

Carter Sanford Component Plant 298 Harvey Faulk Rd Sanford, NC 27332

Phone #:919-775-1450

Builder: DRB Homes NC LLC

Model: Cooper 3 Elev 9 TFR GX2 CRP BNS GLH

THE PLACEMENT PLAN NOTES:

1. The Placement Plan is a diagram for truss installation. It is not an engineered drawing and has not been reviewed by an engineer. The Owner/Building Designer is responsible for obtaining an engineer's review if one is required by the local jurisdiction.

2. The responsibilities of the Owner, Contractor, Building Designer, Component Designer and Component Manufacturer shall be as set forth in ANSI/TPI 1. Capitalized terms shall be as defined in ANSI/TP 1 unless otherwise indicated.

3. Each Component is designed as an individual component utilizing information provided by others. The Owner/Building Designer is responsible for reviewing all Component Submittal Packages and individual Component Design Drawings for compliance with the Construction Documents and compatibility with the overall Building design.

4. Contractor will not proceed with component installation until the Owner/Building Designer has reviewed the Component Submittal Package. Questions on the suitability of any Component will be resolved by the Building Designer.

5. The Building Designer and Contractor are responsible for all temporary and permanent bracing.

6. The Placement Plan assumes the building is dimensionally correct, structurally sound, and in a suitable condition to support each Component during installation and thereafter, including but not limited to installation of all bearing points. Proper design and construction of all structural components, including foundations, headers, beams, walls and columns are the responsibility of the Owner, Building Designer and Contractor.

7. Do not cut, drill, or modify any Component without first consulting the Component Manufacturer or Building Designer. Damaged Components shall not be installed unless directed by the Building Designer or approved by the Component Manufacturer.

8. Components must be handled and installed following all applicable safety standards and best practices, including but not limited to BCSI, OSHA, TPI and local codes. Failure to properly handle, brace or otherwise install Component can result in serious injury or death. 9. All uplift connectors shown within these documents are recommendations only. Per ANSI/TPI 1, all uplift connectors are the responsibility of the building designer and or contractor.

Approved By: _____

Date: _____

Trenco 818 Soundside Rd Edenton, NC 27932

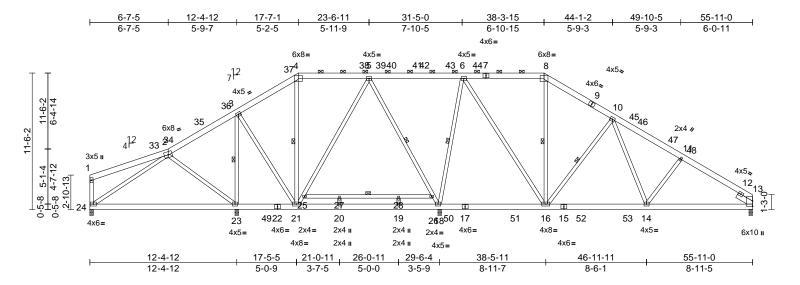
Re: 24060022-A 65 Farm at Neills Creek-Roof-Cooper 3 Elev 9 TFR GX2 CRP BNS GLH

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Carter Components (Sanford, NC)).

Pages or sheets covered by this seal: I66361630 thru I66361672

My license renewal date for the state of North Carolina is December 31, 2024.

North Carolina COA: C-0844


June 20,2024

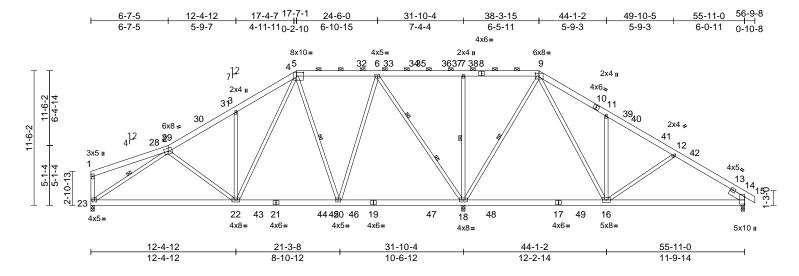
Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	65 Farm at Neills Creek-Roof-Cooper 3 Elev 9 TFR GX2
24060022-A	A01	Piggyback Base	6	1	I66361630 Job Reference (optional)

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Wed Jun 19 16:16:27 ID:vmWSYKxMeSKeeaoGnh3QrczhvSE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:97.2


		· · · · · ·										
Loading TCLL (roof) Snow (Pf) TCDL	(psf) 20.0 20.0 10.0	Plate Grip DOL 1 Lumber DOL 1 Rep Stress Incr 1	2-0-0 1.15 1.15 YES	CSI TC BC WB	0.70 0.63 0.81	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.17 -0.35 0.02	(loc) 23-24 23-24 13	l/defl >857 >417 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCLL BCDL	0.0* 10.0	Code I	RC2018/TPI2014	Matrix-MSH							Weight: 479 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD	2x6 SP No.2 2x6 SP No.2 2x4 SP No.3 *Excep 21-4,21-5,18-5,18-6 No.2 Right 2x6 SP No.2 - Structural wood she 5-4-14 oc purlins, e 2-0-0 oc purlins (6-6 Rigid ceiling directly bracing.	,16-6,16-8,25-26:2x4 Sf - 1-6-0 eathing directly applied c except end verticals, and 0-0 max.): 4-8.	or NOTES 1) Unbaland this desig 2) Wind: AS Vasd=10	SCE 7-16; Vult=130mp 3mph; TCDL=6.0psf;	21=0/38 5=0/471, 5-18=-14 5-16=-16 0-14=-4 25-27=-1 7=0/44, ve been bh (3-see BCDL=6	6, 4-21=-218/ 5-26=-892/13 60/363, 2/73, 4/551, 2/0, 27-28=-1 19-28=0/23 considered fo cond gust) 6.0psf; h=25ft;	32, 2/0, or ; Cat.	recc UPL uplit 11) This Inte R80 12) Gra or th	Difference of the original provided the orig	led to o t(s) 24, nd doe s desig al Resid and ref urlin re tation o rd.	on Strong-Tie co connect truss to b , 23, and 13. This is not consider la ned in accordanc dential Code sect ierenced standarc spresentation doe of the purlin along	nnectors bearing walls due to connection is for teral forces. e with the 2018 ions R502.11.1 and J ANSI/TPI 1. s not depict the size
WEBS	1 Row at midpt	and C-C	II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 5-7-0 to 11-2-2, Interior (1) 11-2-2									
REACTIONS	8-16, 10-16, 25-26 and C-C Exterior(2E) 5-7-0 to 11-2-2, Interior (1) 11-2-2 ACTIONS (size) 13=0-3-8, 18=0-3-8, 23=0-3-8, 24=0-3-8 and C-C Exterior(2E) 5-7-0 to 11-2-2, Interior (1) 11-2-2 Max Horiz 24=0-3-8 to 13=-131 (LC 15), 23=-124 (LC 14), 24=-56 (LC 10) and C-C Exterior(2E) 5-7-0 to 11-2-2, Interior (1) 11-2-2 Max Grav 13=-131 (LC 15), 23=-124 (LC 14), 24=-56 (LC 10) and C-C Exterior(2E) 17-5-4 to 28-7-7, Interior (1) 28-7-7 to 38-2-1, Exterior(2R) 38-2-1 to 49-6-6, Interior (1) 49-6-6 to 55-9-2, Exterior(2E) 55-9-2 to 61-4-4 zone; cantilever left and right exposed; end vertical left and right exposed; c-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 polate grip DOL=1.60						one; id RS					
FORCES	Tension 1-2=-196/45, 2-3=-1 4-5=-262/184, 5-6= 8-10=-685/314, 10-		Plate DC DOL=1.1 Cs=1.00;									ROLIN
BOT CHORD	11-13=-1510/321, 1 23-24=-170/275, 21 20-21=-232/254, 10 18-19=-232/254, 16 14-16=-47/892, 13-	 from left Provide a All plates This trus chord live * This trus * This trus * This trus on the box 3-06-00 t 	AC unit load placed or end, supported at two adequate drainage to are 4x5 MT20 unless s has been designed e load nonconcurrent ss has been designer ottom chord in all area all by 2-00-00 wide w d any other members.	points, prevent s otherwi for a 10. with any d for a liv s where ill fit betv	5-0-0 apart. water ponding se indicated. 0 psf bottom other live loa re load of 20.0 a rectangle veen the botto	g. Ids. Opsf om				SEA 0363	22 EER ALIU	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

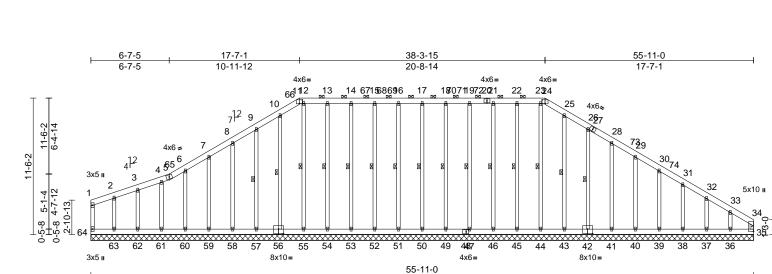
Job	Truss	Truss Type	Qty	Ply	65 Farm at Neills Creek-Roof-Cooper 3 Elev 9 TFR GX2
24060022-A	A02	Piggyback Base	1	1	I66361631 Job Reference (optional)

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Wed Jun 19 16:16:28 ID:vmWSYKxMeSKeeaoGnh3QrczhvSE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:98.6

Plate Offsets (X, Y): [5:0-7-0,0-3-12], [9:0-3-12,0-3-0]

	X, 1). [5.0-7-0,0-5-12]], [3.0-3-12,0-3-0]												
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Plate Grip DOL 1 Lumber DOL 1 Rep Stress Incr Y	2-0-0 .15 .15 (ES RC2018	3/TPI2014	CSI TC BC WB Matrix-MSH	0.58 0.56 0.99	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc) 16-18 22-23 18	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 458 lb	GRIP 244/190 FT = 20%	
	SP No.2 2x4 SP No.3 *Excep 18-7,18-9,4-22,20-6, 18-6:2x4 SP No.1 Right 2x6 SP No.2 Structural wood shea 5-4-9 oc purlins, exc 2-0-0 oc purlins, exc 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing. 1 Row at midpt 2 Rows at 1/3 pts (size) 14=0-3-8, Max Horiz 23=259 (L Max Uplift 14=-134 (I	20-5,16-9:2x4 SP No.2, 1-6-0 athing directly applied o cept end verticals, and -0 max.): 5-9. applied or 6-0-0 oc 2-23, 7-18, 9-18, 5-20 6-18 18=0-3-8, 23=0-3-8 .C 13) LC 15), 23=-32 (LC 14) .C 57), 18=3285 (LC 3),	x6 2) , , , , , , , , , , , , , , , , , , ,	this design. Wind: ASCE Vasd=103mp II; Exp B; En and C-C Exte to 17-5-4, Ex 28-7-7 to 38- (1) 49-6-6 to zone; cantile and right exp MWFRS for I grip DOL=1.6 TCLL: ASCE Plate DOL=1 DOL=1.15); I Cs=1.00; Ct= Unbalanced design. This truss ha load of 12.0 §	7-16; Pr=20.0 psf .15); Pf=20.0 psf (l s=1.0; Rough Cat	n (3-sec SCDL=6 nvelope 1-2-2, I o 28-7-7 8-2-1 to 28-2-1 to 28-2-	cond gust) .0psf; h=25ft; e) exterior zor therior (1) 11- 7, Interior (1) 949-6-6, Inter 7-10 to 62-2-1 gend vertical d forces & DOL=1.60 plat Exp.; Ce=0.9 asidered for the er of min roof pad of 20.0 plat	; Cat. ne -2-2 rior 2 left 1.15 	or th	he orient	tation o rd.	presentation doe of the purlin along ndard		
FORCES	(lb) - Maximum Com Tension	· · · ·	6)	200.0lb ĂC u	nit load placed on supported at two	the bott	om chord, 18	-3-8				WH CA	RO	
TOP CHORD	1-2=-195/56, 2-3=-16 4-5=-614/139, 5-6=-7 7-9=0/718, 9-11=-82	657/136, 3-4=-1696/285 754/172, 6-7=0/718, 6/344, 11-12=-765/181, 4-15=0/26, 1-23=-319/1	, 8)	Provide adec This truss ha chord live loa	supported at two p juate drainage to p s been designed fo id nonconcurrent w as been designed	revent or a 10. vith any	water ponding) psf bottom other live loa	ds.		4	× a	ORIEESS	Ale ale	2
BOT CHORD	22-23=-128/1437, 20 18-20=-97/527, 16-1 14-16=-92/843	0-22=-60/890,	. 3)	on the botton 3-06-00 tall b	n chord in all areas y 2-00-00 wide will	where fit betw	a rectangle	om				SEA 0363	•	ALL D
WEBS NOTES	2-23=-1673/163, 7-1 9-18=-1370/268, 6-1 3-22=-660/237, 2-22 4-22=-155/1272, 6-2 5-20=-710/194, 11-1 9-16=-245/1344, 12-	8=-1875/156, !=-272/203, !0=0/1260, 6=-654/252,		 10) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 23 and 14. This connection is for uplift only and does not consider lateral forces. 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 							ERA	unna.		


June 20,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Jo	b	Truss	Truss Type	Qty	Ply	65 Farm at Neills Creek-Roof-Cooper 3 Elev 9 TFR GX2
24	4060022-A	A03	Piggyback Base Supported Gable	1	1	I66361632 Job Reference (optional)

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Wed Jun 19 16:16:28 ID:ACS0SGCfmETEfJzgbpcWMMzhrbI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:97.2

Continued on page 2

Loading	(ps) Spacing		1-11-4	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.	· · · ·		1.15	TC	0.29		n/a	(100)	n/a	999	MT20	244/190
Snow (Pf)	20.			1.15	BC	0.07	Vert(TL)	n/a	-	n/a	999		2.1,100
TCDL	10			YES	WB	0.21	Horiz(TL)	-0.01	35	n/a	n/a		
BCLL		0* Code		IRC2018/TPI2014									
BCDL	10.											Weight: 587 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS DTHERS	2x6 SP No.2 2x6 SP No.2 2x4 SP No.3 2x4 SP No.3 *E: 55-12.54-13.53-		50-17.49)-18.	Max Uplift	35=-209 (LC 11) 37=-27 (LC 15), 39=-48 (LC 15), 41=-49 (LC 15), 43=-16 (LC 15), 46=-29 (LC 11),	38=-53 (LC 40=-49 (LC 42=-57 (LC 45=-24 (LC	15), 15), 15), 15), 10),	TOP CH	HORD	3-4=-6 6-7=- 9-10= 11-12	-67/31, 1-2=-52/4 61/68, 4-5=-75/82 101/122, 7-8=-119 -159/293, 10-11= =-149/334, 12-13 =-149/334, 14-15	, 5-6=-72/92, 9/155, 8-9=-137/2 -165/344, =-149/334,
	47-19,46-21,45-		, ,	-,		49=-25 (LC 10),						=-149/334, 16-17	
BRACING						51=-24 (LC 10),						=-149/334, 18-19	
TOP CHORD	Structural wood 6-0-0 oc purlins 2-0-0 oc purlins	except end ve	erticals, ar			53=-28 (LC 11), 56=-4 (LC 14), 5 58=-49 (LC 14),	7=-62 (LC 1-	4),			22-23	=-149/334, 21-22 =-149/334, 23-24 =-165/345, 25-26	=-149/334,
BOT CHORD	Rigid ceiling dire			;	60=-51 (LC 14), 61=-46 (LC 14), 26-28=-139/253, 28-29=-1 62=-42 (LC 10), 63=-78 (LC 11), 29-30=-113/216, 30-31=-1 64=-40 (LC 10) 31-32=-141/224, 32-33=-1								
		13-54, 14- 16-51, 17- 19-47, 21- 23-44, 25-	50, 18-49 46, 22-45 43, 26-42	, ,	Max Grav	35=182 (LC 12), 37=154 (LC 42), 39=220 (LC 48), 41=234 (LC 48), 43=226 (LC 48),	38=166 (LC 40=236 (LC 42=238 (LC	25), 48), 48),			33-34	=-193/266, 34-35	124/130
REACTIONS	37=5 39=5	5-11-0, 36=55-´ 5-11-0, 38=55-´ 5-11-0, 40=55-´ 5-11-0, 42=55-´	11-0, 11-0,			45=218 (LC 41), 47=211 (LC 41), 50=172 (LC 21),	46=218 (LC 49=189 (LC 51=189 (LC	41), 20), 21),				mun	911).
	43=5 45=5 47=5	5-11-0, 44=55-1 5-11-0, 46=55-1 5-11-0, 49=55-1	11-0, 11-0, 11-0,			52=211 (LC 41), 54=217 (LC 41), 56=228 (LC 44), 58=234 (LC 44),	55=179 (LC 57=236 (LC	57), 44),				OR JEESS	
	52=5 54=5	5-11-0, 51=55-´ 5-11-0, 53=55-´ 5-11-0, 55=55-´ 5-11-0, 57=55-´	11-0, 11-0,			60=217 (LC 44), 62=220 (LC 45), 64=90 (LC 30)	61=188 (LC	45),			v	SEA	A A
	58=5 60=5 62=5	5-11-0, 59=55- 5-11-0, 61=55- 5-11-0, 63=55- 5-11-0, 63=55-	11-0, 11-0,	FORCES	(lb) - Max Tension	kimum Compressio	on/Maximum					0363	22
	Max Horiz 64=2										in the second se	SEA 0363	ILBERTING

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria and DSE2** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbaccomponents.com)

June 20,2024

Job	Truss	Truss Type	Qty	Ply	65 Farm at Neills Creek-Roof-Cooper 3 Elev	
24060022-A	A03	Piggyback Base Supported Gable	1	1	Job Reference (optional)	166361632
Carter Components (Sanford N	C) Sanford NC - 27332	Run: 8 73 S Apr 25 2	Page: 2			

ID:ACS0SGCfmETEfJzgbpcWMMzhrbl-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Carter Components (Sanford, NC), Sanford, NC - 27332,

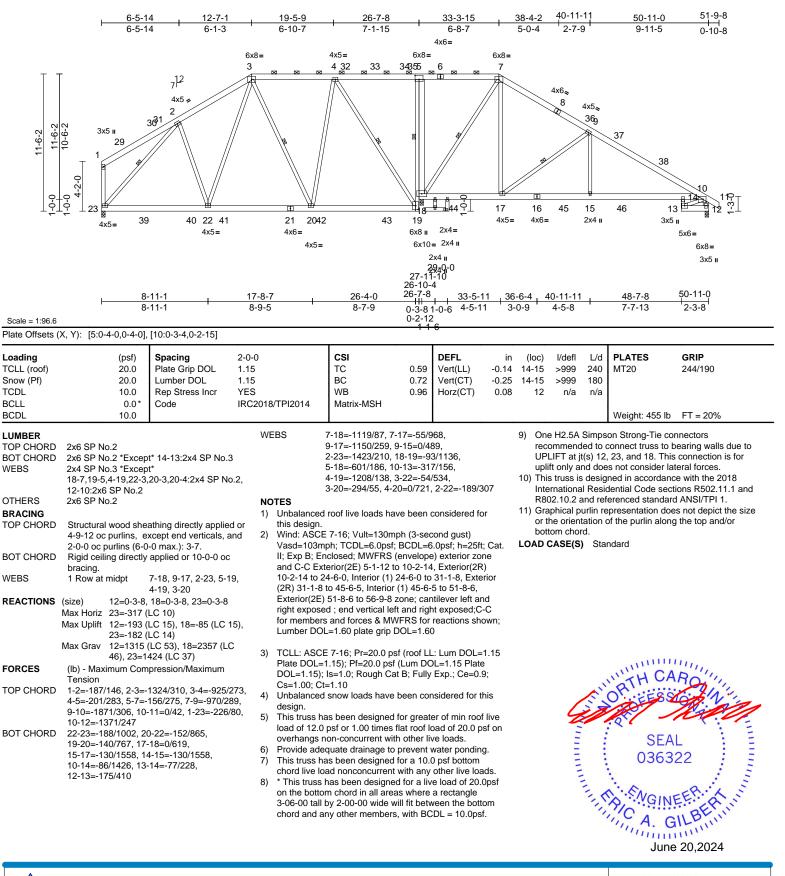
BOT CHORD	63-64=-223/163, 62-63=-223/163,
	61-62=-223/163, 60-61=-223/163,
	59-60=-223/163, 58-59=-223/163,
	57-58=-223/163. 55-57=-223/163.
	54-55=-223/163, 53-54=-223/163.
	52-53=-223/163, 51-52=-223/163.
	50-51=-223/163, 49-50=-223/163.
	47-49=-223/163, 46-47=-223/163,
	45-46=-223/163, 44-45=-223/163,
	43-44=-223/163, 41-43=-223/163,
	40-41=-223/163, 39-40=-223/163,
	38-39=-223/163, 37-38=-223/163,
	36-37=-223/163, 37-36=-223/163, 36-37=-223/163, 36-37=-223/163, 35-36=-223/163
WEBS	2-63=-179/79, 3-62=-181/60, 4-61=-149/68,
	6-60=-178/75, 7-59=-198/71, 8-58=-195/99,
	9-57=-199/141, 10-56=-189/77,
	12-55=-138/9, 13-54=-179/80,
	14-53=-179/90, 15-52=-172/55,
	16-51=-151/48, 17-50=-133/48,
	18-49=-151/48, 19-47=-172/55,
	21-46=-179/90, 22-45=-179/80,
	23-44=-151/21, 25-43=-188/77,
	26-42=-199/141, 28-41=-195/99,
	29-40=-197/72, 30-39=-181/72,
	31-38=-124/73, 32-37=-125/64,
	33-36=-176/123
NOTEO	

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) 5-7-0 to 11-4-12, Exterior(2N) 11-4-12 to 17-4-12, Corner(3R) 17-4-12 to 28-7-7, Exterior(2N) 28-7-7 to 38-2-1, Corner(3R) 38-2-1 to 49-4-12, Exterior(2N) 49-4-12 to 55-4-12, Corner(3E) 55-4-12 to 61-2-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; $C_{s=1} 00^{\circ} C_{t=1} 10^{\circ}$
- 5) Unbalanced snow loads have been considered for this design.
- 6) Provide adequate drainage to prevent water ponding.
- All plates are 2x4 MT20 unless otherwise indicated. 7)
- Gable requires continuous bottom chord bearing. 8)
- 9) Truss to be fully sheathed from one face or securely
- braced against lateral movement (i.e. diagonal web). 10) Gable studs spaced at 2-0-0 oc.
- 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 13) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 64, 35, 63, 62, 61, 60, 59, 58, 57, 56, 54, 53, 52, 51, 50, 49, 47, 46, 45, 43, 42, 41, 40, 39, 38, 37, and 36. This connection is for uplift only and does not consider lateral forces.
- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 15) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

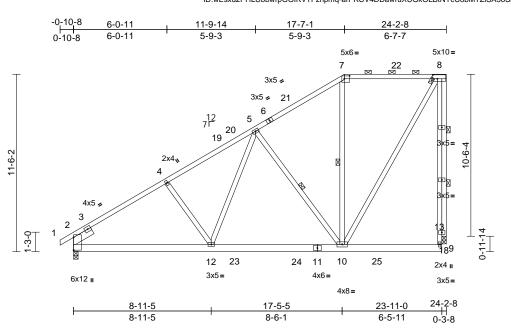
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design that the operating of the second se and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Page: 2

Job		Truss	Truss Type	Qty	Ply	65 Farm at Neills Creek-Roof-Cooper 3 Elev 9 TFR GX2
2406	60022-A	B01	Piggyback Base	3	1	Job Reference (optional)

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Wed Jun 19 16:16:29 ID:peT4yLyq7XKivZjUGqMG5_zHvYw-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

818 Soundside Road


Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	65 Farm at Neills Creek-Roof-Cooper 3 Elev 9 TFR GX2
24060022-A	C01	Piggyback Base	1	1	l66361634 Job Reference (optional)

Run: 8.73 E May 9 2024 Print: 8.730 E May 9 2024 MiTek Industries, Inc. Thu Jun 20 14:33:43 ID:wEsxu2PHLUbbwrpGGIKVTFzhpmq-arPKCV4DDawruXUGkOLBtNYcU8bMTZiSA5oSadz4NLu Page: 1

Scale = 1:74.8

Plate Offsets (X, Y): [7:0-4-0,0-2-4], [8:0-3-8,0-3-0]

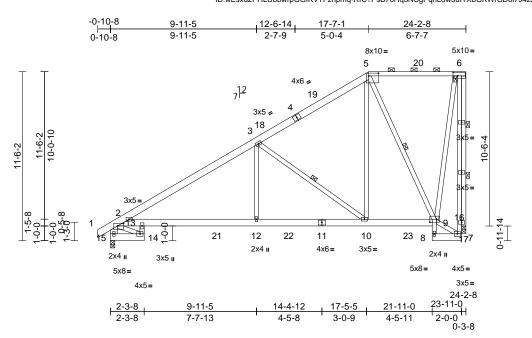
	(X, 1): [7:0 + 0,0 Z +],				•								
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.93 0.73 0.54	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.11 -0.19 -0.04	(loc) 10-12 10-12 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 199 lb	GRIP 244/190 FT = 20%
	No.3 2x4 SP No.2 Left 2x6 SP No.2 Structural wood she 2-2-0 oc purlins, ex 2-0-0 oc purlins (2-2 Rigid ceiling directly bracing. 1 Row at midpt 2 Rows at 1/3 pts	athing directly applied cept end verticals, and -0 max.): 7-8. applied or 10-0-0 oc 5-10, 7-10 8-18 -3-8, 18=938/0-3-8 C 14)	l or d 3) 4) 5)	this design. Wind: ASCE Vasd=103m II; Exp B; En and C-C Ext to 14-2-4, Ex 20-11-14 to 3 exposed ; er members an Lumber DOL TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced design. This truss ha	roof live loads have 7-16; Vult=130mph bh; TCDL=6.0psf; B closed; MWFRS (er erior(2E) -0-10-8 to cterior(2E) 14-2-4 to 23-9-4 zone; cantile id vertical left and ri d forces & MWFRS =1.60 plate grip DC 7-16; Pr=20.0 psf (L Is=1.0; Rough Cat E =1.10 snow loads have be as been designed fo psf or 1.00 times fia	n (3-sec CDL=6 nvelope 2-6-5, 20-11 ver left ght exp for rea DL=1.60 (roof LL .um DC 3; Fully een cor	cond gust) 6.0psf; h=25ft e) exterior zon Interior (1) 2- 14, Interior (and right bosed;C-C for ctions showr D :: Lum DOL= DL=1.15 Plate Exp.; Ce=0.9 hsidered for the er of min roof	; Cat. ne 6-5 1) r ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	Inte R80 12) Gra or t	ernationa 02.10.2 a aphical p he orien tom cho	al Resid and ref ourlin re tation o rd.) Sta	dential Code sec ferenced standar epresentation do of the purlin alon	es not depict the size
FORCES	(lb) or less except w 2-3=-402/128, 3-4=- 19-20=-1393/88, 5-2	ax. Ten All forces 2 hen shown. 1635/79, 4-19=-1487/	50 6) 7) '69, 8)	Provide adeo This truss ha chord live loa * This truss h	on-concurrent with quate drainage to pl as been designed fo ad nonconcurrent w has been designed n chord in all areas	revent or a 10.0 ith any for a liv	water ponding 0 psf bottom other live loa re load of 20.0	uds.			N	ORDEESS	
BOT CHORD	7-22=-637/98, 8-22= 2-12=-482/1476, 12- 23-24=-225/1143, 11 10-11=-225/1143 4-12=-280/187, 5-12 5-10=-838/241, 8-10	-23=-225/1143, 1-24=-225/1143, 2=-60/536,	9) 10	3-06-00 tall b chord and ar Bearing at jo using ANSI/ designer sho) One H2.5A \$	6-00 tall by 2-00-00 wide will fit between the bottom rd and any other members, with BCDL = 10.0psf. aring at joint(s) 18 considers parallel to grain value ng ANSI/TPI 1 angle to grain formula. Building igner should verify capacity of bearing surface. e H2.5A Simpson Strong-Tie connectors							• -	
	8-18=-1299/163			recommende	ed to connect truss	to bear	ing walls due	to			1	CA C	BEIN

5-6=-832/33, 6-21=-745/45, 7-21=-713/65, 7-22=-637/98, 8-22=-637/98 BOT CHORD 2-12=-482/1476, 12-23=-225/1143, 23-24=-225/1143, 11-24=-225/1143, 10-11=-225/1143 4-12=-280/187, 5-12=-60/536, 5-10=-838/241, 8-10=-188/1205, WEBS 8-18=-1299/163 NOTES

- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
- chord and any other members, with BCDL = 10.0psf.
 9) Bearing at joint(s) 18 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 10) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 18. This connection is for uplift only and does not consider lateral forces.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



G mm

June 20,2024

Job	Truss	Truss Type	Qty	Ply	65 Farm at Neills Creek-Roof-Cooper 3 Elev 9 TFR GX2
24060022-A	C02	Piggyback Base	2	1	I66361635 Job Reference (optional)

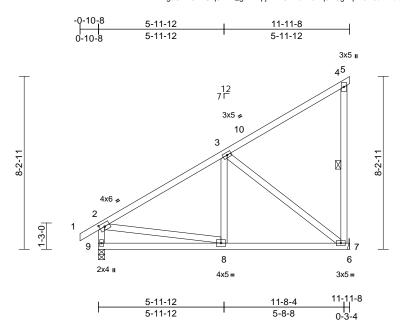
Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Wed Jun 19 16:16:29 ID:wEsxu2PHLUbbwrpGGIKVTFzhpmq-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:78.5

Plate Offsets (X, Y): [2:0-4-12,0-2-1], [5:0-8-0,0-2-4], [6:0	-3-8,0-3-	0], [9:0-5-8,0-2	-8]								
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.84 0.69 0.59	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.15 -0.24 0.11	(loc) 12-13 12-13 17	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 226 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS WEBS REACTIONS	2x4 SP No.3 *Excep 15-2:2x6 SP No.2 2x4 SP No.2 Structural wood she 4-8-4 oc purlins, ex 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing, Except: 6-0-0 oc bracing: 7-8	t* 14-13,9-8:2x4 SP No. t* 6-7,9-5:2x4 SP No. athing directly applied cept end verticals, an -0 max.): 5-6. applied or 10-0-0 oc 3. 3-10, 5-9 6-17 17=0-3-8	.2, d or	this design. Wind: ASCE Vasd=103mg II; Exp B; En and C-C Ext to 14-2-4, Ex 20-11-14 to 2 exposed ; er members an Lumber DOL TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced design.	snow loads have be	n (3-sec CDL=6 nvelope 2-6-5, 20-11: ver left ght exp for rea DL=1.60 (roof LL .um DC 3; Fully een cor	cond gust) .0psf; h=25ft; e) exterior zor interior (1) 2-6 .14, Interior (1 and right losed;C-C for ctions shown) .: Lum DOL= ² .: Lum DOL= ² .: Lum Charles .: Ce=0.9 asidered for th	; Cat. ne 6-5 1) ; 1.15 ;	Inte R80 12) Gra or ti	rnationa)2.10.2 a phical p ne orien om choi CASE(S	al Resid and ref urlin re tation o rd.) Star	erenced standar presentation doe of the purlin along ndard	tions R502.11.1 and d ANSI/TPI 1. es not depict the size
FORCES	Max Uplift 15=-59 (L Max Grav 15=1280 ((lb) - Maximum Com	(LC 44), 17=1051 (LC		 This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. Provide adequate drainage to prevent water ponding. 							and and	OR. FÉSS	ROLINIA
TOP CHORD	Tension 1-2=0/42, 2-3=-1888 5-6=-229/29, 7-16=- 2-15=-1379/106		.,	 chord live load nonconcurrent with any other live loads. 8) * This truss has been designed for a live load of 20.0psf 							2	N. P.	
BOT CHORD	14-15=-431/558, 13- 2-13=-255/1540, 12-		/19, 9)	on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. Bearing at joint(s) 17 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. D) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 15 and 17. This connection is for uplift								• -	
WEBS	3-12=0/507, 3-10=-1	262/320, 5-10=-89/9 18/93, 6-9=-141/112 '=-1265/163	,	designer sho) One H2.5A S recommende	ould verify capacity Simpson Strong-Tie ed to connect truss	of beari conne to bear	ng surface. ctors ng walls due					A C A C	EER
NOTES					s) 15 and 17. This s not consider later			ft				in the second se	20.2024

June 20,2024

Page: 1


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org)
and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	65 Farm at Neills Creek-Roof-Cooper 3 Elev 9 TFR GX2
24060022-A	D01	Monopitch	7	1	I66361636 Job Reference (optional)

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Wed Jun 19 16:16:29 ID:fgJGN1CBxSiq8LzfII_gKzzhpjD-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

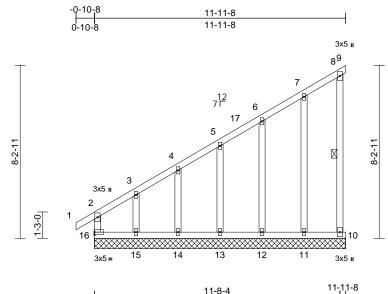
Scale = 1:54.9

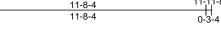
Plate Offsets (X, Y): [2:0-2-14,0-2-0]

	(,,,,,): [2:0 2 11,0 2 0											
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI20	CSI TC BC WB 14 Matrix-MSH	0.64 0.34 0.54	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.03 -0.05 0.01	(loc) 7-8 7-8 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 77 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. 1 Row at midpt (size) 7= Mecha Max Horiz 9=288 (LC Max Uplift 7=-126 (L Max Grav 7=634 (LC (Ib) - Maximum Com Tension 1-2=0/31, 2-3=-559/ 4-5=-13/0, 4-7=-264	applied or 10-0-0 oc 4-7 anical, 9=0-3-8 C 11) C 14), 9=-43 (LC 14) C 21), 9=561 (LC 21) apression/Maximum 111, 3-4=-186/153, /64, 2-9=-508/158 101/519, 6-7=0/0	d or d or e local d or d or d or d or d or d or d or d or	uss has been designed f 12.0 psf or 1.00 times i angs non-concurrent witi uss has been designed live load nonconcurrent truss has been designed bottom chord in all aree to tall by 2-00-00 wide w and any other members to girder(s) for truss to tr le mechanical connectio g plate capable of withs 12.5A Simpson Strong-T mended to connect trus T at jt(s) 9. This connect out consider lateral force uss is designed in accol ational Residential Code 10.2 and referenced sta	flat roof k h other lin for a 10.0 with any d for a liv is where rill fit betv "uss conr n (by oth tanding 1 ie conne is to bear tion is for is. "dance w is sections	bad of 20.0 p ve loads. D psf bottom other live load other live load e load of 20. a rectangle veen the bott nections. ers) of truss 26 lb uplift a ctors ing walls due uplift only a ith the 2018 R502.11.1 a	osf on ads. Opsf tom to to ti joint e to nd					
	3-0=0/233, 3-7=-548	/100, 2-0=-20/310	LOAD CA	SE(S) Standard								11.
Vasd=103 II; Exp B; and C-C E to 8-11-8, left and rig exposed; reactions DOL=1.6 2) TCLL: AS Plate DOI DOL=1.15 Cs=1.00;	CE 7-16; Pr=20.0 psf (_=1.15); Pf=20.0 psf (L 5); Is=1.0; Rough Cat E	CDL=6.0psf; h=25ft; tvelope) exterior zone 2-1-8, Interior (1) 2-1 11-11-8 zone; cantile cal left and right orces & MWFRS for 1.60 plate grip roof LL: Lum DOL=1 um DOL=1.15 Plate 3; Fully Exp.; Ce=0.9;	e -8 ever -15						And the second s	i	SEA 0363	L 22 EERER

- 2) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.

un unin June 20,2024


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	65 Farm at Neills Creek-Roof-Cooper 3 Elev 9 TFR GX2
24060022-A	D02	Monopitch Supported Gable	1	1	I66361637 Job Reference (optional)

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Wed Jun 19 16:16:29 ID:YRYnCOFh?hCFcyHRX82cVpzhpj9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:54.9												
Loading	(psf)	Spacing	1-11-4	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.76	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.24	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.17	Horz(CT)	0.04	9	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MR								
BCDL	10.0										Weight: 84 lb	FT = 20%

LUMBER		
TOP CHORD	2x4 SP N	0.2
BOT CHORD	2x4 SP N	0.2
WEBS	2x4 SP N	0.3
OTHERS	2x4 SP N	0.3
BRACING		
TOP CHORD		I wood sheathing directly applied or purlins, except end verticals.
BOT CHORD	Rigid ceili bracing.	ing directly applied or 10-0-0 oc
WEBS	1 Row at	midpt 8-10
REACTIONS	(size)	9=11-11-8, 10=11-11-8, 11=11-11-8 12=11-11-8, 13=11-11-8, 14=11-11-8, 15=11-11-8, 16=11-11-8
	Max Horiz	16=280 (LC 11)
	Max Uplift	
		11=-53 (LC 14), 12=-46 (LC 14),
		13=-58 (LC 14), 14=-14 (LC 14),
		15=-199 (LC 14), 16=-96 (LC 10)
	Max Grav	(
		11=232 (LC 21), 12=223 (LC 21),
		13=165 (LC 25), 14=158 (LC 1),
		15=237 (LC 25), 16=256 (LC 31)
FORCES		imum Compression/Maximum
	Tension	
TOP CHORD		9/235, 1-2=0/30, 2-3=-259/379,
		/278, 4-5=-170/262, 5-6=-154/227,
		/202, 7-8=-109/139, 8-9=-93/46,
	8-10=-17	
BOT CHORD		5/159, 14-15=-95/159,
		5/159, 12-13=-95/159,
		5/159, 10-11=-95/159
WEBS		9/104, 4-14=-122/87, 9/185, 6-12=-185/120, 7-11=-193/57
	3-13=-23	9/100, 0-12=-100/120, 7-11=-193/57

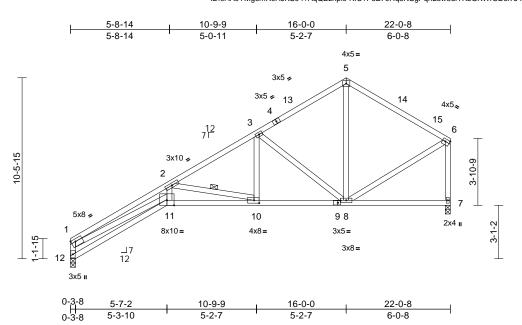
NOTES

 Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-10-8 to 1-11-12, Exterior(2N) 1-11-12 to 11-11-8 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Ff=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

- Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 6) All plates are 2x4 MT20 unless otherwise indicated.
- 7) Gable requires continuous bottom chord bearing.
- Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
 Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 96 lb uplift at joint 16, 82 lb uplift at joint 9, 146 lb uplift at joint 10, 58 lb uplift at joint 13, 14 lb uplift at joint 14, 199 lb uplift at joint 15, 46 lb uplift at joint 12 and 53 lb uplift at joint 11.

 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
 LOAD CASE(S) Standard


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

A MiTek Affil 818 Soundside Road

Edenton, NC 27932

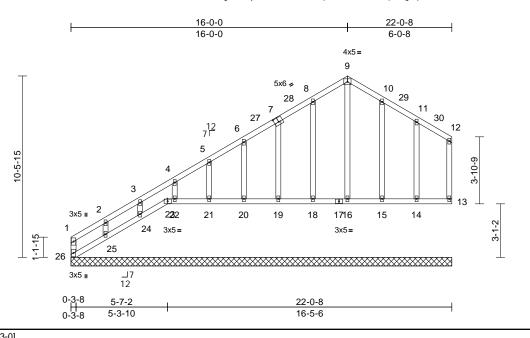
Job	Truss	Truss Type	Qty	Ply	65 Farm at Neills Creek-Roof-Cooper 3 Elev 9 TFR GX2
24060022-A	E01	Roof Special	7	1	I66361638 Job Reference (optional)

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Wed Jun 19 16:16:30 ID:0AA0YMgemRcHJKS94?AqQBzhpic-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale	= 1	.66	9

Plate Offsets (X, Y): [1:Edge,0-1-12], [6:Edge,0-1-12], [9:0-1-14,0-1-8], [10:0-3-8,0-2-0]

Loading (ps TCLL (roof) 20 Snow (Pf) 20 TCDL 10 BCLL 0 BCDL 10	Plate Grip DOL 1. Lumber DOL 1. Rep Stress Incr YE Code IR	15	BC 0.	.87 Vert(LL) .98 Vert(CT) .89 Horz(CT)	in -0.27 -0.51 0.34	(loc) 10-11 10-11 7	l/defl >961 >512 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 131 lb	GRIP 244/190 FT = 20%
2.0E BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 *E: BRACING TOP CHORD Structural wood 2-2-0 oc purlins BOT CHORD Rigid ceiling dir bracing, Excep 2-2-0 oc bracing WEBS 1 Row at midpt REACTIONS (size) 7=0-3 Max Horiz 12=2 Max Uplift 7=-10 Max Grav 7=87/ FORCES (b) - Maximum Tension TOP CHORD 1-12=-1064/253 2-3=-1641/254, 6-7=-899/133 BOT CHORD 1-12=-321/520 8-10=-240/1438 WEBS 1-11=-691/3833	10-11. 2-10 8, 12=0-3-8 2 (LC 11) 2 (LC 14), 12=-81 (LC 14) (LC 1), 12=926 (LC 20) compression/Maximum 1-2=-4570/886, -5=-840/154, 5-6=-773/164, 10-11=-849/3779, 7-8=-43/75 2-11=-330/1737, D=-76/643, 2-10=-2397/624, -8=-58/384	 Vasd=103m II; Exp B; Er and C-C Ex to 13-0-0, E 18-10-12 to exposed; e members ar Lumber DO 3) TCLL: ASCI Plate DOL= DOL=1.15); Cs=1.00; Ct 4) Unbalanced design. 5) This truss h chord live lo 3-06-00 tall chord and at 7) Bearing at j using ANSI/ designer sh 8) One H2.5A recommend UPLIFT at jt and does nc 9) This trussian 	snow loads have been as been designed for a ad nonconcurrent with has been designed for m chord in all areas wh by 2-00-00 wide will fit ny other members. pint(s) 12 considers par TPI 1 angle to grain for ould verify capacity of b Simpson Strong-Tie co ed to connect truss to b (s) 12 and 7. This conn tt consider lateral force: designed in accordance Residential Code sect nd referenced standard	DL=6.0psf; h=250 bl=6.0psf; h=250 blope) interior zo -12, Interior 12, -12, Interior 12, -12, Interior 12, exposed; C-C fc reactions show -1.60 of LL: Lum DOL= 1 DOL=1.15 Plat - UILY Exp.; Ce=0 a considered for 10.0 psf bottom any other live lo a live load of 20 were a rectangle between the bot rallel to grain val mula. Building opearing surface. nnectors bearing walls du ection is for upli s. with the 2018 tions R502.11.1	ne 3-1-12 (2E) or n; =1.15 e .9; this ads. .0psf tom ue e to ft only			20	SEA 0363	22 EERER III


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

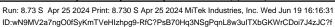
818 Soundside Road Edenton, NC 27932

G ummⁿ

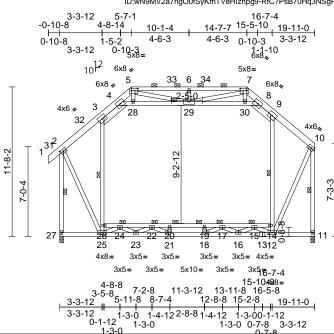
Job	Truss	Truss Type	Qty	Ply	65 Farm at Neills Creek-Roof-Cooper 3 Elev 9 TFR GX2
24060022-A	E02	Roof Special Supported Gable	1	1	l66361639 Job Reference (optional)

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Wed Jun 19 16:16:30 ID:rgAQfUnjKO4NkJvevcJ9cNzhphB-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:66.7 Plate Offsets (X, Y): [7:0-3-0.0-3-0]


Plate Offsets (X, Y): [7:0-3-0,0-3-0]											-	
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MR	0.29 0.19 0.14	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 13	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 132 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing, Except:	applied or 10-0-0 oc	W d or N 1)	this design.	25-26=-99/108, 24 22-23=-53/63, 21 19-20=-53/63, 18 15-16=-53/64, 14 9-16=-132/52, 8-1 6-20=-132/68, 5-2 3-24=-122/51, 2-2 10-15=-205/72, 1 d roof live loads ha	-22=-53/6 -19=-53/6 -15=-53/6 18=-210/7 21=-136/7 25=-194/1 1-14=-18	33, 20-21=-53 54, 16-18=-53 54, 13-14=-53 54, 13-14=-53 71, 7-19=-179 72, 4-22=-139 63, 7/78 considered fo	/63, /64, /64 /76, /77,	on 3-0 chc 12) Pro bea 23, 13) On rec UP Thi	the botto 6-00 tall ord and a vide me aring plat 4 lb upli e H2.5A ommeno LIFT at j s conneo	om cho by 2-0 any oth chanic te capa ft at joi Simps led to o t(s) 26 ction is	rd in all areas wh 0-00 wide will fit er members. al connection (by able of withstandi int 24 and 231 lb on Strong-Tie co connect truss to I , 13, 16, 18, 19, 2	between the bottom others) of truss to ng 32 lb uplift at joint uplift at joint 25.
	6-0-0 oc bracing: 23-24. EACTIONS (size) 13=22-0-8, 14=22-0-8, 15=22-0-8, 16=22-0-8, 18=22-0-8, 19=22-0-8, 20=22-0-8, 21=22-0-8, 22=22-0-8, 23=22-0-8, 24=22-0-8, 25=22-0-8, 26=22-0-8 Max Horiz 26=264 (LC 11) Max Uplift 13=-49 (LC 14), 14=-42 (LC 15), 15=-52 (LC 15), 16=-11 (LC 13), 18=-48 (LC 14), 19=-52 (LC 14), 20-64 (LC 14), 24-64 (LC 14),				 Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) interior zone and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior (1) 3-1-12 to 13-0-0, Exterior(2R) 13-0-0 to 18-10-12, Exterior(2E) 18-10-12 to 21-10-12 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Wind: ASCE 7-16; Vult=130mph (3-second gust) tateral forces. Beveled plate or shim required to pro- surface with truss chord at joint(s) 23 21, 22, 24, 25, 15, 14. This truss is designed in accordance International Residential Code section R802.10.2 and referenced standard. 							23, 13, 16, 18, 19, 20, ce with the 2018 tions R502.11.1 and	
$\begin{array}{c} 20 = \!$				 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 5) Unbalanced snow loads have been considered for this design. 							• -		
FORCES TOP CHORD	(lb) - Maximum Con Tension 1-26=-184/121, 1-2= 3-4=-185/152, 4-5=- 6-8=-138/142, 8-9=-	,	29, 34, 9)	Gable requi Truss to be braced aga Gable studs) This truss h	Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 Unbalanced snow loads have been considered for this design. All plates are 2x4 MT20 unless otherwise indicated. Gable requires continuous bottom chord bearing. Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). Gable studs spaced at 2-0-0 oc. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. June 20,2							EER. HILL ULBERTUTION 20,2024	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)


TRENCO

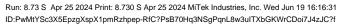
818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	65 Farm at Neills Creek-Roof-Cooper 3 Elev 9 TFR GX2
24060022-A	G01	Attic	4	1	I66361640 Job Reference (optional)

Page: 1

Scale = 1:90

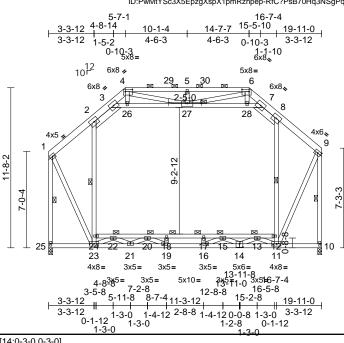
3cale = 1.90					1-3-0		0-7	7-8						
Plate Offsets ((X, Y): [2:0-2-14,0-2-0)], [5:0-6-4,0-2-0], [7:0	0-6-4,0-2-	0]				•						
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.67	Vert(LL)	-0.22	19-20	>999	240	MT20	244/190	
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.92	Vert(CT)	-0.36	19-20	>653	180			
TCDL	10.0	Rep Stress Incr	YES		WB	0.62	Horz(CT)	0.05	11	n/a	n/a			
BCLL	0.0*	Code		8/TPI2014	Matrix-MSH		Attic	-0.20		>807	360			
BCDL	10.0			0, 11 120 1 1				0.20		- 001	000	Weight: 227 I	b FT = 20%	
LUMBER		•	10	EBS	25-26=-445/191,	3-2642	3/285		9) * Th	nie truce	has h	en designed fr	or a live load of 20) Opef
TOP CHORD	2x6 SP No.2 *Except	1* 5 7.2v4 SD No 2	••	LDO	12-14=-485/208,								where a rectangle	
BOT CHORD		ot* 27-13:2x4 SP No.2	1		10-12=-70/1395,								fit between the bot	
WEBS	2x4 SP No.3 *Excep		1		28-29=-543/350,							er members.		
WEBS	3-4,8-9:2x6 SP No.2				8-30=-590/277, 2		,	6/86					ember(s). 3-4, 8-9,	4-28
BRACING	0 4,0 0.2x0 01 110.2	-			6-29=-459/120, 5			,					ad (5.0psf) on me	
TOP CHORD	Structural wood abo	athing directly applie	dor		7-29=-482/1020,		,	78/0.		3-26, 9-		-,		
TOP CHORD		cept end verticals, ar			23-24=0/880, 22	-23=-992/	0, 21-22=0/64	41,	11) Bot	tom cho	rd live	load (40.0 psf)	and additional bot	ttom
	2-0-0 oc purlins, ex		iu		20-21=-219/0, 12	2-15=-147	7/0, 15-16=0/	881,	Ć cho	rd dead	load (5.0 psf) applied	only to room. 24-	-26,
BOT CHORD	Rigid ceiling directly				16-17=-1000/0, 1	7-18=-4/6	651, 18-19=-2	20/0	22-	24, 20-2	2, 19-2	20, 17-19, 15-1	7, 14-15	
BOT ONORD	bracing.		N	OTES									nce with the 2018	
WEBS	1 Row at midpt	3-26, 9-14, 2-27, 10	-11 1)	Unbalance	d roof live loads ha	ave been	considered fo	or	Inte	rnationa	al Resi	dential Code se	ections R502.11.1	and
JOINTS	1 Brace at Jt(s): 29,	0 20, 0 1 , 2 21, 10	,	this design									ard ANSI/TPI 1.	
	24, 22, 15, 17		2)	Wind: ASC	E 7-16; Vult=130n	nph (3-seo	cond gust)						oes not depict the	
REACTIONS		, 27=0-3-8	,	Vasd=103	mph; TCDL=6.0ps	; BCDL=6	6.0psf; h=25ft;	; Cat.				of the purlin alo	ing the top and/or	
	Max Horiz 27=356 (I	,		II; Exp B; I	Enclosed; MWFRS	(envelope	e) exterior zor	ne		om choi				
	Max Grav 11=1485		C 48)	and C-C E	xterior(2E) -0-10-8	to 2-1-8,	Exterior(2R) 2	2-1-8	'			d for L/360 defl	ection.	
FORCES	(lb) - Maximum Corr		0 10)		Exterior(2E) 16-7-4			ever	LOAD	CASE(S) Sta	ndard		
FURCES	Tension	ipression/maximum		left and rig	ht exposed ; end v	ertical left	and right							
TOP CHORD	1-2=0/63, 2-3=-821/	0 3-4745/136			-C for members ar			r						
	4-5=-899/298, 5-6=-				shown; Lumber DC	L=1.60 pl	ate grip							
		-868/289, 8-9=-798/	92	DOL=1.60								, unin	in the second se	
		=-1625/0, 10-11=-166			CE 7-16; Pr=20.0 p							"THC	ARO	
BOT CHORD	25-27=-332/297, 23				=1.15); Pf=20.0 ps						- N	2	in the	
		1=0/3794, 16-18=0/3	235,); Is=1.0; Rough C	at B; Fully	Exp.; Ce=0.9	9;			1.	OR FES	Do: V	20
	12-16=0/1599, 11-1	2=-80/121,		Cs=1.00; (d snow loads have	hoon oo	onidered for th	hio			91		1/sil	1
	24-26=-82/201, 22-2	24=-1952/0,	4)	design.	a show loads have	been coi		115				:0		2
	20-22=-3367/0, 19-2	20=-3367/0,	5)		has been designed	for areat	er of min roof	livo		-		CE.	A1	=
	17-19=-3367/0, 15-1	17=-1939/0,	5)		0 psf or 1.00 times					=	:	SE.	•	-
	14-15=-92/216				non-concurrent wi			0.011		1	:	036	322 :	-
			6)		lequate drainage to			a.			1			-
			7)		are 2x4 MT20 unles						2	N		-
			8)		has been designed						21	N. ENG	-ER. X	3
			-,		load nonconcurren			ids.			1	SE 036	VEF. A.	£
						,					1	C A	BEIN	
												11, A. I	GIL	


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB Building Component Scietus Information**, and the from the Structure Building Component Advance interport of the property damage. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

Edenton, NC 27932

GI 11111111 June 20,2024

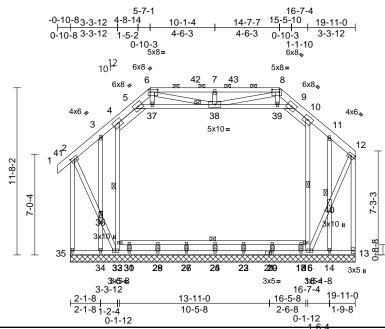

Job	Truss	Truss Type	Qty	Ply	65 Farm at Neills Creek-Roof-Cooper 3 Elev 9 TFR GX2
24060022-A	G02	Attic	6	1	I66361641 Job Reference (optional)

Page: 1

GI 1111111 June 20,2024

818 Soundside Road Edenton, NC 27932

Scale = 1:84


00010 - 1.04				1-3-	·0		1-3-0							
Plate Offsets ((X, Y): [4:0-6-4,0-2-0]	, [6:0-6-4,0-2-0], [14:0)-3-0,0-3-()]										
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.67 0.92 0.63	DEFL Vert(LL) Vert(CT) Horz(CT) Attic		17-18 17-18 10	l/defl >999 >652 n/a >806	L/d 240 180 n/a 360	PLATES MT20 Weight: 225	GRIP 244/19 Ib ET = 2	
BCDL	10.0											weight. 225		0%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x4 SP No.3 *Excep 2-3,7-8:2x6 SP No.2 Structural wood she 6-0-0 oc purlins, ex 2-0-0 oc purlins (4-2	ot* 25-14:2x4 SP No.1 ot* 3-7:2x4 SP No.2, eathing directly applied cept end verticals, an 2-6 max.): 4-6.	d or	EBS	23-24=-448/240, 2 11-12=-491/203, 8 9-11=-60/1400, 3- 26-27=-541/348, 2 7-28=-598/272, 1 5-27=-459/120, 6- 4-27=-460/893, 2 20-21=-992/0, 19- 11-13=-1474/0, 1 5-16=0/652, 16-	3-12=-44 26=-552 27-28=-5 -23=-62/1 -27=-472 2-23=-14 -20=0/63 3-14=0/9	8/299, /338, 87/283, 228, 4-26=-7 /1026, 6-28=(78/0, 21-22=(4, 18-19=-21 99, 14-15=-97	0/96, 0/880, 9/0,	26-: (s).: 10) Bot cho 20-: 11) This Inte R80	27, 27-2 2-24, 8-1 tom choi ord dead 22, 18-2 s truss is ernationa 02.10.2 a	8, 7-28 2 rd live load (9 0, 17-1 desig I Resid and ref	(5.0 psf) on mo 3; Wall dead lo load (40.0 psf) 5.0 psf) applied 18, 15-17, 13-1 ned in accorda dential Code s erenced stand presentation of	and (5.0psf) and addition only to roo 15, 12-13 ance with the ections R50 lard ANSI/T) on member onal bottom om. 22-24, ne 2018 02.11.1 and 'PI 1.
BOT CHORD	Rigid ceiling directly bracing.	applied or 2-2-0 oc	N	DTES	15-10=0/052, 10-	17=-219/	0					of the purlin al		
WEBS JOINTS	1 Row at midpt 1 Brace at Jt(s): 27, 22, 20, 13, 15	2-24, 8-12, 1-25, 9-1	0 1)	Unbalanced this design. Wind: ASC	E 7-16; Vult=130m	ph (3-seo	cond gust)		bott 13) Atti	tom chor	d. hecke	d for L/360 det	•	
REACTIONS FORCES TOP CHORD	Max Horiz 25=343 (i Max Grav 10=1487 (lb) - Maximum Corr Tension 1-2=-822/0, 2-3=-74	(LC 47), 25=1492 (LC npression/Maximum 16/131, 3-4=-899/293,	,	II; Exp B; E and C-C Ex 3-3-12 to 10 cantilever le right expose	hph; TCDL=6.0psf; nclosed; MWFRS (tterior(2E) 0-1-12 tt 6-7-4, Exterior(2E) eft and right expose ed;C-C for member s shown; Lumber [(envelope o 3-3-12, 16-7-4 to ed ; end v rs and fo	e) exterior zon Exterior(2R) o 19-9-4 zone vertical left an rces & MWFF	ne ; nd						
BOT CHORD	1-25=-1547/0, 9-10= 23-25=-318/327, 21	800/73, 8-9=-715/87, 1673/0 -23=0/1733, 9=0/3794, 11-16=0/3 24=-85/197, 20=-3367/0, 17=-3367/0,	3) 236, 4) 5) 6)	Plate DOL= DOL=1.15) Cs=1.00; C Unbalanced design. Provide add All plates all This truss h chord live lû * This truss on the botto 3-06-00 tall	E 7-16; Pr=20.0 ps 1.15); Pf=20.0 psf; 1.5(2); Rough Ca 1.5(2);	(Lum DC t B; Fully been cor prevent s otherwi for a 10. with any d for a liv as where vill fit betw	DL=1.15 Plate Exp.; Ce=0.9 hsidered for the water ponding se indicated. 0 psf bottom other live load re load of 20.0 a rectangle	9; his g. ads. Opsf		With the	23	036	AL 322 NEER GILBE	A Martin Contraction of the second se

Job	Truss	Truss Type	Qty	Ply	65 Farm at Neills Creek-Roof-Cooper 3 Elev 9 TFR GX2
24060022-A	G03	Attic Supported Gable	1	1	I66361642 Job Reference (optional)

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Wed Jun 19 16:16:32 ID:mTC1KUi0mrxofallau1_zozhpVg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Plate Offsets (X, Y): [2:0-2-14,0-2-0], [6:0-6-4,0-2-0], [8:0-6-4,0-2-0], [21:0-1-8,0-1-8]

		1										
Loading	(psf)	Spacing	1-11-4	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.61	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.18	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.35	Horz(CT)	-0.01	13	n/a	n/a		
BCLL	0.0	* Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 239 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD		ept* 6-8:2x4 SP No.2	TOP CHORD	2-35=-412/299, 1- 3-4=-106/184, 4-5 6-7=-1444/385, 7-	=-396/22	21, 5-6=-793/2		Vas	sd=103n	nph; TC		-second gust) DL=6.0psf; h=25ft; Cat. elope) exterior zone
WEBS	2x4 SP No.2	ept* 5-9:2x4 SP No.2,		8-9=-772/209, 9-1								-8, Exterior(2N) 2-1-8
WEB3	4-5,9-10:2x6 SP N			10-11=-118/169, 1								, Exterior(2N) 8-7-1 to
OTHERS	2x4 SP No.3	10.2		12-13=-426/242		,						4, Corner(3E) 16-7-4
BRACING	201 01 110.0		BOT CHORD	34-35=-299/328, 3	3-34=-2	99/328,						ight exposed ; end
TOP CHORD	Structural wood s	neathing directly applie	d or	31-33=-192/263, 2								for members and
		except end verticals, a		27-29=-192/263, 2							for reactions sho	wn; Lumber
	2-0-0 oc purlins (4	-5-11 max.): 6-8.		23-25=-192/263, 2							rip DOL=1.60	
BOT CHORD		tly applied or 10-0-0 or	;	18-20=-192/263, 1		,						ne plane of the truss
	bracing, Except:			14-15=-85/147, 13 28-30=-6/11, 26-2			o∕ i i,					ormal to the face), Details as applicable,
	6-0-0 oc bracing:			22-24=-6/11, 19-2								er as per ANSI/TPI 1.
WEBS	1 Row at midpt	4-33, 10-15		16-17=-6/11	2-0/11,	17 13= 0/11,						of LL: Lum DOL=1.15
JOINTS	1 Brace at Jt(s): 3	6,	WEBS	3-36=-85/95, 30-3	1=-98/0,	28-29=-120/0						n DOL=1.15 Plate
	38, 40			26-27=-115/0, 24-	,		,					Fully Exp.; Ce=0.9;
REACTIONS		11-0, 14=19-11-0, 11-0, 18=19-11-0,		19-20=-119/0, 17-	18=-103	/0, 11-40=-159	9/89,		=1.00; Ć			
		11-0, 18=19-11-0,		5-37=-120/531, 37				5) Unl	balanced	d snow	loads have been	o considered for this
		11-0, 27=19-11-0,		38-39=-88/492, 9-				des	sign.			
		11-0, 31=19-11-0,		32-33=-501/135, 4		,						
		11-0, 34=19-11-0,		15-16=-469/117, 1			-				mun	1111,
	35=19-	11-0		6-37=-15/25, 7-38 8-38=-235/850, 6-			7,				WAH CA	ROUL
	Max Horiz 35=327	(LC 13)		2-36=-288/346, 33						1	R	
	Max Uplift 13=-26	1 (LC 11), 14=-42 (LC	15),	15-40=-310/495, 1						<u>/</u>	O' FESS	IC Vin
		2 (LC 10), 33=-336 (LC		34-36=-126/126, 1						ìN	1 P	1 x: M
		(LC 14), 35=-280 (LC							1		x ~	
		(LC 51), 14=183 (LC	52), <u>(</u> 20	ed roof live loads hav	/e heen	considered for			-		SEV.	n 1 E -
		(LC 54), 18=198 (LC 1	≤ 1), $'$ this desire		0 00011					:	SEA	- : :
		(LC 21), 23=231 (LC 1) (LC 21), 27=231 (LC 1)	<u>~</u> 1), 0						=		0363	22 ; =
		(LC 21), 27=231 (LC 2) (LC 21), 31=196 (LC 2)							-) (ł		1 S
		(LC 52), 34=181 (LC								-	·	1 1 E
		(LC 53)	,,							20	N.SNOW	EFM. AN
FORCES		mpression/Maximum								1	P. GIN	E. CRN
	Tension									1		BEIN
											1111. 6	in the second seco
												00.0004

June 20,2024

Continued on page 2 WARNING - Verify

Scale = 1:80.5

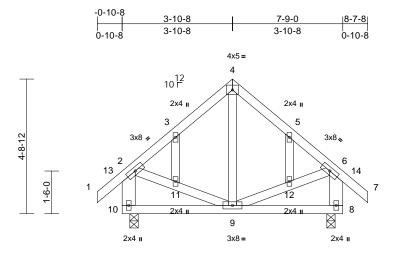
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouckling of trusses and truss systems, see **ANSI/TPI Quality Criteria and DSE2** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

A MiTek Aff 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	65 Farm at Neills Creek-Roof-Cooper 3 Elev 9 TFR GX2
24060022-A	G03	Attic Supported Gable	1	1	I66361642 Job Reference (optional)

- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhands non-concurrent with other live loads.
- Provide adequate drainage to prevent water ponding. 7)
- 8) All plates are 2x4 MT20 unless otherwise indicated.
- 9) Gable requires continuous bottom chord bearing.
- 10) Truss to be fully sheathed from one face or securely
- braced against lateral movement (i.e. diagonal web). 11) Gable studs spaced at 2-0-0 oc.
- 12) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 13) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 14) Ceiling dead load (5.0 psf) on member(s). 4-5, 9-10, 5-37, 37-38, 38-39, 9-39; Wall dead load (5.0psf) on member(s).32-33, 4-32, 15-16, 10-16
- 15) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 35, 13, 33, 15, 34, and 14. This connection is for uplift only and does not consider lateral forces.
- 16) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 17) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 18) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard


Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Wed Jun 19 16:16:32 ID:mTC1KUi0mrxofallau1_zozhpVg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	65 Farm at Neills Creek-Roof-Cooper 3 Elev 9 TFR GX2
24060022-A	H01	Common	1	1	I66361643 Job Reference (optional)

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Wed Jun 19 16:16:32 ID:odQRt_LKkd3VzU9QYSTuUUzhpTY-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:40.5

Loading (psf) Spacing TCLL (roof) 20.0 Plate Gr	irip DOL 1.15		CSI TC	0.24	DEFL Vert(LL)	in 0.00	(loc) 8-9	l/defl >999	L/d 240	PLATES MT20	GRIP 244/190
Snow (Pf) 20.0 Lumber TCDL 10.0 Rep Structure			BC WB	0.11 0.28	Vert(CT) Horz(CT)	-0.01 0.00	8-9 8	>999 n/a	180 n/a		
BCLL 0.0* Code BCDL 10.0	IRC2018	8/TPI2014	Matrix-MSH							Weight: 58 lb	FT = 20%
LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 *Except* 10-2,8-4 OTHERS 2x4 SP No.3 *Except* 10-2,8-4 OTHERS 2x4 SP No.3 BRACING TOP CHORD Structural wood sheathing dire 6-0-0 oc purlins, except end A BOT CHORD Rigid ceiling directly applied o bracing. REACTIONS (size) 8=0-3-8, 10=0-3-8 Max Horiz 10=-135 (LC 12) Max Uplift 8=-36 (LC 15), 10=- Max Grav 8=462 (LC 22), 10=	4) verticals. or 10-0-0 oc 5) 6) E-36 (LC 14) 7)	only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced design. This truss ha load of 12.0 overhangs n Truss to be f	ned for wind loads in uds exposed to wind d Industry Gable En- ialified building desi ; 7-16; Pr=20.0 psf (.15); Pf=20.0 psf (.15); Pf=20.0 psf (ls=1.0; Rough Cat E =1.10 snow loads have be as been designed for psf or 1.00 times fla on-concurrent with ully sheathed from a sist lateral movemen	I (norm d Deta gner as (roof LL um DC 3; Fully een cor r great t roof k other liv one fac	al to the face ils as applica s per ANSI/TI :: Lum DOL= UL=1.15 Plate Exp.; Ce=0.9 isidered for the er of min roof bad of 20.0 p: re loads. e or securely), ble, PI 1. 1.15 9; his f live sf on					
FORCES (Ib) - Maximum Compression/ Tension	(Maximum 8) 9)	Gable studs	spaced at 2-0-0 oc. is been designed fo	·	· ,						
TOP CHORD 1-2=0/53, 2-3=-289/157, 3-4=- 4-5=-204/196, 5-6=-289/156, 0 2-10=-428/239, 6-8=-428/224 BOT CHORD 9-10=-120/133, 8-9=-19/69 WEBS 4-9=-117/105, 2-11=-44/126, 9	6-7=0/53, 10 9-11=-49/126,	chord live loa * This truss h on the bottor 3-06-00 tall h chord and an	ad nonconcurrent w has been designed f n chord in all areas by 2-00-00 wide will ny other members.	ith any or a liv where fit betv	other live loa e load of 20.0 a rectangle veen the botto	0psf					
9-12=-52/126, 6-12=-46/126, 3	3-11=-55/38, 11) One H2.5A S	Simpson Strong-Tie	conne	ctors						1111

NOTES

Unbalanced roof live loads have been considered for 1) this design.

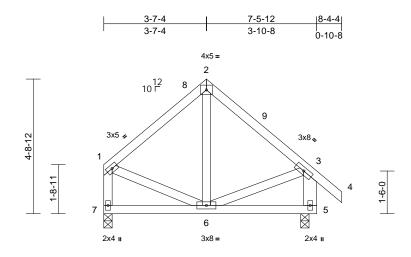
5-12=-55/40

- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 1-10-8, Exterior(2R) 1-10-8 to 5-10-8, Exterior(2E) 5-10-8 to 8-7-8 zone; cantilever left and right exposed ; end vertical left and right exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- UPLIFT at jt(s) 10 and 8. This connection is for uplift only and does not consider lateral forces. 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

recommended to connect truss to bearing walls due to

LOAD CASE(S) Standard

Page: 1


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	65 Farm at Neills Creek-Roof-Cooper 3 Elev 9 TFR GX2
24060022-A	H02	Common	3	1	I66361644 Job Reference (optional)

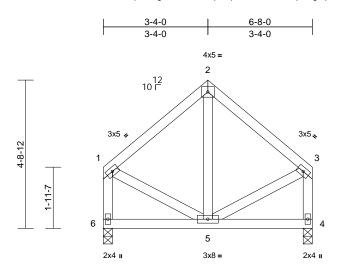
Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Wed Jun 19 16:16:32 ID:1RaY1JHdbHmaiJXEZ7Mx6jzhpSL-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:40.5

Loading (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0* BCDL 10.0	Plate Grip DOL1.1Lumber DOL1.1Rep Stress IncrYE	.15	CSI TC 0.41 BC 0.12 WB 0.06 Matrix-MP	DEFL in Vert(LL) 0.01 Vert(CT) -0.01 Horz(CT) 0.00	5-6 5-6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 49 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 *Excep BRACING TOP CHORD Structural wood sheat 6-0-0 oc purlins, exc BOT CHORD Rigid ceiling directly bracing. REACTIONS (size) 5=0-3-8, 7 Max Horiz 7=-134 (LI Max Uplif 5=-36 (LC Max Grav 5=436 (LC FORCES (lb) - Maximum Com Tension TOP CHORD 1-2=-262/165, 2-3=-2 1-7=-347/193, 3-5=-4 BOT CHORD 6-7=-118/146, 5-6=-70/ NOTES 1) Unbalanced roof live loads have this design. 2) Wind: ASCE 7-16; Vult=130mph Vasd=103mph; TCDL=6.0psf; BC II; Exp B; Enclosed; MWFRS (en and C-C Exterior(2E) 0-1-12 to 3 3-1-12 to 5-4-4, Exterior(2E) 5-4- cantilever left and right exposed right exposed; porch left and righ members and forces & MWFRS Lumber DOL=1.60 plate grip DO 3) TCLL: ASCE 7-16; Pr=20.0 psf (LI DOL=1.15); Is=1.0; Rough Cat B Cs=1.00; Ct=1.10 4) Unbalanced snow loads have be design.	athing directly applied or cept end verticals. applied or 10-0-0 oc 7=0-3-8 C 10) : 15), 7=-25 (LC 10) C 22), 7=373 (LC 21) pression/Maximum 285/166, 3-4=0/42, 408/223 17/25 /142, 3-6=-37/139 been considered for (3-second gust) CDL=6.0psf; h=25ft; Cat. welope) exterior zone -1-12, Exterior(2R) -4 to 8-4-4 zone; ; end vertical left and at exposed;C-C for for reactions shown; L=1.60 roof LL: Lum DOL=1.15 um DOL=1.15 Plate ;; Fully Exp.; Ce=0.9;	 load of 12.0 p overhangs nc 6) This truss has chord live loa 7) * This truss h on the bottom 3-06-00 tall b chord and an 8) One H2.5A S recommende UPLIFT at jt(s and does not 9) This truss is of International R802.10.2 an LOAD CASE(S) 	s been designed for great osf or 1.00 times flat roof I on-concurrent with other I is been designed for a 10 an onconcurrent with any as been designed for a lin in chord in all areas where by 2-00-00 wide will fit bet y other members. Simpson Strong-Tie connec d to connect truss to bea s) 7 and 5. This connection consider lateral forces. designed in accordance v Residential Code section nd referenced standard Al Standard	load of 20.0 psf on ive loads. 0 psf bottom v other live loads. ve load of 20.0psf a rectangle ween the bottom ectors ring walls due to on is for uplift only vith the 2018 s R502.11.1 and				SEA 0363	• —

- cantilever left and right exposed ; end vertical left and right exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3)
- Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.


GI

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	65 Farm at Neills Creek-Roof-Cooper 3 Elev 9 TFR GX2
24060022-A	H03	Common	3	1	I66361645 Job Reference (optional)

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Wed Jun 19 16:16:32 ID:pX6RsgnziB3dlmII0x6npazhpRh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.31	Vert(LL)	0.00	5-6	>999		MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.10	Vert(CT)	-0.01	5-6	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.05	Horz(CT)	0.00	4	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 44 lb	FT = 20%

LOWIDER		
TOP CHORD	2x4 SP N	0.2
BOT CHORD	2x4 SP N	0.2
WEBS	2x4 SP N	0.3
BRACING		
TOP CHORD		l wood sheathing directly applied or purlins, except end verticals.
BOT CHORD	Rigid ceili bracing.	ing directly applied or 10-0-0 oc
REACTIONS	(size)	4=0-3-8, 6=0-3-8
	Max Horiz	6=-122 (LC 10)
	Max Uplift	4=-28 (LC 11), 6=-28 (LC 10)
	Max Grav	4=321 (LC 21), 6=321 (LC 20)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	
TOP CHORD	1-2=-213/	/142, 2-3=-213/142, 1-6=-296/178,
	3-4=-296/	/149
BOT CHORD	5-6=-114/	(109, 4-5=-22/33
WEBS	2-5=-67/7	0, 1-5=-59/117, 3-5=-48/117
NOTES		

NOTES

Scale - 1:36 7

 Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
 7) One H2.5A Simpson Strong-Tie connectors
- recommended to connect truss to bearing walls due to UPLIFT at jt(s) 6 and 4. This connection is for uplift only and does not consider lateral forces.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- LOAD CASE(S) Standard

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	65 Farm at Neills Creek-Roof-Cooper 3 Elev 9 TFR GX2
24060022-A	J01	Monopitch	6	1	I66361646 Job Reference (optional)

6-0-0

6-0-0

12 4 Г

10

0-10-8

0-10-8

3x5 II

2

Carter Components (Sanford, NC), Sanford, NC - 27332,

3-0-0

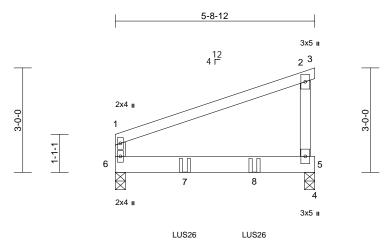
Run: 8,73 S Apr 25 2024 Print: 8,730 S Apr 25 2024 MiTek Industries, Inc. Wed Jun 19 16:16:32 ID:H_CEdq?GTjK3vX7m4jR0XNzhpRP-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

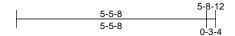
3x5 🚽

3-0-0

Edenton, NC 27932

34




1-0-0 0 7 16 \bigotimes X 5 2x4 I 3x5 II 6-0-0 0-3-4 5-8-12 0-3-4 0-3-4 5-5-8 Scale = 1:33.7 Loading Spacing 2-0-0 CSI DEFL l/defl L/d PLATES GRIP (psf) in (loc) TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.75 Vert(LL) 0.04 6-7 >999 240 MT20 244/190 BC Snow (Pf) 20.0 1 15 0.24 Vert(CT) Lumber DOL -0.06 6-7 >999 180 TCDL 10.0 Rep Stress Incr YES WB 0.00 Horz(CT) 0.00 6 n/a n/a BCLL 0.0 Code IRC2018/TPI2014 Matrix-MR BCDL 10.0 Weight: 25 lb FT = 20%LUMBER 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 * This truss has been designed for a live load of 20.0psf 6) on the bottom chord in all areas where a rectangle 2x4 SP No.3 *Except* 7-2:2x6 SP No.2 WFBS 3-06-00 tall by 2-00-00 wide will fit between the bottom BRACING chord and any other members. TOP CHORD Structural wood sheathing directly applied or One H2.5A Simpson Strong-Tie connectors 7) 6-0-0 oc purlins, except end verticals. recommended to connect truss to bearing walls due to BOT CHORD Rigid ceiling directly applied or 10-0-0 oc UPLIFT at it(s) 6 and 7. This connection is for uplift only bracing. and does not consider lateral forces. **REACTIONS** (size) 6=0-3-8, 7=0-3-8 8) This truss is designed in accordance with the 2018 Max Horiz 7=109 (LC 13) International Residential Code sections R502.11.1 and Max Uplift 6=-92 (LC 10), 7=-116 (LC 10) R802.10.2 and referenced standard ANSI/TPI 1. Max Grav 6=322 (LC 21), 7=395 (LC 21) LOAD CASE(S) Standard FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/28, 2-3=-177/79, 3-4=-8/0, 3-6=-239/168, 2-7=-362/272 BOT CHORD 6-7=-49/104, 5-6=0/0 NOTES 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 3-0-0, Exterior(2E) 3-0-0 to 6-0-0 zone; cantilever left and right exposed ; end vertical left and right exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 CHILDRAN W TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 2) SEAL Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; 036322 Cs=1.00; Ct=1.10 Unbalanced snow loads have been considered for this 3) desian. 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. G mm June 20,2024 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent bucking of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) 818 Soundside Road and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	65 Farm at Neills Creek-Roof-Cooper 3 Elev 9 TFR GX2
24060022-A	J02	Monopitch Girder	1	2	I66361647 Job Reference (optional)

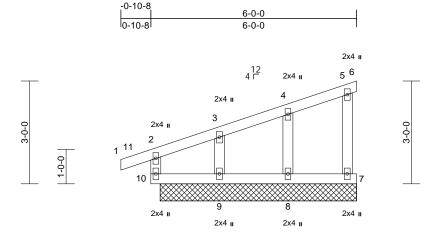
Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Wed Jun 19 16:16:32 ID:pKhjZ7PzisUOMc86V9WINKzhpQu-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

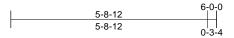
Page: 1

Scale = 1:33.1

Loading (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0* BCDL 10.0	Plate Grip DOL1.Lumber DOL1.Rep Stress IncrN	-11-4 15 15 O RC2018/TPI2014	CSI TC BC WB Matrix-MR	0.48 0.36 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.03 -0.04 0.00	(loc) 5-6 5-6 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 53 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x6 SP No.2 WEBS 2x4 SP No.3 BRACING TOP CHORD Structural wood she 5-8-12 oc purlins, e	applied or 10-0-0 oc 5=0-3-8 9) C 8), 6=-87 (LC 8) C 18), 6=607 (LC 18) pression/Maximum /0, 2-5=-225/73, 0 ther as follows: (0.131"x3") nails as 0d (0.131"x3") nails as at 0-9-0 oc. applied to all plies, ck (B) face in the LOAD noted as (F) or (B), (3-second gust) CDL=6.0psf; h=25ft; Cat. velope) exterior zone; ; end vertical left and	 Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced design. This truss ha chord live loa * This truss ha chord live loa * This truss ha on the bottor 3-06-00 tall b chord and ar One H2.5A S recommended UPLIFT at jt(and does noi This truss is International R802.10.2 at Use Simpsor Truss, Single oc max. start connect truss Fill all nail ho LOAD CASE(S) Dead + Snc Increase=1 Uniform Loa Vert: 1-2: Concentrate Vert: 7-2: 	snow loads have b s been designed f d nonconcurrent v has been designed n chord in all areas y 2-00-00 wide wi yo other members. Simpson Strong-Tii d to connect truss s) 5 and 6. This cc consider lateral for designed in accorr Residential Code nd referenced stan o Strong-Tie LUS2 e Ply Girder) or equing at 2-0-0 from t s(es) to front face of les where hanger Standard to (balanced): Lun 15	(Lum DC B; Fully been cor or a 10.0 with any I for a liv s where Il fit betw e conne to bear onnectio brces. dance w sections dard AN 6 (4-10c uivalent he left e of bottor is in cor nber Inc =-19	DL=1.15 Plate Exp.; Ce=0.9 asidered for the D psf bottom other live load e load of 20.1 a rectangle ween the botth ctors ing walls due n is for uplift is for uplift scalar, 3-10 spaced at 2-0 n dt o4-0-0 tt n chord. ttact with lum	e); ds.)psf om to only ind d)-0 ber.				SEA 0363	EER-FLUI

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)




June 20,2024

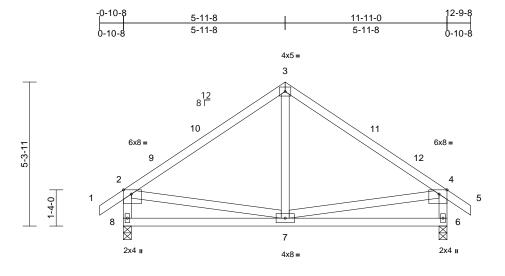
Job	Truss	Truss Type	Qty	Ply	65 Farm at Neills Creek-Roof-Cooper 3 Elev 9 TFR GX2
24060022-A	J03	Monopitch Supported Gable	1	1	I66361648 Job Reference (optional)

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Wed Jun 19 16:16:32 ID:TeQF4DYUtY?hoS3PCgkZsszhpQi-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:33.6

Loading	(psf)	Spacing	1-11-4	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.19	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.07	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.06	Horz(CT)	0.00	6	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MR		. ,						
BCDL	10.0										Weight: 28 lb	FT = 20%
LUMBER			2) Truss des	signed for wind load	ds in the p	lane of the tr	uss					
TOP CHORD	2x4 SP No.2		only. For	studs exposed to w	vind (norm	hal to the face	e),					
BOT CHORD	2x4 SP No.2			ard Industry Gable								
WEBS	2x4 SP No.3			qualified building c								
OTHERS	2x4 SP No.3			CE 7-16; Pr=20.0 p								
BRACING				.=1.15); Pf=20.0 ps								
TOP CHORD	Structural wood she	eathing directly applie); Is=1.0; Rough C	at B; Fully	/ Exp.; Ce=0.9	9;					
	6-0-0 oc purlins, ex		Cs=1.00;									
BOT CHORD	Rigid ceiling directly	y applied or 10-0-0 o		ed snow loads have	e been co	nsidered for t	his					
	bracing.		design.	h h								
REACTIONS	(size) 6=5-8-12	2, 7=5-8-12, 8=5-8-12		has been designed 0 psf or 1.00 times								
	9=5-8-12	2, 10=5-8-12		s non-concurrent w			51 011					
	Max Horiz 10=106 (LC 11)		are 2x4 MT20 unle								
	Max Uplift 6=-28 (L0	C 10), 7=-22 (LC 11)		e fully sheathed fro								
		C 10), 9=-56 (LC 14)		ainst lateral moven								
	10=-23 (I		8) Gable stu	ds spaced at 2-0-0		alagonal woo)	•					
	Max Grav 6=14 (LC		8=212 g) This trues	has been designed		0 psf bottom						
		9=197 (LC 21), 10=1		load nonconcurren			ids.					
	(LC 21)		10) * This trus	s has been design								
FORCES		npression/Maximum		tom chord in all are			-1					
	Tension			II by 2-00-00 wide			om					
TOP CHORD			chord and	any other member	ſS.							
	3-4=-51/67, 4-5=-43	3/49, 5-6=-23/4,	11) Provide m	echanical connecti	on (by oth	ers) of truss	to					1911
	5-7=-82/20		bearing pl	ate capable of with	standing 2	28 lb uplift at j	joint				WITH CA	Rollin
BOT CHORD	,	,	6.							15	R	Della-
WEBS	4-8=-174/151, 3-9=	-160/187		A Simpson Strong-					1	22	1 to	Dan
NOTES				nded to connect tru					-	C C		
	CE 7-16; Vult=130mpl			; jt(s) 10, 7, 8, and			r		1		2	K :
	3mph; TCDL=6.0psf; E			and does not cons					1		SEA	n 1 E
	Enclosed; MWFRS (e			lard bearing condit					=	:	SEF	• •
	Corner(3E) -0-10-8 to 2		/	is designed in acco					=		0363	322 : =
	one; cantilever left and			nal Residential Cod			and		-			- ; z
	ft and right exposed;C			and referenced st	andard Al	NSI/TPL1.				5	A	1 2
	WFRS for reactions		LOAD CASE(Standard 						2.	A. ENG	-cRi'N S
DOL=1.60) plate grip DOL=1.60									3	S. NGIN	EF. AN

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	65 Farm at Neills Creek-Roof-Cooper 3 Elev 9 TFR GX2
24060022-A	L01	Common Supported Gable	5	1	I66361649 Job Reference (optional)

Scale = 1:42.4

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Wed Jun 19 16:16:32 ID:U5CzCuUcXWbZOtE48eu3mpzhpis-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

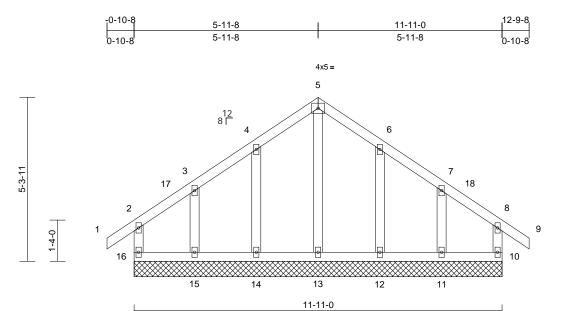
Page: 1

5-11-8	11-11-0	
5-11-8	5-11-8	7

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.91	Vert(LL)	-0.02	7-8	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.30	Vert(CT)	-0.05	7-8	>999	180		
TCDL	10.0	Rep Stress Incr	YES		WB	0.10	Horz(CT)	0.00	6	n/a	n/a		
BCLL BCDL	0.0* 10.0	Code	IRC201	8/TPI2014	Matrix-MSH							Weight: 69 lb	FT = 20%
		1	4)	Unbalanced	snow loads have	been cor	I sidered for t	thie				Troigini de lo	2070
TOP CHORD	2x4 SP No.2		4)	design.	Show loads have	been coi	ISIGETED TO	uns					
BOT CHORD	2x4 SP No.2		5)		as been designed	I for great	er of min roc	of live					
WEBS	2x4 SP No.3		,	load of 12.0	psf or 1.00 times	flat roof le	oad of 20.0 p	osf on					
BRACING				0	on-concurrent wi								
TOP CHORD	Structural wood she	athing directly applied	dor 6)		as been designed								
	6-0-0 oc purlins, ex	cept end verticals.			ad nonconcurren								
BOT CHORD	• • •	applied or 10-0-0 oc	7)		nas been designe m chord in all are			.upsi					
	bracing.				by 2-00-00 wide			tom					
	(size) 6=0-3-8,				ny other member								
	Max Horiz 8=145 (L	,	8)	One H2.5A	Simpson Strong-	Tie conne	ctors						
	Max Uplift 6=-56 (LC	C 22), 8=-56 (LC 14)			ed to connect tru								
	•	,, , , ,			(s) 8 and 6. This		n is for uplift	only					
FORCES	(lb) - Maximum Con Tension	npression/iviaximum			t consider lateral								
TOP CHORD	2-8=-566/253, 1-2=	0/34 2-3-539/246	9)		designed in acco Residential Cod			and					
	3-4=-539/246, 4-5=	, , ,			nd referenced st			anu					
BOT CHORD	7-8=-173/252, 6-7=-		10	DAD CASE(S)									
WEBS	3-7=-102/208, 4-7=	-92/249, 2-7=-88/249			Otandara								
NOTES													
1) Unbalance	d roof live loads have	been considered for											1111
thic docian													

this design.

- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 2-11-8, Exterior(2R) 2-11-8 to 8-11-8, Interior (1) 8-11-8 to 9-9-8, Exterior(2E) 9-9-8 to 12-9-8 zone; cantilever left and right exposed; end vertical left and right exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	65 Farm at Neills Creek-Roof-Cooper 3 Elev 9 TFR GX2
24060022-A	L02	Common Supported Gable	1	1	I66361650 Job Reference (optional)

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Wed Jun 19 16:16:33 ID:MsRT1GX6al6_tUXrNTz?wfzhpio-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale	h — 1	1:37.3	

										-	
Loading (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0* BCDL 10.0	Spacing1-11Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC2		CSI TC BC WB Matrix-MR	0.13 0.06 0.09	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 10	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 69 lb	GRIP 244/190 FT = 20%
BOT CHORD 6-0-0 oc purlins, exc Rigid ceiling directly a bracing. REACTIONS (size) 10=11-11-1 12=11-11-1 14=11-11-1 16=11-11-1 Max Horiz 16=-141 (L 10=-46 (LC 12=-53 (LC 15=-82 (LC Max Grav Max Grav 10=143 (LC 12=256 (LC	0, 11=11-11-0, 0, 13=11-11-0, 0, 15=11-11-0, 0 LC 12) C 14), 11=-80 (LC 15), C 15), 14=-52 (LC 14), C 14), 16=-53 (LC 10) C 25), 11=200 (LC 22), C 22), 13=161 (LC 28), C 21), 15=200 (LC 21),	 Vasd=103mp II; Exp B; End and C-C Corr 1-11-8 to 2-1 (2N) 8-11-8 tt cantilever left right exposed for reactions DOL=1.60 Truss design only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); I Cs=1.00; Ct= Unbalanced si design. This truss has load of 12.0 p 	7-16; Vult=130m h; TCDL=6.0psf closed; MWFRS her(3E) -0-10-8 t 1-8, Corner(3R) o 9-9-8, Corner(3R) o 9-9-8, Corner(5 and right exposed shown; Lumber hed for wind load ds exposed to w I Industry Gable alified building d 7-16; Pr=20.0 ps s=1.0; Rough Ca -1.10 show loads have so been designed os for 1.00 times on-concurrent wi	; BCDL=6 (envelope to 1-11-8, 2-11-8 to 35) 9-9-8 ted; end vers and for DOL=1.6(ls in the p rind (norm End Deta esigner at sf (roof Lt f (Lum DC at B; Fully e been cor I for greatt flat roof ld	i.Opsf; h=25ft; a) exterior zorn Exterior (2N) 8-11-8, Exter to 12-9-8 zon vertical left an rces & MWFR 0 plate grip lane of the tr. al to the face ils as applical s per ANSI/TF JL=1.15 Plate Exp.; Ce=0.9 ansidered for th er of min roof pad of 20.0 ps	ne ior le; d SS lss ble, PI 1. 1.15 ; ; his live	Inte	rnationa 2.10.2 a :ASE(S)	I Resid and ref) Star	dential Code sec erenced standar ndard	
12-13=-71/74, 11-12=	0/33, 2-3=-77/85, 2/234, 5-6=-92/233, 3/77, 8-9=0/33, =-71/74, 13-14=-71/74, =-71/74, 10-11=-71/74, 217/114, 3-15=-162/108, =-162/125	 All plates are Gable require Truss to be fu braced again Gable studs st This truss ha chord live loa * This truss ha on the bottom 3-06-00 tall b chord and an Provide mech 	2x4 MT20 unless so continuous bo ully sheathed fro st lateral movem spaced at 2-0-0 s been designed d nonconcurrent as been designed n chord in all are y 2-00-00 wide v y other members	es otherwi ottom chor m one fac nent (i.e. d oc. I for a 10.0 t with any ed for a liv as where will fit betw s. on (by oth	se indicated. d bearing. e or securely liagonal web) D psf bottom other live loa e load of 20.0 a rectangle veen the botto ers) of truss t	ds.)psf om o		Contraction of the second seco	È	OR FES SEA 0363	AL 822

16, 46 lb uplift at joint 10, 52 lb uplift at joint 14, 82 lb

uplift at joint 15, 53 lb uplift at joint 12 and 80 lb uplift at

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

joint 11.

818 Soundside Road Edenton, NC 27932

GILB

GIL

June 20,2024

C

Job	Truss	Truss Type	Qty	Ply	65 Farm at Neills Creek-Roof-Cooper 3 Elev 9 TFR GX2
24060022-A	M01	Common	3	1	l66361651 Job Reference (optional)

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Wed Jun 19 16:16:33 ID:83UDOfsHl8rKoauzUUuAOszHwvY-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

6-5-8 6-0-8 9-9-8 6-0-8 0-5-0 3-4-0 PLATES Spacing 2-0-0 CSI DEFL in l/defl L/d GRIP (loc) Plate Grip DOL 1.15 тс 0.72 Vert(LL) -0.03 5-6 >999 240 MT20 244/190 Lumber DOL 1.15 BC 0.26 Vert(CT) -0.06 5-6 >999 180 Rep Stress Incr WB Horz(CT) YES 0.43 0.00 5 n/a n/a Code IRC2018/TPI2014 Matrix-MSH Weight: 73 lb FT = 20% 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 6) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. Structural wood sheathing directly applied or 7) One H2.5A Simpson Strong-Tie connectors 6-0-0 oc purlins, except end verticals. recommended to connect truss to bearing walls due to Rigid ceiling directly applied or 6-0-0 oc UPLIFT at it(s) 6 and 5. This connection is for uplift only and does not consider lateral forces. 5=0-3-8, 6=0-3-8 8) This truss is designed in accordance with the 2018 Max Horiz 6=223 (LC 11) International Residential Code sections R502.11.1 and Max Uplift 5=-83 (LC 15), 6=-36 (LC 10) R802.10.2 and referenced standard ANSI/TPI 1. Max Grav 5=710 (LC 21), 6=228 (LC 20) LOAD CASE(S) Standard (lb) - Maximum Compression/Maximum 1-2=-102/164, 2-3=-57/199, 1-6=-173/100, 5-6=-198/260. 4-5=-62/90 2-5=-445/106, 1-5=-233/156, 3-5=-166/139 Unbalanced roof live loads have been considered for MILLIN ORTH Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-1-12 to 3-1-12, Exterior(2R) WITTELL TO THE TOTAL 3-1-12 to 6-7-12, Exterior(2E) 6-7-12 to 9-7-12 zone; cantilever left and right exposed ; end vertical left and SEAL right exposed:C-C for members and forces & MWFRS 036322 for reactions shown; Lumber DOL=1.60 plate grip TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9;

Cs=1.00; Ct=1.10 Unbalanced snow loads have been considered for this 4) design.

818 Soundside Road

Edenton, NC 27932

G

mm

June 20,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent bucking of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Scale = 1:49.9 Plate Offsets (X, Y): [1:Edge,0-1-12]

(psf)

20.0

20.0

10.0

0.0

10.0

2x4 SP No 2

2x4 SP No 2

2x4 SP No.3

bracing.

Tension

3-4=-29/39

Loading

TCLL (roof)

Snow (Pf)

LUMBER

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

FORCES

TOP CHORD

BOT CHORD

this design.

DOL=1.60

WEBS

NOTES 1)

2)

3)

REACTIONS (size)

TCDL

BCLL

BCDL

WEBS

BRACING

	6-0-8 6-0-8	<u>9-9-8</u> 3-9-0	
		4x5 = 2	
7-4-13 3-10-9	$7^{\frac{12}{7}}$		^{3x5}
	2x4 II	5⊠ 3x8=	2x4 II

Job	Truss	Truss Type	Qty	Ply	65 Farm at Neills Creek-Roof-Cooper 3 Elev 9 TFR GX2
24060022-A	PB1	Piggyback	10	1	I66361652 Job Reference (optional)

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Wed Jun 19 16:16:33

ID:wqE9XHIrfY1kw2gm2JUHo?zHvhW-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f -0-9-12 19-10-4 9-6-4 19-0-9 0-9-12 0-9-12 9-6-4 9-6-4 4x5 = 5 12 7 Г 25 26 4 6 24 27 5-10-15 23 28 3 7 8 2 0-4-5 9 15 14 29 13 12 30 11 10 3x5 = 3x5 = 3x5 = 19-0-9

Scale = 1:44.5

6-0-9

Scale = 1.44.5												-	
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MSH	0.30 0.17 0.12	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 19	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 83 lb	GRIP 244/190 FT = 20%
	6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 2=19-0-9, 11=19-0-5 15=19-0-5 Max Horiz 2=-138 (L Max Uplift 2=-37 (LC 10=-77 (L 14=-116 (16=-37 (L Max Grav 2=88 (LC 10=309 (L 13=374 (L	C 10), 8=-9 (LC 11), C 15), 11=-115 (LC 12), LC 14), 15=-80 (LC 14), C 10), 19=-9 (LC 11) 26), 8=74 (LC 22), LC 26), 11=479 (LC 6), LC 25), 14=479 (LC 5), LC 25), 16=88 (LC 26)	, 3) -9 2) 5), 4) 4), 5)	Vasd=103mj II; Exp B; En and C-C Ext to 7-4-7, Ext to 17-5-3, El left and right exposed;C-C reactions shi DOL=1.60 Truss desig only. For stt see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct Unbalanced design. This truss ha load of 12.0	snow loads have b is been designed f psf or 1.00 times fl	BCDL=6 envelope 3-3-11, 13-4-7, I o 20-5-2 trical left forces & =1.60 pl in the p nd (norm nd Deta signer a: f (roof LL (Lum DC B; Fully been cor or great lat roof lo	6.0psf; h=25ft; a) exterior zon Interior (1) 3- interior (1) 3- interior (1) 3- and right & MWFRS for ate grip lane of the tru al to the face) ils as applicat s per ANSI/TF L=1.15 Plate Exp.; Ce=0.9 insidered for th er of min roof pad of 20.0 ps	Cat. e 3-11 4-7 ver ss , ver .15 ; is	Deta	ail for Co sult qua	onnect lified b	ion to base truss uilding designer.	Truss Connection as applicable, or
FORCES	(lb) - Maximum Com Tension	,	7) 8)	All plates are	on-concurrent with 2x4 MT20 unless es continuous bott	otherwi	se indicated.					WHICH CA	Poly
TOP CHORD		147/111, 6-7=-90/52,	9)	Gable studs) This truss ha	spaced at 4-0-0 or is been designed f	c. for a 10.0	0 psf bottom				and a	OR FESE	Br. N.
BOT CHORD WEBS	11-13=-39/90, 10-11	6 39/90, 13-14=-39/90 =-39/90, 8-10=-39/90 395/165, 3-15=-232/1	· 11) * This truss ł on the bottor	ad nonconcurrent v nas been designed n chord in all areas by 2-00-00 wide wi	l for a liv s where	e load of 20.0 a rectangle	psf		Contraction of the second seco		SEA	
NOTES	6-11=-395/164, 7-10 ed roof live loads have)=-232/129		chord and ar) One H2.5A s recommende	by 2-00-00 wide wi ny other members, Simpson Strong-Ti- ed to connect truss (s) 2, 14, 15, 11, 10	with BC e conne to bear	CDL = 10.0psf. ctors ing walls due	to		CONTRACTOR OF		0363	• —

is for uplift only and does not consider lateral forces. 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and

R802.10.2 and referenced standard ANSI/TPI 1.

this design.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

G 1000 minut

June 20,2024

Job	Truss	Truss Type	Qty	Ply	65 Farm at Neills Creek-Roof-Cooper 3 Elev 9 TFR GX2
24060022-A	PB2	Piggyback	1	1	I66361653 Job Reference (optional)

TOP CHORD

BOT CHORD

FORCES

TOP CHORD

BOT CHORD

REACTIONS (size)

Structural wood sheathing directly applied or

2=19-0-9, 12=19-0-9, 14=19-0-9,

15=19-0-9, 16=19-0-9, 18=19-0-9,

19=19-0-9, 20=19-0-9, 21=19-0-9,

22=19-0-9, 23=19-0-9, 24=19-0-9,

15=-49 (LC 15), 16=-50 (LC 15),

18=-50 (LC 15), 20=-51 (LC 14),

21=-49 (LC 14), 22=-49 (LC 14),

23=-48 (LC 14), 24=-24 (LC 10)

14=151 (LC 26), 15=164 (LC 26),

16=219 (LC 22), 18=245 (LC 22),

19=149 (LC 28), 20=245 (LC 21),

21=219 (LC 21), 22=164 (LC 25),

23=152 (LC 25), 24=101 (LC 26),

Rigid ceiling directly applied or 10-0-0 oc

Max Uplift 2=-24 (LC 10), 14=-47 (LC 15),

Max Grav 2=101 (LC 26), 12=91 (LC 22),

27=91 (LC 22)

1-2=0/16, 2-3=-114/100, 3-4=-96/86,

4-5=-87/74, 5-6=-76/98, 6-7=-89/148,

7-8=-89/148, 8-9=-67/97, 9-10=-49/45

10-11=-57/34, 11-12=-79/48, 12-13=0/16

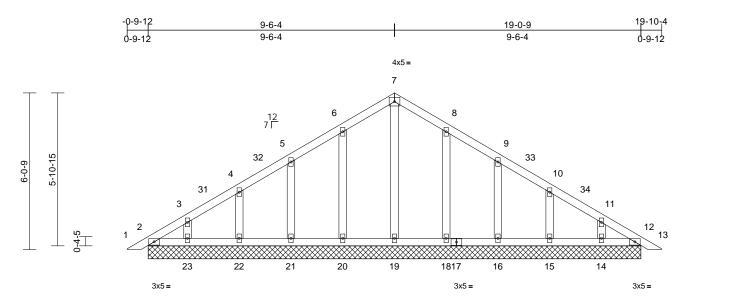
2-23=-42/97, 22-23=-42/97, 21-22=-42/97,

20-21=-42/97, 19-20=-42/97, 18-19=-42/97,

16-18=-42/97, 15-16=-42/97, 14-15=-42/97,

(Ib) - Maximum Compression/Maximum

27=19-0-9 Max Horiz 2=-133 (LC 12), 24=-133 (LC 12)


6-0-0 oc purlins.

bracing.

Tension

12-14=-42/97

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Wed Jun 19 16:16:33 ID:OvaXnpHesqpQkCbmd7MgygzHvb5-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

this design.

DOI = 1.60

desian.

2)

3)

5)

6)

8)

9)

11)

Scale = 1:44.5												
Loading	(psf)	Spacing	1-11-4	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.07	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.03	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.08	Horz(CT)	0.00	12	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 101 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2		WEBS	7-19=-110/5, 6-20 4-22=-139/83, 3-2 9-16=-180/80, 10	23=-122/8	31, 8-18=-206	/79,	reco	ommenc	led to		nnectors bearing walls due to 3, 16, 15, and 14. This
OTHERS BRACING	2x4 SP No.3		NOTES 1) Unbalance	NOTES 1) Unbalanced roof live loads have been considered for				forc	es.		uplift only and doe	es not consider lateral

Wind: ASCE 7-16; Vult=130mph (3-second gust)

Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat.

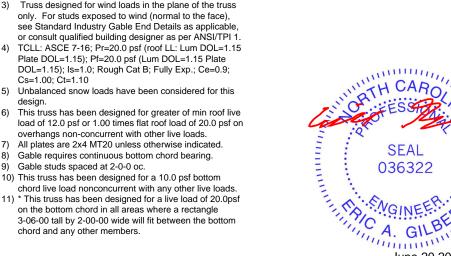
3-3-11 to 7-4-7, Corner(3R) 7-4-7 to 13-4-7, Exterior(2N)

II; Exp B; Enclosed; MWFRS (envelope) exterior zone

and C-C Corner(3E) 0-3-11 to 3-3-11, Exterior(2N)

13-4-7 to 17-5-3, Corner(3E) 17-5-3 to 20-5-3 zone;

for reactions shown; Lumber DOL=1.60 plate grip


cantilever left and right exposed : end vertical left and

right exposed;C-C for members and forces & MWFRS

13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Page: 1

- 14) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.
- LOAD CASE(S) Standard

June 20,2024

VIIIIIIIIIIII

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	65 Farm at Neills Creek-Roof-Cooper 3 Elev 9 TFR GX2
24060022-A	PB3	Piggyback	3	1	I66361654 Job Reference (optional)

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Wed Jun 19 16:16:33 ID:gKt_2hRK?ORI5CjExemzTUzHww5-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

-0-9-12 5-9-4 0-9-12 5-9-4 2x4 u 4 12 7 Г 2x4 II 3-10-5 3-8-11 3 2 -4-5 5 \otimes 6 2x4 = 2x4 🛛 2x4 🛛 5-9-4

Scale = 1:31.5

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-MP	0.32 0.12 0.08	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 26 lb	GRIP 244/190 FT = 20%
FORCES TOP CHORD BOT CHORD WEBS NOTES	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 2=5-9-4, 4 Max Horiz 2=124 (LC 6=-99 (LC Max Grav 2=65 (LC 6=460 (LC (lb) - Maximum Con Tension 1-2=0/16, 2-3=-108/ 4-5=-153/41	v applied or 10-0-0 od 5=5-9-4, 6=5-9-4, 7= C 13), 7=124 (LC 13) C 10), 5=-22 (LC 14), C 14), 7=-21 (LC 10) 26), 5=186 (LC 21), C 21), 7=65 (LC 26) npression/Maximum (162, 3-4=-114/89, 2/62	ed or 7 2 5-9-4) 1	 design. This truss ha load of 12.0 overhangs n Gable requir Gable studs This truss ha chord live loa * This truss ha chord live loa * This truss fa on the bottor 3-06-00 tall h chord and ar One H2.5A S recommende UPLIFT at jtu only and doe This truss is International R802.10.2 a See Standar Detail for Co 	snow loads have I as been designed f psf or 1.00 times f on-concurrent with es continuous bott spaced at 4-0-0 on as been designed f ad nonconcurrent in as been designed in chord in all area by 2-00-00 wide wi hy other members. Simpson Strong-Ti ed to connect truss (s) 5, 2, and 6. Thi as not consider late designed in accor Residential Code ind referenced star d Industry Piggyba nnection to base t fied building desig Standard	for great lat roof li- n other li- tom chor c. for a 10. with any d for a liv s where ill fit betv ie conne s to bear s connec eral force dance w sections ndard AN ack Truss as a	er of min roof oad of 20.0 p: ve loads. d bearing. 0 psf bottom other live loa e load of 20.0 a rectangle veen the botto ctors ing walls due ction is for up es. ith the 2018 s R502.11.1 a vS/JTPI 1. s Connection	live sf on ds. Dpsf om to lift nd				WITH CA	11111 NBO.'''
Vasd=103	mph; TCDL=6.0psf; B Enclosed: MWFRS (er	CDL=6.0psf; h=25ft;								/	- Si	ORIEESS	ichty -

Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; C
 II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

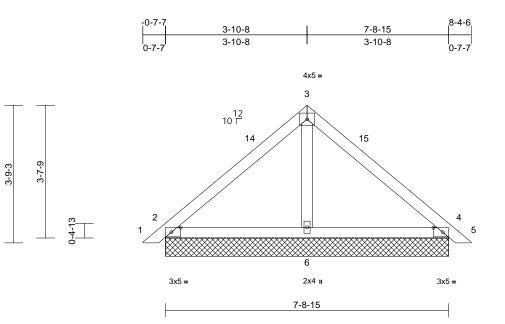
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

A. GILD

June 20,2024

SEAL


036322

annun an

Job	Truss	Truss Type	Qty	Ply	65 Farm at Neills Creek-Roof-Cooper 3 Elev 9 TFR GX2
24060022-A	PB5	Piggyback	10	1	l66361655 Job Reference (optional)

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Wed Jun 19 16:16:33 ID:__1c4MYtF38IP9oyf2SACtzhpgB-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

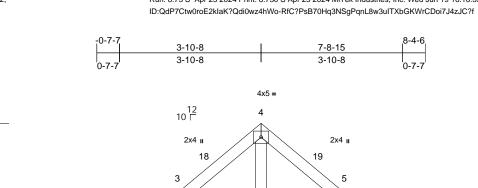
Page: 1

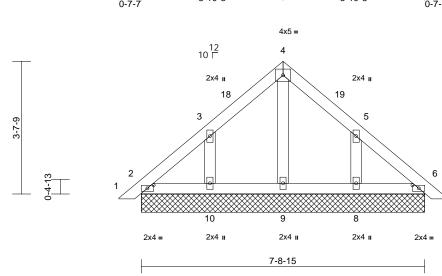
Scale = 1:31.5

Plate Offsets (X, Y): [2:0-3-1.0-1-8], [4:0-3-1.0-1-8]

		, [4:0-3-1,0-1-8]	-									1	
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MP	0.33 0.33 0.02	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 2	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 33 lb	GRIP 244/190 FT = 20%
this desig 2) Wind: AS Vasd=10 II; Exp B and C-C 3-2-14 to cantileve right exp	 2x4 SP No.2 2x4 SP No.3 Structural wood shi 6-0-0 oc purlins. Rigid ceiling directi bracing. (size) 2=7-8-15 7=7-8-15 Max Horiz 2=-84 (L) Max Uplift 2=-40 (L) 7=-40 (L) Max Grav 2=310 (L 6=242 (L 11=310 ((lb) - Maximum Cor Tension 1-2=0/15, 2-3=-232 4-5=0/15 2-6=-40/99, 4-6=-3i 3-6=-81/1 ced roof live loads have gn. SCE 7-16; Vult=130mpl (3mph; TCDL=6.0psf; E (Enclosed; MWFRS (e Exterior(2E) 0-2-14 to 5-9-8, Exterior(2E) 5-5 or left and right exposed cosed; C-C for members ons shown; Lumber D0 	C 14), 4=-50 (LC 15), C 14), 11=-50 (LC 15), C 21), 4=310 (LC 22) C 21), 7=310 (LC 21) LC 22) npression/Maximum /122, 3-4=-232/122, 0/99 e been considered for h (3-second gust) 3CDL=6.0psf; h=25ft; nvelope) exterior zond 3-2-14, Exterior(2R) 9-8 to 8-9-8 zone; d; end vertical left and and overtical left and and overtical keft and and forces & MWFRS	d or 5) 6) 7) 8) 9) 10, 11 12 Cat. 13 9 LC	only. For sti see Standarr or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced design. This truss ha load of 12.0 overhangs n Gable requir Gable studs This truss ha chord live loa) * This truss ha chord live loa) * This truss ha chord live loa) * One H2.5A S recommende UPLIFT at jt(and does no) This truss is International R802.10.2 ai) See Standar Detail for Co	snow loads have b s been designed f psf or 1.00 times fl on-concurrent with es continuous bott spaced at 4-0-0 oc is been designed f ad nonconcurrent w has been designed in chord in all areas by 2-00-00 wide wi y other members. Simpson Strong-Tie d to connect truss s) 2 and 4. This co t consider lateral for designed in accorror Residential Code ind referenced stand d Industry Piggyba nnection to base tt fied building design	d (norm nd Deta signer as (roof LL Lum DC B; Fully been cor or great at roof k other li oom chor 5. or a 10.0 with any for a liv s where ll fit betw e conner to bear onnectio orces. dance w sections dard AN ck Trus uss as a	al to the face ils as applical is per ANSI/TF iL=1.15 Plate Exp.; Ce=0.9 asidered for the er of min roof bad of 20.0 p: re loads. d bearing. D psf bottom other live loa e load of 20.0 psf bottom other live load e load of 20.0 psf bottom other live load e load of 20.0 psf bottom other live load e load of 20.0 psf bottom other load e load of 20.0 psf bottom other load e load e load of 20.0 psf bottom other load e lo), ble, Pl 1. 1.15 9); live sf on ds. Dpsf com to ponly			A CONTRACT OF A CONTRACT.	SEA 0363	EER R. LUU

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Job	Truss	Truss Type	Qty	Ply	65 Farm at Neills Creek-Roof-Cooper 3 Elev 9 TFR GX2
24060022-A	PB08A	Piggyback	1	1	I66361656 Job Reference (optional)


3-9-3

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Wed Jun 19 16:16:33

Page: 1

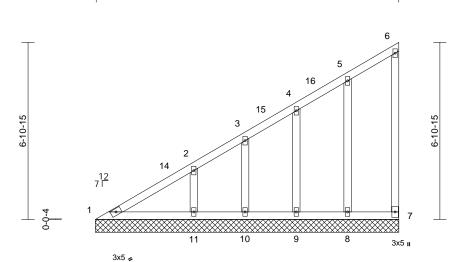
7

Scale = 1:31.5

Plate Offsets	(X, Y): [2:0-2-1,0-1-0]	, [6:0-2-1,0-1-0]										-	
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MP	0.08 0.04 0.05	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 6	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0											Weight: 38 lb	FT = 20%
LUMBER TOP CHORE BOT CHORE OTHERS BRACING TOP CHORE BOT CHORE REACTIONS	 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 cc purlins. Rigid ceiling directly bracing. (size) 2=7-8-15 9=7-8-15 15=7-8-1 Max Horiz 2=-81 (LC Max Uplift 2=-7 (LC 10=-93 (L Max Grav 2=127 (L 8=278 (L) 	C 12), 11=-81 (LC 12 10), 8=-93 (LC 15), _C 14), 11=-7 (LC 10 C 21), 6=127 (LC 22 C 22), 9=105 (LC 28 LC 21), 11=127 (LC	c 3) ;, 3) :15, 4)))), 5) 21), 5)	Vasd=103m II; Exp B; En and C-C Ext 3-2-14 to 5-5 cantilever lef right expose for reactions DOL=1.60 Truss desig only. For stu see Standar or consult qu TCLL: ASCE Plate DOL=2 DOL=1.15); Cs=1.00; Ct: Unbalanced design.	snow loads have	BCDL=6 (envelopp o 3-2-14, 5-9-8 to 8 ed ; end v rs and fo DOL=1.6(s in the p ind (norm End Deta sesigner a: sf (roof LL (Lum DC t B; Fully been cor	.0psf; h=25ft) exterior zoo Exterior(2R) 9-8 zone; vertical left ar ces & MWFF 0 plate grip lane of the tru al to the face ils as applicas s per ANSI/TI :: Lum DOL= DL=1.15 Plate Exp.; Ce=0.9 sidered for th	ne Nd RS N, bble, PI 1. 1.15 9; his	Deta	ail for C sult qua	onnect	ion to base trus uilding designer	Truss Connection s as applicable, or
ORCES	(lb) - Maximum Con Tension	,	6)	load of 12.0	as been designed psf or 1.00 times on-concurrent wit	flat roof l	ad of 20.0 p						
TOP CHORE	D 1-2=0/15, 2-3=-66/5 4-5=-103/90, 5-6=-5		7)	Gable requir	es continuous bo	ttom chor						WH C	APOUL
BOT CHORE WEBS	2-10=-26/80, 9-10= 6-8=-26/80	,	8) 9) 7 10	This truss ha	spaced at 2-0-0 o as been designed ad nonconcurrent nas been designe	for a 10. with any	other live loa				AN AN	ORTEES	AN A
NOTES 1) Unbalan this desig	ced roof live loads have gn.	been considered fo	11	3-06-00 tall I chord and ar) One H2.5A S recommende UPLIFT at jt only and doe) This truss is International	n chord in all area by 2-00-00 wide w ny other members simpson Strong-T ed to connect trus (s) 2, 10, and 8. T s not consider lat designed in acco Residential Code nd referenced sta	vill fit betw s. ie conne s to bear his conne teral force rdance w e sections	veen the bott ctors ing walls due ection is for u es. ith the 2018 is R502.11.1 a	e to Iplift				SEA 0363	AL 322

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

June 20,2024


Job	Truss	Truss Type	Qty	Ply	65 Farm at Neills Creek-Roof-Cooper 3 Elev 9 TFR GX2
24060022-A	V1	Valley	1	1	I66361657 Job Reference (optional)

11-9-11

Carter Components (Sanford, NC), Sanford, NC - 27332,

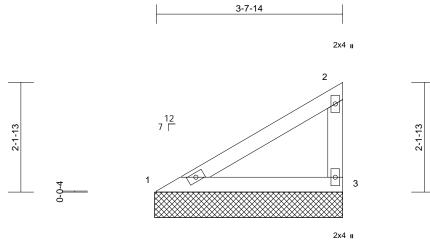
Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Wed Jun 19 16:16:33 ID:obl8CR79AVIhJxhIYr2zsHzhpM4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

11-9-11

Scale = 1:44.9

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2018/TPI2014	CSI TC 0.55 BC 0.16 WB 0.12 Matrix-MSH 0.12	Vert(TL)	in n/a n/a 0.00	(loc) - - 7	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 67 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 1=11-10-7 9=11-10-7 Max Horiz 1=229 (LC Max Uplift 1=-2 (LC (LC 14), S 14), 11=-7 Max Grav 1=153 (LC 8=239 (LC	cept end verticals. • applied or 10-0-0 oc 2, 7=11-10-2, 8=11-1 2, 10=11-10-2, 11=1 C 11) 10), 7=-32 (LC 11), 8 3=-50 (LC 14), 10=-4 73 (LC 14)	only. For st see Standar or consult q 3) TCLL: ASCf Plate DOL= DOL=1.15); Cs=1.00; CC 4) Unbalanced design. 10-2, 6) Gable requi 1-10-2 7) Gable studs 8=-52 chord live lo 9) * This truss h chord live lo 9), 3-06-00 tall chord and a	ned for wind loads in the uds exposed to wind (norr d Industry Gable End Det Jalified building designer i E 7-16; Pr=20.0 psf (roof I 1.15); Pf=20.0 psf (Lum D Is=1.0; Rough Cat B; Full =1.10 snow loads have been co e 2x4 MT20 unless otherv res continuous bottom cho spaced at 2-0-0 oc. as been designed for a 10 ad nonconcurrent with an has been designed for a 1 m chord in all areas wher by 2-00-00 wide will fit be ny other members.	nal to the face alias as applicate as per ANSI/T L: Lum DOL= OL=1.15 Plate y Exp.; Ce=0. Insidered for t vise indicated. rd bearing. 0 psf bottom y other live loa ve load of 20. e a rectangle ween the bott	e), able, PI 1. :1.15 e 9; his ads. Opsf				-	
FORCES TOP CHORD	(lb) - Maximum Com Tension 1-2=-247/293, 2-3=- 4-5=-125/182, 5-6=-	· 153/231, 3-4=-132/2	7, 2 lb uplift 210, joint 9, 40 lb	e capable of withstanding at joint 1, 52 lb uplift at joi uplift at joint 10 and 73 lb	nt 8, 50 lb upl uplift at joint	ift at 11.					111.
BOT CHORD WEBS		l=-81/141, 9-10=-81/ 1/141	(141, surface with 12) This truss is	te or shim required to pro- truss chord at joint(s) 1. designed in accordance	vith the 2018	0			-	"TH CA	ROUL
WEBS	2-11=-229/157	92/125, 5-10=-112/6	^{12/82,} International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.								Tan
NOTES			LOAD CASE(S)						U		a l
Vasd=103 II; Exp B; and C-C C 8-8-6, Cor and right e C for men	CE 7-16; Vult=130mph mph; TCDL=6.0psf; B Enclosed; MWFRS (er corner(3E) 0-0-0 to 3-C rner(3E) 8-8-6 to 11-8- exposed; end vertical nbers and forces & MW imber DOL=1.60 plate	CDL=6.0psf; h=25ft; nvelope) exterior zon 0-0, Exterior(2N) 3-0- 6 zone; cantilever lef left and right expose VFRS for reactions	Cat. ne -0 to ft						A A A A A A A A A A A A A A A A A A A	SEA 0363	• –


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

G minin June 20,2024

Job	Truss	Truss Type	Qty	Ply	65 Farm at Neills Creek-Roof-Cooper 3 Elev 9 TFR GX2
24060022-A	V6	Valley	1	1	I66361658 Job Reference (optional)

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Wed Jun 19 16:16:34 ID:OH8R8DIxto2i?5m_NnIGQEzhpLs-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

2x4 🍃

3-7-14

Scale =	- 1.22 6	

Londing (not)	•										
TCLL (roof) 20.0 F Snow (Pf) 20.0 L TCDL 10.0 F	Plate Grip DOL 1.1 Lumber DOL 1.1 Rep Stress Incr YE	5	CSI TC BC WB Matrix-MP	0.22 0.26 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 13 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 BRACING TOP CHORD Structural wood sheatt 3-7-14 oc purlins, exc BOT CHORD Rigid ceiling directly ap bracing. REACTIONS (size) 1=3-8-5, 3=3 Max Horiz 1=66 (LC 11 Max Uplift 1=-13 (LC 1: Max Grav 1=199 (LC 2 FORCES (lb) - Maximum Compr Tension TOP CHORD 1-2=-299/69, 2-3=-131 BOT CHORD 1-3=-63/251 NOTES 1) Wind: ASCE 7-16; Vult=130mph (3 Vasd=103mph; TCDL=6.0psf; BCC II; Exp B; Enclosed; MWFRS (enve and C-C Exterior(2E) zone; cantiler exposed ; end vertical left and right members and forces & MWFRS (enve and C-C Exterior(2E) zone; cantiler exposed ; end vertical left and right members and forces & MWFRS (enve and C-C Exterior(2E) zone; contiler exposed ; end vertical left and right members and forces & MWFRS (enve and C-C Exterior(2E) zone; contiler exposed ; end vertical left and right members and forces & MWFRS (enve and C-C Exterior(2E) zone; contiler exposed ; end vertical left and right members and forces & MWFRS (enve and C-C Exterior(2E) zone; contiler exposed; end vertical left and right members and forces & MWFRS (enve and C-C Exterior(2E) zone; contiler (Lumber DOL=1.60 plate grip DOL= 2) Truss designed for wind loads in tf only. For studs exposed to wind (n see Standard Industry Gable End D or consult qualified building design 3) TCLL: ASCE 7-16; Pr=20.0 psf (Cur DOL=1.15); Is=1.0; Rough Cat B; F Cs=1.00; Ct=1.10 4) Unbalanced snow loads have beer design. 5) Gable requires continuous bottom 4 6) Gable studs spaced at 4-0-0 oc.	eept end verticals. pplied or 10-0-0 oc 3-8-5 1) (4), 3=-32 (LC 14) 20), 3=199 (LC 20) ression/Maximum 1/47 3-second gust) DL=6.0psf; h=25ft; Cat. elope) exterior zone wer left and right it exposed;C-C for or reactions shown; =1.60 the plane of the truss normal to the face), Details as applicable, ner as per ANSI/TPI 1. of LL: Lum DOL=1.15 n DOL=1.15 Plate Fully Exp.; Ce=0.9; in considered for this	 chord live loa * This truss h on the botton 3-06-00 tall b chord and ar 9) Provide mech bearing plate 3 and 13 lb u 10) Beveled plate surface with 11) This truss is International 	s been designed fo d nonconcurrent w as been designed n chord in all areas y 2-00-00 wide wil y other members. nanical connection capable of withsta plift at joint 1. e or shim required russ chord at joint designed in accord Residential Code s nd referenced stan Standard	vith any for a liv s where I fit betw (by oth anding 3 to provi (s) 1. lance w sections	other live load e load of 20.0 a rectangle veen the botto ers) of truss to 2 lb uplift at jo de full bearing ith the 2018 R502.11.1 at	psf om Dint		North Marine		SEA 0363	22 EER. A.

nst.org) B18 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	65 Farm at Neills Creek-Roof-Cooper 3 Elev 9 TFR GX2
24060022-A	V5	Valley	1	1	I66361659 Job Reference (optional)

2x4 u

6-2-3

Carter Components (Sanford, NC), Sanford, NC - 27332

Scale = 1:28.5 Loading

TCLL (roof)

Snow (Pf)

LUMBER

TOP CHORD

BOT CHORD

TCDL

BCLL

BCDL

WFBS

OTHERS

BRACING

TOP CHORD

BOT CHORD

FORCES

TOP CHORD

BOT CHORD

REACTIONS (size)

Run: 8,73 S Apr 25 2024 Print: 8,730 S Apr 25 2024 MiTek Industries, Inc. Wed Jun 19 16:16:34 ID:VWvwIsFRpZYGWTSD8xEKGOzhpLw-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2x4 I

3-7-9

L/d

999

999

n/a

PLATES

Weight: 25 lb

MT20

GRIP

244/190

FT = 20%

3

Page: 1

3-7-9 2 12 7 Г 4 5 2x4 II 2x4 II 2x4 6-2-3 Spacing 2-0-0 CSI DEFL l/defl (psf) in (loc) Plate Grip DOL 20.0 1.15 TC 0.31 Vert(LL) n/a n/a BC 20.0 Lumber DOL 1 15 0.12 Vert(TL) n/a n/a 10.0 Rep Stress Incr YES WB 0.08 Horiz(TL) 0.00 4 n/a 0.0 Code IRC2018/TPI2014 Matrix-MP 10.0 Unbalanced snow loads have been considered for this 4) design. 2x4 SP No.2 2x4 SP No.2 Gable requires continuous bottom chord bearing. 5) 2x4 SP No.3

- 6) Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom 7) chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 8)
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 9) bearing plate capable of withstanding 27 lb uplift at joint 4, 10 lb uplift at joint 1 and 90 lb uplift at joint 5.
- International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard
- WEBS 2-5=-412/207 NOTES 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone

1-5=-46/65, 4-5=-41/61

2x4 SP No.3

bracing.

Max Horiz

Max Uplift

Max Grav

Tension

Structural wood sheathing directly applied or

1=6-2-3, 4=6-2-3, 5=6-2-3

1=-10 (LC 10), 4=-27 (LC 14),

1=59 (LC 30), 4=186 (LC 20),

6-0-0 oc purlins, except end verticals.

1=119 (LC 11)

5=-90 (LC 14)

5=464 (LC 20)

(lb) - Maximum Compression/Maximum

1-2=-113/158, 2-3=-114/87, 3-4=-153/45

Rigid ceiling directly applied or 10-0-0 oc

- and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss 2)
- only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15
- 3) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Provide mechanical connection (by others) of truss to

- 10) This truss is designed in accordance with the 2018

Job	Truss	Truss Type	Qty	Ply	65 Farm at Neills Creek-Roof-Cooper 3 Elev 9 TFR GX2
24060022-A	V4	Valley	1	1	I66361660 Job Reference (optional)

2x4 🛛

2

P

12 7 □

1

8

6-6-2

Carter Components (Sanford, NC), Sanford, NC - 27332,

3-9-13

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Wed Jun 19 16:16:34 ID:Z7nAtADAHyIYGAIq0WBsBzzhpLy-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2x4 II

3 9

ø

3-9-13

PLATES

GRIP

L/d

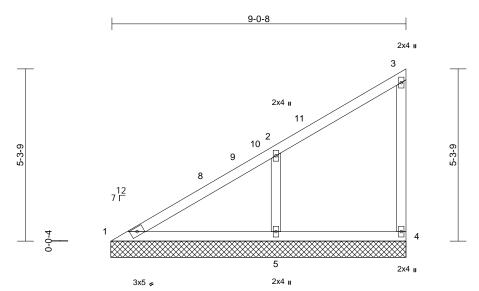
Page: 1

0 0 € 4 0-0-4 5 2x4 II 2x4 🦸 2x4 🛛 6-6-2 (psf) Spacing 2-0-0 CSI DEFL in (loc) l/defl

Scale = 1:29.3

Loading

TCLL (roof) Snow (Pf) TCDL	20.0 20.0 10.0	Lumber DOL	1.15 1.15 YES	TC BC WB	0.31 0.12 0.08	Vert(LL) Vert(TL) Horiz(TL)	n/a n/a 0.00	- - 4	n/a n/a n/a	999 999 n/a	MT20	244/190	
BCLL BCDL	0.0* 10.0		IRC2018/TPI2014	Matrix-MP							Weight: 26 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 1=6-6-2, 4 Max Horiz 1=125 (LC Max Uplift 1=-5 (LC (LC 14) Max Grav 1=75 (LC 5=468 (LC	applied or 10-0-0 oc 4=6-6-2, 5=6-6-2 C 11) 10), 4=-22 (LC 11), 5= 25), 4=186 (LC 20), C 20)	design. 5) Gable requi 6) Gable studs 7) This truss h chord live lo 3) * This truss on the botto 3-06-00 tall chord and a 9) Provide met bearing plat 22 lb uplift a 10) This truss is International	ad nonconcurrent has been design m chord in all ar by 2-00-00 wide ny other member chanical connect e capable of with at joint 4 and 93 designed in accu I Residential Cor and referenced s	ottom chor oc. d for a 10. nt with any ed for a liv eas where will fit betv rs. ion (by oth standing f b uplift at j ordance w de sections	d bearing. 0 psf bottom other live loa re load of 20.0 a rectangle veen the botto ers) of truss t 5 lb uplift at jo point 5. tith the 2018 s R502.11.1 a	ids. Dpsf om iot 1,						
TOP CHORD		114/90, 3-4=-154/40											
BOT CHORD WEBS	1-5=-44/93, 4-5=-44 2-5=-401/195	/64											
Vasd=103 II; Exp B; and C-C I exposed ; members Lumber D 2) Truss de only. For see Stand or consult 3) TCLL: AS Plate DOI	CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; Bi Enclosed; MWFRS (er Exterior(2E) zone; cant ; end vertical left and rig and forces & MWFRS JOL=1.60 plate grip DC signed for wind loads ir studs exposed to wind bard Industry Gable En t qualified building desi GE 7-16; Pr=20.0 psf (L L=1.15); Pf=20.0 psf (L 5); Is=1.0; Rough Cat E Ct=1.10	CDL=6.0psf; h=25ft; C ivelope) exterior zone ilever left and right ght exposed;C-C for for reactions shown; IL=1.60 In the plane of the truss (normal to the face), d Details as applicable gner as per ANSI/TPI - roof LL: Lum DOL=1.1 um DOL=1.15 Plate	, , 1.						Manna and and and and and and and and and		SEA O363	EER A	Mannunnin



June 20,2024

Job		Truss	Truss Type	Qty	Ply	65 Farm at Neills Creek-Roof-Cooper 3 Elev 9 TFR GX2
240600)22-A	V3	Valley	1	1	I66361661 Job Reference (optional)

Run: 8,73 S Apr 25 2024 Print: 8,730 S Apr 25 2024 MiTek Industries, Inc. Wed Jun 19 16:16:34 ID:dlfQSUCwlL2q1s9Sv59O5YzhpM_-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	тс	0.38	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.25	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.10	Horiz(TL)	0.00	4	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 39 lb	FT = 20%

9-0-8

LUMBER TOP CHORD BOT CHORD WEBS OTHERS		0.2 0.3
BRACING		
TOP CHORD		wood sheathing directly applied or purlins, except end verticals.
BOT CHORD	Rigid ceili bracing.	ng directly applied or 10-0-0 oc
REACTIONS	(size)	1=9-0-15, 4=9-0-15, 5=9-0-15
REACTIONS	()	1=9-0-15, 4=9-0-15, 5=9-0-15 1=178 (LC 11)
REACTIONS	Max Horiz	, ,
REACTIONS	Max Horiz Max Uplift	1=178 (LC 11)
REACTIONS	Max Horiz Max Uplift Max Grav	1=178 (LC 11) 4=-28 (LC 11), 5=-113 (LC 14) 1=171 (LC 25), 4=169 (LC 20),
	Max Horiz Max Uplift Max Grav	1=178 (LC 11) 4=-28 (LC 11), 5=-113 (LC 14) 1=171 (LC 25), 4=169 (LC 20), 5=573 (LC 20)
	Max Horiz Max Uplift Max Grav (lb) - Max Tension	1=178 (LC 11) 4=-28 (LC 11), 5=-113 (LC 14) 1=171 (LC 25), 4=169 (LC 20), 5=573 (LC 20)
FORCES	Max Horiz Max Uplift Max Grav (Ib) - Max Tension 1-2=-278/	1=178 (LC 11) 4=-28 (LC 11), 5=-113 (LC 14) 1=171 (LC 25), 4=169 (LC 20), 5=573 (LC 20) imum Compression/Maximum

NOTES

Scale

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior (1) 3-0-0 to 4-8-4, Exterior(2R) 4-8-4 to 8-11-3 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

- 4) Unbalanced snow loads have been considered for this design.
- Gable requires continuous bottom chord bearing. 5)
- 6) Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom 7)
- chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 8) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 28 lb uplift at joint 4 and 113 lb uplift at joint 5.
- 10) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 1.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design and the second way the approximation of design and the second and and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	65 Farm at Neills Creek-Roof-Cooper 3 Elev 9 TFR GX2
24060022-A	V2	Valley	1	1	I66361662 Job Reference (optional)

9

8

12 7 Г

9-4-7

2x4 II 11 2 10

Carter Components (Sanford, NC), Sanford, NC - 27332

5-5-13

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Wed Jun 19 16:16:33 ID:gMYf1oAgDjo6oY?3nh7v07zhpM0-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

> 2x4 3

> > 5-5-13

PLATES

Weight: 40 lb

MT20

GRIP

244/190

FT = 20%

0-0-4 4 5 12 2x4 I 2x4 🛛 3x5 🧔 9-4-7 Scale = 1:36.2 Loading Spacing 1-11-4 CSI DEFL l/defl L/d (psf) in (loc) Plate Grip DOL TCLL (roof) 20.0 1.15 TC 0.39 Vert(LL) n/a n/a 999 BC Snow (Pf) 20.0 Lumber DOL 1 15 0.28 Vert(TL) n/a n/a 999 10.0 Rep Stress Incr YES WB 0.10 Horiz(TL) 0.01 4 n/a n/a 0.0 Code IRC2018/TPI2014 Matrix-MSH 10.0 Unbalanced snow loads have been considered for this LUMBER 4) design. TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 Gable requires continuous bottom chord bearing. 5) 2x4 SP No.3 6) Gable studs spaced at 4-0-0 oc. WFBS This truss has been designed for a 10.0 psf bottom OTHERS 2x4 SP No.3 7) chord live load nonconcurrent with any other live loads. BRACING * This truss has been designed for a live load of 20.0psf 8) TOP CHORD Structural wood sheathing directly applied or on the bottom chord in all areas where a rectangle 6-0-0 oc purlins, except end verticals. 3-06-00 tall by 2-00-00 wide will fit between the bottom BOT CHORD Rigid ceiling directly applied or 10-0-0 oc chord and any other members, with BCDL = 10.0psf. bracing. 9) Provide mechanical connection (by others) of truss to **REACTIONS** (size) 1=9-4-14, 4=9-4-14, 5=9-4-14 bearing plate capable of withstanding 28 lb uplift at joint Max Horiz 1=179 (LC 11) 4 and 112 lb uplift at joint 5. Max Uplift 4=-28 (LC 11), 5=-112 (LC 14) 10) Beveled plate or shim required to provide full bearing Max Grav 1=193 (LC 30), 4=170 (LC 5), surface with truss chord at joint(s) 1. 5=582 (LC 5) 11) This truss is designed in accordance with the 2018 FORCES (lb) - Maximum Compression/Maximum International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. Tension TOP CHORD 1-2=-320/190 2-3=-123/98 3-4=-140/41 LOAD CASE(S) Standard BOT CHORD 1-5=-63/334, 4-5=-63/92

WEBS

TCDL

BCLL

BCDL

NOTES

1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior (1) 3-0-0 to 5-0-3, Exterior(2R) 5-0-3 to 9-3-2 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2-5=-434/168

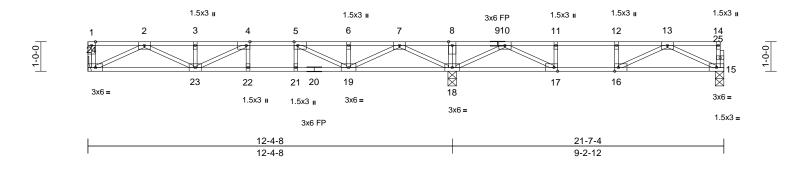
- Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

ORT STITUTE STATE SEAL 036322 G mm

June 20,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932


Job	Truss	Truss Type	Qty	Ply	65 Farm at Neills Creek-Roof-Cooper 3 Elev 9 TFR GX2
24060022-A	F01	Floor	3	1	l66361663 Job Reference (optional)

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Wed Jun 19 16:16:30 ID:L5l8d9LL1vrTjVBJjiD0Msz4gvX-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:39.1

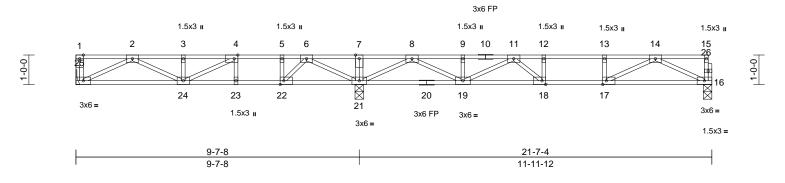
oading	(nof)	Spacing	1-7-3	CSI	-	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL	(psf) 40.0	Plate Grip DOL	1.00	TC	0.53	Vert(LL)	in -0.09		>999	480	MT20	244/190
CDL	10.0	Lumber DOL	1.00	BC	0.60	Vert(CT)		22-23	>999	360	101120	211/100
CLL	0.0	Rep Stress Incr	YES	WB	0.39	Horz(CT)	0.02	15	n/a	n/a		
CDL	5.0	Code	IRC2018/TPI2014	Matrix-MSH							Weight: 104 lb	FT = 20%F, 11%
JMBER DP CHORD DT CHORD EBS THERS RACING DP CHORD DT CHORD	6-0-0 oc purlins, ex Rigid ceiling directly		Internation R802.10 5) Recomm 10-00-00 (0.131" > or at their of 6) CAUTIO	s is designed in acc onal Residential Coo 2 and referenced s end 2x6 strongbac oc and fastened to 3") nails. Strongba uter ends or restrain N, Do not erect trus (S) Standard	de sections tandard AN ks, on edge each truss acks to be ned by othe	R502.11.1 a ISI/TPI 1. a, spaced at a with 3-10d attached to v ar means.						
ACTIONS	bracing.	, 18=0-3-8, 24=										
EACTIONS	(Size) 15=0-5-8, Mechanic	, ,										
		LC 4), 18=1080 (LC 1)	,									
ORCES	(lb) - Maximum Com Tension	npression/Maximum										
OP CHORD	1-24=-60/0, 14-15=- 2-3=-1398/0, 3-4=-1 5-6=-1123/0, 6-7=-1 8-10=0/891, 10-11= 12-13=-814/47, 13-1	398/0, 4-5=-1556/0, 123/0, 7-8=0/891, -814/47, 11-12=-814/4	.7,									
OT CHORD	,	=0/1556, 21-22=0/155 9=-94/428,	6,							15	TH CA	Rojin
/EBS	8-18=-173/0, 7-18=- 7-19=0/823, 2-23=0, 3-23=-177/0, 5-19=- 4-22=-81/26, 5-21=-	613/0, 4-23=-278/68, 8/100, 10-18=-873/0, 7=0/674, 13-16=-101/2	251,						Contraction of the second seco		SEA 0363	•
OTES	al fla an làsa la ada l								-			- 1
Unbalance this design	ed floor live loads have	e been considered for								-	·	- A 1 - E
0	i. aro 2x5 MT20 unloss (المعتمدة منابعه معانيهم								- 1	N. ENGINE	-EH. K S

- 2) All plates are 3x5 MT20 unless otherwise indicated.
- 3) Refer to girder(s) for truss to truss connections.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	65 Farm at Neills Creek-Roof-Cooper 3 Elev 9 TFR GX2
24060022-A	F02	Floor	1	1	I66361664 Job Reference (optional)


Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Wed Jun 19 16:16:30 ID:S2_CD_5A_SCSiG5H_oL50Qz4gvs-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Н

Scale = 1:39.1

Plate Offsets (X, Y): [4:0-1-8,Edge]	, [17:0-1-8,Edge], [1	3:0-1-8,Edg	je], [22:0-1-8,E	dge]								
Loading TCLL TCDL BCLL BCDL	(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-7-3 1.00 1.00 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MSH	0.78 0.59 0.40	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.09 -0.12 0.02	(loc) 18-19 18-19 16	l/defl >999 >999 n/a	L/d 480 360 n/a	PLATES MT20 Weight: 105 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	bracing. (size) 16=0-3-8 Mechanic	cept end verticals. applied or 6-0-0 oc , 21=0-3-8, 25=	6) LC	International R802.10.2 a Recommend 10-00-00 oc (0.131" X 3" at their outer	designed in acco Residential Code nd referenced sta 2x6 strongbacks and fastened to é nails. Strongbac ends or restraine to not erect truss Standard	e sections indard AN s, on edge each truss cks to be ed by othe	R502.11.1 a ISI/TPI 1. s spaced at with 3-10d attached to v er means.	and					

TOP CHORD 1-25=-62/0, 15-16=-62/0, 1-2=0/0, 2-3=-969/31, 3-4=-969/31, 4-5=-786/327, 5-6=-786/327, 6-7=0/1034, 7-8=0/1034, 8-9=-831/0, 9-11=-831/0, 11-12=-1267/0 12-13=-1267/0, 13-14=-1267/0, 14-15=-4/0 BOT CHORD 24-25=0/638, 23-24=-327/786, 22-23=-327/786, 21-22=-577/413, 19-21=-85/108, 18-19=0/1205, 17-18=0/1267, 16-17=0/773 WEBS 7-21=-187/0, 6-21=-985/0, 2-25=-710/0, 6-22=0/735, 2-24=-41/371, 5-22=-389/0, 3-24=-219/0, 8-21=-1148/0, 14-16=-856/0, 8-19=0/837, 14-17=0/553, 9-19=-143/0, 13-17=-202/0, 11-19=-440/0, 11-18=0/273.

Tension

25=383 (LC 3)

(lb) - Maximum Compression/Maximum

NOTES

FORCES

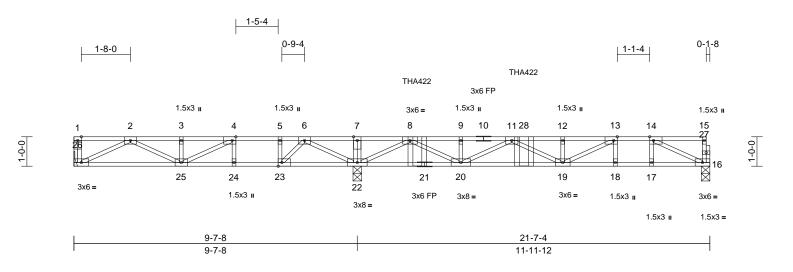
1) Unbalanced floor live loads have been considered for this design.

12-18=-150/0, 4-24=0/467, 4-23=-141/0

All plates are 3x5 MT20 unless otherwise indicated. 2)

3) Refer to girder(s) for truss to truss connections.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB Building Component Scietur Information**. Building from the Structure Building Component Advance interpretented and the properties of th and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Edenton, NC 27932

WORTH CAA ORTH WITTER PARTY SEAL 036322 G minim June 20,2024

Jo	b	Truss	Truss Type	Qty	Ply	65 Farm at Neills Creek-Roof-Cooper 3 Elev 9 TFR GX2
24	4060022-A	F03	Floor Girder	1	1	I66361665 Job Reference (optional)

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Wed Jun 19 16:16:30 ID:o756I?ifqRqd0INMIrIMOOz4gxe-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 7 lb uplift at joint

This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means. CAUTION, Do not erect truss backwards.

Use Simpson Strong-Tie THA422 (Single Chord Girder) or equivalent spaced at 3-7-8 oc max. starting at 11-8-0 from the left end to 15-3-8 to connect truss(es) to front

Fill all nail holes where hanger is in contact with lumber. In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

Scale = 1:39.1

Plate Offsets (X, Y): [4:0-1-8,Edge], [13:0-1-8,Edge], [14:0-1-8,Edge], [23:0-1-8,Edge] PLATES Loading Spacing 1-7-3 CSI DEFL in (loc) l/defl L/d (psf) TCLL 40.0 Plate Grip DOL 1.00 тс 0.93 Vert(LL) -0.15 18-19 >946 480 MT20 TCDL 10.0 Lumber DOL 1.00 BC 0.95 Vert(CT) -0.20 18-19 >705 360 BCLL 0.0 Rep Stress Incr YES WB 0.56 Horz(CT) 0.02 16 n/a n/a Code BCDL 5.0 IRC2018/TPI2014 Matrix-MSH Weight: 107 lb

Plate Increase=1.00 Uniform Loads (lb/ft) Vert: 16-26=-8, 1-15=-80 Concentrated Loads (lb) Vert: 8=-4 (F), 28=-195 (F)

BCDL		5.0	Code	IRC201	18/1P12014	Matrix-INS
LUMBER TOP CHORD BOT CHORD WEBS OTHERS	2x4 SP N 2x4 SP N 2x4 SP N 2x4 SP N 2x4 SP N	o.2(flat) o.3(flat)		4) 5)	International	e capable of designed in Residential
BRACING TOP CHORD BOT CHORD	2-2-0 oc p	ourlins, exc	athing directly applie cept end verticals. applied or 2-2-0 oc		10-00-00 oc (0.131" X 3") at their outer	2x6 strongb and fastened nails. Stror ends or rest
REACTIONS	(size) Max Uplift Max Grav	Mechanica 26=-7 (LC	4) .C 7), 22=1342 (LC 9	8) 9),	or equivalent from the left face of top cl	n Strong-Tie t spaced at 3 end to 15-3- hord.
FORCES	(lb) - Max Tension	•	pression/Maximum	9) 10	0) In the LOAD	CASE(S) se
TOP CHORD	1-26=-62/ 2-3=-922/ 5-6=-700/ 8-9=-1060	(155, 3-4=-9 (551, 6-7=0) 0/0, 9-11=-1	49/43, 1-2=0/0, 922/155, 4-5=-700/5 /1500, 7-8=0/1500, 1060/0, 11-12=-1894 4=-1200/0, 14-15=-;	^{.51,} 1) 4/0,	Plate Increa Uniform Loa	Standard or Live (bala ase=1.00 ads (lb/ft)
BOT CHORD	25-26=-60 23-24=-55 20-22=-13	0/613, 24-2 51/700, 22-	5=-551/700, 23=-858/306, 0=0/1801, 18-19=0/		Concentrate	26=-8, 1-15= ed Loads (lb 4 (F), 28=-19
WEBS	7-22=-193 6-23=0/84 3-25=-234 8-20=0/17 11-19=0/7	3/0, 6-22=-´ 42, 2-25=-1 4/0, 8-22=-´ 169, 9-20=- 141, 12-19= 790, 13-18=	=0/1200 1076/0, 2-26=-682/6 06/346, 5-23=-446/(1584/0, 14-16=-132(125/0, 11-20=-853/(300/0, 14-17=0/22 217/0, 4-25=0/610), 6/0,), 6,		
NOTES						

NOTES

1) Unbalanced floor live loads have been considered for this design.

All plates are 3x5 MT20 unless otherwise indicated. 2)

3) Refer to girder(s) for truss to truss connections. Dead + Floor Live (balanced): Lumber Increase=1.00, - ITTE CONTRACTOR SEAL 036322 G

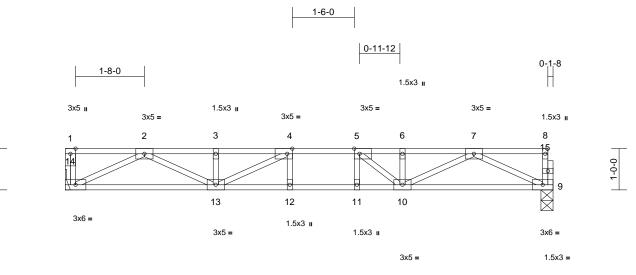
mmm June 20,2024

GRIP

244/190

FT = 20%F, 11%E

Page: 1



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall a fuss system. Derive use, the building designer index very the applications of design had very the applications of design index very the applications of design index very the application of the applicat and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	65 Farm at Neills Creek-Roof-Cooper 3 Elev 9 TFR GX2
24060022-A	F04	Floor	3	1	I66361666 Job Reference (optional)

1-0-0

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Wed Jun 19 16:16:30 ID:VmASqcdGTHydhgL0Otgjcvz4gxl-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

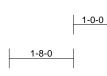
11-9-12
11-9-12

Scale = 1:27.9

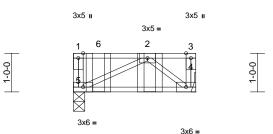
Plate Offsets (X, Y): [4:0-1-8,Edge], [5:0-1-8,Edge]

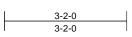
	(, .). [[0.0 . 0,2090]										
Loading TCLL TCDL BCLL	(psf) 40.0 10.0	Spacing Plate Grip DOL Lumber DOL	1-7-3 1.00 1.00 YES	CSI TC BC WB	0.29	DEFL Vert(LL) Vert(CT)	in -0.08 -0.11		l/defl >999 >999	L/d 480 360	PLATES MT20	GRIP 244/190
BCDL	0.0 5.0	Rep Stress Incr Code	IRC2018/TPI2014	Matrix-MSH	0.30	Horz(CT)	0.02	9	n/a	n/a	Weight: 59 lb	FT = 20%F, 11%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS	()											
BRACING	. ,											
TOP CHORD	Structural wood she 6-0-0 oc purlins, ex		ed or									
BOT CHORD			с									
REACTIONS	(size) 9=0-3-8, Max Grav 9=503 (L0	14= Mechanical C 1) 14=508 (I C 1)										
FORCES	(lb) - Maximum Corr	,. , ,										
TOP CHORD	Tension 1-14=-60/0, 8-9=-56 3-4=-1449/0, 4-5=-1 6-7=-1429/0, 7-8=-4	650/0, 5-6=-1429/0,										
BOT CHORD	13-14=0/894, 12-13	=0/1650, 11-12=0/1	650,									
WEBS	10-11=0/1650, 9-10 7-9=-990/0, 2-14=-9 2-13=0/622, 6-10=-1 5-10=-421/0, 4-13=- 5-11=-43/91	94/0, 7-10=0/600, 127/42, 3-13=-166/0									mm	U111
NOTES	5 11- 40/51										WITH CA	ROUL
1) Unbalance this design	ed floor live loads have	e been considered fo	or							S.	ONFESS	i N'
2) Refer to g	girder(s) for truss to trus								4	ès		A. T
	s is designed in accorda nal Residential Code s		Ind								SEA	
	2 and referenced stand								Ξ			• –
	end 2x6 strongbacks, o oc and fastened to eac							3		0363	22 : 3	
	3") nails. Strongbacks		alls						-	-	N. A	2 1 E
	uter ends or restrained I, Do not erect truss ba										S NGIN	EEMAN
	(S) Standard									1	10	" OF N

LOAD CASE(S) Standard


Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Job	Truss	Truss Type	Qty	Ply	65 Farm at Neills Creek-Roof-Cooper 3 Elev 9 TFR GX2
24060022-A	F05	Floor Girder	1	1	I66361667 Job Reference (optional)


Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Wed Jun 19 16:16:30 ID:CQFpLDXt773cLbIgUv24qRz4gxs-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

THA422

THA422

Scale - 1.29.8

00010 - 1.23.0				_								
Loading	(psf)	Spacing	1-7-3	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	0.46	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.14	Vert(CT)	-0.01	4-5	>999	360		
BCLL	0.0	Rep Stress Incr	YES	WB	0.09	Horz(CT)	0.00	4	n/a	n/a		
BCDL	5.0	Code	IRC2018/TPI2014	Matrix-MP							Weight: 18 lb	FT = 20%F, 11%E
LUMBER		•										

TOP CHORD	2x4 SP N	o.2(flat)
BOT CHORD	2x4 SP N	o.2(flat)
WEBS	2x4 SP N	o.3(flat)
BRACING		
TOP CHORD	Structura	I wood sheathing directly applied or
	3-2-0 oc	purlins, except end verticals.
BOT CHORD	Rigid ceil	ing directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(size)	4= Mechanical, 5=0-3-8

	Max Grav 4=259 (LC 1), 5=331 (LC 1)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-5=-166/0, 3-4=-4/0, 1-2=0/0, 2-3=0/0
BOT CHORD	4-5=0/312

WEBS 2-5=-348/0, 2-4=-396/0

NOTES

1) Refer to girder(s) for truss to truss connections.

- This truss is designed in accordance with the 2018 2) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 3) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 4) Use Simpson Strong-Tie THA422 (Single Chord Girder) or equivalent spaced at 1-4-0 oc max. starting at 0-7-12 from the left end to 1-11-12 to connect truss(es) to front face of top chord.
- 5) Fill all nail holes where hanger is in contact with lumber.
- 6) In the LOAD CASE(S) section, loads applied to the face

of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

Dead + Floor Live (balanced): Lumber Increase=1.00, 1) Plate Increase=1.00

Uniform Loads (lb/ft)

Vert: 4-5=-8, 1-3=-80

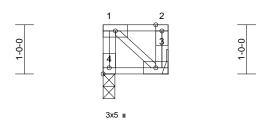
Concentrated Loads (lb)

Vert: 2=-164 (F), 6=-169 (F)

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB Building Component Scietur Information**. Building from the Structure Building Component Advance interpretented and the properties of th and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932


Job	Truss	Truss Type	Qty	Ply	65 Farm at Neills Creek-Roof-Cooper 3 Elev 9 TFR GX2
24060022-A	F06	Floor	1	1	I66361668 Job Reference (optional)

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Wed Jun 19 16:16:30 ID:Y6XHq6OLySZJvIONnOqFLvz4gy2-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3x5 u

3x6 =

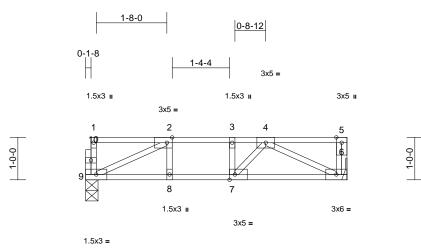
0-9-14

Scale = 1:23.5

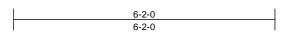
Plate Offsets (X, Y): [4:Edge,0-1-8]

	,, i): [1.2090,0 i 0]	-										
Loading	(psf)	Spacing	1-7-3	CSI		DEFL	in	(loc)	l/defl	L/d	-	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	0.06	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.01	Vert(CT)	0.00	3-4	>999	360		
BCLL BCDL	0.0 5.0	Rep Stress Incr	YES IRC2018/TPI2014	WB	0.00	Horz(CT)	0.00	3	n/a	n/a	Waisht 10 lb	ET 200/E 440/E
BCDL	5.0	Code	IRC2018/1PI2014	Matrix-MP							Weight: 10 lb	FT = 20%F, 11%E
LUMBER												
TOP CHORD	2x4 SP No.2(flat)											
BOT CHORD	2x4 SP No.2(flat)											
WEBS												
BRACING												
TOP CHORD	TOP CHORD Structural wood sheathing directly applied or											
	1-3-14 oc purlins, except end verticals.											
BOLCHORD	BOT CHORD Rigid ceiling directly applied or 10-0-0 oc											
REACTIONS	bracing. REACTIONS (size) 3= Mechanical, 4=0-2-14											
REACTIONS	Max Grav 3=47 (LC											
FORCES	(lb) - Maximum Corr	,, (,										
TORGES	Tension	ipression/maximum										
TOP CHORD	1-4=-43/0, 2-3=-43/0	0, 1-2=0/0										
BOT CHORD	3-4=0/0											
WEBS	1-3=0/0											
NOTES												
1) Refer to gi	irder(s) for truss to trus	ss connections.										
	echanical connection	(by others) of truss to	0									
	ate at joint(s) 4.											
	is designed in accorda											
	hal Residential Code set and referenced stand		na									
	and 2x6 strongbacks, o										TH CA	ROUL
	oc and fastened to eac									AN'	A	Dell's
	3") nails. Strongbacks		alls							12	FESS	The
	ter ends or restrained								4	n		
											• ~	

LOAD CASE(S) Standard



Page: 1


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	65 Farm at Neills Creek-Roof-Cooper 3 Elev 9 TFR GX2
24060022-A	F07	Floor	2	1	I66361669 Job Reference (optional)

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Wed Jun 19 16:16:31 ID:C9jOnPKD7vw1o_VP_rE4erz4gy7-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:27.2

Plate Offsets (X, Y): [2:0-1-8,Edge], [7:0-1-8,Edge]

Loading	(psf)	Spacing	1-4-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	0.15	Vert(LL)	-0.02	6-7	>999	480	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.16	Vert(CT)	-0.02	6-7	>999	360		
BCLL	0.0	Rep Stress Incr	YES	WB	0.09	Horz(CT)	0.00	6	n/a	n/a		
BCDL	5.0	Code	IRC2018/TPI2014	Matrix-MSH							Weight: 32 lb	FT = 20%F, 11%E

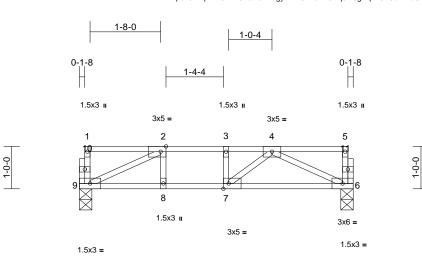
LUMBER

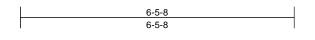
TOP CHORD BOT CHORD WEBS OTHERS	2x4 SP No.2(flat) 2x4 SP No.2(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat)
	2x4 SF 110.5(11at)
BRACING	
TOP CHORD	Structural wood sheathing directly applied or
BOT CHORD	6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.
REACTIONS	(aira) C Machanical O O 2 O
REACTIONS	(size) 6= Mechanical, 9=0-3-8
REACTIONS	(size) $6=$ Mechanical, $9=0-3-8$ Max Grav $6=217$ (LC 1), $9=213$ (LC 1)
FORCES	
	Max Grav 6=217 (LC 1), 9=213 (LC 1)
	Max Grav 6=217 (LC 1), 9=213 (LC 1) (lb) - Maximum Compression/Maximum
FORCES	Max Grav 6=217 (LC 1), 9=213 (LC 1) (lb) - Maximum Compression/Maximum Tension
FORCES	Max Grav 6=217 (LC 1), 9=213 (LC 1) (lb) - Maximum Compression/Maximum Tension 1-9=-51/1, 5-6=-49/0, 1-2=-4/0, 2-3=-351/0,
FORCES	Max Grav 6=217 (LC 1), 9=213 (LC 1) (lb) - Maximum Compression/Maximum Tension 1-9=-51/1, 5-6=-49/0, 1-2=-4/0, 2-3=-351/0, 3-4=-351/0, 4-5=0/0
FORCES TOP CHORD BOT CHORD	Max Grav 6=217 (LC 1), 9=213 (LC 1) (lb) - Maximum Compression/Maximum Tension 1-9=-51/1, 5-6=-49/0, 1-2=-4/0, 2-3=-351/0, 3-4=-351/0, 4-5=0/0 8-9=0/351, 7-8=0/351, 6-7=0/323

NOTES

- 1) Unbalanced floor live loads have been considered for this design.
- 2) Refer to girder(s) for truss to truss connections.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 4) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 5) CAUTION, Do not erect truss backwards.

LOAD CASE(S) Standard


Page: 1


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

A MiTek Af 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	65 Farm at Neills Creek-Roof-Cooper 3 Elev 9 TFR GX2
24060022-A	F08	Floor	7	1	I66361670 Job Reference (optional)

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Wed Jun 19 16:16:31 ID:vpokJ?Fqnm20TvT34tcRsNz4gyE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

3x6 =

Scale = 1:27.2

Plate Offsets (X, Y): [2:0-1-8,Edge], [7:0-1-8,Edge]

Loading	(psf)	Spacing	1-4-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	тс	0.18	Vert(LL)	-0.02	6-7	>999	480	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.20	Vert(CT)	-0.03	6-7	>999	360		
BCLL	0.0	Rep Stress Incr	YES	WB	0.10	Horz(CT)	0.00	6	n/a	n/a		
BCDL	5.0	Code	IRC2018/TPI2014	Matrix-MSH							Weight: 32 lb	FT = 20%F, 11%E

LUMBER

TOP CHORD	2x4 SP No.2(flat)
BOT CHORD	2x4 SP No.2(flat)
WEBS	2x4 SP No.3(flat)
OTHERS	2x4 SP No.3(flat)
BRACING	
TOP CHORD	Structural wood sheathing directly applied or
	6-0-0 oc purlins, except end verticals.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc
	bracing.
REACTIONS	(size) 6=0-3-8, 9=0-3-8
REACTIONS	(size) 6=0-3-8, 9=0-3-8 Max Grav 6=223 (LC 1), 9=223 (LC 1)
REACTIONS FORCES	
	Max Grav 6=223 (LC 1), 9=223 (LC 1)
	Max Grav 6=223 (LC 1), 9=223 (LC 1) (lb) - Maximum Compression/Maximum
FORCES	Max Grav 6=223 (LC 1), 9=223 (LC 1) (lb) - Maximum Compression/Maximum Tension
FORCES	Max Grav 6=223 (LC 1), 9=223 (LC 1) (lb) - Maximum Compression/Maximum Tension 1-9=-50/4, 5-6=-47/0, 1-2=-4/0, 2-3=-383/0,
FORCES	Max Grav 6=223 (LC 1), 9=223 (LC 1) (lb) - Maximum Compression/Maximum Tension 1-9=-50/4, 5-6=-47/0, 1-2=-4/0, 2-3=-383/0, 3-4=-383/0, 4-5=-3/0
FORCES TOP CHORD BOT CHORD	Max Grav 6=223 (LC 1), 9=223 (LC 1) (lb) - Maximum Compression/Maximum Tension 1-9=-50/4, 5-6=-47/0, 1-2=-4/0, 2-3=-383/0, 3-4=-383/0, 4-5=-3/0 8-9=0/383, 7-8=0/383, 6-7=0/342

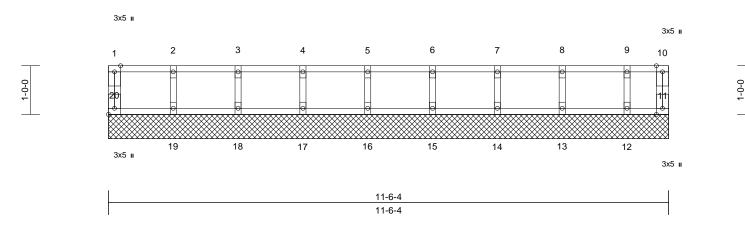
NOTES

1) Unbalanced floor live loads have been considered for this design.

 This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

 Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

LOAD CASE(S) Standard


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

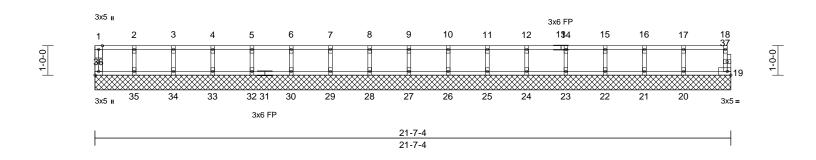
A MiTek Affiliate A MiTek Affiliate 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	65 Farm at Neills Creek-Roof-Cooper 3 Elev 9 TFR GX2
24060022-A	FW11	Floor Supported Gable	1	1	I66361671 Job Reference (optional)

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Wed Jun 19 16:16:31 ID:4fRT3yA3BwHtl_0vkcV1c6z4gyK-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:23.7


Plate Offsets (2	X, Y): [20:Edge,0-1-8]										
Loading	(psf)	Spacing	1-7-3	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	0.06	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.01	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	YES	WB	0.03	Horiz(TL)	0.00	11	n/a	n/a		
BCDL	5.0	Code	IRC2018/TPI2014	Matrix-MR							Weight: 48 lb	FT = 20%F, 11%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 11=11-6-4	applied or 10-0-0 oc 4, 12=11-6-4, 13=11-0	International R802.10.2 a 6) Recommenc 10-00-00 oc (0.131" X 3") d or LOAD CASE(S) 6-4,	designed in accorda Residential Code se nd referenced standa 2x6 strongbacks, or and fastened to eacl nails. Strongbacks ends or restrained to Standard	ections ard AN n edge h truss to be	R502.11.1 ar ISI/TPI 1. a, spaced at a with 3-10d attached to wa						
	17=11-6-4 20=11-6-4 Max Grav 11=27 (LC 13=122 (L 15=118 (L 15=118 (L 17=117 (L		6-4,									
FORCES	(lb) - Maximum Com Tension											
TOP CHORD			6/0,								TH CA	RO
BOT CHORD	19-20=0/6, 18-19=0/ 15-16=0/6, 14-15=0/ 11-12=0/6	/6, 17-18=0/6, 16-17= /6, 13-14=0/6, 12-13=	,						4	Ň	OR	N.
WEBS	2-19=-106/0, 3-18=- 5-16=-107/0, 6-15=- 8-13=-111/0, 9-12=-	107/0, 7-14=-106/0,									SEA	
 Gable required Truss to be braced again 	are 1.5x3 MT20 unless uires continuous bottor e fully sheathed from c ainst lateral movement is spaced at 1-4-0 oc.	m chord bearing. one face or securely							HUMA.		SEA 0363	EERER

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	65 Farm at Neills Creek-Roof-Cooper 3 Elev 9 1		
24060022-A	FW21	Floor Supported Gable	1	1	I6 Job Reference (optional)	6361672	
Carter Components (Sanford, NC	Run: 8.73 S Apr 25 2	Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Wed Jun 19 16:16:31					

0-1-8 ||

Scale = 1:39.1

Plate Offsets (X, Y): [36:Edge,0-1-8]

	х, т). [00.20			_										
Loading TCLL		(psf) 40.0	Spacing Plate Grip DOL	1-7-3 1.00		CSI TC	0.07	DEFL Vert(LL)	in n/a	(loc) -	l/defl n/a	L/d 999	PLATES MT20	GRIP 244/190
TCDL		10.0	Lumber DOL	1.00		BC	0.01	Vert(TL)	n/a	-	n/a	999		
BCLL BCDL		0.0 5.0	Rep Stress Incr Code	YES)18/TPI2014	WB Matrix-MR	0.03	Horiz(TL)	0.00	19	n/a	n/a	Weight: 85 lb	FT = 20%F, 11%E
BCDL		5.0	Code	IRC2	110/1112014	IVIALITX-IVIR							weight. 65 lb	FI = 20%F, 11%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	6-0-0 oc pu Rigid ceilin bracing. (size)	.2(flat) .3(flat) .3(flat) .3(flat) .3(flat) .3(flat) .3(flat) .10(1) .0	athing directly applie cept end verticals. applied or 10-0-0 oc 4, 20=21-7-4, 21=21- 4, 23=21-7-4, 24=21- 4, 26=21-7-4, 27=21- 4, 33=21-7-4, 33=21- 4, 33=21-7-4, 33=21- 4, 33=21-7-4, 34=21- 4, 33=21-7-4 5, 1), 20=130 (LC 1), C 1), 22=118 (LC 1) C 1), 24=117 (LC 1) C 1), 28=117 (LC 1) C 1), 33=117 (LC 1) C 1), 33=117 (LC 1) C 1), 35=111 (LC 1) C 1) C 1) pression/Maximum	d or -7-4, -7-4, -7-4, -7-4, -7-4, -, -, ,	NOTES 1) All plates are 2) Gable requir 3) Truss to be f braced agair 4) Gable studs 5) This truss is International R802.10.2 a 6) Recommenc 10-00-00 oc (0.131" X 3") at their outer	2-35=-103/0, 3-34 5-32=-107/0, 6-30 3-28=-107/0, 9-27 11-25=-107/0, 12- 15-22=-107/0, 16- 15-22=-107/0, 16- 15-23 MT20 unle es continuous bot ully sheathed from spaced at 1-4-0 o designed in accol Residential Code nd referenced sta 12x6 strongbacks and fastened to e nails. Strongbacks on ot erect truss Standard	=-107/0, '=-107/0, '=-107/0, :24=-107, :21=-104, ess other tom chor n one face ent (i.e. d oc. rdance we s sections ndard AN , on edge sach truss ks to be ed by other	7-29=-107/0, 10-26=-107/0, 10-26=-107/0 /0, 17-20=-11 wise indicated d bearing. te or securely liagonal web) tith the 2018 s R502.11.1 a JSI/TPI 1. a, spaced at s with 3-10d attached to w er means.), 6/0, 7/0 d. nd				NITH CA	ROJA
	Tension		procedent maximum									S	· · ·	Tilan.
TOP CHORD	2-3=-12/0, 6-7=-12/0, 10-11=-12/ 14-15=-12/ 17-18=-12/	3-4=-12/0 7-8=-12/0 ⁄0, 11-12= ⁄0, 15-16= ⁄0	53/0, 1-2=-12/0, 0, 4-5=-12/0, 5-6=-12 1, 8-9=-12/0, 9-10=-1 -12/0, 12-14=-12/0, -12/0, 16-17=-12/0, 0/12, 33-34=0/12,	,							J. HILLING	<i>d</i>	SEA 0363	• -
	32-33=0/12 28-29=0/12 25-26=0/12	2, 30-32=0 2, 27-28=0 2, 24-25=0 2, 21-22=0	0/12, 29-30=0/12, 0/12, 26-27=0/12, 0/12, 23-24=0/12, 0/12, 20-21=0/12,										201111	EEF. A

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Wed Jun 19 16:16:31 ID:rwO3At3QJ9999cpBiDrwICz4gyT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

