Mark Morris, P.E.

#126, 1317-M, Summerville, SC 29483 843 209-5784, Fax (866)-213-4614

The truss drawing(s) listed below have been prepared by **Atlantic Building Components** under my direct supervision based on the parameters provided by the truss designers.

AST #: 50803 JOB: 24-5444-R01 JOB NAME: LOT 0.0108 BLAKE POND Wind Code: ASCE7-16 Wind Speed: Vult= 120mph Exposure Category: B Mean Roof Height (feet): 23 These truss designs comply with IRC 2015 as well as IRC 2018. *42 Truss Design(s)*

Trusses:

PB01, R01, R02, R03, R04, R05, R06, R07, R08, R09, R10, R11, R12, R13, R14, R15, R16, R17, R18, R19, R20, R20A, R20B, R20C, R21, R22, R23, R24, R25, VT01, VT02, VT03, VT04, VT05, VT06, VT07, VT08, VT09, VT10, VT11, VT12, VT13

Warning !--- Verify design parameters and read notes before use.

L	U	M	BI	E	F	2-		
	-		-			-		

BCDL

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.3

10.0

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 4-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide

- REACTIONS. (lb/size) 2=129/2-5-12 (min. 0-1-8), 4=129/2-5-12 (min. 0-1-8) Max Horz 2=-23(LC 10) Max Uplift2=-16(LC 12), 4=-16(LC 13)
- FORCES. (Ib) Max. Comp./Max. Ten. All forces 250 (Ib) or less except when shown.

NOTES-(10)

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 16 lb uplift at joint 2 and 16 lb uplift at joint 4.
- 9) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

```
LOAD CASE(S) Standard
```


REACTIONS. (lb/size) 2=311/0-3-8 (min. 0-1-8), 4=240/0-1-8 (min. 0-1-8) Max Horz 2=75(LC 10) Max Uplift2=-99(LC 10), 4=-85(LC 10) Max Grav 2=395(LC 21), 4=323(LC 21)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 3-4=-262/148

NOTES- (12)

- 1) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left exposed; porch left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- between the bottom chord and any other members.
 9) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
 10) Provide mechanical connection (by others) of truss to bearing plate at isist(c) 1

- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.

LOAD CASE(S) Standard

24/202/ Va and The second states NOINEE 7/24/2024

Max Uplift2=-99(LC 10), 4=-85(LC 10) Max Grav 2=395(LC 21), 4=323(LC 21)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 3-4=-262/148

NOTES- (10)

- Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left exposed ; porch left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 7) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 8) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.

REACTIONS. (lb/size) 2=272/0-3-8 (min. 0-1-8), 4=199/0-1-8 (min. 0-1-8) Max Horz 2=65(LC 10) Max Uplift2=-89(LC 10), 4=-71(LC 10) Max Grav 2=373(LC 21), 4=266(LC 21)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES- (10)

- 1) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left exposed ; porch left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs

non-concurrent with other live loads. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.

7) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

8) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.

LOAD CASE(S) Standard

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs
- non-concurrent with other live loads.
- 6) Gable studs spaced at 2-0-0 oc
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit

between the bottom chord and any other members.
9) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
10) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.
LOAD CASE(S) Standard ADDRASHING 24/202 'sd and' for 7/24/2024

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

WEBS 2x4 SP No.3

BRACING-TOP CHORD BOT CHORD

end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

Structural wood sheathing directly applied or 2-0-0 oc purlins, except

REACTIONS. (lb/size) 4=62/2-0-0 (min. 0-1-8), 2=139/2-0-0 (min. 0-1-8) Max Horz 2=30(LC 10) Max Uplift4=-10(LC 14), 2=-40(LC 10) Max Grav 4=76(LC 21), 2=180(LC 21)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES- (11)

- 1) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs
- non-concurrent with other live loads. 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 1-4-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.

10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 2.

LOAD CASE(S) Standard

REACTIONS. (lb/size) 5=351/Mechanical, 2=163/0-3-8 (min. 0-1-8) Max Horz 2=73(LC 10) Max Uplift5=-92(LC 11), 2=-23(LC 10) Max Grav 5=497(LC 21), 2=189(LC 21)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 3-5=-460/290

NOTES- (9)

- Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit

between the bottom chord and any other members. 7) Refer to girder(s) for truss to truss connections.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 2.

REACTIONS. (lb/size) 6=154/Mechanical, 2=216/0-3-8 (min. 0-1-8) Max Horz 2=52(LC 10) Max Uplift6=-26(LC 14), 2=-47(LC 10) Max Grav 6=205(LC 21), 2=297(LC 21)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES- (

- 1) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit

between the bottom chord and any other members.

7) Refer to girder(s) for truss to truss connections.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 2.

LOAD CASE(S) Standard

2x4 =

3x6 ||

	I							
LOADING (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IBC2021/TPI2014	CSI. TC 0.24 BC 0.29 WB 0.00 Matrix-P	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.00 1 0.00 1 -0.00 4	l/defl n/r n/r n/a	L/d 180 80 n/a	PLATES MT20	GRIP 244/190 ET = 20%
BCDL 10.0	0000 110202 1/11 12011	Marix I					troigitt. To ib	11 20%
LUMBER- TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.3 WEBS 2x4 SP No.3			BRACING- TOP CHORD BOT CHORD	Structural w end verticals Rigid ceiling	ood shea s. directly	thing direct applied or 1	ly applied or 4-0-0 or 0-0-0 oc bracing.	c purlins, except
				MiTek reco be installed Installation	ommends d during 1 i guide.	that Stabil russ erectio	izers and required cr on, in accordance wit	oss bracing h Stabilizer

REACTIONS. (lb/size) 4=-379/4-0-0 (min. 0-1-8), 5=555/4-0-0 (min. 0-1-8), 2=192/4-0-0 (min. 0-1-8) Max Horz 2=52(LC 10) Max Uplift4=-550(LC 21), 5=-195(LC 14), 2=-35(LC 10)

Max Grav 4=157(LC 14), 5=789(LC 21), 2=262(LC 21)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 3-5=-751/644

NOTES- (11)

- 1) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs
- non-concurrent with other live loads.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a 10.0 pst bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit the CARO between the bottom chord and any other members. 9)

10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2 except (jt=lb) 4=550, 5=195.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	LOT 0.0108 BLAKE POND 113 FROST M	EADOW WAY LILLINGTON, NC
24-5444-R01	R11	Common Girder	1	2	Job Reference (optional)	# 50803
		Ru ID	in: 8.430 s Feb 1 coDuWOOMhL	2 2021 Prir xMOj2fwc	it: 8.430 s Feb 12 2021 MiTek Industries, Inc. p2aKqzMG6w-jA_FItj3LT06fGM5XeQ4	Thu Jul 25 09:18:25 2024 Page 2 JMSMF7clN3Lrq?bWPXyuabS

LOAD CASE(S) Standard

Uniform Loads (plf) Vert: 1-4=-60, 4-7=-60, 1-7=-20

Concentrated Loads (lb) Vert: 10=-1257(B) 11=-1257(B) 12=-1257(B) 13=-1257(B) 14=-1257(B) 15=-1257(B)

Job	Truss	Truss Type	Qty	Ply	LOT 0.0108 BLAKE POND 113 FROST MEADOW	WAY LILLINGTON, NC
24-5444-R01	R12	GABLE	1	1	Job Reference (optional)	# 50803

Run: 8.430 s Feb 12 2021 Print: 8.430 s Feb 12 2021 MITek Industries, Inc. Thu Jul 25 09:18:27 2024 Page 2 ID:oDuWOOMhLxMOj2fwcp2aKqzMG6w-fY60jZIJt4GquaWUe3SYOnXmjxSgr4D8HJ4dUPyuabQ

LOAD CASE(S) Standard

Uniform Loads (plf) Vert: 1-5=-60, 5-9=-60, 2-8=-20

Concentrated Loads (lb) Vert: 11=2(F) 33=1(F) 34=2(F) 36=2(F) 38=2(F) 39=2(F) 40=2(F) 41=1(F)

REACTIONS. (lb/size) 4=3/Mechanical, 2=117/0-3-8 (min. 0-1-8) Max Horz 2=34(LC 12) Max Uplift4=-33(LC 18), 2=-15(LC 12) Max Grav 4=15(LC 5), 2=156(LC 18)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES- (

- 1) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs
- non-concurrent with other live loads.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 2.

LOAD CASE(S) Standard

D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 0.0108 BLAKE POND 113 FROST ME	ADOW WAY LILLINGTON, NC
24-5444-R01	R14	GABLE	1	3	Job Reference (optional)	# 50803
		IL	Run: 8.430 s Feb 1	2 2021 Prin	t: 8.430 s Feb 12 2021 MiTek Industries, Inc. aKazMG6w-0WwwmGpSicu72LORBc2i	Thu Jul 25 09:18:32 2024 Page 2 5rEWty_gWDotRboO9dyuabl

NOTES- (15)

12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 9=322, 6=273.

13) Use Simpson Strong-Tie HTU26 (20-10d Girder, 11-10dx1 1/2 Truss, Single Ply Girder) or equivalent spaced at 2-2-8 oc max. starting at 0-1-12 from the left end to 16-4-4 to connect truss(es) R20B (1 ply 2x4 SP), R20A (1 ply 2x4 SP) to back face of bottom chord.

14) Fill all nail holes where hanger is in contact with lumber.

LOAD CASE(S) Standard 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-60, 3-5=-60, 6-9=-20

Concentrated Loads (lb)

Vert: 9=-1515(B) 7=-1505(B) 8=-1507(B) 33=-1507(B) 34=-1507(B) 36=-1507(B) 37=-1505(B) 39=-1505(B) 40=-1505(B)

Job	Truss	Truss Type	Qty	Ply	LOT 0.0108 BLAKE POND 113 FROST ME	EADOW WAY LILLINGTON, NC
24-5444-R01	R15	Monopitch Structural Gable	1	1	Job Reference (optional)	# 50803
		Run: 8	.430 s Feb 1	2 2021 Prin	t: 8.430 s Feb 12 2021 MiTek Industries, Inc.	Thu Jul 25 09:18:33 2024 Page 2

ID::DUWOOMhLxMOj2fwcp2aKqzMG6w-UiTHzcp4Tw0_cVze?JZyeZni9LPCFe51gFXxh3yuabK 12) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced. 13) Bearing symbols are not considered in the structural design of the truss to support the

loads indicated. 14) Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Composited Wead Truesso for additional bracing guidelings, including diagonal bracing

14) Web blacking shown is to hater support of individual web individual web individual to be of a basic of basic of basic of basic of hater of

LOAD CASE(S) Standard

NOTES-(12)

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 3-11-2, Interior(1) 3-11-2 to 9-2-9, Exterior(2R) 9-2-9 to 26-9-7, Interior(1) PROFESSIO 26-9-7 to 32-0-14, Exterior(2E) 32-0-14 to 36-10-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 6) Provide adequate drainage to prevent water ponding.
- 7) All plates are 2x4 MT20 unless otherwise indicated.

8) Gable studs spaced at 2-0-0 oc.

- 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

LOAD CASE(S) Standard

24/202 rd and Warning !-- Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Trusse Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Trusse Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

NOINEE

7/24/2024

Job	Truss	Truss Type	Qty	Ply	LOT 0.0108 BLAKE POND 113 FROST MEAD	OOW WAY LILLINGTON, NC
24-5444-R01	R18	PIGGYBACK BASE	1	1	Job Reference (optional)	# 50803
		R ID	un: 8.430 s Feb 1 coDuWOOMhLx	2 2021 Prir MOj2fwcp	nt: 8.430 s Feb 12 2021 MiTek Industries, Inc. Th D2aKqzMG6w-FFyIfLw5aN1rakaAT?iqzk7?	u Jul 25 09:18:41 2024 Page 2 2_a6U7GXCWUTMzbyuabC

NOTES- (10)

9) This truss has been designed for a total drag load of 200 plf. Lumber DOL=(1.33) Plate grip DOL=(1.33) Connect truss to resist drag loads along bottom chord from 0-0-0 to 36-0-0 for 200.0 plf.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	LOT 0.0108 BLAKE POND 113 FROST MEAD	DOW WAY LILLINGTON, NC
24-5444-R01	R20B	Piggyback Base	5	1	Job Reference (optional)	# 50803
		Run: i ID:oDu	.430 s Feb 1 WOOMhLxN	2 2021 Prin //Oj2fwcp2	it: 8.430 s Feb 12 2021 MiTek Industries, Inc. Th 2aKqzMG6w-Uz?iYQ1IS89Z96mvVOMxqe	nu Jul 25 09:18:50 2024 Page 2 WkC7gkJ?XaO9Loayuab3

9) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
 10) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

 Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.
 SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS

12) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	LOT 0.0108 BLAKE POND 113 FROST MEADO	OW WAY LILLINGTON, NC
24-5444-R01	R20C	Piggyback Base	1	1	Job Reference (optional)	# 50803
		Run: 8. ID:oDuW	430 s Feb 1 OOMhLxM	2 2021 Prin Oj2fwcp2a	nt: 8.430 s Feb 12 2021 MiTek Industries, Inc. Thu aKqzMG6w-QM7Tz62?_IPHOQwHcpPPv3	i Jul 25 09:18:52 2024 Page 2 4sH0pACCUq1ieSsTyuab1

9) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced. 10) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

11) Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate

Connected Wood Trustees for additional bracing guidelines, including diagonal bracing. 12) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

vertically. Applicability of design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be instance and roaded and baded of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TP1 1 *National Design Standard for Metal Plate Connected Wood Truss Construction* and BCSI 1-03 Guide to *Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses* from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onorio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 0.0108 BLAKE POND 113 FROST ME	ADOW WAY LILLINGTON, NC
24-5444-R01	R24	Piggyback Base Structural Gable Gable I I Gable I Gable	1	1	Job Reference (optional)	# 50803
	·	Run: 8.4 ID:oDuV	30 s Feb 1 VOOMhL>	2 2021 Prir MOj2fwcj	nt: 8.430 s Feb 12 2021 MiTek Industries, Inc. p2aKqzMG6w-cTHdGtBvO8ojD6GPId5?	Thu Jul 25 09:19:03 2024 Page 2 SN1pwRbIHIMRZvpXkKyuaas

NOTES- (13)
 12) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply LOT 0.0108 BLAKE PON	ND 113 FROST MEADOW WAY LILLINGTON, NC
24-5444-R01	R25	Monopitch	5	Job Reference (option	mal) # 50803
			Run: 8.430 s Feb ID:oDuWOOMhLx	12 2021 Print: 8.430 s Feb 12 2021 M MOi2fwcp2aKgzMG6w-cTHdGtB	Tek Industries, Inc. Thu Jul 25 09:19:03 2024 Page 1 vO8oiD6GPId5?sN1gaReDHCXRZvpXkKvuaas
-0-8-4		6-5-7		12-0-0	
0-0-4		0-5-1		0-0-9	
					Scale = 1:20.9
					3x4
1					4
		2 50 12			- Co
		2.00 12			
			3x4 = 8		
-					o W3
2-10		7			NO N
2			W1	₩2	
			-B1 0		
14					(j
\bowtie			6		5
3x4 =			2x4		3x8 //
0-2-4		6-5-7		12-0-0	
LOADING (psf)		<u> </u>		0-0-9	
TCLL (roof) 20.0	Plate Grip DOL	2-0-0 CSI. 1.15 TC 0.53	Vert(LL)	IN (IOC) I/defl L/d -0.08 2-6 >999 240	MT20 244/190
TCDL 10.0	Lumber DOL	1.15 BC 0.62		-0.16 2-6 >887 180	
BCLL 0.0 *	Code IRC2021/TP	Pl2014 Matrix-SH		0.03 5 II/a II/a	Weight: 50 lb FT = 20%
LUMBER-			BRACING-		
TOP CHORD 2x4 SP No	.2		TOP CHORD	Structural wood sheathing d	rectly applied or 4-2-0 oc purlins, except
BOT CHORD 2x4 SP No WEBS 2x4 SP No	.2 .3		BOT CHORD	end verticals. Rigid ceiling directly applied	or 10-0-0 oc bracing.
				MiTek recommends that St	abilizers and required cross bracing
				be installed during truss er	ection, in accordance with Stabilizer
REACTIONS. (lb/size)	2=521/0-4-8 (min. 0-1-8), 5	5=465/0-1-8 (min. 0-1-8)		inotanation galaci	
Max Horz Max Uplift	2=81(LC 10) 2=-81(LC 10), 5=-69(LC 14	1)			
Max Grav	2=579(LC 21), 5=578(LC 2	21)			
FORCES. (Ib) - Max. Con	mp./Max. Ten All forces 2	250 (lb) or less except when shown			
BOT CHORD 2-7=-145	/1386, 5-6=-262/1386				
WEBS 3-6=0/26	4, 3-5=-1387/262				
NOTES- (10-13)					_
1) Wind: ASCE 7-16; Vult (envelope) gable end z	=120mph (3-second gust) one and C-C Exterior(2E) -	Vasd=95mph; TCDL=5.0psf; BCDL -0-8-4 to 4-1-6. Interior(1) 4-1-6 to 7	_=5.0psf;	at. II; Exp B; Enclosed; MWFF) 7-0-10 to 11-10-4 zone:C-C f	RS or
members and forces &	MWFRS for reactions sho	wn; Lumber DOL=1.60 plate grip D	OL=1.60		
Cat B; Partially Exp.; C	e=1.0; Cs=1.00; Ct=1.10	L= 1. 15 Plate DOL= 1. 15); PI=20.0 p	DSI (LUM DOL=1.15	Plate DOL=1.15); IS=1.0; Rot	ıgn
 Unbalanced snow load This truss has been de 	s have been considered for	r this design. oof live load of 12.0 psf or 2.00 time	es flat roof load of 2	20.0 nsf on overhands	
non-concurrent with oth	ier live loads.				
 5) This truss has been de 6) * This truss has been de 	signed for a 10.0 psf bottor lesigned for a live load of 3	m chord live load nonconcurrent wi 30.0psf on the bottom chord in all ar	th any other live loa reas where a recta	ads. ngle 3-6-0 tall bv 1-0-0 wide wi	ll fit
between the bottom ch	ord and any other members	S. Way waing ANSI/TDI 1 angle to grain	formula Duilding	designer should verify sensed	WINTH CARO
bearing surface.	isiders paraller to grain var	ide using ANSI/TETT angle to grain	normula. Building	designer should verify capaci	SEESOID Not
 8) Provide mechanical co 9) Provide mechanical co 	nnection (by others) of trus	es to bearing plate at joint(s) 5.	tanding 100 lb unlif	ft at joint(s) 2 5	A A A A A A A A A A A A A A A A A A A
10) Graphical bracing rep	resentation does not depic	t the size, type or the orientation of	the brace on the n	nember. Symbol only indicates	SEAL
11) Bearing symbols are	: be braced. only graphical representatic	ons of a possible bearing condition.	. Bearing symbols	are not considered in the	28147
structural design of th	e truss to support the loads	s indicated.		and Properties for Logalise	Non al I
Installing, Restraining	& Bracing of Metal Plate C	Connected Wood Trusses for addition	onal bracing guide	lines, including diagonal bracir	ng. Ap. ONEE ORS
13) SEE BCSI-B3 SUMM MINIMUM BRACING	ARY SHEET- PERMANEN	IT RESTRAING/BRACING OF CHO CHORD BOTTOM CHORD AND	ORDS & WEB MEN	MBERS FOR RECOMMENDE	D MARK MORNING
MINIMUM GUIDELINI	ES, ALWAYS CONSULT T	THE PROJECT ARCHITECT OR EI	NGINEER FOR AD	DITIONAL BRACING	7/24/2024
CONSIDERATIONS. Warning !—Verify design	parameters and read notes b	efore use. This design is based only upor	n parameters shown.	and is for an individual building con	ponent to be installed and loaded
LOAD DASE(\$)icStandard	lesign parameters and proper in	ncorporation of component is responsibili	ty of building designe	r – not truss designer or truss engine	eer. Bracing shown is for lateral support
of individual web members	only. Additional temporary bra designer For general midanc	cing to ensure stability during construction ensure fabrication quality control as	on is the responsibility	of the erector. Additional permane	ent bracing of the overall structure is the 1 National Design Standard for Metal
Plate Connected Wood Trus	ss Construction and BCSI 1-03	Guide to Good Practice for Handling, 1	Installing & Bracing of	f Metal Plate Connected Wood Tru	asses from Truss Plate Institute, 583

D'Onofrio Drive, Madison, WI 53719.

1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-4-4 to 5-1-13, Exterior(2R) 5-1-13 to 6-7-7, Exterior(2E) 6-7-7 to 11-5-1 zone;C-C for

members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (it=lb) 8=160. 6=160.

```
LOAD CASE(S) Standard
```


FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES- (8)

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3, 4.

LOAD CASE(S) Standard

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-(8)

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed: MWFRS (envelope) gable end zone and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

LOAD CASE(S) Standard

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES- (8)

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph, TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

LOAD CASE(S) Standard

vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 *National Design Standard for Metal Plate Connected Wood Truss Construction* and BCSI 1-03 Guide to *Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses* from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

NOTES- (8)

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-4-4 to 5-1-13, Exterior(2R) 5-1-13 to 10-6-2, Exterior(2E) 10-6-2 to 15-3-12 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1 except (jt=lb) 8=187, 6=187.

```
LOAD CASE(S) Standard
```


1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-4-4 to 5-1-13, Exterior(2R) 5-1-13 to 7-10-2, Exterior(2E) 7-10-2 to 12-7-12 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb) 8=162.6=162.

```
LOAD CASE(S) Standard
```


- Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 121 lb uplift at joint 1, 104 lb uplift at joint 5, 185 lb uplift at joint 8 and 185 lb uplift at joint 6.

```
LOAD CASE(S) Standard
```


FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES- (8)

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 31 lb uplift at joint 1 and 31 lb uplift at joint 3.

LOAD CASE(S) Standard

Max Uplift1=-19(LC 13), 3=-19(LC 13)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES- (8)

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 19 lb uplift at joint 1 and 19 lb uplift at joint 3.

LOAD CASE(S) Standard

REACTIONS. (Ib/size) 1=65/2-4-0 (min. 0-1-8), 3=65/2-4-0 (min. 0-1-8) Max Horz 1=-16(LC 8) Max Uplift1=-3(LC 12), 3=-3(LC 12)

NOTES- (8)

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 3 lb uplift at joint 1 and 3 lb uplift at joint 3.

LOAD CASE(S) Standard

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

¹⁾ Unbalanced roof live loads have been considered for this design.

²⁾ Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

³⁾ TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

- between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 24 lb uplift at joint 3 and 19 lb uplift at joint 2.
- 8) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
- 9) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.
- 10) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling,
- Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANEOUNCE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROVIDED TO CONSIDERATION C 11) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED CONSIDERATIONS.

LOAD CASE(S) Standard

PALZOZ Vand' Sor NOINEE 7/24/2024