

Carter Sanford Component Plant 298 Harvey Faulk Rd Sanford, NC 27332

Phone #:919-775-1450

Builder: DR Horton Inc

Model: Robie L LFT GRH

THE PLACEMENT PLAN NOTES:

1. The Placement Plan is a diagram for truss installation. It is not an engineered drawing and has not been reviewed by an engineer. The Owner/Building Designer is responsible for obtaining an engineer's review if one is required by the local jurisdiction.

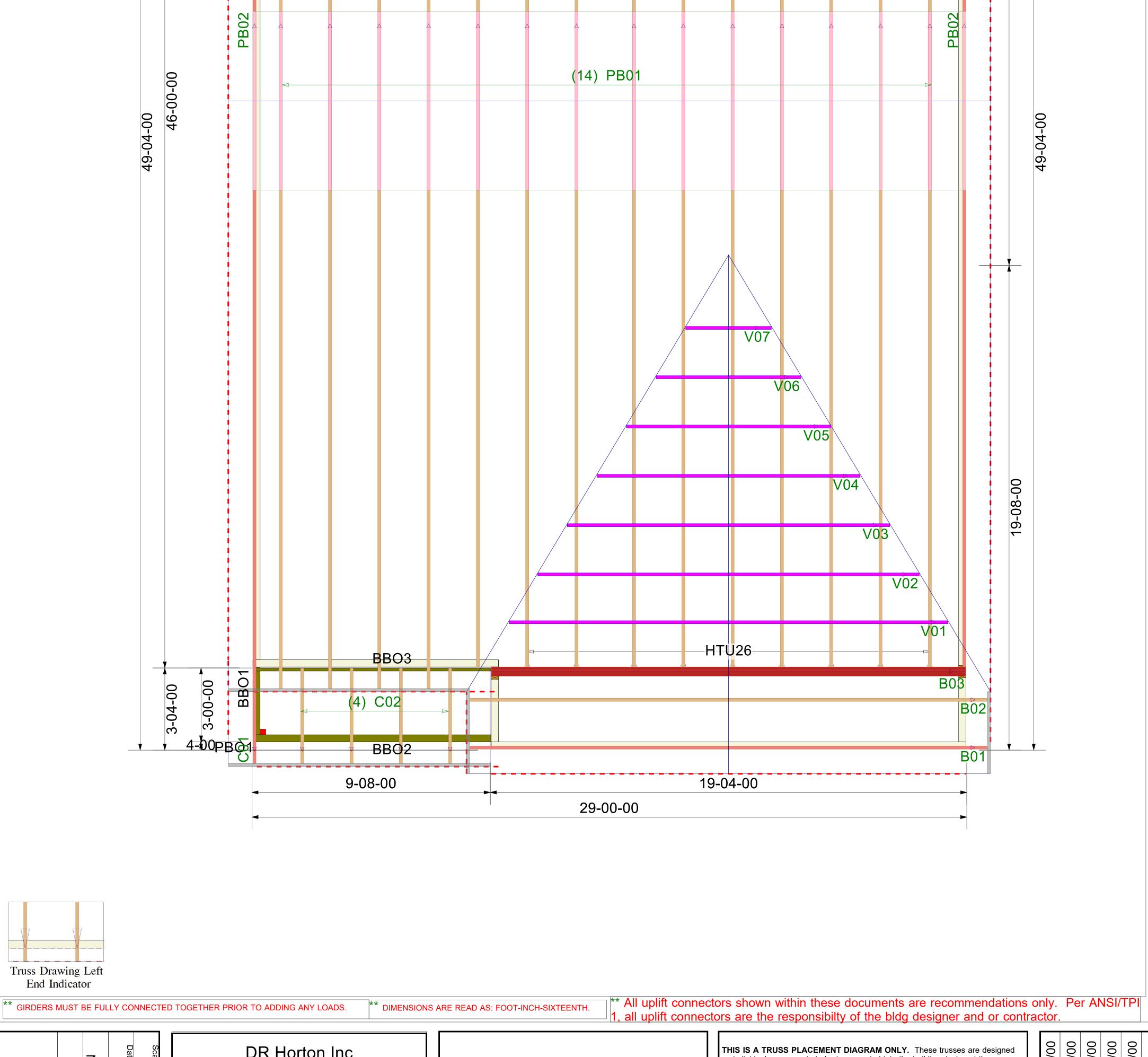
2. The responsibilities of the Owner, Contractor, Building Designer, Component Designer and Component Manufacturer shall be as set forth in ANSI/TPI 1. Capitalized terms shall be as defined in ANSI/TP 1 unless otherwise indicated.

3. Each Component is designed as an individual component utilizing information provided by others. The Owner/Building Designer is responsible for reviewing all Component Submittal Packages and individual Component Design Drawings for compliance with the Construction Documents and compatibility with the overall Building design.

4. Contractor will not proceed with component installation until the Owner/Building Designer has reviewed the Component Submittal Package. Questions on the suitability of any Component will be resolved by the Building Designer.

5. The Building Designer and Contractor are responsible for all temporary and permanent bracing.

6. The Placement Plan assumes the building is dimensionally correct, structurally sound, and in a suitable condition to support each Component during installation and thereafter, including but not limited to installation of all bearing points. Proper design and construction of all structural components, including foundations, headers, beams, walls and columns are the responsibility of the Owner, Building Designer and Contractor.


7. Do not cut, drill, or modify any Component without first consulting the Component Manufacturer or Building Designer. Damaged Components shall not be installed unless directed by the Building Designer or approved by the Component Manufacturer.

8. Components must be handled and installed following all applicable safety standards and best practices, including but not limited to BCSI, OSHA, TPI and local codes. Failure to properly handle, brace or otherwise install Component can result in serious injury or death. 9. All uplift connectors shown within these documents are recommendations only. Per ANSI/TPI 1, all uplift connectors are the responsibility of the building designer and or contractor.

Approved By: _____

Date: _____

** TD	** FRAMER MUST REFER TO PLANS WHILE SETTING COMPO	ONENT	۲ <mark>۶</mark> . *	* DAMAGED	COMPONEN	TS SHOULD	NOT BE INST		SS TOLD TO B	Y THE COMF	PONENT PLAN	NT. **	TRUSS TO 1	RUSS CONN	IECTIONS AF	RE TOE-NA	ILED, UNLESS NOTED OTHERWISE.
		-			Qty 9 30	Product HTU26		uf oson	29-00-00)							
																A05	
		C 1 -	00-0	00-	00-	00-(00-	00-0	2-04-00	00-	00-(00-	00-	00-	00-0	2-12 -D0	
			2-00-00	2-0	2-0	2-0			<u>2-04-00</u>	2-00	- 00 - 2	00-2	- 00-	- 00 -	2-00-	1-02- 2-4	
				(4) A02			(2) A03										00
×											(8) A04			E	>	29-08-00

** REFER TO FINAL TRUSS ENGINEERING SHEETS FOR PLY TO PLY CONNECTIONS

TRIANGULAR SYMBOL NEAR END OF TRUSS INDICATES LEFT END OF TRUSS AS SHOWN ON INDIVIDUAL TRUSS DRAWINGS.

Shee	7/8/; Nate Do Projec 24070	Scale: N	DR Horton Inc 47 Mason Ridge-Roof-Robie L	CAPTER®	THIS IS A TRUSS PLACEMENT DIAGRAM ONLY. These trusses are designed as individual components to be incorporated into the building design at the specification of the building designer. See Individual design sheets for each truss design identified on the placement drawing. The building designer is responsible for temporary and permanent bracing of the roof and floor systems and for the overall structure. The disign of the tuss support structure including headers,	00/00/00	00/00/00	00/00/00	00/00/00	Revi
	2024 signer: onalds ot Numbe ot Numbe	ITS	LFT GRH	Aunahan	beams, walls, and columns is the responsibility of the building designer. For general guidance regarding the bracing, consult "Bracing of Wood Truss" available from the Truss Plate Institute, 583 D'Onifrio Drive: Madison, WI 53179	z	z	z	z	sions
er:	Son		ROOF PLACEMENT PLAN			ame	ame	ame	ame	ame

RE: 24070013

47 Mason Ridge Roof-Robie L LFT GRH

Site Information:

Customer: DR Horton Inc Project Name: 24070013 Lot/Block: 47 Model: Address: Subdivision: Mason Ridge City: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2018/TPI2014 Wind Code: ASCE 7-16 Roof Load: 40.0 psf

Design Program: MiTek 20/20 8.7 Wind Speed: 130 mph Floor Load: N/A psf

This package includes 24 individual, dated Truss Design Drawings and 0 Additional Drawings.

No. 1	Seal# l66103873	Truss Name A01	Date 6/10/2024	No. 21	Seal# I66103893	Truss Name V04	Date 6/10/2024
2	166103874	A02	6/10/2024	22	166103894	V05	6/10/2024
3	166103875	A03	6/10/2024	23	166103895	V06	6/10/2024
4	166103876	A04	6/10/2024	24	166103896	V07	6/10/2024
5	166103877	A05	6/10/2024				
6	166103878	B01	6/10/2024				
7	166103879	B02	6/10/2024				
8	166103880	B03	6/10/2024				
9	166103881	C01	6/10/2024				
10	166103882	C02	6/10/2024				
11	166103883	CJ01	6/10/2024				
12	166103884	D01	6/10/2024				
13	166103885	D02	6/10/2024				
14	166103886	D03	6/10/2024				
15	166103887	J01	6/10/2024				
16	166103888	PB01	6/10/2024				
17	166103889	PB02	6/10/2024				
18	166103890	V01	6/10/2024				
19	166103891	V02	6/10/2024				
20	166103892	V03	6/10/2024				

The truss drawing(s) referenced above have been prepared by

Truss Engineering Co. under my direct supervision

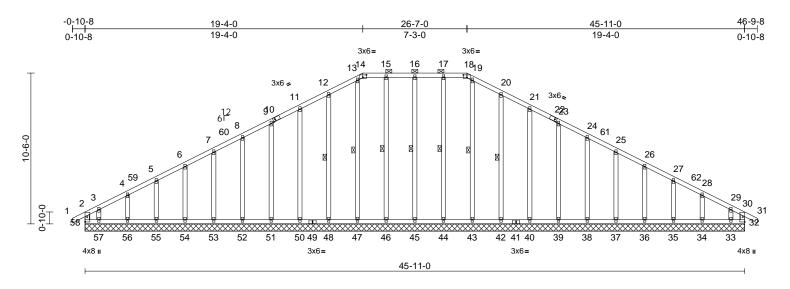
based on the parameters provided by Carter Components (Sanford, NC)).

Truss Design Engineer's Name: Gilbert, Eric

My license renewal date for the state of North Carolina is December 31, 2024

North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.


Gilbert, Eric

Trenco 818 Soundside Rd Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	47 Mason Ridge Roof-Robie L LFT GRH	
24070013	A01	Piggyback Base Supported Gable	1	1	Job Reference (optional)	166103873

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri Jun 07 11:13:05 ID:3MyMA21koMWXjvVOhxcMGjz9Jxh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

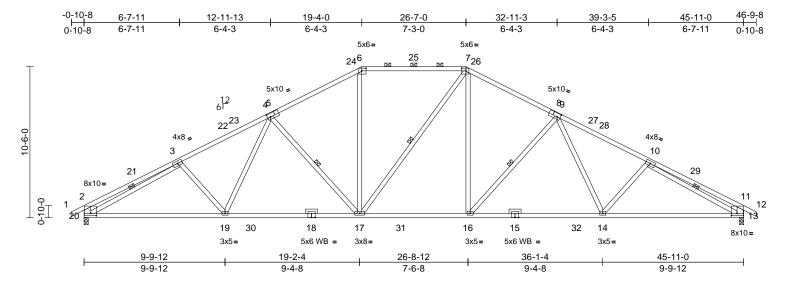
Page: 1

Scale = 1:80.2

Plate Offsets (2	X, Y): [10:0-1-11,0-1-	-8], [14:0-3-0,0-2-0],	[18:0-3-0,0-2-0], [22:	0-1-11,0-1-8]							
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix	0.16 0.08 0.22 MR	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01	(loc) - - 32	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 349 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex 2-0-0 oc purlins (6-C Rigid ceiling directly bracing. 1 Row at midpt (size) 32=45-11 34=45-11 36=45-11 36=45-11 43=45-11 45=45-11 52=45-11 54=45-11	<pre>/ applied or 6-0-0 oc 16-45, 15-46, 13-47 12-48, 17-44, 19-43 20-42 -0, 33=45-11-0, -0, 35=45-11-0, -0, 39=45-11-0, -0, 42=45-11-0, -0, 44=45-11-0, -0, 48=45-11-0, -0, 51=45-11-0, -0, 55=45-11-0, -0, 57=45-11-0, -0, 57=45-11-0, -0, 57=45-11-0, -0</pre>	nd ,	Max Grav	32=-13 (LC 11), 34=-38 (LC 15), 36=-43 (LC 15), 38=-44 (LC 15), 40=-43 (LC 15), 40=-43 (LC 11), 50=-43 (LC 11), 50=-43 (LC 14), 52=-44 (LC 14), 52=-44 (LC 14), 58=-66 (LC 10) 32=156 (LC 33) 34=169 (LC 22) 36=161 (LC 41) 38=214 (LC 45) 43=182 (LC 22) 45=218 (LC 40) 47=184 (LC 57) 50=221 (LC 43) 52=214 (LC 43) 52=214 (LC 43) 52=214 (LC 43) 54=161 (LC 21) 58=200 (LC 27) ximum Compressi	35=-45 (LC 37=-44 (LC 39=-44 (LC 42=-55 (LC 45=-34 (LC 51=-44 (LC 53=-44 (LC 53=-44 (LC 55=-46 (LC 57=-177 (LC 33=98 (LC 33=98 (LC 33=158 (LC 33=158 (LC 37=164 (LC 53=164 (LC 55=158 (LC 57=126 (LC	15), 15), 15), 15), 10), 14), 14), 14), 14), 243), 245), 245), 245), 245), 245), 245), 243), 251), 251, 2	TOP CH		3-4=- 6-7=- 9-11= 12-13 14-15 16-17 18-19 20-21 23-24 25-26 28-29 30-32	-149/53, 1-2=0/2 -149/53, 1-2=0/2 157/78, 4-5=-117 52/125, 7-8=-52/ -79/241, 11-12= =-118/336, 13-1. =-110/320, 15-11 =-110/320, 17-1: =-112/303, 19-2: =-97/286, 21-23: =-05/195, 24-25: =-35/105, 26-27: =-109/49, 29-30: =-118/44	17, 2-3=-217/85, 17, 2-3=-217/85, 150, 8-9=-65/195, 97/286, 4=-112/303, 6=-110/320, 3=-110/320, 0=-118/336, =-79/241, =-46/60, 27-28=-69/44, =-160/64, 30-31=0/27,
										anna anna anna anna anna anna anna ann	SEA 0363	EERAK

Continued on page 2

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MTek connectors. This design is based only upon parameters and property incorporate this design is based only upon parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Job	Truss	Truss Type	Qty	Ply	47 Mason Ridge Roof-Robie L LFT GRH	166400070
24070013	A01	Piggyback Base Supported Ga	ble 1	1	Job Reference (optional)	166103873
Carter Componer	ts (Sanford, NC), Sanford, NC - 27332,		•	•	5 2024 MiTek Industries, Inc. Fri Jun 07 11:13:05 sB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f	Page: 2
OT CHORD	$\begin{array}{l} 57\text{-}58\text{=-}32/163,\ 56\text{-}57\text{=-}32/163,\ 55\text{-}56\text{=-}32/163,\ 54\text{-}52\text{=-}32/163,\ 53\text{-}54\text{=-}32/163,\ 52\text{-}53\text{=-}32/163,\ 51\text{-}52\text{=-}32/163,\ 50\text{-}51\text{=-}32/163,\ 48\text{-}50\text{=-}32/163,\ 47\text{-}48\text{=-}32/163,\ 44\text{-}45\text{=-}32/163,\ 44\text{-}45\text{=-}32/163,\ 43\text{-}44\text{=-}32/163,\ 44\text{-}45\text{=-}32/163,\ 43\text{-}44\text{=-}32/163,\ 43\text{-}44\text{=-}32/163,\ 39\text{-}40\text{=-}32/163,\ 38\text{-}39\text{=-}32/163,\ 39\text{-}40\text{=-}32/163,\ 38\text{-}39\text{=-}32/163,\ 33\text{-}38\text{=-}32/163,\ 38\text{-}38\text{=-}32/163,\ 38\text{-}38\text{=-}38$	 16) Graphical purlin represen or the orientation of the pu bottom chord. LOAD CASE(S) Standard 	tation does not depi	ct the size		
	$\begin{array}{l} 13-47=-144/0, 12-48=-189/91, \\ 11-50=-181/76, 9-51=-183/77, 8-52=-17, -5-55=-129, \\ -53=-126/77, 6-54=-127/77, 5-55=-129, \\ -56=-131/117, 3-57=-95/124, \\ 17-44=-178/38, 19-43=-142/0, \\ 20-42=-189/91, 21-40=-181/76, \\ 23-39=-183/77, 24-38=-174/77, \\ 25-37=-126/77, 26-36=-127/77, \\ 27-35=-125/78, 28-34=-132/116, \\ 29-33=-89/127 \end{array}$					
IOTES	d an of the standard standard for					
 this design. Wind: ASC Vasd=103n II; Exp B; E and C-C CG 3-8-10 to 1: Exterior(2N 46-9-8 zonv vertical left forces & M 	d roof live loads have been considered for E 7-16; Vult=130mph (3-second gust) hph; TCDL=6.0psf; BCDL=6.0psf; h=25f nclosed; MWFRS (envelope) exterior zo prner(3E) -0-10-8 to 3-8-10, Exterior(2N) 4-8-14, Corner(3R) 14-8-14 to 30-11-8,) 30-11-8 to 42-2-6, Corner(3E) 42-2-6 t e; cantilever left and right exposed ; end and right exposed; C-C for members and VFRS for reactions shown; Lumber plate grip DOL=1.60	t; Cat. ne 0				
) Truss desi only. For s see Standa	gned for wind loads in the plane of the tr tuds exposed to wind (normal to the face rd Industry Gable End Details as applica jualified building designer as per ANSI/T	e), able,				
 TCLL: ASC Plate DOL= 	E 7-16; Pr=20.0 psf (roof LL: Lum DOL= 1.15); Pf=20.0 psf (Lum DOL=1.15 Plat ; Is=1.0; Rough Cat B; Fully Exp.; Ce=0.	:1.15 e				
5) Unbalance	d snow loads have been considered for t	his				
load of 12.0 overhangs	has been designed for greater of min roo) psf or 1.00 times flat roof load of 20.0 p non-concurrent with other live loads. equate drainage to prevent water pondin	osf on				
 All plates a Gable required Truss to be braced aga 	re 2x4 MT20 unless otherwise indicated ires continuous bottom chord bearing. fully sheathed from one face or securely inst lateral movement (i.e. diagonal web s spaced at 2-0-0 oc.	/				
2) This truss h	as been designed for a 10.0 psf bottom					
13) * This truss on the botto 3-06-00 tall	bad nonconcurrent with any other live load has been designed for a live load of 20. om chord in all areas where a rectangle by 2-00-00 wide will fit between the bott any other members.	0psf				
 14) Provide me bearing pla 58, 13 lb up uplift at join 50, 44 lb up uplift at join 55, 35 lb up uplift at join 40, 44 lb up uplift at join 35, 38 lb up 15) This truss is 	chanical connection (by others) of truss te capable of withstanding 66 lb uplift at blift at joint 32, 34 lb uplift at joint 45, 13 l t 46, 54 lb uplift at joint 48, 43 lb uplift at blift at joint 51, 44 lb uplift at joint 52, 44 l t 53, 43 lb uplift at joint 54, 46 lb uplift at blift at joint 56, 177 lb uplift at joint 57, 14 t 44, 55 lb uplift at joint 42, 43 lb uplift at blift at joint 39, 44 lb uplift at joint 38, 44 l t 37, 43 lb uplift at joint 36, 45 lb uplift at joint 34 and 138 lb uplift at joint 33 s designed in accordance with the 2018 al Residential Code sections R502.11.1	joint b joint b joint lb joint b joint				

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	47 Mason Ridge Roof-Robie L LFT GRH	
24070013	A02	Piggyback Base	4	1	Job Reference (optional)	574

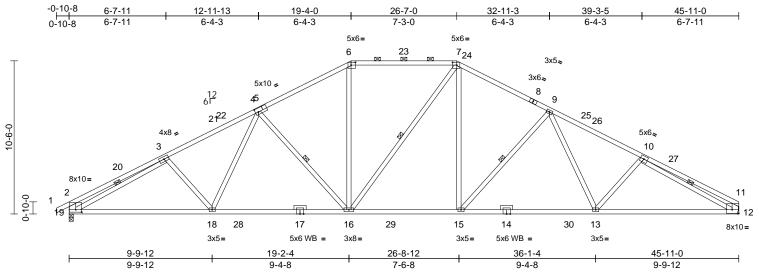
Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri Jun 07 11:13:06 ID:y7Cs0P4Fsb0zCWp9wmhIQZz9Jxd-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:80.2

Plate Offsets (X, Y): [2:0-4-12,0-2-0	1 [5:0-2-8 0-3-0] [6:0	-3-8 0-2-	41 [7:0-3-8 0-2	41 [8:0-2-8 0-3-0]	[13.0-4	-12 0-2-01						
	A, T). [2.0-4-12,0-2-0	J, [5.0-2-6,0-5-0], [6.0	-3-0,0-2-	+], [7.0-3-0,0-2	-4j, [8.0-2-8,0-3-0]	, [13.0-4	-12,0-2-0]					1	
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.70	Vert(LL)		14-16	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.56	Vert(CT)	-0.54	14-16	>999	180		
TCDL	10.0	Rep Stress Incr	YES		WB	0.88	Horz(CT)	0.15	13	n/a	n/a		
BCLL	0.0*	Code	IRC201	8/TPI2014	Matrix-MSH								
BCDL	10.0											Weight: 283 lb	FT = 20%
LUMBER			2)	Wind: ASCE	7-16; Vult=130mp	h (3-seo	cond aust)						
TOP CHORD	2x4 SP 2400F 2.0E		,		oh; TCDL=6.0psf;			; Cat.					
BOT CHORD	2x4 SP 2400F 2.0E				closed; MWFRS (ne					
WEBS	2x4 SP No.3 *Excep	ot* 17-7:2x4 SP No.2,			erior(2E) -0-10-8 to								
	20-2,13-11:2x6 SP N	No.2			10-1, Exterior(2R)								
OTHERS	2x4 SP No.3			()	2-11-3 to 42-2-6, E	```	,						
BRACING					cantilever left and nd right exposed;(
TOP CHORD		athing directly applie			FRS for reactions								
		except end verticals, a	ind		ate grip DOL=1.60		Lumber						
	2-0-0 oc purlins (4-3		3)		7-16; Pr=20.0 ps		· Lum DOI =	1 15					
BOT CHORD		applied or 10-0-0 oc	0)		.15); Pf=20.0 psf (
WEBS	bracing. 1 Row at midpt	4-17, 7-17, 9-16, 3-2	0		ls=1.0; Rough Cat								
WEBS	i Row at mupt	10-13	0,	Cs=1.00; Ct	=1.10								
REACTIONS	(size) 13=0-3-8,	, 20=0-3-8	4)		snow loads have l	been cor	nsidered for the	his					
	Max Horiz 20=141 (I		_	design.									
	Max Uplift 13=-202 (14) 5)		is been designed f								
	Max Grav 13=2193				psf or 1.00 times fl on-concurrent with			SION					
FORCES	(lb) - Maximum Corr		, 6)		quate drainage to			n					
	Tension		7)		is been designed f			9.					
TOP CHORD	1-2=0/30, 2-3=-1075	5/181, 3-4=-3903/362			ad nonconcurrent			ids.					1
	4-6=-3144/385, 6-7=		8)		nas been designed							IN CA	Dille
	7-9=-3154/385, 9-10				n chord in all area						- 3	THUA	ROM
	10-11=-1063/181, 1	,			oy 2-00-00 wide wi					/	S	ORCEESS	ich i'r
	2-20=-721/183, 11-1				y other members,			f.		4	è è	120	N. S.
BOT CHORD	19-20=-353/3449, 1 16-17=-21/2634, 14		9)		Simpson Strong-Ti			4.		4	z/	.0 -	min
	13-14=-213/3455	-10=-122/3210,			ed to connect truss s) 20 and 13. This					-	() (
WEBS	3-19=-157/184, 4-19	9=-15/504			s not consider late			III		=	:	SEA	L : =
	4-17=-848/225, 6-17		1(designed in accord					E		0363	22 =
	7-17=-260/262, 7-16				Residential Code			nd		-		0505	
	9-16=-849/225, 9-14	4=-15/502,			nd referenced star			-			-	N	1 3
	10-14=-157/184, 3-2	20=-2996/207,	11		rlin representation			size			2	N.En.	Rick
	10-13=-3015/191				ation of the purlin a	along the	top and/or				25	S. GINI	E AN
NOTES				bottom chore	ł.						11	SEA 0363	BEIN
,	ed roof live loads have	been considered for	L	DAD CASE(S)	Standard							11, A. G	1L LIIII
this desigr	۱.											11. A. G	1111.

June 10,2024

Page: 1



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

J	lob	Truss	Truss Type	Qty	Ply	47 Mason Ridge Roof-Robie L LFT GRH	
2	24070013	A03	Piggyback Base	2	1	Job Reference (optional)	166103875

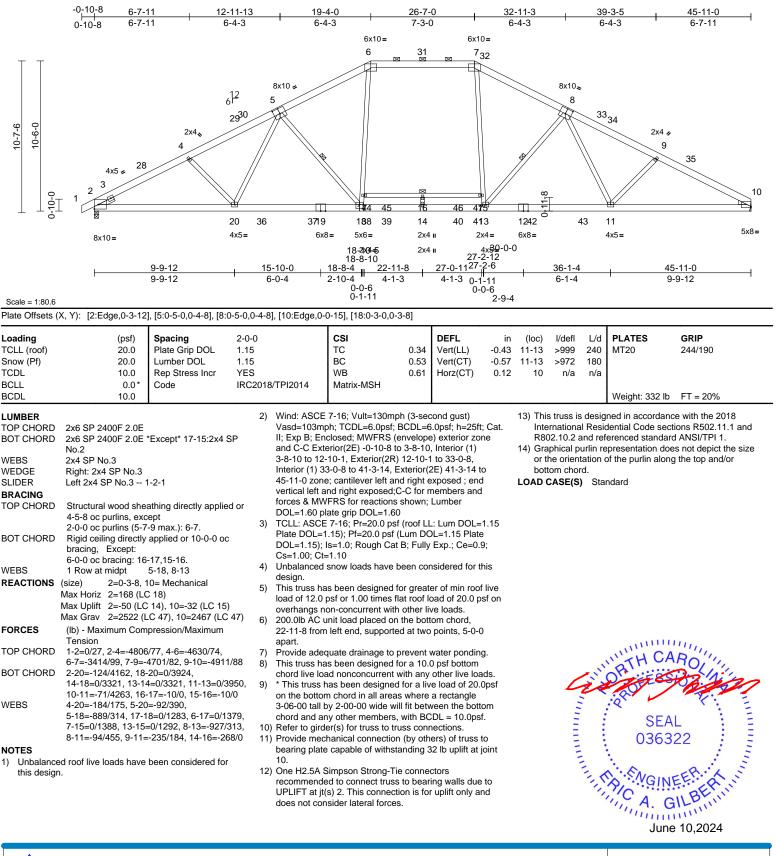
Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri Jun 07 11:13:07 ID:BbjrLg_EI705EICcS5YQ6tz9Jxl-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = $1:79$

Leading TCLL (roof) (psf) 20.0 Spacing Plate Gip DOL Lumber DOL Lumber DOL 1.15 CSI TC 0.70 TC DEFL Vert(L) in (loc) I/def Lumber DOL Vert(L) MT20 PLATES GRIP MT20 COLL 0.01 10.0 Reg Stress Incr FEC2018/TPI2014 Matrix/MSH DEFL in (loc) 13/15 5999 18/0 CDUBER 0.00 2/4 SP 2007 2.0E Code Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6,0psf; h=226f; Cat. II: Exp B; Enclosed; MWFRS (envelope) to 3-8-10, Interior (1) 3-8-10 to 12-101, Exterior(2E) 41-12 to 14, Exterior(2E) 41-12, Exterior(2E) 41-12 to 14, Exterior(2E) 41-12, Exterior(2E) 41-13, Exterior(2E) 41-13, Exterior(2E) 41-13, Exterior(2E) 41-12, Exterior(2E) 41-12, Exterior(2E) 41-13, Exterior(2E) 41-12, Exterior(2E) 41-13, Exterior(2E) 41-13, Exterior(2E) 41-12, Exterior(2E) 41-12, Exterior(2E) 41-13, Exterior(2E) 41-13, Exterior(2E) 41-14, Exterior(2E) 41-14, Exterior(2E) 41-16, E	Plate Offsets (X	e Offsets (X, Y): [2:0-4-12,0-2-0], [5:0-2-8,0-3-0], [6:0-3-8,0-2-4], [7:0-3-8,0-2-4], [12:Edge,0-3-0]													
TOP CHORD BOT CHORD2x4 SP 2400F 2.0EVad=103mph; TCDL=6.0psf; BcDL=6.0psf; h=25ft; Cat. I; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 3-8-10, Interior (1) 3-8-10 to 12-10-1, Exterior(2R) 12-10-1 to 32-11-3, Interior (1) 3-8-10 to 12-10-1; Exterior(2R) 12-10-1 to 32-11-3, Interior (1) 3-8-10 to 12-00 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15; Is=-10, Dig 10-00 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15; Is=-10, Dig 10-00 psf (roof IL: Lum DOL=1.15 Plate DOL=1.10Dol ance and an under a stere and an under a stere and ano overhangs non-concurrent with any other live loads. Norther and 13-20-30, 2-3=-1075/181, 3-4=-3904/364, 4-6=-3145/387, 6^-7=-271183, 11-12-804/15, 2-19=-721/183, 11-12-804/15, 2-19=-721/183, 11-12-804/15, 2-19=-721/183, 11-12-804/15, 2-19=-721/183, 11-12-804/15, 2-19=-721/183, 11-12-804/15, 2-19=-721/183, Norther and any other members, with BCDL = 10.0psf.Dot and any other members, with BCDL = 10.0psf.BOT CHORD11-29-362/24A7, 16-18=-22	TCLL (roof) Snow (Pf) TCDL BCLL	20.0 20.0 10.0 0.0*	Plate Grip DOL Lumber DOL Rep Stress Incr	.15 .15 (ES	8/TPI2014	TC BC WB	0.56	Vert(LL) Vert(CT)	-0.32 -0.54	13-15 13-15	>999 >999	240 180	MT20	244/190	
15-16=-53/2632, 13-15=-156/3208, 12-13=-234/3469 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 180 lb uplift at joint 12. WEBS 3-18=-157/184, 4-18=-15/504, 4-16=-849/225, 6-16=-29/987, 7-16=-261/256, 7-15=-71/1003, 9-15=-848/224, 9-13=-19/513, 10-13=-172/188, 3-19=-2997/208, 10-12=-3255/247 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 180 lb uplift at joint 12. NOTES 11) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 19. This connection is for uplift only and does not consider lateral forces. 036322 12. 12. 12. 13. UPLIFT at jt(s) 19. This connection is for uplift only and does not consider lateral forces. 036.322 14. 12. 12. 15. 12. 12. 16. 10. 12. 17. 13. 14. 18. 14. 15. 19. 19. 19. 19. 19. 19. 10. 10. 10. 11. 10. 10. 12. 11. 11. 13. 11. 11. 14. 11. 11.	LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD WEBS REACTIONS (S FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD WEBS	2x4 SP 2400F 2.0E 2x4 SP 2400F 2.0E 2x4 SP 2400F 2.0E 2x4 SP No.3 *Excep 19-2,12-11:2x6 SP N 2x4 SP No.3 Structural wood she 4-0-13 oc purlins, e 2-0-0 oc purlins (4-3 Rigid ceiling directly bracing. 1 Row at midpt size) 12= Mech Max Horiz 19=149 (L Max Uplift 12=-180 (Max Grav 12=2137 (lb) - Maximum Com Tension 1-2=0/30, 2-3=-1075 4-6=-3145/387, 6-7= 7-9=-3155/388, 9-10 0-11=-839/126, 2-1 11-12=-543/115 18-19=-362/3447, 11 15-16=-53/2632, 13 -12=-157/184, 4-18 4-16=-849/225, 6-16 7-16=-261/256, 7-15 9-15=-848/224, 9-13 10-12=-3255/247	No.2 athing directly applied of xcept end verticals, and -10 max.): 6-7. applied or 10-0-0 oc 4-16, 7-16, 9-15, 3-19, 10-12 manical, 19=0-3-8 .C 18) LC 15), 19=-202 (LC 14 (LC 47), 19=2189 (LC 44) pression/Maximum 5/181, 3-4=-3904/364, -2711/383,)=-3921/374, 9=-721/183, 6-18=-236/3199, 15=-156/3208, 3=-15/504, 5=-29/987, 5=-71/1003, 3=-19/513, 9=-2997/208,	() () () () () () () () () () () () () (Vasd=103mj II; Exp B; En and C-C Ext 3-8-10 to 12: Interior (1) 3 45-8-4 zone; vertical left a forces & MW DOL=1.60 pi TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct Unbalanced design. This truss ha load of 12.0 overhangs n Provide ader This truss ha chord live loa * This truss ha chord and ar Refer to gird) Provide mec bearing plate 12.) One H2.5A S recommende UPLIFT at jt does not cor) This truss is International	bh; TCDL=6.0psf; closed; MWFRS (erior(2E) -0-10-8 tr -10-1, Exterior(2R) 2-11-3 to 41-1-2, E cantilever left and ind right exposed; (FRS for reactions late grip DOL=1.60 F-16; Pr=20.0 psf (IS=1.0; Rough Cat =1.10; Rough Cat =1.10; Snow loads have I is been designed f paf or 1.00 times fi on-concurrent with quate drainage to p fad nonconcurrent with p fad nonconcurrent with an onconcurrent with an onconcurent with an onconcurent with an onconc	BCDL=6 envelope o 3-8-10 o 3-8-10 o 3-8-10 c 3-8-10 c 3-8-10 c 3-8-10 c 12-10- Exterior(I right ex- C-C for r shown; o (roof LL (Lum DC B; Fully been cor f (roof LL (Lum DC (Lum	6.0psf; h=25ft a) exterior zo, , Interior (1) I to 32-11-3, ZE) 41-1-2 to cposed ; end nembers and Lumber L: Lum DOL= DL=1.15 Plate Exp.; Ce=0. nsidered for t er of min roo bad of 20.0 p ve loads. water pondin 0 psf bottom other live loa e load of 20. a rectangle veen the bott CDL = 10.0ps nections. ers) of truss 180 lb uplift a ctors ing walls due or uplift only i ith the 2018 \$ R502.11.1 a	ne 1 1.15 9; his f live sf on g. ads. Opsf om f. to t joint e to and	or t bot LOAD	he orient tom chor CASE(S)	tation (d. rd.) Sta	spresentation doe of the purlin along ndard OFFESS SEA 0363	ROUTER	7

this design.

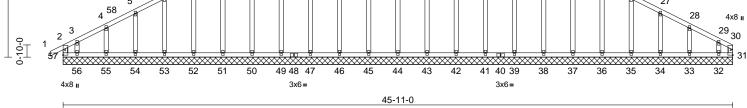

June 10,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	47 Mason Ridge Roof-Robie L LFT GRH	
24070013	A04	Piggyback Base	8	1	I6 Job Reference (optional)	66103876

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri Jun 07 11:13:07 ID:RolbS?ozoBN92ZDIM1oAnAz9L6s-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Edenton, NC 27932


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	47 Mason Ridge Roof-Robie L LFT GRH	
24070013	A05	Piggyback Base Supported Gable	1	1	Job Reference (optional)	166103877

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri Jun 07 11:13:07 ID:uWJdR55VOCGgRqzX2BjmW_z9Jxb-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

19-4-0 26-7-0 45-11-0 19-4-0 7-3-0 19-4-0 3x6= 3x6= 13¹⁴ 18₁₉ 15 16 17 11 3x6👟 12 20 3x6 ≠ ²¹ 22 11 6¹² **₫**0 23 Ð. ²⁴ 60 59 ⁸ 7 25 X Ø Ø 6 26 5 27

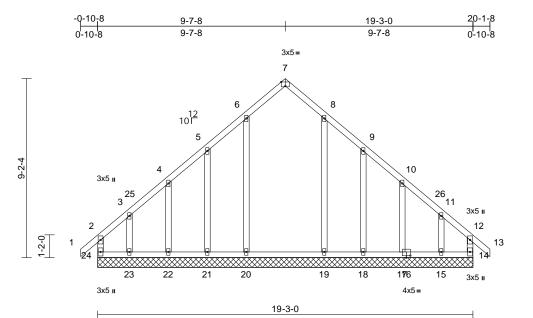
10-6-0

Scale = 1:79	
Plate Offsets (X, Y):	[10:0-1-11,0-1-8], [14:0-3-0,0-2-0], [18:0-3-0,0-2-0]

Plate Offsets (.	X, Y): [10:0-1-11,0-1	-8], [14:0-3-0,0-2-0], [18:0-3-0,0-2-0]								-	
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix	0.16 0.09 0.22 -MR	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01	(loc) - - 31	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 347 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	6-0-0 oc purlins, ex 2-0-0 oc purlins (6-1 Rigid ceiling directly bracing. 1 Row at midpt (size) 31=45-11 33=45-11 35=45-11 37=45-11 42=45-11 44=45-11 49=45-11 51=45-12	eathing directly applie kcept end verticals, ar 0-0 max.): 14-18. y applied or 6-0-0 oc 16-44, 15-45, 13-46 12-47, 17-43, 19-42 20-41 1-0, 32=45-11-0, 1-0, 36=45-11-0, 1-0, 38=45-11-0, 1-0, 43=45-11-0, 1-0, 47=45-11-0, 1-0, 50=45-11-0, 1-0, 52=45-11-0, 1-0, 52=45-11-0,	nd		$\begin{array}{c} 31 = -26 \ (\mathrm{LC} \ 13),\\ 33 = -37 \ (\mathrm{LC} \ 15),\\ 35 = -43 \ (\mathrm{LC} \ 15),\\ 37 = -44 \ (\mathrm{LC} \ 15),\\ 39 = -43 \ (\mathrm{LC} \ 15),\\ 43 = -14 \ (\mathrm{LC} \ 11),\\ 45 = -14 \ (\mathrm{LC} \ 11),\\ 45 = -14 \ (\mathrm{LC} \ 11),\\ 45 = -14 \ (\mathrm{LC} \ 11),\\ 55 = -35 \ (\mathrm{LC} \ 14),\\ 55 = -35 \ (\mathrm{LC} \ 14),\\ 57 = -64 \ (\mathrm{LC} \ 10)\\ 31 = 167 \ (\mathrm{LC} \ 15)\\ 33 = 166 \ (\mathrm{LC} \ 22)\\ 35 = 161 \ (\mathrm{LC} \ 41)\\ 37 = 214 \ (\mathrm{LC} \ 45)\\ 39 = 221 \ (\mathrm{LC} \ 45)\\ 42 = 180 \ (\mathrm{LC} \ 22)\\ 44 = 218 \ (\mathrm{LC} \ 40)\\ 46 = 182 \ (\mathrm{LC} \ 57)\\ 49 = 219 \ (\mathrm{LC} \ 43)\\ 51 = 208 \ (\mathrm{LC} \ 43)\\ 53 = 161 \ (\mathrm{LC} \ 41)\\ 55 = 169 \ (\mathrm{LC} \ 21)\\ 57 = 206 \ (\mathrm{LC} \ 32)\\ \end{array}$	34=-45 (LC 36=-44 (LC 38=-44 (LC 38=-44 (LC 41=-55 (LC 44=-34 (LC 50=-44 (LC 52=-44 (LC 56=-179 (LC 54=-46 (LC 56=-179 (LC , 32=130 (LC , 34=159 (LC , 34=159 (LC , 35=223 (LC , 45=217 (LC , 45=217 (LC , 50=223 (LC , 52=161 (LC , 54=158 (LC , 56=122 (LC	15), 15), 15), 15), 15), 15), 14), 14), 14), 14), 14), 245), 245), 245), 245), 245), 245), 243), 243), 243),	TOP CH		3-4=-1 6-7=-6 9-11= 12-13: 14-15: 16-17: 18-19: 20-21: 23-24: 25-26: 28-29: 30-31:	-83/237, 11-12=- =-122/333, 13-14 =-114/317, 15-16 =-114/317, 17-18 =-115/301, 19-20 =-101/282, 21-23 =-69/192, 24-25=	 №3, 5-6=-91/99, 47, 8-9=-69/192, 101/282, =-114/317, =-114/317, =-114/317, =-114/317, =-51/47, :-51/57, 27-28=-74/39, :-165/58,
		1-0, 56=45-11-0, 1-0	FORCES	(lb) - Ma Tension	ximum Compressi	on/Maximum	n		4	è	SEA	

Continued on page 2

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MTek connectors. This design is based only upon parameters and property incorporate this design is based only upon parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Job	Truss	Truss Type	Qty	Ply	47 Mason Ridge Roof-Robie L LFT GRH	166102077
24070013	A05	Piggyback Base Supported Gable	1	1	Job Reference (optional)	l66103877
Carter Componer	nts (Sanford, NC), Sanford, NC - 27332,	-		•	5 2024 MiTek Industries, Inc. Fri Jun 07 11:13:07 PsB70Hq3NSaPqnL8w3uITXbGKWrCDoi7J4zJC?f	Page: 2
OT CHORD	$\begin{array}{l} 56\text{-}5733/142, 55\text{-}5633/142, \\ 52\text{-}5333/142, 53\text{-}5433/142, \\ 52\text{-}5333/142, 51\text{-}5233/142, \\ 50\text{-}5133/142, 49\text{-}5033/142, \\ 47\text{-}4933/142, 46\text{-}4733/142, \\ 45\text{-}4633/142, 44\text{-}4533/142, \\ 43\text{-}4433/142, 42\text{-}4333/142, \\ 43\text{-}4433/142, 39\text{-}4133/142, \\ 38\text{-}3933/142, 37\text{-}3833/142, \\ 38\text{-}3933/142, 38\text{-}3833/142, \\ 34\text{-}3533/142, 38\text{-}3833/142, \\ 32\text{-}3333/142, 38\text{-}32\text{-}33/142, \\ 32\text{-}3333/142, 31\text{-}3233/142, \\ 32\text{-}3333/142, 31\text{-}3233/142, \\ 32\text{-}3333/142, 31\text{-}3233/142, \\ 32\text{-}3333/142, 31\text{-}3233/142, \\ 32\text{-}3833/142, 31\text{-}3833/142, \\ 32\text{-}3833/142, 31\text{-}3833/142, \\ 32\text{-}3833/142, 31\text{-}3833/142, \\ 32\text{-}3833/142, \\ 32\text{-}3833/142, \\ 32\text{-}3833/142, \\ 32\text{-}3833/142, \\ 32\text{-}3833/142, \\ 32\text{-}3833/142, \\ 32\text{-}38383833/142, \\ 32\text{-}383$	 16) Graphical purlin representation or the orientation of the purlin bottom chord. LOAD CASE(S) Standard 	n does not depic	ct the size	rsbrundsinsill dinger dir generalise di	
	$\begin{array}{l} 13-46=-142/0, 12-47=-187/91, \\ 11-49=-179/76, 9-50=-183/77, 8-51=-168 \\ 7-52=-126/77, 6-53=-127/77, 5-54=-125/7, \\ 4-55=-131/117, 3-56=-94/125, \\ 17-43=-177/38, 19-42=-140/0, \\ 20-41=-189/91, 21-39=-181/76, \\ 23-38=-183/77, 24-37=-174/77, \\ 25-36=-126/78, 26-35=-127/75, \\ 27-34=-126/99, 28-33=-130/125, \\ 29-32=-113/151 \end{array}$					
this design Wind: ASC Vasd=103r II; Exp B; E and C-C C 3-8-10 to 1 Exterior(2N 45-9-4 zon- vertical left forces & M	d roof live loads have been considered for E 7-16; Vult=130mph (3-second gust) nph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; inclosed; MWFRS (envelope) exterior zone orner(3E) -0-10-8 to 3-8-10, Exterior(2N) 4-8-14, Corner(3R) 14-8-14 to 30-11-8, 1) 30-11-8 to 40-11-8, Corner(3E) 40-11-8 e; cantilever left and right exposed ; end and right exposed; C-C for members and WFRS for reactions shown; Lumber plate grip DOL=1.60	2				
) Truss desi only. For s see Standa	gned for wind loads in the plane of the trus tuds exposed to wind (normal to the face), ruf Industry Gable End Details as applicab qualified building designer as per ANSI/TP	le,				
Plate DOL=	E 7-16; Pr=20.0 psf (roof LL: Lum DOL=1: =1.15); Pf=20.0 psf (Lum DOL=1.15 Plate ; Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; :=1.10					
	d snow loads have been considered for thi	s				
This truss h load of 12.0 overhangs	nas been designed for greater of min roof I 0 psf or 1.00 times flat roof load of 20.0 psl non-concurrent with other live loads.	on				
	equate drainage to prevent water ponding. re 2x4 MT20 unless otherwise indicated.					
0) Truss to be braced aga	ires continuous bottom chord bearing. fully sheathed from one face or securely inst lateral movement (i.e. diagonal web).					
 This truss h chord live l 	s spaced at 2-0-0 oc. has been designed for a 10.0 psf bottom oad nonconcurrent with any other live load has been designed for a live load of 20.0					
on the botte 3-06-00 tal	I by 2-00-00 wide will fit between the botton any other members.					
bearing pla 57, 26 lb u uplift at joir 49, 44 lb u uplift at joir 54, 35 lb u uplift at joir 39, 44 lb u uplift at joir 34, 37 lb u	Achanical connection (by others) of truss to te capable of withstanding 64 lb uplift at jo blift at joint 31, 34 lb uplift at joint 44, 14 lb ti 45, 53 lb uplift at joint 47, 43 lb uplift at joi blift at joint 50, 44 lb uplift at joint 51, 44 lb to 52, 43 lb uplift at joint 53, 46 lb uplift at jo blift at joint 55, 179 lb uplift at joint 56, 14 lb tt 43, 55 lb uplift at joint 41, 43 lb uplift at jo lift at joint 38, 44 lb uplift at joint 37, 44 lb ti 46, 43 lb uplift at joint 35, 45 lb uplift at jo plift at joint 33 and 147 lb uplift at joint 32.	int vint S				
Internation	s designed in accordance with the 2018 al Residential Code sections R502.11.1 an and referenced standard ANSI/TPI 1.	d				

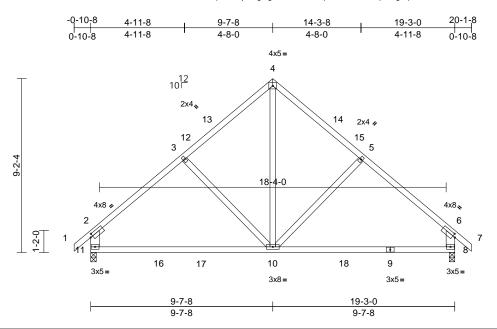
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	47 Mason Ridge Roof-Robie L LFT GRH	
24070013	B01	Common Supported Gable	1	1	Job Reference (optional)	166103878

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri Jun 07 11:13:08 ID:qdvyIzw5wbNp8WJffYyFPpz9Jxq-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:59.1

Plate Offeete (X, Y): [7:0-2-8,Edge],	[16:0-2-8 0-1-4]										
	A, T). [7.0-2-0,Edge],	[10.0-2-0,0-1-4]										
Loading	(psf)	Spacing 1-1		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL 1.1		тс	0.35	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL 1.1		BC	0.21	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr YE		WB	0.25	Horz(CT)	0.01	14	n/a	n/a		
BCLL	0.0*	Code IRC	C2018/TPI2014	Matrix-MR								
BCDL	10.0										Weight: 125 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3		WEBS NOTES	6-20=-253/34, 5-2 3-23=-141/183, 8- 9-18=-148/154, 10 11-15=-131/197	19=-253	/30,		on t 3-06 cho 13) Pro	he botto 6-00 tall rd and a vide me	m cho by 2-0 iny oth chanic	rd in all areas wh 0-00 wide will fit er members, with al connection (by	between the bottom BCDL = 10.0psf. others) of truss to
BRACING			 Unbalanced 	roof live loads have	/e been	considered fo	r					ng 76 lb uplift at joint
TOP CHORD		athing directly applied or	this design.									lift at joint 21, 37 lb t 23, 119 lb uplift at
BOT CHORD	6-0-0 oc purlins, ex Rigid ceiling directly bracing.	cept end verticals. applied or 10-0-0 oc	Vasd=103m II; Exp B; Er	E 7-16; Vult=130m; ph; TCDL=6.0psf; nclosed; MWFRS (rner(3E) -0-10-8 to	BCDL=6 envelope	6.0psf; h=25ft; e) exterior zor	ne	join 15.	t 18, 37	lb uplif		241 lb uplift at joint
	18=19-3-(21=19-3-(24=19-3-(24=231 (l) Max Uplift 14=-65 (L) 17=-37 (L) 23=-244 (Max Grav 14=289 (l) 17=207 (l) 19=359 (l) 21=170 (l) 23=205 (l)	LC 13) C 13), 15=-241 (LC 15), C 15), 18=-119 (LC 15), LC 14), 22=-37 (LC 14), LC 14), 24=-76 (LC 12), C 28), 15=200 (LC 26), C 31), 18=170 (LC 22), .C 6), 20=359 (LC 5), .C 21), 22=207 (LC 25), .C 25), 24=293 (LC 27)	to 17-1-8, C left and righ exposed;C-1 reactions sh DOL=1.60 3) Truss desig only. For st see Standar or consult q 4) TCLL: ASCI Plate DOL=	rner(3R) 6-7-8 to 1 orner(3E) 17-1-8 tr t exposed; end ve C for members and own; Lumber DOL gned for wind loads uds exposed to win d Industry Gable E ualified building de E 7-16; Pr=20.0 psf Is=1.0; Rough Cat =1.10	20-1-8 rtical left d forces a =1.60 pl a in the p nd (norm End Deta signer as f (roof LI (Lum DC	zone; cantilev and right & MWFRS for ate grip lane of the tru al to the face ils as applical s per ANSI/TF .: Lum DOL=: DL=1.15 Plate	ver), ble, PI 1. 1.15)2.10.2 a	and ref	erenced standard	ANSI/TPI 1.
FORCES	(lb) - Maximum Com Tension	pression/Maximum		snow loads have	been cor	nsidered for th	nis				OFEOD	Nin Tim
TOP CHORD	2-24=-217/62, 1-2=0 3-4=-151/85, 4-5=-1 6-7=-152/106, 7-8=- 9-10=-124/51, 10-11	30/59, 5-6=-121/85, 152/106, 8-9=-121/85, =-148/77, 13=0/38, 12-14=-215/56 23=-107/270, 21=-107/270, 19=-107/270,	 load of 12.0 overhangs r 7) All plates ar 8) Gable requi 9) Truss to be braced agai 10) Gable studs 11) This truss h 	as been designed psf or 1.00 times f non-concurrent with e 2x4 MT20 unless res continuous bot fully sheathed from nst lateral moveme spaced at 2-0-0 o as been designed ad nonconcurrent	lat roof lon o other lin s otherwit tom chor n one fact ent (i.e. c c. for a 10.1	bad of 20.0 ps ve loads. se indicated. d bearing. ee or securely liagonal web) 0 psf bottom	sf on		Annum		SEA 0363	L 22 LLBERTITI


June 10,2024

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	47 Mason Ridge Roof-Robie L LFT GRH	
24070013	B02	Common	1	1	Job Reference (optional)	166103879

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri Jun 07 11:13:08 ID:IqTKVJwjhvVgmgurDFTUx1z9Jxp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

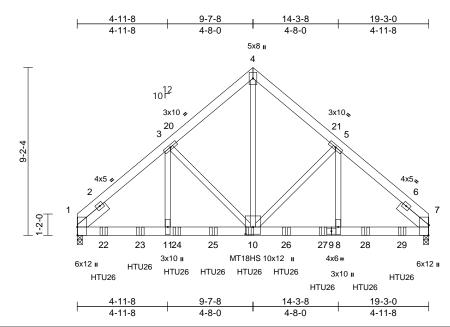
Scale = 1:60.9	

	Plate Offsets (X, Y): [2:0-1-9,0-1-12], [6:0-1-9,0-1-12]
--	--

	A, T). [2.0-1-9,0-1-12]], [0.0-1-9,0-1-12]											
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.89 0.91 0.22	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.22 -0.38 0.02	(loc) 8-10 8-10 8	l/defl >999 >600 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 106 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 *Excep Structural wood she: 2-2-0 oc purlins, exit Rigid ceiling directly bracing. (size) 8=0-3-8, 1 Max Horiz 11=-241 (Max Uplift 8=-72 (LC Max Grav 8=928 (LC (lb) - Maximum Com Tension 1-2=0/42, 2-3=-1004 4-5=-840/158, 5-6=- 2-11=-838/151, 6-8= 10-11=-90/701, 8-10 4-10=-81/649, 5-10=	athing directly applie cept end verticals. applied or 10-0-0 or 11=0-3-8 LC 12) : 15), 11=-72 (LC 14 C 6), 11=926 (LC 5) pression/Maximum /132, 3-4=-840/157, 1003/133, 6-7=0/42, -839/148 =-3/673	ed or 6) c 7)) 8)) 9)	design. This truss ha load of 12.0 overhangs n This truss ha chord live lo * This truss on the botto 3-06-00 tall chord and a One H2.5A a recommend UPLIFT at jt and does no This truss is International	snow loads have t as been designed f psf or 1.00 times fl on-concurrent with as been designed f ad nonconcurrent y has been designed m chord in all area: by 2-00-00 wide wi hy other members, Simpson Strong-Tit ed to connect truss (s) 11 and 8. This of t consider lateral fc designed in accord Residential Code nd referenced stan Standard	or great at roof I other li or a 10. vith any for a liv s where Il fit betw with BC e conne to bear connection crces. dance w sections	er of min roo bad of 20.0 p ve loads. 0 psf bottom other live loa re load of 20. a rectangle veen the bot DL = 10.0ps ctors ing walls due on is for upli ith the 2018	f live osf on ads. .0psf tom f. e to ft only					
this desigr 2) Wind: ASC Vasd=103	ed roof live loads have 1. CE 7-16; Vult=130mph mph; TCDL=6.0psf; B(Enclosed: MWERS (an	(3-second gust) CDL=6.0psf; h=25ft;	Cat.							4	ALL A	OR FESS	RO,

Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cal II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 6-7-8, Exterior(2R) 6-7-8 to 12-7-8, Interior (1) 12-7-8 to 17-1-8, Exterior(2E) 17-1-8 to 20-1-8 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 SEAL 036322 June 10,2024


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

A MiTek Affiliate 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	47 Mason Ridge Roof-Robie L LFT GRH		
24070013	B03	Common Girder	1	3	Job Reference (optional)	166103880	

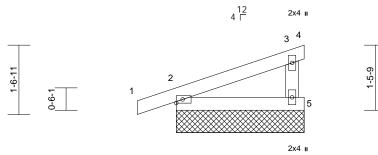
Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri Jun 07 11:13:09 ID:jghui9AGz21q9IQhOSqAIFz9JxV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

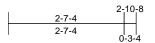
Scale = 1:63.1 Plate Offsets (X, Y): [1:0-5-8,Edge], [7:0-6-13,Edge], [10:0-4-12,0-5-0]

		i i											
Loading	(psf)	Spacing	1-11-4		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.63	Vert(LL)	-0.11	8-10	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.55	Vert(CT)	-0.20	8-10	>999	180	MT18HS	244/190
TCDL	10.0	Rep Stress Incr	NO		WB	0.91	Horz(CT)	0.05	7	n/a	n/a		
BCLL	0.0*	Code	IRC201	8/TPI2014	Matrix-MSH		- (-)						
BCDL	10.0											Weight: 474 lb	FT = 20%
	2x6 SP No.2 2x6 SP 2400F 2.0E 2x4 SP No.3 *Excep Left 2x6 SP No.2 2 2-0-0 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=0-3-8, 7 Max Horiz 1=-182 (L Max Uplift 1=-262 (L Max Grav 1=11760 (lb) - Maximum Corr	2-0-0, Right 2x6 SP I athing directly applie applied or 10-0-0 oc 7=0-3-8 C 8) C 12), 7=-385 (LC 1: (LC 5), 7=11311 (LC	No.2 3) d or 4) : 3) 5)	except if note CASE(S) sec provided to c unless other Unbalanced this design. Wind: ASCE Vasd=103mg II; Exp B; En cantilever lef right exposed TCLL: ASCE Plate DOL=1	considered equall ed as front (F) or b ttion. Ply to ply coo listribute only load wise indicated. roof live loads hav 7-16; Vult=130mp bh; TCDL=6.0psf; closed; MWFRS (et and right expose d; Lumber DOL=1. 7-16; Pr=20.0 psf .15); Pf=20.0 psf (ls=1.0; Rough Cat	ack (B) nnection s noted e been th (3-sec BCDL=6 envelope d; end v 60 plate	face in the LC s have been as (F) or (B), considered fo cond gust) .0psf; h=25ft; a) exterior zor vertical left an grip DOL=1. .: Lum DOL=:	DAD (r ; Cat. ne; nd 60 1.15	11- end 14) Fill LOAD (1) De Ind Ur	10dx1 1, I to conn all nail h CASE(S ead + Sr crease= hiform Lo Vert: 1-4 oncentra Vert: 10 24=-213	/2 Trus nect tru noles w) Stan now (ba 1.15 bads (ll 4=-58, tted Lo 9=-2134 34 (B),	ss(es) to back fa here hanger is in ndard alanced): Lumber b/ft) 4-7=-58, 12-16= ads (lb) 4 (B), 22=-2134 (at 17-9-8 from the left ce of bottom chord. contact with lumber. Increase=1.15, Plate -19 B), 23=-2134 (B), 5=-2134 (B), 27=-2134
	Tension		6)	Unbalanced	snow loads have b	been cor	nsidered for th	his					
TOP CHORD	1-3=-12839/328, 3-4 4-5=-9251/329, 5-7=	,		design.	MT00 alata a unia								
BOT CHORD	4-5=-9251/329, 5-7= 1-11=-278/9589, 10-		7) 8)		e MT20 plates unle is been designed f			a.					
EST GHORD	8-10=-219/9383, 7-8	,	8)					de					11. S
(0.131"x3") Top chords staggered Bottom cho staggered Web conne	4-10=-309/11164, 5- 5-8=-101/4641, 3-10 3-11=-60/4994 to be connected toge) nails as follows: s connected as follows at 0-9-0 oc. prds connected as follows	-10=-3202/272,)=-3497/230, ther with 10d s: 2x6 - 2 rows ows: 2x6 - 3 rows • 1 row at 0-9-0 oc,	11	 This trues been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. O) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 1 and 7. This connection is for uplift only and does not consider lateral forces. This trues is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. Use Simpson Strong-Tie HTU26 (20-16d Girder, 11-10dx1 1/2 Truss) or equivalent spaced at 2-4-0 oc max. starting at 1-5-8 from the left end to 15-9-8 to connect truss(es) to back face of bottom chord. 							L 22 EER BEALLING		
					s(es) to back face							A. G	ILBERT

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



June 10,2024


Job	Truss	Truss Type	Qty	Ply	47 Mason Ridge Roof-Robie L LFT GRH	
24070013	C01	Monopitch Supported Gable	1	1	Job Reference (optional)	166103881

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri Jun 07 11:13:09 ID:IqTKVJwjhvVgmgurDFTUx1z9Jxp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2x4 =

Scale = 1:25.9

					i		i					i	
Loading TCLL (roof) Snow (Pf) TCDL	(psf) 20.0 20.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	1-11-4 1.15 1.15 YES		CSI TC BC WB	0.09 0.05 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCLL BCDL	0.0* 10.0	Code	IRC201	8/TPI2014	Matrix-MP							Weight: 12 lb	FT = 20%
	6=2-10-8 Max Horiz 2=46 (LC Max Uplift 2=-44 (LC 5=-64 (LC Max Grav 2=203 (LC	xcept end verticals. applied or 10-0-0 oc 4=2-10-8, 5=2-10-8 13), 6=46 (LC 13) 10), 4=-127 (LC 21 14), 6=-44 (LC 10) 2 21), 4=35 (LC 14), 2 21), 6=203 (LC 21) pression/Maximum	7) 5 8) , 9)), 10 11	design. This truss ha load of 12.0 overhangs n Gable requir Gable studs This truss ha chord live lo * This truss the on the botton 3-06-00 tall 1 chord and ar Provide mee bearing platt 2, 127 lb upl uplift at joint) This truss is International	designed in accord Residential Code nd referenced star	for great lat roof le n other li som chor c. for a 10. with any d for a liv s where ill fit betw h (by oth anding 4 uplift at ju dance w sections	er of min roof oad of 20.0 p ve loads. d bearing. D psf bottom other live loa e load of 20.1 a rectangle veen the botti ers) of truss f 44 lb uplift at j point 5 and 44 ith the 2018 s R502.11.1 a	f live sf on ads. Opsf om to joint Ib					
1) Wind: ASC Vasd=103i II; Exp B; E	 Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-10-8 to 2-1-8, Exterior(2N) 2-1-8 										A.L.	N'ITH CA	ROUT

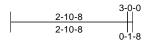
- II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-10-8 to 2-1-8, Exterior(2N) 2-1-8 to 2-10-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TP1 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	47 Mason Ridge Roof-Robie L LFT GRH	
24070013	C02	Monopitch	4	1	Job Reference (optional)	166103882


3-0-0


-0-10-8

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri Jun 07 11:13:09 ID:IqTKVJwjhvVgmgurDFTUx1z9Jxp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

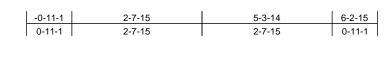
Page: 1

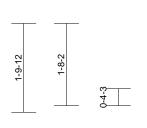
Scale = 1:28.3

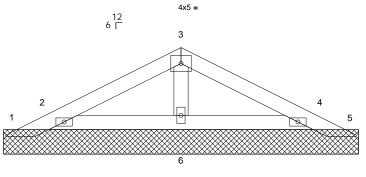
Loading (psf)	Spacing 2-0	-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof) 20.0	Plate Grip DOL 1.1	5	TC	0.14	Vert(LL)	0.00	4-7	>999	240	MT20	244/190
Snow (Pf) 20.0	Lumber DOL 1.1	5	BC	0.09	Vert(CT)	-0.01	4-7	>999	180		
TCDL 10.0	Rep Stress Incr YE	S	WB	0.00	Horz(CT)	0.00	2	n/a	n/a		
BCLL 0.0*	Code IRC	C2018/TPI2014	Matrix-MP								
BCDL 10.0								-		Weight: 12 lb	FT = 20%
LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 BRACING TOP CHORD Structural wood shea 3-0-0 oc purlins, exc BOT CHORD Rigid ceiling directly bracing. REACTIONS (size) 2=0-3-8, 4 Max Horiz 2=49 (LC Max Uplift 2=-51 (LC Max Grav 2=236 (LC FORCES (lb) - Maximum Com Tension TOP CHORD 1-2=0/24, 2-3=-83/60	applied or 10-0-0 oc =0-1-8 13) 10), 4=-20 (LC 14) 2 21), 4=139 (LC 21) pression/Maximum	 on the bottor 3-06-00 tall b chord and ar 7) Bearing at jo using ANSI/1 designer sho 8) Provide mec bearing plate 9) One H2.5A S 9) One H2.5A S 10) This truss is International R802.10.2 ar 	simpson Strong-Tie d to connect truss s) 2 and 4. This co consider lateral fo designed in accord Residential Code s ad referenced stan	where I fit betw parallel i of formul of bear (by oth e conne to bear nnectio prces. lance w sections	a rectangle veen the botto o grain value a. Building ng surface. ers) of truss t ctors ing walls due n is for uplift o ith the 2018 : R502.11.1 a	o to only					
BOT CHORD 2-4=-31/58	, 3-4=-101/01	LOAD CASE(S)	Standard								
NOTES											
 Wind: ASCE 7-16; Vult=130mph Vasd=103mph; TCDL=6.0psf; BC II; Exp B; Enclosed; MWFRS (en and C-C Exterior(2E) zone; cantil exposed ; end vertical left and rig members and forces & MWFRS f Lumber DOL=1.60 plate grip DOI TCLL: ASCE 7-16; Pr=20.0 psf (L DOL=1.15); Pf=20.0 psf (L DOL=1.15); Is=1.0; Rough Cat B Cs=1.00; Ct=1.10 Unbalanced snow loads have be design. This truss has been designed for load of 12.0 psf or 1.00 times flat overhangs non-concurrent with o This truss has been designed for chord live load nonconcurrent with 	CDL=6.0psf; h=25ft; Cat. velope) exterior zone lever left and right ht exposed;C-C for for reactions shown; L=1.60 voof LL: Lum DOL=1.15 Jm DOL=1.15 Plate ; Fully Exp.; Ce=0.9; en considered for this greater of min roof live roof load of 20.0 psf on ther live loads. a 10.0 psf bottom							Contraction of the second seco	3	SEA 0363	L

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Information. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

A. GILD June 10,2024




A. GILB


Job	Truss	Truss Type	Qty	Ply	47 Mason Ridge Roof-Robie L LFT GRH	
24070013	PB01	Piggyback	14	1	Job Reference (optional)	166103888

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri Jun 07 11:13:10 ID:VQer1JnjGZ7RoF3MEcmiilz9L6u-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

2x4 II

5-3-14

2x4 =

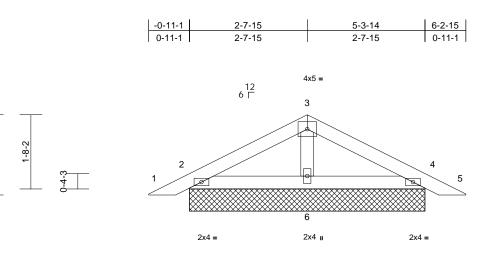
2x4 =

Scale = 1:23.5

		(0					:			(1)				
L oading TCLL (roof)		(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.14	DEFL Vert(LL)	in n/o	(loc)	l/defl	L/d 999	PLATES MT20	GRIP 244/190
()			1 '			BC	0.14		n/a	-	n/a		MI 20	244/190
Snow (Pf)		20.0	Lumber DOL	1.15		-	0.08	Vert(TL)	n/a	-	n/a	999		
TCDL		10.0	Rep Stress Incr	YES		WB	0.02	Horiz(TL)	0.00	4	n/a	n/a		
BCLL BCDL		0.0*	Code	IRC20	18/TPI2014	Matrix-MP							Woight: 21 lb	FT = 20%
BUDL		10.0		-			-						Weight: 21 lb	FT = 20%
UMBER				3		ned for wind load								
TOP CHORD						uds exposed to v								
BOT CHORD						d Industry Gable								
OTHERS	2x4 SP N	No.3				ualified building o E 7-16; Pr=20.0 p								
BRACING						= 7-16; PI=20.0 p 1.15); Pf=20.0 ps								
TOP CHORD	Structura 6-0-0 oc		athing directly appli	ed or	DOL=1.15);	Is=1.0; Rough C								
BOT CHORD	 Rigid cei bracing. 	iling directly	applied or 10-0-0 o	с 5		=1.10 snow loads have	e been coi	nsidered for th	nis					
REACTIONS	(size)		2=7-3-0, 4=7-3-0, 5= 7=7-3-0, 10=7-3-0	6		es continuous be spaced at 4-0-0		d bearing.						
	May Haria	: 1=26 (LC	14)	8) This truss ha	as been designe	d for a 10.	0 psf bottom						
		· ·	21), 2=-53 (LC 14)			ad nonconcurrer								
	Max Opini		21), 2=-53 (LC 14) 215), 5=-64 (LC 22)			has been design)psf					
			C 14), 10=-54 (LC 15			m chord in all are								
	Max Grav		14), 2=317 (LC 21)			by 2-00-00 wide		veen the botto	om					
			C 22), 5=18 (LC 15)			ny other member								
		6=179 (L) 10=303 (I	C 22), 7=317 (LC 21 LC 22)), 1	bearing plat	chanical connecti e capable of with	standing 5	53 lb uplift at j	oint					
FORCES	(lb) - Ma Tension	ximum Corr	pression/Maximum	1	joint 5, 53 lb	t at joint 4, 67 lb uplift at joint 2 a designed in acc	nd 54 lb u	plift at joint 4.	int at					
TOP CHORD	1-2=-35/ 4-5=-16/		/59, 3-4=-72/58,		Internationa	Residential Coc	le sections	8 R502.11.1 a	nd				UNITH CA	ROUL
BOT CHORD	2-6=-17/	30, 4-6=-18	/30	1		rd Industry Piggy						1	a	- Clin
WEBS	3-6=-95/	45				onnection to base						~	O' FESE	HANN'S
NOTES						ified building des						25		in si
1) Unbalanc	ed roof live	loads have	been considered fo	r L	OAD CASE(S)	Standard	-						.0	4.6
this desig	ın.				. ,						-		054	n 19
			(3-second gust)										SEA	AL E
			CDL=6.0psf; h=25ft								1		0363	322 : =
			velope) exterior zor	ne							1		0363	- : :
			ilever left and right									-	N	1. 2
			ght exposed;C-C for									- 1	N. En	-cRik S
			for reactions shown	;								20	S. GIN	EFR
Lumber L	DOL=1.60 pl	iate grip DC	DL=1.60									11	C	BEN
													A. C	all
														IIII.

- MWFRS (envelop and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
 - WARNING Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932


GI unnin . June 10,2024

Job	Truss	Truss Type	Qty	Ply	47 Mason Ridge Roof-Robie L LFT GRH	
24070013	PB02	Piggyback	2	1	Job Reference (optional)	166103889

1-9-12

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri Jun 07 11:13:11 ID:n01iifxLSCdWNqT1nz_jUEz9Jxo-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

5-3-14

Scale = 1:26

Scale = 1.20													
Loading TCLL (roof)	(psf) 20.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15	CSI TC BC	0.11 0.12	DEFL Vert(LL) Vert(CT)	in n/a	(loc) -	l/defl n/a	L/d 999 999	PLATES MT20	GRIP 244/190	
Snow (Pf) TCDL	20.0 10.0	Rep Stress Incr	YES	WB	0.12	Horz(CT)	n/a 0.00	- 2	n/a n/a	999 n/a			
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP	0.02	11012(01)	0.00	2	n/a	Π/a			
BCDL	10.0	locuo									Weight: 21 lb	FT = 20%	
 this designed to the second second	 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 2=5-3-14, 7=5-3-14, 7=5-3-14, Max Horiz 2=-26 (LC Max Uplift 2=-32 (LC (LC 14), 7 15) Max Grav 2=206 (L1 1=206 (L1 6=206 (L1 1=206 (L1 0=2-06 (L1 1=206 (L1 0=2-06 (L1 1=206 (L1 0=2-06 (L1 1=206 (L1 0=2-06 (L1 1=2-07 (L1)) (lb) - Maximum Com Tension 1-2=0/25, 2-3=-63/6 2-6=-6/38, 4-6=0/38 3-6=-107/47 ced roof live loads have 	applied or 10-0-0 or 4=5-3-14, 6=5-3-14 11=5-3-14 2 15), 7=-26 (LC 15) 2 14), 4=-37 (LC 15) 2 7=-32 (LC 14), 11=-3 C 21), 4=206 (LC 22 C 22), 7=206 (LC 21 C 22) apression/Maximum 0, 3-4=-63/60, 4-5=C been considered for 1 (3-second gust) CDL=6.0psf; h=25ft; velope) exterior zor ilever left and right ght exposed; C-C for for reactions shown b(=1.60) n the plane of the true 1 (normal to the face) d Details as applicat	Plate DO DOL=1.1: Cs=1.00; 5) Unbalanc design. 6) This truss load of 7 (C) Verhang 7) Gable rec 8) Gable stu 9) This truss chord live 9) This truss 0, 6=-3 10) * This trus 0, 10) * This trus 9, 6=-3 10) * This trus 9, 7=-5 10 10) * This trus 9, 7=-5 10 100 * This trus 9, 7=-5 10 10) * This trus 9, 7=	CE 7-16; Pr=20.0 p _=1.15); Pf=20.0 ps 5); Is=1.0; Rough C Ct=1.10 ed snow loads have has been designed 0.0 psf or 1.00 times s non-concurrent wi juires continuous bé ds spaced at 2-0-0 has been designed load nonconcurren is has been designed any other member A Simpson Strong- nded to connect tru t jt(s) 2, 4, and 6. Ti Jos not consider la is designed in acco nal Residential Cod 2 and referenced st dard Industry Piggy Connection to base juified building des (S) Standard	f (Lum DC at B; Fully be been cou- d for great flat roof I ith other li ottom choo oc. d for a 10. t with any ed for a liv as where will fit betw 's. Tie conne ss to bear his conne ss to bear his conne cordance w le sections andard AP back Truss as a	DL=1.15 Plate Exp.; Ce=0.1 nsidered for t er of min rool aad of 20.0 p ve loads. d bearing. D psf bottom other live load e load of 20.1 a rectangle veen the bott ctors ing walls due ttion is for up as. ith the 2018 s R502.11.1 a SI/TPI 1. s Connection	e 9; f live sf on ds. 0psf om lift		Manutan		SEA 0363	22 EEPER	Annun and

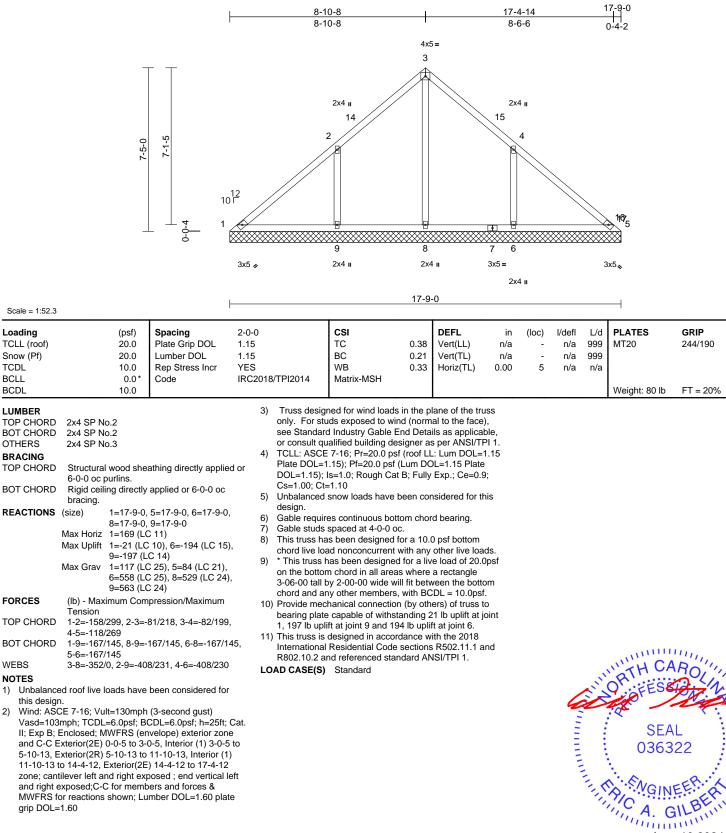
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	47 Mason Ridge Roof-Robie L LFT GRH	
24070013	V01	Valley	1	1	Job Reference (optional)	166103890

TCDL

BCLL


BCDL

1)

2)

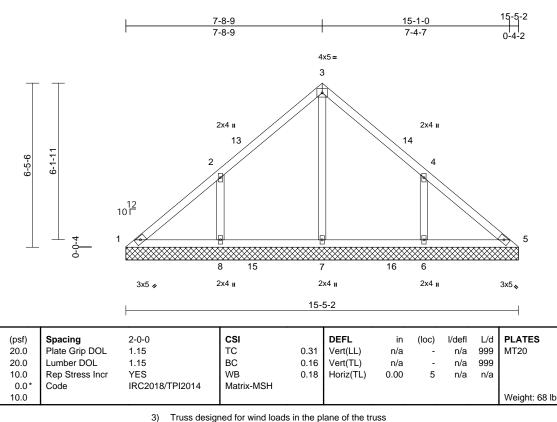
Run: 8,73 S Apr 25 2024 Print: 8,730 S Apr 25 2024 MiTek Industries, Inc. Fri Jun 07 11:13:11 ID:n01iifxLSCdWNqT1nz_jUEz9Jxo-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

June 10,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	47 Mason Ridge Roof-Robie L LFT GRH	
24070013	V02	Valley	1	1	Job Reference (optional)	166103891


Run: 8,73 S Apr 25 2024 Print: 8,730 S Apr 25 2024 MiTek Industries, Inc. Fri Jun 07 11:13:11 ID:n01iifxLSCdWNqT1nz_jUEz9Jxo-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

GRIP

244/190

FT = 20%

LOWIDER		
TOP CHORD	2x4 SP N	0.2
BOT CHORD	2x4 SP N	0.2
OTHERS	2x4 SP N	0.3
BRACING		
TOP CHORD	Structural 6-0-0 oc p	l wood sheathing directly applied of ourlins.
BOT CHORD	Rigid ceili bracing.	ing directly applied or 6-0-0 oc
REACTIONS	(size)	1=15-5-2, 5=15-5-2, 6=15-5-2,
	. ,	7=15-5-2, 8=15-5-2
	Max Horiz	1=-147 (LC 12)
	Max Uplift	1=-23 (LC 10), 6=-165 (LC 15),
		8=-168 (LC 14)
	Max Grav	1=127 (LC 25), 5=102 (LC 21),
		6=473 (LC 21), 7=439 (LC 24),
		8=473 (LC 20)
FORCES	(lb) - Max Tension	imum Compression/Maximum
TOP CHORD	1-2=-153/	181, 2-3=-152/144, 3-4=-152/123,
	4-5=-124/	
BOT CHORD	1-8=-80/1	33, 7-8=-80/114, 6-7=-80/114,
	5-6=-80/1	14
WEBS	3-7=-253/	0, 2-8=-380/204, 4-6=-380/203

NOTES

Scale = 1:45.3 Loading

TCLL (roof)

Snow (Pf)

LUMBER

TCDL

BCLL

BCDL

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Interior (1) 3-0-5 to 4-8-14, Exterior(2R) 4-8-14 to 10-8-14, Interior (1) 10-8-14 to 12-5-6, Exterior(2E) 12-5-6 to 15-5-6 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this 5) desian.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 4-0-0 oc.

or

- 8) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. 9)
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 10) Provide mechanical connection (by others) of truss to
- bearing plate capable of withstanding 23 lb uplift at joint 1, 168 lb uplift at joint 8 and 165 lb uplift at joint 6.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent bucking of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	47 Mason Ridge Roof-Robie L LFT GRH	
24070013	V03	Valley	1	1	Job Reference (optional)	166103892

Scale = 1:40.9 Loading

TCLL (roof)

Snow (Pf)

LUMBER

OTHERS

BRACING

TOP CHORD

BOT CHORD

FORCES

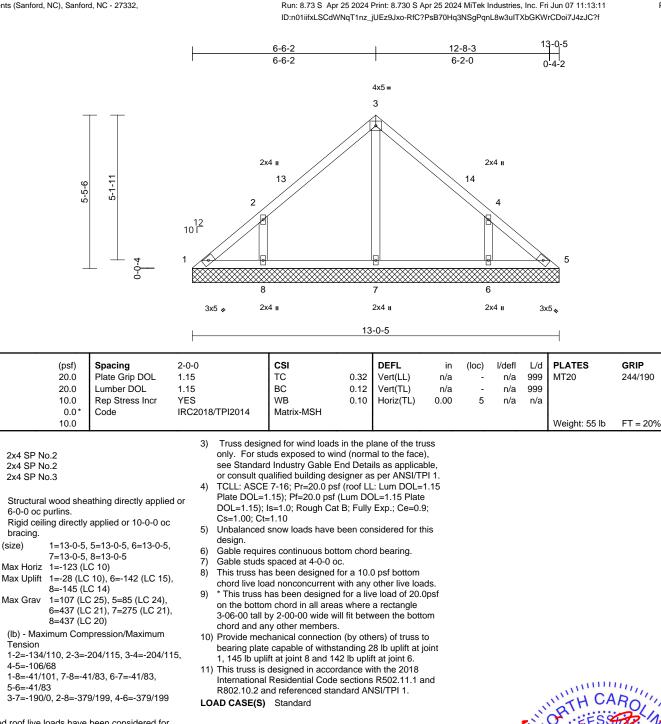
WEBS

NOTES

TOP CHORD

BOT CHORD

REACTIONS (size)


TOP CHORD BOT CHORD

TCDL

BCLL

BCDL

Page: 1

- Unbalanced roof live loads have been considered for 1) this design. Wind: ASCE 7-16; Vult=130mph (3-second gust) 2)
- Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Interior (1) 3-0-5 to 3-6-7, Exterior(2R) 3-6-7 to 9-6-7, Interior (1) 9-6-7 to 10-0-10, Exterior(2E) 10-0-10 to 13-0-10 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

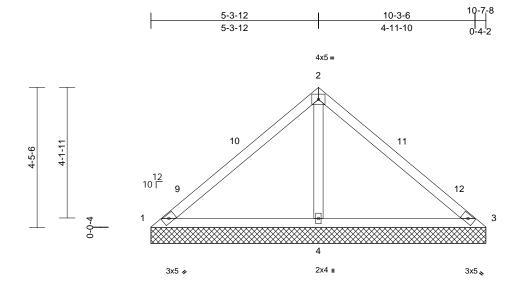
G mm June 10,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

Edenton, NC 27932

SEAL


036322

11111111111

Job	Truss	Truss Type	Qty	Ply	47 Mason Ridge Roof-Robie L LFT GRH	
24070013	V04	Valley	1	1	Job Reference (optional)	166103893

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri Jun 07 11:13:11 ID:n01iifxLSCdWNqT1nz_jUEz9Jxo-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

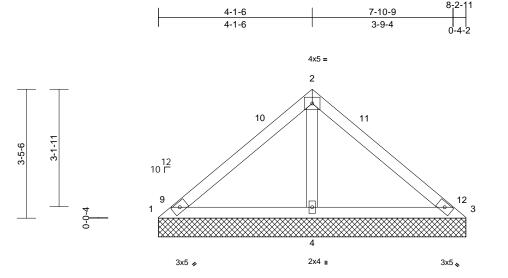
Page: 1

10-7-8

Scale = 1:36.5

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC 0.56 BC 0.50 WB 0.25 Matrix-MSH	DEFLinVert(LL)n/aVert(TL)n/aHoriz(TL)0.01	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 41 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 10-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=10-7-8. Max Horiz 1=-100 (L Max Uplift 1=-70 (LC 4=-132 (L Max Grav 1=78 (LC (LC 20) (lb) - Maximum Corr Tension	, 3=10-7-8, 4=10-7-8 ,C 10) C 21), 3=-70 (LC 20), C 14) 20), 3=78 (LC 21), 4 npression/Maximum .138/438	 Plate DOL=1 DOL=1.15); Cs=1.00; Ct Unbalanced design. Gable requir Gable studs This truss ha chord live loa * This truss ha chord live loa * This truss ha chord and ar Hessa 10) Provide mec bearing plate 1, 70 lb upliff This truss is International 	snow loads have been cor es continuous bottom chor spaced at 4-0-0 oc. as been designed for a 10. ad nonconcurrent with any has been designed for a liv m chord in all areas where by 2-00-00 wide will fit betv y other members. thanical connection (by oth e capable of withstanding 7 t at joint 3 and 132 lb uplift designed in accordance w Residential Code sections nd referenced standard AN	DL=1.15 Plate v Exp.; Ce=0.9; Insidered for this rd bearing. 0 psf bottom other live loads. ve load of 20.0psf a rectangle ween the bottom hers) of truss to 70 lb uplift at joint at joint 4. ith the 2018 s R502.11.1 and				-	
 Unbalance this design Wind: ASC Vasd=103i II; Exp B; E and C-C E to 7-7-13, cantilever right expos for reaction DOL=1.60 Truss des only. For see Standa 	CE 7-16; Vult=130mph mph; TCDL=6.0psf; B Enclosed; MWFRS (er ixterior(2E) 0-0-5 to 3- Exterior(2E) 7-7-13 to left and right exposed sed;C-C for members ns shown; Lumber DC	a (3-second gust) CDL=6.0psf; h=25ft; twelope) exterior zon 0-5, Exterior(2R) 3-0 10-7-13 zone; ; end vertical left and and forces & MWFR 0L=1.60 plate grip In the plane of the trud (normal to the face) d Details as applicab	Cat. e -5 d S ss ,				U	71	SEA 0363	L

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


818 Soundside Road Edenton, NC 27932

GI 11111111 June 10,2024

Job	Truss	Truss Type	Qty	Ply	47 Mason Ridge Roof-Robie L LFT GRH	
24070013	V05	Valley	1	1	I661038 Job Reference (optional)	894

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri Jun 07 11:13:12 ID:paE_qTT6WXmsNpJ6_t6_3Lz90CP-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

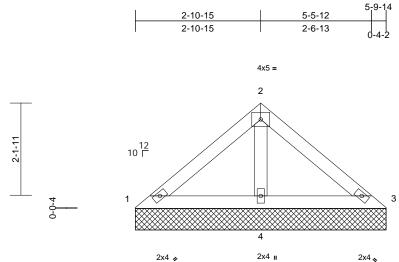
Page: 1

8-2-11

Scale = 1:30.8

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-MP	0.36 0.35 0.12	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 31 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORE BOT CHORE OTHERS BRACING TOP CHORE BOT CHORE BOT CHORE BOT CHORE BOT CHORE WEBS NOTES	 2x4 SP No.2 2x4 SP No.3 Structural wood she 8-2-11 oc purlins. Rigid ceiling directly bracing. (size) 1=8-2-11 Max Horiz 1=76 (LC Max Uplift 1=-39 (LC 4=-95 (LC Max Grav 1=92 (LC (LC 20) (lb) - Maximum Con Tension 1-2=-116/294, 2-3= 	C 21), 3=-39 (LC 20) C 14) 20), 3=92 (LC 21), - npression/Maximum -116/294	6 7 8 9 , 4=648 1 1	 Plate DOL=1 DOL=1.15); Cs=1.00; Ct: Unbalanced design. Gable requir Gable studs This truss ha chord live loz chord live loz * This truss ha on the bottor 3-06-00 tall h chord and ar Provide mec bearing plate 1, 39 lb upliff This truss is International 	snow loads have b es continuous bott spaced at 4-0-0 or as been designed n chord in all area: by 2-00-00 wide wi by 2-00-00 wide wi by 2-00-00 wide wi hanical connection e capable of withst t at joint 3 and 95 I designed in accord Residential Code nd referenced star	Lum DC B; Fully been cor om chor c. or a 10.0 with any f for a liv s where Il fit betv h (by oth anding 3 b uplift a dance w sections	DL=1.15 Plate Exp.; Ce=0.9 nsidered for the d bearing. D psf bottom other live loa e load of 20.0 a rectangle veen the botto ers) of truss t 90 lb uplift at j ti, to int 4. it joint 4. it for 2018 s R502.11.1 a	e - - - - - - - - - - - - - - - - - - -					
	ed roof live loads have	been considered fo	r										117

- this design. 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat.
- II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Exterior(2R) 3-0-5 to 5-3-0, Exterior(2E) 5-3-0 to 8-3-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.


AND DUDING SEAL 036322 G minim June 10,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	47 Mason Ridge Roof-Robie L LFT GRH	
24070013	V06	Valley	1	1	Job Reference (optional)	166103895

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri Jun 07 11:13:12 ID:HmnM1pUkHquj?zuIYbdDcZz90CO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

5-9-14

Scale = 1:26.8				
Loading	(psf)	Spacing	2-0-0	
TCLL (roof)	20.0	Plate Grip DOI	1.15	

2-5-6

Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.14	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.17	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.05	Horiz(TL)	0.00	4	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI201	4 Matrix-MP		, í						
BCDL	10.0										Weight: 21 lb	FT = 20%
	5-9-14 oc purlins. Rigid ceiling directly bracing.	3=5-9-14, 4=5-9-14 2 12) 15), 4=-47 (LC 14)	design. 6) Gable r 7) Gable s 8) This tru chord li 3-06-00 chord a 10) Provide bearing and 47 =384 11) This tru	nced snow loads have equires continuous bo tuds spaced at 4-0-0 ss has been designer ve load nonconcurren uss has been designe ottom chord in all are tall by 2-00-00 wide nd any other member mechanical connecti plate capable of with lb uplift at joint 4. ss is designed in acco	ottom chor oc. I for a 10. t with any ed for a liv eas where will fit betw s. on (by oth standing 4 ordance w	d bearing. 0 psf bottom other live loa e load of 20.0 a rectangle veen the botto ers) of truss t I b uplift at jo ith the 2018	ids. Opsf om int 3					
FORCES	(lb) - Maximum Corr	pression/Maximum		ional Residential Cod 0.2 and referenced sta			ina					
	Tension		LOAD CAS	E(S) Standard								
TOP CHORD	1-2=-87/149, 2-3=-8											
BOT CHORD WEBS	1-4=-119/116, 3-4=-	119/116										
	2-4=-291/139											
NOTES												
,	ed roof live loads have	been considered for										
Vasd=103 II; Exp B; I and C-C E exposed ; members . Lumber DU 3) Truss des only. For see Stand or consult 4) TCLL: AS(Plate DOL	CE 7-16; Vult=130mph mph; TCDL=6.0psf; B Enclosed; MWFRS (er stxerior(2E) zone; cant end vertical left and ri, and forces & MWFRS OL=1.60 plate grip DC signed for wind loads in studs exposed to wind lard Industry Gable En qualified building desi CE 7-16; Pr=20.0 psf (L =1.15); Pf=20.0 psf (L 5); Is=1.0; Rough Cat E	CDL=6.0psf; h=25ft; velope) exterior zon- ilever left and right ght exposed;C-C for for reactions shown; DL=1.60 In the plane of the trus- (normal to the face) d Details as applicab gner as per ANSI/TP roof LL: Lum DOL=1 um DOL=1.15 Plate	e ss , le, 11. .15								SEA 0363	

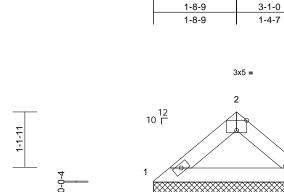
4) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

11111111 June 10,2024

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932


G

Job	Truss	Truss Type	Qty	Ply	47 Mason Ridge Roof-Robie L LFT GRH	
24070013	V07	Valley	1	1	Job Reference (optional)	166103896

1-5-6

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri Jun 07 11:13:12 ID:HmnM1pUkHquj?zuIYbdDcZz90CO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

3-5-2

2x4 🍫

2x4 💊

Scale = 1:23.8

Plate Offsets (X, Y): [2:0-2-8,Edge]

Loading (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0* BCDL 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MP	0.09 0.08 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 10 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 BRACING TOP CHORD Structural wood she 3-5-2 oc purlins.	13) 2 14), 3=-11 (LC 15) 2 20), 3=160 (LC 21) pression/Maximum 07/80 been considered for (3-second gust) CDL=6.0psf; h=25ft; invelope) exterior zone ilever left and right ght exposed;C-C for for reactions shown; Ju=1.60 In the plane of the trus (normal to the face), d Details as applicabl gner as per ANSI/TPI roof LL: Lum DOL=1.15 Plate 8; Fully Exp.; Ce=0.9; een considered for thi	8) This truss h chord live lo 9) * This truss on the botto 3-06-00 tall chord and a 10) Provide me bearing plat 1 and 11 lb 11) This truss is Internationa R802.10.2 a LOAD CASE(S)	spaced at 4-0-0 o as been designed ad nonconcurrent has been designed m chord in all area by 2-00-00 wide w ny other members chanical connectio e capable of withs uplift at joint 3. designed in accor I Residential Code and referenced star) Standard	for a 10.4 with any d for a liv as where rill fit betv n (by oth tanding 1 rdance w sections	other live loa e load of 20.0 a rectangle veen the botto ers) of truss t 1 lb uplift at j th the 2018 R502.11.1 a	Opsf om oo oint			in the second se	SEA 0363	EER.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Information. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

