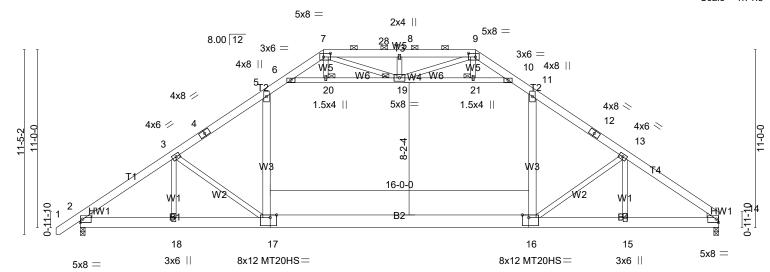
Job Truss Truss Type Qty Ply Michael Smith 28048 AT1 4 PIGGYBACK ATTIC 1 Job Reference (optional) C&R Building Supply, Autryville NC 8.430 s Jan 20 2021 MiTek Industries, Inc. Tue Jul 23 08:48:02 2024 Page 1 ID:zl JIG 52gkwxPrTOJGSQTzpbB4-EnZXacWgM2zecZWwS5I??9bUOX7OPbqtKcnlxRyvFDx 5-9-7 11-6-4 15-0-9 24-5-7 27-11-12 33-8-9 39-6-0


Scale = 1:71.3

Structural wood sheathing directly applied or 4-0-3 oc purlins,

MiTek recommends that Stabilizers and required cross

Rigid ceiling directly applied or 10-0-0 oc bracing.

bracing be installed during truss erection, in accordance with Stabilizer Installation guide

11-6-4 27-11-12 39-6-0 5-9-7 33-8-9 5-8-13 5-8-1 5-9-7 Plate Offsets (X,Y)-- [7:0-5-4,0-2-12], [9:0-5-4,0-2-12], [16:0-4-12,Edge], [17:0-4-12,Edge] LOADING (psf) SPACING-2-0-0 CSI. DEFL. (loc) I/defl L/d **PLATES GRIP** in 20.Ó Plate Grip DOL TCLL 1.15 TC 0.62 Vert(LL) -0.38 16-17 >999 360 MT20 244/190 TCDL 10.0 Lumber DOL 1.15 ВС 0.51 Vert(CT) -0.53 16-17 >892 240 MT20HS 187/143 0.0 Rep Stress Incr Horz(CT) BCLL YES WB 0.42 0.04 14 n/a n/a Code IRC2018/TPI2014 **BCDL** 10.0 Matrix-MS Wind(LL) -0.17 17-18 >999 240 Weight: 355 lb FT = 20%

BRACING-

TOP CHORD

BOT CHORD

JOINTS

except

2-0-0 oc purlins (6-0-0 max.): 7-9.

1 Brace at Jt(s): 19, 20, 21

LUMBER-TOP CHORD 2x6 SP No.1

BOT CHORD 2x8 SP 2400F 2.0E *Except*

B2: 2x10 SP 2400F 2.0E

WEBS 2x4 SP No.3 *Except*

W3: 2x6 SP No.1, W4: 2x4 SP 2400F 2.0E

WEDGE

Left: 2x4 SP No.3, Right: 2x4 SP No.3

REACTIONS. (lb/size) 2=1747/0-3-8 (min. 0-1-12), 14=1661/0-3-8 (min. 0-1-11)

5-8-13

3-6-5

Max Horz 2=254(LC 7)

Max Uplift2=-121(LC 8), 14=-72(LC 8) Max Grav 2=2099(LC 14), 14=2020(LC 15)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-2955/132, 3-4=-2927/104, 4-5=-2784/139, 5-6=-2218/193, 6-7=-677/117,

9-10=-677/117, 10-11=-2217/192, 11-12=-2783/139, 12-13=-2926/105,

13-14=-2969/141, 7-28=-856/187, 8-28=-856/187, 8-9=-856/187

2-18=-36/2557, 17-18=-36/2557, 16-17=0/2400, 15-16=-45/2392,

14-15=-45/2392

5-17=0/1098, 11-16=0/1099, 6-20=-2255/117, 19-20=-2244/118,

19-21=-2241/117, 10-21=-2252/116, 3-18=-468/111, 13-15=-462/118,

3-17=-441/239, 13-16=-457/233, 7-19=-87/581, 8-19=-304/91, 9-19=-86/579

NOTES-

WEBS

BOT CHORD

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16: Vult=140mph (3-second gust) Vasd=111mph: TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=40ft; eave=5ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding
- 4) All plates are MT20 plates unless otherwise indicated.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 7) Ceiling dead load (5.0 psf) on member(s). 5-6, 10-11, 6-20, 19-20, 19-21, 10-21 Continued on page 2

Job	Truss	Truss Type	Qty	Ply	Michael Smith
28048	AT1	PIGGYBACK ATTIC	4	1	
					Job Reference (optional)

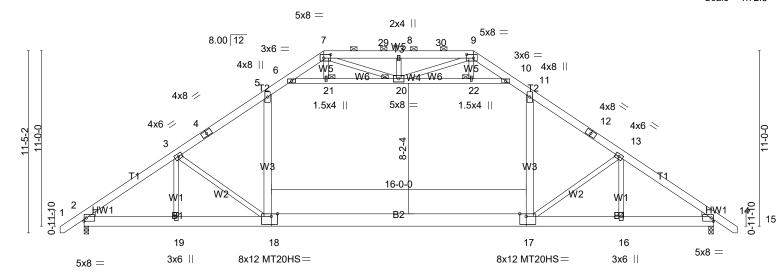
8.430 s Jan 20 2021 MiTek Industries, Inc. Tue Jul 23 08:48:02 2024 Page 2 ID:zI_JIG_52gkwxPrTOJGSQTzpbB4-EnZXacWgM2zecZWwS5I??9bUOX7OPbqtKcnlxRyvFDx

NOTES-

- 8) Bottom chord live load (40.0 psf) and additional bottom chord dead load (0.0 psf) applied only to room. 16-17
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 14 except (jt=lb) 2=121.

 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
 12) Attic room checked for L/360 deflection.

Job Truss Truss Type Qty Ply Michael Smith 28048 AT2 PIGGYBACK ATTIC 4 1 Job Reference (optional) C&R Building Supply, Autryville NC 8.430 s Jan 20 2021 MiTek Industries, Inc. Tue Jul 23 08:48:04 2024 Page 1 ID:zl JIG 52gkwxPrTOJGSQTzpbB4-AAgH?HXwufELstgJZWKT5ahqvLpstVYAowGr?KyvFDv 5-9-7 11-6-4 15-0-9 27-11-12 33-8-9 39-6-0


Scale = 1:72.3

Structural wood sheathing directly applied or 4-0-6 oc purlins,

MiTek recommends that Stabilizers and required cross

Rigid ceiling directly applied or 10-0-0 oc bracing.

bracing be installed during truss erection, in accordance with Stabilizer Installation guide

	\vdash	5-9-7 5-9-7	11-6-4 5-8-13	-	+ <u>27-11-12</u> 16-5-8				<u>33-8-9</u> 5-8-13	39-6-0 5-9-7	—
Plate Offsets (X,Y) [7:0-5-4,0-2-12], [9:0-5-4,0-2-12], [17:0-4-12,Edge], [18:0-4-12,Edge]											
LOADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.ó	Plate Grip DOL	1.15	TC	0.61	Vert(LL)	-0.38 1 7 -18	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.51	Vert(CT)	-0.53 17-18	>893	240	MT20HS	187/143
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.40	Horz(CT)	0.04 14	n/a	n/a		
BCDL	10.0	Code IRC2018/T	PI2014	Matrix	-MS	Wind(LL)	-0.17 18-19	>999	240	Weight: 359 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

JOINTS

except

2-0-0 oc purlins (6-0-0 max.): 7-9.

1 Brace at Jt(s): 20, 21, 22

LUMBER-

TOP CHORD 2x6 SP No.1

BOT CHORD 2x8 SP 2400F 2.0E *Except*

B2: 2x10 SP 2400F 2.0E

2x4 SP No.3 *Except*

WEBS

W3: 2x6 SP No.1, W4: 2x4 SP 2400F 2.0E

WEDGE

Left: 2x4 SP No.3, Right: 2x4 SP No.3

REACTIONS. (lb/size) 2=1745/0-3-8 (min. 0-1-12), 14=1745/0-3-8 (min. 0-1-12)

5-8-13

3-6-5

Max Horz 2=-261(LC 6)

Max Uplift2=-120(LC 8), 14=-120(LC 8) Max Grav 2=2098(LC 14), 14=2098(LC 15)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-2953/131, 3-4=-2923/102, 4-5=-2780/137, 5-6=-2216/191, 6-7=-677/117,

9-10=-677/117, 10-11=-2216/191, 11-12=-2780/137, 12-13=-2923/102.

13-14=-2955/131, 7-29=-856/187, 8-29=-856/187, 8-30=-856/187,

BOT CHORD 2-19=0/2567, 18-19=0/2567, 17-18=0/2409, 16-17=0/2373, 14-16=0/2373 **WEBS**

5-18=0/1098. 11-17=0/1098. 6-21=-2251/114. 20-21=-2240/115.

20-22=-2240/115, 10-22=-2251/114, 3-19=-466/111, 13-16=-468/113,

3-18=-442/238, 13-17=-442/238, 7-20=-87/580, 8-20=-304/91, 9-20=-87/580

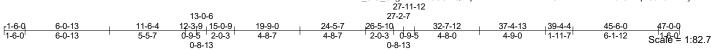
NOTES-

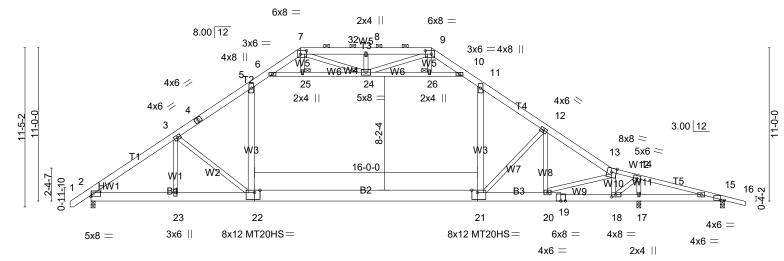
1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=40ft; eave=5ft; Cat. II: Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) All plates are MT20 plates unless otherwise indicated.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 7) Ceiling dead load (5.0 psf) on member(s). 5-6, 10-11, 6-21, 20-21, 20-22, 10-22 Continued on page 2

Job	Truss	Truss Type	Qty	Ply	Michael Smith
28048	AT2	PIGGYBACK ATTIC	4	1	
					Job Reference (optional)

8.430 s Jan 20 2021 MiTek Industries, Inc. Tue Jul 23 08:48:04 2024 Page 2 $ID:zI_JIG_52gkwxPrTOJGSQTzpbB4-AAgH?HXwufELstgJZWKT5ahqvLpstVYAowGr?KyvFDv$


NOTES-


- 8) Bottom chord live load (40.0 psf) and additional bottom chord dead load (0.0 psf) applied only to room. 17-18
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=120, 14=120.

 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
 12) Attic room checked for L/360 deflection.

Job	Truss	Truss Type	Qty	Ply	Michael Smith
28048	AT3	ATTIC	4	1	
					Job Reference (optional)

8.430 s Jan 20 2021 MiTek Industries, Inc. Tue Jul 23 08:48:05 2024 Page 1 ID:zl JIG 52gkwxPrTOJGSQTzpbB4-eMEfDdYYfzMCT1FV7DsidnD0fl8LcqRJ0a0PYmyvFDu

0-0-13	11-0-4	13-0-9	24-0-7		32-7-12	1 37-4-13		43-0-0
6-0-13	5-5-7	3-6-5	9-4-13	3-6-5	4-8-0	4-9-0	'1-11-7 [']	6-1-12
) [7:0-5-4,0-3-0], [9	9:0-5-4,0-3-0],	[15:0-3-4,0-0-	2], [18:0-3-8,0-2-0], [21:0-4-12,	Edge], [22:0-4	4-12,Edge]		
		<u> </u>		* * *	<u> </u>			
SPACING-	2-0-0	CSI.	DEF	in	(loc) I/defl	L/d	PLATES	S GRIP
Plate Grip DC	L 1.15	TC 0	0.55 Vert	LL) -0.37 2	21-22 >999	360	MT20	244/190
Lumber DOL	1.15	BC 0	0.55 Vert	CŤ) -0.51 2	21-22 >926	240	MT20H	S 187/143
Rep Stress In	cr YES	WB 0).94 Horz	(CŤ) 0.04	17 n/a	n/a		
Code IRC201	8/TPI2014	Matrix-A	AS Wind	I(LL) -0.12 2	22-23 >999	240	Weight	: 387 lb FT = 20%
	6-0-13 () [7:0-5-4,0-3-0], [9 SPACING- Plate Grip DC Lumber DOL Rep Stress In	6-0-13 5-5-7 () [7:0-5-4,0-3-0], [9:0-5-4,0-3-0], SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15	6-0-13 5-5-7 3-6-5 C) [7:0-5-4,0-3-0], [9:0-5-4,0-3-0], [15:0-3-4,0-0-1] SPACING- 2-0-0 CSI. Plate Grip DOL 1.15 TC CONTROLL	6-0-13 5-5-7 3-6-5 9-4-13 O [7:0-5-4,0-3-0], [9:0-5-4,0-3-0], [15:0-3-4,0-0-2], [18:0-3-8,0-2-0] SPACING- 2-0-0 CSI. DEFI Plate Grip DOL 1.15 TC 0.55 Vert(Lumber DOL 1.15 BC 0.55 Vert(Rep Stress Incr YES WB 0.94 Horz	6-0-13 5-5-7 3-6-5 9-4-13 3-6-5 7) [7:0-5-4,0-3-0], [9:0-5-4,0-3-0], [15:0-3-4,0-0-2], [18:0-3-8,0-2-0], [21:0-4-12, 15:0-3-8,0-2	6-0-13 5-5-7 3-6-5 9-4-13 3-6-5 4-8-0 C) [7:0-5-4,0-3-0], [9:0-5-4,0-3-0], [15:0-3-4,0-0-2], [18:0-3-8,0-2-0], [21:0-4-12,Edge], [22:0-4-12], [21:0-4-12,Edge], [21:0-	6-0-13 5-5-7 3-6-5 9-4-13 3-6-5 4-8-0 4-9-0 C) [7:0-5-4,0-3-0], [9:0-5-4,0-3-0], [15:0-3-4,0-0-2], [18:0-3-8,0-2-0], [21:0-4-12,Edge], [22:0-4-12,Edge] SPACING- 2-0-0 CSI. DEFL. in (loc) /defl L/d Plate Grip DOL 1.15 TC 0.55 Vert(LL) -0.37 21-22 >999 360 Lumber DOL 1.15 BC 0.55 Vert(CT) -0.51 21-22 >926 240 Rep Stress Incr YES WB 0.94 Horz(CT) 0.04 17 n/a n/a	6-0-13 5-5-7 3-6-5 9-4-13 3-6-5 4-8-0 4-9-0 1-11-7) [7:0-5-4,0-3-0], [9:0-5-4,0-3-0], [15:0-3-4,0-0-2], [18:0-3-8,0-2-0], [21:0-4-12,Edge], [22:0-4-12,Edge] SPACING- 2-0-0 CSI. DEFL. in (loc) /def L/d PLATE: Plate Grip DOL 1.15 TC 0.55 Vert(LL) -0.37 21-22 >999 360 MT20 Lumber DOL 1.15 BC 0.55 Vert(CT) -0.51 21-22 >926 240 MT20H Rep Stress Incr YES WB 0.94 Horz(CT) 0.04 17 n/a n/a

24 5 7

LUMBER-

TOP CHORD 2x6 SP No.1 *Except*

T5: 2x4 SP 2400F 2.0E

6 N 13

BOT CHORD 2x8 SP 2400F 2.0E *Except*

B2: 2x10 SP 2400F 2.0E, B4: 2x6 SP No.1

WEBS 2x4 SP No.3 *Except*

W3: 2x6 SP No.1, W4: 2x4 SP 2400F 2.0E

WEDGE

Left: 2x4 SP No.3

BRACING-

JOINTS

TOP CHORD

27 11 12

Structural wood sheathing directly applied, except 2-0-0 oc purlins (6-0-0 max.): 7-9.

Rigid ceiling directly applied.

BOT CHORD 1 Brace at Jt(s): 24, 25, 26

> MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide

45 6 O

REACTIONS. (lb/size) 2=1716/0-3-8 (min. 0-1-12), 17=2070/0-3-8 (min. 0-3-1), 15=189/0-3-8 (min. 0-1-8)

15 0 0

Max Horz 2=-258(LC 6)

Max Uplift2=-119(LC 8), 17=-90(LC 8), 15=-157(LC 5) Max Grav 2=2085(LC 14), 17=2605(LC 15), 15=224(LC 20)

116/

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-2944/132, 3-4=-2814/104, 4-5=-2678/137, 5-6=-2154/189, 6-7=-702/127,

7-32=-909/194, 8-32=-909/194, 8-9=-909/194, 9-10=-719/129,

10-11=-2180/188, 11-12=-2869/143, 12-13=-2597/131, 13-14=-1528/130,

14-15=-406/1155

BOT CHORD 2-23=0/2549, 22-23=0/2549, 21-22=0/2356, 20-21=0/2192, 19-20=-47/1558,

18-19=-48/1562, 17-18=-1089/401, 15-17=-1089/401

3-23=-362/127, 3-22=-439/146, 5-22=0/1070, 6-25=-2009/99,

24-25=-1999/101, 24-26=-2143/98, 10-26=-2154/96, 11-21=0/1078, 12-21=-158/288, 12-20=-661/14, 13-20=-56/1200, 13-18=-1607/91, 14-18=-54/2437, 14-17=-2302/112, 8-24=-289/87, 7-24=-81/532,

9-24=-78/561

WEBS

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=46ft; eave=6ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) All plates are MT20 plates unless otherwise indicated.

Continued on page 2

Job	Truss	Truss Type	Qty	Ply	Michael Smith
28048	AT3	ATTIC	4	1	
					Job Reference (optional)

8.430 s Jan 20 2021 MiTek Industries, Inc. Tue Jul 23 08:48:05 2024 Page 2 ID:zl JIG 52gkwxPrTOJGSQTzpbB4-eMEfDdYYfzMCT1FV7DsidnD0fl8LcqRJ0a0PYmyvFDu

NOTES-

- 5) The Fabrication Tolerance at joint 21 = 16%
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 8) Ceiling dead load (5.0 psf) on member(s). 5-6, 10-11, 6-25, 24-25, 24-26, 10-26
- 9) Bottom chord live load (40.0 psf) and additional bottom chord dead load (0.0 psf) applied only to room. 21-22
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 17 except (jt=lb) 2=119, 15=157.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 14) Attic room checked for L/360 deflection.

28048	G1	Common Supported Gable	e 1	1		
C&R Building Supply	, Autryville NC					c. Tue Jul 23 08:48:06 2024 Page 1
-	D-10-8 D-10-8	6-6-12 6-6-12	ID:zl_JIG_52gkv	vxPrTOJG	SQTzpbB4-6Zo1QzZAPG 13-1-8 6-6-12	GU35BqhhxNxA?mJ38cuLVmTFEly4CyvFDt + 14-0-0 0-10-8
			4x4 =			Scale = 1:27.8
5-3-11 4-10-3	2	\$T2	\$T3	\$T2	7 \$T1	8 9 1-1-0-1
1 /	4x4 =	14 13	12	11	10	4x4 =
	-		13-1-8 13-1-8			
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	Plate Grip DOL 1 Lumber DOL 1	D-0 CSI. 15 TC 0.06 15 BC 0.02 ES WB 0.04 114 Matrix-S	DEFL. i Vert(LL) 0.0 Vert(CT) 0.0 Horz(CT) 0.0	8 0	l/defl L/d n/r 120 n/r 120 n/a n/a	PLATES GRIP MT20 244/190 Weight: 67 lb FT = 20%
LUMBER-	3000 11 (220 10/11 120	IVIGUIA-O	BRACING-			773ignt. 07 ib 1 i - 2070

Qty

Ply

Michael Smith

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP 2400F 2.0E

OTHERS 2x4 SP No.3 TOP CHORD **BOT CHORD** Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. All bearings 13-1-8.

Max Horz 2=111(LC 7) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 2, 8, 13, 14, 11, 10 Max Grav All reactions 250 lb or less at joint(s) 2, 8, 12, 13, 14, 11,

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

Job

Truss

Truss Type

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=24ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 1.5x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 8, 13
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

28048 G2 GABLE 1 1 Job Reference (optional) C&R Building Supply, Autryville NC 8.430 s Jan 20 2021 MiTek Industries, Inc. Tue Jul 23 08:48:07 2024 Page ID:zl_JIG_52gkwxPrTOJGSQTzpbB4-alMQeJapAacwjLOtFeuAiCJNUYuG4uPcUuVWcfyvF -1-6-0 4-3-14 8-4-4 12-4-10 16-8-8 18-2-8 1-6-0 4-3-14 1-6-0							
C&R Building Supply, Autryville NC 8 & 30 s Jan 20 2021 MTG kill MTG ki Industries; Inc. Tue Jul 23 08:48:07 2024 Page ID21 JIG. 52glovs/PrTCJGSQTzpb84-alMQe.lap/bacwjl.ClFeuAlCJMVVvGdu/PcJUvVVdyvf 12-4:10 16-3-8 16-3-	Job	Truss	Truss Type	Qty	Ply	Michael Smith	
C&R Building Supply, Autryville NC 8 & 30 s Jan 20 2021 MTG kill MTG ki Industries; Inc. Tue Jul 23 08:48:07 2024 Page ID21 JIG. 52glovs/PrTCJGSQTzpb84-alMQe.lap/bacwjl.ClFeuAlCJMVVvGdu/PcJUvVVdyvf 12-4:10 16-3-8 16-3-	28048	G2	GARLE	1	1		
C&R Building Supply, Autryville NC 8.43 s Jan 20 2021 Mirke Industries, Inc. Tue Jul 23 08:48:07 2024 Page ID21_JIG 520/WWP/TOJGSOT2pbB4-alMoeJapAsoviColFeuAiciNNUvdeyNPdVMVdyVfyFide Id-8-8 IB-2-8	20040	02	GABLE	1	'	Job Reference (options	al)
102 JIG S20kmPrTOJGSGTzpbB4-alMQeJapAsow)LOFFeuACNUVvG4uPcJuvWcfyM	C&R Building Supply	y, Autryville NC		8.430 s	Jan 20 202		
Scale = 1.3	0	•		ID:zl_JIG_52	2gkwxPrTOJ0	GSQTzpbB4-alMQeJapAac	wjLOtFeuAiCJNUYuG4uPcUuVWcfyvFDs
Scale = 1.3		1-6-0 4-3	3-14 8-4-4 3-14 4-0-6				18-2-8
Section Sect		1-0-0 4-0	7-0-0	7	-0-0	4-0-14	1-0-0
Solution Section Sec				4x4 =			Scale = 1:38.1
S4-4 S4-4 S4-4 Plate Offsets (X,Y) [3:0-0-7,0-2-0], [5:0-0-7,0-2-0] SPACING- 2-0-0 CSI. DEFL. in (loc) I/defl L/d PLATES GRIP CSI	Ó	2	4x4 / 3 ST3 ST3 ST1 W3 ST1 W3 ST1 W3 ST1 W3 ST1 W3 ST3 S	9 9	W3	4x4 \\ 5 T1 ST2 ST2 W2	7 11-10
Section Sect		1	8-4-4	ı			T
LOADING (psf) SPACING- 2-0-0 CSI. DEFL. in (loc) I/defl L/d PLATES GRIP TCLL 20.0 Plate Grip DOL 1.15 TC 0.46 Vert(LL) -0.06 8-9 >999 360 MT20 244/190 TCDL 10.0 Lumber DOL 1.15 BC 0.27 Vert(CT) -0.12 9-11 >999 240 BCLL 0.0 * Rep Stress Incr YES WB 0.27 Horz(CT) 0.01 8 n/a n/a	DI 1 0% 1 000	[0.0.0.7.0.0.01.75.0.0	8-4-4	ı		8-4-4	
TCLL 20.0 Plate Grip DOL 1.15 TC 0.46 Vert(LL) -0.06 8-9 >999 360 MT20 244/190 TCDL 10.0 Lumber DOL 1.15 BC 0.27 Vert(CT) -0.12 9-11 >999 240 BCLL 0.0 * Rep Stress Incr YES WB 0.27 Horz(CT) 0.01 8 n/a n/a	Plate Offsets (X,Y)	[3:0-0-7,0-2-0], [5:0-0	J-1,U-Z-U]				
DCDL 10.0 Code INC2016/17/2014 IVIALITX-AS WITHULL) 0.01 9 >999 240 Weight: 128 lb F1 = 20%	TCLL 20.0 TCDL 10.0 BCLL 0.0 *	Plate Grip DOL Lumber DOL Rep Stress Incr	1.15 TC 0.46 1.15 BC 0.27 YES WB 0.27	Vert(LL) -0 Vert(CT) -0 Horz(CT) 0	0.06 8-9 0.12 9-11 0.01 8	>999 360 >999 240 n/a n/a	MT20 244/190
	DCDL 10.0	Code INC2010/11	IVIALITX-AS	VVIIIu(LL) C	7.01 9	7939 Z4U	Weight. 120 b F1 - 20%

BRACING-

TOP CHORD

BOT CHORD

verticals.

Rigid ceiling directly applied.

Structural wood sheathing directly applied, except end

MiTek recommends that Stabilizers and required cross

bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

LUMBER-

TOP CHORD 2x4 SP 2400F 2.0E BOT CHORD 2x4 SP 2400F 2.0E WEBS 2x4 SP No.2 *Except*

W1: 2x4 SP No.3

OTHERS 2x4 SP No.3

REACTIONS.

(lb/size) 11=755/0-3-8 (min. 0-1-8), 8=755/0-3-8 (min. 0-1-8)

Max Horz 11=173(LC 7)

Max Uplift11=-107(LC 8), 8=-107(LC 8)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-281/31, 3-4=-612/102, 4-5=-612/102, 5-6=-281/31, 2-11=-330/103,

6-8=-330/103

BOT CHORD 10-11=0/595, 9-10=0/595, 8-9=0/559 WEBS 4-9=-25/402, 3-11=-538/74, 5-8=-538/74

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 1.5x4 MT20 unless otherwise indicated.
- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 11=107, 8=107.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

 Continued on page 2

Job	Truss	Truss Type	Qty	Ply	Michael Smith
28048	G2	GABLE	1	1	
					Job Reference (optional)

8.430 s Jan 20 2021 MiTek Industries, Inc. Tue Jul 23 08:48:07 2024 Page 2 ID:zl_JIG_52gkwxPrTOJGSQTzpbB4-alMQeJapAacwjLOtFeuAiCJNUYuG4uPcUuVWcfyvFDs

28048 G3 Common Supported Gable 1 1 Job Reference (optional) C&R Building Supply, Autryville NC 8.430 s Jan 20 2021 MiTek Industries, Inc. Tue Jul 23 08:48 ID:zl_JIG_52gkwxPrTOJGSQTzpbB4-2xworfaRxtknKUz4oMPPFQreCy 99-8 10-8-0-10-8 4-10-12 4-10-12 4-10-12 4x4 =	
C&R Building Supply, Autryville NC 8.430 s Jan 20 2021 MiTek Industries, Inc. Tue Jul 23 08:48 ID:zl_JIG_52gkwxPrTOJGSQTzpbB4-2xworfaRxtknKUz4oMPPFQreCy -0-10-8 4-10-12 9-9-8 10-8-0 10-10-8	
ID:zl_JIG_52gkwxPrTOJGSQTzpbB4-2xworfaRxtknKUz4oMPPFQreCy -0-10-8	
0-10-8 4-10-12 4-10-12 0-10-8	
4x4 =	
	Scale = 1:23.4
4	
8.00 12 1.5x4	
5.55172	
3	
9-7-7-7-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	
9 d st2	
\$T1	
	15
	0-5-12
	-3
10 9 8	
2x4 =	
9-9-8	
9-9-8 Plate Offsets (X,Y) [6:0-1-8,Edge]	
LOADING (psf) SPACING- 2-0-0 CSI. DEFL. in (loc) I/defl L/d PLATES	GRIP
TCLL 20.0 Plate Grip DOL 1.15 TC 0.08 Vert(LL) 0.00 6 n/r 120 MT20	244/190
TCDL 10.0 Lumber DOL 1.15 BC 0.06 Vert(CT) 0.00 7 n/r 120 BCLL 0.0 * Rep Stress Incr YES WB 0.04 Horz(CT) 0.00 6 n/a n/a	
BCDL 10.0 Code IRC2018/TPI2014 Matrix-S Weight: 46 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SP No.3 OTHERS

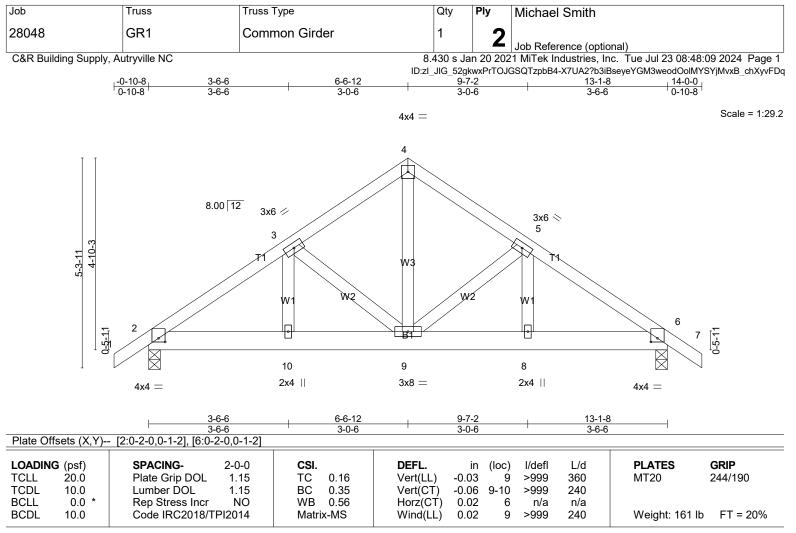
BRACING-

TOP CHORD BOT CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. All bearings 9-9-8.

(lb) - Max Horz 2=86(LC 7)


Max Uplift All uplift 100 lb or less at joint(s) 2, 6, 10, 8

Max Grav All reactions 250 lb or less at joint(s) 2, 6, 9, 10, 8

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=24ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6, 10
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x6 SP No.1 WEBS 2x4 SP No.3 **BRACING-**

TOP CHORD BOT CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS.

(lb/size) 2=2902/0-3-8 (min. 0-1-12), 6=2902/0-3-8 (min. 0-1-12)

Max Horz 2=-111(LC 6)

Max Uplift2=-250(LC 8), 6=-250(LC 8) Max Grav 2=2967(LC 13), 6=2967(LC 14)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-3827/302, 3-4=-2701/253, 4-5=-2701/253, 5-6=-3828/302 BOT CHORD 2-10=-177/3232, 9-10=-177/3232, 8-9=-177/3169, 6-8=-177/3169

WEBS 4-9=-219/2782, 5-9=-1249/135, 5-8=-55/1230, 3-9=-1248/135, 3-10=-55/1228

NOTES-

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:

Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc.

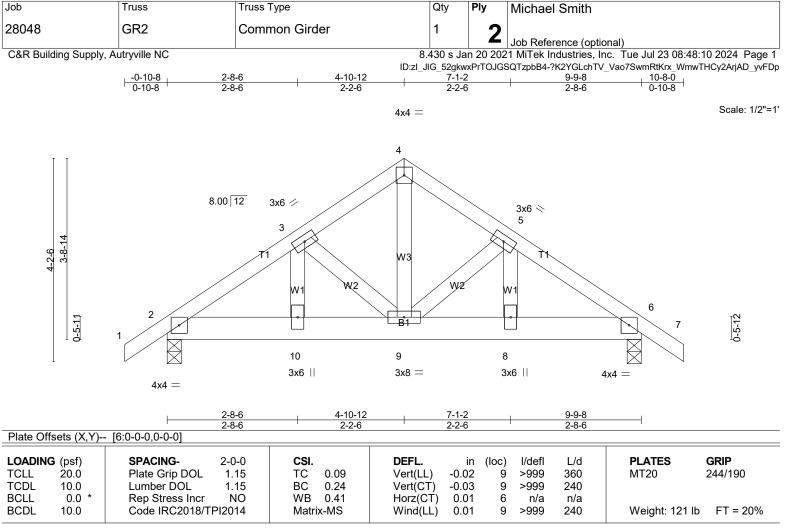
Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc.

Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.

2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

3) Unbalanced roof live loads have been considered for this design.

- 4) Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (it=lb) 2=250, 6=250.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 9) Girder carries tie-in span(s): 20-0-0 from 0-0-0 to 13-1-8


COAD GASE(\$) 958 and ard

Job	Truss	Truss Type	Qty	Ply	Michael Smith
28048	GR1	Common Girder	1	2	Job Reference (optional)

8.430 s Jan 20 2021 MiTek Industries, Inc. Tue Jul 23 08:48:09 2024 Page 2 ID:zI_JIG_52gkwxPrTOJGSQTzpbB4-X7UA2?b3iBseyeYGM3weodOolMYSYjMvxB_chXyvFDq

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-4=-60, 4-7=-60, 11-14=-374(F=-354)

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x6 SP No.1 WEBS 2x4 SP No.3 **BRACING-**

TOP CHORD BOT CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS.

(lb/size) 2=2178/0-3-8 (min. 0-1-8), 6=2178/0-3-8 (min. 0-1-8)

Max Horz 2=-86(LC 6)

Max Uplift2=-194(LC 8), 6=-194(LC 8) Max Grav 2=2225(LC 13), 6=2225(LC 14)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-2728/212, 3-4=-1993/185, 4-5=-1993/185, 5-6=-2727/212 BOT CHORD 2-10=-112/2304, 9-10=-112/2304, 8-9=-112/2259, 6-8=-112/2259 WEBS 4-9=-159/2037, 5-9=-823/90, 5-8=-38/827, 3-9=-824/90, 3-10=-37/828

NOTES-

- 1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:
 - Top chords connected as follows: 2x4 1 row at 0-9-0 oc.
 - Bottom chords connected as follows: 2x6 2 rows staggered at 0-9-0 oc.

Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.

- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 3) Unbalanced roof live loads have been considered for this design.
- 4) Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=194, 6=194.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 9) Girder carries tie-in span(s): 20-0-0 from 0-0-0 to 9-9-8

COAD GASE(\$) 95 and ard

Job	Truss	Truss Type	Qty	Ply	Michael Smith
28048	GR2	Common Girder	1	2	Job Reference (optional)

8.430 s Jan 20 2021 MiTek Industries, Inc. Tue Jul 23 08:48:10 2024 Page 2 ID:zl_JIG_52gkwxPrTOJGSQTzpbB4-?K2YGLchTV_Vao7SwmRtKrx_WmwTHCy2ArjAD_yvFDp

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-4=-60, 4-7=-60, 11-14=-374(F=-354)

28048 M1 Monopitch 7 1 Job Reference (optional) C&R Building Supply, Autryville NC 8.430 s Jan 20 2021 MiTek Industries, Inc. Tue Jul 23 08:48:11 2024 Page ID:zl_JIG_52gkwxPrTOJGSQTzpbB4-TWcwThdJEo6MByifUUz6t2T3u9Dv0jFCPVTjIGyvFi 8-5-8 4-2-12 1.5x4 Scale = 1:36	Job	Truss	Truss Type		Qty	Ply	Michael Smith
C&R Building Supply, Autryville NC 8.430 s Jan 20 2021 MiTek Industries, Inc. Tue Jul 23 08:48:11 2024 Page ID:zl_JIG_52gkwxPrTOJGSQTzpbB4-TWcwThdJEo6MByifUJz6i2T3u9Dv0jFCPVTjIQyvFI 4-2-12 8.5-8 4-2-12 1.5x4 Scale = 1:36	28048	M1	Monopitch		7	1	
C&R Building Supply, Autryville NC 8.430 s Jan 20 2021 MiTek Industries, Inc. Tue Jul 23 08:48:11 2024 Page ID:zl_JIG_52gkwxPrTOJGSQTzpbB4-TWcwThdJEo6MByifUUz6i2T3u9Dv0jFCPVTjICyvFI 4-2-12 1.5x4 Scale = 1:36			'				Job Reference (optional)
1.5x4 Scale = 1:36	C&R Building S	upply, Autryville NC			8.430 s J	lan 20 20	21 MiTek Industries, Inc. Tue Jul 23 08:48:11 2024 Page
1.5x4 Scale = 1:36					ID:zl_JIG_5		
1.5x4 Scale = 1:36 8.00 12 4x4 W4			-1-6-0		_	8-5-8	8
8.00 12 4x4 = 3 1.5x4 1			1-6-0	4-2-12		4-2-1	2
8.00 12 4x4 // W4							1.5x4 Scale = 1:36
8.00 \[\frac{12}{4x4} \]							
4x4 // 3 // 1.5x4 W4		Ţ	ī				4
4x4 // 3 // 1.5x4 W4							P
4x4 // 3 // 1.5x4 W4							
4x4 // 3 // 1.5x4 W4						/	
4x4 // 3 // 1.5x4 W4				8 00 12			
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7					, ,	//	
71.5x4 W4				7.7			
1.5x4				3	///		
1.5x4		4-7-		И			W4
1.5x4		71.9					
1.5x4 W2 W3		9					
1.5x4 W2 W3							
			1.5x4	//\M2		W3	
2 /// /^2			, /	///***			

8-5-8	
8-5-8	

LOADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL	20.Ó	Plate Grip DOL	1.15	TC	0.50	Vert(LL)	-0.19	`5 - 6	>525	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.42	Vert(CT)	-0.37	5-6	>262	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.15	Horz(CT)	0.00	5	n/a	n/a		
BCDL	10.0	Code IRC2018/TF	PI2014	Matri	x-AS	Wind(LL)	0.00	6	****	240	Weight: 55 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP 2400F 2.0E

WEBS 2x4 SP No.3

BRACING-

TOP CHORD

Structural wood sheathing directly applied, except end verticals.

verti BOT CHORD Rigid

Rigid ceiling directly applied.

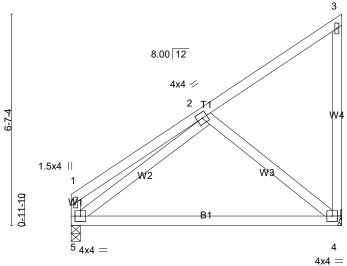
5 4x4 =

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (lb/size) 5=317/Mechanical, 6=435/0-3-8 (min. 0-1-8)

Max Horz 6=251(LC 5)

Max Uplift5=-81(LC 5), 6=-73(LC 8) Max Grav5=348(LC 13), 6=435(LC 1)


FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WEBS 3-6=-285/0

NOTES.

- 1) Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 6.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

Job	Truss	Truss Type	Qty	Ply	Michael Smith
28048	M2	Monopitch	5	1	
		· ·			Job Reference (optional)
C&R Building S	Supply, Autryville NC	·	8.430 s	Jan 20 20	21 MiTek Industries, Inc. Tue Jul 23 08:48:13 2024 Page 1
ŭ					QTzpbB4-PvjhuMeZmQM4RGs1bv?ayTZPOzvMUdmVspyqqJyvFDm
		4-2-12	0	8-5-8	
		4-2-12		4-2-12	
					1.5x4 Scale = 1:36.0
					3
					, and the second

LOADING (psf) TCLL 20.0	SPACING- 2-0-0 Plate Grip DOL 1.15	CSI. TC 0.50	DEFL . ir Vert(LL) -0.19) `4-Ś	l/defl >525	L/d 360		GRIP 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.42	Vert(CT) -0.37	7 4-5	>262	240		
BCLL 0.0 ³	Rep Stress Incr YES	WB 0.15	Horz(CT) 0.00) 4	n/a	n/a		
BCDL 10.0	Code IRC2018/TPI2014	Matrix-AS	Wind(LL) 0.00) 5	****	240	Weight: 53 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP 2400F 2.0E **WEBS**

2x4 SP No.3

BRACING-

TOP CHORD

verticals.

BOT CHORD Rigid ceiling directly applied.

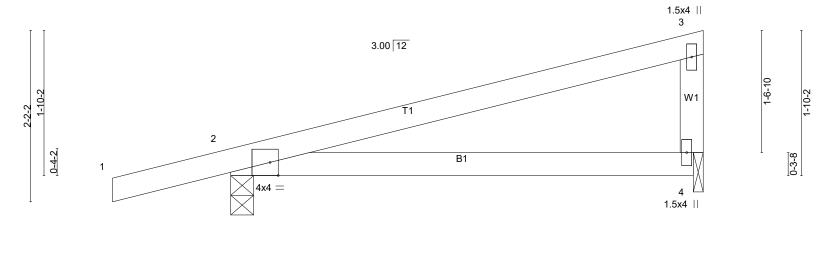
> MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

Structural wood sheathing directly applied, except end

REACTIONS. (lb/size) 4=327/Mechanical, 5=327/0-3-8 (min. 0-1-8)

Max Horz 5=233(LC 5)

Max Uplift4=-81(LC 5), 5=-13(LC 8) Max Grav4=357(LC 13), 5=327(LC 1)


FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WEBS 2-4=-258/139, 2-5=-282/23

- 1) Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 5.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

Job	Truss	Truss Type	Qty	Ply	Michael Smith		
28048	M3	Monopitch	1 1				
					Job Reference (optional)		
C&R Building Supply, A	utryville NC	8.	430 s Ja	n 20 20	21 MiTek Industries, Inc. Tue Jul 23 08:48:13 2024 Page 1		
		ID:zl_	JIG_52gkv	/xPrTOJ0	SSQTzpbB4-PvjhuMeZmQM4RGs1bv?ayTZQ?zzwUf4VspyqqJyvFDm		
	-1-6-0		6-0-0				
	1-6-0		6-0-0		1		

Scale = 1:14.6

Plate Of	Plate Offsets (X,Y) [2:0-1-4,Edge]											
LOADIN	G (psf)	SPACING- 2-	-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.Ó	Plate Grip DOL 1	1.15	TC	0.40	Vert(LL)	-0.04	`4-Ź	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL 1	1.15	BC	0.19	Vert(CT)	-0.09	4-7	>824	240		
BCLL	0.0 *	Rep Stress Incr Y	/ES	WB	0.00	Horz(CT)	0.00	2	n/a	n/a		
BCDL	10.0	Code IRC2018/TPI2	014	Matri	x-AS	Wind(LL)	0.03	4-7	>999	240	Weight: 22 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP 2400F 2.0E WEBS 2x4 SP No.3 BRACING-

TOP CHORD

Structural wood sheathing directly applied, except end verticals.

verticals

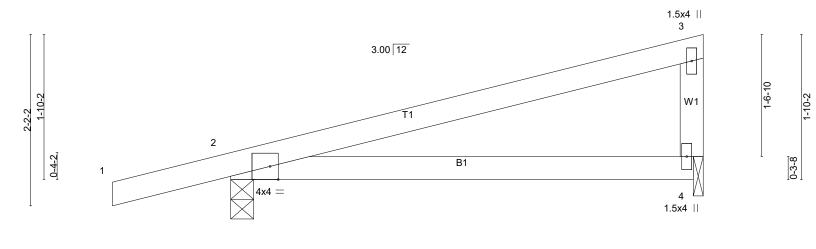
BOT CHORD Rigid ceiling directly applied.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (lb/size) 2=336/0-3-8 (min. 0-1-8), 4=223/0-1-8 (min. 0-1-8)

Max Horz 2=62(LC 7)

Max Uplift2=-80(LC 4), 4=-17(LC 4)


FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=24ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 4) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

Job	Truss	Truss Type	Qty	Ply	Michael Smith		
28048	M4	Monopitch	6 1				
		·			Job Reference (optional)		
C&R Building Supply, A	utryville NC	8	430 s Ja	n 20 202	11 MiTek Industries, Inc. Tue Jul 23 08:48:14 2024 Page 1		
		ID	zl_JIG_52	gkwxPrT0	DJGSQTzpbB4-t5H36ifCXjUx2PRE9cWpVh5bkNI9D6Je5ThNMlyvFDI		
	-1-6-0		6-0-0				
	1-6-0		6-0-0				

Scale = 1:14.6

Plate Off	Plate Offsets (X,Y) [2:0-1-4,Edge]											
LOADING	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.40	Vert(LL)	-0.04	4-7	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.19	Vert(CT)	-0.09	4-7	>824	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	2	n/a	n/a		
BCDL	10.0	Code IRC2018/Ti	PI2014	Matri	x-AS	Wind(LL)	0.03	4-7	>999	240	Weight: 22 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP 2400F 2.0E WEBS 2x4 SP No.3 BRACING-

TOP CHORD
BOT CHORD

Structural wood sheathing directly applied, except end verticals.

verticals

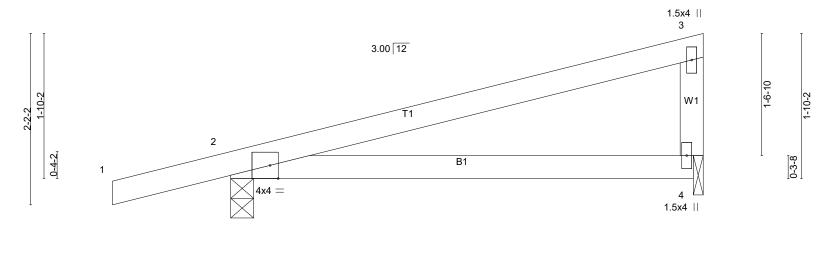
Rigid ceiling directly applied.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (lb/size) 2=336/0-3-8 (min. 0-1-8), 4=223/0-1-8 (min. 0-1-8)

Max Horz 2=62(LC 7)

Max Uplift2=-80(LC 4), 4=-17(LC 4)


FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 4) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

Job	Truss	Truss Type	Qty	Ply	Michael Smith			
28048	M5	Monopitch	1	1 1				
		·			Job Reference (optional)			
C&R Building Supply, A	utryville NC	8.	430 s Ja	n 20 202	21 MiTek Industries, Inc. Tue Jul 23 08:48:15 2024 Page 1			
		ID:zl	_JIG_52gl	wxPrTOJ	IGSQTzpbB4-LHrRJ2gql1cngZ0QjK121uemUneOyZZnK7RxuByvFDk			
	-1-6-0		6-0-0					
	1-6-0		6-0-0					

Scale = 1:14.6

6-0-0 Plate Offsets (X,Y)-- [2:0-1-4,Edge] LOADING (psf) SPACING-2-0-0 CSI. DEFL. I/defl L/d **PLATES GRIP** (loc) in 20.0 Plate Grip DOL 1.15 TC 0.40 Vert(LL) TCLL -0.04 4-7 >999 360 MT20 244/190 TCDL 10.0 Lumber DOL 1.15 ВС 0.19 Vert(CT) -0.09 4-7 >824 240 0.0 Rep Stress Incr 0.00 Horz(CT) BCLL YES WB 0.00 2 n/a n/a BCDL 10.0 Code IRC2018/TPI2014 Matrix-AS Wind(LL) 0.03 4-7 >999 240 Weight: 22 lb FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP 2400F 2.0E WEBS 2x4 SP No.3 BRACING-

TOP CHORD

6-0-0

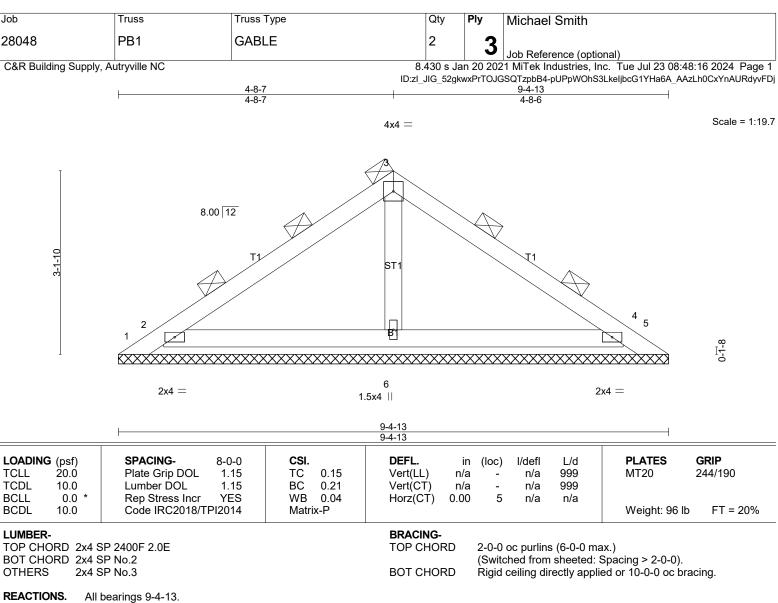
Structural wood sheathing directly applied, except end

verticals.

BOT CHORD Rigid ceiling directly applied.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (lb/size) 2=336/0-3-8 (min. 0-1-8), 4=223/0-1-8 (min. 0-1-8)


Max Horz 2=62(LC 7)

Max Uplift2=-80(LC 4), 4=-17(LC 4)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 4) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

(lb) - Max Horz 1=-265(LC 6)

Max Uplift All uplift 100 lb or less at joint(s) except 1=-866(LC 13), 5=-761(LC 14), 2=-615(LC 8),

4=-615(LC 8)

Max Grav All reactions 250 lb or less at joint(s) except 1=419(LC 8), 5=419(LC 8), 2=1731(LC 13),

4=1672(LC 14), 6=981(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-280/650, 2-3=-464/177, 3-4=-453/177, 4-5=-193/425

WEBS 3-6=-587/56

NOTES-

1) 3-ply truss to be connected together with 10d (0.131"x3") nails as follows:

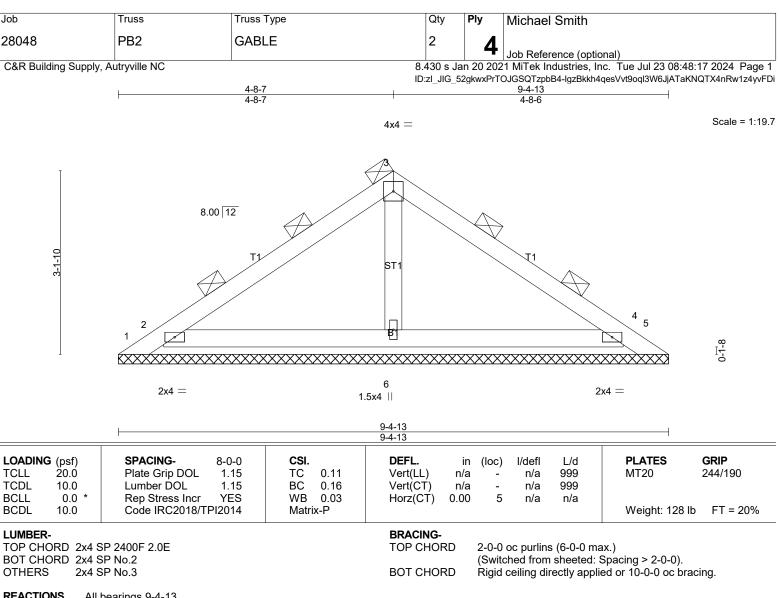
Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc.

Bottom chords connected as follows: 2x4 - 1 row at 0-9-0 oc.

2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

3) Unbalanced roof live loads have been considered for this design.

- 4) Wind: ASCE 7-16: Vult=140mph (3-second gust) Vasd=111mph: TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=24ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed: Lumber DOL=1.60 plate grip DOL=1.60
- 5) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 4-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 866 lb uplift at joint 1, 761 lb uplift at joint 5, 615 lb uplift at joint 2 and 615 lb uplift at joint 4.


Continued on page 2

Job	Truss	Truss Type	Qty	Ply	Michael Smith
28048	PB1	GABLE	2	3	Job Reference (optional)

8.430 s Jan 20 2021 MiTek Industries, Inc. Tue Jul 23 08:48:16 2024 Page 2 ID:zl_JIG_52gkwxPrTOJGSQTzpbB4-pUPpW0hS3LkeljbcG1YHa6A_AAzLh0CxYnAURdyvFDj

NOTES-

11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 12) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

REACTIONS. All bearings 9-4-13.

(lb) - Max Horz 1=-265(LC 6)

Max Uplift All uplift 100 lb or less at joint(s) except 1=-866(LC 13), 5=-761(LC 14), 2=-615(LC 8),

4=-615(LC 8)

Max Grav All reactions 250 lb or less at joint(s) except 1=419(LC 8), 5=419(LC 8), 2=1731(LC 13),

4=1672(LC 14), 6=981(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-280/650, 2-3=-464/177, 3-4=-453/177, 4-5=-193/425

WEBS 3-6=-587/56

NOTES-

1) 4-ply truss to be connected together with 10d (0.131"x3") nails as follows:

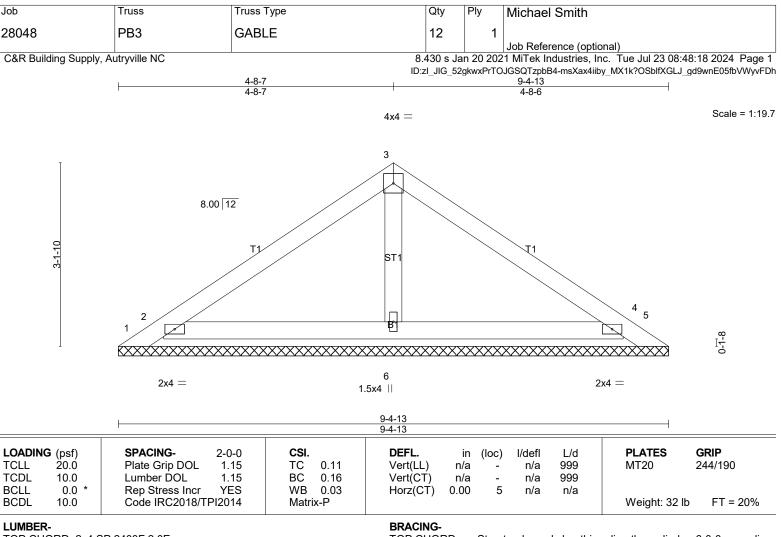
Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc.

Bottom chords connected as follows: 2x4 - 1 row at 0-9-0 oc.

Attach TC w/ 1/2" diam. bolts (ASTM A-307) in the center of the member w/washers at 4-0-0 oc.

2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

3) Unbalanced roof live loads have been considered for this design.


- 4) Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=24ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 5) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 4-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 866 lb uplift at joint 1, 761 lb uplift at joint 5, 615 lb uplift at joint 2 and 615 lb uplift at joint 4. Continued on page 2

Job	Truss	Truss Type	Qty	Ply	Michael Smith
28048	PB2	GABLE	2	4	Job Reference (optional)

8.430 s Jan 20 2021 MiTek Industries, Inc. Tue Jul 23 08:48:17 2024 Page 2 ID:zl_JIG_52gkwxPrTOJGSQTzpbB4-lgzBkkh4qesVvt9oql3W6JjATaKNQTX4nRw1z4yvFDi

NOTES-

11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 12) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

TOP CHORD 2x4 SP 2400F 2.0E BOT CHORD 2x4 SP No.2

OTHERS 2x4 SP No.3

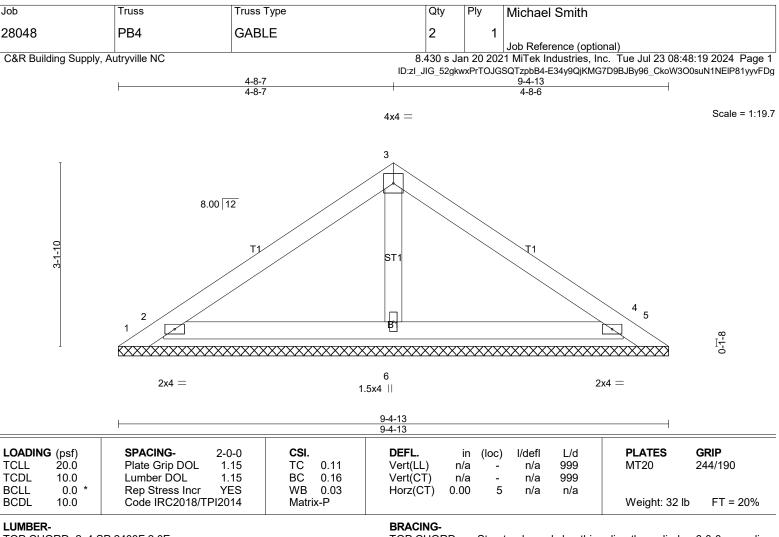
TOP CHORD BOT CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. All bearings 9-4-13.

(lb) - Max Horz 1=-66(LC 6)

Max Uplift All uplift 100 lb or less at joint(s) except 1=-217(LC 13), 5=-190(LC 14), 2=-154(LC 8), 4=-154(LC 8)


Max Grav All reactions 250 lb or less at joint(s) 1, 5, 6 except

2=433(LC 13), 4=418(LC 14)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=24ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 4-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 217 lb uplift at joint 1, 190 lb uplift at joint 5, 154 lb uplift at joint 2 and 154 lb uplift at joint 4.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

TOP CHORD 2x4 SP 2400F 2.0E BOT CHORD 2x4 SP No.2

OTHERS 2x4 SP No.3

TOP CHORD BOT CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. All bearings 9-4-13.

(lb) - Max Horz 1=-66(LC 6)

Max Uplift All uplift 100 lb or less at joint(s) except 1=-217(LC 13), 5=-190(LC 14), 2=-154(LC 8), 4=-154(LC 8)

Max Grav All reactions 250 lb or less at joint(s) 1, 5, 6 except 2=433(LC 13), 4=418(LC 14)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=24ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 4-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 217 lb uplift at joint 1, 190 lb uplift at joint 5, 154 lb uplift at joint 2 and 154 lb uplift at joint 4.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

Job Truss Truss Type Qty Ply	Michael Smith
28048 T1 Common 5 1	
	Job Reference (optional)
	21 MiTek Industries, Inc. Tue Jul 23 08:48:20 2024 Page 1
ID:zi_JIG_52gkwxPri	DJGSQTzpbB4-iFeKMmky6ZF4nKuNVtdDkyLhioLvdpVWTP8iaPyvFDf
-0-10-8	13-1-8 3-4-14 14-0-0 0-10-8
	Scale = 1:29.2
4x4 =	State - 1.29.2
4	
8.00 12	
1.5x4	1.5x4 //
	5
11-4 6. 11-4 8. 3	
11 61 W2 W2	The state of the s
ıd	
W W	
- 2	6 _ ,-
	7 5
	·o
1 🗸 🖹	
4x4 = 3x8 =	4x4 =
6-6-12	13-1-8 6-6-12
6-6-12	6-6-12
LOADING (psf) SPACING- 2-0-0 CSI. DEFL. in (loc) I/defl L/d PLATES GRIP
TCLL 20.0 Plate Grip DOL 1.15 TC 0.11 Vert(LL) -0.02 8-11	1 >999 360 MT20 244/190
TCDL 10.0 Lumber DOL 1.15 BC 0.17 Vert(CT) -0.05 8-11 BCLL 0.0 * Rep Stress Incr YES WB 0.08 Horz(CT) 0.01 6	
	6 n/a n/a 3 >999 240 Weight: 64 lb FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP 2400F 2.0E
WEBS 2x4 SP No.2

BRACING-

TOP CHORD BOT CHORD Structural wood sheathing directly applied. Rigid ceiling directly applied.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (lb/size) 2=578/0-3-8 (min. 0-1-8), 6=578/0-3-8 (min. 0-1-8)

Max Horz 2=-111(LC 6)

Max Uplift2=-70(LC 8), 6=-70(LC 8)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-701/85, 3-4=-537/77, 4-5=-537/77, 5-6=-701/85

BOT CHORD 2-8=0/556, 6-8=0/545

WEBS 4-8=-13/373

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 70 lb uplift at joint 2 and 70 lb uplift at joint 6.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

28048	T4	Common	3	1	Job Reference (optior	nal)
C&R Building Supply, A	utrwille NC		8 430 s .lan			:. Tue Jul 23 08:48:21 2024 Page 1
our Counting Supply, 7	idi y viiio i vo	I				NxOUTa3a8SH9umyBfYMDsgi3uF6ryvFDe
_	-1-6-0 4-3-14 1-6-0 4-3-14	8-4-4 4-0-6	12-4-1	0	16-8-8 4-3-14	18-2-8 1-6-0
ı	1-6-0 4-3-14	4-0-6	4-0-6	6	4-3-14	1-6-0
		4x4 :	=			Scale = 1:38.1
6-11-1	8.00 12 1.5x4 W2	4x4 // W3 W4	w		4x4 \ 5	1.5x4
0-11-10	2 111 3x6 =	$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	=	B2		7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
		8-4-4 8-4-4			16-8-8 8-4-4	
LOADING (psf) TCLL 20.0 TCDL 10.0	Lumber DOL 1.	15 TC 0.46 Vert(15 BC 0.27 Vert(LL) -0.06 CT) -0.12	`8-9 9-11	l/defl L/d >999 360 >999 240	PLATES GRIP MT20 244/190
BCLL 0.0 * BCDL 10.0	Rep Stress Incr Yi Code IRC2018/TPI20	ES WB 0.27 Horz 14 Matrix-AS Wind			n/a n/a >999 240	Weight: 101 lb FT = 20%

Qty

LUMBER-

Job

TOP CHORD 2x4 SP 2400F 2.0E BOT CHORD 2x4 SP 2400F 2.0E WEBS 2x4 SP No.2 *Except*

W1: 2x4 SP No.3

Truss

BRACING-

TOP CHORD

Structural wood sheathing directly applied, except end verticals.

Vertic BOT CHORD Rigid

Rigid ceiling directly applied.

Michael Smith

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (

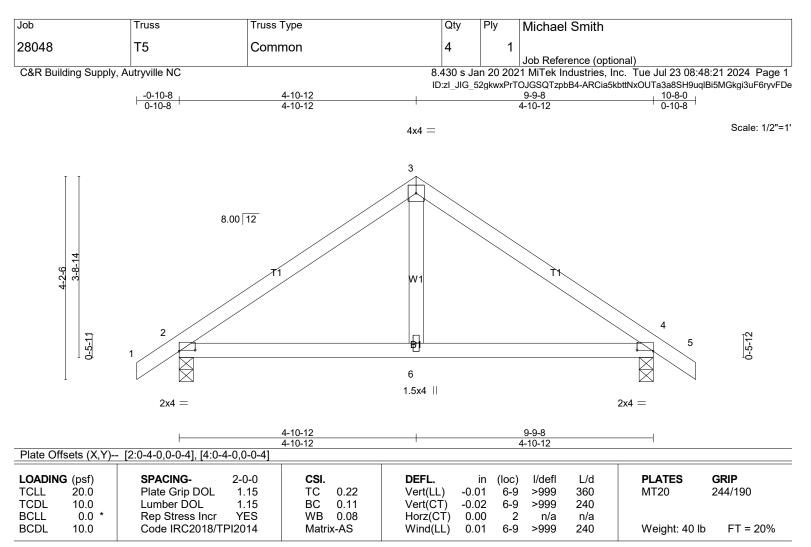
(lb/size) 11=755/0-3-8 (min. 0-1-8), 8=755/0-3-8 (min. 0-1-8)

Max Horz 11=173(LC 7)

Max Uplift11=-107(LC 8), 8=-107(LC 8)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-281/31, 3-4=-612/102, 4-5=-612/102, 5-6=-281/31, 2-11=-330/103,


Truss Type

6-8=-330/103

BOT CHORD 10-11=0/595, 9-10=0/595, 8-9=0/559 WEBS 4-9=-25/402, 3-11=-538/74, 5-8=-538/74

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 107 lb uplift at joint 11 and 107 lb uplift at joint 8.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP 2400F 2.0E WEBS 2x4 SP No.3 BRACING-

TOP CHORD BOT CHORD Structural wood sheathing directly applied. Rigid ceiling directly applied.

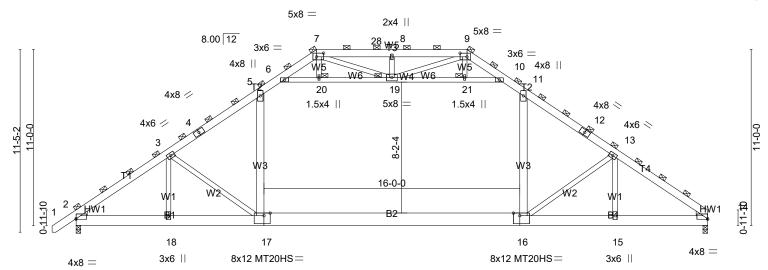
MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (lb/size) 2=444/0-3-8 (min. 0-1-8), 4=444/0-3-8 (min. 0-1-8)

Max Horz 2=-86(LC 6)

Max Uplift2=-60(LC 8), 4=-60(LC 8)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.


TOP CHORD 2-3=-461/55, 3-4=-461/55 BOT CHORD 2-6=0/321, 4-6=0/321

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 60 lb uplift at joint 2 and 60 lb uplift at joint 4.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

Job Qty Truss Truss Type Ply Michael Smith 28048 TG1 PIGGYBACK ATTIC 1 Job Reference (optional) C&R Building Supply, Autryville NC 8.430 s Jan 20 2021 MiTek Industries, Inc. Tue Jul 23 08:48:22 2024 Page 1 ID:zl JIG 52gkwxPrTOJGSQTzpbB4-eem4nRlDeBVo0e2mdlfhpNQukby05hspxjdoeHyvFDd 5-9-7 11-6-4 15-0-9 27-11-12 33-8-9 39-6-0

Scale = 1:72.0

	<u>'</u>	5-9-7	5-8-13	I		16-5-8		ı	5-8-13	5-9-7	
Plate Offs	sets (X,Y)	- [2:0-0-0,0-0-6], [7:0-	5-4,0-2-12 <u>]</u> ,	, [9:0-5-4,0	<u>-2-12], [14</u>	l:0-0-0,0-0-6], [1	6:0-4-12,Edge], [17:0-4	-12,Edge]		
LOADING	i (psf)	SPACING-	5-6-0	CSI.		DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.65	Vert(LL)	-0.35 16-17	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	ВС	0.51	Vert(CT)	-0.49 16-17	>961	240	MT20HS	187/143
BCLL	0.0 *	Rep Stress Incr	NO	WB	0.22	Horz(CT)	0.04 14	n/a	n/a		
BCDL	10.0	Code IRC2018/T	PI2014	Matr	ix-MS	Wind(LL)	-0.15 17-18	>999	240	Weight: 1064 lb	FT = 20%

27-11-12

BRACING-

TOP CHORD

BOT CHORD

JOINTS

33-8-9

(Switched from sheeted: Spacing > 2-0-0).

Rigid ceiling directly applied or 10-0-0 oc bracing.

2-0-0 oc purlins (6-0-0 max.)

1 Brace at Jt(s): 7, 9, 19, 20, 21

39-6-0

LUMBER-

TOP CHORD 2x6 SP No.1

BOT CHORD 2x8 SP 2400F 2.0E *Except*

B2: 2x10 SP 2400F 2.0E

5-9-7

WEBS 2x4 SP No.3 *Except*

W3: 2x6 SP No.1, W4: 2x4 SP 2400F 2.0E

WEDGE

Left: 2x4 SP No.3 , Right: 2x4 SP No.3

REACTIONS. (lb/size) 2=4804/0-3-8 (min. 0-1-9), 14=4567/0-3-8 (min. 0-1-9)

Max Horz 2=698(LC 7)

Max Uplift2=-332(LC 8), 14=-197(LC 8) Max Grav2=5772(LC 14), 14=5555(LC 15)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

5-8-13

11-6-4

3-6-5

TOP CHORD 2-3=-8131/362, 3-4=-8044/288, 4-5=-7650/382, 5-6=-6102/530,

6-7=-1856/321, 9-10=-1859/324, 10-11=-6099/529, 11-12=-7650/384, 12-13=-8044/290, 13-14=-8161/384, 7-28=-2350/514, 8-28=-2350/514,

8-9=-2350/514

BOT CHORD 2-18=-99/7017, 17-18=-99/7017, 16-17=0/6601, 15-16=-123/6562,

14-15=-123/6562

WEBS 5-17=0/3009, 11-16=0/3014, 6-20=-6213/321, 19-20=-6182/325,

19-21=-6173/321, 10-21=-6204/317, 3-18=-1253/320, 13-15=-1252/326,

3-17=-1198/676, 13-16=-1240/659, 7-19=-240/1598, 7-20=0/322,

8-19=-835/251, 9-19=-236/1593, 9-21=0/322

NOTES-

1) 3-ply truss to be connected together with 10d (0.131"x3") nails as follows:

Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc.

Bottom chords connected as follows: 2x8 - 2 rows staggered at 0-9-0 oc, 2x10 - 2 rows staggered at 0-9-0 oc.

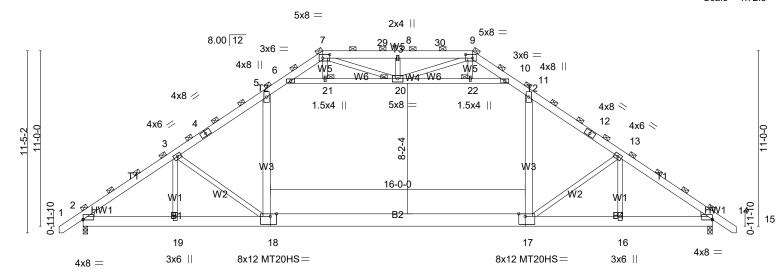
Webs connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc, 2x4 - 1 row at 0-9-0 oc.

2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

3) Unbalanced roof live loads have been considered for this design.

Continued on page 2

Job	Truss	Truss Type	Qty	Ply	Michael Smith
28048	TG1	PIGGYBACK ATTIC	1	3	Job Reference (optional)


8.430 s Jan 20 2021 MiTek Industries, Inc. Tue Jul 23 08:48:22 2024 Page 2 ID:zl JIG 52gkwxPrTOJGSQTzpbB4-eem4nRlDeBVo0e2mdlfhpNQukby05hspxjdoeHyvFDd

NOTES-

- 4) Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=40ft; eave=5ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 5) Provide adequate drainage to prevent water ponding.
- 6) All plates are MT20 plates unless otherwise indicated.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 9) Ceiling dead load (5.0 psf) on member(s). 5-6, 10-11, 6-20, 19-20, 19-21, 10-21
- 10) Bottom chord live load (40.0 psf) and additional bottom chord dead load (0.0 psf) applied only to room. 16-17
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 332 lb uplift at joint 2 and 197 lb uplift at joint 14.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 13) Attic room checked for L/360 deflection.

JOD	Truss		russ Type		Qty	Ply	Micha	iel Smith		
28048	TG2	A	ATTIC GIRDER		1	3				
)	Job Re	ference (optional)		
C&R Building Supply	, Autryville NC			8.4	430 s Ja	n 20 202	1 MiTek	Industries, Inc. Tu	e Jul 23 08:48:23	3 2024 Page 1
				ID:zl_	JIG_52gk	wxPrTOJ(GSQTzpb	B4-6qKT_nmrPUdfeod	lyB?AwMaz3V?IGq8	36z9NNMAjyvFDc
_r 1-6-0	5-9-7	11-6-	4 15-0-9	24-5-7		₁ 27-	-11-12	33-8-9	39-6-0	41-0-0
1-6-0	5-9-7	5-8-1	3 3-6-5	9-4-14		1 3	3-6-5	5-8-13	5-9-7	1-6-0

Scale = 1:72.3

	5-9-7 5-9-7	11-6-4 5-8-13	-	27-11-12 16-5-8			33-8-9 5-8-13	39-6-0 5-9-7	——
Plate Offsets (X,Y)-	- [2:0-0-0,0-0-6], [7	:0-5-4,0-2-12],	[9:0-5-4,0-2-12], [14:	0-0-0,0-0-6], [1	7:0-4-12,Edge	, [18:0 - 4	4-12,Edge]		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- Plate Grip DO Lumber DOL Rep Stress Ind Code IRC2018	1.15 cr NO	CSI. TC 0.65 BC 0.51 WB 0.22 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in (loc) -0.35 17-18 -0.49 17-18 0.04 14 -0.15 18-19	I/defI >999 >962 n/a >999	L/d 360 240 n/a 240	PLATES MT20 MT20HS Weight: 1076	GRIP 244/190 187/143

BRACING-

TOP CHORD

BOT CHORD

JOINTS

2-0-0 oc purlins (6-0-0 max.)

1 Brace at Jt(s): 7, 9, 20, 21, 22

(Switched from sheeted: Spacing > 2-0-0).

Rigid ceiling directly applied or 10-0-0 oc bracing.

LUMBER-

TOP CHORD 2x6 SP No.1

BOT CHORD 2x8 SP 2400F 2.0E *Except*

B2: 2x10 SP 2400F 2.0E

2x4 SP No.3 *Except*

W3: 2x6 SP No.1, W4: 2x4 SP 2400F 2.0E

WEDGE

WEBS

Left: 2x4 SP No.3, Right: 2x4 SP No.3

REACTIONS. (lb/size) 2=4800/0-3-8 (min. 0-1-9), 14=4800/0-3-8 (min. 0-1-9)

Max Horz 2=-717(LC 6)

Max Uplift2=-330(LC 8), 14=-330(LC 8) Max Grav 2=5770(LC 14), 14=5770(LC 15)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-8128/360, 3-4=-8034/281, 4-5=-7641/376, 5-6=-6095/525

6-7=-1856/322, 9-10=-1856/322, 10-11=-6095/525, 11-12=-7640/376, 12-13=-8034/281, 13-14=-8131/360, 7-29=-2350/515, 8-29=-2350/515,

8-30=-2350/515. 9-30=-2350/515

BOT CHORD 2-19=0/7045, 18-19=0/7045, 17-18=0/6627, 16-17=0/6511, 14-16=0/6511 **WEBS**

5-18=0/3008, 11-17=0/3008, 6-21=-6201/313, 20-21=-6171/317,

 $20-22 = -6170/317,\ 10-22 = -6201/313,\ 3-19 = -1248/320,\ 13-16 = -1251/324,$

3-18=-1200/671, 13-17=-1200/671, 7-20=-238/1595, 7-21=0/322,

8-20=-835/251, 9-20=-238/1595, 9-22=0/322

NOTES-

1) 3-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc.

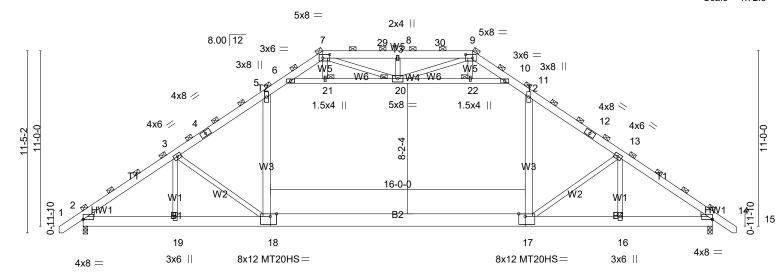
Bottom chords connected as follows: 2x8 - 2 rows staggered at 0-9-0 oc. 2x10 - 2 rows staggered at 0-9-0 oc.

Webs connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc, 2x4 - 1 row at 0-9-0 oc.

2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

3) Unbalanced roof live loads have been considered for this design.

Job	Truss	Truss Type	Qty	Ply	Michael Smith
28048	TG2	ATTIC GIRDER	1	3	Job Reference (optional)


8.430 s Jan 20 2021 MiTek Industries, Inc. Tue Jul 23 08:48:23 2024 Page 2 ID:zl JIG 52gkwxPrTOJGSQTzpbB4-6gKT nmrPUdfeodyB?AwMaz3V?IGq86z9NNMAjyvFDc

NOTES-

- 4) Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=40ft; eave=5ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 5) Provide adequate drainage to prevent water ponding.
- 6) All plates are MT20 plates unless otherwise indicated.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 9) Ceiling dead load (5.0 psf) on member(s). 5-6, 10-11, 6-21, 20-21, 20-22, 10-22
- 10) Bottom chord live load (40.0 psf) and additional bottom chord dead load (0.0 psf) applied only to room. 17-18
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 330 lb uplift at joint 2 and 330 lb uplift at joint 14.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 13) Attic room checked for L/360 deflection.

Job	Truss	Truss Type	Qty Piy	Michael Smith		
28048	TG3	Attic Girder	1 1	1		
			_	■ Job Reference (optional)		
C&R Building Supply, Au	utryville NC		8.430 s Jan 20 20	021 MiTek Industries, Inc. Tue	e Jul 23 08:48:24 2024 Page 1	
	-	I	D:zl_JIG_52gkwxPrT	TOJGSQTzpbB4-a0urC7nTAolWFy	C9kjh9uoWJcPd3Zaf6O16vjAyvFDb	
_r 1-6-0 _i	5-9-7 11-	6-4 15-0-9 24-5-	7 2	27-11-12 33-8-9	39-6-0 41-0-0	
1_6_0	5-9-7 5-8	_13 3_6_5 0_1_1	1	3-6-5 5-8-13	5-9-7 1-6-0	

Scale = 1:72.3

	5-9-7	11-6-4		27-11-12			33-8-9	39-6-0	
Plate Offsets (X	5-9-7 Y) [2:0-0-0,0-0-2],	5-8-13 [7:0-5-4 0-2-12]	[9:0-5-4 0-2-12] [14	16-5-8 :0-0-0 0-0-21 [1	7·0-4-12 Edge	1 [18:0-4	5-8-13 4-12 Edgel	5-9-7	<u> </u>
Tidle Onocio (X		[1.0 0 4,0 2 12],	[0.0 0 4,0 Z 1Z], [14	10 0 0,0 0 2], [1	7.0 + 12,Eugo	j, [10.0 ·	+ 12,Eugej		
LOADING (psf)	SPACING-	7-7-0	CSI.	DEFL.	in (loc)	I/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip D	OL 1.15	TC 0.37	Vert(LL)	-0.35 17-18	>999	360	MT20	244/190
TCDL 10.0	Lumber DOI	L 1.15	BC 0.54	Vert(CT)	-0.49 17-18	>971	240	MT20HS	187/143
BCLL 0.0	* Rep Stress	Incr NO	WB 0.27	Horz(CT)	0.05 14	n/a	n/a		
BCDL 10.0	Code IRC20)18/TPI2014	Matrix-MS	Wind(LL)	-0.15 18-19	>999	240	Weight: 1434 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

JOINTS

2-0-0 oc purlins (6-0-0 max.)

1 Brace at Jt(s): 7, 9, 20, 21, 22

(Switched from sheeted: Spacing > 2-0-0).

Rigid ceiling directly applied or 10-0-0 oc bracing.

LUMBER-

TOP CHORD 2x6 SP 2400F 2.0E

BOT CHORD 2x8 SP 2400F 2.0E *Except*

B2: 2x10 SP 2400F 2.0E

WEBS 2x4 SP No.3 *Except*

W3: 2x6 SP No.1, W4: 2x4 SP 2400F 2.0E

WEDGE

Left: 2x4 SP No.3, Right: 2x4 SP No.3

REACTIONS. (lb/size) 2=6618/0-3-8 (min. 0-1-10), 14=6618/0-3-8 (min. 0-1-10)

Max Horz 2=-988(LC 6)

Max Uplift2=-455(LC 8), 14=-455(LC 8) Max Grav 2=7955(LC 14), 14=7955(LC 15)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-11233/495, 3-4=-11066/388, 4-5=-10540/519, 5-6=-8410/723,

6-7=-2612/448, 9-10=-2612/448, 10-11=-8409/723, 11-12=-10540/519,

12-13=-11065/388, 13-14=-11238/495, 7-29=-3224/707, 8-29=-3224/707,

8-30=-3224/707. 9-30=-3224/707

BOT CHORD 2-19=0/9711, 18-19=0/9711, 17-18=0/9137, 16-17=0/8974, 14-16=0/8974 **WEBS**

5-18=0/4142, 11-17=0/4142, 6-21=-8522/427, 20-21=-8479/433,

20-22=-8479/433, 10-22=-8521/427, 3-19=-1640/441, 13-16=-1645/447,

3-18=-1652/929. 13-17=-1652/929. 7-20=-321/2196. 7-21=0/440.

8-20=-1110/341, 9-20=-321/2196, 9-22=0/440

NOTES-

1) 4-ply truss to be connected together with 10d (0.131"x3") nails as follows:

Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc.

Bottom chords connected as follows: 2x8 - 2 rows staggered at 0-9-0 oc. 2x10 - 2 rows staggered at 0-9-0 oc.

Webs connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc, 2x4 - 1 row at 0-9-0 oc.

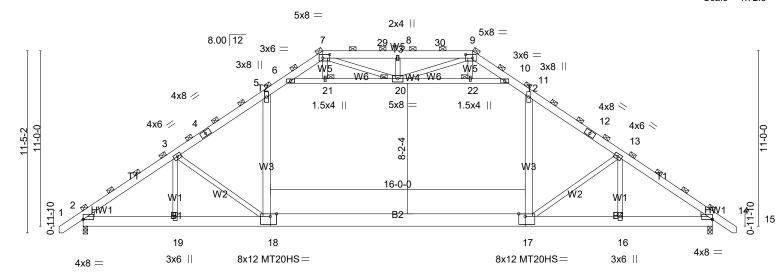
Attach TC w/ 1/2" diam. bolts (ASTM A-307) in the center of the member w/washers at 4-0-0 oc. Attach BC w/ 1/2" diam. bolts (ASTM A-307) in the center of the member w/washers at 4-0-0 oc.

2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

3) Unbalanced roof live loads have been considered for this design.

Continued on page 2

Job	Truss	Truss Type	Qty	Ply	Michael Smith
28048	TG3	Attic Girder	1	4	Job Reference (optional)


8.430 s Jan 20 2021 MiTek Industries, Inc. Tue Jul 23 08:48:24 2024 Page 2 ID:zl JIG 52gkwxPrTOJGSQTzpbB4-a0urC7nTAolWFyC9kjh9uoWJcPd3Zaf6O16vjAyyFDb

NOTES-

- 4) Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=40ft; eave=5ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 5) Provide adequate drainage to prevent water ponding.
- 6) All plates are MT20 plates unless otherwise indicated.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 9) Ceiling dead load (5.0 psf) on member(s). 5-6, 10-11, 6-21, 20-21, 20-22, 10-22
- 10) Bottom chord live load (40.0 psf) and additional bottom chord dead load (0.0 psf) applied only to room. 17-18
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 455 lb uplift at joint 2 and 455 lb uplift at joint 14.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 13) Attic room checked for L/360 deflection.

Job		Iruss		Truss Type		Qty	Ply	Micha	el Smith		
28048		TG4		Attic Girder		1	1				
								Job Ret	ference (optional)		
C&R Building S	Supply, Au	tryville NC				8.430 s Ja	an 20 202	21 MiTek	Industries, Inc. Tu	e Jul 23 08:48:25	2024 Page 1
						ID:zl_JIG_52gl	kwxPrTOJ(GSQTzpbl	B4-3CSDPTn5x6tNt6n	LIQDOR?2UMpzHI1	vGdhsTFcyvFDa
r'	1-6-0	5-9-7	11-	6-4 15-0	-9 24	-5-7	27	-11-12	33-8-9	39-6-0	41-0-0
7	-6-0 ¹	5-9-7	5-8	-13 3-6	.5 9-	4-14	1 3	3-6-5	5-8-13	5-9-7	1-6-0

Scale = 1:72.3

	5-9-7 5-9-7	11-6-4 5-8-13	-	27-11-12 16-5-8		-	33-8-9 5-8-13	39-6-0 5-9-7	
Plate Offsets (X,Y)	[2:0-0-0,0-0-2], [7:0	0-5-4,0-2-12], [9:0-5-4,0-2-12], [14:	0-0-0,0-0-2], [1	7:0-4-12,Edge], [18:0-4	4-12,Edge]		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Inco Code IRC2018	1.15 r NO	CSI. TC 0.37 BC 0.54 WB 0.27 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in (loc) -0.35 17-18 -0.49 17-18 0.05 14 -0.15 18-19	I/defl >999 >971 n/a >999	L/d 360 240 n/a 240	PLATES MT20 MT20HS Weight: 1434	GRIP 244/190 187/143

BRACING-

TOP CHORD

BOT CHORD

JOINTS

2-0-0 oc purlins (6-0-0 max.)

1 Brace at Jt(s): 7, 9, 20, 21, 22

(Switched from sheeted: Spacing > 2-0-0).

Rigid ceiling directly applied or 10-0-0 oc bracing.

LUMBER-

TOP CHORD 2x6 SP 2400F 2.0E

BOT CHORD 2x8 SP 2400F 2.0E *Except*

B2: 2x10 SP 2400F 2.0E

WEBS 2x4 SP No.3 *Except*

W3: 2x6 SP No.1, W4: 2x4 SP 2400F 2.0E

WEDGE

Left: 2x4 SP No.3, Right: 2x4 SP No.3

REACTIONS. (lb/size) 2=6618/0-3-8 (min. 0-1-10), 14=6618/0-3-8 (min. 0-1-10)

Max Horz 2=988(LC 7)

Max Uplift2=-455(LC 8), 14=-455(LC 8) Max Grav 2=7955(LC 14), 14=7955(LC 15)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-11233/495, 3-4=-11066/388, 4-5=-10540/519, 5-6=-8410/723,

6-7=-2612/448, 9-10=-2612/448, 10-11=-8409/723, 11-12=-10540/519,

12-13=-11065/388, 13-14=-11238/495, 7-29=-3224/707, 8-29=-3224/707,

8-30=-3224/707. 9-30=-3224/707

BOT CHORD 2-19=0/9711, 18-19=0/9711, 17-18=0/9137, 16-17=0/8974, 14-16=0/8974 **WEBS**

5-18=0/4142, 11-17=0/4142, 6-21=-8522/427, 20-21=-8479/433,

20-22=-8479/433, 10-22=-8521/427, 3-19=-1640/441, 13-16=-1645/447,

3-18=-1652/929. 13-17=-1652/929. 7-20=-321/2196. 7-21=0/440.

8-20=-1110/341, 9-20=-321/2196, 9-22=0/440

NOTES-

1) 4-ply truss to be connected together with 10d (0.131"x3") nails as follows:

Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc.

Bottom chords connected as follows: 2x8 - 2 rows staggered at 0-9-0 oc. 2x10 - 2 rows staggered at 0-9-0 oc.

Webs connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc, 2x4 - 1 row at 0-9-0 oc.

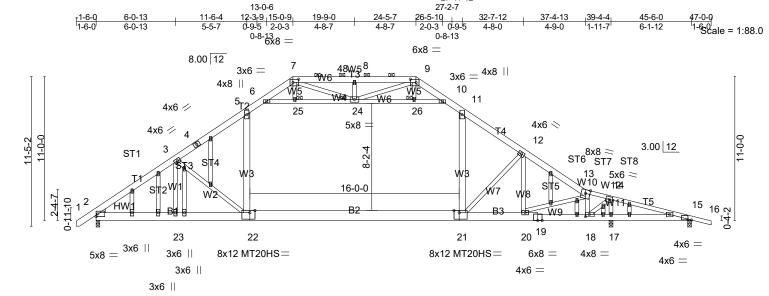
Attach TC w/ 1/2" diam. bolts (ASTM A-307) in the center of the member w/washers at 4-0-0 oc. Attach BC w/ 1/2" diam. bolts (ASTM A-307) in the center of the member w/washers at 4-0-0 oc.

2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

3) Unbalanced roof live loads have been considered for this design.

Continued on page 2

Job	Truss	Truss Type	Qty	Ply	Michael Smith
28048	TG4	Attic Girder	1	4	Job Reference (optional)


8.430 s Jan 20 2021 MiTek Industries, Inc. Tue Jul 23 08:48:25 2024 Page 2 ID:zl JIG 52gkwxPrTOJGSQTzpbB4-3CSDPTn5x6tNt6nLIQDOR?2UMpzHI1vGdhsTFcyvFDa

NOTES-

- 4) Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=40ft; eave=5ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 5) Provide adequate drainage to prevent water ponding.
- 6) All plates are MT20 plates unless otherwise indicated.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 9) Ceiling dead load (5.0 psf) on member(s). 5-6, 10-11, 6-21, 20-21, 20-22, 10-22
- 10) Bottom chord live load (40.0 psf) and additional bottom chord dead load (0.0 psf) applied only to room. 17-18
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 455 lb uplift at joint 2 and 455 lb uplift at joint 14.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 13) Attic room checked for L/360 deflection.

Job	Truss	Truss Type	Qty	Ply	Michael Smith
28048	TGE1	GABLE	1	1	
					Job Reference (optional)

8.430 s Jan 20 2021 MiTek Industries, Inc. Tue Jul 23 08:48:26 2024 Page 1 ID:zl JIG 52gkwxPrTOJGSQTzpbB4-XP0bdpojiP?EVFLXs8kd DbcMCJF1KePrLb0n2yvFDZ 27-11-12

		6-0-13 6-0-13	11-6-4 5-5-7	15-0-9 3-6-5		-5-7 13		7-12 8-0	37-4-13 4-9-0	39-4-4 1-11-7	45-6-0 6-1-12	1
Plate Offsets	s (X,Y)	[7:0-5-4,0-3-0], [9:0-	5-4,0-3-0], [15:0-3-4,0-	0-2], [18:0	-3-8,0-2-0], [21	:0-4-12,Edge], [22:0-4	-12,Edge]			
LOADING (p	,	SPACING-	2-0-0	CSI.		DEFL.	in (loc)	I/defl	L/d		ATES	GRIP
	0.0	Plate Grip DOL	1.15	TC	0.55	Vert(LL)	-0.37 21-22		360	MT:		244/190
	0.0	Lumber DOL	1.15	BC	0.55	Vert(CT)	-0.51 21-22		240	MT:	20HS	187/143
	0.0 *	Rep Stress Incr	YES	WB	0.94	Horz(CT)	0.04 17	,	n/a			
BCDL 10	0.0	Code IRC2018/T	PI2014	Matrix	x-AS	Wind(LL)	-0.12 22-23	>999	240	We	ight: 412 lb	FT = 20%

LUMBER-

TOP CHORD 2x6 SP No.1 *Except*

T5: 2x4 SP 2400F 2.0E

BOT CHORD 2x8 SP 2400F 2.0E *Except*

B2: 2x10 SP 2400F 2.0E, B4: 2x6 SP No.1

WEBS 2x4 SP No.3 *Except*

W3: 2x6 SP No.1, W4: 2x4 SP 2400F 2.0E

OTHERS 2x4 SP No.3

WEDGE

Left: 2x4 SP No.3

BRACING-

TOP CHORD

2-0-0 oc purlins (6-0-0 max.): 7-9.

BOT CHORD JOINTS

Rigid ceiling directly applied. 1 Brace at Jt(s): 24, 25, 26

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide

Structural wood sheathing directly applied, except

REACTIONS. (lb/size) 2=1716/0-3-8 (min. 0-1-12), 17=2070/0-3-8 (min. 0-3-1), 15=189/0-3-8 (min. 0-1-8)

Max Horz 2=-258(LC 6)

Max Uplift2=-119(LC 8), 17=-90(LC 8), 15=-157(LC 5) Max Grav 2=2085(LC 14), 17=2605(LC 15), 15=224(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD

2-3=-2944/132, 3-4=-2814/104, 4-5=-2678/137, 5-6=-2154/189, 6-7=-702/127,

7-48=-909/194, 8-48=-909/194, 8-9=-909/194, 9-10=-719/129,

10-11=-2180/188, 11-12=-2869/143, 12-13=-2597/131, 13-14=-1528/130,

14-15=-406/1155

BOT CHORD 2-23=0/2549, 22-23=0/2549, 21-22=0/2356, 20-21=0/2192, 19-20=-47/1558,

18-19=-48/1562. 17-18=-1089/401. 15-17=-1089/401

WEBS 3-23=-362/127, 3-22=-439/146, 5-22=0/1070, 6-25=-2009/99,

24-25=-1999/101, 24-26=-2143/98, 10-26=-2154/96, 11-21=0/1078, 12-21=-158/288, 12-20=-661/14, 13-20=-56/1200, 13-18=-1607/91, 14-18=-54/2437, 14-17=-2302/112, 8-24=-289/87, 7-24=-81/532,

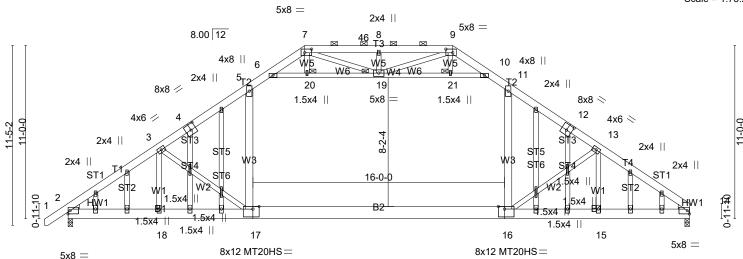
9-24=-78/561

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=46ft; eave=6ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

Continued on page 2


Job	Truss	Truss Type	Qty	Ply	Michael Smith
28048	TGE1	GABLE	1	1	
					Job Reference (optional)

8.430 s Jan 20 2021 MiTek Industries, Inc. Tue Jul 23 08:48:26 2024 Page 2 ID:zl JIG 52gkwxPrTOJGSQTzpbB4-XP0bdpojiP?EVFLXs8kd DbcMCJF1KePrLb0n2yvFDZ

NOTES-

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Provide adequate drainage to prevent water ponding.
- 5) All plates are MT20 plates unless otherwise indicated.
- 6) All plates are 2x4 MT20 unless otherwise indicated.
- 7) The Fabrication Tolerance at joint 21 = 16%
- 8) Gable studs spaced at 2-0-0 oc.
- 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 11) Ceiling dead load (5.0 psf) on member(s). 5-6, 10-11, 6-25, 24-25, 24-26, 10-26
- 12) Bottom chord live load (40.0 psf) and additional bottom chord dead load (0.0 psf) applied only to room. 21-22
- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 119 lb uplift at joint 2, 90 lb uplift at joint 17 and 157 lb uplift at joint 15.
- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 15) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 16) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 17) Attic room checked for L/360 deflection.

Job	Truss	Truss T	уре	Qt	y	Ply	Micha	el Smith		
28048	TGE2	GABL	E	1		1				
							Job Ref	erence (optional))	
C&R Building Supply	Autryville NC			8.430) s Ja	n 20 202	1 MiTek	Industries, Inc.	Tue Jul 23 08:48:2	8 2024 Page 1
	-			ID:zl_JI0	G_52g	kwxPrTOJ	JGSQTzpb	B4-Tn7M2Vq_E1F	kZVwzYm53egxq0?1	VLGiJf47sxyvFD
-1-6-0 1-6-0	5-9-7	11-6-4	15-0-9	24-5-7		27-	-11-12	33-8-9	39-6-0	1
1-6-0	5-9-7	5-8-13	3-6-5	9-4-14		3	3-6-5	5-8-13	5-9-7	
										Scale = 1:73
			5x8 =	2.4						

<u> </u>	5-9-7 5-9-7	11-6-4 5-8-13	-		27-11-12 16-5-8		-	33-8-9 5-8-13	39-6-0 5-9-7	—
Plate Offsets (X,Y)	Plate Offsets (X,Y) [4:0-4-0,0-4-8], [7:0-5-4,0-2-12], [9:0-5-4,0-2-12], [12:0-4-0,0-4-8], [16:0-4-12,Edge], [17:0-4-12,Edge]									
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2018/T	2-0-0 1.15 1.15 YES PI2014	CSI. TC BC WB Matri:	0.62 0.51 0.42 x-MS	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in (local) -0.38 16-1 -0.53 16-1 0.04 1 -0.17 17-1	7 >999 7 >892 4 n/a	360 240 n/a	PLATES MT20 MT20HS Weight: 398 lb	GRIP 244/190 187/143 FT = 20%

LUMBER-**BRACING-**

TOP CHORD 2x6 SP No.1 BOT CHORD 2x8 SP 2400F 2.0E *Except*

B2: 2x10 SP 2400F 2.0E

2x4 SP No.3 *Except*

WEBS

W3: 2x6 SP No.1, W4: 2x4 SP 2400F 2.0E

2x4 SP No.3 **OTHERS**

WEDGE

Left: 2x4 SP No.3, Right: 2x4 SP No.3

BOT CHORD

JOINTS

TOP CHORD

Structural wood sheathing directly applied or 4-0-3 oc purlins,

except

2-0-0 oc purlins (6-0-0 max.): 7-9.

Rigid ceiling directly applied or 10-0-0 oc bracing.

1 Brace at Jt(s): 19, 20, 21

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (lb/size) 2=1747/0-3-8 (min. 0-1-12), 14=1661/0-3-8 (min. 0-1-11)

Max Horz 2=254(LC 7)

Max Uplift2=-121(LC 8), 14=-72(LC 8) Max Grav 2=2099(LC 14), 14=2020(LC 15)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-2955/132, 3-4=-2927/104, 4-5=-2784/139, 5-6=-2218/193, 6-7=-677/117,

9-10=-677/117, 10-11=-2217/192, 11-12=-2783/139, 12-13=-2926/105,

13-14=-2969/141, 7-46=-856/187, 8-46=-856/187, 8-9=-856/187 2-18=-36/2557, 17-18=-36/2557, 16-17=0/2400, 15-16=-45/2392,

14-15=-45/2392

WEBS 5-17=0/1098, 11-16=0/1099, 6-20=-2255/117, 19-20=-2244/118,

19-21=-2241/117, 10-21=-2252/116, 3-18=-468/111, 13-15=-462/118.

3-17=-441/239, 13-16=-457/233, 7-19=-87/581, 8-19=-304/91, 9-19=-86/579

NOTES-

BOT CHORD

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=40ft; eave=5ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Provide adequate drainage to prevent water ponding.
- 5) All plates are MT20 plates unless otherwise indicated.
- 6) All plates are 3x6 MT20 unless otherwise indicated.

Continued on page 2

Job	Truss	Truss Type	Qty	Ply	Michael Smith
28048	TGE2	GABLE	1	1	
					Job Reference (optional)

8.430 s Jan 20 2021 MiTek Industries, Inc. Tue Jul 23 08:48:28 2024 Page 2 ID:zl JIG 52gkwxPrTOJGSQTzpbB4-Tn7M2Vq E1FxkZVwzYm53egxq0?TVLGiJf47sxyvFDX

NOTES-

7) Gable studs spaced at 2-0-0 oc.

- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 10) Ceiling dead load (5.0 psf) on member(s). 5-6, 10-11, 6-20, 19-20, 19-21, 10-21
- 11) Bottom chord live load (40.0 psf) and additional bottom chord dead load (0.0 psf) applied only to room. 16-17
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 121 lb uplift at joint 2 and 72 lb uplift at joint 14.
- 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 14) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 15) Attic room checked for L/360 deflection.