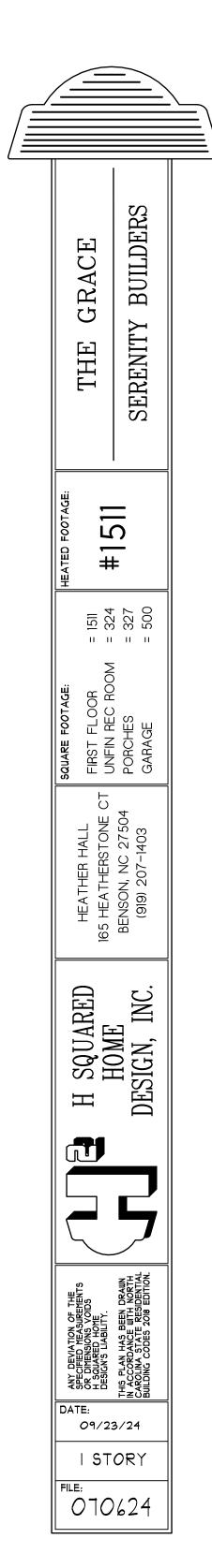

FIRST FLOOR PLAN SCALE 1/4" = 1'-0"



3. ALL TRUSSES SHALL BE DESIGNED FOR BEARING ON SPF #2 OR #3 PLATES OR LEDGERS (UNO).

4. ALL REQUIRED ANCHORS FOR TRUSSES DUE TO UPLIFT OR BEARING SHALL MEET THE REQUIREMENTS AS SPECIFIED ON THE TRUSS SCHEMATICS.

REFER TO BASIC DETAIL SHEET(S) FOR STANDARD DETAILS, BRACING DETAILS, AND STRUCTURAL NOTES

ROOF PLAN SCALE 1/4" = 1'-0"

STRUCTURAL NOTES

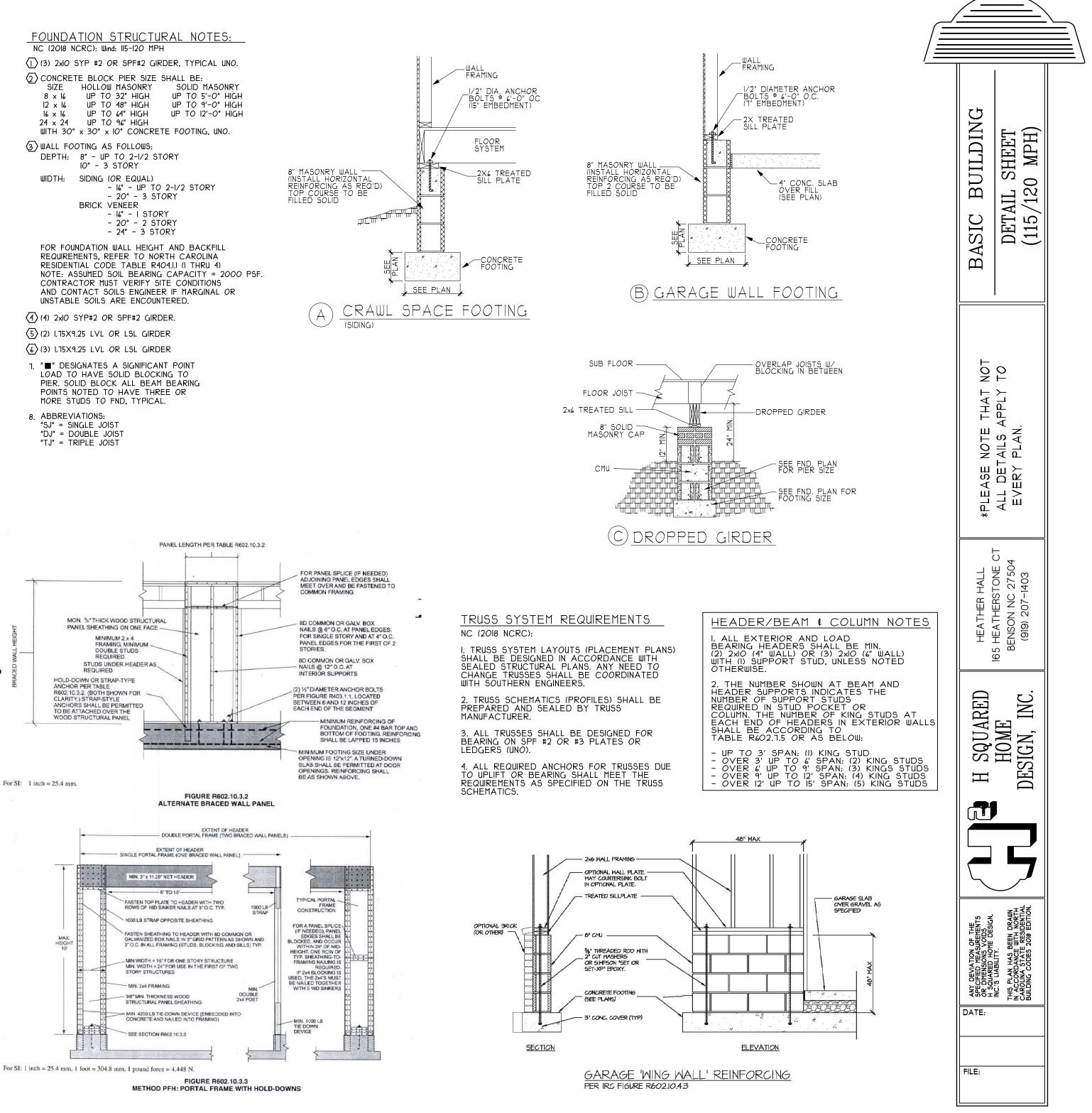
1) ALL CONSTRUCTION SHALL CONFORM TO THE LATEST REQUIREMENTS OF THE NORTH CAROLINA STATE RESIDENTIAL CODE - 2018 EDITION, PLUS ALL LOCAL CODES AND REGULATIONS. THE STRUCTURAL ENGINEER OR DESIGNER IS NOT RESPONSIBLE FOR, AND WILL NOT HAVE CONTROL OF, CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES OR PROCEDURES, OR FOR SAFETY PRECAUTIONS AND PROGRAMS IN CONNECTION WITH THE CONSTRUCTION WORK. NOR WILL THE ENGINEER OR DESIGNER BE RESPONSIBLE FOR THE CONTRACTOR'S FAILURE TO CARRY OUT THE CONSTRUCTION WORK IN ACCORDANCE WITH THE CONTRACT DOCUMENTS. "CONSTRUCTION REVIEW" SERVICES ARE NOT PART OF OUR CONTRACT. ALL MEMBERS SHALL BE FRAMED, ANCHORED, TIED AND BRACED IN ACCORDANCE WITH GOOD CONSTRUCTION PRACTICE AND THE BUILDING CODE.

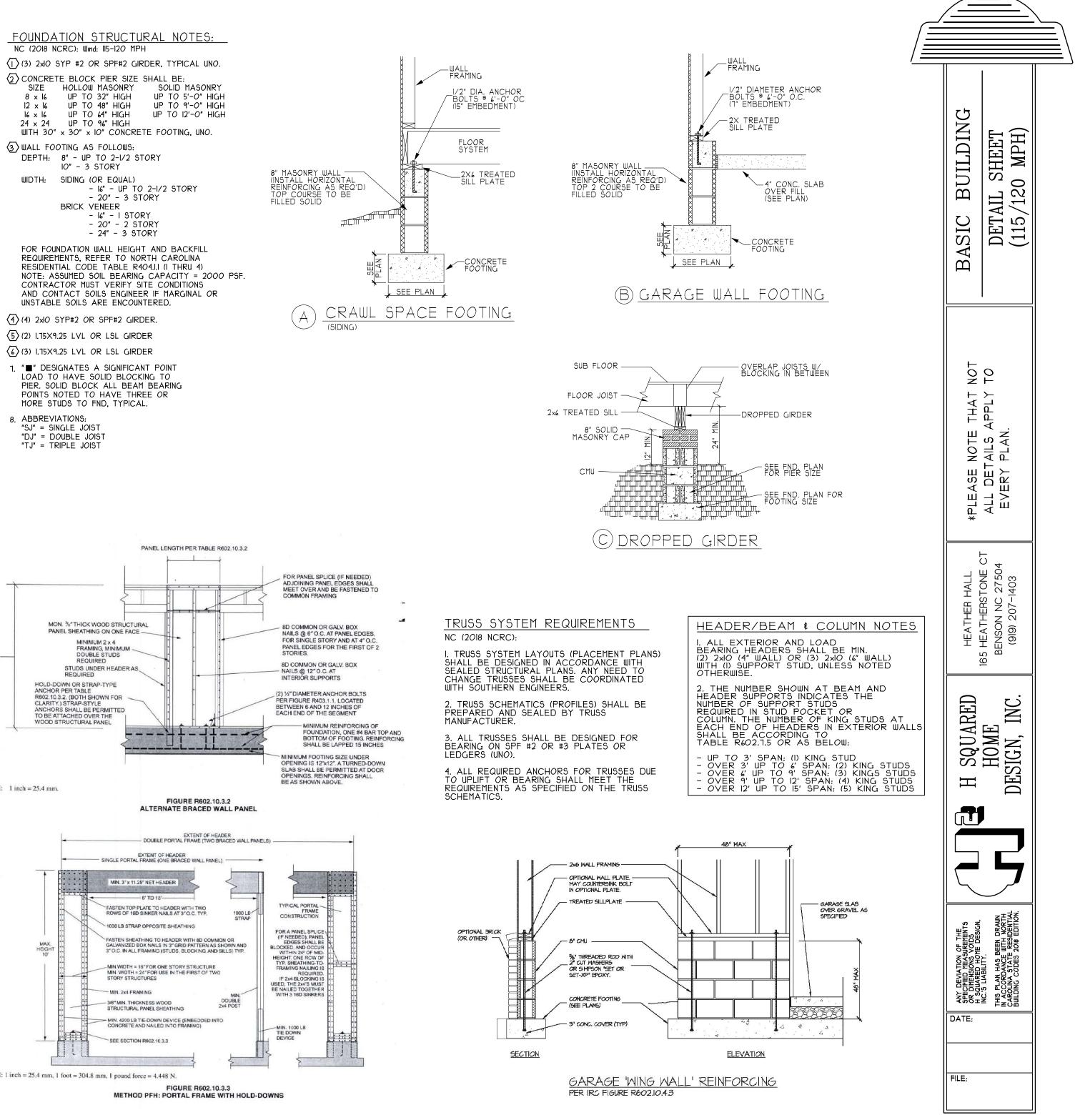
2)	DESIGN LOADS (R301.4)	LIVE LOAD (PSF)	DEAD LOAD (PSF)	DEFLECTION (LL)
	ROOMS OTHER THAN SLEEPING RO		10	L/360
	SLEEPING ROOMS	30	10	L/360
	ATTIC WITH PERMANENT STAIR	40	10	L/360
	ATTIC WITH OUT PERMANENT STAIR	R 20	10	L/360
	ATTIC WITH OUT STORAGE	10	10	L/2 1 0
	STAIRS	40		L/360
	EXTERIOR BALCONIES	60	10	L/ 36 0
	DECKS	40	10	L/360
	GUARDRAILS AND HANDRAILS	200		
	PASSENGER VEHICLE GARAGES	50	10	L/360
	FIRE ESCAPES	40	10	L/360
	SNOW	20		

WIND LOAD (BASED ON III5/I20 MPH WIND VELOCITY & EXPOSURE B)

3) WALL BRACING: BRACED WALL PANELS SHALL BE CONSTRUCTED ACCORDING TO SECTION R602.10.3.

THE AMOUNT AND LOCATION OF BRACING SHALL COMPLY WITH TABLE R602.10.1. THE LENGTH OF BRACED PANELS SHALL BE DETERMINED BY SECTION R602.10.4. LATERAL BRACING SHALL BE SATISFIED PER METHOD 3 BY CONTINUOUSLY SHEATHING WALLS WITH STRUCTURAL SHEATHING PER SECTION R602.10.3. NOTE THAT ANY SPECIFIC BRACED WALL DETAIL SHALL BE INSTALLED AS SPECIFIED.


- 4) CONCRETE SHALL HAVE A MINIMUM 28 DAY STRENGTH OF 3000 PSI AND A MAXIMUM SLUMP OF 5 INCHES UNLESS NOTED OTHERWISE (UNO). AIR ENTRAINED PER TABLE 402.2. ALL CONCRETE SHALL BE PROPORTIONED, MIXED, HANDLED, SAMPLED, TESTED, AND PLACED IN ACCORDANCE WITH ACI STANDARDS, ALL SAMPLES FOR PUMPING SHALL BE TAKEN FROM THE EXIT END OF THE PUMP.
- 5) ALLOWABLE SOIL BEARING PRESSURE ASSUMED TO BE 2000 PSF. THE CONTRACTOR MUST CONTACT A GEOTECHNICAL ENGINEER AND THE STRUCTUAL ENGINEER IF UNSATISFACTORY SUBSURFACE CONDITIONS ARE ENCOUNTERED. THE SURFACE AREA ADJACENT TO THE FOUNDATION WALL SHALL BE PROVIDED WITH ADEQUATE DRAINAGE. AND SHALL BE GRADED SO AS TO DRAINSURFACE WATER AWAY FROM FOUNDATION WALLS.
- 6) ALL FRAMING LUMBER SHALL BE SPF #2 (Fb = 875 PSI) UNLESS NOTED OTHERWISE (UNO). ALL TREATED LUMBER SHALL BE SYP # 2 (Fb=975 PSI). PLATE MATERIAL MAY BE SPF # 3 OR SYP #3 (Fc(perp) = 425 PSI - MIN).
- 1) ALL WOODEN BEAMS AND HEADERS SHALL HAVE THE FOLLOWING END SUPPORTS: (I) 2x4 STUD COLUMN FOR 6'-O" MAX. BEAM SPAN (UNO), (2) 2X4 STUDS FOR BEAM SPAN GREATER THAN 6'-O" (UNO).
- 8) L.V.L. SHALL BE LAMINATED VENEER LUMBER: Fb=2600 PSI, Fv=285 PSI, E=1.9x10⁶ PSI. P.S.L. SHALL BE PARALLEL STRAND LUMBER: Fb=2900 PSI, Fv=290 PSI, E=2.0×10⁴ PSI, L.S.L. SHALL BE LAMINATED STRAND LUMBER: Fb=2250 PSI, Fv=400 PSI, E=1.55×10⁴ PSI. INSTALL ALL CONNECTIONS PER MANUFACTURERS INSTRUCTIONS.
- 9) ALL ROOF TRUSS AND I-JOIST LAYOUTS SHALL BE PREPARED IN ACCORDANCE WITH ANY SEALED STRUCTURAL DRAWINGS. TRUSSES AND I-JOISTS SHALL BE INSTALLED ACCORDING TO THE MANUFACTURE'S SPECIFICATIONS. ANY CHANGE IN TRUSS OR I-JOIST LAYOUT SHALL BE COORDINATED WITH DESIGNER OR ENGINEER.
- 10) ALL STRUCTURAL STEEL SHALL BE ASTM A-36. STEEL BEAMS SHALL BE SUPPORTED AT EACH END WITH A MINIMUM BEARING LENGTH OF 3 1/2" INCHES AND FULL FLANGE WIDTH. PROVIDE SOLID BEARING FROM BEAM SUPPORT TO FOUNDATION. BEAMS SHALL BE ATTACHED TO EACH SUPPORT WITH TWO LAG SCREWS (1/2" DIAMETER x 4" LONG). LATERAL SUPPORT IS CONSIDERED ADEQUATE PROVIDED THE JOIST ARE TOE NAILED TO THE SOLE PLATE, AND SOLE PLATE IS NAILED OR BOLTED TO THE BEAM FLANGE 9 48" O.C. ALL STEEL TUBING SHALL BE ASTM A500.
- II) REBAR SHALL BE DEFORMED STEEL, ASTM615, GRADE 60.
- 12) FLITCH BEAMS SHALL BE BOLTED TOGETHER USING (2) ROWS OF 1/2" DIAMETER BOLTS (ASTM A301) WITH WASHERS PLACED UNDER THE THREADED END OF BOLT. BOLTS SHALL BE SPACED AT 24" O.C. (MAX), AND STAGGERED AT THE TOP AND BOTTOM OF BEAM (2" EDGE DISTANCE), WITH 2 BOLTS LOCATED AT 6" FROM EACH END.
- 13) BRICK LINTELS SHALL BE 3 1/2"x3 1/2"x1/4" STEEL ANGLE FOR UP TO 6'-O" SPAN AND 6"x4"x5/16" STEEL ANGLE WITH 6" LEG VERTICAL FOR SPANS UP TO 9'-O". SEE PLANS FOR SPANS OVER 9'-O".
- 14) THE POSITIVE AND NEGATIVE DESIGN PRESSURE FOR DOORS AND WINDOWS FOR A MEAN ROOF HEIGHT OF 35 FEET OR LESS SHALL BE 25 PSF.
- 15) THE POSITIVE AND NEGATIVE DESIGN PRESSURES REQUIRED FOR ANY ROOF OR WALL CLADDING APPLICATION NOT SPECIFICALLY ADDRESSED IN THE NORTH CAROLINA STATE RESIDENTIAL CODE - 2018 EDITION SHALL BE AS FOLLOWS:
- ROOF 2.25:12 PITCH OR LESS 45 4 PSF
- 34.8 PSF 2.25:12 TO 7:12 PITCH
- 21 PSF 7:12 TO 12:12 PITCH
- WALLS:
- 24.1 PSF WALLS SEE ALSO SECTION R103.1.3 LINTELS


FOUNDATION STRUCTURAL NOTES:

(1) (3) 2xIO SYP #2 OR SPF#2 GIRDER, TYPICAL UNO.

- HOLLOW MASONRY SIZE SOLID MASONRY UP TO 32" HIGH 8 x 16 UP TO 48" HIGH 12 x 16 UP TO 64" HIGH 16 x 16 24 x 24 UP TO 96" HIGH WITH 30" x 30" x 10" CONCRETE FOOTING, UNO.
- DEPTH:
 - SIDING (OR EQUAL) - 20" - 3 STORY BRICK VENEER - 16" - 1 STORY
- CONTRACTOR MUST VERIFY SITE CONDITIONS AND CONTACT SOILS ENGINEER IF MARGINAL OR UNSTABLE SOILS ARE ENCOUNTERED.

- LOAD TO HAVE SOLID BLOCKING TO POINTS NOTED TO HAVE THREE OR
- "SJ" = SINGLE JOIST
- "TJ" = TRIPLE JOIST

Carter Sanford Component Plant 298 Harvey Faulk Rd Sanford, NC 27332

Phone #:919-775-1450

Builder: Serenity Built Homes Inc

Model: 1511 A-The Grace

THE PLACEMENT PLAN NOTES:

1. The Placement Plan is a diagram for truss installation. It is not an engineered drawing and has not been reviewed by an engineer. The Owner/Building Designer is responsible for obtaining an engineer's review if one is required by the local jurisdiction.

2. The responsibilities of the Owner, Contractor, Building Designer, Component Designer and Component Manufacturer shall be as set forth in ANSI/TPI 1. Capitalized terms shall be as defined in ANSI/TP 1 unless otherwise indicated.

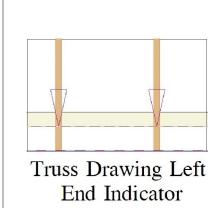
3. Each Component is designed as an individual component utilizing information provided by others. The Owner/Building Designer is responsible for reviewing all Component Submittal Packages and individual Component Design Drawings for compliance with the Construction Documents and compatibility with the overall Building design.

4. Contractor will not proceed with component installation until the Owner/Building Designer has reviewed the Component Submittal Package. Questions on the suitability of any Component will be resolved by the Building Designer.

5. The Building Designer and Contractor are responsible for all temporary and permanent bracing.

6. The Placement Plan assumes the building is dimensionally correct, structurally sound, and in a suitable condition to support each Component during installation and thereafter, including but not limited to installation of all bearing points. Proper design and construction of all structural components, including foundations, headers, beams, walls and columns are the responsibility of the Owner, Building Designer and Contractor.

7. Do not cut, drill, or modify any Component without first consulting the Component Manufacturer or Building Designer. Damaged Components shall not be installed unless directed by the Building Designer or approved by the Component Manufacturer.


8. Components must be handled and installed following all applicable safety standards and best practices, including but not limited to BCSI, OSHA, TPI and local codes. Failure to properly handle, brace or otherwise install Component can result in serious injury or death. 9. All uplift connectors shown within these documents are recommendations only. Per ANSI/TPI 1, all uplift connectors are the responsibility of the building designer and or contractor.

Approved By: _____

Date: _____

General Notes: ** CUTTING OR DRILLING OF COMPONENTS SHOULD NOT BE DONE WITHOUT CONTACTING COMPONENT SUPPLIER FIRST. CUSTOMER TAKES FULL RESPONSIBILITY FOR COMPONENTS IF CUT BEFORE AUTHORIZATION.

	luct		st	PlotID	Length	Product	1100	ucts
Manuf Proc Simpson HGUS	luct		Qty 1	GDH	22' 0"		am DF LVL 1-	3/4 x
Simpson HTL			8					
Simpson One F			110	•			28' 10"	
	12.07		110					
		4'0"				21'	8"	
				D07		PB5		
			-	D03	2' 0"	PB5		
			=	D03	2' 0"	PB5		
			=	D03	2' 0"	PB5		
				D03	2' 0"	PB5	2' 0)" 2'
				D03	2' 0"	PB5		
				D03 D03	2' 0"	PB5 PB5		V1C
					11	3/4"		
	43' 2"			D05 SEE C TRUS DRAW	SS	9B6		
		39' 2"		FOR LOA		"O .m PB6		
					8 1	/4"		
				D03	1' 9"	PB5		
			-	D02	2, 0"	PB5		
			25' 0"	D02	2' 0"	PB5 PB5		
				D02	2,0"	11'		>
			-	D02	2' 0"	PB5		
			_	D02	2' 0"	PB5		
			-	D01	2' 0"	PB5		
			=	D01	2. 0 .	PB5		
		v						
				D06	GDH	PB5		
						22'	" 0"	

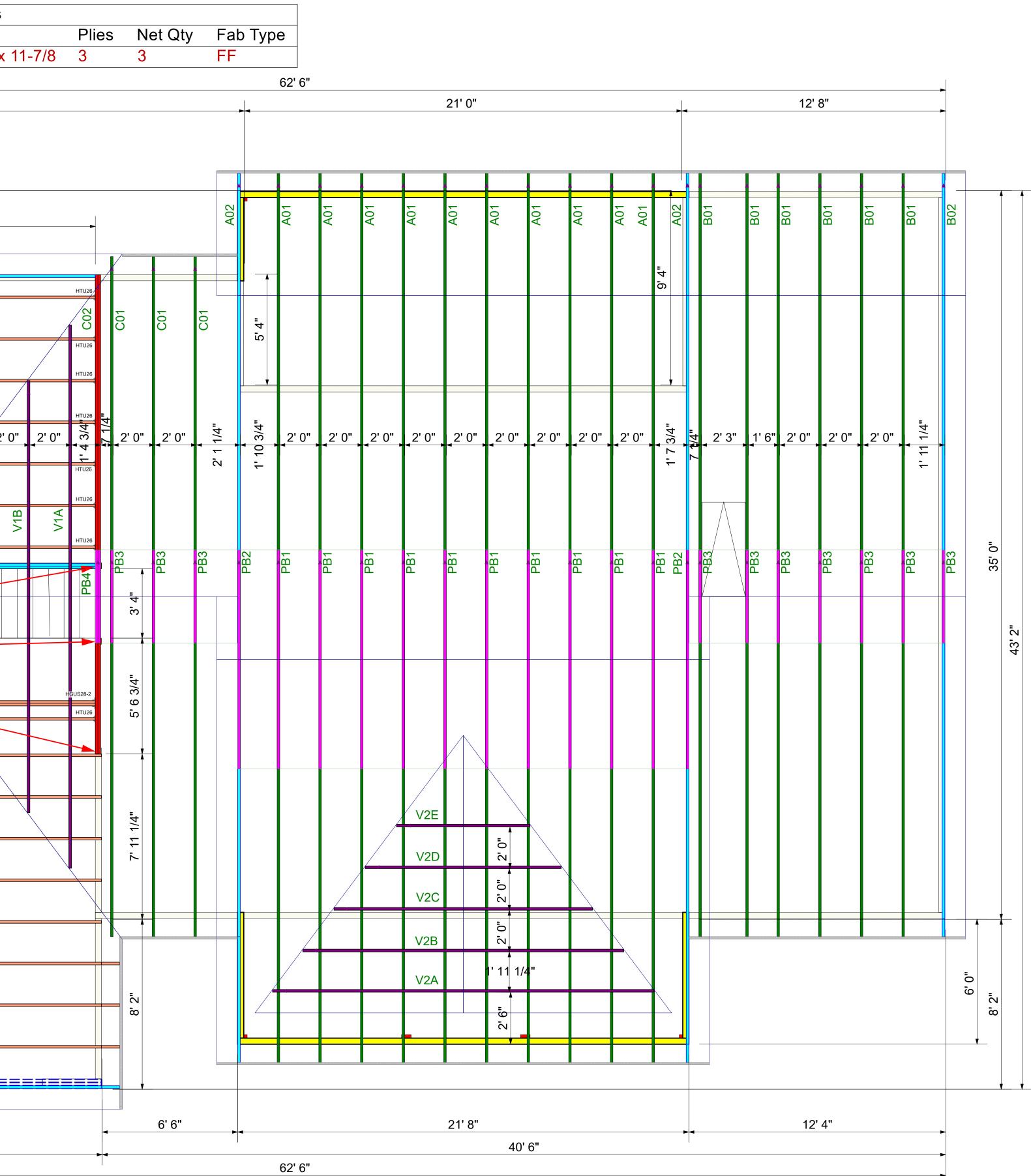
0

SHOULD NOT BE INS

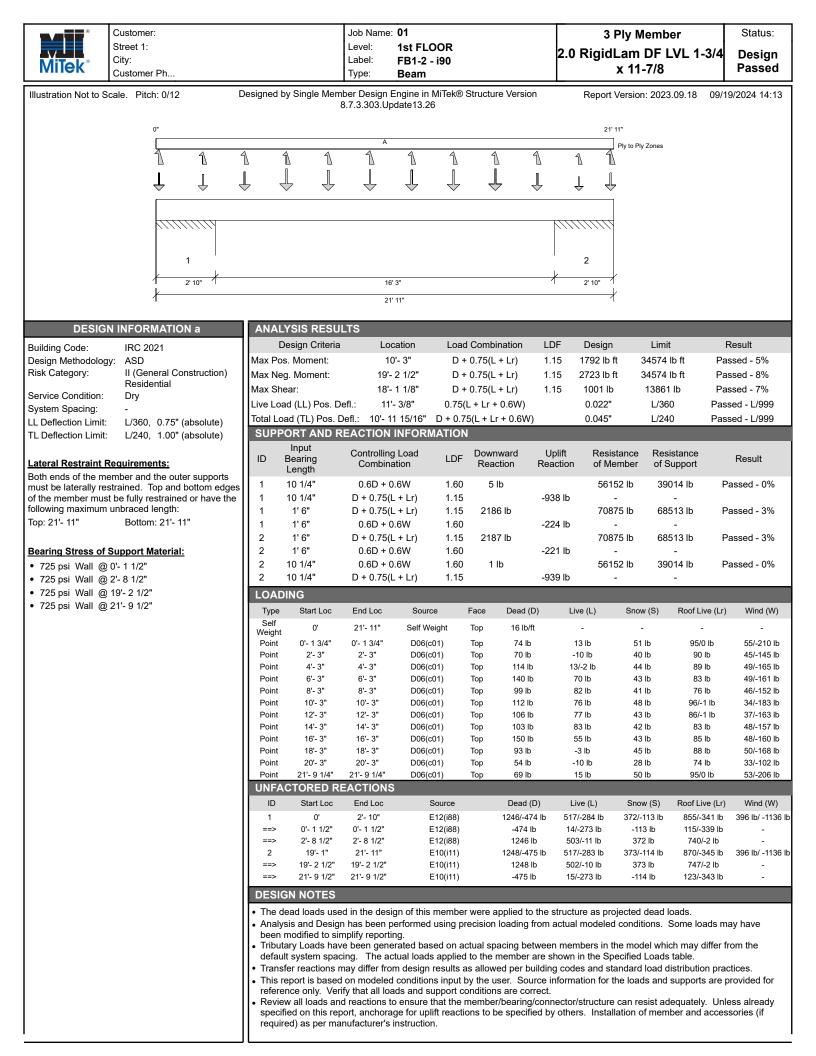
COMPONENTS

DAMAGED (

*


ιщ

| ≯

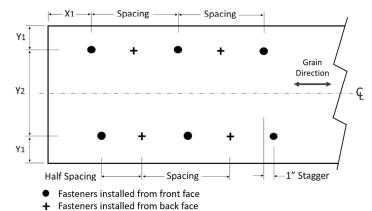

TO PLANS

REFER

AER MUST

The The Total AS: FOOT-INCH-SIXTEENTH. All uplifit connecto ANSI/TPI 1, all uplifit ANSI/TPI 1, all uplifit COLORATION AND AND AND AND AND AND AND AND AND AN	ROOF PLACEMENT PLAN
GROERS MUST BE FULL CONFICTED TOGETHER MORE TO ADDIG ANY LOADS. Scale: NTS Date: 9/19/2024 Designer: Nick Darr Project Number 24090063-01 Sheet Number 24090063-01	

Customer: Street 1: City: Customer Ph...


• Beam Stability Factor used in the calculation for Allowable Max Pos Moment (CL) = 0.89

PLY TO PLY CONNECTION

 Zone A: Factored load = 0 plf. Use 12d (0.148"x3.25") nails. LDF = 1.00. Qty = 88. Row = 2, Spacing = 12" 12d (0.148"x3.25") nails properties: D = 0.148", L = 3.25". Fastener capacity = 117 lbs. X1 = 2.25", Y1 = 0.75", Y2 = 1.5" Install fasteners from both faces.

X1 = Minimum end distance, X2 = Minimum edge distance, Y2 = Minimum row spacing.

FASTENER INSTALLATION - 2 ROWS (FROM BOTH FACES)

Trenco 818 Soundside Rd Edenton, NC 27932

Re: 24090063-01 The Grace-Roof-1511 A-The Grace

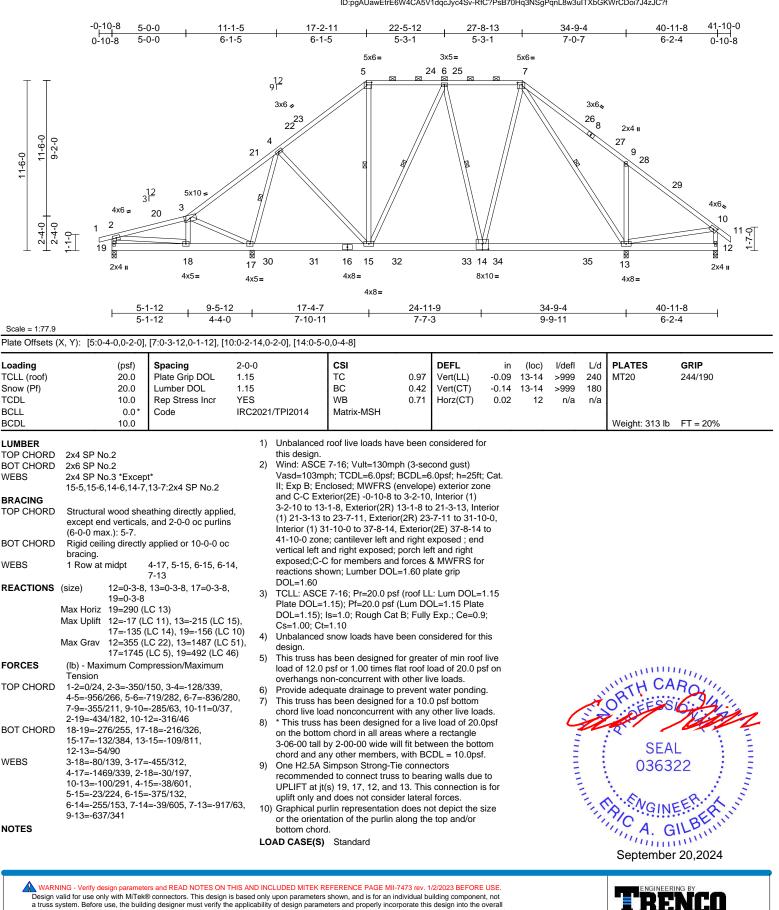
The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Carter Components (Sanford, NC)).

Pages or sheets covered by this seal: I68350159 thru I68350186

My license renewal date for the state of North Carolina is December 31, 2024.

North Carolina COA: C-0844

September 20,2024


Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	The Grace-Roof-1511 A-The Grace	
24090063-01	A01	Piggyback Base	10	1	Job Reference (optional)	168350159

Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Thu Sep 19 13:23:48 ID:pgAUawEtrE6W4CA5V1dqcJyc4Sv-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Sep 19 13:23:48 Page: 1

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	The Grace-Roof-1511 A-The Grace	
24090063-01	A02	Piggyback Base Structural Gable	2	1	Job Reference (optional)	168350160

Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Thu Sep 19 13:23:50

Page: 1

NC), Santon	d, NC - 2733	32,										Page: 1
-0-10-8	500		10.0.2		17 0 11	26) 15 27	28-5-12 7-8-13 22 5	11 24 0 4	36-4-0	11 9 41-10-()
0-10-8	5-0-0		5-9-2		6-5-9			10-14 3-11- 0-8-15				
			38		5			12 14 14 10,1 10,1 13	43170	45		
4x6 1 2 37	= 3 ¹²	5x6 = 3	4	47	35 484		49 332		418 49 49 49 49 49 49 49 49 49 49 49 49 49	2 <u>4</u> 2 30		7 9
		4x8=					8x10=		4>			
⊢	<u>4-10-4</u> 4-10-4					24-6-12 10-2-8		<u>34-9-4</u> 10-2-8		40-1		
4-0,0-2-0],	[6:0-3-3,0	-2-4], [12	:Edge,0-2-	13], [13:0-	5-0,0-3-0], [17:0	-3-0,Edge], [32:	0-3-4,0-4-8]					
(psf) 20.0 20.0 10.0 0.0* 10.0	Plate Gri Lumber I	p DOL DOL					Vert(CT) -(Horz(CT) (0.20 31-33 0.26 31-33 0.04 28	>999 240 >999 180 n/a n/a)%
5.2 5.3 *Excep 5.3 wood shear purlins, ei urlins (5-4 ing directly midpt t Jt(s): 8, , 21, 13 28=6-4-0,	ot* 33-6,5-3 athing dire xcept end y -11 max.): applied or 13-31, 4-3 29=6-4-0,	5:2x4 SF ctly appliverticals, 5-12, 6-3 6-0-0 oc 66 30=6-4-(• No.2 wed or and 30. No. 1)	EBS DTES Unbalar this desi	33-35=-135 30-31=-156 28-29=-121 7-8=-89/55, 15-16=-106 20-21=-368 24-29=-165 22-31=-615 13-33=-288 4-35=-224/2 3-36=-634/2 inced roof live losing.	(1048, 31-33=-5 (817, 29-30=-12) (281 9-10=-117/28, 99, 18-19=-77, (195, 23-30=-77) (195, 23-30=-77) (185, 25-28=-56) (353, 13-31=-11) (108, 6-33=0) (224, 4-36=-1796) (231, 2-36=-254) (ds have been of	06/1254, 11/281, 13-14=-335/104 34, 3/26, 3/26, 3/271, 4, 5-35=-76/621 3/336, 774 considered for	load overh 7) Provi 8) All pla 9) Truss brace 10) Gable 11) This 1 chorc 12) * This on th 3-06- chorc 13) One I	of 12.0 psf or langs non-co de adequate ates are 2x4 t to be fully sl d against lat e studs space russ has bee live load no truss has be e bottom cho 00 tall by 2-0 and any oth H2.5A Simps	1.00 times ncurrent wi drainage to MT20 unles heathed fro eral moverned at 2-0-0 en designed nconcurren de dat 2-0-0 en designed rd in all are 0-00 wide v er member on Strong-	flat roof load o th other live load o prevent water so otherwise inc m one face or so nent (i.e. diagor oc. I for a 10.0 psf t with any other ed for a live load as where a reco will fit between s, with BCDL = Tie connectors	f 20.0 psf on dds. ponding. dicated. securely hal web). bottom live loads. d of 20.0psf tangle the bottom 10.0psf.
37=281 (L 28=-56 (L 30=-465 (36=-269 (28=498 (L 36=1730 (mum Com 2-3=-935// /536, 5-6= 332, 9-12= 2/337, 14- 0/229, 19- 1/164, 23- 4/150, 25- /251, 26-2 /205, 8-10	LC 13) C 11), 29= LC 58), 31 LC 14), 37 LC 55), 29= LC 45), 31= (LC 55), 37= pression/M 427, 3-4=- 	-236 (LC =-364 (L0 =-265 (L0 =373 (LC =1848 (LC 7=634 (LC Maximum 1099/558 -, 6-7=-22 -01, .07, 31, ', 26-27=(0, 8,	10), C 10), C 10) 56), C 6), C 44) , 1/332, 3) 4) D/36,	Vasd=10 II; Exp E and C-C 3-2-10 tr (2N) 21- Exterior 41-10-0 vertical II forces & DOL=1.1 Truss de only. Fc see Stata or const TCLL: A Plate DC DOL=1. Cs=1.00	D3mph; TCDL= $($ (; Enclosed; MW (Corner(3E) -0- (0 13-1-8, Corne (3-13 to 23-7-11 (2N) 31-10-0 to (20ne; cantileve (eff and right exp (MWFRS for reaction (60 plate grip DC (signed for wind (or studs exposed (ndard Industry C (and $($ ndustry C (and $($ ndustry C (and $($ ndustry C (and $($ ndustry C (ndustry C	6.0psf; BCDL=6 (FRS (envelope 10-8 to 3-2-10, r(3R) 13-1-8 to , Corner(3R) 23 37-8-14, Corne left and right e lossed; C-C for n actions shown; uL=1.60 loads in the pla to wind (norm iable End Detai ling designer as 0.0 psf (cof LL .0 psf (Lum DC gh Cat B; Fully	Opsf; h=25ft; Ca) exterior zone Exterior(2N) 21-3-13, Exterio -7-11 to 31-10-0 (3E) 37-8-14 to xposed ; end uembers and umber ane of the truss al to the face), is as applicable, per ANSI/TPI 1 : Lum DOL=1.15 L=1.15 Plate Exp.; Ce=0.9;	at. UPLI conne force: r 14) Grapi o, or the bottor	FT at jt(s) 37 ection is for u s. e orientation of m chord.	, 28, 30, 29 uplift only ar epresentatic of the purlin	, 31, and 36. Th ad does not cor	nis Isider lateral Nict the size
	-0-10-8 0	$\begin{array}{c} -0.10.8 & 5.0.0 \\ 0.10.8 & 5.0.0 \\ 0.10.8 & 5.0.0 \\ 0.10.8 & 5.0.0 \\ \end{array}$	$\begin{array}{c} 12 & 5x6 = \\ 4x6 = & 3^{12} & 3x^{6} = \\ 4x6 = & 3^{12} & 3x^{6} = \\ 1 & 2 & 3x^{6} = \\ 37 & 36 & 4x8 = \\ & 4-10-4 & 4-10-$	$\begin{array}{c} -0.10-8 & 5-0-0 & 10-9-2 \\ 0-10-8 & 5-0-0 & 5-9-2 \end{array}$	$\begin{array}{c} -0, -10-8 & 5-0.0 & 10-9-2 \\ 0-10-8 & 5-0.0 & 5-9-2 \end{array}$	D:F575C -0,-10-8 5-0-0 10-9-2 17-2-11 0,-10-8 5-0-0 5-9-2 6-5-9 4x5 = -340 $4x6 = -31^2 - 356 = -340$ $4x6 = -31^2 - 356 = -340$ 4x8 = -4-10 - 4 - 14-4 - 4 - 4 - 4 - 4 - 4 - 4 - 4	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	DF#70L8p2ROAlSMVVkdaye358-Rtc Dreat/ordex1469/pd148-04/17601 -0-10-8 5-0-0 5-9-2 17-2-11 26-9-15 277.8-13 32-5-11 34-9-4 -0-10-4 3-11-15 2-3-9- -0-10-4 3-10-2-8 -0-10-4 3-10-2-8 -0-	DE-F370L6p2ROAISMVV:Adaryo33: REC 3P2749-13 20-10-8 5-0-0 5-9-2 6-5-9 9-7-5 0-10-9-15 22-9-11 94-9-4 0-10-8 5-0-0 5-9-2 6-5-9 9-7-5 0-10-9-15 22-9-11 94-9-4 0-10-9 5-0-0 5-9-2 6-5-9 9-7-5 0-10-9-15 22-9-11 94-9-4 0-10-9 5-0-0 5-9-2 6-5-9 9-7-5 0-10-9-15 12 0-10-9 5-0-0 5-9-2 6-5-9 9-7-5 0-10-9-10-10-0 10-2-8 12-9-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-	DF4702016p260as8470748caye43580C788787658787645878765878658787658786587876587878785878678787837878787858786787878787878785878678787878

September 20,2024

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and RCSI Building Component Safety (Information available from the Structural Building Component Association (www shearcomponent Safety (Information available from the Structural Building Component Association (www shearcomponent Safety (Information available from the Structural Building Component Association (www shearcomponent Association) (www shearcomponent Association) (wow shearco and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	The Grace-Roof-1511 A-The Grace	
24090063-01	A02	Piggyback Base Structural Gable 2		1	Job Reference (optional)	168350160

15) 2 X 4 notch at 20000 o.c. is allowed along the stacked top chord. No notches allowed in overhang and 1008 from left end and 1008 from right end or 12" along rake from scarf, whichever is larger. Minimum 1.5x4 tie plates required at 2-0-0 o.c. maximum between the stacking chords. For edge-wise notching, provide at least one tie plate between each notch.

LOAD CASE(S) Standard

Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Thu Sep 19 13:23:50 ID:Fs7sOL6pZROAISMYVxKedayc633-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	The Grace-Roof-1511 A-The Grace	
24090063-01	B01	Piggyback Base	6	1	Job Reference (optional)	168350161

17-2-11

Carter Components (Sanford, NC), Sanford, NC - 27332

Loading

TCDL

BCLL

BCDL

WEBS

WEBS

JOINTS

FORCES

WEBS

NOTES

1)

LUMBER

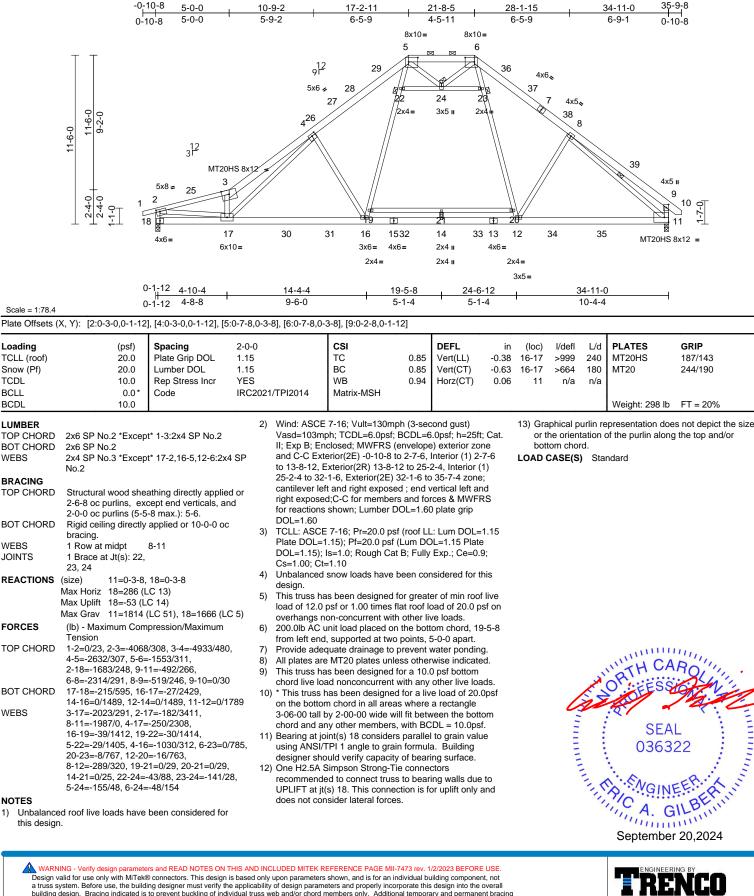
-0-10-8

5-0-0

10-9-2

Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Thu Sep 19 13:23:50 ID:AUndo8kFgW?y_TZG7IN2mSyc6BI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

28-1-15

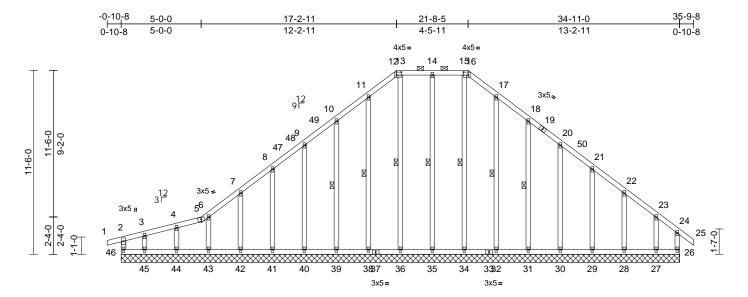

34-11-0

818 Soundside Road

Edenton, NC 27932

21-8-5

Page: 1



bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	The Grace-Roof-1511 A-The Grace	
24090063-01	B02	Piggyback Base Supported Gable	1	1	Job Reference (optional)	168350162

Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Thu Sep 19 13:23:50 ID:a5a35k_IXa9LVTIzoVLg0Hyc6lj-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

34-11-0

Scale = 1:72	
Plate Offsets (X Y)	[12:0-3-8 0-2-4] [16:0-3-8 0-2-4]

	A, T). [12.0-3-0,0-2	2-4], [16:0-3-8,0-2-4]				-						
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr * Code	1-11-4 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-MR	0.25 0.11 0.16	Vert(CT)	in n/a n/a -0.01	(loc) - - 26	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 277 I	GRIP 244/190 Ib FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS	SP No.2 Structural wood s 6-0-0 oc purlins, 2-0-0 oc purlins (ept* 36-13,35-14,34-15 heathing directly applie except end verticals, ar 5-0-0 max.): 12-16. ttly applied or 6-0-0 oc 13-36, 11-38, 10-39 14-35, 15-34, 17-32	d or nd FORCES , TOP CHORD	30=2 32=2 35=2 40=2 42=2 44=2 44=2 (lb) - Maximum Tension 2-46=-167/149, 3-4=-183/162, 4	63 (LC 47) 15 (LC 43) 26 (LC 43) 39 (LC 42) 26 (LC 43) 19 (LC 43) 19 (LC 43) 09 (LC 47) 34 (LC 46) 21 (LC 31) Compressi 1-2=0/22, 1-5=-184/18	29=170 (LC 31=224 (LC 34=213 (LC 36=227 (LC 39=224 (LC 39=224 (LC 41=204 (LC 43=173 (LC 000,Maximum 2-3=-214/168 30, 5-6=-170/	57), 43), 22), 60), 43), 47), 47), 25), 3, 179,	this 2) Wir Vas II; E	balanced design. nd: ASC sd=103n Exp B; E	10-39 8-41= 4-44= 14-35 17-32 20-30 22-28 d roof I E 7-16 nph; T(nclose	194/86, 3-45= =-200/103, 15- =-187/124, 18- =-176/86, 21-2 =-133/84, 23-2 ive loads have ; Vult=130mph CDL=6.0psf; BC d; MWFRS (en	0=-181/87, -170/95, 6-43=-135/78, -125/121, 34=-174/30, 31=-186/130, 9=-132/89, 7=-128/125 been considered for (3-second gust) CDL=6.0psf; h=25ft; Cat. velope) exterior zone
	28=34 30=34 32=34 35=34 40=34 40=34 42=34 44=34 46=34 46=34 Max Uplift 26=87 28=-51 30=-62 32=-41 36=-20 39=-72 41==63 43=-52	18-31 $11-0, 27=34-11-0,$ $11-0, 29=34-11-0,$ $11-0, 31=34-11-0,$ $11-0, 36=34-11-0,$ $11-0, 39=34-11-0,$ $11-0, 41=34-11-0,$ $11-0, 43=34-11-0,$ $11-0, 45=34-10,$ $11-0, 45=34-$	BOT CHORD 5), 5), 0), 4), 4), 4),	6-7=-213/225, 7 9-10=-152/266, 11-12=-148/435 13-14=-125/388 17-18=-125/388 17-18=-124/348 20-21=-63/197, 22-23=-46/75, 2 24-26=-122/60 45-46=-89/101, 34-34=-89/101, 36-38=-89/101, 34-35=-89/101, 29-30=-89/101, 27-28=-89/101,	10-11=-13 5, 12-13=-1 5, 14-15=-1 7, 16-17=-1 7, 18-20=-9 21-22=-42 23-24=-98/6 44-45=-89 40-41=-89 38-39=-89 32-34=-89 30-31=-89 28-29=-89	9/348, 25/388, 25/388, 48/435, 3/256, /133, 15, 24-25=0/3 /101, /101, /101, /101, /101, /101, /101, /101,	·	and to 1 25- car righ for DO	d C-C Co 13-5-8, C 5-8 to 32 titilever le the expose reaction L=1.60	orner(3 Corner(2-3-10, eft and ed;C-C s show	E) -0-10-8 to 2- 3R) 13-5-8 to 2- 3R) 13-5-8 to 2- corner(3E) 32 right exposed ; for members a vn; Lumber DOI	-7-6, Exterior(2N) 2-7-6 25-5-8, Exterior(2N) 2-3-10 to 35-9-8 zone; ; end vertical left and and forces & MWFRS L=1.60 plate grip

Continued on page 2

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITTER REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTeR% connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPH Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) with the Section of the prevent collapse contervent for the Sectional temporation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

September 20,2024

Job	Truss	Truss Type	Qty	Ply	The Grace-Roof-1511 A-The Grace	
24090063-01	B02	Piggyback Base Supported Gable	1	1	Job Reference (optional)	168350162

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable. or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 7) Provide adequate drainage to prevent water ponding.
- All plates are 2x4 MT20 unless otherwise indicated. 8)
- 9) Gable requires continuous bottom chord bearing. 10) Truss to be fully sheathed from one face or securely
- braced against lateral movement (i.e. diagonal web). 11) Gable studs spaced at 2-0-0 oc.
- 12) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 13) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
- chord and any other members. 14) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 188 lb uplift at joint 46, 87 lb uplift at joint 26, 20 lb uplift at joint 36, 47 lb uplift at joint 38, 72 lb uplift at joint 39, 63 lb uplift at joint 40, 63 lb uplift at joint 41, 71 lb uplift at joint 42, 52 lb uplift at joint 43, 71 lb uplift at joint 44, 178 lb uplift at joint 45, 37 lb uplift at joint 35, 41 lb uplift at joint 32, 74 Ib uplift at joint 31, 62 lb uplift at joint 30, 68 lb uplift at joint 29, 51 lb uplift at joint 28 and 158 lb uplift at joint 27.
- 15) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Thu Sep 19 13:23:50 ID:a5a35k_IXa9LVTIzoVLg0Hyc6lj-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

Job	Truss	Truss Type	Qty	Ply	The Grace-Roof-1511 A-The Grace	
24090063-01	C01	Piggyback Base	3	1	Job Reference (optional)	168350163

17-8-5

13-2-11

Carter Components (Sanford, NC), Sanford, NC - 27332,

Loading

TCDL

BCLL

BCDL

WEBS

WEBS

FORCES

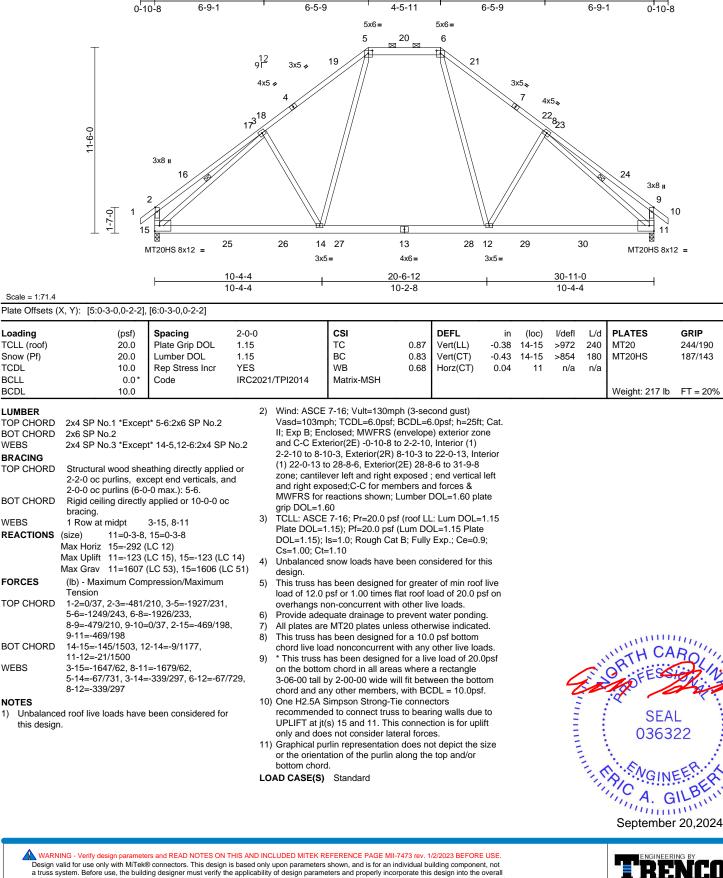
WEBS

NOTES

LUMBER

-0-10-8

6-9-1


Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Thu Sep 19 13:23:51 ID:eMqAr_xk0rBhZ6cFCjHG?xyc6K4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

24-1-15

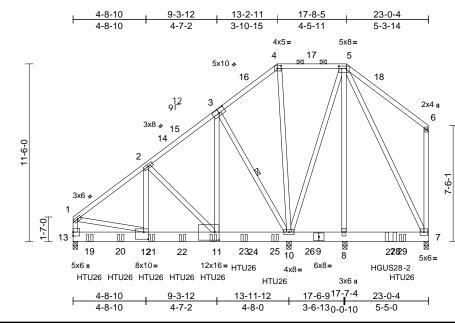
Page: 1

31-9-8

30-11-0

bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932


VIIIIIIIIIII

Job	Truss	Truss Type	Qty	Ply	The Grace-Roof-1511 A-The Grace				
24090063-01	C02	Piggyback Base Girder	1	2	Job Reference (optional)	168350164			

Scale = 1:74.6

Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Thu Sep 19 13:23:51 ID:RQA4FoleazE75U3xWhBxm6yc76g-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

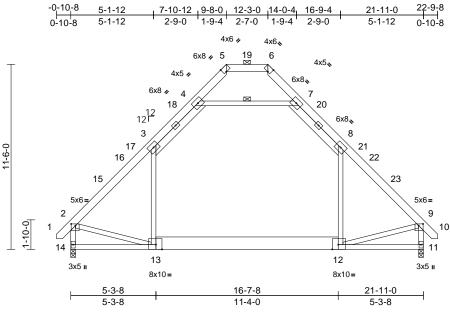
Page: 1

Plate Offsets (X, Y): [3:0-5-0,0-3-0], [4:0-3-0,0-2-0], [5:0-5-12,0-1-12], [11:0-3-8,0-6-4], [12:0-3-8,0-5-8]

Loading TCLL (roof) Snow (Pf)	(psf) 20.0 20.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15		CSI TC BC WB	0.43 0.59	DEFL Vert(LL) Vert(CT)	-0.09	(loc) 11-12 11-12	>999	L/d 240 180	PLATES MT20	GRIP 244/190
TCDL BCLL BCDL	10.0 0.0* 10.0	Rep Stress Incr Code	NO IRC202	1/TPI2014	Matrix-MSH	0.79	Horz(CT)	0.01	10	n/a	n/a	Weight: 472 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x8 SP 2400F 2.0E 2x4 SP No.2 *Excep 12-1,7-6,12-2,10-3,2 Structural wood she 6-0-0 oc purlins, ex 2-0-0 oc purlins (10- Rigid ceiling directly bracing. 1 Row at midpt (size) 7=0-3-8, t 13=0-3-8 Max Horiz 13=346 (I Max Grav 7=1771 (I 10=7175	-11:2x4 SP No.3 athing directly applie cept end verticals, au 0-0 max.): 4-5. applied or 6-0-0 oc 3-10 3=0-3-7, 10=0-3-8, .C 11) .C 35), 8=2613 (LC 0 (LC 45), 13=4940 (L	nd 4) 5) 6),	except if not CASE(S) see provided to c unless other Unbalanced this design. Wind: ASCE Vasd=103m II; Exp B; En cantilever lef right expose Plate DOL=1 DOL=1.15); Cs=1.00; Ct:	considered equa ed as front (F) or l tition. Ply to ply cc distribute only load wise indicated. roof live loads ha 7-16; Vult=130m ph; TCDL=6.0psf; closed; MWFRS (it and right expose d; Lumber DOL=1 : 7-16; Pr=20.0 psf ls=1.0; Rough Ca =1.10 snow loads have	back (B) ponnection ds noted ve been ph (3-sec BCDL=6 (envelope ed ; end v .60 plate of (roof LL (Lum DC t B; Fully	face in the LC s have been as (F) or (B), considered for ond gust) .0psf; h=25ft e) exterior zon vertical left an grip DOL=1. .: Lum DOL= DL=1.15 Plate Exp.; Ce=0.5	r ; Cat. he; id 60 1.15 9;	In Ui Ci	crease= niform Lo Vert: 1- oncentra Vert: 11 21=-123	1.15 oads (l 4=-60, ated Lo =-123(30 (F),	b/ft) 4-5=-60, 5-6=-60 ads (lb) 0 (F), 19=-1230 (l	⁻), 20=-1230 (F), =-1230 (F), 25=-1230
FORCES TOP CHORD BOT CHORD WEBS NOTES	5-6=-260/150, 1-13=	105/912, 4-5=0/710, 3371/0, 6-7=-311/1 :12=0/3415, =-475/0, 7-8=-473/0 1008, 3-11=0/5144, :4466/0, 4-10=-749/(03 9)),	 This truss ha chord live loa * This truss h on the bottor 3-06-00 tall h chord and ar O) Graphical put 	quate drainage to as been designed ad nonconcurrent has been designe in chord in all area by 2-00-00 wide w hy other members irlin representation	for a 10. with any d for a liv as where vill fit betw s, with BC n does no	D psf bottom other live loa e load of 20.0 a rectangle veen the botto DL = 10.0psf ot depict the s	ds. Opsf om		4		NITH CA	ROUTIN
 2-ply truss (0.131"x3 Top chore oc. Bottom ch staggered 	s to be connected toge ") nails as follows: ds connected as follows nords connected as foll d at 0-7-0 oc. nected as follows: 2x4 -	s: 2x4 - 1 row at 0-9- ows: 2x8 - 4 rows	0 12 13	bottom chord 1) Use Simpson 14-10dx1 1/2 max. starting connect trus: 2) Use Simpson 6-16d Truss) connect trus	n Strong-Tie HTU 2 Truss) or equiva 3 at 1-1-0 from the s(es) to front face in Strong-Tie HGU or equivalent at 2 s(es) to front face bles where hange	26 (10-10 lent space e left end of bottor IS28-2 (3 20-7-0 fro of bottor	6d Girder, ced at 8-3-0 o to 21-4-0 to n chord. 6-16d Girder om the left en n chord.	, d to			A A A A A A A A A A A A A A A A A A A	SEA 0363	EER. Kunn

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCB_21** Building Component Science (Marching) and an and the specific trust and **DSB-22** available from Truss Plate Institute (www.tpinst.org)

and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


818 Soundside Road Edenton, NC 27932

September 20,2024

Job	Truss	Truss Type	Qty	Ply	The Grace-Roof-1511 A-The Grace						
24090063-01	D01	Attic	3	1	Job Reference (optional)	168350165					

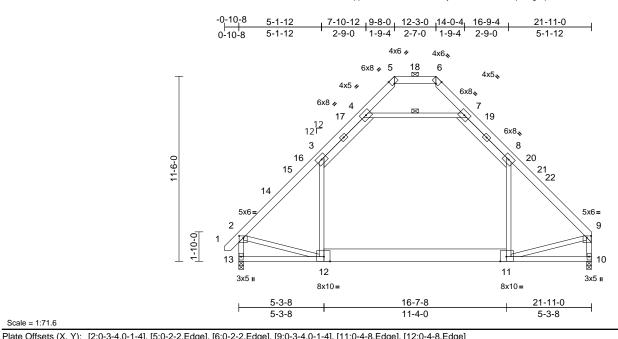
Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Thu Sep 19 13:23:51 ID:n1LqTRnTPO9UVCyZqumAWEyc77w-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:71.6 Plate Offsets (X, Y): [2:0-3-4,0-1-4], [5:0-2-2,Edge], [6:0-2-2,Edge], [9:0-3-4,0-1-4], [12:0-4-8,Edge], [13:0-4-8,Edge]

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MSH	0.97 0.48 0.33	DEFL Vert(LL) Vert(CT) Horz(CT) Attic	-0.32 0.01	(loc) 12-13 12-13 11 12-13	l/defl >999 >800 n/a >890	L/d 240 180 n/a 360	PLATES MT20 Weight: 203 lb	GRIP 244/190 FT = 20%
2.0E WEBS 244 SF 3-4,7-8 BRACING TOP CHORD Structure (10-0-) BOT CHORD Rigid (WEBS 1 Row REACTIONS (size) Max Ho Max Gri FORCES (b) - N Tensic TOP CHORD 1-2=0/ 4-5=-1 7-8=-1 2-14=- BOT CHORD 11-14- WEBS 3-13=(No.2 *Excep No.3 *Excep Sca SP No.2 ural wood she end verticals max): 5-6. seiling directly at midpt 11=0-3-8, riz 14=-297 (av) 11=473 laximum Comn no, 2-3=-1566 72/291, 5-6=(0) 77/127, 8-9= 1537/3, 9-11= -322/995 /585, 8-12=0, 44/941, 9-12= 	athing directly applied , and 2-0-0 oc purlins applied or 8-11-14 o 4-7 14=0-3-8 LC 12) (LC 48), 14=1473 (LC pression/Maximum 5/0, 3-4=-1074/131, 0/371, 6-7=-172/290, 1562/0, 9-10=0/36, 1543/0 /585, 4-7=-1404/149, 49/945	d, c 3) 2 48) 5) 6) 7) 8) 9) 10 11	Vasd=103m II; Exp B; En and C-C Ext to 5-1-9, Ext to 5-1-9, Ext to 19-7-6, Ex left and right exposed;C-C reactions sh DOL=1.60 TCLL: ASCE Plate DOL=- DOL=1.15); Cs=1.00; Ct Unbalanced design. This truss ha load of 12.0 overhangs n Provide ader This truss ha chord live load * This truss ha chord live load * This truss ha chord and an Ceiling dead Wall dead lo Bottom chor chord dead I) Graphical pu or the orient bottom chor	snow loads have I as been designed f psf or 1.00 times f on-concurrent with quate drainage to is been designed ad nonconcurrent has been designed on chord in all area by 2-00-00 wide wi y other members. load (5.0 psf) on ne ad (5.0 psf) on med d live load (40.0 ps oad (5.0 psf) appli ritin representation ation of the purlin a J.	BCDL=6 envelope 2-3-10, 16-9-7, 1 to 22-7-6 rtical left f forces a =1.60 pl f (roof LL (Lum DC been cor for great lat roof la prevent to or a 10.0 with any f for a liv s where member(mbr(s). sf) and a d does no along the	.0psf; h=25ft a) exterior zor Interior (1) 2- interior (1) 16- iz zone; cantile and right MWFRS for ate grip .: Lum DOL= U=1.15 Plate Exp.; Ce=0.5 asidered for the er of min roof Dad of 20.0 pr we loads. water ponding D psf bottom other live loads. a rectangle ween the bottom (s). 3-4, 7-8, 4 3-13, 8-12 dditional botto or com. 12-11 bt depict the se to pand/or	ne 3-10 -9-7 ever 1.15 e); nis live sf on g. ds. Opsf om 4-7; om 3			is	SEA 0363	• •

- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 12) Attic room checked for L/360 deflection.
- LOAD CASE(S) Standard


818 Soundside Road Edenton, NC 27932

GI mmm September 20,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type Qty			The Grace-Roof-1511 A-The Grace					
24090063-01	D02	Attic	5	1	Job Reference (optional)	168350166				

Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Thu Sep 19 13:23:52 ID:qqeoLJ8Du6U?e2PNDFJlt3yc78I-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:71.6

		[0:0 2 2,23g0]; [0:0 2	= _;go]; [o:o_o;;o]; [: ::e : e;=age]; [: =:e :	0,2090]		
Loading	(pcf)	Spacing	200	CEI	DEEL	in	(loc)

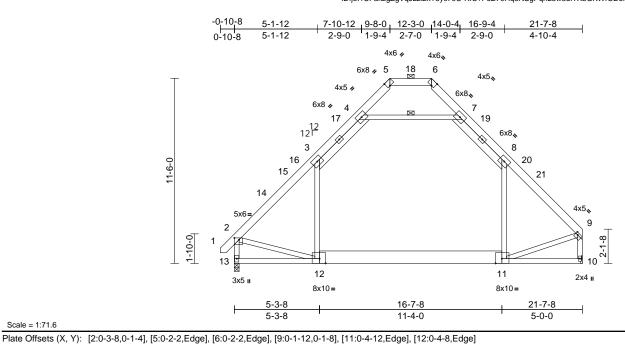
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Lumber DOL	2-0-0 1.15 1.15 YES IRC202 ⁻	1/TPI2014	CSI TC BC WB Matrix-MSH	0.98 0.49 0.34	DEFL Vert(LL) Vert(CT) Horz(CT) Attic	in -0.22 -0.33 0.01 -0.16	l/defl >999 >798 n/a >871	L/d 240 180 n/a 360	PLATES MT20 Weight: 201 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS	2x6 SP No.2 2x4 SP No.2 *Excep 2.0E 2x4 SP No.3 *Excep 3-4,7-8:2x6 SP No.2		2) 0F	Vasd=103mp II; Exp B; En- and C-C Exte to 5-1-9, Exte	7-16; Vult=130mp bh; TCDL=6.0psf; E closed; MWFRS (e erior(2E) -0-8-6 to 3 erior(2R) 5-1-9 to 1 terior(2E) 18-9-4 tt	BCDL=6 envelope 2-3-10, 6-9-7, I	0.0psf; h=25ft e) exterior zo Interior (1) 2- nterior (1) 16	ne 3-10 -9-7				
BRACING TOP CHORD	Structural wood she except end verticals (10-0-0 max.): 5-6.	athing directly applied , and 2-0-0 oc purlins	, 3)	left and right exposed;C-C reactions sho DOL=1.60	exposed ; end ver for members and own; Lumber DOL=	tical left forces =1.60 pl	and right & MWFRS fo ate grip	r				
BOT CHORD	bracing.	applied or 8-10-6 oc 4-7	3)	Plate DOL=1 DOL=1.15);	7-16; Pr=20.0 psf .15); Pf=20.0 psf (s=1.0; Rough Cat	Lum DC	L=1.15 Plate	e				
REACTIONS		13=0-3-8 _C 11)	4) 48)	design.	snow loads have b							
FORCES	(lb) - Maximum Com Tension		40) 5)	load of 12.0	s been designed for psf or 1.00 times flat on-concurrent with	at roof l	oad of 20.0 p					
TOP CHORD	1-2=0/36, 2-3=-1567 4-5=-169/293, 5-6=0	, ,	6) 7) 2,	Provide adeo This truss ha chord live loa	quate drainage to p s been designed fo ad nonconcurrent v has been designed	orevent or a 10. vith any	water ponding psf bottom other live loa	ads.			mmm	1111
BOT CHORD WEBS	10-13=-331/987	/578, 4-7=-1412/149, 39/953	8)	on the bottor 3-06-00 tall b chord and ar	n chord in all areas by 2-00-00 wide wil by other members.	s where I fit betv	a rectangle veen the bott	om	4	r'i	OR ESS	ROUN
NOTES 1) Unbalance	ed roof live loads have	been considered for	9)	Wall dead loa	load (5.0 psf) on n ad (5.0psf) on men	nber(s).	3-12, 8-11				200	Ment -

this design.

10) Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 11-12 11) Graphical purlin representation does not depict the size

- or the orientation of the purlin along the top and/or bottom chord.
- 12) Attic room checked for L/360 deflection. LOAD CASE(S) Standard

Page: 1


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	The Grace-Roof-1511 A-The Grace				
24090063-01	D03	Attic	8	1	Job Reference (optional)	168350167			

Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Thu Sep 19 13:23:52 ID:joI1UFakzgZgVqJLztzkT8yc79U-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

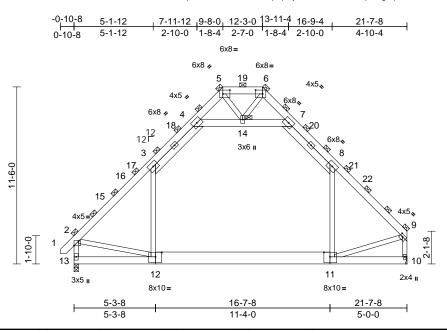
Page: 1

Scale = 1:71.6

	0,0 1 4], [0.	.0 2 2,Eugej, [0.0-2	. z, cayej,	[5.0 112,01	oj, [11.0 4-12,Eug	oj, [12.0	, - o,∟uge]						
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	20.0 P 20.0 L 10.0 R	Spacing Plate Grip DOL .umber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021	I/TPI2014	CSI TC BC WB Matrix-MSH	0.96 0.69 0.36	DEFL Vert(LL) Vert(CT) Horz(CT) Attic	-0.32 0.01	(loc) 11-12 11-12 10 11-12	l/defl >999 >807 n/a >876	L/d 240 180 n/a 360	PLATES MT20 Weight: 200 lb	GRIP 244/190 FT = 20%
2.0E WEBS 2x4 SP No.3 3-4,7-8:2x6 BRACING Structural w except end v (10-0-0 max BOT CHORD Structural w except end v (10-0-0 max BOT CHORD Rigid ceiling bracing. WEBS 1 Row at mi REACTIONS (size) 10 Max Horiz 11 FORCES (lb) - Maxim Tension TOP CHORD 1-2=0/36, 2- 4-5=-177/28 7-8=-1065/1 9-10=-1525/ BOT CHORD 10-13=-331/	2 *Except* 1 3 *Except* 4 SP No.2 vood sheathi verticals, an (.): 5-6. 9 directly app idpt 4-7 0= Mechani 3=294 (LC 0=1434 (LC) (LC) (LC) (LC) (LC) (LC) (LC) (LC)	ical, 13=0-3-8 11) 2 48), 13=1455 (LC ession/Maximum 3-4=-1046/131, 55, 6-7=-186/267, 500/0, 2-13=-1508/ 541, 4-7=-1352/150 4/981	, 3) 48) 5) 3, 8) 0, 9) 10) 11] 12) 13)	Vasd=103mp II; Exp B; Enn and C-C Ext to 5-1-9, Ext to 18-5-12, E cantilever lef right exposed for reactions DOL=1.60 TCLL: ASCE Plate DOL=1 DOL=1.15); I Cs=1.00; Ct Unbalanced design. This truss ha load of 12.0 overhangs n Provide adec This truss ha chord live loa * This truss ha chord live loa * This truss ha chord and ar Ceiling dead Wall dead loa Bottom chorc chord dead la Bettom chorc	snow loads have b s been designed for performance of the second second performance of the second second second second performance of the second second second second performance of the second second second second second second performance of the second s	SCDL=6 nvelope 2-3-10, 1 6-9-7, 11 2 to 21-5 1; end v and for DL=1.60 (roof LL um DC B; Fully een cor or greate at roof ld other lin revent v or a 10.0 (ith any for a liv where l fit betw hember(bber(s).3 i) and y t s conr does no long the	:.0psf; h=25ft;) exterior zor: Interior (1) 2-3; vertical left an cress & MWFR) plate grip :: Lum DOL= ² L: Lum DOL= ² L: Lum DOL= ² L: Lum DOL= ² D=1.15 Plate Exp.; Ce=0.9; asidered for th er of min roof pad of 20.0 ps ve loads. water ponding D psf bottom other live load; a rectangle veen the bottod (s). 3-4, 7-8, 4 3-12, 8-11 dottions. ot depict the s t op and/or	ne 3-10 9-7 d SS 1.15); live sf on g. ds.)psf ds.)psf pm l-7; pm 2		N. GILLIN, C.		SEA 0363	• -

- chord dead load (5.0 psf) applied only to room. 11-12
 - 11) Refer to girder(s) for truss to truss connections. 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 13) Attic room checked for L/360 deflection.
- LOAD CASE(S) Standard

G (1111111) September 20,2024


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB Building Component Scietur Information**. Building from the Structure Building Component Advance interpretented and the properties of th and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type		Ply	The Grace-Roof-1511 A-The Grace				
24090063-01	D04	Attic	1	2	Job Reference (optional)	168350168			

Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Thu Sep 19 13:23:52 ID:qDTExRvEwmdTPNcmFqUqkYyc7AL-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:74.8

Plate Offsets (X, Y): [2:0-3-8,Edge], [5:0-5-8,0-3-0], [6:0-5-8,0-3-0], [9:0-2-0,0-1-12], [11:0-4-12,0-3-8], [12:0-4-12,0-3-8]

-												1	-
Loading	(psf)	Spacing	4-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.74	Vert(LL)		11-12	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.56	Vert(CT)		11-12	>957	180	-	
TCDL	10.0	Rep Stress Incr	NO		WB	0.36	Horz(CT)	0.01	10	n/a	n/a		
BCLL	0.0*	Code		1/TPI2014	Matrix-MSH		Attic		11-12	>999	360		
BCDL	10.0						7 1110	0.12		- 000	000	Weight: 438 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD		*Except* 5-6:2x6 SP t* 12-11:2x10 SP 240		(0.131"x3") r Top chords o staggered at	be connected tog hails as follows: connected as follow 0-9-0 oc, 2x4 - 1	vs: 2x6 · ow at 0·	- 2 rows 9-0 oc.		on 3-0 chc	the botto 6-00 tall ord and a	om cho by 2-0 any oth	ord in all areas wh 00-00 wide will fit lier members.	between the bottom
WEBS	2.0E 2x4 SP No.3 *Excep No.2	t* 4-7,3-4,7-8:2x6 SP)	staggered at oc.	ds connected as fo 0-9-0 oc, 2x10 - 2	rows st	aggered at 0	-9-0	7-1 12) Bot	4; Wall tom cho	dead lo rd live	oad (5.0psf) on m load (40.0 psf) ar	nber(s). 3-4, 7-8, 4-14, nember(s).3-12, 8-11 nd additional bottom
BRACING					ted as follows: 2x4								nly to room. 11-12
TOP CHORD	verticals	-0 max.), except end eted: Spacing > 2-8-0		except if note	considered equall ed as front (F) or b ction. Ply to ply co	ack (B)	face in the LO		14) Gra	phical p	urlin re	for truss to truss of presentation doe of the purlin along	es not depict the size
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 oc		•	listribute only load wise indicated.	s noted	as (F) or (B),			tom cho		d for L/360 defled	rtion
	bracing.		3)		roof live loads hav	e been i	considered fo	or	LOAD				
JOINTS	1 Brace at Jt(s): 5, 6, 2, 9, 14		0,	this design.		0 00011			LUAD	SASE(S) 31a	nuaru	
REACTIONS		anical, 13=0-3-8	4)		7-16; Vult=130mp	h (3-sec	cond gust)						
	Max Horiz 13=583 (L Max Grav 10=2867	_C 11)	C 48)	II; Exp B; En	oh; TCDL=6.0psf; closed; MWFRS (e erior(2E) -0-8-6 to	envelope	e) exterior zo	ne					
FORCES	(lb) - Maximum Com Tension	pression/Maximum		to 5-1-9, Exte	erior(2R) 5-1-9 to	16-9-7, I	nterior (1) 16						
TOP CHORD	1-2=0/71, 2-3=-3121 4-5=-461/444, 5-6=-	/0, 3-4=-2129/253, 30/681, 6-7=-470/435 3078/0, 2-13=-3044		cantilever lef	Exterior(2E) 18-5-1 t and right expose d;C-C for members shown; Lumber D	d ; end \ s and for	vertical left ar					WITH CA	ROLIN
BOT CHORD	10-13=-625/1964		5)		7-16; Pr=20.0 ps	(roof LL	.: Lum DOL=	1.15			5.	EFOR	DN. Vien
WEBS	3-12=0/1214, 8-11=- 4-14=-2734/308, 7-1 2-12=-45/1824, 9-11	4=-2764/318, =-7/1974,	- ,	Plate DOL=1	.15); Pf=20.0 psf (ls=1.0; Rough Cat	Lum DC	DL=1.15 Plate	e		2		SEA	A A
	5-14=-195/274, 6-14	l=-174/307	6)		snow loads have l	been cor	nsidered for t	his		=	:	JLA	• -
NOTES			7)	load of 12.0	is been designed f psf or 1.00 times fl on-concurrent with	at roof le	oad of 20.0 p			11110		0363	22
			8)		quate drainage to			g.			115	& NGIN	EETA

This truss has been designed for a 10.0 psf bottom

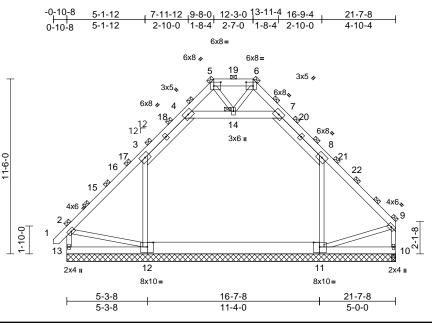
chord live load nonconcurrent with any other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut beformation, available from the Structure Review Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

9)

818 Soundside Road Edenton, NC 27932

A. GILB A. GILD


September 20,2024

C

Job	Truss	Truss Type	Qty	Ply	The Grace-Roof-1511 A-The Grace	
24090063-01	D05	Attic Structural Gable	1	2	Job Reference (optional)	168350169

Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Thu Sep 19 13:23:52 ID:TR53BIE66ZaQhmK?z3TiTkyc7BD-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

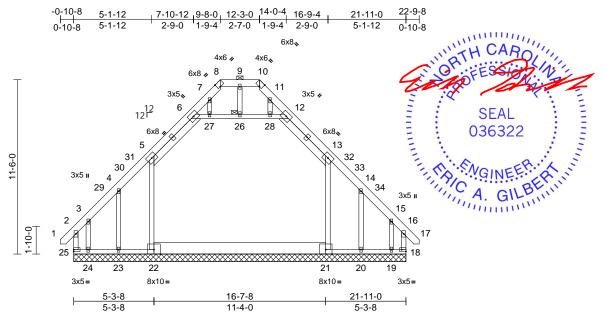
Page: 1

Scale = 1:75.8

Plate Offsets (X, Y): [5:0-5-8,0-3-0], [6:0-5-8,0-3-0], [11:0-4-12,0-3-8], [12:0-4-12,0-3-8]

·													-
Loading	(psf)	Spacing	4-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.20	Vert(LL)		11-12	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.22	Vert(CT)		11-12	>999	180	-	
TCDL	10.0	Rep Stress Incr	NO		WB	0.15	Horz(CT)	0.00	10	n/a	n/a		
BCLL	0.0*	Code	IRC202	1/TPI2014	Matrix-MSH		- (-)						
BCDL	10.0											Weight: 438 lb	FT = 20%
BCDL LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD JOINTS REACTIONS	10.0 2x6 SP No.2 2x6 SP No.2 *Excep 2.0E 2x4 SP No.3 *Excep No.2 2-0-0 oc purlins (6-0 verticals (Switched from shee Rigid ceiling directly bracing. 1 Brace at Jt(s): 5, 6, 2, 9, 14 (size) 10=21-7-1 13=21-7-1 Max Horiz 13=583 (I Max Uplift 10=-114 12=-500 (I Max Grav 10=1102 12=1232 (Ib) - Maximum Com Tension 1-2=0/71, 2-3=-1050 (4-5=-690/140, 5-6=- 7-8=-1116/286, 8-9- 2-13=-1122/130, 9-1	ot* 12-11:2x10 SP 24 ot* 12-11:2x10 SP 24 ot* 4-7,3-4,7-8:2x6 SF o-0 max.), except end eted: Spacing > 2-8-0 v applied or 10-0-0 oc eted: Spacing > 2-8-0 v applied or 10-0-0 oc 8, 11=21-7-8, 12=21- 8 LC 11) (LC 11), 11=-493 (LC (LC 11), 11=-493 (LC (LC 42), 11=-1198 (LC (LC 52), 13=-1188 (LC npression/Maximum 0/255, 3-4=-1116/287 400/141, 6-7=-690/1: -1029/238,	1) 00F 3 3 3 3 3 3 4) 15), 10) 2 54), 2 42) 5 40,	2-ply truss to (0.131"x3") n Top chords of staggered at Bottom chores at gered at oc. Web connect 2 rows staggered at oc. Web connect 2 rows staggered at concept if note CASE(S) sec provided to of unless othen Unbalanced this design. Wind: ASCE Vasd=103mg II; Exp B; En and C-C Exte to 5-1-9, Exte to 5-1-9, Exte to 5-1-9, Exte to 18-5-12, E cantilever lef right exposed for reactions DOL=1.60 TCLL: ASCE Plate DOL=1	b be connected tog ails as follows: connected as follow 0-9-0 oc, 2x4 - 1 i ds connected as follow 0-9-0 oc, 2x40 - 2 ted as follows: 2x4 lered at 0-9-0 oc. considered equall ed as front (F) or b totion. Ply to ply con distribute only load wise indicated. roof live loads hav 7-16; Vult=130mp oh; TCDL=6.0psf; closed; MWFRS (erior(2E) -0-8-6 to erior(2E) 5-1-9 to Exterior(2E) 18-5-1 t and right expose d;C-C for members shown; Lumber D 57-16; Pr=20.0 psf (.15); Pf=20.0 psf	ws: 2x6 · row at 0· llows: 2 rows st 4 - 1 row y applie pack (B) nnection s noted re been boh (3-sec BCDL=6 envelope 2-3-10, 16-9-7, I 2 to 21- 3 ; end y s and foi OL=1.60 f (roof LL (Lum DC	- 2 rows -9-0 oc. x6 - 2 rows aggered at 0- at 0-9-0 oc, 2 d to all plies, face in the LC s have been as (F) or (B), considered fo cond gust) 0.0ps(; h=25ft; a) exterior zor Interior (1) 2- interior (1) 16- 5-12 zone; vertical left an rcces & MWFF 0 plate grip _: Lum DOL== 15 Plate	2x6 - DAD or ; Cat. ne 3-10 -9-7 nd RS	on 3-0 chc 11) Onr rec UP upli 12) Gra or t bot 13) Atti LOAD (the botto 6-00 tall ord and a e H2.5A ommenco LIFT at j ff only a aphical p he orien tom choi c room c CASE(S)	m choo by 2-0 Ny oth Simpsi ed to c (s) 13, nd doe urlin re ation c d. hecked) Star	een designed for rd in all areas wh 0-00 wide will fit er members. on Strong-Tie co connect truss to b 12, 11, and 10. is not consider la presentation doe of the purlin along d for L/360 deflect indard	a live load of 20.0psf ere a rectangle between the bottom nnectors pearing walls due to This connection is for teral forces. Is not depict the size g the top and/or
WEBS	IORD 10-13=-562/607 DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; SE/ 3-12=-905/595, 8-11=-903/583, Cs=1.00; Ct=1.10 Cs=1.00; Ct=1.10 0363 4-14=-314/261, 7-14=-314/260, 0 Unbalanced snow loads have been considered for this design. 0363									SEA 0363	L 22		
NOTES	5-14=-139/137, 6-14		8)	This truss ha load of 12.0 overhangs no Provide adeo This truss ha	ICLL: ASCE 7-16; PF=20.0 psf (root LL: Lum DDL=1.15) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 Unbalanced snow loads have been considered for this design. This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. Provide adequate drainage to prevent water ponding. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.								EER. K.
						and any						Septembe	r 20,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



818 Soundside Road

Edenton, NC 27932

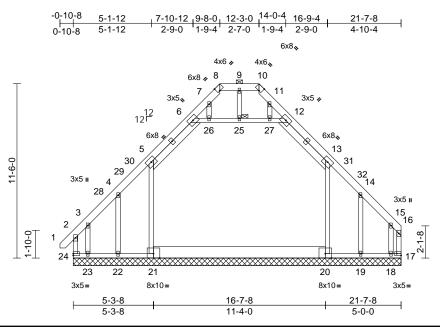
Job	Truss	Truss Type	Qty	Ply	The Grace-Roof-1511 A-The Grace	
24090063-01	D06	Attic Supported Gable	1	1	Job Reference (optional)	l68350170

Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Thu Sep 19 13:23:52 ID:o2FpOxGwx_Vm5UCdHG1xDtyc7CT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:76

Plate Offsets (X, Y): [8:0-2-2,Edge], [10:0-2-2,Edge], [18:Edge,0-1-8]

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MSH	0.37 0.37 0.26	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 18	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 213 lb	GRIP 244/190 FT = 20%		
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD	2x6 SP No.2 2x4 SP No.2 *Excep 2.0E 2x4 SP No.3 *Excep 5-6,12-13:2x6 SP No 2x4 SP No.3 Structural wood she	ot* 22-21:2x10 SP 240 ot* 6-12:2x4 SP No.2, o.2 athing directly applied cept end verticals, an	00F W	TEBS	24-25=-111/161, 2: 20-23=-110/160, 1: 18-19=-105/157 5-22=-334/52, 13-2 26-27=-22/208, 26: 12-28=-22/209, 9-2 4-23=-106/192, 3-2 14-20=-107/190, 1: roof live loads hav	9-20=-1 21=-334 28=-22 26=0/45 24=-152 5-19=-1	06/158, /45, 6-27=-22/2(/208, , 7-27=-57/11, /176, 11-28=-57 47/174	09, 7/9,	 Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). Gable studs spaced at 2-0-0 oc. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. Ceiling dead load (5.0 psf) on member(s). 5-6, 12-13, 6-27, 26-27, 26-28, 12-28; Wall dead load (5.0psf) on 						
	bracing. 1 Brace at Jt(s): 26 (size) 18=21-11 20=21-11 22=21-11 24=21-11 Max Horiz 25=-232 (Max Uplift 18=-226 (24=-255 (Max Grav 18=471 (L 20=66 (LC 22=672 (L 24=298 (L (ub) - Maximum Com Tension 2-25=-342/156, 1-2=	-0, 19=21-11-0, -0, 21=21-11-0, -0, 23=21-11-0, -0, 25=21-11-0, -0, 25=21-11-0 [LC 12] (LC 11), 19=-251 (LC (LC 14), 25=-239 (LC LC 252), 19=288 (LC 1 C 13), 21=670 (LC 56 LC 58), 23=63 (LC 42 LC 12), 25=481 (LC 5 oppression/Maximum	14), 10) 3) 3),), 4) 4)	 Wind CASCE 7-16; Vult=130mph (3-second gust) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0.8-6 to 2-3-10, Exterior(2N) 2-3-10 to 6-8-0, Corner(3E) 19-7-6 to 22-7-6 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. TCLL: ASCE 7-16; Pr=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); N=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 							y others) of truss to ing 239 lb uplift at joint uplift at joint 23, 255 lb it 20 and 251 lb uplift es not depict the size g the top and/or				
	6-7=-369/59, 7-8=-3	16/49, 8-9=-273/34, I=-316/51, 11-12=-36 -14=-188/219, -16=-312/163,	6)	design. This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. Provide adequate drainage to prevent water ponding. All plates are 2x4 MT20 unless otherwise indicated.											


September 20,2024

Job	Truss	Truss Type		Ply	The Grace-Roof-1511 A-The Grace				
24090063-01	D07	Attic Supported Gable	1	1	Job Reference (optional)	l68350171			

Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Thu Sep 19 13:23:53 ID:n9ZqQFqHzQVfJBcmpnP1vmyc7EK-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:76

Plate Offsets (X, Y): [8:0-2-2,Edge], [10:0-2-2,Edge], [17:Edge,0-1-8]

	1	· · · ·		1								· · · · · · · · · · · · · · · · · · ·	
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0		1.15	TC	0.39	Vert(LL)	n/a	-	n/a	999	МТ20	244/190	
Snow (Pf)	20.0		1.15	BC	0.38	· · ·	n/a	-	n/a	999	-		
TCDL	10.0		YES	WB	0.29	· · ·	0.00	17	n/a	n/a			
BCLL	0.0*		RC2021/TPI2014	Matrix-MSH		(0.)							
BCDL	10.0										Weight: 209 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING	2.0E	t* 21-20:2x10 SP 2400 t* 6-12:2x4 SP No.2, 5.2	NOTES 1) Unbalanced	 25-26=-21/212, 25-27=-21/212, 12-27=-21/212, 9-25=0/50, 7-26=-62/14, 4-22=-103/197, 3-23=-167/187, 11-27=-62/7, 14-19=-103/218, 15-18=-161/175 NOTES 1) Unbalanced roof live loads have been considered for this design. chord live load nonconcurrent with any other live load on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bot chord and any other members, with BCDL = 10.0ps 14 Ceiling dead load (5.0 psf) on member(s). 5-6, 12-1 6-26, 25-27, 12-27; Wall dead load (5.0psf) 									
TOP CHORD	6-0-0 oc purlins, ex 2-0-0 oc purlins (6-0		Vasd=103m II; Exp B; E	E 7-16; Vult=130mp nph; TCDL=6.0psf; nclosed; MWFRS (BCDL=6 envelope	6.0psf; h=25ft; e) exterior zor		15) Pro bea	vide me tring plat	chanic te capa	al connection (b)	y others) of truss to ling 269 lb uplift at joint	
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 oc	2-3-10 to 6-	and C-C Corner(3E) -0-8-6 to 2-3-10, Exterior(2N) 2-3-10 to 6-8-0, Corner(3R) 6-8-0 to 15-3-0, Exterior(2N) 24, 322 lb uplift at joint 17, 144 lb uplift at joint 22, 2 uplift at joint 23, 165 lb uplift at joint 19 and 292 lb uplift at joint 24, 2 uplift at joint 2									
JOINTS	1 Brace at Jt(s): 25			15-3-0 to 18-5-12, Corner(3E) 18-5-12 to 21-5-12 zone; captilever left and right exposed : end vertical left and 16) Graphical purlin representation does not depict the									
	20=21-7-8	8, 18=21-7-8, 19=21-7-8 3, 21=21-7-8, 22=21-7-8 3, 24=21-7-8 .C 11)	3, right expose for reaction DOL=1.60	right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 17) Attic room checked for L/360 deflection.								ng the top and/or	
	19=-165 (23=-273 (Max Grav 17=516 (L 19=86 (LC 21=713 (L 23=325 (L	LC 11), 18=-292 (LC 10 LC 15), 22=-144 (LC 1- LC 11), 24=-269 (LC 11 LC 52), 18=370 (LC 13) C 13), 20=703 (LC 56), LC 52), 22=58 (LC 12), LC 12), 24=493 (LC 54)	 a), only. For st b) see Standa cor consult q d) TCLL: ASC Plate DOL= 	 only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pi=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Pi=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; 								ROLIN	
FORCES	(lb) - Maximum Com Tension	pression/Maximum	5) Unbalanced	I snow loads have b	been coi	nsidered for th	nis		4		OR S	w	
TOP CHORD	6-7=-386/58, 7-8=-3 9-10=-291/39, 10-11 12-13=-275/179, 13 14-15=-215/95, 15-1 16-17=-304/166 23-24=-102/142, 22	179/223, 5-6=-275/179 34/46, 8-9=-291/39, =-334/60, 11-12=-386/ .14=-176/223, 6=-304/165, 23=-101/141,	 6) This truss h load of 12.0 overhangs i 67, 7) Provide ade 8) All plates an 9) Gable requi 10) Truss to be 	 design. 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. 7) Provide adequate drainage to prevent water ponding. 8) All plates are 2x4 MT20 unless otherwise indicated. 9) Gable requires continuous bottom chord bearing. 10) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). 						A A A A A A A A A A A A A A A A A A A	SEA 0363	• –	
	19-22=-102/141, 18- 17-18=-97/138	19=-98/138,		spaced at 2-0-0 of							A. C	allowing	

September 20,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	The Grace-Roof-1511 A-The Grace	
24090063-01	PB1	Piggyback	10	1	Job Reference (optional)	168350172

4-6-12

4-6-12

,12 9 Г

13

Carter Components (Sanford, NC), Sanford, NC - 27332,

3-9-11

0-4-10

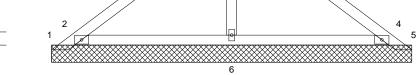
3-11-5

Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Thu Sep 19 13:23:53 ID:IYr0aeV5sctJtr?x05g0i3yc6yg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

> 4x5 = 3

9-1-8

4-6-12


14

3x5 =

9-9-8

0-8-0

Page: 1

2x4 🛛

9-1-8

3x5 =

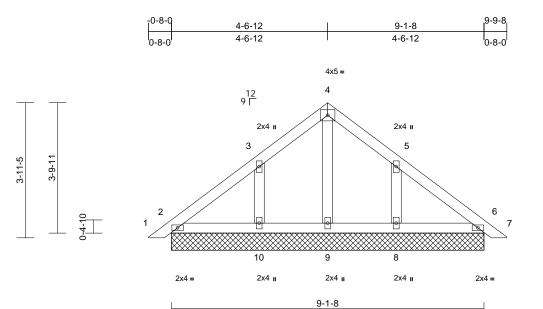
0-8-0

| 0-8-0

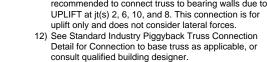
Scale =	1:33.6
---------	--------

Ocale = 1.55.0											-	
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-MSH	0.55 0.15 0.05	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 38 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=10-6-3 5=10-6-3 10=10-6- Max Horiz 1=-88 (LC Max Uplift 1=-511 (I 4=-218 (I 7=-239 (I Max Grav 1=195 (L) 4=886 (L) 6=286 (L) 10=886 ()	C 10) C 21), 2=-239 (LC 1- LC 15), 5=-508 (LC 2: LC 14), 10=-218 (LC C 14), 2=898 (LC 21) C 22), 5=157 (LC 15) C 22), 7=898 (LC 21)	 only. For stisee Standar or consult que for a consult que	snow loads have l res continuous bott spaced at 4-0-0 or as been designed f ad nonconcurrent has been designed m chord in all area by 2-00-00 wide wi hy other members thanical connection e capable of withst uplift at joint 5. Simpson Strong-Ti	nd (norm ind Deta signer a: f (roof LL (Lum DC t B; Fully been cor tom chor c. for a 10.0 with any d for a liv is where ill fit betv n (by oth canding 5 ie conne	al to the face ils as applical s per ANSI/TF JL=1.15 Plate Exp.; Ce=0.9 asidered for th d bearing. D psf bottom other live loa e load of 20.0, a rectangle veen the bottc ers) of truss t i11 lb uplift at ctors), ble, PI 1. 1.15 9; ohis ds. Opsf om o					
TOP CHORD BOT CHORD WEBS	1-2=-164/329, 2-3=- 4-5=-118/327	-223/236, 3-4=-223/2 186/86	 UPLIFT at jt and does no 12) See Standar Detail for Co 	ed to connect truss (s) 2 and 4. This co t consider lateral for d Industry Piggyba nnection to base t	onnectio orces. ack Trus russ as a	n is for uplift on s Connection	only			- M	ORTH CA	AROUN
this design 2) Wind: AS(Vasd=103 II; Exp B; and C-C E to 7-3-1, E and right e C for mem	ed roof live loads have n. CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; B Enclosed; MWFRS (ei Exterior(2E) 0-3-1 to 3. Exterior(2E) 7-3-1 to 10 exposed ; end vertical nbers and forces & MV umber DOL=1.60 plate	n (3-second gust) CDL=6.0psf; h=25ft; nvelope) exterior zon -3-1, Exterior(2R) 3-3 0-3-1 zone; cantilever left and right exposer VFRS for reactions	LOAD CASE(S) Cat. e .1 left	ified building desig Standard	ner.				Contraction of the second s		SEA 0363	EER AL

ENGINEERING BY


September 20,2024

Job	Truss	Truss Type	Qty	Ply	The Grace-Roof-1511 A-The Grace	
24090063-01	PB2	Piggyback	2	1	Job Reference (optional)	168350173


Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Thu Sep 19 13:23:53 ID:mRFhjmgVJDIBA9eqOISYpEyc6yR-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale =	1:33.6
---------	--------

Loading		(psf)	Spacing	1-11-4		CSI	0.44	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		20.0	Plate Grip DOL	1.15		TC	0.11	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)		20.0	Lumber DOL	1.15 YES		BC	0.09	Vert(CT)	n/a	-	n/a	999		
TCDL BCLL		10.0 0.0*	Rep Stress Incr Code			WB	0.05	Horz(CT)	0.00	6	n/a	n/a		
BCDL		10.0	Code	IRC202	21/TPI2014	Matrix-MSH							Weight: 43 lb	FT = 20%
0000		10.0	1										Wolght. To ib	11-2070
LUMBER				2		7-16; Vult=130m			_					
TOP CHORD	2x4 SP N					ph; TCDL=6.0psf	,							
BOT CHORD	2x4 SP N					closed; MWFRS								
OTHERS	2x4 SP N	10.3				terior(2E) 0-3-1 to								
BRACING						terior(2E) 7-3-1 to posed ; end vertic								
TOP CHORD	Structura 6-0-0 oc		athing directly applie	d or		ers and forces & I			eu,C-					
BOT CHORD			applied or 10-0-0 oc		shown; Lum	ber DOL=1.60 pla	ate grip D	OL=1.60						
BOT CHORD	bracing.	ing unecuy		,										
REACTIONS	0	2-9-1-8	6=9-1-8, 8=9-1-8, 9=	9-1-8 3		ned for wind loads								
REAGINGING	(3120)	,	, 11=9-1-8, 15=9-1-8	,		uds exposed to w								
			,			d Industry Gable								
	Max Horiz	2=-85 (LC	C 12), 11=-85 (LC 12)) .	or consult qualified building designer as per ANSI/TPI 1. 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15									
			15), 6=-1 (LC 15), 8=											
			10=-92 (LC 14), 11=-			1.15); Pf=20.0 ps								
		15), 15=-	1 (LC 15)	,	Cs=1.00; Ct	Is=1.0; Rough Ca	at B; Fully	Exp.; Ce=0.	9;					
	Max Grav	2=157 (L	C 21), 6=157 (LC 22)	^{),} 5	,	snow loads have		cidorod for t	hie					
			C 22), 9=98 (LC 28),		design.	Show loads have			1113					
			LC 21), 11=157 (LC 2	21), ₆		as been designed	l for areat	er of min root	live					
		15=157 (LC 22)	0		psf or 1.00 times								
FORCES		kimum Con	npression/Maximum			on-concurrent wi								
	Tension			7		res continuous bo								
TOP CHORD			6, 3-4=-104/96,	8		spaced at 2-0-0		0					, unin	11111
		,	1/48, 6-7=0/15	9) This truss ha	as been designed	for a 10.	0 psf bottom					"TH CA	ARO!!!
BOT CHORD			24/71, 8-9=-24/71,		chord live lo	ad nonconcurrent	t with any	other live loa	ids.				R	A LIN
	6-8=-24/			1		has been designe			0psf			1.	NITH CA	Dir Vin
WEBS	4-9=-70/	1, 3-10=-25	3/137, 5-8=-253/137			m chord in all are					4	Ì	1P	NO
NOTES						by 2-00-00 wide v		veen the bott	om				10	× : =
	Unbalanced roof live loads have been considered for				ny other member							SE/	vi : :	
this desigr	٦.			1		Simpson Strong-T								• –
					recommend	ed to connect true	ss to bear	ing walls due	to		-	5	0363	200 : -

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut beformation, available from the Structure Review Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	The Grace-Roof-1511 A-The Grace	
24090063-01	PB3	Piggyback	10	1	Job Reference (optional)	68350174

-0-8-0

0-8-0

1-6-8

1-6-8

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Thu Sep 19 13:23:53 ID:XzkjPVnWRgm38NFMsQbQ7wyc6yJ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3-1-0

1-6-8

3-9-0

0-8-0

3-1-0 Spacing 2-0-0 CSI DEFL l/defl L/d PLATES (psf) in (loc) 20.0 Plate Grip DOL 1.15 TC 0.05 Vert(LL) n/a n/a 999 MT20 BC 20.0 Lumber DOL 0.06 1 15 Vert(TL) n/a n/a 999 10.0 Rep Stress Incr YES WB 0.02 Horiz(TL) 0.00 5 n/a n/a 0.0 Code IRC2021/TPI2014 Matrix-MP 10.0 Weight: 14 lb 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), 2x4 SP No.2 2x4 SP No.2 see Standard Industry Gable End Details as applicable, 2x4 SP No.3 or consult qualified building designer as per ANSI/TPI 1. 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate Structural wood sheathing directly applied or DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; 4-5-11 oc purlins. Cs=1.00: Ct=1.10 Rigid ceiling directly applied or 6-0-0 oc Unbalanced snow loads have been considered for this 5) desian. 1=4-5-11, 2=4-5-11, 4=4-5-11, 6) Gable requires continuous bottom chord bearing. 5=4-5-11, 6=4-5-11, 7=4-5-11, 7) Gable studs spaced at 4-0-0 oc. 13=4-5-11 This truss has been designed for a 10.0 psf bottom 8) Max Horiz 1=35 (LC 11) chord live load nonconcurrent with any other live loads. Max Uplift 1=-32 (LC 12), 2=-34 (LC 14), 5=-9 9) * This truss has been designed for a live load of 20.0psf (LC 15), 6=-9 (LC 15), 7=-34 (LC on the bottom chord in all areas where a rectangle 14) 3-06-00 tall by 2-00-00 wide will fit between the bottom 1=29 (LC 11), 2=148 (LC 21), 4=1 chord and any other members. (LC 22), 5=78 (LC 22), 6=213 (LC 10) Provide mechanical connection (by others) of truss to 22), 7=148 (LC 21), 13=1 (LC 22) bearing plate capable of withstanding 32 lb uplift at joint 1 and 9 lb uplift at joint 5. 11) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2, 4, and 6. This connection is for uplift 2-6=-45/56. 4-6=-45/56 only and does not consider lateral forces 12) See Standard Industry Piggyback Truss Connection

- Unbalanced roof live loads have been considered for 1)
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- (Ib) Maximum Compression/Maximum Tension 1-2=-44/59, 2-3=-23/50, 3-4=-29/70, 4-5=-44/24

1-6-8

1-8-2

Max Grav

FORCES TOP CHORD

bracing.

BOT CHORD WEBS 3-6=-122/39

NOTES

Scale = 1:26.4 Loading

TCLL (roof)

Snow (Pf)

LUMBER

OTHERS

BRACING

TOP CHORD

BOT CHORD

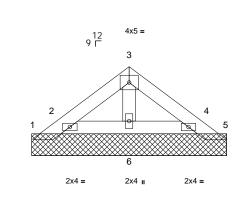
TOP CHORD

BOT CHORD

REACTIONS (size)

TCDL

BCLL


BCDL

- this design.
- Detail for Connection to base truss as applicable, or consult qualified building designer.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

GRIP

244/190

FT = 20%

Job	Truss	Truss Type	Qty	Ply	The Grace-Roof-1511 A-The Grace	
24090063-01	PB4	Piggyback	1	2	Job Reference (optional)	168350175

-0-8-0

0-8-0

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Thu Sep 19 13:23:53 ID:gth2a3fdSWDG8GSO2?23RQyc76o-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

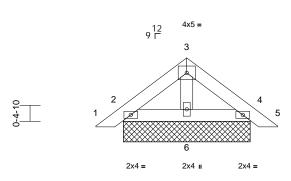
3-1-0

1-6-8

3-9-0

0-8-0

GRIP


244/190

FT = 20%

3-1-0 Scale = 1:28 Loading (psf) Spacing 2-0-0 CSI DEFL in l/defl L/d PLATES (loc) TCLL (roof) 20.0 Plate Grip DOL 1.15 тс 0.02 Vert(LL) n/a n/a 999 MT20 BC Snow (Pf) 20.0 Lumber DOL 1 15 0.02 Vert(CT) 999 n/a n/a TCDL 10.0 Rep Stress Incr YES WB 0.00 Horz(CT) 0.00 4 n/a n/a BCLL 0.0 Code IRC2021/TPI2014 Matrix-MP BCDL 10.0 Weight: 28 lb LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SP No.3 OTHERS BRACING TOP CHORD Structural wood sheathir 4-5-11 oc purlins. BOT CHORD Rigid ceiling directly app bracing. **REACTIONS** (size) 2=3-1-0, 4=3-11=3-1-0 Max Horiz 2=-35 (LC 12) Max Uplift 2=-19 (LC 14) 7=-19 (LC 14) Max Grav 2=130 (LC 21 6=108 (LC 1) 11=130 (LC 2 FORCES (lb) - Maximum Compres Tension TOP CHORD 1-2=0/23, 2-3=-43/41, 3-BOT CHORD 2-6=-8/39, 4-6=-7/39 WEBS 3-6=-51/5 NOTES 2-ply truss to be connected together 1) Top chords connected with 10d (0.13 follows: 2x4 - 1 row at 0-9-0 oc. Bottom chords connected with 10d (0 follows: 2x4 - 1 row at 0-9-0 oc. 2) All loads are considered equally app except if noted as front (F) or back (E CASE(S) section. Ply to ply connection provided to distribute only loads note unless otherwise indicated. Unbalanced roof live loads have bee 3) this design.

1-6-8

1-8-2

1-6-8

1-6-8

				Weight. 20 lb	11 = 2078
ning directly applied or opplied or 10-0-0 oc 3-1-0, 6=3-1-0, 7=3-1-0, 2), 7=-35 (LC 12) 4), 4=-23 (LC 15), 4), 11=-23 (LC 15) 11), 4=130 (LC 22), , 7=130 (LC 21), 22)	 4) 5) 6) 7) 8) 	Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 Unbalanced snow loads have been considered for this design. This truss has been designed for greater of min roof live		Troigin. 20 ib	
ession/Maximum 3-4=-43/41, 4-5=0/23	- /	load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. Gable requires continuous bottom chord bearing.			
er as follows: 131"x3") nails as	10) 11)	 (a) Gable studies continuous bottom chord bearing. (a) Gable studies spaced at 4-0-0 oc. (b) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 		OR FESS	ROJ MA
(0.131"x3") nails as	13	3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.	the	10 10	Right
plied to all plies, (B) face in the LOAD tions have been	,	recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2, 4, and 6. This connection is for uplift only and does not consider lateral forces.		SEAL	2
ted as (F) or (B), een considered for	14)	See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.			
	LO	AD CASE(S) Standard	A DECEMBER OF	A. G	ER. KIN

September 20,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	The Grace-Roof-1511 A-The Grace	
24090063-01	PB5	Piggyback	18	1	Job Reference (optional)	168350176

Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Thu Sep 19 13:23:53 ID:JcNJMrnLD?gs?z1EmjssQeyc7Fg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

0-8-11 -0-6-9 1-11-15 | | 1-5-6| | 0-6-9 0-8-11 0-8-11 0-6-9

3x5 = 3

12 12 Г

2 1

Page: 1

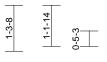
1-3-8 1-1-14 0-5-3 2x4 = 2x4 = 1-5-6

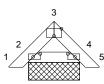
818 Soundside Road Edenton, NC 27932

September 20,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Scale = 1:32.5


Plate Offsets (X, Y): [2:0-2-6,0-1-0], [3:0-2-8,Edge], [4:0-2-6,0-1-0]


	.0 2 0,0 1 0],	, [3.0-2-0,Euge], [4.0	-2-0,0-1-0	<u>א</u>									
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	21/TPI2014	CSI TC BC WB Matrix-MP	0.02 0.01 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 8 lb	GRIP 244/190 FT = 20%
 BOT CHORD Rigid of bracing REACTIONS (size) Max Hor Max Upl FORCES (lb) - M Tensio TOP CHORD 1-2=0/2 BOT CHORD 2-4=-4, NOTES Unbalancet roof live this design. Wind: ASCE 7-16; Vasd=103mph; TC II; Exp B; Enclosed and C-C Exterior(2 exposed; end vertimembers and force Lumber DOL=1.60 Truss designed for only. For studs exp see Standard Indus or consult qualified TCLL: ASCE 7-16; Plate DOL=1.5); F 	No.2 ral wood she ic purlins. eiling directly 2=1-5-6, 4 iz 2=-25 (LC ift 2=-11 (LC 0 2=97 (LC (LC 21), 9 aximum Com n 21, 2-3=-38/2 '55 re loads have Vult=130mph DL=6.0psf; B ; MWFRS (er E) zone; cant cal left and ri is & MWFRS plate grip DC wind loads in boosed to wind try Gable En building desi Pr=20.0 psf (L	(3-second gust) CDL=6.0psf; h=25ft; trovelope) exterior zor ilever left and right ght exposed;C-C for for reactions shown $DL=1.60the plane of the trusl$ (normal to the face) d Details as applicat gner as per ANSI/TF	ed or 7 c 8 s=1-5-6 1 , 6=97 1 0/21 1 r L Cat. he ; sss), ble, PI 1. 1.15	 design. This truss hat load of 12.0 overhangs n Gable requir Gable studs This truss hat chord live load This truss hat chord live load This truss for the bottor 3-06-00 tall bt chord and ar One H2.5A St recommended UPLIFT at jtt and does no See Standar Detail for Co 	snow loads have s been designed osf or 1.00 times i on-concurrent with es continuous bot spaced at 4-0-0 o s been designed ad nonconcurrent ias been designed ad nonconcurrent ias been designed y 2-00-00 wide w by other members simpson Strong-T ed to connect trus s) 2 and 4. This c consider lateral f d Industry Piggyb nnection to base i fied building desig Standard	for great flat roof I h other li tom chor c. for a 10. with any d for a 10. with any d for a liva as where ill fit betw ie conne s to bear connectio forces. ack Truss as a	er of min roo oad of 20.0 p ve loads. 'd bearing. 0 psf bottom other live loa re load of 20. a rectangle veen the bott ctors ing walls due n is for uplift s Connectior	f live sf on ads. Opsf om e to only		With the second s		SEA 0363	EEP A

Job	Truss	Truss Type	Qty	Ply	The Grace-Roof-1511 A-The Grace	
24090063-01	PB6	Piggyback	2	2	Job Reference (optional)	168350177

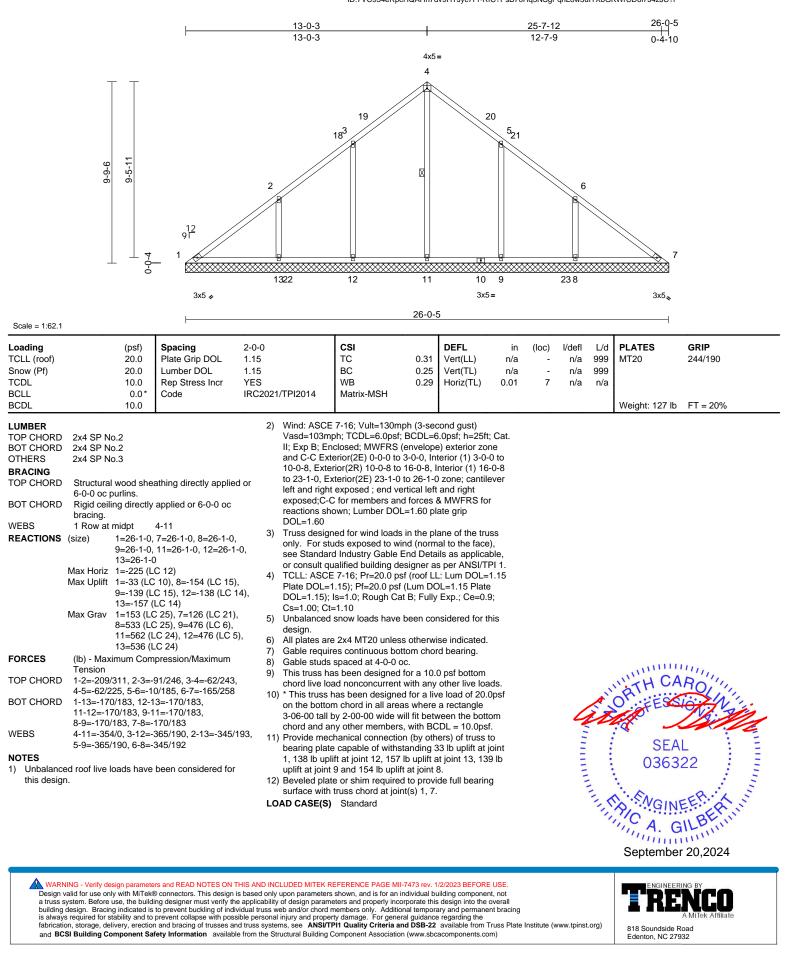
Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Thu Sep 19 13:23:54 ID:u1hBkplSw4HH8WJf5aJ9o?yc7Fj-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

2x4 = 2x4 =

1-5-6

Scale = 1:32.5

Plate Offsets (X, Y): [2:0-2-6,0-1-0], [3:0-2-8,Edge], [4:0-2-6,0-1-0]


Loading (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0* BCDL 10.0	Spacing2-0Plate Grip DOL1.1:Lumber DOL1.1:Rep Stress IncrYEsCodeIRC	5	CSI TC BC WB Matrix-MP	0.01 0.01 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 15 lb	GRIP 244/190 FT = 20%
LUMBER FOP CHORD 2x4 SP No.2 SOT CHORD 2x4 SP No.2 BRACING FOP CHORD Structural wood she 2-7-0 oc purlins. BOT CHORD Rigid ceiling directly bracing. REACTIONS (size) 2=1-5-6, 4 Max Horiz 2=-25 (LC Max Uplift 2=-11 (LC 6=-11 (LC Max Grav 2=97 (LC C 21), 9 FORCES (lb) - Maximum Corr Tension	L=1-5-6, 6=1-5-6, 9=1-5-6 12), 6=-25 (LC 12) 14), 4=-11 (LC 15), 14), 9=-11 (LC 15) 21), 4=97 (LC 22), 6=97 =97 (LC 22) pression/Maximum 7, 3-4=-38/27, 4-5=0/21 ther as follows: 0.131"x3") nails as 20 (0.131"x3") nails as applied to all plies, ck (B) face in the LOAD nections have been noted as (F) or (B),	 Vasd=103m II; Exp B; Er and C-C Ext exposed; er members ar Lumber DOI Truss design only. For stt see Standar or consult qu TCLL: ASCE Plate DOL=1.15); Cs=1.00; Ct Unbalanced design. This truss ha load of 12.0 overhangs n Gable requir Gable studs This truss la chord live lo * This truss la chord live lo * Thi	snow loads have b as been designed f psf or 1.00 times fl on-concurrent with res continuous bott spaced at 4-0-0 or as been designed f ad nonconcurrent v has been designed m chord in all areas by 2-00-00 wide winy other members. Simpson Strong-Tit ed to connect truss (s) 2 and 4. This or t consider lateral for d Industry Piggyba innection to base tt field building design	BCDL=6 envelopentilever I right exp S for read OL=1.60 in the pl d (norm nd Deta signer a: (roof LL Lum DC B; Fully been cor or great at roof I to other Ii om chor b: or a 10. with any for a 110. with any for a 110. with the betw e conne to bear onces. lock Trus uss as a	.0psf; h=25ft;) exterior zon eft and right oxosed;C-C for ctions shown;) ane of the trus al to the face) ils as applicat s per ANSI/TF :: Lum DOL=1 DL=1.15 Plate Exp.; Ce=0.9 isidered for th er of min roof pad of 20.0 ps /e loads. d bearing.) psf bottom other live loac e load of 20.0 a rectangle ween the bottoc ctors ing walls due n is for uplift c	e ss , , ole, , 1.1.5 i.1.5 i. sf on ds. psf om to				SEA 0363	EER. KIN

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	The Grace-Roof-1511 A-The Grace	
24090063-01	V1A	Valley	1	1	Job Reference (optional)	168350178

Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Thu Sep 19 13:23:54 ID:7VC934eRpcHQAHh7dv9HTJyc7Fr-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Job	Truss	Truss Type	Qty	Ply	The Grace-Roof-1511 A-The Grace	
24090063-01	V1B	Valley	1	1	Job Reference (optional)	168350179

10-4-3

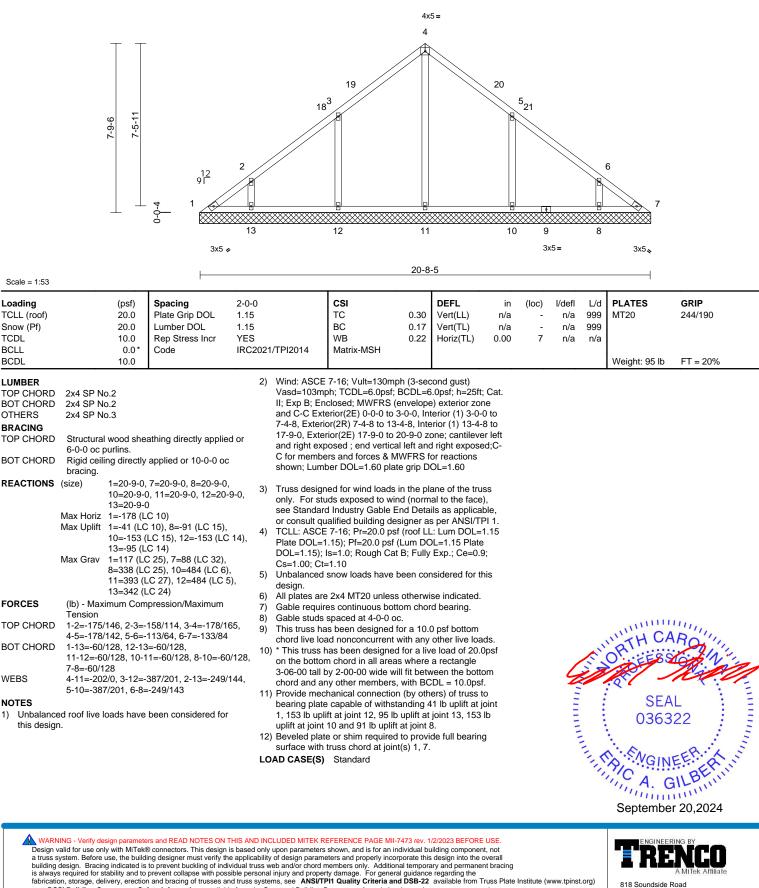
10-4-3

Carter Components (Sanford, NC), Sanford, NC - 27332,

1)

Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Thu Sep 19 13:23:54 ID:FjyfDjbxIOn_hgOLO35LJTyc7Fv-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

20-3-12

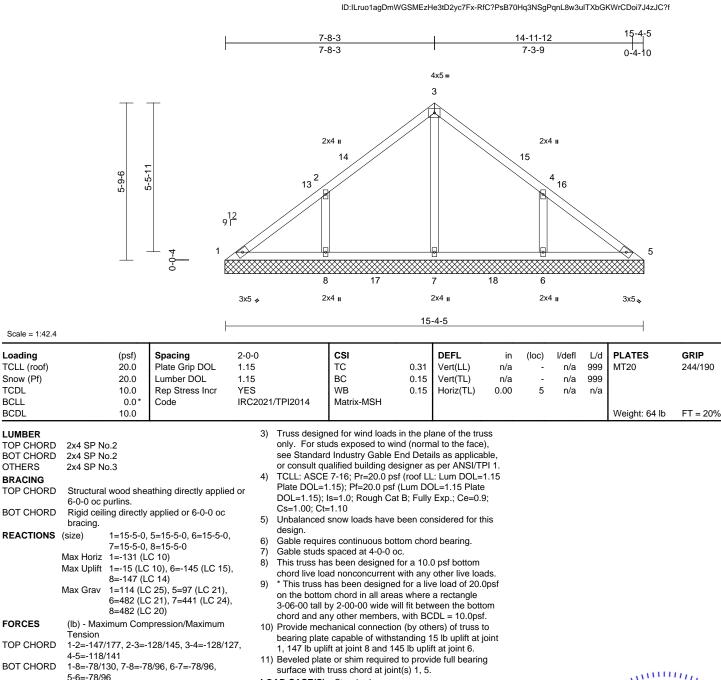

9-11-9

Page: 1

20-8-5

0-4-10

Edenton, NC 27932



and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	The Grace-Roof-1511 A-The Grace	
24090063-01	V1C	Valley	1	1	Job Reference (optional)	168350180

Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Thu Sep 19 13:23:54

Page: 1

LOAD CASE(S) Standard 3-7=-262/0, 2-8=-389/183, 4-6=-389/182

WEBS NOTES

FORCES

TOP CHORD

BOT CHORD

Scale = 1:42.4 Loading

TCLL (roof)

Snow (Pf)

LUMBER

OTHERS

BRACING

TOP CHORD

BOT CHORD

TOP CHORD BOT CHORD

TCDL

BCLL

BCDL

- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior (1) 3-0-0 to 4-8-8, Exterior(2R) 4-8-8 to 10-8-8, Interior (1) 10-8-8 to 12-5-0, Exterior(2E) 12-5-0 to 15-5-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

ALL COMPANY SEAL 036322 G mmm September 20,2024

818 Soundside Road

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	The Grace-Roof-1511 A-The Grace	
24090063-01	V1D	Valley	1	1	Job Reference (optional)	l68350181

5-0-3

5-0-3

9

12 9 Г

Carter Components (Sanford, NC), Sanford, NC - 27332,

3-5-11

3-9-6

Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Thu Sep 19 13:23:54 ID:QZbNyfXAAY0qzlwC2o_x3Cyc7G?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

> 4x5 =2

9-7-12

4-7-9

10

10-0-5

0-4-10

3

PLATES

Weight: 37 lb

MT20

GRIP

244/190

FT = 20%

3x5 💊

L/d

999

999

n/a

4 2x4 I 3x5 🍫 10-0-5 2-0-0 CSI DEFL l/defl (psf) Spacing in (loc) 20.0 Plate Grip DOL 1.15 TC 0.48 Vert(LL) n/a n/a 20.0 BC Lumber DOL 1 15 0.44 Vert(TL) n/a n/a 10.0 Rep Stress Incr YES WB 0.18 Horiz(TL) 0.01 4 n/a 0.0 Code IRC2021/TPI2014 Matrix-MSH 10.0 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate 2x4 SP No.2 2x4 SP No.2 DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; 2x4 SP No.3 Cs=1.00; Ct=1.10 Unbalanced snow loads have been considered for this 5) desian. Structural wood sheathing directly applied or Gable requires continuous bottom chord bearing. 6) 10-0-0 oc purlins. 7) Gable studs spaced at 4-0-0 oc. Rigid ceiling directly applied or 6-0-0 oc 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 1=10-0-5, 3=10-0-5, 4=10-0-5 9) Max Horiz 1=84 (LC 11) on the bottom chord in all areas where a rectangle 1=-56 (LC 21), 3=-56 (LC 20), 3-06-00 tall by 2-00-00 wide will fit between the bottom 4=-100 (LC 14) chord and any other members. 1=90 (LC 20), 3=90 (LC 21), 4=809 10) Provide mechanical connection (by others) of truss to (LC 20) bearing plate capable of withstanding 56 lb uplift at joint (lb) - Maximum Compression/Maximum 1, 56 lb uplift at joint 3 and 100 lb uplift at joint 4. LOAD CASE(S) Standard 1-2=-113/404, 2-3=-113/404

Unbalanced roof live loads have been considered for 1) this design

FORCES

NOTES

TOP CHORD

BOT CHORD WEBS

Scale = 1:33.6 Loading

TCLL (roof)

Snow (Pf)

LUMBER

OTHERS

BRACING

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

REACTIONS (size)

bracing.

Max Uplift

Max Grav

Tension

2-4=-671/255

TCDL

BCLL

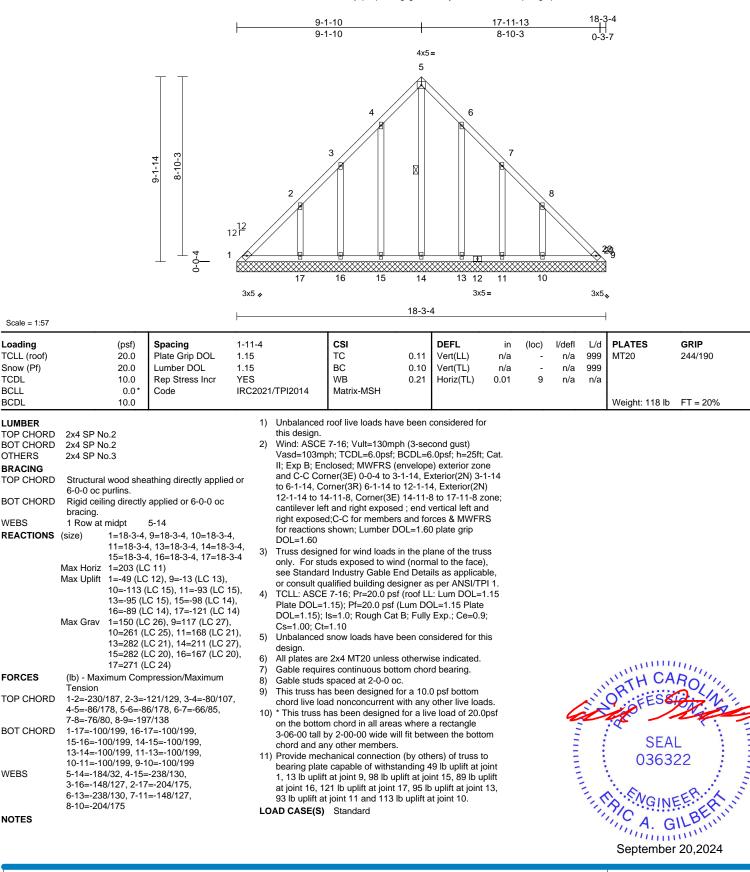
BCDL

Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Exterior(2R) 3-0-5 to 7-0-11, Exterior(2E) 7-0-11 to 10-0-11 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

1-4=-278/166, 3-4=-278/166

Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.

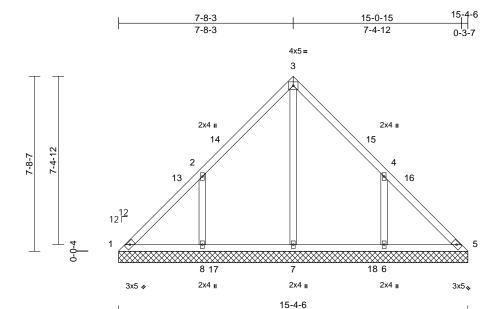
Page: 1


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	The Grace-Roof-1511 A-The Grace	
24090063-01	V2A	Valley	1	1	Job Reference (optional)	168350182

Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Thu Sep 19 13:23:54 ID:?jOpmqHdtoVgagPMtcdFF_yc7GJ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	The Grace-Roof-1511 A-The Grace	
24090063-01	V2B	Valley	1	1	Job Reference (optional)	168350183

Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Thu Sep 19 13:23:54 ID:6K_IWa?7rq8jsNI_fLjOyeyc7Hz-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:50.7

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MSH	0.33 0.17 0.25	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 74 lb	GRIP 244/190 FT = 20%
	6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=15-4-6 7=15-4-6 Max Horiz 1=-176 (L Max Uplift 1=-38 (LC 8=-214 (L Max Grav 1=150 (L	C 10), 6=-210 (LC 15 LC 14) C 30), 5=123 (LC 32) C 6), 7=429 (LC 24),	rd or 5) , 6) 7)), 8)	only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced design. Gable requir Gable studs This truss ha chord live loo * This truss ha on the bottor 3-06-00 tall th	ed for wind loads ds exposed to wi d Industry Gable I alified building de : 7-16; Pr=20.0 ps Is=1.0; Rough Ca =1.10 snow loads have es continuous bo spaced at 4-0-0 d is been designed ad nonconcurrent nas been designed ad nonconcurrent nas been designed y 2-00-00 wide w y other members	nd (norm End Deta ssigner as sf (roof LL (Lum DC tom Chor c. for a 10.1 with any d for a liv as where rill fit betw	al to the face ils as applica s per ANS/TI : Lum DOL= :L1.15 Plate Exp.; Ce=0.9 nsidered for the d bearing. 0 psf bottom other live loas re load of 20.1 a rectangle veen the bott), ble, PI 1. 1.15 e 9; his dds. 0psf om					
FORCES	(lb) - Maximum Con Tension 1-2=-172/191. 2-3≕	npression/Maximum -192/144, 3-4=-192/1) Provide mec bearing plate	hanical connection capable of withs	n (by oth tanding 3	ers) of truss t 38 lb uplift at j	to					
BOT CHORD	4-5=-151/151 1-8=-91/150, 7-8=-9	91/150, 6-7=-91/150,	,	DAD CASE(S)	ift at joint 8 and 2 Standard	i u u upii	n al joint 6.						No. Color
WEBS NOTES	5-6=-91/150 3-7=-237/0, 2-8=-39	00/249, 4-6=-390/248										WITH CA	ROY

- Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-4 to 3-0-4, Interior (1) 3-0-4 to 4-8-7, Exterior(2E) 4-8-7 to 10-8-7, Interior (1) 10-8-7 to 12-4-10, Exterior(2E) 12-4-10 to 15-4-10 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Page: 1

Job	Truss	Truss Type	Qty	Ply	The Grace-Roof-1511 A-The Grace	
24090063-01	V2C	Valley	1	1	Job Reference (optional)	168350184

Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Thu Sep 19 13:23:55 ID:illcuYzFYvm8?wZP_DAhK?yc7I0-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

12-4-6 6-2-3 12-0-15 6-2-3 5-10-12 4x5 = 3 2x4 II 2x4 II 5-10-12 6-2-7 13 14 2 Δ 12 12 Г 5 8 6 2x4 II 2x4 II 2x4 II 3x5 🍫 3x5、

12-4-6

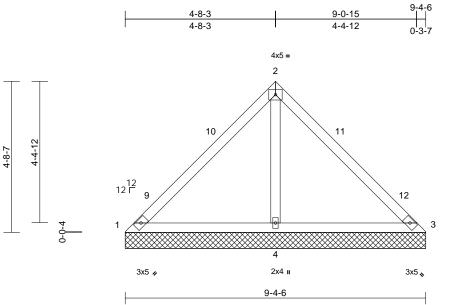
Scale = 1:44.2

00010 - 1.44.2												-	
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2	2014	CSI TC BC WB Matrix-MSH	0.33 0.12 0.11	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 56 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=12-4-6, 7=12-4-6, Max Horiz 1=-141 (L Max Uplift 1=-46 (LC 6=-174 (L Max Grav 1=119 (LC	C 10), 5=-12 (LC 11), .C 15), 8=-179 (LC 14 C 25), 5=95 (LC 27), C 21), 7=249 (LC 20),	d or desident of the sec of the s	r. For stur Standard onsult qui L: ASCE e DOL=1 L=1.15); l: 1.00; Ct= alanced s ign. ble require ble studs s s truss has rd live loa is truss h he bottom 5-00 tall b	snow loads have b es continuous botte spaced at 4-0-0 oc s been designed fo d nonconcurrent v as been designed a chord in all areas y 2-00-00 wide wil	d (norm nd Deta signer as (roof LL Lum DC B; Fully been cor com chor com chor com chor cor a 10.0 vith any for a liv s where	al to the face) ils as applicats s per ANS/TP L=1.15 Plate Exp.; Ce=0.9 nsidered for th d bearing. 0 psf bottom other live load e load of 20.0 a rectangle), ole, ol 1. I.15 J; nis ds. opsf					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	10) Prov	vide mech	y other members. nanical connection capable of withsta								
TOP CHORD	4-5=-125/86	247/137, 3-4=-247/13	^{37,} 1, 1		at joint 5, 179 lb u								
BOT CHORD	1-8=-47/103, 7-8=-4 5-6=-47/103				Standard							mm	un.
WEBS	3-7=-162/0, 2-8=-40	2/267, 4-6=-402/267										TH CA	Rollin

NOTES

- Unbalanced roof live loads have been considered for this design.
 Wind: ASCE 7-16; Vult=130mph (3-second gust)
- Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-4 to 3-0-4, Exterior(2R) 3-0-4 to 9-4-10, Exterior(2E) 9-4-10 to 12-4-10 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Page: 1


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

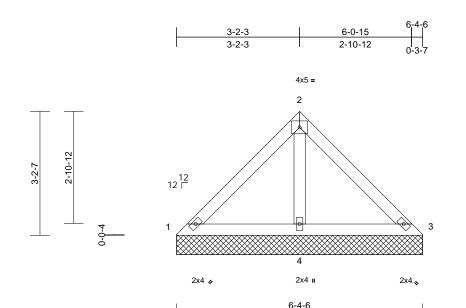
Job	Truss	Truss Type	Qty	Ply	The Grace-Roof-1511 A-The Grace	
24090063-01	V2D	Valley	1	1	Job Reference (optional)	168350185

Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Thu Sep 19 13:23:55 ID:IMBsTtx?0IWQlcP0to8DFayc7I2-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:35.9

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2	014	CSI TC BC WB Matrix-MSH	0.43 0.42 0.22	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 38 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD FORCES TOP CHORD BOT CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.3 Structural wood she 9-4-6 oc purlins. Rigid ceiling directly bracing.	applied or 6-0-0 oc 3=9-4-6, 4=9-4-6 2 11) 2 21), 3=-37 (LC 20), C 14) 2 0), 3=99 (LC 21), 4 pression/Maximum 138/341	Plate DOL Cs= 5) Unbi dor 6) Gab 7) Gab 8) This chor 9) * Thi 9) * Thi on tt 3-06 chor 10) Prov bear 1, 37	DOL=1 =1.15); I 1.00; Ct= alanced gn. le requirt le studs truss ha d live loa s truss ha d live loa s truss ha d bive loa s truss ha d and ar ide mect ing plate ' lb uplift	7-16; Pr=20.0 psf (15); Pf=20.0 psf (15); Pf=20, Pf	Lum DC B; Fully eeen cor or a 10.0 for a 10.0 for a liv s where I fit betv (by oth anding 3	DL=1.15 Plate Exp.; Ce=0.9 Insidered for the d bearing. D psf bottom other live load e load of 20.0 a rectangle veen the botto ers) of truss to B7 lb uplift at j	e); ds. Dpsf om o					
this design 2) Wind: ASC Vasd=103 II; Exp B; I and C-C E to 6-4-10, left and rig exposed;C reactions s DOL=1.60 3) Truss desi only. For see Stand	CE 7-16; Vult=130mph smph; TCDL=6.0psf; B Enclosed; MWFRS (er Exterior(2E) 0-0-4 to 3- Exterior(2E) 6-4-10 to pht exposed ; end verti C-C for members and f shown; Lumber DOL=	(3-second gust) CDL=6.0psf; h=25ft; velope) exterior zone 0-4, Exterior(2R) 3-0- 9-4-10 zone; cantilev cal left and right prces & MWFRS for 1.60 plate grip the plane of the trus (normal to the face), d Details as applicab	e -4 ver s le,							CN. CHIMAN		SEA O363	22


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	The Grace-Roof-1511 A-The Grace	
24090063-01	V2E	Valley	1	1	Job Reference (optional)	168350186

Run: 8.73 S Aug 15 2024 Print: 8.730 S Aug 15 2024 MiTek Industries, Inc. Thu Sep 19 13:23:55 ID:LoVjqrv6jN8ru9hRBfaWdyyc7I5-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:29.8

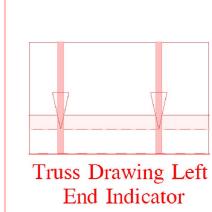
					1								
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.19	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.22	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES		WB	0.07	Horiz(TL)	0.00	3	n/a	n/a		
BCLL	0.0*	Code	IRC202	1/TPI2014	Matrix-MP								
BCDL	10.0											Weight: 25 lb	FT = 20%
LUMBER			5)	Unbalanced	snow loads ha	ve been cor	nsidered for t	this					
TOP CHORD	2x4 SP No.2		-,	design.									
BOT CHORD	2x4 SP No.2		6)	0	res continuous l	bottom chor	d bearing.						
OTHERS	2x4 SP No.3		7)	•	spaced at 4-0-		0						
BRACING			8)	This truss h	as been designe	ed for a 10.	0 psf bottom						
TOP CHORD	Structural wood she	athing directly appli	ed or	chord live lo	ad nonconcurre	ent with any	other live loa	ads.					
	6-4-6 oc purlins.		9)	* This truss	has been desig	ned for a liv	e load of 20.	.0psf					
BOT CHORD	Rigid ceiling directly	applied or 6-0-0 oc			m chord in all a								
	bracing.				by 2-00-00 wide		veen the both	tom					
REACTIONS	(size) 1=6-4-6,	3=6-4-6, 4=6-4-6			ny other member		· · ·						
	Max Horiz 1=70 (LC	11)	10		chanical connec								
	Max Uplift 1=-1 (LC	,	=-76		e capable of wit			Dint 1,					
	(LC 14)	// - (//			joint 3 and 76 lt	o upliπ at jo	nt 4.						
	Max Grav 1=107 (L	C 20), 3=107 (LC 21	D, LO	OAD CASE(S)	Standard								
	4=443 (L	· · · · · · · · · · · · · · · · · · ·											
FORCES	(lb) - Maximum Con	npression/Maximum											
	Tension	•											
TOP CHORD	1-2=-84/171, 2-3=-8	34/171											
	1 4 121/140 2 4	121/140											

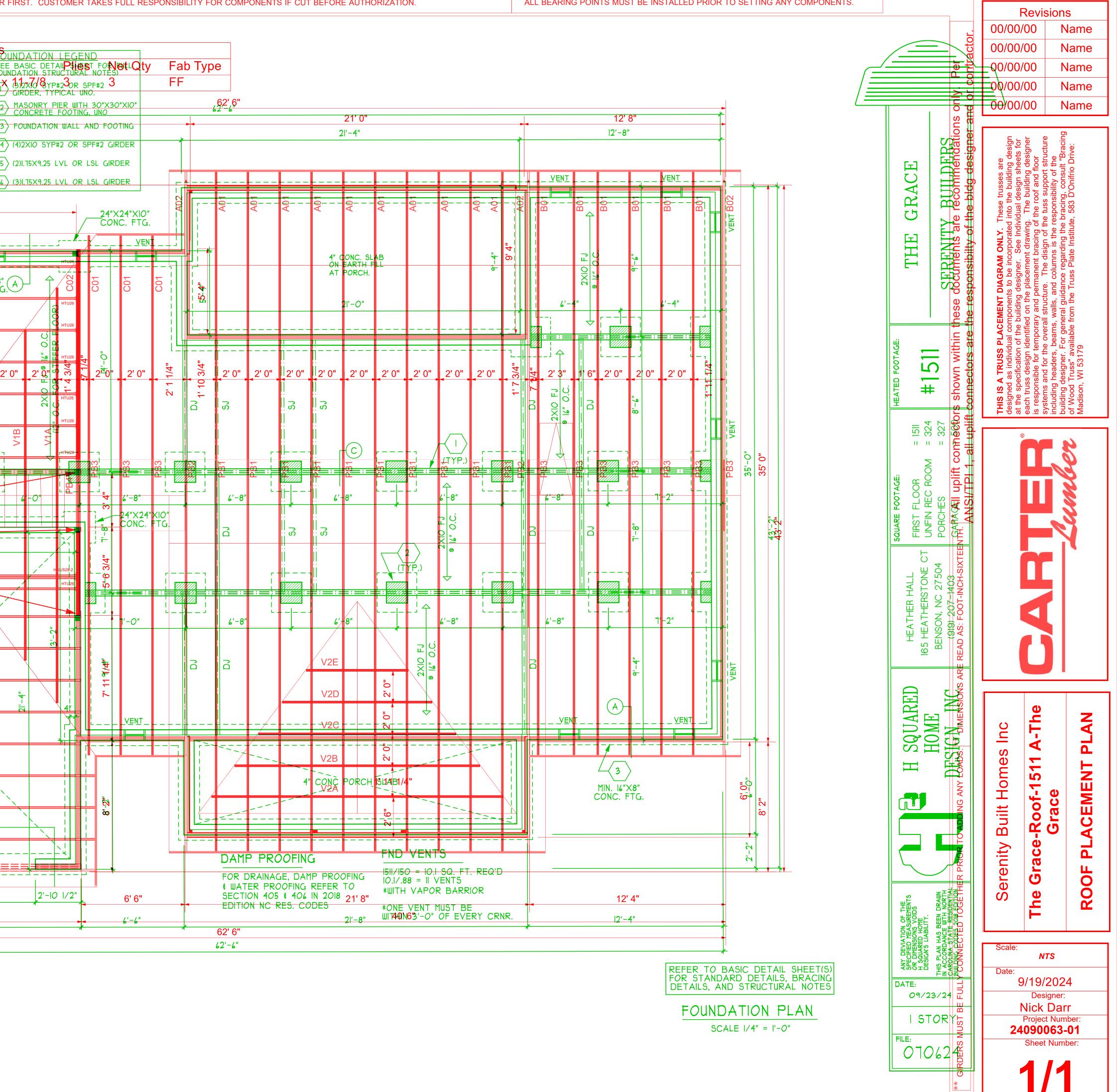
BOT CHORD 1-4=-131/149, 3-4=-131/149 WEBS 2-4=-343/182

NOTES

1) Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



General Notes: ** CUTTING OR DRILLING OF COMPONENTS SHOULD NOT BE DONE WITHOUT CONTACTING COMPONENT SUPPLIER FIRST. CUSTOMER TAKES FULL RESPONSIBILITY FOR COMPONENTS IF CUT BEFORE AUTHORIZATION.

Truss Co Manuf Simpson	onnector Total Product HGUS28-2		ist Qty 1		PlotID Ler GDH 22'	ngth Produ 0" 2.0 Ri		Product F LVL 1-3/4
Simpson Simpson	HTU26 One H2.5A		8 110	-	•			28' 10"
							- 21' 8"	28'-6"
		4'0"	4'-0"		- 		PB5	CRAWL ACCESS MIN. 22" × 36"
					D03	2.0"	PB5	MIN. 16"X CONC. F
			 8'-2 "		D03	0	PB5 PB5	
						2'0" 2XI0 FJ	PB5	2' 0"
				ENT	D03	0	PB5	V1D
			-		D03 D05	N	PB5	/ _ -
	43' 2"	43'-2"			SEE CO2 TRUSS DRAWING	6' 7"		
	7	39' 2" 4			FOR LOADING	5" =0 -cc 8 1/4"	PB6	12'-3"
					D03 24"X24"X CONC. F		PB5 PB5	
			<u>25'-0''</u>		ро2 I В			E R402.2) w/
			64		D02MIN. 16"X8" CONC. FTG.	VAPOR RE ON BASE R506.2.1 FC	TARDER (AS COURSE (RS OR FILL REQ PB5	GH ON & MIL REQUIRED) O4.2.2). SEE UIREMENTS.
					D02	2. 0 2.	PB5	
					D01			
						- 1'-11 1/4"	PB5 AGE WINGWAI FORCING. SE DETAIL SHE PB5 TINUOUS FOO	
			<u> </u>		- D06 2'-IO I/2"	GDH		
				-			22'-0""	

** REFER TO FINAL TRUSS ENGINEERING SHEETS FOR PLY TO PLY CONNECTIONS.