weight: 127 lb FT = 20% LUMBER TOP CHORD 2x6 SP No.1 BCLING TOP CHORD 2x6 SP No.1 BRACING- BOT CHORD 2x6 SP No.1	TCLL 20.0 TCDL 10.0	Plate Grip DOL 1.1 Lumber DOL 1.1	5 TC 0.19 Ve 5 BC 0.17 Ve	ert(LL) -0.03 ert(CT) -0.04	5-6 5-6	>999 360 >999 240	MT20	244/190	
LUMBER- TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 WEBS 2x4 SP No.2 *Except* 4-5: 2x6 SP No.1 BOT CHORD WEBS 2x4 SP No.2 *Except* 4-5: 2x6 SP No.1 BOT CHORD WEBS 2x4 SP No.2 *Except* 4-5: 2x6 SP No.1 BOT CHORD WEBS 1 Row at midpt 4-5 TOP CHORD Structural wood sheathing directly applied or 10-0-0 oc bracing. 1 Row at midpt 4-5 T-Brace: 2x4 SPF No.2 - 2-5 Faster (2x) T and I braces to narrow edge of web with 10d (0.131*x3") nails, 6in o.c.,with 3in minimum end distance. BOT CHORD 1.2-e-489(0.1-7e-440/0 BOT CHORD 1-2-e-489(0.1-7e-440/0 BOT CHORD 6-7e-533/453, 5-6e-283/397 WEBS 2-5e-566/403, 1-6e-580/363 NOTES- 1 1) Wind: ASCE 7-10; Vull=130mph Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15f; Cat. II; Exp C; Enclosed: MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 pate grip DOL=-1.60 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 3) This truss has been designed for a lou psf b	BCLL 0.0 * BCDL 10.0	Rep Stress Incr YE Code IRC2015/TPI2014	S WB 0.25 Ho Matrix-S W	orz(CT) -0.00 ind(LL) 0.00	5 6	n/a n/a >999 240	Weight: 127 lb	FT = 20%	
TOP CHORD BOT CHORD 2x6 SP No.1 2x6 SP No.1 2x6 SP No.2 "Except" 4-5: 2x6 SP No.1 TOP CHORD bot CHORD 2x6 SP No.2 "Except" 4-5: 2x6 SP No.1 Structural wood sheathing directly applied or 10-0-0 oc bracing. 1 Row at midpt 4-5: 2x6 SP No.1 REACTIONS. (size) S=Mechanical, 7=0-3-8 Max Horz, 7=529(LC 10) Max Uplift 5=-481(LC 10) Max Grav 5=681(LC 17), 7=488(LC 19) BOT CHORD WEBS Structural wood sheathing directly applied or 10-0-0 oc bracing. 1 Row at midpt 4-5 FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD BOT CHORD 6-7=-539/453, 5-6=-283/397 WEBS 2-5=-566/403, 1-6=-58/363 NOTES- 1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 20.164 of an exponent of the load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf. 2) This truss has been designed for a 10.0 psf bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf. 3) This truss has been designed for a 10.0 psf bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf. 4) Refer to girder(s) for truss to truss connections. 10.0psf. 4) Refer to girder(s) for truss to truss connections. 10.0psf. 5) This truss has been desig	LUMBER-		BE	ACING-					
WEBS 2x4 SP No.2 "Except" BOT CHORD Rigid celling directly applied or 10-0 oc bracing. 4-5: 2x6 SP No.1 WEBS 1 Row at midpt 4-5	TOP CHORD 2x6 SP	No.1	TC	P CHORD	Structur	ral wood sheathing dire	ctly applied or 6-0-0	oc purlins,	
 4-5: 2X6 SP No.1 WEBS 1 Kow at midpt 4-5 2X4 SPF No.2 - 2-5 Fasten (2X) T and I braces to narrow edge of web with 10d (0.131*X3') nails, 6in o.c., with 3in minimum end distance. Brace must cover 90% of web length. REACTIONS. (size) 5-Mechanical, 7=0-3-8 Max Horz 7=529(LC 10) Max Uplitt 5=-481(LC 10) Max Grav 5=681(LC 17), 7=488(LC 19) FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-498(0, 1-7=-464/0 BOT CHORD 6-7=-539/453, 5-6=-283/397 WEBS 2-5=-566/403, 1-6=-58/363 NOTES- 1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed (-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) This truss has been designed for a 10.0 psf bottom chord in all areas with a clearance greater than 6-00 between the bottom chord and any other members, with BCDL = 10.0psf. 4) Refer to girder(s) for truss to truss connections. 4) Refer to girder(s) for truss to truss connections. 	WEBS 2x4 SP	No.2 *Except*	BC	T CHORD	Rigid ce	eiling directly applied or	10-0-0 oc bracing.		
 Fasten (2X) T and I braces to narrow edge of web with 10d (0.131*x3") nails, 6in o.c., with 3in minimum end distance. Brace must cover 90% of web length. REACTIONS. (size) 5=Mechanical, 7=0-3-8 Max Horz 7=529(LC 10) Max Upit 5=-481(LC 10) Max Grav 5=681(LC 17), 7=488(LC 19) FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-498/0, 1-7=-464/0 BOT CHORD 6-7=-539/453, 5-6=-283/397 WEBS 2-5=-566/403, 1-6=-58/363 NOTES- Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 This truss has been designed for a 10.0 psf bottom chord in ell areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf. Refer to girder(s) for truss to truss connections. Bernvide accentration designed for a 10.0 psf to the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf. 	4-5: 2x6	5 SP No.1	W	EBS	1 Row a T-Brace	at midpt 4-3 e: 2x	o 4 SPF No.2 - 2-5		
Brace must cover 90% of web length. REACTIONS. (size) 5=Mechanical, 7=0-3-8 Max Horz 7=529(LC 10) Max Uplift 5=-481(LC 10) Max Grav 5=681(LC 17), 7=488(LC 19) FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-498/0, 1-7=-464/0 BOT CHORD 6-7=-539/453, 5-6=-283/397 WEBS 2-5=-566/403, 1-6=-58/363 NOTES- 1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 3) * This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 3) * This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf. 4) Refer to girder(s) for truss to truss connections.					Fasten (0.131")	(2X) T and I braces to x3") nails, 6in o.c.,with	narrow edge of web 3in minimum end dis	with 10d tance.	
 Nerversel (all of production of the product of the produc	REACTIONS (size) 5-Mechanical 7-0-3-8			Brace n	nust cover 90% of web	length.		
 Max Opinit 5=-481(LC 10) Max Grav 5=681(LC 17), 7=488(LC 19) FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-498/0, 1-7=-464/0 BOT CHORD 6-7=-539/453, 5-6=-283/397 WEBS 2-5=-566/403, 1-6=-58/363 NOTES- Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a 10.0 psf bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf. Previou and any other members, with BCDL = 10.0psf. 	Max Ho	7 = 529(LC 10)							
 FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-498/0, 1-7=-464/0 BOT CHORD 6-7=-539/453, 5-6=-283/397 WEBS 2-5=-566/403, 1-6=-58/363 NOTES- Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf. 4) Refer to girder(s) for truss to truss connections. 	Max Gr	rav 5=681(LC 17), 7=488(LC 1	9)						
 TOP CHORD 1-2=-498/0, 1-7=-464/0 BOT CHORD 6-7=-539/453, 5-6=-283/397 WEBS 2-5=-566/403, 1-6=-58/363 NOTES- Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf. 4) Refer to girder(s) for truss to truss connections. * This truss has been designed for a live load of 20.0psf. 	FORCES. (lb) - Max. (Comp./Max. Ten All forces 25	0 (lb) or less except when shown.						
 WEBS 2-5=-566/403, 1-6=-58/363 NOTES- Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf. Refer to girdder(s) for truss to truss connections. 	TOP CHORD 1-2=-4 BOT CHORD 6-7=-5	498/0, 1-7=-464/0 539/453, 5-6=-283/397							
 NOTES- 1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf. 4) Refer to girder(s) for truss to truss connections. 5) Provide producting (by totact) of trues to theories plate complete of without dire 481 h unlift at ipint E 	WEBS 2-5=-5	566/403, 1-6=-58/363							
 apple end zone and C-C Exterior(2) zone; cantilever left and right exposed ;C-C for members and forces & MWFRS (envelope) shown; Lumber DOL=1.60 plate grip DOL=1.60 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf. Refer to girdder(s) for truss to truss connections. Refer to girdder(s) for truss to truss connections. 	NOTES-	ult-130mph Vacd-102mph TC	DI -6 Anofe BCDI -5 Anofe h-15fte Cat U.S			S (envelope)			
 snown; Lumber DOL=1.60 plate grip DOL=1.60 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf. 4) Refer to girder(s) for truss to truss connections. 5) Provide greater than 6-0 to true to be a plate complex of withstanding 481 lb unlift at joint 5. 	gable end zone and (C-C Exterior(2) zone; cantileve	r left and right exposed ;C-C for members a	and forces & M	WFRS for	reactions			
 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf. 4) Refer to girdder(s) for truss to truss connections. 5) Provide greater than 0 of trues to truss connections. 	shown; Lumber DOL 2) This truss has been o	=1.60 plate grip DOL=1.60 designed for a 10.0 psf bottom	chord live load nonconcurrent with any other	er live loads.					
4) Refer to girder(s) for truss to truss connections.	 This truss has been between the bottom of 	n designed for a live load of 20. chord and any other members.	Opsf on the bottom chord in all areas with a with BCDL = 10.0psf.	clearance grea	ater than (6-0-0		AD	
5) Provide mechanical connection (by others) of truss to bearing plate cabable of withstanding 46 mb ubilit at joint 5.	4) Refer to girder(s) for5) Provide mechanical of	truss to truss connections.	o bearing plate capable of withstanding 48	1 lb uplift at ioir	nt 5.		IN RTH U	OL IN	

6) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

RENCO

Job	Truss	Truss Type	Qty	Ply	Lot 6 River Road	
B0924-5192	E08	MONOPITCH TRUSS	1	1		169041289
Comtech, Inc, Fayet	teville, NC - 28314,		8.	630 s Sep	Job Reference (option 26 2024 MiTek Indust	nal) ries, Inc. Mon Oct 21 09:19:33 2024 Page 1
		5-1-15	ID:1jr0aUZI522 11-7-14	uyMJe9J∖ 12 _[0	/52yy9ks9-RfC?PsB70 ·0	Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f
		5-1-15	6-5-15	0-4-	2	
			3x4	4 4		Scale = 1:75.8
			12.00 12			
			/			
			//			
		4x	x6 //			
		G	2			
		13-8-		⊠		
		4x6 //				
		0-8	`		~	
			~_ 	<u> </u>	0-5- <u>1</u>	
		8 3x4	7 3x4 ==	⁹ 65 6x6 =		
		5-1-15 5-1-15	<u>11-7-14</u> 6-5-15	12 ₋ 0-4-	-0 2	
LOADING (psf)	SPACING- 2-0-0) CSI.	DEFL. in	(loc)	l/defl L/d	PLATES GRIP
TCLL 20.0 TCDI 10.0	Plate Grip DOL 1.1	5 TC 0.19 BC 0.23	Vert(LL) -0.04	6-7 6-7	>999 360 >999 240	MT20 244/190
BCLL 0.0 *	Rep Stress Incr YES	6 WB 0.27 Matrix-S	Horz(CT) -0.00	5 6-7	n/a n/a	Weight: 128 lb ET - 20%
		Mathx-5		0-7	2333 240	Weight, 12010 11 - 2070
TOP CHORD 2x6 SP N	No.1		TOP CHORD	Structur	al wood sheathing di	rectly applied or 6-0-0 oc purlins,
BOT CHORD 2x6 SP N WEBS 2x4 SP N	No.1 No.2 *Except*		BOT CHORD	except e Rigid ce	end verticals.	or 10-0-0 oc bracing.
4-6: 2x6	SP No.1		WEBS	1 Row a T-Brace	t midpt 4	l-6 2x4 SPF No.2 - 2-6
				Fasten	(2X) T and I braces t	o narrow edge of web with 10d
	0 0 2 0 5 0 2 0			Brace m	nust cover 90% of we	b length.
Max Hol	6=0-3-6, 5=0-3-6 rz 8=529(LC 10)					
Max Upi Max Gra	lift 5=-459(LC 10) av 8=495(LC 19), 5=665(LC 17	")				
FORCES. (lb) - Max. C	comp./Max. Ten All forces 25	0 (lb) or less except when shown.				
TOP CHORD 1-2=-5 BOT CHORD 7-8=-5	09/0, 1-8=-475/0 36/448, 6-7=-302/426					
WEBS 2-6=-6	00/426, 2-7=-44/258, 1-7=-23/3	373				
NOTES-	lt-130mph Vasd-103mph: TC	21 -6 Opef: BCDI -5 Opef: h-15ft: Ca	at III: Exp. C: Enclosed		(envelope)	
gable end zone and C	C-C Exterior(2) zone; cantilever	left and right exposed ;C-C for mem	bers and forces & M	VFRS for	reactions	
2) This truss has been d	esigned for a 10.0 psf bottom of	hord live load nonconcurrent with an	ny other live loads.			
3) * This truss has been between the bottom c	designed for a live load of 20.0 hord and any other members,	pst on the bottom chord in all areas with $BCDL = 10.0psf$.	with a clearance grea	ater than 6	5-0-0	LINE CAR
 4) Provide mechanical constraints 5) Warning: Additional points 	onnection (by others) of truss t ermanent and stability bracing	o bearing plate capable of withstandi for truss system (not part of this com	ing 459 lb uplift at joir ponent design) is alv	nt 5. /ays requ	ired.	RESERVE
- '		•	. ,		6	all the

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

A MiTek Affiliate

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouclasses with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss		Truss Type		Qty	Ply	Lot 6 River Road		
B0024 5102	F01		FLOOD		1	1			l69041291
B0924-5192	FUT		FLOOR		1	1	Job Reference (optional)		
Comtech, Inc, Fay	vetteville, NC - 2	28314,				8.630 s Sep	26 2024 MiTek Industries, I	nc. Mon Oct 21 09	:19:34 2024 Page 1
					ID:1jr0aUZI5	22uyMJe9JV	/52yy9ks9-RfC?PsB70Hq3N	ISgPqnL8w3uITXb0	GKWrCDoi7J4zJC?f
0 ¹¹ 8									0 ₁₁ 8
									Scale = 1:20.2
1	n	2	4	F	6	7	0	0	10.11
			4	5	0		°	9	
	Ľ	•	<u> </u>	<u> </u>	<u> </u>	•		<u> </u>	
									235
	Ц					Ц		Ц	
	•	•	•	•	•	•	•	•	
21 2	20	19	18	17	16	15	14	13	12
3x4 =									3x6 =

				12-4-8 12-4-8			
LOADING TCLL TCDL BCLL BCDL	(psf) 40.0 10.0 0.0 5.0	SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.08 BC 0.02 WB 0.03 Matrix-R	DEFL. in Vert(LL) n/a Vert(CT) n/a Horz(CT) 0.00	(loc) l/defl L/d - n/a 999 - n/a 999 12 n/a n/a	PLATES MT20 Weight: 50 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER- TOP CHOF BOT CHOF WEBS	RD 2x4 SF RD 2x4 SF 2x4 SF	P No.1(flat) P No.1(flat) P No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dir except end verticals. Rigid ceiling directly applied c	ectly applied or 6-0-0 or 10-0-0 oc bracing.	oc purlins,

WEBS 2x4 SP No.3(flat) OTHERS 2x4 SP No.3(flat)

REACTIONS. All bearings 12-4-8.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 21, 12, 20, 19, 18, 17, 16, 15, 14, 13

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) All plates are 1.5x3 MT20 unless otherwise indicated.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Gable requires continuous bottom chord bearing.

4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

5) Gable studs spaced at 1-4-0 oc.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB Building Component Scitut Information**. Building from the Structure Building Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

	2-9-0		9-7-8		12-4-	-8
I	2-9-0		6-10-8		2-9-	0
Plate Offsets (X,Y)	[11:0-1-8,Edge], [12:0-1-8,Edge]					
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.28 BC 0.45 WB 0.32 Matrix-S	DEFL. ir Vert(LL) -0.10 Vert(CT) -0.13 Horz(CT) -0.03	n (loc) I/defl L/d) 11-12 >999 480 3 11-12 >999 360 3 14 n/a n/a	PLATES MT20 Weight: 60 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 S BOT CHORD 2x4 S WEBS 2x4 S	SP No.1(flat) SP No.1(flat) SP No.3(flat)		BRACING- TOP CHORD	Structural wood sheathing directive applied of the structural wood sheathing directive applied of the structure applied o	ectly applied or 6-0-0	oc purlins,

REACTIONS. (size) 14=0-3-8, 9=Mechanical

Max Grav 14=661(LC 1), 9=667(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-1523/0, 3-4=-2268/0, 4-5=-2268/0, 5-6=-2268/0, 6-7=-1523/0

BOT CHORD 13-14=0/967, 12-13=0/2038, 11-12=0/2268, 10-11=0/2038, 9-10=0/967

WEBS 7-9=-1147/0, 2-14=-1143/0, 7-10=0/678, 2-13=0/679, 6-10=-628/0, 3-13=-629/0, 6-11=0/491, 3-12=0/491

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) All plates are 3x4 MT20 unless otherwise indicated.

3) Plates checked for a plus or minus 1 degree rotation about its center.

4) Refer to girder(s) for truss to truss connections.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

6) CAUTION, Do not erect truss backwards.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

			12-4-8		
Plate Offsets (X,Y)	[4:0-3-0.Edge]. [5:0-3-0.0-0-0]. [11:0-1-8	3.Edael. [12:0-1-8.Edae].	[15:0-1-8.0-0-8]		
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr NO Code IRC2015/TPI2014	CSI. TC 0.17 BC 0.63 WB 0.42 Matrix-S	DEFL. ir Vert(LL) -0.10 Vert(CT) -0.14 Horz(CT) -0.04	n (loc) l/defl L/d 11-12 >999 480 11-12 >999 360 11-12 n/a n/a	PLATES GRIP MT20 244/190 Weight: 77 lb FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF REACTIONS. (siz	P No.1(flat) P No.1(flat) P No.3(flat) e) 14=0-3-8, 9=Mechanical		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing except end verticals. Rigid ceiling directly applied	directly applied or 6-0-0 oc purlins, d or 10-0-0 oc bracing.
Max G FORCES. (lb) - Max. TOP CHORD 2-3= BOT CHORD 13-1. WEBS 7-9= 6-11:	Frave 14=958(LC 1), 9=770(LC 1) Comp./Max. Ten All forces 250 (lb) or -2068/0, 3-4=-3059/0, 4-5=-3059/0, 5-6= 4=0/1325, 12-13=0/2766, 11-12=0/3059, -1389/0, 2-14=-1524/0, 7-10=0/891, 2-15 =0/709, 3-12=0/474, 5-11=-340/0	less except when shown -3059/0, 6-7=-1943/0 10-11=0/2647, 9-10=0/1 3=0/886, 6-10=-840/0, 3-1	196 13=-832/0,		
NOTES- 1) Unbalanced floor liv 2) Plates checked for a 3) Refer to girder(s) fo 4) Recommend 2x6 st Strongbacks to be a 5) CAUTION, Do not e 6) Hanger(s) or other of down at 1-8-0, 150 such connection de 7) In the LOAD CASE(LOAD CASE(S) Stan 1) Dead + Floor Live (I Uniform Loads (plf) Vert: 9-14= Concentrated Loads Vert: 1=-12	e loads have been considered for this de a plus or minus 1 degree rotation about i r truss to truss connections. rongbacks, on edge, spaced at 10-0-0 o ttached to walls at their outer ends or re rect truss backwards. sonnection device(s) shall be provided si lb down at 3-8-0, and 95 lb down at 5-4 vice(s) is the responsibility of others. S) section, loads applied to the face of th dard balanced): Lumber Increase=1.00, Plate -10, 1-8=-100 s (lb) 2(B) 2=-70(B) 16=-70(B) 17=-70(B) 18=-	esign. ts center. c and fastened to each tr strained by other means. ufficient to support concer 3-0, and 128 lb down at 7 ne truss are noted as from Increase=1.00 -70(B)	uss with 3-10d (0.131" X ntrated load(s) 160 lb do 7-6-4 on top chord. The nt (F) or back (B).	: 3") nails. wn at 0-2-4, 150 lb design/selection of	SEAL 036322

818 Soundside Road Edenton, NC 27932

A. GIV A. GILLIN October 21,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

	I		3-4-0		I	
Plate Offsets (X,Y)	[1:Edge,0-1-8], [2:0-1-8,Edge], [3:0-1-8,I	Edge]				
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.09 BC 0.07 WB 0.05 Matrix-S	DEFL. ir Vert(LL) -0.00 Vert(CT) -0.00 Horz(CT) 0.00	n (loc) l/defl L/d) 6 >999 480) 6 >999 360) 5 n/a n/a	PLATES MT20 Weight: 20 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 S BOT CHORD 2x4 S WEBS 2x4 S	P No.1(flat) P No.1(flat) P No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dire except end verticals. Rigid ceiling directly applied o	ectly applied or 3-4-0 r 10-0-0 oc bracing.	oc purlins,

3-4-0

REACTIONS. (size) 8=Mechanical, 5=Mechanical Max Grav 8=170(LC 1), 5=170(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Refer to girder(s) for truss to truss connections.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

A MiTek Affi 818 Soundside Road Edenton, NC 27932

ŀ		7-5-0					12-8-	-0	
Plate Of	fsets (X,Y)	[1:Edge,0-1-8], [4:0-3-0,Edge], [5:0-3-0	0-0-0], [11:0-1-8,Edge], [12:0-	1-8,Edge]			5-5-	0	
LOADIN TCLL TCDL BCLL BCDL	Betwork SPACING- 2-0-0 Lumber DOL 1:0.0 TC 0.20 Vert(LL) 0.11 1:1.1 2:3.99 480 MT20 2:44/190 ADING (psf) LL 40.0 DL 10.0 Lumber DOL 1.00 Lumber DOL 1.00 Lo BC 0.66 Vert(LL) -0.11 11:12 >948 360 MDL 5.0 Code IRC2015/TPI2014 WB 0.44 Horz(CT) -0.16 11:12 >948 360 MER- P CHORD 5.0 Code IRC2015/TPI2014 Matrix-S BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BS 2x4 SP No.1(flat) TOP CHORD Structural wood sheathing directly applied or 10-0-0 oc bracing. ACTIONS. (size) 14=0-3-8, 9=0-3-8 Max Grav 14=977(LC 1), 9=776(LC 1) BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. RCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. P CHORD 2:3=2130/0, 3:4=3185/0, 4:5=3185/0, 6:7=-3185/0, 6:7=-3186/0, 6:1=-3866/0, 6:1=-366/0, 6:1=-360/0, 3:13=-866/0, 6:1=-30/30, 2:14=-163/0, 7:10=-0/910, 2:13=0/2826, 5:1-1=-399/0 VTES- Unbalanced floor live loads have been considered for this design. Plates checked for a plus								
LUMBE TOP CH BOT CH WEBS REACT	R- IORD 2x4 SP IORD 2x4 SP 2x4 SP ONS. (size Max G	No.1 (flat) No.1 (flat) No.3 (flat) a) 14=0-3-8, 9=0-3-8 rav 14=977(LC 1), 9=776(LC 1)		BRACING- TOP CHORD BOT CHORD	Structur except e Rigid ce	al wood end vertio eiling dire	sheathing direc cals. ctly applied or	otly applied or 6-0-0 10-0-0 oc bracing.	oc purlins,
FORCE TOP CH BOT CH WEBS	S. (Ib) - Max. IORD 2-3=- IORD 13-14 7-9=- 6-11=	Comp./Max. Ten All forces 250 (lb) ol 2130/0, 3-4=-3185/0, 4-5=-3185/0, 5-6= 1=0/1358, 12-13=0/2856, 11-12=0/3185 1409/0, 2-14=-1563/0, 7-10=0/910, 2-1 10/830, 3-12=0/523, 5-11=-399/0	less except when shown. -3185/0, 6-7=-1980/0 10-11=0/2701, 9-10=0/1216 3=0/920, 6-10=-860/0, 3-13=-8	66/0,					
NOTES 1) Unba 2) Plate 3) Reco	lanced floor live s checked for a mmend 2x6 str	e loads have been considered for this d plus or minus 1 degree rotation about i ongbacks, on edge, spaced at 10-0-0 c	esign. ts center. ic and fastened to each truss w	vith 3-10d (0.131"	X 3") nails.				

Strongbacks to be attached to walls at their outer ends or restrained by other means.
4) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 160 lb down at 0-2-4, 150 lb down at 1-8-0, 150 lb down at 3-8-0, and 95 lb down at 5-8-0, and 116 lb down at 7-6-4 on top chord. The design/selection of such connection device(s) is the responsibility of others.

5) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

- 1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00
 - Uniform Loads (plf)

Vert: 9-14=-10, 1-8=-100 Concentrated Loads (Ib)

Vert: 1=-122(F) 2=-70(F) 5=-70(F) 17=-70(F) 18=-70(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

A MiTek Aff

	2-9-0	7-5-0		9-11-0	12-8-0	
Plate Offsets (X,Y)	2-9-0 [11:0-1-8,Edge], [12:0-1-8,Edge]	4-8-0	•	2-6-0	2-9-0	
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.34 BC 0.49 WB 0.34 Matrix-S	DEFL. ir Vert(LL) -0.11 Vert(CT) -0.14 Horz(CT) 0.03	n (loc) I/defi L/d 12-13 >999 480 12-13 >999 360 9 n/a n/a	PLATES MT20 Weight: 61 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x4 SP WEBS 2y4 SP	P No.1(flat) P No.1(flat) P No.3(flat)		BRACING- TOP CHORD	Structural wood sheathing dir except end verticals.	ectly applied or 6-0-0	oc purlins,
REACTIONS. (size Max G	e) 14=0-3-8, 9=0-3-8 rav 14=677(LC 1), 9=677(LC 1)		201 0110112			
FORCES. (Ib) - Max.	Comp./Max. Ten All forces 250 (lb) or	less except when shown.				

13-14=0/992, 12-13=0/2107, 11-12=0/2372, 10-11=0/2107, 9-10=0/992 BOT CHORD

WEBS 7-9=-1173/0, 2-14=-1173/0, 7-10=0/706, 2-13=0/706, 6-10=-656/0, 3-13=-656/0,

6-11=0/543, 3-12=0/543

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) All plates are 3x4 MT20 unless otherwise indicated.

3) Plates checked for a plus or minus 1 degree rotation about its center.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

		5-3-0				8-0-0	
Plate Offsets (X,Y)	[1:Edge,0-1-8], [4:0-1-8,Edge], [10:0-1-8	3-3-0 3,Edge]				2-9-0	
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.25 BC 0.35 WB 0.21 Matrix-S	DEFL. in Vert(LL) -0.03 Vert(CT) -0.04 Horz(CT) 0.01	(loc) l/defl 8-9 >999 8-9 >999 7 n/a	L/d 480 360 n/a	PLATES MT20 Weight: 41 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF	P No.1(flat) P No.1(flat) P No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood except end vert Rigid ceiling dire	sheathing dire icals. ectly applied o	ectly applied or 6-0-0 r 10-0-0 oc bracing.	oc purlins,
REACTIONS. (size Max G	e) 11=Mechanical, 7=Mechanical irav 11=426(LC 1), 7=426(LC 1)						
FORCES. (lb) - Max. TOP CHORD 2-3= BOT CHORD 10-1 WEBS 5-7=	Comp./Max. Ten All forces 250 (lb) or •920/0, 3-4=-920/0, 4-5=-801/0 1=0/568, 9-10=0/920, 8-9=0/920, 7-8=0// ·718/0, 2-11=-673/0, 2-10=0/442	less except when shown.					
NOTES-	e loads have been considered for this de	asian					

Unbalanced floor live loads have been considered for this design.
 Plates checked for a plus or minus 1 degree rotation about its center.

Refer to girder(s) for truss to truss connections.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

SEAL 036322 October 21,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

October 21,2024

E RENCO

818 Soundside Road

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com) **TRENCO**

TRENCO A MiTek Affiliate

A. GILD.... October 21,2024

- 6) Bearing at joint(s) 14 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 522 lb uplift at joint 11, 124 lb uplift at joint 1 and 174 lb uplift at joint 14.
- 8) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

818 Soundside Road

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

Design valid for use only with MITeK® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 6 River Road	
5.000 / F/00	110.4				16	69041306
B0924-5192	H01	ATTIC TRUSS	1	3	Job Reference (optional)	
Comtech Inc Eavettev	rille NC - 28314		8	630 s Sen	26 2024 MiTek Industries Inc. Mon Oct 21 09:19:41 2024 P	Page 2

ID:1jr0aUZI522uyMJe9JV52yy9ks9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

NOTES-

13) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 319 lb down and 486 lb up at 1-1-4, 319 lb down and 486 lb up at 3-1-4, 319 lb down and 486 lb up at 1-1-4, 320 lb down at 19-4-0, 341 lb down and 561 lb up at 21-3-12, 387 lb down and 498 lb up at 23-3-12, 389 lb down and 393 lb up at 25-3-12, 370 lb down and 213 lb up at 27-3-12, 370 lb down and 213 lb up at 23-3-12, and 392 lb down and 207 lb up at 33-3-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

14) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-2=-60, 2-3=-80, 3-4=-60, 4-6=-60, 6-7=-60, 7-8=-80, 8-10=-60, 15-17=-20, 11-15=-40, 10-11=-20, 3-7=-20

Drag: 2-15=-10, 8-11=-10

Concentrated Loads (Ib)

Vert: 20=-319(B) 21=-319(B) 22=-319(B) 23=-320(B) 24=-341(B) 25=-3032(B) 26=-3032(B) 27=-341(B) 28=-295(B) 29=-325(B) 30=-320(B) 31=-320(B) 32=-320(B) 33=-320(B) 33=-320(B) 32=-320(B) 32=

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

- 7) Bottom chord live load (40.0 psf) and additional bottom chord dead load (10.0 psf) applied only to room. 14-15, 11-14
- 8) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 172 lb uplift at joint 10, 256 lb uplift at joint 16 and 178 lb uplift at joint 14.

Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.
 Attic room checked for L/360 deflection.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com) October 21,2024

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Plate Offs	sets (X,Y)	[1:0-6-4,0-1-4]		1		1						
LOADING	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	тс	0.32	Vert(LL)	-0.04	1-3	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.28	Vert(CT)	-0.07	1-3	>999	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00		n/a	n/a		
BCDL	10.0	Code IRC2015/T	PI2014	Matrix	k-P	Wind(LL)	0.00	1	****	240	Weight: 44 lb	FT = 20%
LUMBER	- DRD 2x6 SI	P No.1				BRACING- TOP CHOR	RD.	Structu	Iral wood	sheathing d	irectly applied or 6-9-8	oc purlins.

BOT CHORD

except end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing.

 TOP CHORD
 2x6 SP No.1

 BOT CHORD
 2x6 SP No.1

 WEBS
 2x4 SP No.2

 WEDGE
 Left: 2x4 SP No.1

REACTIONS. (size) 1=0-3-8, 3=Mechanical

Max Horz 1=123(LC 6) Max Uplift 1=-66(LC 6), 3=-111(LC 6) Max Grav 1=285(LC 1), 3=285(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 66 lb uplift at joint 1 and 111 lb uplift at joint 3.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	тс	0.09	Vert(LL)	0.00	4	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.21	Vert(CT)	0.00	4	>999	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	-0.00	3	n/a	n/a		
BCDL	10.0	Code IRC2015/TPI	2014	Matri	x-S	Wind(LL)	-0.00	4	>999	240	Weight: 13 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x4 SP No.1BOT CHORD2x4 SP No.1WEBS2x4 SP No.2

REACTIONS. (size) 4=0-3-8, 3=0-1-8 Max Horz 4=117(LC 10) Max Uplift 3=-208(LC 19)

Max Grav 4=356(LC 1), 3=17(LC 6)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 4) Bearing at joint(s) 3 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 3.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 208 lb uplift at joint 3.

Structural wood sheathing directly applied or 2-7-0 oc purlins,

Rigid ceiling directly applied or 6-0-0 oc bracing.

except end verticals.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

			2-4-12 2-4-12					
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.10 BC 0.02 WB 0.00 Matrix-P	DEFL. in Vert(LL) -0.00 Vert(CT) -0.00 Horz(CT) -0.00 Wind(LL) 0.00	(loc) 1 1-3 2 1	l/defl >999 >999 n/a	L/d 360 240 n/a 240	PLATES MT20 Weight: 12 lb	GRIP 244/190 FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x6 SP No.1

REACTIONS. (size) 2=Mechanical, 3=Mechanical, 1=0-3-0

Max Horz 1=54(LC 6)

Max Uplift 2=-70(LC 6), 1=-39(LC 6)

Max Grav 2=75(LC 1), 3=50(LC 3), 1=100(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Pr. Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 70 lb uplift at joint 2 and 39 lb uplift at joint 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

BRACING-

TOP CHORD BOT CHORD Structural wood sheathing directly applied or 2-4-12 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

BRENCO

October 21,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcaccomponents.com) TRENCO A MiTek Affiliate

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

lah	Truce	Trues Tures	0.54	Dhy	Lat C Diver Deed	
100	Truss	Truss Type	Qiy	гу	Lot 6 River Road	169041317
B0924-5192	K04	COMMON TRUSS	1	2	Job Reference (optional)	
Comtech, Inc, Fayet	tteville, NC - 28314,		8. ID:1ir0aU7l522	630 s Sep	26 2024 MiTek Industries, I V52vv9ks9-RfC2PsB70Hq3N	nc. Mon Oct 21 09:19:47 2024 Page 1
	⊢	<u>5-1-8</u> <u>9-11-8</u> 5-1-8 <u>4-10-0</u>	18	3-2-8 -3-0		
			J. J			
			5x8			Scale = 1:65.9
			3			
	I	/				
			1			
		12.00 12				
	œ	4x6 //		\backslash		
	10-4-	2				
			11	/	4x8 \\	
	1					
	, ×	У 			5-1-6	
				10		
	6x1	8 8 1/2 8x8 =	8x16	10	'' 5 8x16 M18AHS	
		4x6 //				
	<u> 1-7</u>	7-8 7-2-3 9-11-8 7-8 5-4-15 2-9-5	10-10-10 0-11-2	18-2-8 7-3-14		
Plate Offsets (X,Y) [4	4:0-1-4.0-2-0]. [6:0-9-12.0-4-0]	0-1-12				
				(10.0)		
TCLL 20.0	Plate Grip DOL 1.15	5 TC 0.49	Vert(LL) -0.05	5-6	>999 360	MT20 244/190
TCDL 10.0 BCLL 0.0 *	Lumber DOL 1.15 Rep Stress Incr NC	5 BC 0.68 WB 0.84	Vert(CT) -0.11 Horz(CT) 0.01	5-6 5	>999 240 n/a n/a	M18AHS 186/179
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S	Wind(LL) 0.06	5-6	>999 240	Weight: 385 lb FT = 20%
LUMBER-			BRACING-			
TOP CHORD 2x6 SP 1 BOT CHORD 2x12 SP	No.1 No.1		TOP CHORD	Structur except	ral wood sheathing directly end verticals.	applied or 6-0-0 oc purlins,
WEBS 2x4 SP 1	No.2 *Except*		BOT CHORD	Rigid ce	eiling directly applied or 10-	-0-0 oc bracing.
4-5: 2X II	0 SP NO.1					
REACTIONS. (size) Max Ho	5=Mechanical, 8=0-3-8 rz 8=281(LC 24)					
Max Up	lift 5=-1756(LC 8), 8=-1090(LC	9)				
Max Gra	av 5=6401(LC 2), 6=5961(LC 2	-)				
FORCES. (lb) - Max. C TOP CHORD 1-2=-1	Comp./Max. Ten All forces 25 698/529, 2-3=-4613/1393, 3-4=	0 (lb) or less except when shown. 5691/1624, 4-5=-4685/1354				
BOT CHORD 1-8=-3	00/1097, 6-8=-948/2918, 5-6=-	397/1673				
WEBS 2-6=-3	25/545, 2-8=-3071/823, 4-6=-8	61/2334, 3-6=-1908/6846				
1) 2-ply truss to be conn	ected together with 10d (0 131	"v3") nails as follows:				
Top chords connected	d as follows: 2x6 - 2 rows stage	ered at 0-9-0 oc, 2x10 - 2 rows stagg	ered at 0-9-0 oc.			
Bottom chords connected as for	cted as follows: 2x12 - 2 rows s bllows: 2x4 - 1 row at 0-9-0 oc.	staggered at 0-2-0 oc.				
2) All loads are consider	ed equally applied to all plies, e	except if noted as front (F) or back (B)	face in the LOAD C	CASE(S)	section. Ply to	
3) Unbalanced roof live I	oads have been considered for	this design.	erwise indicated.			MATTINI
 Wind: ASCE 7-10; Vu gable end zone: canti 	lt=130mph Vasd=103mph; TCl lever left exposed : Lumber DC	DL=6.0psf; BCDL=5.0psf; h=15ft; Cat. /L=1.60 plate grip DOL=1.60	II; Exp C; Enclosed	i; MWFRS	S (envelope)	TH CARO
5) All plates are MT20 pl	lates unless otherwise indicate	d.	other live leads			STESSION No
7) * This truss has been a	designed for a live load of 20.0	psf on the bottom chord in all areas w	vith a clearance grea	ater than	6-0-0	the states
between the bottom c8) Refer to girder(s) for t	hord and any other members. russ to truss connections.				Ξ	SEAL
9) Provide mechanical c	onnection (by others) of truss to	b bearing plate capable of withstandin	g 100 lb uplift at joir	nt(s) exce	ept (jt=lb)	036322
10) Hanger(s) or other c	onnection device(s) shall be pr	ovided sufficient to support concentra	ted load(s) 5270 lb o	down and	d 1974 lb up at	000022
10-11-6, 2035 lb dov 16-9-14 on bottom c	vn and 276 lb up at 12-9-14, a hord. The design/selection of s	nd 1933 lb down and 182 lb up at 14- such connection device(s) is the respo	-9-14, and 1933 lb d onsibility of others.	lown and	182 lb up at	A AND SOME S
			, ,		2	GINEF
1) Dead + Roof Live (bal	ard lanced): Lumber Increase=1.15	5, Plate Increase=1.15				A. GILDIN
						October 21 2024
Continued on page 2						
WARNING - Verify de	sign parameters and READ NOTES ON	THIS AND INCLUDED MITEK REFERENCE PAG	GE MII-7473 rev. 1/2/2023	BEFORE U	JSE.	ENGINEERING BY
Design valid for use on a truss system. Before	ly with MiTek® connectors. This design use, the building designer must verify the provident of the provent buckling of the	is based only upon parameters shown, and is for ne applicability of design parameters and proper ividual trues web and/or chord members only of	or an individual building c ly incorporate this design	into the over	not erall bracing	TRENCO

inst.org) 818 Soundside Road Edenton, NC 27932

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 6 River Road	
						169041317
B0924-5192	K04	COMMON TRUSS	1	2		
				-	Job Reference (optional)	
Comtech, Inc, Fayetter	ville, NC - 28314,		8	.630 s Sep	26 2024 MiTek Industries, Inc. Mon Oct 21 09:19:47 2024	Page 2

ID:1jr0aUZI522uyMJe9JV52yy9ks9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

LOAD CASE(S) Standard

Uniform Loads (plf) Vert: 1-3=-60, 3-4=-60, 1-5=-20 Concentrated Loads (lb) Vert: 6=-4872(B) 9=-1818(B) 10=-1822(B) 11=-1822(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

		<u> </u>	<u>3-3-15</u> 3-3-15	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.22 BC 0.03 WB 0.00 Matrix-P	DEFL. in (loc) l/defl L/d Vert(LL) -0.00 2-4 >999 360 Vert(CT) -0.00 2-4 >999 240 Horz(CT) -0.00 3 n/a n/a Wind(LL) 0.00 2 **** 240	PLATES GRIP MT20 244/190 Weight: 15 lb FT = 20%

BRACING-

TOP CHORD

BOT CHORD

TOP CHORD 2x4 SP No.1 BOT CHORD 2x6 SP No.1

REACTIONS. (size) 3=Mechanical, 2=0-3-14, 4=Mechanical

Max Horz 2=44(LC 6)

Max Uplift 3=-51(LC 10), 2=-119(LC 6) Max Grav 3=74(LC 1), 2=227(LC 1), 4=62(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3 except (jt=lb) 2=119.

Structural wood sheathing directly applied or 3-3-15 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

LUMBER-

818 Soundside Road

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 6 River Road	
B0924-5192	L02	COMMON TRUSS	1	2		169041320
Comtach Inc Eave	ttovillo_NC - 28314			6 30 s Son	Job Reference (optional)	Mon Oct 21 09:19:49 2024 Page 1
Connech, inc, Taye	lieville, NG - 20314,		ID:1jr0aUZI522	uyMJe9J\	v52yy9ks9-RfC?PsB70Hq3NSg	JPqnL8w3uITXbGKWrCDoi7J4zJC?f
		1-8-14 5-6-0 1-8-14 3-9-2	<u>9-3-2</u> 3-9-2	+ 1 ⁻ 1-	<u>1-0-0</u> -8-14	
			429 11			Scale: 1/4"=1'
			470 []			
			3			
		12.00 12				
		2×4		\		
	8	2		4	2x4 -	
	<u>7-7</u>			R	4x6 🔨	
		4x0 // 1				
			\	$\langle $		
	-0-8				0-8	
	~					
		8 10 8 10		711		
		3x8 M18AHS		3	Bx8 M18AHS	
		8x12		8x12		
		<u>1-8-14</u> <u>5-6-0</u> 1-8-14 <u>3-9-2</u>	9-3-2	1	1-0-0	
Plate Offsets (X,Y) [1:0-2-12,0-1-8], [5:0-2-12,0-1-8], [7:0-8-0,0-4-0], [8:0-8-0,0-4-0]	5-5-2		-0-1 4	
LOADING (psf)	SPACING- 2-0-	csi.	DEFL. in	(loc)	l/defl L/d F	PLATES GRIP
TCLL 20.0 TCDI 10.0	Plate Grip DOL 1.1	5 TC 0.22 5 BC 0.37	Vert(LL) -0.03 Vert(CT) -0.06	7-8 7-8	>999 360 M	VT20 244/190 M18AHS 186/179
BCLL 0.0 *	Rep Stress Incr NO	D WB 0.42	Horz(CT) 0.00	6	n/a n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S	VVind(LL) 0.03	7-8	>999 240 \	Veight: 211 lb FT = 20%
LUMBER- TOP CHORD 2x4 SP	No.1		BRACING- TOP CHORD	Structur	ral wood sheathing directly ap	plied or 6-0-0 oc purlins.
BOT CHORD 2x10 SF	° No.1			except	end verticals.	
WEBS 2x4 SP	N0.2		BOI CHORD	Rigid ce	eiling directly applied or 10-0-0	U oc bracing.
REACTIONS. (size) Max Ho) 9=0-3-9, 6=0-3-9 prz 9=-160(I C 6)					
Max Up	lift 9=-244(LC 9), 6=-948(LC 8)				
Max Gr	av 9=1455(LC 2), 6=6063(LC 2	2)				
FORCES. (lb) - Max. (Comp./Max. Ten All forces 25	0 (lb) or less except when shown.	00/286			
5-6=-4	958/753	0020/121, 102 0010/000, 102 100	,0,200,			
WEBS 4-7=-2	44/849 260/341, 2-8=-257/301, 1-8=-19	0/1302, 5-7=-504/3358, 3-7=-682/34	433,			
3-8=-1	91/285					
NOTES-						
 2-ply truss to be conr Top chords connecte 	ected together with 10d (0.131 d as follows: 2x4 - 1 row at 0-9	"x3") nails as follows: -0 oc.				
Bottom chords conne	cted as follows: 2x10 - 3 rows	staggered at 0-2-0 oc.				
2) All loads are consider	red equally applied to all plies,	except if noted as front (F) or back (I	B) face in the LOAD C	ASE(S) s	section. Ply to	
a) Unbalanced roof live	been provided to distribute onl loads have been considered to	y loads noted as (F) or (B), unless o r this design	therwise indicated.			
4) Wind: ASCE 7-10; Vu	Ilt=130mph Vasd=103mph; TC	DL=6.0psf; BCDL=5.0psf; h=15ft; Ca	at. II; Exp C; Enclosed	; MWFR	S (envelope)	RTHUARO
5) All plates are MT20 p	lates unless otherwise indicate	d.	60		Lin	and the second
 6) This truss has been of 7) * This truss has been 	lesigned for a 10.0 psf bottom (designed for a live load of 20 (chord live load nonconcurrent with an onst on the bottom chord in all areas	ny other live loads.	ater than (6-0-0	a source of the
between the bottom of	chord and any other members,	with BCDL = 10.0 psf.				SEAL : E
 Provide mechanical c joint 6. 	connection (by others) of truss t	o bearing plate capable of withstand	ding 244 lb uplift at joir	nt 9 and 9	948 lb uplift at	036322
9) Hanger(s) or other co	nnection device(s) shall be pro	vided sufficient to support concentra	ated load(s) 6562 lb do	own and 1	1012 lb up at	N Z E
			fielding of others.		11	WOINFER
1) Dead + Roof Live (ba	ard lanced): Lumber Increase=1.1	5, Plate Increase=1.15			11	A CHERT
Uniform Loads (plf)) 3-5=-60 6-9=-20					A. GIL
Volt. 1 0=-00	., 0 0- 00, 0 0- 20					October 21,2024
Continued on page 2						
WARNING - Verify du Design valid for use or a truss system. Before building design Brazi	esign parameters and READ NOTES ON ily with MiTek® connectors. This design use, the building designer must verify to not indicated is to prevent buckling of inc	THIS AND INCLUDED MITEK REFERENCE P i is based only upon parameters shown, and is he applicability of design parameters and prop ividual truss web and/or chord members only	AGE MII-7473 rev. 1/2/2023 s for an individual building c perly incorporate this design Additional temporary and	BEFORE U omponent, i into the over	ISE. not erall bracing	

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality** Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 6 River Road	
						l69041320
B0924-5192	L02	COMMON TRUSS	1	2		
				~	Job Reference (optional)	
Comtech, Inc, Faye	tteville, NC - 28314,		8.	630 s Sep	26 2024 MiTek Industries, Inc. Mon Oct 21 09:19:49 2024	Page 2

ID:1jr0aUZI522uyMJe9JV52yy9ks9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

LOAD CASE(S) Standard Concentrated Loads (lb) Vert: 7=-5593(F)

> WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

	Truce		Otv	Plv	Lot 6 Piver Pood	
80024 5102	M01			,	Lot o River Road	169041321
0924-5192		JACK-CLOSED TRUSS	2	2	Job Reference (optio	
Comtech, Inc, Faye	etteville, NC - 28314,		ID:1jr0aUZI5	8.630 s Sep 22uyMJe9J∖	526 2024 Millek Indust /52yy9ks9-RfC?PsB70	ries, Inc. Mon Oct 21 09:19:49 2024 Page 1 Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f
			<u> 10-9-2</u> 10-9-2			
			Зх	4 3 4		Scale: 3/16"=1'
		Ī				
			8			
		12.00	12			
		1-2-2				
		6x6 1/				
		2				
		1				
		5x8 1⁄7 3×10 Ⅲ		65 6x8 —	-	
		3,10 11		0,0 -		
		1.7.8 6-	1.7 10.9	-2		
Plate Offsets (X V)	1.0.4.0 0.1.81 [7.0.7.4 0.1.8]	1-7-8 4-5	5-15 4-7-	11		
			DEEL	in (loo)		
TCLL 20.0	Plate Grip DOL 1.1	5 TC 0.22	Vert(LL) -0.	04 6-7	>999 360	MT20 244/190
TCDL 10.0 BCLL 0.0 *	Lumber DOL 1.1 Rep Stress Incr NC	5 BC 0.47 D WB 0.81	Vert(CT) -0. Horz(CT) 0.	14 6-7 01 6	>731 240 n/a n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S	Wind(LL) 0.	03 6-7	>999 240	Weight: 210 lb FT = 20%
LUMBER- TOP CHORD 2x6 SP	No.1		BRACING- TOP CHORD	Structur	ral wood sheathing di	rectly applied or 6-0-0 oc purlins.
BOT CHORD 2x10 SF	2400F 2.0E			except e	end verticals.	
WEBS 234 SF	110.2		WEBS	T-Brace		2x4 SPF No.2 - 3-6
				(0.131")	(2X) T and T braces t x3") nails, 6in o.c.,witl	n 3in minimum end distance.
REACTIONS. (size) 6=Mechanical, 7=0-3-8			Brace m	nust cover 90% of we	b length.
Max Ho Max Gi	orz 7=460(LC 10) av 6=3405(LC 2), 7=3323(LC 2	2)				
FORCES (Ib) - Max (Comp /Max Ten - All forces 25	΄ Ω (lb) or less excent when shown				
TOP CHORD 1-2=-3	3855/0, 2-3=-297/215, 3-6=-347	/279				
WEBS 2-6=-2	2799/0, 2-7=0/2845					
NOTES-						
 2-ply truss to be conr Top chords connecte 	nected together with 10d (0.131 ed as follows: 2x6 - 2 rows stage	"x3") nails as follows: gered at 0-9-0 oc, 2x4 - 1 row at 0)-9-0 oc.			
Bottom chords conne Webs connected as t	ected as follows: 2x10 - 2 rows	staggered at 0-8-0 oc.				
2) All loads are conside	red equally applied to all plies,	except if noted as front (F) or bac	k (B) face in the LOAD	CASE(S) s	section. Ply to	
3) Wind: ASCE 7-10; Vi	ult=130mph Vasd=103mph; TC	DL=6.0psf; BCDL=5.0psf; h=15ft;	; Cat. II; Exp C; Enclos	ed; MWFRS	S (envelope)	WHY CARO
gable end zone; cant 4) C-C wind load user d	ilever left and right exposed ; Li lefined.	umber DOL=1.60 plate grip DOL=	=1.60			TOP TOP TALL
 5) This truss has been of 6) * This truss has been 	designed for a 10.0 psf bottom of designed for a live load of 20.0	chord live load nonconcurrent with	h any other live loads. eas with a clearance g	reater than 6	6-0-0	Well Mary
between the bottom (chord and any other members.		J			OF AL
8) Load case(s) 1, 2, 3,	4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 1	14, 15, 16, 17, 18, 19, 20 has/hav	e been modified. Build	ling designe	er must review	
9) Warning: Additional p	ey are correct for the intended i permanent and stability bracing	use of this truss. for truss system (not part of this of	component design) is a	always requ	ired.	030322
LOAD CASE(S) Stand	ard Except:					E A ENDERRY A
1) Dead + Roof Live (ba	alanced): Lumber Increase=1.18	5, Plate Increase=1.15				SINE BE
Vert: 1-3=-6	0, 3-4=-20, 1-7=-20, 5-7=-503(E	3=-483)				A. GILD
						October 21,2024
Continued on page 2						
WARNING - Verify d Design valid for use o	esign parameters and READ NOTES ON nly with MiTek® connectors. This desigr	THIS AND INCLUDED MITEK REFERENCE is based only upon parameters shown, a	CE PAGE MII-7473 rev. 1/2/20 nd is for an individual buildin	g component, r	SE. not	
a truss system. Before building design. Braci	e use, the building designer must verify t ing indicated is to prevent buckling of ind	he applicability of design parameters and dividual truss web and/or chord members of	properly incorporate this des only. Additional temporary a	ign into the ove nd permanent b	erall bracing	i renlu

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 6 River Road			
B0924-5192	M01	JACK-CLOSED TRUSS	2	2	169041321			
Comtech, Inc, Fayette	/ /ille, NC - 28314,		8	630 s Sep	Job Reference (optional) 26 2024 MiTek Industries, Inc. Mon Oct 21 09:19:49 2024 Page 2			
 Comtech, Inc, Fayettev LOAD CASE(S) Standard 2) Dead + 0.75 Roof Live (Uniform Loads (plf) Vert: 1-3=-50, 3 3) Dead + Uninhabitable A Uniform Loads (plf) Vert: 1-3=-20, 3 4) Dead + 0.6 C-C Wind (F Uniform Loads (plf) Vert: 1-3=-35, 3 Horz: 1-3=-47 5) Dead + 0.6 C-C Wind (N Uniform Loads (plf) Vert: 1-3=-58, 3 Horz: 1-3=-38, 3 	Anile, NC - 28314, I Except: balanced) + 0.75 Attic Floor: 3-4=-20, 1-7=-20, 5-7=-688(B ttic Without Storage: Lumber 3-4=-20, 1-7=-40, 5-7=-567(B Pos. Internal) Case 1: Lumber 4=-12, 1-7=51, 5-7=-274(B= Neg. Internal) Case 1: Lumber 3-4=-20, 1-7=-11, 5-7=-475(B	Lumber Increase=1.15, Plate Increase=1.15 =-668) Increase=1.25, Plate Increase=1.25 =-527) Increase=1.60, Plate Increase=1.60 -264) r Increase=1.60, Plate Increase=1.60 =-455)	8 :1jr0aUZI522	.630 s Sep 2uyMJe9JV	.26 2024 MiTek Industries, Inc. Mon Oct 21 09:19:49 2024 Page 2 /52yy9ks9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f			
 6) Dead + 0.6 MWFRS Wir Uniform Loads (plf) Vert: 1-3=-15, 3 Horz: 1-3=3, 3- 7) Dead + 0.6 MWFRS Wir Uniform Loads (plf) Vert: 1-3=15, 3- Horz: 1-3=-27, 3 8) Dead + 0.6 MWFRS Wir Uniform Loads (plf) Vert: 1-3=-37, 3 Horz: 1, 2-17, 2 	nd (Pos. Internal) Left: Lumber 4=-22, 1-7=12, 5-7=-388(B= 4=10 nd (Pos. Internal) Right: Lumber 4=8, 1-7=-10, 5-7=-332(B=-3 3-4=-20 nd (Neg. Internal) Left: Lumber 3-4=-30, 1-7=2, 5-7=-415(B=- 4-10	er Increase=1.60, Plate Increase=1.60 378) ber Increase=1.60, Plate Increase=1.60 322) er Increase=1.60, Plate Increase=1.60 395)						
Horz: 1-3=17, 3-4=10 9) Dead + 0.6 MWFRS Wind (Neg. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-3=-7, 3-4=-0, 1-7=-20, 5-7=-386(B=-366) Horz: 1-3=-13, 3-4=-20 10) Dead + 0.6 MWFRS Wind (Pos. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-8=35, 3-8=21, 3-4=14, 1-7=-10, 5-7=-275(B=-265)								
11) Dead + 0.6 MWFRS W Uniform Loads (plf) Vert: 1-3=9, 3- Horz: 1-3=-21, 12) Dead + 0.6 MWFRS W Uniform Loads (plf) Vert: 1-3=21, 3 Horz: 1-3=21, 3	Horz: 1-8=-47, 3-8=-33, 3-4=-26 11) Dead + 0.6 MWFRS Wind (Pos. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-3=9, 3-4=2, 1-7=-10, 5-7=-349(B=-339) Horz: 1-3=-21, 3-4=-14 12) Dead + 0.6 MWFRS Wind (Pos. Internal) 3rd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-3=21, 3-4=14, 1-7=-10, 5-7=-315(B=-305)							
 13) Dead + 0.6 MWFRS W Uniform Loads (plf) Vert: 1-3=9, 3- Horz: 1-3=-21, 14) Dead + 0.6 MWFRS W Uniform Loads (plf) Vert: 1-8=13, 3 Horz: 1-8=-33 15) Dead + 0.6 MWFPS 	(ind (Pos. Internal) 4th Parall -4=2, 1-7=-10, 5-7=-349(B=-3 , 3-4=-14 (ind (Neg. Internal) 1st Parall 3-8=-1, 3-4=6, 1-7=-20, 5-7=- , 3-8=-19, 3-4=-26	el: Lumber Increase=1.60, Plate Increase=1. 339) el: Lumber Increase=1.60, Plate Increase=1. 386(B=-366)	60 60					
 Uniform Loads (plf) Vert: 1-3=-13, Horz: 1-3=-7, 1 16) Dead: Lumber Increase Uniform Loads (plf) Vert: 1-3=-20, 17) Dead + 0.75 Roof Live Increase=1.60 Uniform Loads (plf) 	3-4=-6, 1-7=-20, 5-7=-386(B 3-4=-14 e=0.90, Plate Increase=0.90 3-4=-20, 1-7=-20, 5-7=-390((bal.) + 0.75 Attic Floor + 0.7	=-366) Plt. metal=0.90 B=-371) '5(0.6 MWFRS Wind (Neg. Int) Left): Lumber	Increase=1	.60, Plate				
Vert: 1-3=-63, Horz: 1-3=13, 18) Dead + 0.75 Roof Live Increase=1.60 Uniform Loads (plf) Vert: 1-3=-40, Horz: 1-3=-10 19) Dead + 0.75 Roof Live Increase=1.60	3-4=-28, 1-7=-3, 5-7=-605(B 3-4=8 (bal.) + 0.75 Attic Floor + 0.7 3-4=-5, 1-7=-20, 5-7=-584(B , 3-4=-15 (bal.) + 0.75 Attic Floor + 0.7	=-585) '5(0.6 MWFRS Wind (Neg. Int) Right): Lumb =-564) '5(0.6 MWFRS Wind (Neg. Int) 1st Parallel):	er Increase= _umber Incr	e1.60, Plat	e 0, Plate			
Uniform Loads (plf) Vert: 1-8=-25, Horz: 1-8=-25, 20) Dead + 0.75 Roof Live Increase=1.60	3-8=-36, 3-4=-1, 1-7=-20, 5- , 3-8=-14, 3-4=-19 (bal.) + 0.75 Attic Floor + 0.7	7=-584(B=-564) 5(0.6 MWFRS Wind (Neg. Int) 2nd Parallel):	Lumber Inc	rease=1.6	50, Plate			

Continued on page 3

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job		Truss	Truss Type	Qty	Ply	Lot 6 River Road	
						1690	41321
B0924-5192		M01	JACK-CLOSED TRUSS	2	2		
					-	Job Reference (optional)	
Comtech, Inc,	Fayette	/ille, NC - 28314,		8	.630 s Sep	26 2024 MiTek Industries, Inc. Mon Oct 21 09:19:49 2024 Page	e 3

ID:1jr0aUZI522uyMJe9JV52yy9ks9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

LOAD CASE(S) Standard

Uniform Loads (plf) Vert: 1-3=-45, 3-4=-10, 1-7=-20, 5-7=-584(B=-564) Horz: 1-3=-5, 3-4=-10

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 6 River Road		160041222
B0924-5192	M02	MONOPITCH TRUSS	2	1		N.	109041322
Comtech. Inc. Fave	tteville, NC - 28314.			.630 s Sec	Job Reference (option 26 2024 MiTek Industr	ial) ies. Inc. Mon Oct 21.09	9:19:49 2024 Page 1
			ID:1jr0aUZI52	2uyMJe9J	/52yy9ks9-RfC?PsB70ł	Hq3NSgPqnL8w3uITXb	GKWrCDoi7J4zJC?f
		$ \frac{1-9-4}{1-9-4} \frac{5-4-1}{3-7-1}$	9 10-9-2 5 5-4-9		ł		
							0 1 1 5 1
		т	43	<4 // 4	1		Scale = 1:59.4
				3			
			/				
		_	_ //				
		12.00 1	2				
		2-2					
		ŧ					
		eve //					
		000 //					
		2					
					I		
		3x4 // 🖾			1		
				65	5		
		2x4		6x6 =	=		
		<u>1-7-8 1-9-4</u> 1-7-8	10-9-2 8-11-14		ł		
Plate Offsets (X Y) [2.0-3-0 0-3-12] [6:0-1-8 0-3-0	0-1-12					
LOADING (psf)	SPACING- 2-0 Plate Grip DOI 1	-0 CSI.	DEFL. i	n (loc)	I/defl L/d	PLATES MT20	GRIP 244/190
TCDL 10.0	Lumber DOL 1.	15 BC 0.40	Vert(CT) -0.20) 6-7	>530 240	INT 20	277/130
BCLL 0.0 *	Rep Stress Incr YI	ES WB 0.29	Horz(CT) -0.0	16	n/a n/a		
BCDL 10.0	Code IRC2015/TPI201	4 Matrix-S	Wind(LL) -0.0	1 6-7	>999 240	Weight: 90 lb	FT = 20%
LUMBER-			BRACING-				
TOP CHORD 2x6 SP	No 1		TOP CHORD	Structur	ral wood sheathing dir	ectly applied or 6-0-0	oc purlins

TOP CHORD	2x6 SP No.1
BOT CHORD	2x4 SP No.1
WEBS	2x4 SP No.2 *
	-

'EBS	2x4 SP No.2 *Except*
	3-6: 2x6 SP No.1

BRACING-
TOP CHORD
BOICHORD
WEBS

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

Rigid ceiling directly applied or 7-6-1 oc bracing. T-Brace: 2x4 SPF No.2 - 3-6, 2-6 Fasten (2X) T and I braces to narrow edge of web with 10d (0.131"x3") nails, 6in o.c., with 3in minimum end distance. Brace must cover 90% of web length.

REACTIONS. (size) 6=Mechanical, 7=0-3-8 Max Horz 7=499(LC 10) Max Uplift 6=-417(LC 10) Max Grav 6=455(LC 17), 7=496(LC 1)

 FORCES.
 (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 TOP CHORD
 2-3=-309/199, 3-6=-325/348

- BOT CHORD 1-7=-189/317, 6-7=-688/701
- WEBS 2-7=-331/47, 2-6=-677/682

NOTES-

1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 417 lb uplift at joint 6.
- 6) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 6 River Road		
B0924-5192	M03	HALF HIP TRUSS	1	1			169041323
John Trues <		19:50 2024 Page 1					
Juli True True <th< td=""><td>GKWrCDoi7J4zJC?f</td></th<>		GKWrCDoi7J4zJC?f					
Job Total Tute Type Dev Py Lot R Rein Fload 100011123 Devices, Inc. Fegetode, NC. 2014 Refit See See Fload Refit See See See See See See See See See Se							
				5x8	1-8		Scale = 1:58.5
Jub Tops Type Op Pay Lide Room Road B602-15102 Mod MuLF IP TRUSS In B602-860 B602-860 Consel, Inc. Payritevice, No 28314 B602-860 B602-860 B602-860 Consel, Inc. Payritevice, No 28314 B602-860 B602-860 B602-860 Up for Up for the State Transmission of the State Transmissin of the State T							
					1		
			/				
		12 00 12					
		.2.00 12					
		2-6					
		-01					
		3x10					
				l.	u u uč		
		1 3⁄2 3x4 1∕∕ ⊠ 6.7		5	4 ¹ ö		
		3x4 =		4x4	11		
		1-7-8 1-9-4 1-7-8	10-7-10 8-10-6	10 0-	-9-2 1-8		
Plate Offsets (X,Y) [3:E	dge,0-2-4]	0-1-12					
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in (loc)	l/defl L/d	PLATES	GRIP
TCLL 20.0 TCDL 10.0	Plate Grip DOL 1.15 Lumber DOL 1.15	TC 0.37 BC 0.31	Vert(LL) -0. Vert(CT) -0.	08 5-6 13 5-6	>999 360 >802 240	MT20	244/190
BCLL 0.0 * BCDL 10.0	Rep Stress Incr YES Code IRC2015/TPI2014	WB 0.78 Matrix-S	Horz(CT) -0. Wind(LL) 0.	00 5 04 5-6	n/a n/a >999 240	Weight: 101 lb	FT = 20%
LUMBER-			BRACING-				
TOP CHORD 2x6 SP No	.1		TOP CHORD	Structu	ral wood sheathing dir	rectly applied or 6-0-0 o	oc purlins.
WEBS 2x4 SP No	.1 .2 *Except*		WEBS	T-Brace	elling directly applied of 2	2x4 SPF No.2 - 3-6, 3-5	
3-5: 2x6 SF	P No.1			Fasten (0.131":	(2X) T and I braces to x3") nails, 6in o.c.,with	o narrow edge of web v n 3in minimum end dista	vith 10d ance.
REACTIONS. (size)	6=0-3-8. 5=Mechanical			Brace n	nust cover 90% of we	b length.	
Max Horz Max Uplift	6=461(LC 10) 5=-348(LC 10)						
Max Grav	6=546(LC 2), 5=528(LC 17)						
FORCES. (Ib) - Max. Cor	np./Max. Ten All forces 250) (Ib) or less except when shown.					
TOP CHORD 1-2=-363 BOT CHORD 1-6=-113	/0, 2-3=-801/598 /371						
WEBS 2-6=-936	/824, 3-6=-859/964, 3-5=-432	2/370					
NOTES- 1) Wind: ASCE 7-10: Vult=	130mph Vasd=103mph: TCF	0 =6 0psf: BCDI =5 0psf: h=15ft: (Cat II: Exp.C: Enclos	ed [.] MWFR:	S (envelope)		
gable end zone and C-C	Exterior(2) zone; cantilever	left and right exposed ;C-C for me	embers and forces &	WWFRS for	reactions		
 2) This truss has been des 	igned for a 10.0 psf bottom c	hord live load nonconcurrent with	any other live loads.				
3) 1 his truss has been de between the bottom cho	rd and any other members, v	psf on the bottom chord in all area vith BCDL = 10.0psf.	as with a clearance g	eater than	6-0-0	mm	unn.
4) Refer to girder(s) for trus5) Provide mechanical con	ss to truss connections. nection (by others) of truss to	bearing plate capable of withstar	nding 348 lb uplift at j	oint 5.		TH C	ARO
6) Warning: Additional perr	manent and stability bracing f	or truss system (not part of this co	omponent design) is	always requ	ired.	IN OF FESS	NY Y'
					6		-
					-	E : SEA	AL : E
						0363	322
						TO SNGIN	IEEP. A.V.
						CA C	31LBE
						(minin	IIIIIII III

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

October 21,2024

(size)	7=Mechanical, 8=0-3-8
Max Horz	8=382(LC 10)
Max Uplift	7=-243(LC 10)
Max Grav	7=461(LC 17), 8=562(LC 2)
	(size) Max Horz Max Uplift Max Grav

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-309/0, 2-3=-565/385

WEBS 3-8=-495/541, 3-7=-395/350, 2-8=-637/551

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.

Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 243 lb uplift at joint 7.

8) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

A MITek A 818 Soundside Road Edenton, NC 27932

1-7-8 1-9-4	
1-7-80-1-12	

10-9-2	
8-11-14	

BRACING-

TOP CHORD

BOT CHORD

WEBS

end verticals

T-Brace:

Plate Off	sets (X,Y)	[1:0-2-4,0-1-8]											
LOADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL	20.0	Plate Grip DOL	1.15	TC	0.54	Vert(LL)	-0.23	6-7	>453	360	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15	BC	0.62	Vert(CT)	-0.35	6-7	>303	240			
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.22	Horz(CT)	0.00	6	n/a	n/a			
BCDL	10.0	Code IRC2015/TF	PI2014	Matri	k-S	Wind(LL)	0.01	6-7	>999	240	Weight: 71 lb	FT = 20%	

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 WEBS

2x4 SP No.2

REACTIONS. (size) 7=0-3-8, 6=Mechanical Max Horz 7=247(LC 10) Max Uplift 7=-63(LC 11), 6=-128(LC 10) Max Grav 7=571(LC 18), 6=473(LC 17)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-292/0, 2-3=-460/328

WEBS 3-7=-314/297, 2-7=-487/440

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.

5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 63 lb uplift at joint 7 and 128 lb uplift at ioint 6.

7) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

Structural wood sheathing directly applied or 6-0-0 oc purlins, except

2x4 SPF No.2 - 3-7

Rigid ceiling directly applied or 10-0-0 oc bracing.

Brace must cover 90% of web length.

Fasten (2X) T and I braces to narrow edge of web with 10d (0.131"x3") nails, 6in o.c.,with 3in minimum end distance.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

Job	Truss	Truss Type	Qty	Ply	Lot 6 River Road	
B0924-5192	M06	HALF HIP TRUSS	1	1		169041326
Comtech. Inc. Fav	etteville. NC - 28314.			.630 s Sec	Job Reference (option) 26 2024 MiTek Indust	nal) tries, Inc. Mon Oct 21 09:19:51 2024 Page 1
····, ·, ·,	,	ID	1jr0aUZI52	2uyMJe9J\	/52yy9ks9-RfC?PsB70)Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f
		1-9-4 5-1-8 1-9-4 3-4-4	9-11-9 4-10-1	10-7-10 0-8-1)	
			4>	0-1- 4 //	-8	Scale = 1:59.7
				3		
		6x6 // 0 0 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		54	0.5.8	
		2x4		4x6 =	=	
		1-7-8 1-9-4 10-7-1 1-7-8 8-10- 8-10-	0	10 ₁ 9 0-1	9-2 -8	
Plate Offsets (X,Y)	[2:0-3-0,0-4-0], [3:0-5-9,Edge],	<u>0-1-12</u> [5:0-1-8,0-2-0]				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0- Plate Grip DOL 1.1 Lumber DOL 1.1 Rep Stress Incr YE Code IRC2015/TPI2014	0 CSI. DEFL 5 TC 0.41 Vert(I 5 BC 0.23 Vert(I S WB 0.34 Horz(Matrix-S Wind	. i .L) -0.0 CT) -0.0 CT) -0.0 LL) 0.0	n (loc) 4 5-6 3 5-6 1 5 2 5-6	l/defl L/d >999 360 >999 240 n/a n/a >999 240	PLATES GRIP MT20 244/190 Weight: 96 lb FT = 20%
LUMBER- TOP CHORD 2x6 SP BOT CHORD 2x6 SP WEBS 2x4 SP 3-5: 2x	No.1 No.1 No.2 *Except* 6 SP No.1	BRAC TOP (BOT (WEBS	CHORD CHORD CHORD	Structur Rigid ce T-Brace Fasten (0.131" Brace n	ral wood sheathing di eiling directly applied e: (2X) T and I braces i x3") nails, 6in o.c.,wit nust cover 90% of we	irectly applied or 6-0-0 oc purlins. or 9-2-3 oc bracing. 2x4 SPF No.2 - 3-5, 2-5 to narrow edge of web with 10d h 3in minimum end distance. bb length.
REACTIONS. (size Max H Max U Max G	 b) 6=0-3-8, 5=Mechanical orz 6=481(LC 10) plift 5=-386(LC 10) rav 6=488(LC 1), 5=431(LC 17))				
FORCES. (lb) - Max. TOP CHORD 1-2=- BOT CHORD 1-6=- WEBS 2-6=-	Comp./Max. Ten All forces 25 277/76, 2-3=-306/223 236/414, 5-6=-716/805 325/147, 3-5=-333/285, 2-5=-8	50 (lb) or less except when shown. 19/728				
 NOTES- 1) Wind: ASCE 7-10; V gable end zone and shown; Lumber DOL 2) This truss has been between the bottom 3) * This truss has been between the bottom 4) Refer to girder(s) for 5) Provide mechanical 6) Warning: Additional 	ult=130mph Vasd=103mph; TC C-C Exterior(2) zone; cantileve =1.60 plate grip DOL=1.60 designed for a 10.0 psf bottom n designed for a live load of 20. chord and any other members. truss to truss connections. connection (by others) of truss permanent and stability bracing	DL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp r left and right exposed ;C-C for members and chord live load nonconcurrent with any other li 0psf on the bottom chord in all areas with a cle to bearing plate capable of withstanding 386 lb for truss system (not part of this component d	C; Enclose forces & M ve loads. arance gre uplift at jo esign) is al	d; MWFRS for ater than f nt 5. ways requ	S (envelope) reactions 6-0-0 iired.	SEAL 036322

October 21,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

RENCO

	_		-	1			
Job	Truss	Truss Type	Qty	Ply	Lot 6 River Road		1690/1327
B0924-5192	M07	COMMON TRUSS	3	1			103041327
Comtach Inc Equat			8	630 c Son	Job Reference (option	al) es Inc. Mon Oct 21.09:1	0.51 2024 Page 1
Connech, Inc, Tayett	eville, NG - 20014,		ID:1jr0aUZI522	uyMJe9JV	52yy9ks9-RfC?PsB70F	lq3NSgPqnL8w3uITXbGł	WrCDoi7J4zJC?f
		1-9-4 9-11 1-9-4 8-2	-8	10-9-2	2		
				001			
			5x5	11			Scale = 1:58.4
		Ţ		3			
		12.00 12 6x6 // 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			I SO 8:50		
		3x4 1/ 12		54			
		2x4		4x8 =	=		
		1-7-8 1-9-4 10 1-7-8 1-9-4 8-	D-9-2 11-14		l		
Plate Offsets (X,Y) [2:	0-3-0,0-4-0], [3:0-0-14,0-3-14]	, [5:0-1-12,0-2-0]					
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. DEI TC 0.33 Ver BC 0.18 Ver WB 0.27 Hor Matrix-S Win	FL. in t(LL) -0.03 t(CT) -0.06 z(CT) -0.01 id(LL) 0.01	(loc) 5-6 5-6 5 5-6	l/defl L/d >999 360 >999 240 n/a n/a >999 240	PLATES MT20 Weight: 102 lb	GRIP 244/190 FT = 20%
	0.1	BR/		Structur	al wood sheathing dire	actly applied or 6-0-0 oc	ourlins
BOT CHORD 2x6 SP N	0.1		ONORD	except e	and verticals.		punno,
WEBS 2x4 SP N 3-5: 2x8 S	o.2 *Except* SP No.1	BOT WEI	r Chord BS	Rigid ce T-Brace Fasten ((0.131") Brace m	iling directly applied o : 22 (2X) T and I braces to (3") nails, 6in o.c.,with nust cover 90% of web	r 9-8-5 oc bracing. 44 SPF No.2 - 3-5, 2-5 narrow edge of web wi 3in minimum end distar length.	th 10d nce.
REACTIONS. (size) Max Horz Max Upli Max Grav	6=0-3-8, 5=Mechanical z 6=472(LC 10) ft 5=-375(LC 10) v 6=486(LC 1), 5=427(LC 17)						
FORCES. (lb) - Max. Co TOP CHORD 2-3=-30 BOT CHORD 1-6=-17 WEBS 2-6=-35	omp./Max. Ten All forces 250 8/206, 3-5=-331/290 1/312, 5-6=-642/696 2/144, 2-5=-670/630) (Ib) or less except when shown.					
NOTES- 1) Wind: ASCE 7-10; Vult gable end zone and C- shown; Lumber DOL=1	=130mph Vasd=103mph; TCI C Exterior(2) zone; cantilever I.60 plate grip DOL=1.60	DL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Ex left and right exposed ;C-C for members ar	p C; Enclosed nd forces & MV	; MWFRS VFRS for	(envelope) reactions		

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 375 lb uplift at joint 5.
- 6) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

			1	
LOADING	G (psf) 20.0	SPACING- 2-0-0 Plate Grip DOL 1.15	CSI. TC 0.04	DEFL. in (loc) I/defl L/d PLATES GRIP Vert(LL) -0.00 3 n/r 120 MT20 244/190
TCDL	10.0	Lumber DOL 1.15	BC 0.02	Vert(CT) 0.00 3 n/r 120
BCDL	10.0	Code IRC2015/TPI2014	Matrix-P	Horz(CT) 0.00 n/a n/a Weight: 12 lb FT = 20%

BRACING-

LUMBER-

TOP CHORD 2x4 SP No.1 2x6 SP No.1 BOT CHORD WEBS 2x4 SP No.2 TOP CHORD

Structural wood sheathing directly applied or 2-5-8 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. 6=2-5-8, 2=2-5-8 (size) Max Horz 2=46(LC 6) Max Uplift 6=-36(LC 10), 2=-71(LC 6)

Max Grav 6=89(LC 1), 2=150(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable requires continuous bottom chord bearing.

4) Gable studs spaced at 2-0-0 oc.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 6)

between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 36 lb uplift at joint 6 and 71 lb uplift at joint 2.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB Building Component Scitut Information**. Building from the Structure Building Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

			6-5	-8				
LOADING (psf)SPACINTCLL20.0Plate GriTCDL10.0Lumber IBCLL0.0 *Rep StreBCDL10.0Code IR	G- 2-0-0 p DOL 1.15 DOL 1.15 ss Incr YES C2015/TPI2014	CSI. TC 0.31 BC 0.17 WB 0.00 Matrix-P	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in (loc) -0.02 2-5 -0.05 2-5 0.00 0.03 2-5	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 26 lb	GRIP 244/190 FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x4 SP No.1BOT CHORD2x6 SP No.1WEBS2x4 SP No.2

REACTIONS. (size) 2=0-3-0, 4=0-3-8 Max Horz 2=104(LC 6)

Max Uplift 2=-154(LC 6), 4=-73(LC 10) Max Grav 2=304(LC 1), 4=171(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Pr. Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0

between the bottom chord and any other members.

4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 154 lb uplift at joint 2 and 73 lb uplift at joint 4.

SEAL 036322 October 21,2024

Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

		1										
		í				6-1-8					1	
Plate Offsets (X,Y)	[4:Edge,0-1-14]											
LOADING (psf)	SPACING	-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip	DOL	1.15	TC	0.48	Vert(LL)	-0.02	2-4	>999	360	MT20	244/190
TCDL 10.0	Lumber DO	JL	1.15	BC	0.13	Vert(CT)	-0.03	2-4	>999	240		
BCLL 0.0 *	Rep Stress	s Incr	YES	WB	0.00	Horz(CT)	0.00		n/a	n/a		
BCDL 10.0	Code IRC:	2015/TPI	2014	Matri	x-P	Wind(LL)	0.00	2	****	240	Weight: 27 lb	FT = 20%
LUMBER-						BRACING						

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x6 SP No.1 WEBS 2x4 SP No.2

REACTIONS. (size) 2=0-3-0, 4=0-1-8 Max Horz 2=121(LC 6)

Max Uplift 2=-148(LC 6), 4=-130(LC 10) Max Grav 2=299(LC 1), 4=229(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Pr. Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 4) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 148 lb uplift at joint 2 and 130 lb uplift at joint 4.

Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design and the second design much reacting of design and the second design much reacting and and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

		<u>4-4-12</u> 4-4-12	<u> </u>
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. DEFL. TC 0.22 Vert(LL) BC 0.14 Vert(CT) WB 0.03 Horz(CT) Matrix-S Wind(LL)	in (loc) I/defi L/d PLATES GRIP -0.02 2-6 >999 360 MT20 244/190) -0.03 2-6 >999 240) 0.00 5 n/a n/a) 0.03 2-6 >999 240 Weight: 30 lb FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x4 SP No.1BOT CHORD2x6 SP No.1WEBS2x4 SP No.2

WEBS 2x4 SP No.2

REACTIONS. (size) 5=0-3-8, 2=0-3-0 Max Horz 2=94(LC 6) Max Uplift 5=-126(LC 6), 2=-163(LC 6) Max Grav 5=243(LC 1), 2=312(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Pr. Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Provide adequate drainage to prevent water ponding.

- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 126 lb uplift at joint 5 and 163 lb uplift at joint 2.

Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

	2-4-12 2-4-12		6-5-8 4-0-12
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.28	Vert(LL) 0.02 6 >999 240 MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.19	Vert(CT) -0.03 6 >999 240
BCLL 0.0 *	Rep Stress Incr NO	WB 0.02	Horz(CT) 0.00 5 n/a n/a
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S	Weight: 28 lb FT = 20%
	· ·		· · ·

LUMBER-

TOP CHORD 2x4 SP No.1 2x6 SP No.1 BOT CHORD WEBS 2x4 SP No.2 BRACING-TOP CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. 5=0-3-8, 2=0-3-0 (size) Max Horz 2=58(LC 19) Max Uplift 5=-141(LC 5), 2=-187(LC 4) Max Grav 5=265(LC 1), 2=333(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 2-3=-282/134

NOTES-

1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Pr. Enclosed; MWFRS

- (envelope) gable end zone; cantilever left and right exposed ; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Provide adequate drainage to prevent water ponding.
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 141 lb uplift at joint 5 and 187 lb uplift at joint 2.
- 6) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 111 lb down and 153 lb up at 2-4-12, and 63 lb down and 77 lb up at 4-5-8 on top chord, and 32 lb down at 2-4-12, and 15 lb down at 4-5-8 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 7) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-3=-60, 3-4=-60, 2-5=-20 Concentrated Loads (lb) Vert: 3=-15(F) 6=-8(F) 7=-15(F) 8=-5(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Statu Information** available from the Structural Building Component Advection and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.29 BC 0.14 WB 0.04 Matrix-P	DEFL. in Vert(LL) 0.01 Vert(CT) 0.02 Horz(CT) 0.00	(loc) 5 5 4	l/defl n/r n/r n/a	L/d 120 120 n/a	PLATES GRIP MT20 244/190 Weight: 37 lb FT = 20%
LUMBER-			BRACING-				

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 OTHERS 2x4 SP No.2

REACTIONS. (size) 2=8-8-9, 4=8-8-9, 6=8-8-9

Max Horz 2=-119(LC 8) Max Uplift 2=-78(LC 10), 4=-93(LC 11), 6=-7(LC 10)

Max Grav 2=228(LC 1), 4=228(LC 1), 6=290(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 78 lb uplift at joint 2, 93 lb uplift at joint 4 and 7 lb uplift at joint 6.

7) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design and the second design much reacting of design and the second design much reacting and and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

¹⁾ Unbalanced roof live loads have been considered for this design.

1					10-0-4						1	
					10-0-4							
Plate Offsets (X,Y)	[2:0-2-2,0-1-0], [3:0-2-0,0)-1-13], [4:0-2-	0,0-1-13], [5:	0-2-2,0-1-0								
LOADING (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL 20.0 TCDL 10.0	Plate Grip DOL Lumber DOL	1.15 1.15	TC BC	0.38 0.09	Vert(LL) Vert(TL)	0.00 0.00	6 6	n/r n/r	120 120	MT20	244/190	
BCLL 0.0 * BCDL 10.0	Rep Stress Incr Code IRC2009/TI	YES PI2007	WB Matri:	0.04 x-P	Horz(TL)	0.00	5	n/a	n/a	Weight: 34 lb	FT = 20%	
					BRACING.							

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x4 SP No.1BOT CHORD2x4 SP No.1WEBS2x4 SP No.2

REACTIONS. All bearings 8-8-9.

(lb) - Max Horz 2=-104(LC 4)

 Max Uplift
 All uplift 100 lb or less at joint(s) except 2=-149(LC 6), 5=-154(LC 7), 8=-190(LC 5), 7=-160(LC 4)

 Max Grav
 All reactions 250 lb or less at joint(s) 2, 5 except 8=253(LC 10), 7=253(LC 11)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

2) Wind: ASCE 7-05; 130mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 149 lb uplift at joint 2, 154 lb uplift at joint 5, 190 lb uplift at joint 8 and 160 lb uplift at joint 7.

 See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

RENCO A MiTek Affiliate

818 Soundside Road

¹⁾ Unbalanced roof live loads have been considered for this design.

