

Carter Sanford Component Plant 298 Harvey Faulk Rd Sanford, NC 27332

Phone #:919-775-1450

Builder: DR Horton Inc

Model: Robie L LFT GRH

THE PLACEMENT PLAN NOTES:

1. The Placement Plan is a diagram for truss installation. It is not an engineered drawing and has not been reviewed by an engineer. The Owner/Building Designer is responsible for obtaining an engineer's review if one is required by the local jurisdiction.

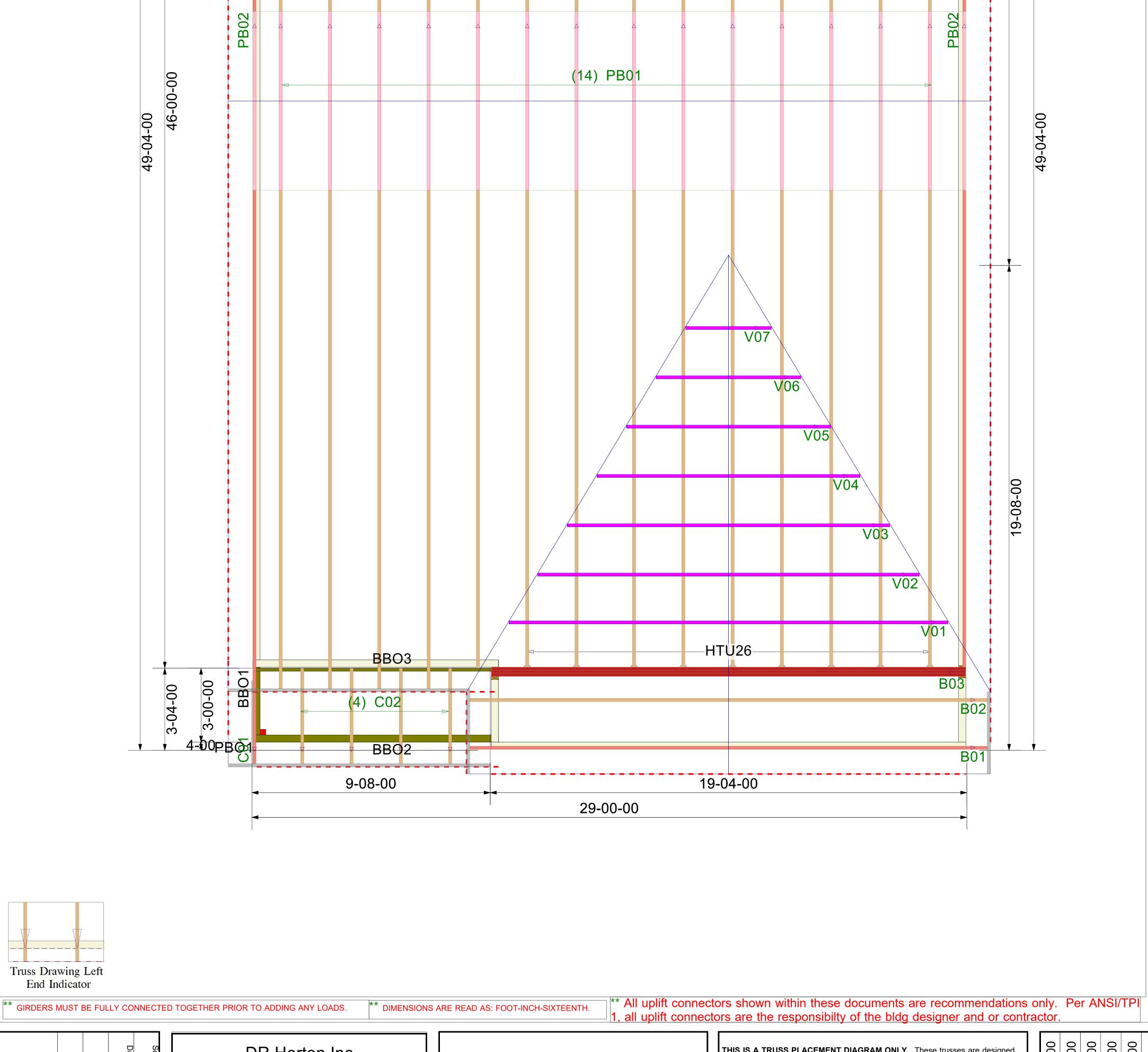
2. The responsibilities of the Owner, Contractor, Building Designer, Component Designer and Component Manufacturer shall be as set forth in ANSI/TPI 1. Capitalized terms shall be as defined in ANSI/TP 1 unless otherwise indicated.

3. Each Component is designed as an individual component utilizing information provided by others. The Owner/Building Designer is responsible for reviewing all Component Submittal Packages and individual Component Design Drawings for compliance with the Construction Documents and compatibility with the overall Building design.

4. Contractor will not proceed with component installation until the Owner/Building Designer has reviewed the Component Submittal Package. Questions on the suitability of any Component will be resolved by the Building Designer.

5. The Building Designer and Contractor are responsible for all temporary and permanent bracing.

6. The Placement Plan assumes the building is dimensionally correct, structurally sound, and in a suitable condition to support each Component during installation and thereafter, including but not limited to installation of all bearing points. Proper design and construction of all structural components, including foundations, headers, beams, walls and columns are the responsibility of the Owner, Building Designer and Contractor.


7. Do not cut, drill, or modify any Component without first consulting the Component Manufacturer or Building Designer. Damaged Components shall not be installed unless directed by the Building Designer or approved by the Component Manufacturer.

8. Components must be handled and installed following all applicable safety standards and best practices, including but not limited to BCSI, OSHA, TPI and local codes. Failure to properly handle, brace or otherwise install Component can result in serious injury or death. 9. All uplift connectors shown within these documents are recommendations only. Per ANSI/TPI 1, all uplift connectors are the responsibility of the building designer and or contractor.

Approved By: _____

Date: _____

Truss Connector Total List Qty Product Manuf 9 HTU26 Simpson 30 One H2.5A Simpson 29-00-00	
	402 402

** REFER TO FINAL TRUSS ENGINEERING SHEETS FOR PLY TO PLY CONNECTIONS

TRIANGULAR SYMBOL NEAR END OF TRUSS INDICATES LEFT END OF TRUSS AS SHOWN ON INDIVIDUAL TRUSS DRAWINGS.

2407 Sh	Date: 7/2 Nate [Scale:	DR Horton Inc		THIS IS A TRUSS PLACEMENT DIAGRAM ONLY. These trusses are designed as individual components to be incorporated into the building design at the specification of the building designer. See Individual design sheets for each truss design identified on the placement drawing. The building designer is responsible for temporary and permanent bracing of the roof and floor systems and for the	00/00/00	00/00/00	00/00/00	00/00/00	nn/00/00
70014-0 neet Number	8/2024 ^{Designer:} Donalds	NTS	34 Mason Ridge-Roof-Robie L LFT GRH	CARLER	overall structure. The disign of the tuss support structure including headers, beams, walls, and columns is the responsibility of the building designer. For general guidance regarding the bracing, consult "Bracing of Wood Truss" available from the Truss Plate Institute, 583 D'Onifrio Drive: Madison, WI 53179	Z		Z		visions
er: • 1	son		ROOF PLACEMENT PLAN			ame	ame	ame	ame	ame

RE: 24070014

34 Mason Ridge-Roof-Robie L

Trenco 818 Soundside Rd Edenton, NC 27932

Site Information:

Customer: DR Horton Inc Project Name: 24070014 Lot/Block: 34 Model: Address: Subdivision: Mason Ridge City: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2018/TPI2014 Wind Code: ASCE 7-16 Roof Load: 40.0 psf

Design Program: MiTek 20/20 8.7 Wind Speed: 130 mph Floor Load: N/A psf

This package includes 24 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
1	166103873	A01	6/10/2024	21	166103893	V04	6/10/2024
2	166103874	A02	6/10/2024	22	166103894	V05	6/10/2024
3	166103875	A03	6/10/2024	23	166103895	V06	6/10/2024
4	166103876	A04	6/10/2024	24	166103896	V07	6/10/2024
5	166103877	A05	6/10/2024				
6	166103878	B01	6/10/2024				
7	166103879	B02	6/10/2024				
8	166103880	B03	6/10/2024				
9	166103881	C01	6/10/2024				
10	166103882	C02	6/10/2024				
11	166103883	CJ01	6/10/2024				
12	166103884	D01	6/10/2024				
13	166103885	D02	6/10/2024				
14	166103886	D03	6/10/2024				
15	166103887	J01	6/10/2024				
16	166103888	PB01	6/10/2024				
17	166103889	PB02	6/10/2024				
18	166103890	V01	6/10/2024				
19	166103891	V02	6/10/2024				
20	166103892	V03	6/10/2024				

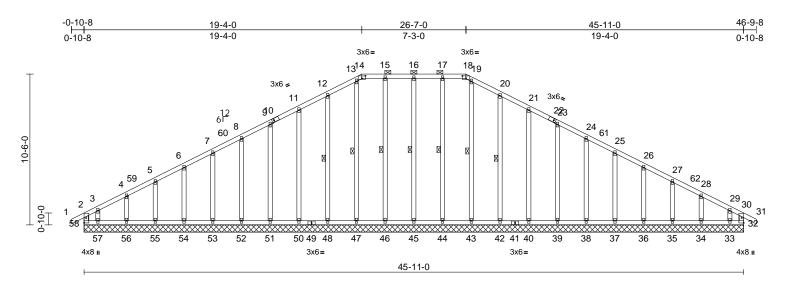
The truss drawing(s) referenced above have been prepared by

Truss Engineering Co. under my direct supervision

based on the parameters provided by Carter Components (Sanford, NC)).

Truss Design Engineer's Name: Gilbert, Eric

My license renewal date for the state of North Carolina is December 31, 2024


North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	34 Mason Ridge-Roof-Robie L	
24070014	A01	Piggyback Base Supported Gable	1	1	Job Reference (optional)	166103873

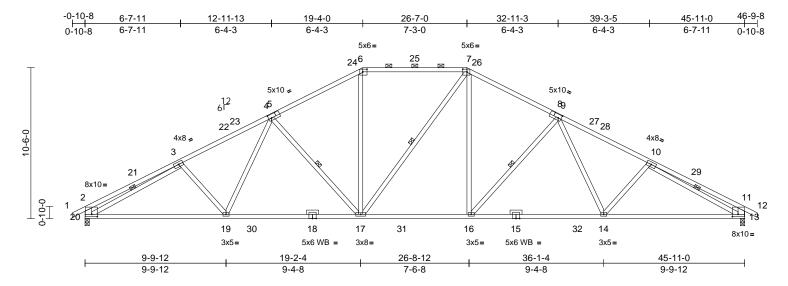
Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri Jun 07 11:13:05 ID:3MyMA21koMWXjvVOhxcMGjz9Jxh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:80.2

Plate Offsets (2	X, Y): [10:0-1-11,0-1	-8], [14:0-3-0,0-2-0], [18:0-3-0,0-2-0], [22:0	0-1-11,0-1-8]]							
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-	0.16 0.08 0.22 MR	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01	(loc) - - 32	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 349 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS	6-0-0 oc purlins, ex 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing. 1 Row at midpt	y applied or 6-0-0 oc 16-45, 15-46, 13-47, 12-48, 17-44, 19-43, 20-42	nd		$\begin{array}{c} 32 {=} {-13} (LC 11), \\ 34 {=} {-38} (LC 15), \\ 36 {=} {-43} (LC 15), \\ 38 {=} {-44} (LC 15), \\ 40 {=} {-43} (LC 15), \\ 40 {=} {-13} (LC 11), \\ 50 {=} {-43} (LC 14), \\ 50 {=} {-43} (LC 14), \\ 54 {=} {-43} (LC 14), \\ 54 {=} {-43} (LC 14), \\ 56 {=} {-35} (LC 14), \\ 58 {=} {-66} (LC 10) \\ 32 {=} {156} (LC 33) \\ 34 {=} {169} (LC 22) \\ 36 {=} {161} (LC 41). \\ \end{array}$	35=-45 (LC 37=-44 (LC 39=-44 (LC 42=-55 (LC 45=-34 (LC 48=-54 (LC 51=-44 (LC 53=-44 (LC 55=-46 (LC 57=-177 (LC 33=98 (LC 35=158 (LC	15), 15), 15), 15), 10), 14), 14), 14), 14), 24), 253), 45),	TOP CH	IORD	3-4=-' 6-7=-6 9-11= 12-13 14-15 16-17 18-19 20-21 23-24 25-26 28-29	62/125, 7-8=-52/1 -79/241, 11-12=- =-118/336, 13-14 =-110/320, 15-16 =-110/320, 17-18 =-112/303, 19-20 =-97/286, 21-23 =-65/195, 24-25= =-35/105, 26-27=	¹⁸⁷ , 5-6=-87/102, 50, 8-9=-65/195, 97/286, =-112/303, =-110/320, =-110/320, =-118/336, 79/241,
REACTIONS	$\begin{array}{c} 34 = 45 - 11 \\ 36 = 45 - 11 \\ 38 = 45 - 11 \\ 40 = 45 - 11 \\ 43 = 45 - 11 \\ 45 = 45 - 11 \\ 45 = 45 - 11 \\ 50 = 45 - 11 \\ 52 = 45 - 11 \\ 54 = 45 - 11 \end{array}$		FORCES	(lb) - Ma: Tension	38=214 (LC 45) 40=221 (LC 45) 43=182 (LC 22) 45=218 (LC 40) 47=184 (LC 57) 50=221 (LC 43) 52=214 (LC 43) 54=161 (LC 21) 56=169 (LC 21) 58=200 (LC 27) ximum Compressi	42=229 (LC 44=218 (LC 46=218 (LC 48=229 (LC 51=223 (LC 53=164 (LC 55=158 (LC 57=126 (LC	45), 40), 40), 43), 43), 43), 43), 43), 51),		4		SEA 0363	22 EER HALL

Continued on page 2

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MTek connectors. This design is based only upon parameters and property incorporate this design is based only upon parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Job	Truss	Truss Type	Qty	Ply	34 Mason Ridge-Roof-Robie L	166102972
24070014	A01	Piggyback Base Supported G	able 1	1	Job Reference (optional)	l66103873
Carter Componer	nts (Sanford, NC), Sanford, NC - 27332,			•	5 2024 MiTek Industries, Inc. Fri Jun 07 11:13:05	Page: 2
PEBS	57-58=-32/163, 56-57=-32/163, 55-56=-32/163, 54-55=-32/163, 51-52=-32/163, 50-51=-32/163, 48-50=-32/163, 47-48=-32/163, 48-50=-32/163, 47-48=-32/163, 44-45=-32/163, 45-46=-32/163, 42-43=-32/163, 40-42=-32/163, 39-40=-32/163, 38-39=-32/163, 39-40=-32/163, 38-39=-32/163, 33-34=-32/163, 36-37=-32/163, 33-34=-32/163, 32-33=-32/163, 33-34=-32/163, 32-33=-32/163, 33-34=-32/163, 32-33=-32/163, 33-34=-32/163, 32-33=-32/163, 31-47=-14/0, 12-48=-189/91, 11-50=-181/76, 9-51=-183/77, 8-52=-12-53=-126/77, 6-54=-127/77, 5-55=-12-4-56=-131/177, 21-57=-95/124, 17-44=-178/38, 19-43=-142/0, 20-42=-189/91, 21-40=-181/76, 23-39=-183/77, 24-38=-174/77, 25-37=-126/77, 26-36=-127/77, 5-55=-126/77, 26-36=-127/77, 5-55=-126/77, 26-36=-127/77, 5-55=-126/77, 26-36=-127/77, 5-35=-126/77, 26-36=-127/77, 5-35=-126/77, 26-36=-127/77, 5-35=-126/77, 26-36=-127/77, 5-35=-126/77, 26-36=-127/77, 5-35=-126/77, 26-36=-127/77, 5-35=-126/77, 26-36=-127/77, 5-35=-126/77, 26-36=-127/77, 5-35=-126/77, 5-56=-127/77, 5-35=-126/77, 26-36=-127/77, 5-35=-126/77, 26-36=-127/77, 5-35=-126/77, 26-36=-127/77, 5-35=-126/77, 26-36=-127/77, 5-35=-126/77, 26-36=-127/77, 5-35=-126/77, 5-35=-126/77, 5-35=-126/77, 5-35=-126/77, 5-35=-126/77, 5-35=-126/77, 5-35=-126/77, 5-35=-126/77, 5-35=-126/77, 5-35=-127/77, 5-35=-126/77, 5-35=-127/77, 5-35=-126/77, 26-36=-127/77, 5-35=-126/77, 5-35=-127/77, 5-35=-126/77, 5-35=-127/77, 5-35=-126/77, 5-35=-127/77, 5-35=-126/77, 5-35=-127/77, 5-35=-126/77, 5-35=-127/77, 5-35=-126/77, 5-35=-127/77, 5-35=-127/77, 5-35=-127/77, 5-35=-127/77, 5-35=-127/77, 5-35=-127/77, 5-35=-127/77, 5-35=-127/77, 5-35=-127/77, 5-35=-127/77, 5-35=-126/77, 5-35=-127/77, 5-35=-127/77, 5-35=-127/77, 5-35=-126/77, 5-35=-127/77, 5-35=-127/77, 5-35=-127/77, 5-35=-127/77, 5-35=-127/77, 5-35=-127/77, 5-35=-127/77, 5-35=-127/77, 5-35=-127/77, 5-35=-127/77, 5-35=-127/77, 5-35=-126/77, 5-35=-127/77, 5-35=-127/77, 5-35=-127/77, 5-35=-127/77, 5-35=-127/77, 5-35=-127/77, 5-35=-127/77, 5-35=-127/77, 5-35=-127/77, 5-35=-127/77, 5-35=-127/77, 5-35=-127/77, 5-35=-127/77,	 16) Graphical purlin representation of the portion chord. LOAD CASE(S) Standard 74/77, 	ntation does not depi	ct the size	sB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f	
	27-35=-125/78, 28-34=-132/116, 29-33=-89/127					
	d raaf live laade have been considered (for				
this design.		lor				
Vasd=103n II; Exp B; E and C-C Cc 3-8-10 to 14 Exterior(2N	E 7-16; Vult=130mph (3-second gust) nph; TCDL=6.0psf; BCDL=6.0psf; h=25 nclosed; MWFRS (envelope) exterior zr orner(3E) -0-10-8 to 3-8-10, Exterior(2N 4-8-14, Corner(3R) 14-8-14 to 30-11-8,) 30-11-8 to 42-2-6, Corner(3E) 42-2-6	one) to				
	e; cantilever left and right exposed ; end and right exposed;C-C for members an					
forces & M	WFRS for reactions shown; Lumber	ŭ				
	plate grip DOL=1.60 gned for wind loads in the plane of the t	russ				
only. For s see Standa	tuds exposed to wind (normal to the fac rd Industry Gable End Details as applic qualified building designer as per ANSI/	e), able,				
Plate DOL= DOL=1.15)	E 7-16; Pr=20.0 psf (roof LL: Lum DOL 1.15); Pf=20.0 psf (Lum DOL=1.15 Pla ; Is=1.0; Rough Cat B; Fully Exp.; Ce=0	te				
Cs=1.00; C 5) Unbalanced	t=1.10 d snow loads have been considered for	this				
design.	an been decisioned for greater of min re-	of live				
load of 12.0	has been designed for greater of min roo o psf or 1.00 times flat roof load of 20.0 non-concurrent with other live loads.					
	equate drainage to prevent water pondi re 2x4 MT20 unless otherwise indicated					
9) Gable requ	ires continuous bottom chord bearing.					
braced aga	fully sheathed from one face or secure inst lateral movement (i.e. diagonal web s spaced at 2-0-0 oc.					
2) This truss h	has been designed for a 10.0 psf bottom bad nonconcurrent with any other live lo					
13) * This truss on the botto	has been designed for a live load of 20 om chord in all areas where a rectangle by 2-00-00 wide will fit between the bo).0psf				
chord and a 14) Provide me	any other members. chanical connection (by others) of truss	sto				
58, 13 lb up uplift at join 50, 44 lb up uplift at join 55, 35 lb up uplift at join 40, 44 lb up uplift at join 35, 38 lb up 15) This truss is	te capable of withstanding 66 lb uplift at blift at joint 32, 34 lb uplift at joint 45, 13 t 46, 54 lb uplift at joint 48, 43 lb uplift at joint 51, 44 lb uplift at joint 52, 44 t 53, 43 lb uplift at joint 54, 46 lb uplift at blift at joint 56, 177 lb uplift at joint 57, 1 t 44, 55 lb uplift at joint 42, 43 lb uplift at jlift at joint 39, 44 lb uplift at joint 38, 44 t 37, 43 lb uplift at joint 36, 45 lb uplift at joint 34 and 138 lb uplift at joint 3 s designed in accordance with the 2018 al Residential Code sections R502.11.1	lb t joint lb t joint 4 lb t joint lb t joint 3.				

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	34 Mason Ridge-Roof-Robie L	
24070014	A02	Piggyback Base	4	1	Job Reference (optional)	166103874

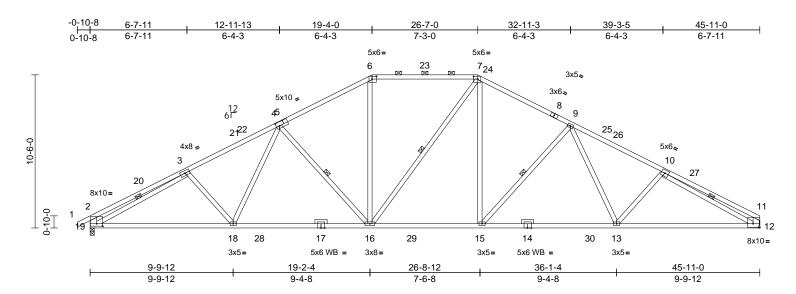
Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri Jun 07 11:13:06 ID:y7Cs0P4Fsb0zCWp9wmhIQZz9Jxd-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:80.2

Plate Offsets (2	X, Y): [2:0-4-12,0-2-0)], [5:0-2-8,0-3-0], [6:0	-3-8,0-2-4	ŀ], [7:0-3-8,0-2·	-4], [8:0-2-8,0-3-0]	l, [13:0-4	-12,0-2-0]						
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MSH	0.70 0.56 0.88	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.32 -0.54 0.15	(loc) 14-16 14-16 13	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 283 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	20-2,13-11:2x6 SP M 2x4 SP No.3 Structural wood she 4-0-12 oc purlins, e 2-0-0 oc purlins (4-3 Rigid ceiling directly bracing. 1 Row at midpt	eathing directly applied	nd 3)	Vasd=103mp II; Exp B; Enn and C-C Ext 3-8-10 to 12- Interior (1) 33 46-9-8 zone; vertical left a forces & MW DOL=1.60 pl TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced	7-16; Vult=130mp bh; TCDL=6.0psf; closed; MWFRS (erior(2E) -0-10-8 t 10-1, Exterior(2R 2-11-3 to 42-2-6, I cantilever left and nd right exposed; (FRS for reactions ate grip DOL=1.6 5 7-16; Pr=20.0 psf Is=1.0; Rough Car =1.10 snow loads have	BCDL=6 envelope o 3-8-10) 12-10-1 Exterior(2 d right ex C-C for n s shown; 0 f (roof LL (Lum DC t B; Fully	.0psf; h=25ft exterior zo Interior (1) to 32-11-3, 2E) 42-2-6 to posed ; end nembers and Lumber :: Lum DOL= VL=1.15 Plate Exp.; Ce=0.	ne I 1.15 9;					
	Max Horiz 20=141 (I Max Uplift 13=-202 (Max Grav 13=2193 (Ib) - Maximum Com	(LC 15), 20=-202 (LC (LC 47), 20=2188 (LC	,	load of 12.0 overhangs n	is been designed psf or 1.00 times f on-concurrent with quate drainage to	lat roof le n other liv	oad of 20.0 p /e loads.	sf on					
TOP CHORD	Tension	· 5/181, 3-4=-3903/362 =-2710/381, D=-3911/363, 1-12=0/30,	7)	This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b	is been designed ad nonconcurrent has been designed n chord in all area by 2-00-00 wide w hy other members	for a 10.0 with any d for a liv is where ill fit betv) psf bottom other live loa e load of 20. a rectangle veen the bott	ads. Opsf om				OR EESS	ROUT
BOT CHORD	19-20=-353/3449, 1 16-17=-21/2634, 14 13-14=-213/3455	7-19=-227/3202, -16=-122/3210,	9)	One H2.5A S recommende	Simpson Strong-Tied to connect truss s) 20 and 13. This	ie conne s to bear	ctors ng walls due	e to		N	e la	SEA	Rell.
WEBS	3-19=-157/184, 4-19 4-17=-848/225, 6-17 7-17=-260/262, 7-16 9-16=-849/225, 9-14 10-14=-157/184, 3-2 10-13=-3015/191	7=-29/986, 6=-71/1003, 4=-15/502,) This truss is International R802.10.2 ar) Graphical pu	s not consider lat designed in accor Residential Code nd referenced star rlin representation ation of the purlin d.	dance w sections ndard AN n does no	ith the 2018 R502.11.1 a ISI/TPI 1. ot depict the s			THE REAL PROPERTY OF THE PROPE			• -
	ed roof live loads have n.	been considered for	LC	DAD CASE(S)								A. G	IL BUILT

June 10,2024

Page: 1



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Institute (www.tpinst.org) 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	34 Mason Ridge-Roof-Robie L	
24070014	A03	Piggyback Base	2	1	Job Reference (optional)	166103875

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri Jun 07 11:13:07 ID:BbjrLg_EI705EICcS5YQ6tz9JxI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:79

Plate Offsets (X, Y): [2:0-4-12,0-2-0], [5:0-2-8,0-	3-0], [6:0-3-8,0-2-4], [7:0-3-8,0	-2-4], [12:Edge,0-3-0]					
Loading (psf) Spacing TCLL (roof) 20.0 Plate Grip Snow (Pf) 20.0 Lumber DC TCDL 10.0 Rep Stress BCLL 0.0* Code BCDL 10.0	OL 1.15	CSI TC 0.70 BC 0.56 WB 0.95 Matrix-MSH	Vert(LL) -0.3 Vert(CT) -0.5	4 13-15	>999 2 >999 1	/d PLATES 40 MT20 80 //a Weight: 282 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD 2x4 SP 2400F 2.0E BOT CHORD 2x4 SP 2400F 2.0E WEBS 2x4 SP No.3 *Except* 16-7:2x4 S 19-2,12-11:2x6 SP No.2 OTHERS 2x4 SP No.3 BRACING TOP CHORD Structural wood sheathing direct 4-0-13 oc purlins, except end ve 2-0-0 oc purlins, except end ve 10 -12=-324/3469 WEBS 3-18=-157/184, 4-18=-15/504, 4-16=-849/225, 6-16=-29/987, 7-16=-261/256, 7-15=-71/1003, 9-15=-848/224, 9-13=-19/513, 10-13=-172/188, 3-19=-2997/202 10-12=-3255/247 NOTES 1) Unbalanced roof live loads have been conside this design.	Vasd=103 II; Exp B; E 3-8-10 to 1 Interior (1) 45-8-4 zor verticals, and 7. 19 applied or prticals, and 7. 0-0-0 oc 9-15, 3-19, 2-202 (LC 14) 2-189 (LC 47) 2004/364, 10 provide ac provide ac 10 provide ac 11 provide mage 12 provide mage 12 provide mage 12 provide mage 12 provide mage 12 provide mage 12 provide mage 13 provide mage 14 provide mage 15 provide ac 16 provide ac 17 provide mage 18 provide mage 18 provide mage 19 provide mage 19 provide mage 10 provide mage 12 provide mage 12 provide mage 12 provide mage 12 provide mage 12 provide mage 13 provide mage 14 provide mage 15 provide mage 16 provide mage 17 provide mage 18 provide mage 19 provide mage 19 provide mage 10 provide mage 10 provide mage 10 provide mage 12 provide mage 13 provide mage 14 provide mage 15 provide mage 16 provide mage 17 provide mage 18 provide mage 18 provide mage 19 provide mage 19 provide mage 10 pr	CE 7-16; Vult=130mph (3-see mph; TCDL=6.0psf; BCDL=6 Enclosed; MWFRS (envelop xterior(2E) -0-10-8 to 3-8-10 (2-10-1, Exterior(2R) 12-10- 32-11-3 to 41-1-2, Exterior(e; cantilever left and right ex) t and right exposed; C-C for r WFRS for reactions shown; plate grip DOL=1.60 CE 7-16; Pr=20.0 psf (roof LI =1.15); Pf=20.0 psf (Lum DC); Is=1.0; Rough Cat B; Fully Ct=1.10 ad snow loads have been co has been designed for great 0 psf or 1.00 times flat roof I non-concurrent with other li lequate drainage to prevent has been designed for a lin toom chord in all areas where II by 2-00-00 wide will fit bet any other members, with BC rder(s) for truss to truss con echanical connection (by oth ate capable of withstanding ' A Simpson Strong-Tie conne ided to connect truss to bear jt(s) 19. This connection is f onsider lateral forces. is designed in accordance w and Residential Code section: and referenced standard At	6.0psf; h=25ft; Cat. e) exterior zone), Interior (1) 1 to 32-11-3, 22) 41-1-2 to xposed ; end members and Lumber L: Lum DOL=1.15 DL=1.15 Plate / Exp.; Ce=0.9; nsidered for this ter of min roof live load of 20.0 psf on ive loads. water ponding. 0 psf bottom / other live loads. // o	or th bottc LOAD C	e orientati om chord. ASE(S)	on of the purlin alor Standard Standard Standard Standard Standard Standard	NINITAR OLIVIA

June 10,2024

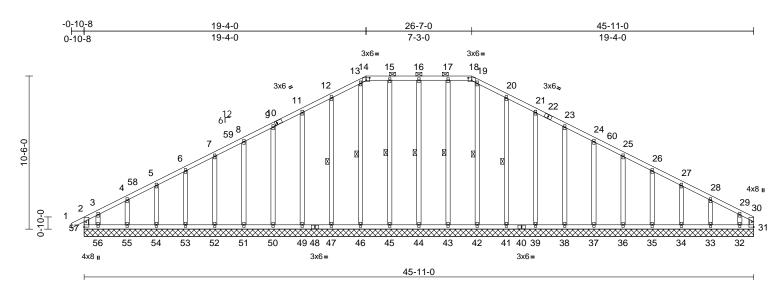
Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	34 Mason Ridge-Roof-Robie L	
24070014	A04	Piggyback Base	8	1	Job Reference (optional)	166103876

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri Jun 07 11:13:07 ID:RolbS?ozoBN92ZDIM1oAnAz9L6s-RfC?PsB70Hq3NSqPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

-0-10-8 6-7-11 12-11-13 19-4-0 26-7-0 32-11-3 39-3-5 45-11-0 0-10-8 6-7-11 6-4-3 6-4-3 7-3-0 6-4-3 6-4-3 6-7-11 6x10= 6x10= 6 31 7₃₂ 8x10 🚽 8x10 6¹² 5 8 ³³34 29^{30} 10-7-6 10-6-0 2x4 🖌 2x4。 9 4 35 28 4x5 💋 3 10 0-10-0 Þ 3719 1**8**8 40 4**1**3 1242 20 36 39 14 43 11 5x8= 4x5= 6x8= 5x6= 2x4 I 2x4= 6x8= 4x5= 8x10= 4x80-0-0 27-2-12 18-21/04-5 2x4 I 18-8-10 <u>18-8-4</u> ∦ 27-0-1127-2-6 9-9-12 15-10-0 22-11-8 36-1-4 45-11-0 9-9-12 6-0-4 2-10-4 4-1-3 9-9-12 4-1-3 0-1-11 6-1-4 0-0-6 0-0-6 0-1-11 2 - 9 - 4Scale = 1:80.6 Plate Offsets (X, Y): [2:Edge,0-3-12], [5:0-5-0,0-4-8], [8:0-5-0,0-4-8], [10:Edge,0-0-15], [18:0-3-0,0-3-8] Loading 2-0-0 CSI DEFL in l/defl L/d PLATES GRIP (psf) Spacing (loc) TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.34 Vert(LL) -0.43 11-13 >999 240 MT20 244/190 Snow (Pf) 20.0 Lumber DOL 1.15 BC 0.53 Vert(CT) -0.57 11-13 >972 180 TCDL Rep Stress Incr WB Horz(CT) 10.0 YES 0.61 0.12 10 n/a n/a BCLL 0.0 IRC2018/TPI2014 Matrix-MSH Code BCDL 10.0 Weight: 332 lb FT = 20% LUMBER 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) 13) This truss is designed in accordance with the 2018 Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. International Residential Code sections R502.11.1 and TOP CHORD 2x6 SP 2400F 2.0E II; Exp B; Enclosed; MWFRS (envelope) exterior zone R802.10.2 and referenced standard ANSI/TPI 1. 2x6 SP 2400F 2.0E *Except* 17-15:2x4 SP BOT CHORD and C-C Exterior(2E) -0-10-8 to 3-8-10, Interior (1) 14) Graphical purlin representation does not depict the size No.2 3-8-10 to 12-10-1, Exterior(2R) 12-10-1 to 33-0-8, WEBS 2x4 SP No.3 or the orientation of the purlin along the top and/or Interior (1) 33-0-8 to 41-3-14, Exterior(2E) 41-3-14 to WEDGE Right: 2x4 SP No.3 bottom chord. 45-11-0 zone; cantilever left and right exposed ; end SLIDER Left 2x4 SP No.3 -- 1-2-1 LOAD CASE(S) Standard vertical left and right exposed;C-C for members and BRACING forces & MWFRS for reactions shown; Lumber TOP CHORD Structural wood sheathing directly applied or DOL=1.60 plate grip DOL=1.60 4-5-8 oc purlins, except TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) 2-0-0 oc purlins (5-7-9 max.): 6-7. Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate BOT CHORD Rigid ceiling directly applied or 10-0-0 oc DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; bracing, Except: Cs=1.00; Ct=1.10 6-0-0 oc bracing: 16-17,15-16. 4) Unbalanced snow loads have been considered for this WEBS 1 Row at midpt 5-18.8-13 desian. REACTIONS (size) 2=0-3-8, 10= Mechanical 5) This truss has been designed for greater of min roof live Max Horiz 2=168 (LC 18) load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on Max Uplift 2=-50 (LC 14), 10=-32 (LC 15) overhangs non-concurrent with other live loads. Max Grav 2=2522 (LC 47), 10=2467 (LC 47) 6) 200.0lb AC unit load placed on the bottom chord, FORCES (lb) - Maximum Compression/Maximum 22-11-8 from left end, supported at two points, 5-0-0 Tension apart. 1-2=0/27, 2-4=-4806/77, 4-6=-4630/74 TOP CHORD Provide adequate drainage to prevent water ponding. 7) RT CAR 6-7=-3414/99, 7-9=-4701/82, 9-10=-4911/88 0 This truss has been designed for a 10.0 psf bottom 8) BOT CHORD 2-20=-124/4162, 18-20=0/3924, chord live load nonconcurrent with any other live loads. 14-18=0/3321, 13-14=0/3321, 11-13=0/3950, * This truss has been designed for a live load of 20.0psf 9) - ununununun 10-11=-71/4263, 16-17=-10/0, 15-16=-10/0 on the bottom chord in all areas where a rectangle WEBS 4-20=-184/175, 5-20=-92/390, WILLIAM DATE 3-06-00 tall by 2-00-00 wide will fit between the bottom 5-18=-889/314, 17-18=0/1283, 6-17=0/1379, chord and any other members, with BCDL = 10.0psf. SEAL 7-15=0/1388, 13-15=0/1292, 8-13=-927/313, 10) Refer to girder(s) for truss to truss connections. 036322 8-11=-94/455, 9-11=-235/184, 14-16=-268/0 11) Provide mechanical connection (by others) of truss to NOTES bearing plate capable of withstanding 32 lb uplift at joint 10. Unbalanced roof live loads have been considered for 1) 12) One H2.5A Simpson Strong-Tie connectors this design. recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces. G minin June 10,2024



Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	34 Mason Ridge-Roof-Robie L	
24070014	A05	Piggyback Base Supported Gable	1	1	Job Reference (optional)	166103877

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri Jun 07 11:13:07 ID:uWJdR55VOCGgRqzX2BjmW_z9Jxb-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:79												
Plate Offsets (X, Y): [10:0-1-11,0-	1-8], [14:0-3-0,0-2-0],	[18:0-3-0,0-2-0]									
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MF	0.16 0.09 0.22	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01	(loc) - - 31	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 347 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	6-0-0 oc purlins, e 2-0-0 oc purlins (6 Rigid ceiling direct bracing. 1 Row at midpt (size) 31=45-1 33=45-1 35=45-1 39=45-1 42=45-1 46=45-1 49=45-1	eathing directly applie xcept end verticals, ai 0-0 max.): 14-18. ly applied or 6-0-0 oc 16-44, 15-45, 13-46 12-47, 17-43, 19-42 20-41 1-0, 32=45-11-0, 1-0, 36=45-11-0, 1-0, 43=45-11-0, 1-0, 43=45-11-0, 1-0, 45=45-11-0, 1-0, 47=45-11-0, 1-0, 50=45-11-0, 1-0, 52=45-11-0,	nd ,	3 3 4 4 4 4 5 5 5 5 5 5 5 5 5 3 3 3 3 3	$\begin{array}{l} 1=-26 \ (LC \ 13),\\ 3=-37 \ (LC \ 15),\\ 5=-43 \ (LC \ 15),\\ 7=-44 \ (LC \ 15),\\ 9=-43 \ (LC \ 15),\\ 3=-14 \ (LC \ 11),\\ 5=-14 \ (LC \ 11),\\ 5=-14 \ (LC \ 11),\\ 3=-43 \ (LC \ 14),\\ 3=-43 \ (LC \ 14),\\ 7=-64 \ (LC \ 10)\\ 1=167 \ (LC \ 15),\\ 3=166 \ (LC \ 22),\\ 5=161 \ (LC \ 41),\\ 7=214 \ (LC \ 45),\\ 9=221 \ (LC \ 45),\\ 9=221 \ (LC \ 45),\\ 4=218 \ (LC \ 22),\\ 4=218 \ (LC \ 27),\\ 9=219 \ (LC \ 43),\\ 1=208 \ (LC \ 43),\\ 1=208 \ (LC \ 43),\\ 3=161 \ (LC \ 41),\\ 5=169 \ (LC \ 41),\\ 5=160 \ (LC \ 41),\\ $	34=-45 (LC 1 36=-44 (LC 1 38=-44 (LC 1 41=-55 (LC 1 41=-55 (LC 1 44=-34 (LC 1 50=-44 (LC 1 50=-44 (LC 1 54=-46 (LC 1 54=-179 (LC 1 32=130 (LC 34=159 (LC 34=159 (LC 34=159 (LC 43=223 (LC 43=223 (LC 43=223 (LC 43=217 (LC 45=217 (LC 45=217 (LC 55=223 (LC 52=161 (LC 54=158 (LC 54=158 (LC 1))))))))))))))))))))))))))))))))))))	15), 15), 15), 15), 15), 15), 15), 15), 14), 14), 14), 14), 14), 14), 53), 45), 45), 45), 45), 45), 45), 43), 43), 43),	TOP CF		3-4=- 6-7=-(9-11= 12-13 14-15 16-17 18-19 20-21 23-24 25-26 28-29 30-31	66/122, 7-8=-56/ -83/237, 11-12= =-122/333, 13-14 =-114/317, 15-16 =-114/317, 17-18 =-115/301, 19-22 =-101/282, 21-22 =-69/192, 24-25=	//83, 5-6=-91/99, 147, 8-9=-69/192, -101/282, 4=-115/301, 5=-114/317, 5=-114/317, 0=-122/333, 3=-83/237, =-51/147, =-51/57, 27-28=-74/39, =-165/58,
		1-0, 54=45-11-0,	FORCES		7=206 (LC 32)	on/Maximum				N.	O'. FESS	AND VIL

FORCES (lb) - Maximum Compression/Maximum Tension

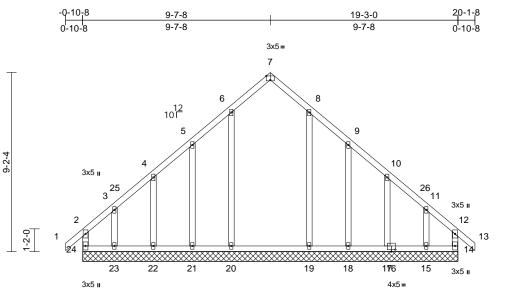
Continued on page 2

55=45-11-0, 56=45-11-0,

57=45-11-0

Max Horiz 57=150 (LC 14)

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. WARNING Design valid for use only with MTek connectors. This design is based only upon parameters and property incorporate this design is based only upon parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Job	Truss	Truss Type	Qty	Ply	34 Mason Ridge-Roof-Robie L	
24070014	A05	Piggyback Base Supported Gal	ble 1	1	Job Reference (optional)	166103877
Carter Componen	ts (Sanford, NC), Sanford, NC - 27332,				5 2024 MiTek Industries, Inc. Fri Jun 07 11:13:07	Page: 2
BOT CHORD	56-57=-33/142, 55-56=-33/142, 54-55=-33/142, 53-54=-33/142, 52-53=-33/142, 51-52=-33/142, 50-51=-33/142, 49-50=-33/142, 47-49=-33/142, 46-47=-33/142, 45-46=-33/142, 42-43=-33/142, 43-44=-33/142, 39-41=-33/142, 38-39=-33/142, 37-38=-33/142, 36-37=-33/142, 35-36=-33/142, 34-35=-33/142, 33-34=-33/142, 32-33=-33/142, 31-32=-33/142,	ID:uWJdR5 16) Graphical purlin represent or the orientation of the pu bottom chord. LOAD CASE(S) Standard	ation does not depic	ct the size	PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f	
WEBS	$\begin{array}{l} 16\-44\-=\-178/76, 15\-45\-=\-177/38, \\ 13\-46\-=\-142/0, 12\-47\-=\-187/91, \\ 11\-49\-=\-179/76, 9\-50\-=\-183/77, 8\-51\-=\-167/75, \\ 7\-52\-=\-126/77, 6\-53\-=\-127/75, \\ 4\-55\-=\-131/117, 3\-56\-=\-94/125, \\ 17\-43\-=\-177/38, 19\-42\-=\-140/0, \\ 20\-41\-=\-189/91, 21\-39\-=\-181/76, \\ 23\-38\-=\-183/77, 24\-37\-=\-174/77, \\ 25\-36\-=\-126/78, 26\-35\-=\-127/75, \\ 27\-34\-=\-126/99, 28\-33\-=\-130/125, \\ 29\-32\-=\-113/151 \end{array}$					
NOTES						
 Unbalanced this design. 	d roof live loads have been considered for	ır				
Vasd=103n II; Exp B; E and C-C Cc 3-8-10 to 14 Exterior(2N 45-9-4 zone vertical left forces & M	E 7-16; Vult=130mph (3-second gust) nph; TCDL=6.0psf; BCDL=6.0psf; h=25fi nclosed; MWFRS (envelope) exterior zo orner(3E) -0-10-8 to 3-8-10, Exterior(2N) 4-8-14, Corner(3R) 14-8-14 to 30-11-8,) 30-11-8 to 40-11-8, Corner(3E) 40-11-1 ; cantilever left and right exposed ; end and right exposed; C- C for members and WFRS for reactions shown; Lumber olate grip DOL=1.60	ne 3 to				
	gned for wind loads in the plane of the tr	JSS				
see Standa	tuds exposed to wind (normal to the face rd Industry Gable End Details as applica ualified building designer as per ANSI/T	ble,				
Plate DOL=	E 7-16; Pr=20.0 psf (roof LL: Lum DOL= :1.15); Pf=20.0 psf (Lum DOL=1.15 Plate ; Is=1.0; Rough Cat B; Fully Exp.; Ce=0. t=1.10)				
5) Unbalanced	s now loads have been considered for t	nis				
load of 12.0	as been designed for greater of min roo) psf or 1.00 times flat roof load of 20.0 p					
	non-concurrent with other live loads. equate drainage to prevent water pondin	2				
8) All plates a	re 2x4 MT20 unless otherwise indicated.					
10) Truss to be braced aga	res continuous bottom chord bearing. fully sheathed from one face or securely inst lateral movement (i.e. diagonal web) s spaced at 2-0-0 oc.					
12) This truss h	as been designed for a 10.0 psf bottom	-1-				
13) * This truss on the botto 3-06-00 tall	bad nonconcurrent with any other live load has been designed for a live load of 20. om chord in all areas where a rectangle by 2-00-00 wide will fit between the bott any other members.	Opsf				
 14) Provide me bearing plat 57, 26 lb up uplift at join 49, 44 lb up uplift at join 54, 35 lb up uplift at join 39, 44 lb up uplift at join 34, 37 lb up 15) This truss is 	chanical connection (by others) of truss te capable of withstanding 64 lb uplift at blift at joint 31, 34 lb uplift at joint 44, 14 l t 45, 53 lb uplift at joint 47, 43 lb uplift at blift at joint 50, 44 lb uplift at joint 51, 44 l t 52, 43 lb uplift at joint 53, 46 lb uplift at blift at joint 55, 179 lb uplift at joint 56, 14 t 43, 55 lb uplift at joint 41, 43 lb uplift at blift at joint 38, 44 lb uplift at joint 37, 44 l t 36, 43 lb uplift at joint 35, 45 lb uplift at blift at joint 33 and 147 lb uplift at joint 32 s designed in accordance with the 2018 al Residential Code sections R502.11.1 d	oint o joint o joint lb joint o joint				

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	34 Mason Ridge-Roof-Robie L	
24070014	B01	Common Supported Gable	1	1	Job Reference (optional)	166103878

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri Jun 07 11:13:08 ID:qdvylzw5wbNp8WJffYyFPp29Jxq-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

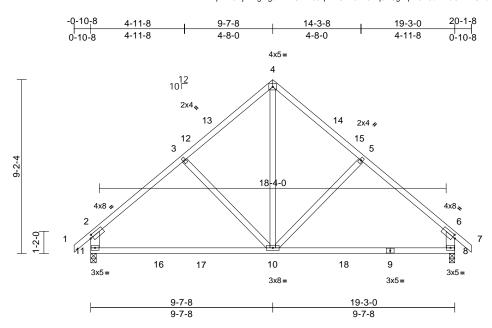
H

Scale =	1:59.1
---------	--------

Plate Offsets (X, Y): [7:0-2-8,Edge],	[16:0-2-8,0-1-4]										
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Plate Grip DOL1.1Lumber DOL1.1Rep Stress IncrYE	15	CSI TC BC WB Matrix-MR	0.35 0.21 0.25	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01	(loc) - - 14	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 125 lb	GRIP 244/190 FT = 20%
FORCES	6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 14=19-3-(21=19-3-(24=19-3-(24=19-3-(24=231 (L Max Horiz 24=231 (L 17=-37 (L 21=-118 (23=-244 (Max Grav 14=289 (L 17=207 (L 19=359 (L 23=205 (L 23=205 (L 0) - Maximum Com	applied or 10-0-0 oc 0, 15=19-3-0, 17=19-3-0, 0, 19=19-3-0, 20=19-3-0, 0, 22=19-3-0, 23=19-3-0, 0, 22=19-3-0, 23=19-3-0, 1, 22=19-3-0, 23=19-3-0, 1, 21, 15=-241 (LC 15), 1, 15=-241 (LC 15), 1, 15=-119 (LC 15), 1, 15=200 (LC 12), 1, 15=200 (LC 26), 1, 22=207 (LC 25), 1, 22=207 (LC 25), 1, 25), 24=293 (LC 27) 1, 24=293 (LC 27) 1, 25, 25, 24=293 (LC 27) 1, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25	 this design Wind: ASC Vasd=103r II; Exp B; E and C-C C to 6-7-8, Cd to 17-1-8, Cd left and rigit exposed; C reactions s DOL=1.60 Truss desi only. For s see Standa or consult of Plate DOL= DOL=1.15) Cs=1.00; C 	E 7-16; Vult=130m nph; TCDL=6.0psf; nclosed; MWFRS i orner(3E) -0-10-8 to orner(3E) 67-8 to 'Corner(3E) 17-1-8 t at exposed ; end ve C for members an- hown; Lumber DOL gned for wind loads tuds exposed to wi rd Industry Gable I qualified building de E 7-16; Pr=20.0 ps =1.15); Pf=20.0 ps ; Is=1.0; Rough Ca	19=-253 -17=-14 we been ph (3-sec BCDL=6 envelope o 2-1-8, E 0 20-1-8 tritical left d forces o =1.60 pl s in the p nd (norm End Deta signer a: i (roof LI (Lun DC t B; Fully	/30, 9/85, considered for .0psf; h=25ft; e) exterior zon :xterior(2N) 2- xterior(2N) 21 zone; cantilev and right & MWFRS for ate grip lane of the tru al to the face) ils as applicat s per ANSI/TF :: Lum DOL=1 DL=1.15 Plate Exp.; Ce=0.9	Cat. ee .1-8 7-8 ver ss y ble, P1 1. .15	on t 3-00 cho 13) Pro bea 24, upli join 15. 14) This Inte R80	the botto 6-00 tall ord and a vide me tring plat 65 lb up ft at join t 18, 37 s truss is ernationa	om cho by 2-0 iny oth chanic te capa lift at ju t 22, 24 lb uplif s desig and ref) Sta	rd in all areas wh 0-00 wide will fit er members, with al connection (by able of withstandi bint 14, 118 lb up 44 lb uplift at join t at joint 17 and 2 ned in accordance dential Code sect erenced standard	between the bottom 1 BCDL = 10.0psf. others) of truss to ng 76 lb uplift at joint 11 at joint 21, 37 lb 23, 119 lb uplift at 241 lb uplift at joint the with the 2018 ions R502.11.1 and
TOP CHORD	9-10=-124/51, 10-11	30/59, 5-6=-121/85, 152/106, 8-9=-121/85, =-148/77, -13=0/38, 12-14=-215/56 -23=-107/270, -21=-107/270, -19=-107/270,	 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. 7) All plates are 2x4 MT20 unless otherwise indicated. 8) Gable requires continuous bottom chord bearing. 9) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). 10) Gable studs spaced at 2-0-0 oc. 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 							22 EERER IIII		

June 10,2024

Page: 1


TRENCO AMITEK Affiliate

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	34 Mason Ridge-Roof-Robie L	
24070014	B02	Common	1	1	Job Reference (optional)	166103879

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri Jun 07 11:13:08 ID:IqTKVJwjhvVgmgurDFTUx1z9Jxp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

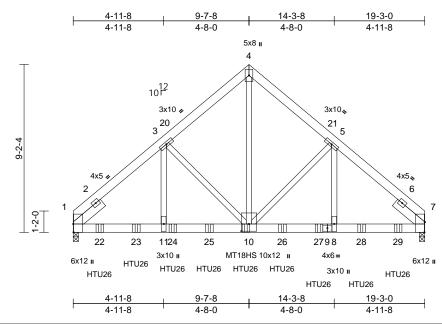
Scale = 1:60.9	
----------------	--

Plate Offsets (X, Y): [2:0-1-9,0-1-12], [6:0-1-9,0-1-12]

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.89 0.91 0.22	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.22 -0.38 0.02	(loc) 8-10 8-10 8	l/defl >999 >600 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 106 lb	GRIP 244/190 FT = 20%
	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 *Except Structural wood shea 2-2-0 oc purlins, exc Rigid ceiling directly bracing. (size) 8–0-3-8, 1 Max Horiz 11=-241 (I Max Uplift 8=-72 (LC Max Grav 8=928 (LC	athing directly applic sept end verticals. applied or 10-0-0 o 1=0-3-8 LC 12) 15), 11=-72 (LC 14	ed or 6) c 7) 4) 8)	design. This truss ha load of 12.0 overhangs n This truss ha chord live lo * This truss lo on the bottoo 3-06-00 tall 1 chord and at One H2.5A \$ recommended	snow loads have t as been designed f psf or 1.00 times fl on-concurrent with as been designed f ad nonconcurrent v has been designed m chord in all area: by 2-00-00 wide wi ny other members, Simpson Strong-Ti ed to connect truss (o) 11 and 8. Thie (o)	for great lat roof I o other li for a 10. with any d for a liv s where ill fit betv with BC e conne s to bear	er of min roo bad of 20.0 p ve loads. 0 psf bottom other live loa te load of 20. a rectangle veen the bott CDL = 10.0ps CDL = 10.0ps ctors ing walls due	f live osf on ads. Opsf tom f. e to					
FORCES TOP CHORD BOT CHORD	(lb) - Maximum Com Tension 1-2=0/42, 2-3=-1004 4-5=-840/158, 5-6=- 2-11=-838/151, 6-8= 10-11=-90/701, 8-10	pression/Maximum /132, 3-4=-840/157 1003/133, 6-7=0/42 -839/148 =-3/673	, , L(UPLIFT at jt(s) 11 and 8. This connection is for uplift only and does not consider lateral forces. 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard 									
this desigr 2) Wind: ASC	4-10=-81/649, 5-10= ed roof live loads have n. CE 7-16; Vult=130mph imph; TCDL=6.0psf; BC	been considered fo (3-second gust)	ır							4	ALL AND A	ORTH CA	ROUT

- II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 6-7-8, Exterior(2R) 6-7-8 to 12-7-8, Interior (1) 12-7-8 to 17-1-8, Exterior(2E) 17-1-8 to 20-1-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

The second s - COLONNAVANA SEAL 036322 G 100000 June 10,2024


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

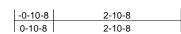
Job	Truss	Truss Type	Qty	Ply	34 Mason Ridge-Roof-Robie L	
24070014	B03	Common Girder	1	3	Job Reference (optional)	166103880

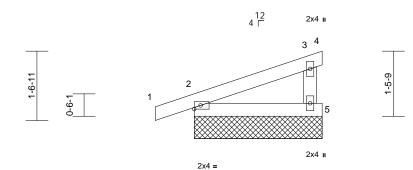
Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri Jun 07 11:13:09 ID:jghui9AGz21q9IQhOSqAIFz9JxV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

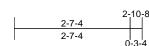
Page: 1

Scale = 1:63.1 Plate Offsets (X, Y): [1:0-5-8,Edge], [7:0-6-13,Edge], [10:0-4-12,0-5-0]

		1				-						
Loading	(psf)	Spacing	1-11-4	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.63	Vert(LL)	-0.11	8-10	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.55	Vert(CT)	-0.20	8-10	>999	180	MT18HS	244/190
TCDL	10.0	Rep Stress Incr	NO	WB	0.91	Horz(CT)	0.05	7	n/a	n/a		21.0.00
BCLL	0.0*	Code	IRC2018/TPI2014		0.01	11012(01)	0.00		n/ a	n/a		
BCDL	10.0	Code		Width - Wior							Weight: 474 lb	FT – 20%
DODL	10.0										Weight. 474 lb	11 = 2070
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD	2x6 SP No.2 2x6 SP 2400F 2.0E 2x4 SP No.3 *Excep Left 2x6 SP No.2 2 2-0-0 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=0-3-8, 7 Max Horiz 1=-182 (L Max Grav 1=11760 (lb) - Maximum Corr Tension 1-3=-12839/328, 3-4 4-5=-9251/329, 5-7= 1-11=-278/9589, 10 8-10=-219/9383, 7-8	2-0-0, Right 2x6 SP N athing directly applied applied or 10-0-0 oc 7=0-3-8 C 8) C 12), 7=-385 (LC 13 (LC 5), 7=11311 (LC 1 (LC 5), 7=11311 (LC 1 pression/Maximum 1=-9254/327, s-12587/359 -11=-278/9589, 3=-219/9383	 except i CASE(5 provide unless (3) Unbalar this des a) Unbalar this des b) Wind: A Vasd=1 II; Exp f cantilev right ex b) TCLL: A Plate D DOL=1. Cs=1.00 c) Unbalar design. 7) All plate 8) This tru chord lift 	SCE 7-16; Vult=130m 3mph; TCDL=6.0psf; ; Enclosed; MWFRS (ir left and right expose osed; Lumber DOL=1 SCE 7-16; Pr=20.0 psf b)L=1.15); Pf=20.0 psf b)L=1.15); Rough Ca ; Ct=1.10 ced snow loads have is has been designed e load nonconcurrent	pack (B) nnectior ls noted ve been bh (3-se BCDL=€ envelop at; end t .60 plate f (roof Ll (Lum DC t B; Fully been co ess othe for a 10. with any	face in the LC is have been as (F) or (B), considered for 0.0psf; h=25ft; e) exterior zonerritcal left anderritcal	Cat. re; d 50 1.15 ; d. ds.	11- enc 14) Fill LOAD (1) De In Ui	10dx1 1, d to conn all nail h CASE(S ead + Sr crease= hiform Lo Vert: 1 oncentra Vert: 10 24=-213	/2 Trus lect tru loles w) Stal how (ba 1.15 bads (li 4=-58, ted Lo =-2134 34 (B), 2134	Ing-Tie HTU26 (2 ss) or equivalent a ss(es) to back fa there hanger is in ndard alanced): Lumber b/ft) 4-7=-58, 12-16=- ads (lb) 4 (B), 22=-2134 (25=-2134 (B), 26 (B), 29=-1938 (B	0-10d Girder, at 17-9-8 from the left ce of bottom chord. contact with lumber. Increase=1.15, Plate -19 B), 23=-2134 (B), 5=-2134 (B), 27=-2134
(0.131"x3" Top chord staggered Bottom cho staggered Web conno	4-10=-309/11164, 5 5-8=-101/4641, 3-10 3-11=-60/4994 to be connected toge) nails as follows: s connected as follows: at 0-9-0 oc. ords connected as foll at 0-4-0 oc. ected as follows: 2x4 - ember 4-10 2x4 - 1 row	0=-3497/230, ther with 10d s: 2x6 - 2 rows ows: 2x6 - 3 rows 1 row at 0-9-0 oc,	on the b 3-06-00 chord a 10) One H2 recomm UPLIFT and doe 11) This tru Internat R802.10 12) Use Sin 11-10do max. sta	iss has been designer bitom chord in all area tall by 2-00-00 wide w d any other members 5A Simpson Strong-T ended to connect trus at jt(s) 1 and 7. This c s not consider lateral 1 s is designed in accolonal Residential Code .2 and referenced sta pson Strong-Tie HTU. 1 /12 Truss) or equiva rting at 1-5-8 from the truss(es) to back face	as where ill fit betw ie conne s to bear onnectio forces. dance w sections ndard Al 26 (20-1 lent space left end	a rectangle veen the bottc tors ing walls due n is for uplift c ith the 2018 s R502,11.1 at SI/TPI 1. 6d Girder, yed at 2-4-0 oc to 15-9-8 to	to only nd			2	SEA 0363	L L L L L L L L L L L L L L L L L L L


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


818 Soundside Road Edenton, NC 27932


June 10,2024

Job	Truss	Truss Type	Qty	Ply	34 Mason Ridge-Roof-Robie L	
24070014	C01	Monopitch Supported Gable	1	1	I6 Job Reference (optional)	6103881

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri Jun 07 11:13:09 ID:IqTKVJwjhvVgmgurDFTUx1z9Jxp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:25.9

		i			· · · · · ·							i	1
Loading	(psf)	Spacing	1-11-4		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.09	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.05	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES		WB	0.00	Horz(CT)	0.00	4	n/a	n/a		
BCLL	0.0*	Code	IRC201	8/TPI2014	Matrix-MP								
BCDL	10.0											Weight: 12 lb	FT = 20%
LUMBER			4	Unbalanced	snow loads have	been coi	nsidered for t	his					
TOP CHORD	2x4 SP No.2		•,	design.									
BOT CHORD	2x4 SP No.2		5	This truss ha	as been designed t	for great	er of min roof	live					
NEBS	2x4 SP No.3			load of 12.0	psf or 1.00 times f	lat roof l	oad of 20.0 p	sf on					
BRACING					on-concurrent with								
FOP CHORD	Structural wood she	athing directly applie	ed or 6		es continuous bot		d bearing.						
	2-10-8 oc purlins, e	xcept end verticals.	7		spaced at 2-0-0 o								
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 or	с ⁸ ,		as been designed t ad nonconcurrent			de					
	bracing.		. 9		has been designed								
REACTIONS	· · · · · ·	4=2-10-8, 5=2-10-8	s, ⁰ ,		m chord in all area			0001					
	6=2-10-8				by 2-00-00 wide w		0	om					
	Max Horiz 2=46 (LC		、 、	chord and a	ny other members.								
	Max Uplift 2=-44 (LC	5 10), 4=-127 (LC 21 5 14), 6=-44 (LC 10)), 10		hanical connection								
	Max Grav 2=203 (LC	,, , , ,			e capable of withst								
		C 21), 6=203 (LC 21)		· ·	ift at joint 4, 64 lb	uplift at j	oint 5 and 44	lb					
FORCES	(lb) - Maximum Com			uplift at joint									
	Tension		I		designed in accor Residential Code			and					
TOP CHORD	1-2=0/23, 2-3=-93/5	1, 3-4=-47/37,			nd referenced star			anu					
	3-5=-257/241			DAD CASE(S)									
BOT CHORD	2-5=-25/50		-		Otandara								
NOTES												WITH CA	11.
	CE 7-16; Vult=130mph												1111
	mph; TCDL=6.0psf; B											ITH UA	ROUL
	Enclosed; MWFRS (er										AN'	A	De Inie
	corner(3E) -0-10-8 to 2										11	FESS	The
	zone; cantilever left an									6	UN	in the	Marc

- and C-C Corner(3E) -0-10-8 to 2-1-8, Exterior(2N) 2-1-8 to 2-10-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
 2) Truss designed for wind loads in the plane of the truss
- only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15)
- 3) TOLL: ASCE 7-10, Pf=20.0 psi (too LL: Lum DOL=1.1 Plate DOL=1.15); Pf=20.0 psi (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
 - ameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Page: 1

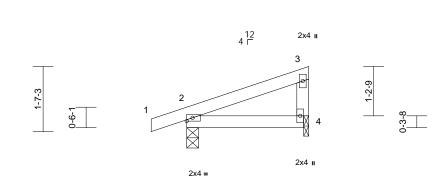
itute (www.tpinst.org) 818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	34 Mason Ridge-Roof-Robie L
24070014	C02	Monopitch	4	1	I66103882 Job Reference (optional)

3-0-0

3-0-0


-0-10-8

0-10-8

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri Jun 07 11:13:09 ID:IqTKVJwjhvVgmgurDFTUx1z9Jxp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:28.3

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.14	Vert(LL)	0.00	4-7	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.09	Vert(CT)	-0.01	4-7	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	2	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 12 lb	FT = 20%
BOT CHORD 2 WEBS 2 BRACING TOP CHORD 5 BOT CHORD 5 BOT CHORD 6 BOT CHORD 6 BOT CHORD 6 BOT CHORD 7 BOT CHORD 1 BOT CHORD 1 BOT CHORD 1 BOT CHORD 1 BOT CHORD 2 NOTES 1 1) Wind: ASCE Vasd=103mp II; Exp 8; Enc and C-C Exte exposed ; enc members and Lumber DOL=1 DOL=1.15); I: Cs=1.00; Ct= 3) Unbalanced s design. 4) This truss has load of 12.0 p overhangs nc 5) This truss has	3-0-0 oc purlins, exc Rigid ceiling directly pracing. ize) 2=0-3-8,4 ax Horiz 2=49 (LC ax Uplift 2=-51 (LC Cax Grav 2=236 (LC Ib) - Maximum Com Fension 1-2=0/24, 2-3=-83/6(2-4=-31/58 7-16; Vult=130mph bh; TCDL=6.0psf; Bf closed; MWFRS (en prior(2E) zone; canti d vertical left and rig d forces & MWFRS =1.60 plate grip DO 7-16; Pr=20.0 psf (LI s=1.0; Rough Cat B =1.10; snow loads have be s been designed for po-concurrent with c s been designed for on-concurrent with c	applied or 10-0-0 oc I=0-1-8 13) 10), 4=-20 (LC 14) C 21), 4=139 (LC 21) pression/Maximum 0, 3-4=-101/81 (3-second gust) CDL=6.0psf; h=25ft; C velope) exterior zone lever left and right ght exposed;C-C for for reactions shown; L=1.60 roof LL: Lum DOL=1. um DOL=1.15 Plate ; Fully Exp.; Ce=0.9; en considered for this greater of min roof li roof load of 20.0 psf ther live loads.	on the bol 3-06-00 ta chord and 7) Bearing a using AN: designer s 8) Provide m bearing pl 9) One H2.5 recomme UPLIFT a and does 10) This truss Internation R802.10.2 LOAD CASE(Cat. 5 ve on	s has been designed om chord in all area Il by 2-00-00 wide w any other members joint(s) 4 considers I/TPI 1 angle to grai hould verify capacity echanical connection at at joint(s) 4. A Simpson Strong-Ti ded to connect truss jt(s) 2 and 4. This c not consider lateral f is designed in accor al Residential Code and referenced star 5) Standard	s where ill fit betw parallel 1 n formul of bear n (by oth e conne s to bear onnectio orces. dance w sections	a rectangle veen the botto to grain value a. Building ing surface. ers) of truss t ctors ing walls due n is for uplift o ith the 2018 s R502.11.1 a	o to only			2	SEA 0363	L

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

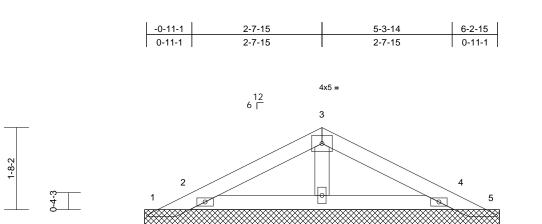
A. GILB A. GILBERT

June 10,2024

Job	Truss	Truss Type	Qty	Ply	34 Mason Ridge-Roof-Robie L	
24070014	PB01	Piggyback	14	1	Job Reference (optional)	166103888

1-9-12

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri Jun 07 11:13:10 ID:VQer1JnjGZ7RoF3MEcmiilz9L6u-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


6

5-3-14

2x4 II

2x4 =

Page: 1

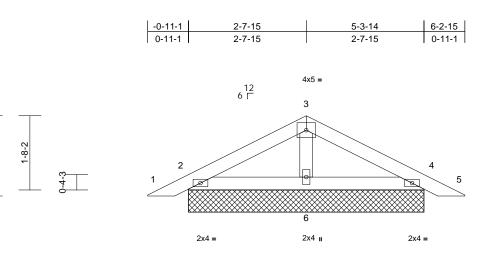
2x4 =

Scale = 1:23.5

Scale = 1:23.5													
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL LUMBER TOP CHORD BOT CHORD OTHERS		Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201 3)	only. For stu see Standard	CSI TC BC WB Matrix-MP ned for wind load ids exposed to w J Industry Gable alified building d	ind (norm End Deta	al to the face), ble,	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 21 lb	GRIP 244/190 FT = 20%
BRACING			4)	TCLL: ASCE	7-16; Pr=20.0 p	sf (roof Ll	L: Lum DOL=	1.15					
TOP CHORD		athing directly appli	ed or		.15); Pf=20.0 psi s=1.0; Rough Ca								
BOT CHORD	6-0-0 oc purlins. Rigid ceiling directly bracing.	applied or 10-0-0 o	c 5)	Cs=1.00; Ct= Unbalanced			-						
REACTIONS		2=7-3-0, 4=7-3-0, 5= 7=7-3-0, 10=7-3-0	=7-3-0, 6) 7)		es continuous bo spaced at 4-0-0		rd bearing.						
FORCES TOP CHORD BOT CHORD	7=-53 (LC Max Grav 1=28 (LC 4=303 (L 6=179 (L) 10=303 (I 00=303 (I 00=30) (I 00=303 (I 00=30) (I	C 21), 2=-53 (LC 14) C 15), 5=-64 (LC 22) C 14), 10=-54 (LC 15 T 4), 2=317 (LC 21) C 22), 5=18 (LC 15) C 22), 7=317 (LC 21) LC 22) npression/Maximum 2/59, 3-4=-72/58,	; 9) ;), 10 ;), 11	chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar 0) Provide mec bearing plate 2, 54 lb uplift joint 5, 53 lb 1) This truss is International R802.10.2 ai	s been designed ad nonconcurremi- nas been designed in chord in all are by 2-00-00 wide v by other members hanical connectif e capable of withs at joint 4, 67 lb u uplift at joint 2 ar designed in acco Residential Cod nd referenced sta d Industry Piggyt	t with any ed for a liv as where will fit betw s. on (by oth standing t uplift at jo nd 54 lb u ordance w e sections andard Al	other live load e load of 20.0 a rectangle ween the bottu- tass) of truss t 53 lb uplift at j int 1, 64 lb up plift at joint 4. vith the 2018 s R502.11.1 a NSI/TPI 1.	Opsf om oint lift at				WITH CA	ROUM
WEBS	3-6=-95/45		12	Detail for Co	nnection to base	truss as					~	OFFES	HAR N'
this desig 2) Wind: AS Vasd=103 II; Exp B; and C-C I exposed members	eed roof live loads have in. CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; B Enclosed; MWFRS (er Exterior(2E) zone; cant ; end vertical left and ri and forces & MWFRS JOL=1.60 plate grip DC	n (3-second gust) CDL=6.0psf; h=25ft nvelope) exterior zor illever left and right ght exposed;C-C for for reactions shown	Cat. ne	consult quali OAD CASE(S)	fied building desi Standard	gner.						SEA 0363	EER AL

- II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
 - WARNING Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

GI annin ann June 10,2024



Job	Truss	Truss Type	Qty	Ply	34 Mason Ridge-Roof-Robie L	
24070014	PB02	Piggyback	2	1	Job Reference (optional)	166103889

1-9-12

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri Jun 07 11:13:11 ID:n01iifxLSCdWNqT1nz_jUEz9Jxo-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

5-3-14

Scale = 1.20	Scale	=	1:26
--------------	-------	---	------

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TF		CSI TC BC WB Matrix-MP	0.11 0.12 0.02	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 2	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 21 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 2=5-3-14, 7=5-3-14, Max Horiz 2=-26 (LC Max Uplift 2=-32 (LC (LC 14), 7 15) Max Grav 2=206 (LC	C 14), 4=-37 (LC 15), 7=-32 (LC 14), 11=-37 C 21), 4=206 (LC 22) C 22), 7=206 (LC 21)	f Pl. DX C S S) Ur dor dor 6 Th loa ov 7) Ga 8) Ga 8) Ga 9) Th 6=-3 ch 6=-3 (LC or 3- ch 11) Or	late DOL=1. OL=1.15); Is s=1.00; Ct=' nbalanced s esign. his truss has ad of 12.0 p verhangs no able require able studs s his truss has nord live load This truss has nord and any ne H2.5A Si	7-16; Pr=20.0 ps 15); Pf=20.0 ps s=1.0; Rough Ca 1.10 snow loads have s been designed sf or 1.00 times in-concurrent with s continuous bo paced at 2-0-0 of been designed d nonconcurrent as been designed chord in all are- y 2-00-00 wide v y other members impson Strong-T d to connect trus	tion provide the provided the p	DL=1.15 Plate Exp.; Ce=0.9 asidered for the er of min roof bad of 20.0 ps re loads. d bearing. D psf bottom other live loa e load of 20.0 a rectangle ween the bottoc ctors); live sf on ds. 0psf				vvegnt. 21 ib	FT = 2076
this desig 2) Wind: AS Vasd=10 II; Exp B; and C-C exposed members Lumber I 3) Truss de only. For see Stan	2-6=-6/38, 4-6=0/38 3-6=-107/47	0, 3-4=-63/60, 4-5=0/ been considered for (3-second gust) CDL=6.0psf; h=25ft; ivelope) exterior zone ilever left and right ght exposed;C-C for for reactions shown; $D_{L}=1.60$ n the plane of the trus (normal to the face), d Details as applicab	25 or 12) Tr Int R 13) Se De Co LOAD Cat.	nly and does his truss is d tternational F 802.10.2 and ee Standard etail for Con	b) 2, 4, and 6. The s not consider la designed in accoor Residential Coda d referenced sta I Industry Piggyb inection to base and building desi Standard	teral force rdance w e sections indard AN pack Trus truss as a	es. ith the 2018 R502.11.1 a ISI/TPI 1. s Connection	nd		A statistics		SEA 0363	• -

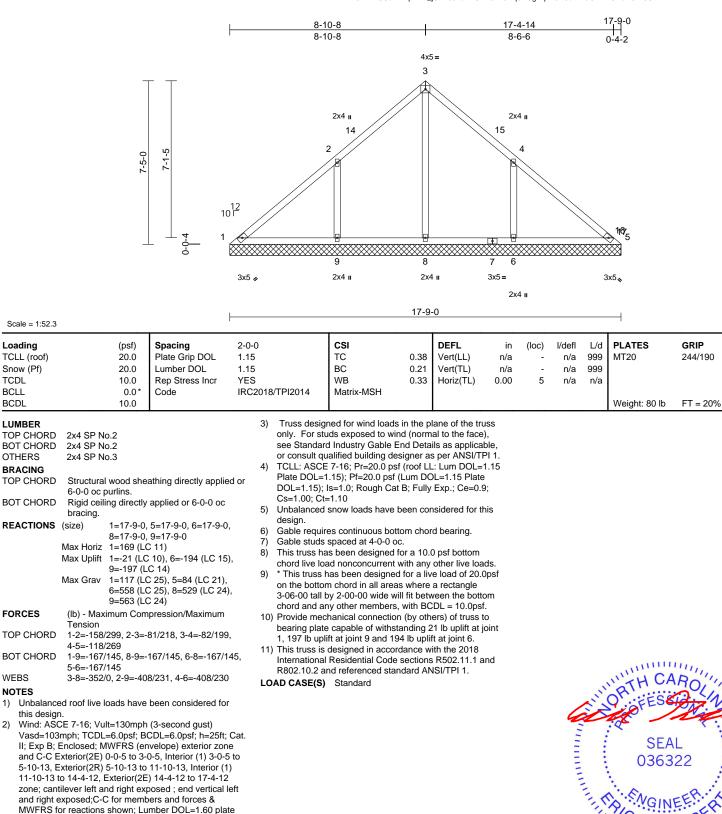
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

G minim June 10,2024

Job	Truss	Truss Type	Qty	Ply	34 Mason Ridge-Roof-Robie L	
24070014	V01	Valley	1	1	I66103890 Job Reference (optional)	

BCLL


BCDL

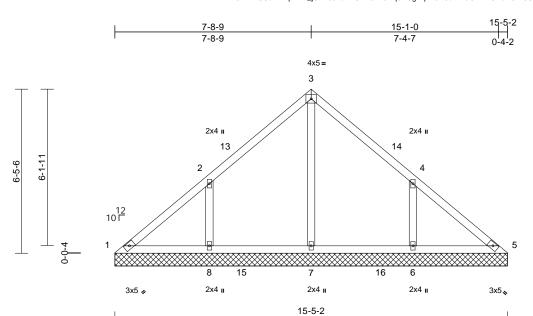
1)

2)

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri Jun 07 11:13:11 ID:n01iifxLSCdWNqT1nz_jUEz9Jxo-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

MWFRS for reactions shown; Lumber DOL=1.60 plate arip DOL=1.60



G mm June 10,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

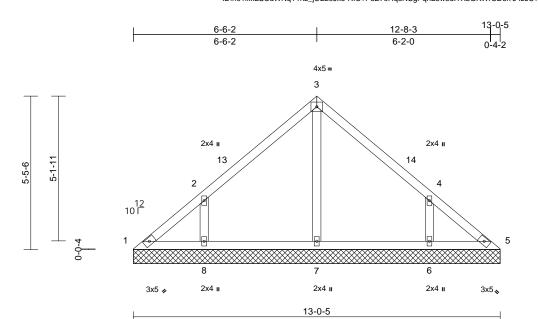
Job	Truss	Truss Type	Qty	Ply	34 Mason Ridge-Roof-Robie L	
24070014	V02	Valley	1	1	Job Reference (optional)	166103891

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri Jun 07 11:13:11 ID:n01iifxLSCdWNqT1nz_jUEz9Jxo-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:45.3

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL		(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-MSH	0.31 0.16 0.18	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 68 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD	2x4 SP N Structura 6-0-0 oc Rigid ceil bracing. (size) Max Horiz Max Uplift Max Grav (lb) - Max Tension 1-2=-153 4-5=-124	lo.2 lo.3 al wood she purlins. ling directly 1=15-5-2, 7=15-5-2, 1=-147 (L 8=-168 (L 1=127 (LC 6=473 (LC 8=473 (LC kimum Com i/181, 2-3=-/143	C 12) C 12) C 10), 6=-165 (LC 15 C 14) C 25), 5=102 (LC 21 C 21), 7=439 (LC 24 C 20) pression/Maximum 152/144, 3-4=-152/	ed or 2, 5), 1), 123,	 only. For sti see Standar or consult qu TCLL: ASCE Plate DOL= DOL=1.15); Cs=1.00; Ct Unbalanced design. Gable requir Gable requir Gable studs This truss h chord live lo * This truss on the botto 3-06-00 tall chord and an Provide med bearing plate 1, 168 lb upl 	ned for wind loads uds exposed to wi d Industry Gable B Jalified building de 7-16; Pr=20.0 ps 1.15); Pf=20.0 ps Is=1.0; Rough Ca =1.10 snow loads have res continuous bot spaced at 4-0-0 o tas been designed ad nonconcurrent has been designed ad nonconcurrent has been designed m chord in all area by 2-00-00 wide withs thanical connectio e capable of withs iff at joint 8 and 16 designed in accon	nd (norm End Deta signer a: if (roof LL (Lum DC t B; Fully been cor tom chor ic. for a 10. with any d for a liv as where ill fit betv , with BC n (by oth tanding 2 55 lb up2	al to the face ils as applica s per ANSI/T \perp : Lum DOL= \perp =1.15 Plate Exp.; Ce=0.1 msidered for t rd bearing. 0 psf bottom other live loa re load of 20.0 a rectangle veen the bott DL = 10.0ps ers) of truss i 31 b uplift at j ft at joint 6.), ble, Pl 1. 1.15 9; his ods. 0psf om f. to					
BOT CHORD WEBS NOTES	5-6=-80/ [,] 3-7=-253	114 3/0, 2-8=-38	0/114, 6-7=-80/114, 0/204, 4-6=-380/203	3		Residential Code nd referenced sta Standard			and			A	WHTH CA	RO

- Unbalanced roof live loads have been considered for this design.
 Wind: ASCE 7-16; Vult=130mph (3-second gust)
- Visid: Note: 110, Vulta Toolman (5 Second gdd); Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Interior (1) 3-0-5 to 4-8-14, Exterior(2R) 4-8-14 to 10-8-14, Interior (1) 10-8-14 to 12-5-6, Exterior(2E) 12-5-6 to 15-5-6 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

A MiTek Affiliate

Job	Truss	Truss Type	Qty	Ply	34 Mason Ridge-Roof-Robie L	
24070014	V03	Valley	1	1	Job Reference (optional)	66103892

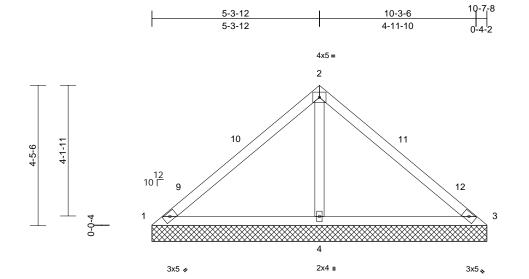
Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri Jun 07 11:13:11 ID:n01iifxLSCdWNqT1nz_jUEz9Jxo-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scal	e = 1	1:40.9

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL		(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.32 0.12 0.10	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 55 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No Structural 6-0-0 oc p	o.2 o.3 wood shea ourlins.	athing directly applie		only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced	ned for wind loads ids exposed to win d Industry Gable E lalified building de 7-16; Pr=20.0 ps .15); Pf=20.0 ps [s=1.0; Rough Cat =1.10 snow loads have I	nd (norm ind Deta signer as f (roof LL (Lum DC B; Fully	al to the face ils as applical s per ANSI/TF .: Lum DOL= DL=1.15 Plate Exp.; Ce=0.9), ble, PI 1. 1.15 9;					
REACTIONS	Max Horiz Max Uplift Max Grav	7=13-0-5, 1=-123 (LC 1=-28 (LC 8=-145 (LC 1=107 (LC	C 10) 10), 6=-142 (LC 15) C 14) C 25), 5=85 (LC 24), C 21), 7=275 (LC 21)), (6) (7) (8) (9)	Gable studs This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b	es continuous bott spaced at 4-0-0 of is been designed f ad nonconcurrent has been designed in chord in all area by 2-00-00 wide with	c. for a 10.0 with any I for a liv s where Il fit betv	D psf bottom other live loa e load of 20.0 a rectangle	Opsf					
FORCES	Tension		pression/Maximum)) Provide mec	iy other members. hanical connection capable of withst	n (by oth							
TOP CHORD	4-5=-106/ 1-8=-41/1 5-6=-41/8	68 01, 7-8=-4 3	204/115, 3-4=-204/1 1/83, 6-7=-41/83,	1	 This truss is International 	ift at joint 8 and 14 designed in accor Residential Code nd referenced star	dance w sections	ith the 2018 R502.11.1 a	nd				TH CA	1111
WEBS NOTES	3-7=-190/	0, 2-8=-379	9/199, 4-6=-379/199	L	DAD CASE(S)	Standard						. II	ATH CA	ROLL

- Unbalanced roof live loads have been considered for this design.
 Wind: ASCE 7-16; Vult=130mph (3-second gust)
- Vind: AGCE 7-10, VulterSompth (3-Section gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Interior (1) 3-0-5 to 3-6-7, Exterior(2E) 10-0-10 to 13-0-10 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

SEAL 036322 June 10,2024


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	34 Mason Ridge-Roof-Robie L	
24070014	V04	Valley	1	1	Job Reference (optional)	166103893

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri Jun 07 11:13:11 ID:n01iifxLSCdWNqT1nz_jUEz9Jxo-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

10-7-8

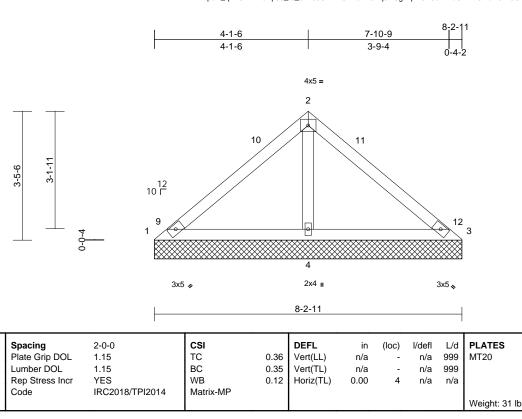
Scale = 1:36.5

		-							-	
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC 0.56 BC 0.50 WB 0.25 Matrix-MSH	DEFLinVert(LL)n/aVert(TL)n/aHoriz(TL)0.01	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 41 lb	GRIP 244/190 FT = 20%
	bracing. (size) 1=10-7-8, Max Horiz 1=-100 (L Max Uplift 1=-70 (LC 4=-132 (L Max Grav 1=-78 (LC (LC 20) (Ib) - Maximum Com Tension	v applied or 6-0-0 oc , 3=10-7-8, 4=10-7-8 , C 10) C 21), 3=-70 (LC 20), , C 14) 20), 3=78 (LC 21), 4 apression/Maximum .138/438	 Plate DOL=1 DOL=1.15); Cs=1.00; Cts Unbalanced design. Gable requir Gable studs This truss ha chord live loa * This truss for on the bottor 3-06-00 tall t chord and ar Provide mec bearing plate 1, 70 lb upliff This truss is International 	snow loads have been cor es continuous bottom chor spaced at 4-0-0 oc. as been designed for a 10.0 ad nonconcurrent with any has been designed for a liv m chord in all areas where by 2-00-00 wide will fit betw y other members. hanical connection (by oth e capable of withstanding 7 t at joint 3 and 132 lb uplift designed in accordance w Residential Code sections nd referenced standard AN	DL=1.15 Plate Exp.; Ce=0.9; hsidered for this d bearing. D psf bottom other live loads. e load of 20.0psf a rectangle veen the bottom ers) of truss to 0 lb uplift at joint at joint 4. ith the 2018 s R502.11.1 and					
NOTES 1) Unbalance	d roof live loads have	been considered for	.,	Standard						116
Vasd=103r II; Exp B; E and C-C E to 7-7-13, I cantilever I right expos for reaction DOL=1.60 3) Truss des only. For s see Standa	E 7-16; Vult=130mph mph; TCDL=6.0psf; B Enclosed; MWFRS (er xterior(2E) 0-0-5 to 3- Exterior(2E) 7-7-13 to left and right exposed sed;C-C for members ns shown; Lumber DC	CDL=6.0psf; h=25ft; hvelope) exterior zon 0-5, Exterior(2R) 3-0 10-7-13 zone; ; end vertical left an; and forces & MWFR 0L=1.60 plate grip In the plane of the trud (normal to the face) d Details as applicat	e -5 S ss				A strain to see	A MARINE AND A MAR	SEA OFES SEA 0363	• –

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

GI 11111111 June 10,2024

Job	Truss	Truss Type	Qty	Ply	34 Mason Ridge-Roof-Robie L	
24070014	V05	Valley	1	1	Job Reference (optional)	166103894


Run: 8,73 S Apr 25 2024 Print: 8,730 S Apr 25 2024 MiTek Industries, Inc. Fri Jun 07 11:13:12 ID:paE_qTT6WXmsNpJ6_t6_3Lz90CP-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

GRIP

244/190

FT = 20%

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SP No.3 OTHERS BRACING

Scale = 1:30.8 Loading

TCLL (roof)

Snow (Pf)

LUMBER

TCDL

BCLL

BCDL

TOP CHORD Structural wood sheathing directly applied or 8-2-11 oc purlins. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. REACTIONS (size) 1=8-2-11, 3=8-2-11, 4=8-2-11 Max Horiz 1=76 (LC 11) Max Uplift 1=-39 (LC 21), 3=-39 (LC 20), 4=-95 (LC 14) 1=92 (LC 20), 3=92 (LC 21), 4=648 Max Grav (LC 20) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-116/294, 2-3=-116/294 BOT CHORD

(psf)

20.0

20.0

10.0

10.0

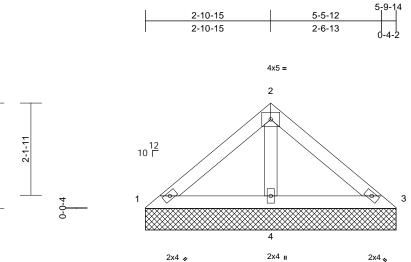
0.0

- 1-4=-227/178, 3-4=-227/178 WFBS 2-4=-522/242 NOTES
- Unbalanced roof live loads have been considered for 1) this design
- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Exterior(2R) 3-0-5 to 5-3-0, Exterior(2E) 5-3-0 to 8-3-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 Unbalanced snow loads have been considered for this 5)
- desian.
- Gable requires continuous bottom chord bearing. 6)
- 7) Gable studs spaced at 4-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf
- 9) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 39 lb uplift at joint 1, 39 lb uplift at joint 3 and 95 lb uplift at joint 4.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

818 Soundside Road


Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

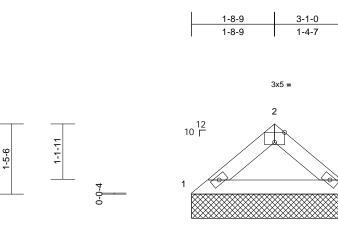
Job	Truss	Truss Type	Qty	Ply	34 Mason Ridge-Roof-Robie L	
24070014	V06	Valley	1	1	Job Reference (optional)	166103895

2-5-6

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri Jun 07 11:13:12 ID:HmnM1pUkHquj?zuIYbdDcZz90CO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

5-9-14

Scale = 1:26.8


00010 - 112010												
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL LUMBER	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	,	balanced snow loads		DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 21 lb	GRIP 244/190 FT = 20%
	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 5-9-14 oc purlins. Rigid ceiling directly bracing. (size) 1=5-9-14, Max Horiz 1=-53 (LC Max Uplift 3=-4 (LC Max Grav 1=98 (LC (LC 20)	applied or 6-0-0 oc 3=5-9-14, 4=5-9-14 2 12) 15), 4=-47 (LC 14)	6) Ga 7) Ga 8) Thi chc 9) * T on 3-0 chc 10) Pro and 4=384 11) Thi	sign. ble requires continuc ble studs spaced at 4 s truss has been des ord live load nonconc his truss has been de the bottom chord in a 6-00 tall by 2-00-00 rof and any other me wide mechanical cor aring plate capable o 4 47 lb uplift at joint 4 s truss is designed ir rmational Residentia	4-0-0 oc. igned for a 10.0 urrent with any esigned for a liv all areas where wide will fit betw mbers. inection (by oth f withstanding 4 a cacordance w) psf bottom other live loa e load of 20.0 a rectangle veen the botto ers) of truss ti Ib uplift at joi ith the 2018	0psf om o nt 3					
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Maximum Corr Tension 1-2=-87/149, 2-3=-8 1-4=-119/116, 3-4=- 2-4=-291/139	7/149	R8	CASE(S) Standard	ed standard AN		na					
 this design Wind: ASC Vasd=103i II; Exp B; E and C-C E exposed; members a Lumber DC Truss des only. For s see Standa or consult TCLL: ASC Plate DOL 	CE 7-16; Vult=130mph mph; TCDL=6.0psf; B Enclosed; MWFRS (er end vertical left and ri, and forces & MWFRS OL=1.60 plate grip DC signed for wind loads in studs exposed to wind ard Industry Gable En qualified building desi CE 7-16; Pr=20.0 psf (L =1.15); Pf=20.0 psf (L i); Is=1.0; Rough Cat E	(3-second gust) CDL=6.0psf; h=25ft; tvelope) exterior zor ilever left and right ght exposed;C-C for for reactions shown DL=1.60 n the plane of the tr. I (normal to the face d Details as applical gner as per ANSI/TF roof LL: Lum DOL=: um DOL=1.15 Plate	Cat. ne ; iss), ble, 1.15						An annual		SEA 0363	EER AL

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

GI A. GIL June 10,2024

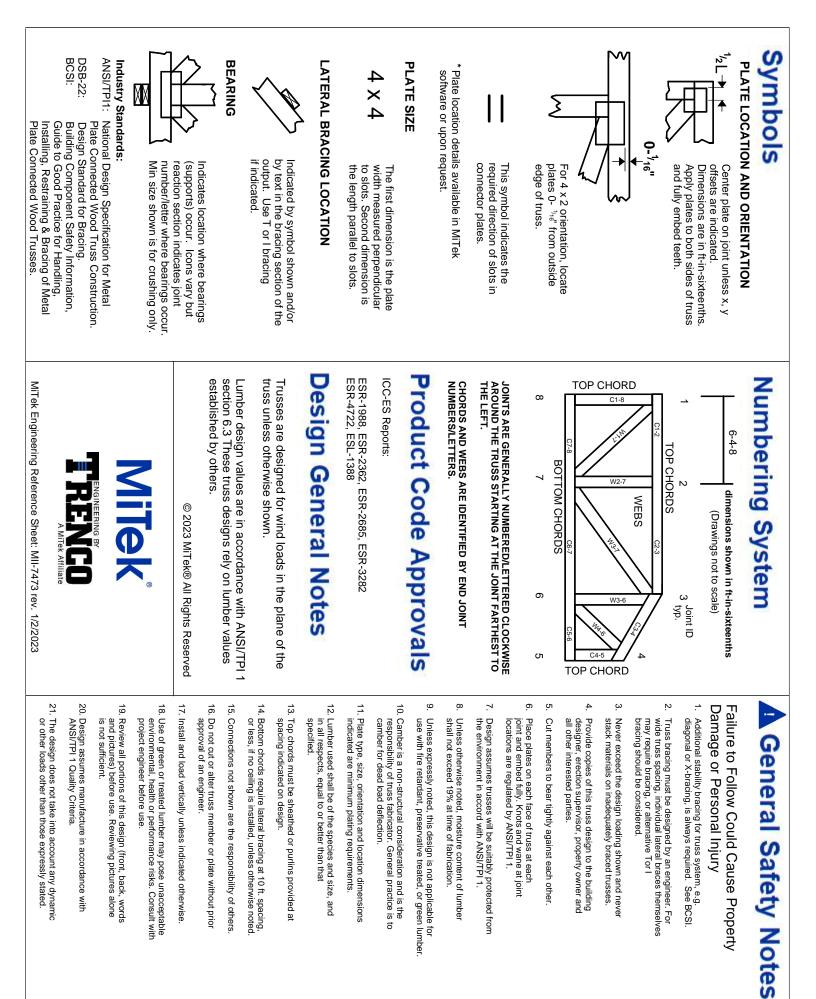
Job	Truss	Truss Type	Qty	Ply	34 Mason Ridge-Roof-Robie L
24070014	V07	Valley	1	1	I66103896 Job Reference (optional)

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri Jun 07 11:13:12 ID:HmnM1pUkHquj?zulYbdDcZz90CO-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

2x4 💊

3-5-2

2x4 🍫


3

Scale = 1:23.8 Plate Offsets (X, Y): [2:0-2-8.Edge]

 LUMBER TOP CHORD 2x4 SP No.2 BRACING GT CHORD 2x4 SP No.2 BRACING TOP CHORD 52x4 SP No.2 BRACING TOP CHORD 52x4 SP No.2 BRACING TOP CHORD 51x000000000000000000000000000000000000
DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 5) Unbalanced snow loads have been considered for this design.

TRENGINEERING BY A MITEK Affiliate

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

