

Trenco 818 Soundside Rd Edenton, NC 27932

Re: P03440-15869 164 Blueberry - Southeastern

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by 84 Components - #2383.

Pages or sheets covered by this seal: I68180359 thru I68180394

My license renewal date for the state of North Carolina is December 31, 2024.

North Carolina COA: C-0844

September 13,2024

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	164 Blueberry - Southeastern	
P03440-15869 A05E Piggyba		Piggyback Base Supported Gable	1	1	Job Reference (optional)	168180359
84 Components (Dunn, NC), Dur	ın, NC - 28334,	Run: 8.82 S Aug 30 2	2024 Print: 8.	820 S Aug 30	0 2024 MiTek Industries, Inc. Thu Sep 12 11:29:49	Page: 1

ID:ETr_Pcz0qyW5?RJAGpx?BAyk1a6-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

10	1	2	4					8	8	6			2				6	8		8					30,3	23-6-14 L
-φ-	\sim	$\times\!\!\times\!\!\times\!\!\times\!\!\times$	$\infty \infty \infty$	\times	$\times\!\!\times\!\!\times\!\!\times\!\!\times$	$\times\!\!\times\!\!\times\!\!\times$	\times	$\times\!\!\times\!\!\times\!\!\times$	$\sim \sim \sim \sim$	∞	$\infty \infty$	∞	∞	∞	\propto	$\times\!\!\times\!\!\times\!\!\times$	∞	\sim	XXXX	$\times\!\!\times\!\!\times\!\!\times$	∞	$\propto \propto \propto$	\times	$\times\!\!\times\!\!\times\!\!\times$	\times	02 -
0	4x6=	59 5	58 5	7 56	5 5554	53	52	51	50	49	48	47	46	45	44	43	42	41 4	4039	38	37	36	35	34	33	
					6x8	3=						7x10)=					4	x6=						3x	3 n

00010 = 1.00	
Plate Offsets (X, Y):	[47:0-5-0,0-4-8], [54:0-4-0,0-1-4]

0-9-

Scale - 1.89

52-3-0

Loading (psf) Spacing 2-0-0 CSI DEFL in l/defl L/d PLATES GRIP (loc) TCLL (roof) 20.0 Plate Grip DOL 1.15 тс 0.18 Vert(LL) n/a 999 MT20 244/190 n/a TCDL 10.0 Lumber DOL 1.15 BC 0.20 Vert(TL) n/a n/a 999 BCLL Rep Stress Incr WB Horiz(TL) 32 0.0 YES 0.12 0.00 n/a n/a BCDL 10.0 Code IRC2015/TPI2014 Matrix-MS Weight: 536 lb FT = 20% LUMBER Max Uplift 32=-53 (LC 16), 33=-94 (LC 13), TOP CHORD 1-2=-220/132, 2-3=-216/137, 3-4=-136/146, 34=-63 (LC 13), 35=-60 (LC 13), 4-5=-110/162, 5-6=-78/186, 6-8=-59/211, TOP CHORD 2x6 SP No.2 36=-61 (LC 13), 37=-60 (LC 13), 8-9=-67/258, 9-10=-83/305, 10-11=-100/355, BOT CHORD 2x6 SP No.2 38=-64 (LC 13), 39=-67 (LC 13), 11-12=-118/405, 12-13=-116/385, 2x4 SP No.3 WEBS 42=-13 (LC 9), 43=-46 (LC 8), 13-14=-109/394, 14-15=-109/394, OTHERS 2x4 SP No.2 *Except* 44=-43 (LC 8), 45=-41 (LC 9), 15-16=-109/393, 16-17=-109/393, 35-28,34-29,33-30,55-6,56-5,57-4,58-3,59-2: 46=-45 (LC 8), 47=-47 (LC 9), 17-18=-109/393, 18-19=-109/393, 2x4 SP No.3, 54-54:2x6 SP No.2 19-20=-109/393, 20-21=-109/393, 48=-14 (LC 9), 50=-66 (LC 12) BRACING 51=-63 (LC 12), 52=-60 (LC 12), 21-22=-116/386, 22-23=-117/406, TOP CHORD Structural wood sheathing directly applied or 53=-62 (LC 12), 55=-58 (LC 12), 23-24=-99/356, 24-26=-82/306, 6-0-0 oc purlins. except end verticals, and 56=-70 (LC 12), 57=-41 (LC 13), 26-27=-66/259, 27-28=-49/212, 2-0-0 oc purlins (10-0-0 max.): 13-21. 58=-260 (LC 16), 59=-142 (LC 13) 28-29=-33/151, 29-30=-18/72, 30-31=-19/46, BOT CHORD Rigid ceiling directly applied or 6-0-0 oc 32=43 (LC 13), 33=170 (LC 1), 31-32=-15/28 Max Grav bracing. BOT CHORD 34=167 (LC 24), 35=159 (LC 1), 1-59=-92/241, 58-59=-16/13, 57-58=-16/13, WEBS 1 Row at midpt 17-45, 18-44, 19-43, 36=161 (LC 24), 37=160 (LC 1), 56-57=-16/13. 55-56=-16/13. 53-55=-16/13. 20-42, 22-41, 23-39, 38=160 (LC 24), 39=160 (LC 24), 52-53=-16/13, 51-52=-16/13, 50-51=-16/13, 24-38, 16-46, 15-47, 41=164 (LC 1), 42=163 (LC 1), 49-50=-16/13, 48-49=-16/13, 46-48=-17/13, 14-48, 12-49, 11-50, 43=162 (LC 23), 44=160 (LC 23), 45-46=-17/13, 44-45=-17/13, 43-44=-17/13, 10-51 45=160 (LC 24), 46=160 (LC 1), 42-43=-17/13, 41-42=-17/13, 39-41=-17/13, **REACTIONS** (size) 32=50-11-0, 33=50-11-0, 47=160 (LC 24), 48=168 (LC 23), 38-39=-17/13, 37-38=-17/13, 36-37=-17/13, 34=50-11-0. 35=50-11-0. 49=173 (LC 22), 50=160 (LC 1), 35-36=-17/13, 34-35=-17/13, 33-34=-17/13, 36=50-11-0, 37=50-11-0, 51=160 (LC 1), 52=160 (LC 23), 32-33=-17/13 38=50-11-0, 39=50-11-0, 53=160 (LC 23), 55=162 (LC 1), 41=50-11-0, 42=50-11-0, 56=148 (LC 23), 57=220 (LC 1), 43=50-11-0, 44=50-11-0, 58=77 (LC 13), 59=544 (LC 1) 45=50-11-0, 46=50-11-0, FORCES (Ib) - Maximum Compression/Maximum 47=50-11-0, 48=50-11-0, Tension 49=50-11-0, 50=50-11-0, 51=50-11-0, 52=50-11-0, Vermannen 53=50-11-0, 55=50-11-0, 56=50-11-0, 57=50-11-0, SEAL 58=50-11-0, 59=50-11-0 036322 Max Horiz 59=251 (LC 12)

September 13,2024

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oblage with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria and DS21** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbaccomponents.com)

818 Soundside Road

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	164 Blueberry - Southeastern	
P03440-15869	A05E Piggyback Base Supported Gable		1	1	Job Reference (optional)	168180359
84 Components (Dunn, NC), Dur	n. NC - 28334.	Run: 8.82 S Aug 30 2	2024 Print: 8	.820 S Aug 3	0 2024 MiTek Industries, Inc. Thu Sep 12 11:29:49	Page: 2

ID:ETr_Pcz0qyW5?RJAGpx?BAyk1a6-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

84 Components (Dunn, NC), Dunn, NC - 28334.

17-45=-120/55. 18-44=-120/59. 19-43=-122/62, 20-42=-123/25, 22-41=-124/0. 23-39=-120/156. 24-38=-120/131, 26-37=-120/84, 27-36=-121/82, 28-35=-119/112, 29-34=-128/154, 30-33=-110/119, 16-46=-123/60, 15-47=-120/61, 14-48=-126/26, 12-49=-133/8, 11-50=-119/156, 10-51=-120/131, 9-52=-120/84, 8-53=-121/83, 6-55=-119/82, 5-56=-119/83, 4-57=-139/84, 3-58=-35/154, 2-59=-292/208

NOTES

WEBS

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner (3) 0-0-0 to 5-1-12, Exterior (2) 5-1-12 to 21-10-12, Corner (3) 21-10-12 to 27-1-12, Exterior (2) 27-1-12 to 36-4-12, Corner (3) 36-4-12 to 41-7-7, Exterior (2) 41-7-7 to 52-1-4 zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Building Designer/Project engineer responsible for 4) verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.
- Provide adequate drainage to prevent water ponding. 5)
- 6) All plates are 2x4 (||) MT20 unless otherwise indicated.
- Gable studs spaced at 2-0-0 oc. 7)
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) All bearings are assumed to be SP No.2 .
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 53 lb uplift at joint 32, 41 lb uplift at joint 45, 43 lb uplift at joint 44, 46 lb uplift at joint 43, 13 lb uplift at joint 42, 67 lb uplift at joint 39, 64 lb uplift at joint 38, 60 lb uplift at joint 37, 61 lb uplift at joint 36, 60 lb uplift at joint 35, 63 lb uplift at joint 34, 94 lb uplift at joint 33, 45 lb uplift at joint 46, 47 lb uplift at joint 47, 14 lb uplift at joint 48, 66 lb uplift at joint 50, 63 lb uplift at joint 51, 60 lb uplift at joint 52, 62 lb uplift at joint 53, 58 lb uplift at joint 55, 70 lb uplift at joint 56, 41 lb uplift at joint 57, 260 lb uplift at joint 58 and 142 lb uplift at joint 59.
- 12) Non Standard bearing condition. Review required.
- 13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design and the second design much reacting of design and the second design much reacting and and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Page: 2

Job	Truss	Truss Type	Qty	Ply	164 Blueberry - Southeastern	
P03440-15869	A05M	Piggyback Base	6	1	Job Reference (optional)	168180360

Run: 8.82 S Aug 30 2024 Print: 8.820 S Aug 30 2024 MiTek Industries, Inc. Thu Sep 12 11:29:50 ID:WIwPryQ3izkOtIPj7EPnVwyk2Td-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

1.	-4-0	11-4-6	21-9-0	29-1-12	36-6-8	44-2-2	52-3-0
1. Scale - 1:91 4	-4-0	10-0-6	10-4-10	7-4-12	7-4-12	7-7-10	8-0-14

Plate Offsets (X, Y): [1:0-3-2,0-2-0], [1:0-0-8,Edge], [11:Edge,0-3-8], [18:0-5-0,0-4-8]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 5 20.0 F 10.0 L 0.0* F 10.0 (Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MS	0.99 0.90 0.60	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.28 -0.52 0.11	(loc) 17-18 17-18 11	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 419 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x6 SP No.2 2x6 SP No.2 *Except* 2x4 SP No.2 *Except* No.3 Left: 2x8 SP DSS Structural wood sheatt except end verticals, a (4-6-10 max.): 5-7. Rigid ceiling directly ap bracing. 1 Row at midpt 4- (size) 1=0-3-8, 11: Max Horiz 1=251 (LC 1 Max Upit 1=-380 (LC Max Grav 1=2139 (LC	1-18:2x6 SP DSS 18-2,11-10:2x4 SP hing directly applied and 2-0-0 oc purlins pplied or 9-5-5 oc -17, 6-17, 6-14, 9-14 =0-3-8 12), 11=-306 (LC 1: : 1), 11=2055 (LC 2)	2) , 3) 4 4) 5) 3) 6)	Wind: ASCE Vasd=103mp II; Exp B; Enn and C-C Exte 21-10-12, Ex 29-1-12 to 36 Interior (1) 43 exposed ;C-C reactions sho DOL=1.60 Building Desi verifying Rain requirements Provide adec This truss ha chord live loa * This truss h	7-10; Vult=130mpf bh; TCDL=6.0psf; E closed; MWFRS (e arior (2) 0-0 to 5-2 terior (2) 21-10-12 5-4-12, Exterior (2) 3-9-7 to 52-1-4 zon C for members and wm; Lumber DOL= gner/Project engin h Load = 5.0 (psf) c specific to the use juate drainage to p s been designed fc d nonconcurrent w as been designed in h chord in all areas	a (3-sec 3CDL=3 nvelope 2-11, In to 29-1 36-4-12 e; canti forces 1.60 pli eer resp covers r of this revent v or a 10.0 for a liv where	ond gust) .0psf; h=25ft) exterior zor terior (1) 5-2- 12, Interior (2 to 43-9-7, lever left & MVFRS fc ate grip bonsible for ain loading truss compol water pondin,) psf bottom other live loa e load of 20.0.	; Cat. ne -11 to 1) or nent. g. uds. 0psf						
FORCES	(lb) - Maximum Compr Tension	ression/Maximum		3-06-00 tall b	y 2-00-00 wide will	fit betw	veen the botto	om f						
TOP CHORD	1-2=-3403/724, 2-4=-3 4-5=-2781/725, 5-6=-2 6-7=-2104/633, 7-9=-2 9-10=-2353/541, 10-11	3251/738, 2390/698, 2463/654, 1=-1984/481	7) 8)	All bearings a Provide mech bearing plate	are assumed to be nanical connection capable of withsta	SP No. (by oth nding 3	2 . ers) of truss t 06 lb uplift at	to t joint					1111	
BOT CHORD	1-17=-665/2901, 15-17 14-15=-435/2480, 12-1 11-12=-17/45	7=-435/2480, 14=-410/2037,	9)	Graphical pu or the orienta	rlin representation ition of the purlin al	does no ong the	ot depict the s top and/or	size			ALL	OR FESS	ROLL	7
WEBS	2-18=-129/183, 4-18=- 4-17=-622/313, 5-17=- 6-17=-329/158, 6-15=(7-14=-136/724, 9-14=- 9-12=-611/216, 10-12=	-59/326, -156/898, 0/374, 6-14=-772/19 -88/251, =-432/2150	LC 92,	DAD CASE(S)	Standard					1		SEA 0363		

NOTES

 Unbalanced roof live loads have been considered for this design. SEAL 036322 September 13,2024

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	164 Blueberry - Southeastern	
P03440-15869	AS01	Piggyback Base	1	1	Job Reference (optional)	168180361

Run: 8.82 S Aug 30 2024 Print: 8.820 S Aug 30 2024 MiTek Industries, Inc. Thu Sep 12 11:29:51

Page: 1

ID:somqgnsF1BTwVYRYWZJybGyk1cr-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:96.7

Plate Offsets ((X, Y): [3:0-3-8,0-2-8],	[7:0-2-12,0-2-8], [1	8:0-4-0,0-3	8-8], [21:0-4-0,	0-2-8], [23:0-6-0,0)-6-14]								
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.78 0.64 1.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.64 -1.27 0.82	(loc) 20 20 15	l/defl >855 >429 n/a	L/d 240 180 n/a	PLATES MT20 M18AHS Weight: 447 lb	GRIP 244/190 186/179 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS	2x6 SP No.2 2x6 SP No.2 *Excep DSS 2x4 SP No.2 *Excep 23-2,15-13,6-20,4-20 No.3, 7-20:2x4 SP D	t* 23-20,20-18:2x6 t* 0,3-22,21-3,4-21:2x VSS, 22-2:2x4 SP N	W SP 4 SP 0.1	/EBS	2-23=-1559/420, 9-19=-176/829, 9 9-17=-948/338, 1 11-17=-345/1201 13-15=-489/293, 7-19=-2341/566, 4-20=-34/413, 3-2	8-19=-17 -18=-561, 0-17=-62, , 11-15=- 7-20=-12 6-20=-31, 22=-891/2	0/889, (127, (230, 2449/755, 52/6133, (104, (36,		10) Gra or ti bott LOAD (phical po ne orient om chor CASE(S)	urlin re ation d d. Stai	presentation doe of the purlin along ndard	s not depict the si the top and/or	ze
BRACING TOP CHORD	Structural wood she 1-11-6 oc purlins, ex 2-0-0 oc purlins (4-7	athing directly appli ccept -10 max.): 8-10.	ed or N 1)	OTES Unbalanced	2-22=-978/4673, 4-21=-515/103 I roof live loads ha	3-21=-36 ave been	5/2410, considered fo	r						
BOT CHORD WEBS	Rigid ceiling directly bracing. 1 Row at midpt	applied or 6-0-0 oc 9-18, 9-17, 10-17, 7 7-19	2) 11-15,	this design. Wind: ASCE Vasd=103m II; Exp B; Er	E 7-10; Vult=130m nph; TCDL=6.0psf nclosed; MWFRS	nph (3-seo ; BCDL=3 (envelope	cond gust) 3.0psf; h=25ft; e) exterior zor	Cat.						
REACTIONS	(size) 15=0-3-8, Max Horiz 23=-183 (Max Uplift 15=-486 (Max Grav 15=2833	23=0-3-8 LC 17) LC 13), 23=-358 (LC (LC 1), 23=1838 (LC	C 12) C 23)	and C-C Ex 21-10-12, E 30-1-11 to 3 Interior (1) 4 right expose	terior (2) 0-0-0 to xterior (2) 21-10-1 36-4-12, Exterior (2) 44-7-11 to 58-3-8 2d ;C-C for membe	5-11-8, In I2 to 30-1 2) 36-4-1 zone; can ers and fo	terior (1) 5-11 -11, Interior (2 to 44-7-11, tilever left and rces & MWFI	I-8 to 1) d RS						
TOP CHORD	(lb) - Maximum Com Tension 1-2=-921/219, 2-3= 3-4=-8067/1688, 4-6 6-7=-8362/1684, 7-8 8-9=-2031/494, 9-10 10-11=-1245/268, 1 ⁻¹	pression/Maximum 5615/1236, 5=-8448/1615, 5=-2363/525, 0=-1057/291, 1-13=-560/1049,	3) 4) 5)	 for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component. Provide adequate drainage to prevent water ponding. Holdsterget UT00 engineer theorem indicated 								ROUT		
BOT CHORD	13-14=-509/716 1-23=-211/914, 22-2 21-22=-1278/5237, 2 19-20=-548/3439, 18 17-18=-220/1634, 18 14-15=-526/501	23=-255/437, 20-21=-1653/7751, 8-19=-242/1789, 5-17=0/382,	6) 6) 7)	as been designed ad nonconcurrent has been designe m chord in all are by 2-00-00 wide v ny other members	I for a 10.1 t with any ed for a liv as where will fit betw s, with BC	of psf bottom other live loa e load of 20.0 a rectangle veen the botto DL = 10.0psf	ds.)psf om		Contraction		SEA 0363	22	A. C.	

 An bearings are assumed to be SP No.2.
 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 358 lb uplift at joint 23 and 486 lb uplift at joint 15.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

A MiTek Affil 818 Soundside Road

Edenton, NC 27932

September 13,2024

Job	Truss	Truss Type	Qty	Ply	164 Blueberry - Southeastern	
P03440-15869	AS02	Piggyback Base	2	1	Job Reference (optional)	168180362

Run: 8.82 S Aug 30 2024 Print: 8.820 S Aug 30 2024 MiTek Industries, Inc. Thu Sep 12 11:29:51 ID:RDCa8cQ2ue3fnjQ9sNN7Tiyk1su-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

								45-11-0		
0-3-8 4-4-0	8-5-0	12-9-10	20-5-0	25-3-12	33-7-4	35-2-8	41-2-12	45-7-2	56-11-8	
0-3-8 4-0-8	4-1-0	4-4-10	7-7-6	4-10-12	8-3-8	1-7-4	6-0-4	4-4-6 0-3-14	11-0-8	
Scolo - 1.06 2										

Plate Offsets (X, Y): [6:0-2-8,0-2-8], [18:0-5-8,0-3-8], [22:0-3-4,0-2-0], [23:0-5-0,0-2-0]

Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)		20.0	Plate Grip DOL	1.15		TC	0.81	Vert(LL)	-0.64	20	>852	240	MT20	244/190	
TCDL		10.0	Lumber DOL	1.15		BC	0.78	Vert(CT)	-1.27	19-20	>428	180	M18AHS	186/179	
BCLL		0.0*	Rep Stress Incr	YES		WB	0.97	Horz(CT)	0.82	14	n/a	n/a			
BCDL		10.0	Code	IRC20	15/TPI2014	Matrix-MS							Weight: 460 lb	FT = 20%	
						7 40 474/000 0 4/	107	700	-	11) Dro	ممر مام	ah a ni a	-	othong) of true	
		- 0		```	VEDO	7-19=-171/092, 0-18 8-18 <i>1</i> 57/110 8-16	3=-1077	2/3/2		11) PIU	viue me		al connection (by	ouriers) or trus	S IU at joint
	2X0 SP NO	0.Z	** 22 20.2.0 00 000	-		0-10-404/110,0-10	5344	/1108		23 4	and 186	Ib unlit	tote of withstandin	ig 525 ib upint	arjoint
	2X0 SP NO	0.2 Excep	1" 23-20:2x6 SP DS3	5		10-142444/754 1	2-14	488/291		12) Gra	nhical n	urlin re	nresentation doe	s not depict th	e size
NEDS	214 37 10	0.Z EXCEP	1 2 21 2:2v4 SD No 2			1-22=-928/4362 6-2	20=-12	75/6246		or th	he orien	tation of	of the nurlin along	the top and/o	r 0120
	23-1·2y6 9	SP No 2 2	2,21-3.2.4 SP No.3,			6-19=-2368/571, 3-2	20=-33	/502.		bott	om choi	rd.	all and partial along		
	6-20:2x4 9	SP DSS	2 1.2.4 01 110.1,			5-20=-53/112. 2-22=	=-879/2	35.		13) ATT	TIC SPA	CE SH	IOWN IS DESIGN	NED AS	
	0 20.241	01 200				2-21=-393/2484, 3-2	21=-53	7/116		ÚNI	INHABI	ABLE			
	Structural	wood she	athing directly applie	dor I	OTES					LOAD	CASE(S) Sta	ndard		
	1-10-3 00	nurling e	vcent end verticals	and ') Unbalanced	roof live loads have	been	considered fo	r			,			
	2-0-0 oc r	purling $(4-7)$	-6 max). 7-9		this design		200								
BOT CHORD	Rigid ceili	na directly	applied or 6-0-0 oc	2	2) Wind: ASCE	7-10; Vult=130mph	(3-sec	cond qust)							
	bracing.				Vasd=103m	ph; TCDL=6.0psf; B	CDL=3	.0psf; h=25ft;	; Cat.						
NEBS	1 Row at	midpt	8-18, 8-16, 9-16, 10-	-14,	II; Exp B; Er	closed; MWFRS (er	nvelope	e) exterior zor	ne						
			6-19		and C-C Ext	erior (2) 0-2-12 to 5-	-11-2, I	nterior (1) 5-1	11-2						
REACTIONS	(size)	14=0-3-8,	23=0-3-8		to 20-6-12, I	Exterior (2) 20-6-12	to 28-7	-7, Interior (1))						
	Max Horiz	23=-200 (LC 13)		28-7-7 to 35	-0-12, Exterior (2) 3	5-0-12	to 43-1-7, Int	erior						
	Max Uplift	14=-486 (LC 13), 23=-325 (LC	; 12)	(1) 43-1-7 to	56-11-8 zone; cant	ilever r	ight exposed	;C-C						
	Max Grav	14=2838	(LC 1), 23=1709 (LC	24)	for members	and forces & MWF	RS for	reactions sho	own;						
FORCES	(lb) - Maxi	imum Com	pression/Maximum		Lumber DOI	_=1.60 plate grip DC)L=1.60)							
	Tension						or roo	oonoiblo for							
TOP CHORD	1-2=-5644	4/1242, 2-3	=-8084/1693,		yerifying Pa	$n \log(10) = 5.0 (nsf) c$		ain loading						1.	
	3-5=-8567	7/1635, 5-6	i=-8484/1708,		requirement	s specific to the use	of this	truss compor	nent				1111 01	-111 ····	
	6-7=-2377	7/529, 7-8=	-2045/498,	4	 Provide ade 	puate drainage to pr	event	vater ponding	nom. n				TH UA	ROUL	
	8-9=-1042	2/292, 9-10	=-1228/269,	ţ	 All plates are 	e MT20 plates unles	s other	wise indicate	ed.			1	A seco	ich !!	
	10-12=-55	59/1046, 12	2-13=-508/713,	é	 All plates are 	= 4x6 (=) MT20 unle	ess oth	erwise indica	ted.			1	100	SN: -	in
	1-23=-180)4/427		-	 This truss has 	as been designed fo	ra 10.0) psf bottom					24	P.	1
BOT CHORD	22-23=-31	18/742, 21-	22=-1259/5161,		chord live lo	ad nonconcurrent w	ith any	other live loa	ids.		-	- e	.4		-
	20-21=-16		19-20=-553/3470,	8	3) * This truss	has been designed f	or a liv	e load of 20.0	Opsf		=		SEA	L 👘	-
	18-19=-24	14/1807, 10 200 12 14	-18=-220/1070, - 525/500		on the botto	m chord in all areas	where	a rectangle			Ξ.	- 8	0000		- 8
	14-10-0/3	500, 13-14	-323/300		3-06-00 tall	by 2-00-00 wide will	fit betv	veen the botto	om				0363	22 :	-
					chord and a	ny other members, w	vith BC	DL = 10.0psf	f.						-
				ç	 All bearings 	are assumed to be	SP No.	2.				1	·	0	2
					0) Bearing at jo	int(s) 23 considers	paralle	to grain valu	e			20	NOINE	En	5
					using ANSI/	IPI 1 angle to grain	tormul	a. Building				1	ALC: GIN		6
					designer sho	ould verity capacity of	of bear	ng surface.					CA C	II BY	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

G "Hummen September 13,2024

Job	Truss	Truss Type	Qty	Ply	164 Blueberry - Southeastern	
P03440-15869	AS03	Piggyback Base	7	1	Job Reference (optional)	168180363

Run: 8.82 S Aug 30 2024 Print: 8.820 S Aug 30 2024 MiTek Industries, Inc. Thu Sep 12 11:29:51 ID:PIZ2aaT3BHcbFR3dsYspD9yk2Lq-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

0-3-8 4-4-0	8-5-1	12-9-10	20-5-0	25-3-12	31-11-4
0-3-8 4-0-8	4-1-0	4-4-9	7-7-6	4-10-12	6-7-8

Scale = 1:79.4

Plate Offsets (X, Y): [11:0-5-4,0-3-8], [13:0-5-0,0-3-12], [15:0-4-0,0-2-12], [16:0-4-12,0-2-8]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.37 0.71 0.93	DEFL Vert(LL) Vert(CT) Horz(CT) Attic	in 0.26 -0.45 0.40 -0.02	(loc) 13-14 13-14 11 10-11	l/defl >999 >668 n/a >999	L/d 240 180 n/a 360	PLATES MT20 Weight: 296 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS JOINTS REACTIONS FORCES TOP CHORD	2x6 SP No.2 2x6 SP No.2 2x4 SP No.2 *Exc 15-1,3-13,5-13,15 Structural wood sl 3-5-14 oc purlins, 2-0-0 oc purlins, (c Rigid ceiling direc bracing, 1 Row at midpt 1 Brace at Jt(s): 1 (size) 10=-3 Max Horiz 16=394 Max Uplift 10=-14 16=-15 Max Grav 10=390 16=976 (lb) - Maximum Co 16=976 (lb) - Maximum Co 16=976 (lb) - Maximum Co 16=3-3010/965, 2- 3-5=-3424/1099, 1 6-7=-504/115, 7-8 10-18=-156/50, 9	ept* 16-1:2x6 SP No -2,14-2,14-3:2x4 SP I neathing directly appli except end verticals, i-0-0 max.): 7-9. tly applied or 5-9-10 of 11-17, 6-12 7 8, 11=0-3-8, 16=0-3- (LC 12) (LC 27), 11=1654 (LC (LC 1) ompression/Maximum 3=-3858/1262, i-6=-3375/1173, =-389/127, 8-9=-203/ 18=-125/69,	1) 2, No.3 ied or , and 0c 3) 8 4) 5) 12), 6) C 2), 12), 6) C 2), 137, 9) 197, 9)	Unbalanced this design. Wind: ASCE Vasd=103mp II; Exp B; End and C-C Exte 20-6-12, Exte 20-6-10, Ext	roof live loads have 7-10; Vult=130mpl bh; TCDL=6.0psf; E closed; MWFRS (e erior (2) 0-2-12 to 3 erior (2) 20-6-12 to 1-9-8 zone;C-C for reactions shown; L 30 igner/Project engin n Load = 5.0 (psf) of s specific to the use juate drainage to p s been designed for donoconcurrent w has been do	e been of h (3-sec 3CDL=3 3CDL=3 3CDL=3 acDL	considered fo cond gust) .0psf; h=25ft;) exterior zor terior (1) 3-5- 5, Interior (1) rs and forces DOL=1.60 pla bonsible for ain loading truss compor vater ponding) psf bottom other live loa e load of 20.0 s). 17-18; W 7 dditional botto o room. 10-1 2.	r ; Cat. ne 1 to : & tte nent. g. ds. opsf om fall om 1				WITH CA	ROLIN	
BOT CHORD WEBS NOTES	1-16=-1030/345 15-16=-746/733, ' 13-14=-1635/3700 11-12=-90/78, 10- 7-12=-1/134, 8-12 11-17=-1403/592, 1-15=-718/2252, ' 5-13=-150/114, 6 6-12=-1225/556, ' 2-14=-267/917, 3 17-18=-202/198, \$	4-15=-1361/2744, 5, 12-13=-593/1077, 11=-88/73 =-389/843, 8-17=-1199/501, 3-13=-404/230, 13=-1215/2886, 2-15=-423/187, 14=-137/81, 9-17=-243/236	1* 12 13 L	 using ANSI/1 designer sho Provide mecl bearing plate 10, 150 lb up Graphical pu or the orienta bottom choro ATTIC SPAC UNINHABITA DAD CASE(S) 	PI 1 angle to grain uld verify capacity hanical connection capable of withsta lift at joint 16 and 1 flin representation ation of the purlin a L SHOWN IS DES ABLE. Standard	formula of beari (by oth unding 1 [52 lb u does no long the	a. Building ng surface. ers) of truss t 4 lb uplift at joint 1' plift at joint 1' t depict the s t top and/or	o oint 1. size		Man Hilling		SEA 0363		Mammin

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

September 13,2024

Job	Truss	Truss Type	Qty	Ply	164 Blueberry - Southeastern	
P03440-15869	AS04	Piggyback Base	3	1	Job Reference (optional)	168180364

Run: 8.82 S Aug 30 2024 Print: 8.820 S Aug 30 2024 MiTek Industries, Inc. Thu Sep 12 11:29:51 ID:RsYueiMsiKE2vxvEJ3IXJyyk2Pr-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:79.4

Plate Offsets (X, Y): [12:0-5-4,0-3-8], [14:0-5-0,0-3-12], [16:0-4-0,0-2-8], [17:0-6-0,0-6-14]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.37 0.69 0.98	DEFL Vert(LL) Vert(CT) Horz(CT) Attic	in 0.26 -0.45 0.40 -0.02	(loc) 14-15 14-15 12 11-12	l/defl >999 >668 n/a >999	L/d 240 180 n/a 360	PLATES MT20 Weight: 302 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS JOINTS REACTIONS	2x6 SP No.2 2x6 SP No.2 2x4 SP No.2 *Excep 17-2,16-2,3-16,3-15, No.3 Structural wood shea 3-5-15 oc purlins, e: 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing. 1 Row at midpt 1 Brace at Jt(s): 18 (size) 11=0-3-8, Max Horiz 17=424 (L Max Uplift 11=-14 (L) 17=-183 (Max Grav 11=390 (L 17=1108 (t* 4-15,4-14,6-14:2x4 S athing directly appliec xcept end verticals, ai -0 max.): 8-10. applied or 5-10-2 oc 12-18, 7-13 12=0-3-8, 17=0-3-8 .C 12) C 8), 12=-151 (LC 12 LC 12) .C 27), 12=1648 (LC : (LC 1)	N 1) 2) 3P d or nd 3) 4) 5) 2), 6)	OTES Unbalanced this design. Wind: ASCE Vasd=103mg II; Exp B; Enu and C-C Exte to 21-10-12, 26-9-8 to 33- members and Lumber DOL Building Des verifying Raii requirements Provide adec This truss ha chord live loa * This truss ha on the botton 3-06-00 tall b	roof live loads have 7-10; Vult=130mp bh; TCDL=6.0psf; E closed; MWFRS (e erior (2) 0-0-0 to 3- Exterior (2) 21-10- 1-8 zone; cantileve d forces & MWFRS =1.60 plate grip Do igner/Project engin h Load = 5.0 (psf) of s specific to the use juate drainage to p s been designed fi ad nonconcurrent w has been designed n chord in all areas y 2-00-00 wide wil	e been of h (3-sec SCDL=3 Nvelope 3-15, In 12 to 26 or left ex 5 for rea OL=1.60 eer res covers r e of this revent v or a 10.0 //ith any for a liv 5 where 1 fit betw	considered fo ond gust) .0psf; h=25ft;) exterior zor terior (1) 3-3- -9-8, Interior posed ;C-C f ctions shown) bonsible for ain loading truss compor vater ponding p sf bottom other live loa e load of 20.0 a rectangle ween the bott	r SCat. ne 15 (1) or ; nent. g. ds. Dpsf						
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Maximum Com Tension 1-2=-497/154, 2-3=-: 3-4=-3788/1252, 4-6 6-7=-3323/1163, 7-8 9-10=-202/196, 11-1 10-19=-125/69 1-17=-149/529, 16-1 15-16=-1313/2596, * 13-14=-591/1066, 12 11-12=-87/72 2-17=-984/359, 8-13 12-18=-1396/500 9	pression/Maximum 2872/940, =-3373/1091, =-501/114, 8-9=-385/ 9=-156/50, 7=-642/558, 14-15=-1614/3639, 2-13=-89/77, ==0/133, 9-13=-387/82, -18=-1192/500	7) /126, 8) 9) 10 1 ⁷ 36, 17	chord and an Ceiling dead dead load (11 Bottom chord chord dead la All bearings a)) Provide meci bearing plate 11, 183 lb up () Graphical pu or the orienta bottom chord	y other members. load (5.0 psf) on n 0.0psf) on member d live load (40.0 ps bad (5.0 psf) applie are assumed to be hanical connection capable of withsta lift at joint 17 and rlin representation ation of the purlin a	nember((s).12-1 f) and a d only t SP No. (by oth unding 1 151 lb u does no long the	s). 18-19; W 8 dditional bottu o room. 11-1 2. ers) of truss t 4 lb uplift at j olift at joint 12 t depict the s top and/or	'all om 2 ooint 2. size			A.	SEA 0363	ROUNT	Mannin
	2-16=-751/2357, 3-1 3-15=-294/995, 4-15 4-14=-388/229, 6-14 7-14=-1200/2836, 7- 18-19=-201/196, 10-	6=-1192/300, 6=-149/85, =-149/85, 13=-1211/554, 18=-241/235	12 L(2) ATTIC SPAC UNINHABITA DAD CASE(S)	E SHOWN IS DES ABLE. Standard	SIGNED	AS					ALC A. G	E.P	nn.

September 13,2024

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	164 Blueberry - Southeastern	
P03440-15869	AS04E	Piggyback Base	1	1	Job Reference (ontional)	168180365

Run: 8.82 S Aug 30 2024 Print: 8.820 S Aug 30 2024 MiTek Industries, Inc. Thu Sep 12 11:29:52 ID:RsYueiMsiKE2vxvEJ3IXJyyk2Pr-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Plate Offsets (X, Y):	[22:0-5-4,0-3-8],	[32:0-7-0,0-3-8]
-----------------------	-------------------	------------------

Scale = 1:80.4

Continued on page 2

Loading TCLL (roof) TCDL BCLL BCDL		(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TP	12014	CSI TC BC WB Matrix-I	MS	0.10 0.06 0.13	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loo 31-3 29-3 1	c) l/defl 2 >999 0 >999 9 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 392 lt	GRIP 244/19	0%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS	2x6 SP No 2x6 SP No 2x4 SP No 18-19,25-1 No.2 2x4 SP No 20-34,35-1 No.2	.2 .2 .3 *Except 1,25-14,2 .3 *Except 6,36-15,2	t* 2-14,8-25,18-22:2x4 t* 3-37,38-12,39-10:2x	SP 4 SP FORCI	ES	Max Grav (Ib) - Max Tension	19=65 (L 21=188 (23=130 (25=285 (27=89 (L 29=324 (31=341 (imum Con	C 24), 2 LC 1), 2 LC 24), LC 1), 2 C 3), 28 LC 1), 3 LC 1), 3 npressio	20=157 (LC 24 22=129 (LC 1) 24=137 (LC 1) 26=162 (LC 1) 3=51 (LC 3), 30=338 (LC 1) 32=289 (LC 1) pn/Maximum	4),), 1),),),	2) V I a t 2 e r E	Vind: ASC /asd=103r ; Exp B; E nd C-C Ex 0 21-10-12 /6-9-8 to 3 exposed ;C eactions s 00L=1.60	E 7-10 nph; To nclose (terior 2, Exte 3-1-8 z -C for hown;	; Vult=130mph (CDL=6.0psf; BC d; MWFRS (env (2) 0-0-0 to 3-3- rior (2) 21-10-12 cone; cantilever members and fo Lumber DOL=1.	3-second DL=3.0psi relope) ext 15, Interior to 26-9-8 left and rig proces & MN .60 plate g	gust) f; h=25ft; Cat. terior zone r (1) 3-3-15 , Interior (1) ht WFRS for trip
BRACING TOP CHORD	Structural 6-0-0 oc p 2-0-0 oc p	wood shea urlins, exc urlins (6-0-	athing directly applied cept end verticals, ar -0 max.): 11-18.	TOP C d or d	HORD	1-2=-83/2 4-6=-132/ 8-9=-75/4 11-12=-6/	27, 2-3=-13 /87, 6-7=-6 /1, 9-10=-3 /26, 12-13	85/60, 3 64/25, 7 86/46, 1 =-6/26,	-4=-137/71, -8=-51/75, 0-11=-15/54, 13-14=-6/26,		3) T c s	russ designly. For see Standar of consult of the set of	ned fo tuds e Ind Indi qualifie	r wind loads in t posed to wind (ustry Gable End d building desig	he plane c (normal to Details as ner as per	of the truss the face), applicable, ANSI/TPI 1.
BOT CHORD	2-0-0 oc purlins (6-0-0 max.): 11-18. Rigid ceiling directly applied or 6-0-0 oc bracing, Except: 10-0-0 oc bracing: 21-22,20-21,19-20. 1 Row at midpt 18-19, 11-25, 14-22, 15-36				HORD	14-15=-2/6, 15-16=-2/6, 16-17=-2/6, 4) 17-18=-2/6, 18-19=-49/32 1-32=-11/72, 31-32=-395/143, 30-31=-247/88, 29-30=-170/64, 5) 28-29=-50/36, 27-28=-62/37, 6)						 verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component. Provide adequate drainage to prevent water ponding. All plates are 2x4 () MT20 unless otherwise indicated. 				
JOINTS	1 Row at midpt 18-19, 11-25, 14-22, 15-36 1 Brace at Jt(s): 18, 34, 35, 37, 38, 40				25-26=-62/39, 24-25=-11/13, 23-24=-16/15, 22-23=-11/11, 21-22=0/0, 20-21=0/0, 19-20-0/0					7) (8) T	 Gable studs spaced at 2-0-0 oc. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 					
REACTIONS	34, 35, 37, 38, 40 5 (size) 19=31-7-12, 20=31-7-12, 21=31-7-12, 22=0-3-8, 23=31-7-12, 24=31-7-12, 25=31-7-12, 26=31-7-12, 28=31-7-12, 29=31-7-12, 30=31-7-12, 31=31-7-12, 32=0-3-8 Max Horiz 32=424 (LC 12) Max Uplift 19=-24 (LC 9), 20=-41 (LC 9), 21=-46 (LC 9), 22=-29 (LC 8), 23=-34 (LC 9), 24=-35 (LC 8), 25=-88 (LC 12), 26=-59 (LC 12), 28=-10 (LC 12), 29=-176 (LC 12), 30=-113 (LC 12), 31=-146 (LC 12) NOTES 1) Unbalan this desi				S bbalanced s design.	$\begin{array}{l} 22-23=-11/1, 21-22=00, 20-21=0/0,\\ 19-20=0/0\\ 2-32=-224/117, 11-25=-104/50, 25-38=-49/15,\\ 37-38=-50/15, 14-37=-49/15, 14-22=-79/41,\\ 2-31=-13/105, 3-31=-250/136, 3-30=-8/63,\\ 4-30=-252/120, 4-29=-27/68, 6-29=-196/123,\\ 29-33=-88/0, 33-42=-59/1, 41-42=-65/0,\\ 8-41=-79/0, 8-40=-99/99, 39-40=-82/87,\\ 25-39=-114/104, 22-36=-13/1, 35-36=-14/7,\\ 34-35=-12/4, 18-34=-13/5, 7-33=-59/32,\\ 17-34=-121/55, 20-34=-118/54,\\ 16-35=-128/57, 21-35=-136/61,\\ 15-36=-18/11, 13-37=-96/46, 23-37=-95/46,\\ 12-38=-103/46, 24-38=-104/46,\\ 10-39=-35/22, 9-40=-97/72, 26-40=-116/86,\\ 27-41=-23/0, 28-42=-24/15\\ ed roof live loads have been considered for n.\\ \end{array}$					s, s, s, s, s, s, s, s, s, s, s, s, s, s					

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE WARNING Design valid for use only with MTek connectors. This design is based only upon parameters and property incorporate this design is based only upon parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

September 13,2024

Job	Truss	Truss Type	Qty	Ply	164 Blueberry - Southeastern				
P03440-15869	AS04E	Piggyback Base	1	1	Job Reference (optional)	168180365			

- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Bearings are assumed to be: Joint 32 SP No.2 , Joint 22 SP No.2 , Joint 28 SP No.2 .
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 24 lb uplift at joint 19, 176 lb uplift at joint 29, 29 lb uplift at joint 22, 88 lb uplift at joint 25, 146 lb uplift at joint 31, 113 lb uplift at joint 30, 41 lb uplift at joint 20, 46 lb uplift at joint 21, 34 lb uplift at joint 23, 35 lb uplift at joint 24, 59 lb uplift at joint 26 and 10 lb uplift at joint 28.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Run: 8.82 S Aug 30 2024 Print: 8.820 S Aug 30 2024 MiTek Industries, Inc. Thu Sep 12 11:29:52 ID:RsYueiMsiKE2vxvEJ3IXJyyk2Pr-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

Job	Truss	Truss Type	Qty	Ply	164 Blueberry - Southeastern	
P03440-15869	AT1	Attic	1	1	Job Reference (optional)	168180366

Run: 8.82 S Aug 30 2024 Print: 8.820 S Aug 30 2024 MiTek Industries, Inc. Thu Sep 12 11:29:52 ID:FpT6Fh?Lo3D1hVJWIAzw85yk1Yn-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

	4-5-8	15-5-8	19-11-0
Scale = 1:76.5	4-5-8	11-0-0	4-5-8

Plate Offsets (X, Y): [5:0-5-8,0-3-0], [7:0-5-8,0-3-0], [13:0-6-12,0-1-8], [15:0-6-12,0-1-8]

Loading (psf) TCLL (roof) 20.0 TCDL 10.0 BCLL 0.0* BCDL 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TP	912014	CSI TC BC WB Matrix-MS	0.14 0.25 0.50	DEFL Vert(LL) Vert(CT) Horz(CT) Attic	in -0.08 -0.12 0.01 -0.06	(loc) 13-15 13-15 12 13-15	l/defl >999 >999 n/a >999	L/d 240 180 n/a 360	PLATES MT20 Weight: 246 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD 2x6 SP No.2 BOT CHORD 2x10 SP DSS WEBS 2x4 SP No.1 *Exce No.2, 16-3,12-9:2x4 6-17,17-7,5-17:2x4 BRACING TOP CHORD Structural wood sh 6-0-0 oc purlins, 6: 2-0-0 oc purlins, 6: BOT CHORD Rigid ceiling directl bracing. WEBS 1 Row at midpt JOINTS 1 Brace at Jt(s): 17 REACTIONS (size) 12=0-3-6 Max Horiz 16=-329 Max Grav 12=1365 FORCES (lb) - Maximum Cor Tension TOP CHORD 1-2=0/66, 2-3=-324 4-5=-440/159, 8-9= 10-11=0/66, 2-16= BOT CHORD 15-16=-25/706, 13- 12-13=-25/706 WEBS 3-15=-79/808, 9-13 8-17=-551/107, 3-1 9-12=-1435/19, 6-1 7-17=-172/495, 5-1 NOTES 1) Unbalanced roof live loads have this design.	Dt* 16-2,12-10:2x6 SP SP No.2, SP No.3 Beathing directly applied (cept end verticals, and 0-0 max.): 5-7. y applied or 10-0-0 oc 3-16, 9-12 (16 - 0-3-8 (LC 10) (LC 2), 16=1365 (LC 2 npression/Maximum (259, 3-4=-686/138, -740/221, 6-7=-740/221 (405/236, 10-12=-404/2 15=-25/706, =-78/808, 4-17=-552/10 6=-1436/20, 7=-215/110, 7=-172/495 Bebeen considered for	2) Wii Va Va II; I or exp DC 3) Bu ver rec 4) Prc 5) Thi 5) Thi 5) Thi 5, Thi 6) *T on 3-CC ch 6) *T 0, 6) *T 0, 7) Ce 1, 8-1 5, 8) Bo 35 ch 9) All 10) Gra 07, or 1 11) Att LOAD	ind: ASCE 7 ind: ASCE 7 ind: ASCE 7 ind: Complete Sad=103mpl Exp B; Enc ad C-C Exter 11-11, Exter 13-11-5, Ex 3-2-4 to 21-3 cposed;C-C actions shoo OL=1.60 uilding Desig erifying Rain quirements rovide adequ arighing Rain quirements rovide adequ is truss has nord live load This truss has nord live load th	7-10; Vult=130mph n; TCDL=6.0psf; B losed; MWFRS (er rior (2) -1-4-0 to 1- rior (2) 5-11-11 to 9; terior (2) 13-11-5 i -0 zone; end vertic for members and f wn; Lumber DOL= gner/Project engine Load = 5.0 (psf) c specific to the use uate drainage to pr been designed fo d nonconcurrent wi as been designed for d nonconcurrent will y 2-00-00 wide will y 10-00 spf) on m ad load (10.0psf) ad (5.0 psf) applieure re assumed to be 9 line representation c ion of the purlin all excked for L/360 def Standard	a (3-sec CDL=3 nvelope 8-0, Int 9-11-8, to 18-2- cal left a forces & 1.60 pla eer resp overs ra of this revent v ra 10.0 ith any for a live where fit betw ember(on merr) and a d only t SP No does no ong the flection	ond gust) Opsf; h=25ft;) exterior zor erior (1) 1-8- Interior (1) 9- 4, Interior (1) 9- 4, Interior (1) 9- 4, Interior (1) MWFRS for the grip bonsible for ain loading truss compor vater ponding opsf bottom other live loa e load of 20.0 a rectangle een the bottor s). 3-4, 8-9, 4 ber(s).3-15, dditional bottor c room. 13-15; t depict the s top and/or	(Cat. ne 0 to -11-8) - - - - - - - - - - - - - - - - - -				SEAL OR FESS SEAL O3632	22 EPICK	Norming.

- oof live loads have been considered for this design.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

G minin September 13,2024

Job	Truss	Truss Type	Qty	Ply	164 Blueberry - Southeastern	
P03440-15869	AT1A	Attic	8	1	Job Reference (optional)	168180367

Run: 8.82 S Aug 30 2024 Print: 8.820 S Aug 30 2024 MiTek Industries, Inc. Thu Sep 12 11:29:52 ID:FpT6Fh?Lo3D1hVJWIAzw85yk1Yn-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:64.8 Plate Offsets (X, Y): [4:0-5-8,0-3-0], [6:0-5-8,0-3-0], [11:0-6-12,0-1-8]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	тс	0.12	Vert(LL)	-0.08	11-13	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.25	Vert(CT)	-0.13	11-13	>999	180		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.49	Horz(CT)	0.01	10	n/a	n/a		
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-MS		Attic	-0.06	11-13	>999	360	Weight: 238 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS	2x6 SP No.2 2x10 SP DSS 2x4 SP No.1 *Except No.2, 14-2,10-8:2x4 S 5-15,15-6,4-15:2x4 S	t* 14-1,10-9:2x6 SP SP No.2, ነ₽ No.3	2) Wind: ASCE Vasd=103mj II; Exp B; En and C-C Ext to 5-11-11, E 9-11-8 to 13.	7-10; Vult=130 ph; TCDL=6.0ps closed; MWFR\$ erior (2) 0-2-12 Exterior (2) 5-11 -11-5, Exterior (2)	mph (3-sec sf; BCDL=3 S (envelope to 3-2-12, I -11 to 9-11- 2) 13-11-5	cond gust) .0psf; h=25ft e) exterior zon nterior (1) 3-2 -8, Interior (1) to 18-2-4, Int	t; Cat. ine 2-12 I) terior					
BRACING TOP CHORD	Structural wood shea	athing directly applied	d or exposed;C-C) for members a own; Lumber D0	and forces & DL=1.60 pla	MWFRS for the grip)r					

	6-0-0 oc purlins, except end verticals, and
	2-0-0 oc purlins (6-0-0 max.): 4-6.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc
	bracing.
WEBS	1 Row at midpt 2-14, 8-10
JOINTS	1 Brace at Jt(s): 15
REACTIONS	(size) 10=0-3-8, 14=0-3-8
	Max Horiz 14=-291 (LC 8)
	Max Grav 10=1287 (LC 2), 14=1287 (LC 2)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=-256/202, 2-3=-693/129, 3-4=-433/158,
	4-5=-727/222, 5-6=-727/222, 6-7=-433/158,
	7-8=-693/129, 8-9=-256/202, 1-14=-274/170,
	9-10=-273/170
BOT CHORD	13-14=-33/697, 11-13=-33/697,
	10-11=-33/697
WEBS	2-13=-76/808, 8-11=-76/808, 3-15=-578/98,
	7-15=-577/97, 2-14=-1425/24,
	8-10=-1424/23, 5-15=-216/110,
	6-15=-169/495, 4-15=-169/495

NOTES

1) Unbalanced roof live loads have been considered for this design.

DOL=1.60

- Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading 3) requirements specific to the use of this truss component. 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 7) Ceiling dead load (5.0 psf) on member(s). 2-3, 7-8, 3-15, 7-15; Wall dead load (10.0psf) on member(s).2-13, 8-11
- 8) Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 11-13 All bearings are assumed to be SP No.2 9)
- 10) Graphical purlin representation does not depict the size
- or the orientation of the purlin along the top and/or bottom chord.
- 11) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	164 Blueberry - Southeastern	
P03440-15869	AT1B	Attic	1	1	Job Reference (optional)	168180368

Run: 8.82 S Aug 30 2024 Print: 8.820 S Aug 30 2024 MiTek Industries, Inc. Thu Sep 12 11:29:53 ID:FpT6Fh?Lo3D1hVJWIAzw85yk1Yn-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

	4-5-8	15-5-8	19-11-0
Scale = 1:76.5	4-5-8	11-0-0	4-5-8

Plate Offsets (X, Y): [5:0-5-8,0-3-0], [7:0-5-8,0-3-0], [12:0-7-0,0-1-8], [14:0-7-0,0-1-8]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.14 0.25 0.50	DEFL Vert(LL) Vert(CT) Horz(CT) Attic	in -0.08 -0.13 0.01 -0.06	(loc) 12-14 12-14 11 12-14	l/defl >999 >999 n/a >999	L/d 240 180 n/a 360	PLATES MT20 Weight: 242 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x6 SP No.2 2x10 SP DSS 2x4 SP No.1 *Excep No.2, 15-3,11-9:2x4 6-16,16-7,5-16:2x4 \$ Structural wood she 6-0-0 oc purlins, ex 2-0-0 oc purlins, ex 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing.	t* 15-2,11-10:2x6 SF SP No.2, SP No.3 athing directly applie cept end verticals, ar I-0 max.): 5-7. applied or 10-0-0 oc	2) d or id 3)	Wind: ASCE Vasd=103mj II; Exp B; En and C-C Ext 5-11-11, Ext to 13-11-5, E 18-2-4 to 19- exposed;C-C reactions sho DOL=1.60 Building Des verifying Rai	7-10; Vult=130mp bh; TCDL=6.0psf; closed; MWFRS (erior (2) -1-4-0 to 1 erior (2) 5-11-11 to ixterior (2) 13-11-5 8-4 zone; end ver c for members and own; Lumber DOL igner/Project engin n Load = 5.0 (psf)	bh (3-sec BCDL=3 envelope 1-8-0, Int b 9-11-8, 5 to 18-2 tical left I forces 8 =1.60 pla neer resj covers r	ond gust) .0psf; h=25fi exterior zo erior (1) 1-8- Interior (1) 5 -4, Interior (1) 5 -4, Interior (1) and right & MWFRS for ate grip bonsible for ain loading	r; Cat. ne 0 to 0-11-8) r					
WEBS JOINTS REACTIONS	1 Row at midpt 1 Brace at Jt(s): 16 (size) 11=0-3-8, Max Horiz 15=316 (L Max Grav 11=1283	3-15, 9-11 15=0-3-8 _C 9) (LC 2), 15=1368 (LC	4) 5) 2) 6)	requirements Provide adeo This truss ha chord live loa * This truss h on the bottor	s specific to the us quate drainage to p is been designed f ad nonconcurrent v has been designed n chord in all area	e of this prevent v for a 10.0 with any d for a liv s where	truss compo vater pondin) psf bottom other live loa e load of 20. a rectangle	nent. g. ads. Opsf					
TOP CHORD	(ib) - Maximum Com Tension 1-2=0/66, 2-3=-323/. 4-5=-438/161, 5-6=- 7-8=-435/156, 8-9=- 2-15=-403/237, 10-1	260, 3-4=-689/132, 736/223, 6-7=-736/22 690/135, 9-10=-257/2 1=-275/168	7) 23, 201, 8)	3-06-00 fail f chord and ar Ceiling dead 8-16; Wall d Bottom chord chord dead l	by 2-00-00 wide wi ty other members. load (5.0 psf) on r ead load (10.0psf) d live load (40.0 ps pad (5.0 psf) appli	member() on men sf) and a ed only t	s). 3-4, 8-9, ber(s).3-14, dditional bott o room. 12-1	4-16, 9-12 tom					11111
BOT CHORD WEBS	14-15=-37/694, 12-1 11-12=-37/694 3-14=-72/813, 9-12= 8-16=-567/107, 3-15 9-11=-1416/33, 6-16 7-16=-173/498, 5-16	4=-37/694, =-83/804, 4-16=-562/9 5=-1444/10, 5=-216/110, 5=-168/492	9) 10 94, 11	All bearings) Graphical pu or the orienta bottom chore) Attic room ch	are assumed to be Irlin representation ation of the purlin a becked for L/360 d	e SP No. does no along the eflection	2 . ot depict the top and/or	size		2	N.U.	ORTH CA	Roman and Andrews
NOTES 1) Unbalance this design	ed roof live loads have n.	been considered for		JAD CASE(S)	Siandard					111111		SEA 0363	

G minin September 13,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	164 Blueberry - Southeastern	
P03440-15869	AT1E	Attic Supported Gable	1	1	Job Reference (optional)	168180369

Scale - 1:76 5

Run: 8.82 S Aug 30 2024 Print: 8.820 S Aug 30 2024 MiTek Industries, Inc. Thu Sep 12 11:29:53 ID:_AqkSQ_aQ9lvIYHrovO9ETyk1WE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

00010 - 1.70.0	
Plate Offsets (X, Y):	[4:0-2-4,0-1-8], [6:0-5-8,0-3-0], [8:0-5-8,0-3-0], [10:0-2-4,0-1-8]

						-									
Loading		(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)		20.0	Plate Grip DOI	1 15		TC	0 19	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
		10.0	Lumber DOI	1 15		BC	0.09	Vert(CT)	n/a	-	n/a	999			
BCU		0.0*	Rep Stress Incr	YES		WB	0.25	Horz(CT)	0.00	14	n/a	n/a			
		10.0	Code	IPC201	5/TPI2014	Matrix-MS	0.20	11012(01)	0.00		n/a	n/a	Weight: 255 lb	FT - 20%	
DODL		10.0	Coue	11(0201	5/11/2014	Wath No							Weight. 200 lb	11 = 2070	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS	2x6 SP No 2x10 SP I 2x4 SP No No.2, 4-18 2x4 SP No	o.2 DSS o.3 *Excep 3,10-17,5-9 o.3	t* 4-20,10-14:2x4 SP 0:2x4 SP No.1	W	/EBS 2	20-22=-316/274, 4- 4-18=-261/185, 10- 10-21=-302/252, 14 5-23=-66/222, 9-23: 11-21=-198/132, 15 3-22=-198/132, 19-2	22=-31 17=-24 -21=-3 -53/22 -21=-2 22=-20	9/274, 6/167, 00/252, /3, 01/132, 1/132,		11) Ceil 5-23 (s).4 12) All t 13) Pro- bea	ling dea 3, 9-23; 4-18, 10 pearings vide me ring plat	d load Wall d -17, 19 are as chanic te capa	(5.0 psf) on memi ead load (10.0ps -22 ssumed to be SP al connection (by ble of withstandir	per(s). 4-5, 9-10) on member No.2 . others) of truss ng 214 lb uplift a	, to it joint
BRACING					7	7-23=-230/102, 8-23	3=-185	/392,		20,	196 lb u	plift at	joint 14, 115 lb u	olift at joint 18, 9	7 lb
TOP CHORD	Structural	wood she	athing directly applied	lor	6	6-23=-186/392				upli	ft at join	t 17, 28	34 lb uplift at joint	15 and 284 lb u	plift
	6-0-0 oc r	ourlins ex	cept end verticals and	d N	OTES					at jo	pint 19.				
BOT CHORD	2-0-0 oc p Rigid ceili	ourlins (6-0 ng directly	-0 max.): 6-8. applied or 10-0-0 oc	1)	Unbalanced this design.	roof live loads have	been (considered for	-	14) Gra or tl	phical p ne orien om choi	urlin re tation d	presentation doe of the purlin along	s not depict the the top and/or	size
	bracing.			2)	Wind: ASCE	7-10; Vult=130mpr	1 (3-sec	cond gust)	0-1	15) Atti		u. hecke	d for L/360 deflec	tion	
JOINTS	1 Brace a	t Jt(s): 21,			vasd=103mp	DN; TODL=6.0pst; B	SCDL=3	0.0pst; n=25tt;	Cat.				adord		
REACTIONS	22, 23 (size) Max Horiz Max Uplift Max Grav	14=19-11 17=19-11 20=-315 (14=-196 (17=-97 (L 19=-284 (14=428 (L 17=769 (L 19=50 (LC	-0, 15=19-11-0, -0, 18=19-11-0, -0, 20=19-11-0 LC 10) LC 9), 15=-284 (LC 1 C 8), 18=-115 (LC 9), LC 18), 20=-214 (LC C 20), 15=50 (LC 9), .C 21), 18=784 (LC 21) C 8), 20=443 (LC 21) Decosion (Maximum	8), 8) 3) 0),	II; EXP B; En- and C-C Externance to 5-11-11, E 9-11-8 to 13- Interior (1) 17 right exposed for reactions DOL=1.60 Truss design only. For stu- see Standard or consult qu	closed; MWFRS (el errior (2) -1-4-0 to 1- ixterior (2) 5-11-11 11-5, Exterior (2) 1 7-11-11 to 21-3-0 z d;C-C for members shown; Lumber DC ed for wind loads in ds exposed to wind d Industry Gable Er alified building desi	nvelope 11-5, li to 9-11 3-11-5 one; en and foi DL=1.60 n the pla d (norm nd Deta igner as	e) extendor zon nterior (1) 1-1" -8, Interior (1) to 17-11-11, d vertical left a cces & MWFR:) plate grip ane of the trus al to the face) ils as applicat s per ANSI/TP	e 1-5 and S S S S S S P I 1.	LUAD	JA3E(3)) Star	WITH CA	Route	
FORCES	(Ib) - Max Tension	imum Com	pression/Maximum	4)	Building Des	igner/Project engin	eer res	oonsible for				À	ON EESS	6.94:	
TOP CHORD BOT CHORD	2-20=-265 3-4=-271/ 6-7=-666/ 9-10=-285 11-12=-20 19-20=-17 17-18=-17 14-15=-17	5/202, 1-2= 291, 4-5=- 283, 7-8=- 5/225, 10-1 06/202, 12- 75/156, 18- 75/156, 15- 75/156	0/63, 2-3=-205/202, 285/229, 5-6=-421/16 666/283, 8-9=-421/16 1=-272/292, -13=0/63, 12-14=-266 -19=-175/156, -17=-175/156,	53, 5) 51, 6) 5/202 7) 8) 9) 10	ventrying Raii requirements Provide adec Gable requiri Truss to be f braced again Gable studs This truss ha chord live loa D) * This truss h	n Load = 5.0 (psf) c s specific to the use quate drainage to p es continuous botto ully sheathed from ist lateral movemen spaced at 2-0-0 oc. s been designed fo d nonconcurrent w has been designed	covers r covers r revent om chor one fac on fac or a 10.0 for a liv	ain loading truss compon water ponding d bearing. e or securely iagonal web). O psf bottom other live load e load of 20.0	ds.				SEA 0363	22 EPER I	Manunna
					on the bottor 3-06-00 tall b chord and ar	n chord in all areas by 2-00-00 wide will by other members, v	where fit betv with BC	a rectangle veen the botto :DL = 10.0psf.	m				A. G	ILBEIT	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

September 13,2024

Job	Truss	Truss Type	Qty	Ply	164 Blueberry - Southeastern	
P03440-15869	AT2	Attic	1	2	Job Reference (optional)	168180370

Run: 8.82 S Aug 30 2024 Print: 8.820 S Aug 30 2024 MiTek Industries, Inc. Thu Sep 12 11:29:53 ID:trlEGTTkSxFS?SAUVE5?jPyk1UJ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:64.8

Plate Offsets (X, Y): [4:0-5-8,0-3-0], [6:0-5-8,0-3-0], [8:0-2-4,0-1-8]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	3-0-0 1.15 1.15 NO IRC2015	5/TPI2014	CSI TC BC WB Matrix-MS	0.11 0.21 0.60	DEFL Vert(LL) Vert(CT) Horz(CT) Attic	in -0.06 -0.09 0.00 -0.05	(loc) 11-13 11-13 10 11-13	l/defl >999 >999 n/a >999	L/d 240 180 n/a 360	PLATES MT20 Weight: 475 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORE BOT CHORE WEBS BRACING TOP CHORE BOT CHORE JOINTS	2x6 SP No.2 2x10 SP DSS 2x4 SP No.1 *Excep No.2, 14-2,10-8:2x4 5-15,15-6,4-15:2x4 S 2-0-0 oc purlins (6-0 verticals (Switched from shee Rigid ceiling directly bracing. 1 Brace at Jt(s): 1, 4, 6, 9, 15	t* 14-1,10-9:2x6 SP SP No.2, SP No.3 -0 max.), except enc eted: Spacing > 2-0-0 applied or 10-0-0 oc	2) 3) i 4)).	All loads are except if note CASE(S) sec provided to d unless otherw Unbalanced I this design. Wind: ASCE Vasd=103mp II; Exp B; End and C-C Exte to 5-11-11, E 9-11-8 to 13- (1) 18-2-4 to	considered equally ad as front (F) or ba titon. Ply to ply con istribute only loads vise indicated. roof live loads have 7-10; Vult=130mpl bh; TCDL=6.0psf; E closed; MWFRS (e rrior (2) 0-2-12 to 3 xterior (2) 5-11-11 11-5, Exterior (2) 1 19-8-4 zone; end v for members and	applied ack (B) nection noted been (3-sec CDL=3 nvelope -2-12, I to 9-11 3-11-5 vertical	to all plies, ace in the LC s have been as (F) or (B), considered for ond gust) .0psf; h=25ft; b) exterior zon therior (1) 3-2 -8, Interior (1) to 18-2-4, Inte eft and right	DAD Cat. le -12 erior						
REACTIONS	(size) 10=0-3-4, Max Horiz 14=-436 (Max Grav 10=1930 (14=0-3-8 LC 10) (LC 2), 14=1930 (LC	2) 5)	exposed;C-C reactions sho DOL=1.60 Building Desi	own; Lumber DOL=	1.60 pl	MWFRS for ate grip							
FORCES	(lb) - Maximum Com Tension	pression/Maximum	5)	verifying Rair	Load = 5.0 (psf)	overs r	ain loading	ent						
TOP CHORE	1-2=-384/303, 2-3=- 4-5=-1090/332, 5-6= 6-7=-650/236, 7-8=- 1-14=-411/255, 9-10	1039/194, 3-4=-650/2 -1090/332, 1039/193, 8-9=-384/3 =-410/255	237, 6) 7) 303,	Provide adeq This truss has chord live loa	Juate drainage to p s been designed for ad nonconcurrent w	revent or a 10.0 vith any	vater ponding) psf bottom other live load	J. ds.				mmm	um.	
BOT CHORE	13-14=-49/1046, 11- 10-11=-49/1046	13=-49/1046,	8)	on the botton 3-06-00 tall b	n chord in all areas	where fit betv	a rectangle	om			- N	WITH CA	ROLING	
WEBS	2-13=-115/1213, 8-1 3-15=-867/147, 7-15 2-14=-2137/37, 8-10 5-15=-325/165, 6-15 4-15=-253/743	1=-114/1213, =-865/145, =-2136/35, =-253/743,	9) 10	chord and an Ceiling dead 7-15; Wall de Bottom chord chord dead lo	y other members. load (5.0 psf) on m ead load (10.0psf) l live load (40.0 psf) oad (5.0 psf) applie	ember on men) and a d only f	s). 2-3, 7-8, 3 ber(s).2-13, 8 dditional botto o room, 11-13	8-15, 8-11 om 3		Winn		SEA		
NOTES 1) 2-ply trus (0.131"x3 Top chor staggere Bottom c staggere Web con	s to be connected toget ") nails as follows: ds connected as follows d at 0-9-0 oc. nords connected as follo d at 0-9-0 oc. nected as follows: 2x4 -	her with 10d :: 2x6 - 2 rows ows: 2x10 - 2 rows 1 row at 0-9-0 oc.	11 12 13 LC) All bearings a) Graphical pui or the orienta bottom chord) Attic room ch DAD CASE(S)	are assumed to be rlin representation titon of the purlin al ecked for L/360 de Standard	SP No. does no ong the	2 . ot depict the s top and/or	ize		THE REAL PROPERTY OF THE PROPE	A A A A A A A A A A A A A A A A A A A		ER.K.	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

September 13,2024

Job	Truss	Truss Type	Qty	Ply	164 Blueberry - Southeastern	
P03440-15869	AV1	Valley	1	1	Job Reference (optional)	168180371

Run: 8.81 E Jul 25 2024 Print: 8.810 E Jul 25 2024 MiTek Industries, Inc. Thu Sep 12 13:51:12 ID:TG45eSQs90tu8?Svq6YI6nyk1UM-w0daZylcdn7vcKMK7mtoZRHWEQgA3xrYqxnYCOyeM7U

15-0-14

Page: 1

Scale = 1:55.9

-														
Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		20.0	Plate Grip DOL	1.15		тс	0.53	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL		10.0	Lumber DOL	1.15		BC	0.52	Vert(TL)	n/a	-	n/a	999		
BCLL		0.0*	Rep Stress Incr	YES		WB	0.11	Horiz(TL)	0.01	6	n/a	n/a		
BCDI		10.0	Code	IRC2015	/TPI2014	Matrix-MS	0		0.01	0			Weight [,] 69 lb	FT = 20%
		10.0	Code	11(02010	/1112014								Weight. 05 lb	11 = 20%
LUMBER TOP CHORD	2x4 SP No.2			3)	Building Desi verifying Rair	gner/Project engine Load = 5.0 (psf) c	eer res overs r	oonsible for ain loading	ant					
BOLCHORD	2X4 SP N0.2			4)	Coble require	specific to the use	or this	d beering	ient.					
WEBS	2x4 SP No.2			4)	Gable require		m chor	d bearing.						
OTHERS	2x4 SP No.3			5)	Gable studs s		10 () nof hottom						
BRACING				6)	6) This truss has been designed for a 10.0 psf bottom									
TOP CHORD	Structural wo 6-0-0 oc purl	ood shea lins, exc	athing directly applied ept end verticals.	l or 7)	* This truss h	as been designed	for a liv	e load of 20.0	us.)psf					
BOT CHORD	Rigid ceiling bracing.	directly	applied or 10-0-0 oc		3-06-00 tall b	y 2-00-00 wide will	fit betv	leen the botto	om					
REACTIONS	(lb/size) 1= 7=	=233/15- =244/15-	0-14, 6=145/15-0-14, 0-14, 8=572/15-0-14	8)	All bearings a	are assumed to be	SP No.	2 crushing	•					
	Max Horiz 1= Max Uplift 6=	=283 (LC =-54 (LC 205 (LC	12) 12), 7=-97 (LC 12),	9)	Provide mech bearing plate	nanical connection capable of withsta	(by oth nding 5	ers) of truss t 4 lb uplift at j	o oint					
	Max Grav 1=	=203 (LC =233 (LC .C 2), 8=	5 12) 5 1), 6=173 (LC 2), 7= 572 (LC 1)	³⁴⁸ 10	6, 97 lb uplift This truss is o	at joint 7 and 205 I designed in accord Regidential Code a	b uplift ance w	at joint 8. ith the 2015	nd					
FORCES	(lb) - Maximu Tension	um Comp	pression/Maximum		R802.10.2 ar	nd referenced stand	dard AN	ISI/TPI 1.	nu					
TOP CHORD	1-11=-406/9 3-4=-125/53 5-6=-104/74	5, 2-11≕ , 4-12=-7	-238/131, 2-3=-129/2 70/2, 5-12=-40/35,	1, LC	AD CASE(S)	Standard								
BOT CHORD	1-8=-162/36	1, 8-13=	-2/4, 7-13=-2/4, 6-7=-	-2/4										
WEBS	4-7=-204/133	3, 2-8=-3	881/207										minin	1111.
NOTES													N'L'H CA	ROUL
1) Wind: ASG Vasd=103 II; Exp B; and C-C E 14-11-10 members Lumber D	CE 7-10; Vult=1 Bmph; TCDL=6. Enclosed; MWI Exterior (2) 0-0- zone; cantileve and forces & M OL=1.60 plate	130mph .0psf; BC FRS (en e8 to 3-0- r left and IWFRS f grip DOI	(3-second gust) :DL=3.0psf; h=25ft; C velope) exterior zone 8, Interior (1) 3-0-8 to 1 right exposed ;C-C t or reactions shown; _=1.60	Cat. o for							William	(III)	SEA 0363	L 22
 Truss des only. For see Stand or consult 	signed for wind studs exposed lard Industry Ga qualified buildi	loads in to wind able End ing desig	the plane of the truss (normal to the face), I Details as applicable iner as per ANSI/TPI	s e, 1.							11.	and the second s	A C A GINE	E.P. KIN

- members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face),
- see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

GI China China September 13,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	164 Blueberry - Southeastern	
P03440-15869	AV1E	Valley	1	1	Job Reference (optional)	168180372

15-0-14

84 Components (Dunn, NC), Dunn, NC - 28334,

Run: 8.82 S Aug 30 2024 Print: 8.820 S Aug 30 2024 MiTek Industries, Inc. Thu Sep 12 11:29:53 ID:xSeUsoRUwK?km815Op3Xe_yk1UL-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

_

Page: 1

ala 4.55 0

15-0-14

Scale = 1:55.9													
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15			0.25	Vert(LL)	n/a	-	n/a	999	M120	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.27	Vert(IL)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	YES			0.09	Horiz(IL)	0.00	9	n/a	n/a	Waight 07 lb	FT 000/
BCDL	10.0	Code	IRC201	5/1912014	Matrix-IVIS							weight: 87 lb	F1 = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 *Exc Structural wood s 6-0-0 oc purlins, Rigid ceiling direc bracing.	ept* 10-7:2x4 SP No.2 neathing directly applie except end verticals. tly applied or 10-0-0 or	2) ed or 4) c 5) 6) 7)	Truss desigr only. For stu see Standard or consult qu Building Dess verifying Rai requirements All plates are Gable requir Gable studs	ed for wind loads uds exposed to wind d Industry Gable E lailfied building de igner/Project engin n Load = 5.0 (psf) s specific to the us e 2x4 () MT20 un es continuous bott spaced at 2-0-0 o se been designed	in the pland (norm End Deta signer as neer res covers r se of this nless oth tom chor c. for a 10.0	ane of the tru al to the face ils as applical s per ANSI/TF consible for ain loading truss compor erwise indicat d bearing.	ss ble, PI 1. nent. ted.					
REACTIONS	(size) 1=15-0 11=15- 13=15- Max Horiz 1=283 Max Uplift 9=-24 11=-59 13=-23 Max Grav 1=165 (LC 1), 1 11=	14, 9=15-0-14, 10=15)-14, 12=15-0-14,)-14, 14=15-0-14 LC 12) LC 12), 10=-63 (LC 12 (LC 12), 12=-70 (LC 1 (LC 12), 14=-141 (LC LC 1), 9=59 (LC 1), 1(11=151 (LC 1), 12=19 04 (LC 1), 14=426 (LC	-0-14, ⁷⁾ 8)), 2), 9) 12) 10)=172 10 3 (LC 1)	 This truss h chord live loa This truss h on the bottor 3-06-00 tall h chord and ar All bearings Provide mec bearing plate 9, 63 lb uplifi 	ad nonconcurrent aas been designed n chord in all area by 2-00-00 wide w by other members are assumed to be hanical connection e capable of withst t at joint 10, 59 lb o	with any d for a liv s where ill fit betv e SP No. n (by oth canding 2 uplift at jo	other live loa e load of 20.0 a rectangle veen the botto 2. ers) of truss t 4 lb uplift at j pint 11, 70 lb	ds. Dpsf om o oint uplift					
FORCES	(lb) - Maximum C	mpression/Maximum	,	at joint 12, 2	3 lb uplift at joint 1	3 and 14	1 lb uplift at j	oint					
TOP CHORD	Tension DRD 1-2=-299/132, 2-3=-186/68, 3-5=-155/72, 5-6=-111/50, 6-7=-75/34, 7-8=-33/15, 8-9=-45/34												Della
BOT CHORD	1-14=-125/238, 13 11-12=0/0, 10-11	8-14=0/0, 12-13=0/0, =0/0. 9-10=0/0									A	RTHUR	
WEBS	7-10=-127/90, 6-1 3-13=-50/45, 2-14	1=-116/71, 5-12=-136/ =-271/137	/79,							4	it	P	No. All
NOTES 1) Wind: AS Vasd=103 II; Exp B; and C-C B 14-11-10	CE 7-10; Vult=130m 3mph; TCDL=6.0psf; Enclosed; MWFRS Exterior (2) 0-0-8 to 3 zone; cantilever left	oh (3-second gust) BCDL=3.0psf; h=25ft; envelope) exterior zon -0-8, Interior (1) 3-0-8 and right exposed ;C-C	Cat. le to C for							THILD WY		SEA 0363	L 22

members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

A. GILB A. GILD September 13,2024

C

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	164 Blueberry - Southeastern	
P03440-15869	AV2	Valley	1	1	Job Reference (optional)	168180373

Run: 8.82 S Aug 30 2024 Print: 8.820 S Aug 30 2024 MiTek Industries, Inc. Thu Sep 12 11:29:54 ID:xSeUsoRUwK?km815Op3Xe_yk1UL-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

11-5-14

Scale = 1:48.9

Loading TCLL (roof) TCDL BCLL BCDI		(psf) 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.19 0.16 0.07	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL 10.0 Code I LUMBER TOP CHORD 2x4 SP No.2 SOT CHORD 2x4 SP No.3 BOT CHORD 2x4 SP No.3 SOTHERS 2x4 SP No.3 BRACING TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Structural wood sheathing directly applied or 10-0-0 oc bracing. REACTIONS (size) 1=11-5-14, 5=11-5-14, 6=11-5-14 REACTIONS (size) 1=1214 (LC 12) Max Horiz 1=214 (LC 12), 6=-132 (LC 12), 7=-1111 (LC 21), 5=163 (LC 2), 6=-348 (LC 2), 7=-328 (LC 1)					 Gable requir Gable studs This truss ha chord live load * This truss from the bottor 3-06-00 tall be chord and ar All bearings Provide mec bearing plate 5, 132 lb upli 	es continuous bo spaced at 4-0-0 o ls been designed ad nonconcurrent has been designe n chord in all area by 2-00-00 wide v by other members are assumed to b hanical connectic e capable of withs ft at joint 6 and 1 Standard	ttom chor oc. for a 10.0 with any d for a liv as where vill fit betw s, with BC oe SP No. on (by oth standing 4 11 Ib uplif	d bearing.) psf bottom other live loa e load of 20.0 a rectangle veen the bottt DL = 10.0psf 2. ers) of truss t 8 lb uplift at j t at joint 7.	ds. Dpsf om o oint				Weight: 40 ib	11-2070
FORCES	(lb) - Max Tension	timum Com	pression/Maximum											
TOP CHORD	1-2=-205 4-5=-94/7	/106, 2-3=- 78	142/71, 3-4=-73/38,	,										
BOT CHORD WEBS	BOT CHORD 1.7=-98/139, 6-7=-3/6, 5-6=-3/6 WEBS 3-6=-260/160, 2-7=-229/126													
NOTES 1) Wind: ASC Vasd=103 II; Exp B; and C-C E	CE 7-10; Vu 3mph; TCDL Enclosed; N Exterior (2) (llt=130mph .=6.0psf; B0 /WFRS (en)-0-8 to 3-0	(3-second gust) CDL=3.0psf; h=25ft; velope) exterior zor -8, Interior (1) 3-0-8	; Cat. ne 3 to							6	- ALL	ORTH CA	PLUM VIIII

- 11-4-10 zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Building Designer/Project engineer responsible for 3)
- verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.

annunnan. COLORANDINI, STATE G 11111111 September 13,2024

SEAL 036322

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	164 Blueberry - Southeastern	
P03440-15869	AV2A	Valley	1	1	Job Reference (optional)	168180374

Run: 8.82 S Aug 30 2024 Print: 8.820 S Aug 30 2024 MiTek Industries, Inc. Thu Sep 12 11:29:54 ID:xSeUsoRUwK?km815Op3Xe_yk1UL-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

11-0-14

Scale =	1:48.1
---------	--------

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.54 0.50 0.11	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 46 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood shea 6-0-0 oc purlins, exc Rigid ceiling directly bracing. (size) 1=11-0-14 Max Horiz 1=206 (LC Max Uplift 4=-23 (LC Max Grav 1=228 (LC (LC 1)	athing directly applie sept end verticals. applied or 6-0-0 oc 4, 4=11-0-14, 5=11-0 2 (2) 12), 5=-216 (LC 12 2 (1), 4=98 (LC 2), 5=	6) 7) ed or 8) 9) ∋-14 L) -593	This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar All bearings : Provide mec bearing plate 4 and 216 lb DAD CASE(S)	s been designed ad nonconcurren nas been designed n chord in all are by 2-00-00 wide w by other member are assumed to h hanical connection capable of withs uplift at joint 5. Standard	I for a 10.0 t with any ed for a liv as where will fit betw s, with BC be SP No. on (by oth standing 2	D psf bottom other live loa e load of 20.0 a rectangle veen the botto DL = 10.0psf 2 . ers) of truss t 3 lb uplift at j	ds. Dpsf om o o					
FORCES TOP CHORD BOT CHORD WEBS NOTES	(lb) - Maximum Com Tension 1-2=-396/110, 2-3=-7 1-5=-172/352, 4-5=-4 2-5=-399/220	pression/Maximum 78/18, 3-4=-56/69 4/2											

- Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) 0-0-8 to 3-0-8, Interior (1) 3-0-8 to 10-11-10 zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.
 Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 4-0-0 oc.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	164 Blueberry - Southeastern	
P03440-15869	AV3	Valley	1	1	Job Reference (optional)	168180375

3-5-14

3-5-14

7-5-14

84 Components (Dunn, NC), Dunn, NC - 28334,

3-9-3

Run: 8.82 S Aug 30 2024 Print: 8.820 S Aug 30 2024 MiTek Industries, Inc. Thu Sep 12 11:29:54 ID:xSeUsoRUwK?km815Op3Xe_yk1UL-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

7-5-14 4-0-0

Scale = 1:33.6

-													
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.21	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.13	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.06	Horiz(TL)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018	5/TPI2014	Matrix-MP							Weight: 29 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood shea 6-0-0 oc purlins, exx Rigid ceiling directly bracing. (size) 1=7-5-14, Max Horiz 1=136 (LC Max Uplift 4=-46 (LC	athing directly appli cept end verticals. applied or 10-0-0 o 4=7-5-14, 5=7-5-14 C 12) 5=-131 (I C 12	6) 7) ed or 8) 9) oc 4 LC	This truss ha chord live loa * This truss h on the botton 3-06-00 tall b chord and an All bearings a Provide mecl bearing plate 4 and 131 lb DAD CASE(S)	s been designed ad nonconcurrent has been designed n chord in all area by 2-00-00 wide why other members are assumed to be hanical connectio capable of withsi uplift at joint 5. Standard	for a 10.0 with any d for a liv as where ill fit betw e SP No. n (by oth tanding 4) psf bottom other live load e load of 20.0 a rectangle reen the botto 2. ers) of truss t 6 lb uplift at jo	ds.)psf om o pint					
FORCES TOP CHORD BOT CHORD WEBS NOTES	Max Grav 1=101 (LC (LC 1) (lb) - Maximum Com Tension 1-2=-163/82, 2-3=-7(1-5=-101/122, 4-5=0 2-5=-263/203	(2 1), 4=120 (LC 1), pression/Maximum 0/30, 3-4=-91/88	5=367										
i) willu. ASC			_										

- Vasd=103mph; TCDL=6.0psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) 0-0-8 to 3-0-8, Interior (1) 3-0-8 to 7-4-10 zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Building Designer/Project engineer responsible for 3) verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component. Gable requires continuous bottom chord bearing. 4)
- 5)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	164 Blueberry - Southeastern				
P03440-15869	AV3A	Valley	1	1	Job Reference (optional)	168180376			

Run: 8.82 S Aug 30 2024 Print: 8.820 S Aug 30 2024 MiTek Industries, Inc. Thu Sep 12 11:29:54 ID:xSeUsoRUwK?km815Op3Xe_yk1UL-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

7-0-14

Scale = 1:32.8

Loading	(p	osf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	2	0.0	Plate Grip DOL	1.15		TC	0.72	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	1	0.0	Lumber DOL	1.15		BC	0.66	Vert(TL)	n/a	-	n/a	999		
BCLL		0.0*	Rep Stress Incr	YES		WB	0.00	Horiz(TL)	0.02	3	n/a	n/a		
BCDL	1	0.0	Code	IRC20	15/TPI2014	Matrix-MP							Weight: 26 lb	FT = 20%
LUMBER				7) * This truss h	nas been designed	l for a liv	e load of 20.0)psf					
TOP CHORD	2x4 SP No.2				on the bottor	n chord in all area	s where	a rectangle						
BOT CHORD	2x4 SP No.2				3-06-00 tall b	y 2-00-00 wide wi	ill fit betw	een the botto	om					
WEBS	2x4 SP No.3				chord and ar	ny other members.								
BRACING				8) All bearings	are assumed to be	SP No.	2.						
TOP CHORD	Structural woo	od shea	thing directly applie	edor ⁹) Provide mec	hanical connection	n (by oth	ers) of truss t	0 Joint					
	6-0-0 oc purlins, except end verticals. 3 and 41 b uplift at joint													
BOT CHORD	Rigid ceiling di bracing.	lirectly a	applied or 10-0-0 oc	Ľ	OAD CASE(S)	Standard								
REACTIONS	(size) 1=7	7-0-14 , 3	3=7-0-14											
	Max Horiz 1=1	28 (LC	12)											
	Max Uplift 1=-4	41 (LC	12), 3=-102 (LC 12	:)										
	Max Grav 1=2	277 (LC	1), 3=277 (LC 1)											
FORCES	(lb) - Maximun Tension	n Comp	pression/Maximum											
TOP CHORD	1-2=-499/111,	2-3=-1	79/145											
BOT CHORD	1-3=-225/441													
NOTES														
1) Wind: AS0 Vasd=103 II; Exp B; and C-C E 6-11-10 zc	CE 7-10; Vult=13 Bmph; TCDL=6.0 Enclosed; MWFF Exterior (2) 0-0-8 pone; cantilever le	30mph psf; BC RS (env to 3-0- eft and i	(3-second gust) DL=3.0psf; h=25ft; velope) exterior zon 8, Interior (1) 3-0-8 right exposed ;C-C	Cat. le to for										

members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face),

- see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) Building Designer/Project engineer responsible for
- verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.
- Gable requires continuous bottom chord bearing. 4)
- 5) Gable studs spaced at 4-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

COLORANDINI, STATE AND DURING THE STREET SEAL 036322 G 11111111 September 13,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Fruss Truss Type Qty Ply 164 Blueber		164 Blueberry - Southeastern	berry - Southeastern		
P03440-15869	AV4	Valley	1	1	Job Reference (optional)	168180377

Run: 8.82 S Aug 30 2024 Print: 8.820 S Aug 30 2024 MiTek Industries, Inc. Thu Sep 12 11:29:54 ID:PeBs37S6he7bOlcHxWamBCyk1UK-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

					1							1	
Loading TCLL (roof) TCDL	(psf) 20.0 10.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15 VES		CSI TC BC	0.13 0.16	DEFL Vert(LL) Vert(TL)	in n/a n/a	(loc) - - 2	l/defl n/a n/a	L/d 999 999	PLATES MT20	GRIP 244/190
BCDL	10.0	Code	IRC201	5/TPI2014	Matrix-MP	0.00	HOHZ(TL)	0.00	5	II/a	n/a	Weight: 12 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 3-5-14 oc purlins, e Rigid ceiling directly bracing. (size) 1=3-5-14 Max Horiz 1=59 (LC Max Uplift 1=-21 (LC Max Grav 1=134 (LI (Ib) - Maximum Con Tension 1-2=-209/62, 2-3=-8 1-3=-128/181	eathing directly applie except end verticals. v applied or 10-0-0 or , 3=3-5-14 12) C 12), 3=-48 (LC 12) C 1), 3=134 (LC 1) apression/Maximum 22/70	7) ed or 9) c LC	* This truss h on the bottor 3-06-00 tall b chord and ar All bearings Provide mec bearing plate 3 and 21 lb u DAD CASE(S)	has been designin n chord in all are y 2-00-00 wide y other member are assumed to 1 hanical connection o capable of with uplift at joint 1. Standard	ed for a liv as where will fit betw 's. be SP No. on (by oth standing 4	e load of 20. a rectangle reen the bott 2. ers) of truss 8 lb uplift at j	Opsf om to joint					
NOTES 1) Wind: AS Vasd=103 II; Exp B; and C-C E 3-4-10 zo members Lumber D 2) Truss des only For	CE 7-10; Vult=130mph 3mph; TCDL=6.0psf; B Enclosed; MWFRS (el Exterior (2) 0-0-8 to 3-(ne; cantilever left and and forces & MWFRS DOL=1.60 plate grip DC signed for wind loads in studs exposed to wing	(3-second gust) CDL=3.0psf; h=25ft; hvelope) exterior zor >-8, Interior (1) 3-0-8 right exposed ;C-C ft for reactions shown DL=1.60	Cat. ne to or ;								A	OHTH CA	NRO VIII

- only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
 Building Designer/Project engineer responsible for
- verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

SEAL 036322 September 13,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type Qty Ply 164 Blueberry - Southeastern		164 Blueberry - Southeastern	100400070	
P03440-15869	AV4A	Valley	1	1	Job Reference (optional)	168180378

Run: 8.82 S Aug 30 2024 Print: 8.820 S Aug 30 2024 MiTek Industries, Inc. Thu Sep 12 11:29:54 ID:PeBs37S6he7bOlcHxWamBCyk1UK-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:25.2

-															
Loading	J		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (r	oof)		20.0	Plate Grip DOL	1.15		тс	0.09	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL			10.0	Lumber DOL	1.15		BC	0.12	Vert(TL)	n/a	-	n/a	999		
BCLL			0.0*	Rep Stress Incr	YES		WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCDL			10.0	Code	IRC2015	/TPI2014	Matrix-MP							Weight: 10 lb	FT = 20%
LUMBE	R				7)	* This truss h	as been designed	for a liv	e load of 20.0)psf					
TOP CH	IORD	2x4 SP No	.2			on the bottom	n chord in all areas	where	a rectangle						
BOT CH	IORD	2x4 SP No	.2			3-06-00 tall b	y 2-00-00 wide will	fit betw	een the botto	om					
WEBS		2x4 SP No	.3			chord and an	y other members.								
BRACIN	IG				8)	All bearings a	are assumed to be	SP No.	2.						
TOP CH	ORD	Structural	wood shea	athing directly applied	dor ⁹⁾	Provide mech	nanical connection	(by oth	ers) of truss to	0					
		3-0-14 oc p	ourlins, ex	cept end verticals.		bearing plate	capable of withsta	nding 4	2 lb uplift at j	oint					
BOT CH	IORD	Rigid ceilin	g directly	applied or 10-0-0 oc	LO	3 and 19 lb u AD CASE(S)	plift at joint 1. Standard								
DEACT	ONE /		1 2 0 1 1	2 2 0 4 4			etandara								
REACT		SIZE)	1=3-0-14,	3=3-0-14											
	11 N		1=51 (LC	$ 2\rangle$ $ 2\rangle 2 2\rangle 2 2\rangle 2\rangle$											
	11 N		1=-19 (LC	(12), 3=-42 (LC 12)											
	, ,			(LC I)											
FORCE	5	(Ib) - Maxir Tension	num Com	pression/Maximum											
TOP CH	IORD	1-2=-175/4	9, 2-3=-70	0/59											
BOT CH	IORD	1-3=-106/1	51												
NOTES															
1) Win	d: ASCI	E 7-10: Vult	=130mph	(3-second gust)											
, Vas	d=103m	nph: TCDL=	6.0psf: BC	CDL=3.0psf: h=25ft: (Cat.										
II; E	xp B; E	nclosed; MV	VFRS (en	velope) exterior zone	9										
and	C-C Ex	terior (2) zo	ne; cantile	ever left and right											
exp	osed ;C	-C for mem	bers and f	orces & MWFRS for											11
read	tions sh	hown; Lumb	er DOL=1	.60 plate grip										11111 01	E III
DO	_=1.60													TH UA	ROUL
Trus	s desig	ned for wine	d loads in	the plane of the trus	5								5	A JECO	as In'
only	. For st	tuds expose	d to wind	(normal to the face),								/	22	FEUG	Air. an
see	Standa	rd Industry	Gable End	d Details as applicabl	e,							4			and a
or c	onsult q	jualified buil	ding desig	gner as per ANSI/TPI	1.							-	18	.4	N : =
3) Bull	aing De	signer/Proje	ect engine	er responsible for								=		SEA	L 🕴 E
veri	ying Ra	ain Load = 5	.0 (pst) cc	overs rain loading								- 8		02/1	
(4) Got		ires continue	ous bottor	or unis truss compone	511L.							Ξ.		0363	22 : 3
5) Gat	le stude	s snaced at	4-0-0 00	n choru bearing.								-	0		1 2
6) This	truce h	as heen de	- 0-0 0C. signed for	a 10.0 nsf bottom									-	1. A	A 1. 3
cho	d live lo	ad noncon	current wit	th any other live load	s								2.0	NGINE	Enix
0.10													1	ALC: GIN	THE AN
													1	CA a	BEN

- or consult qualified building designer as per ANSI/TPI 1. 3) Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.
- Gable requires continuous bottom chord bearing. 4) Gable studs spaced at 4-0-0 oc. 5)
- 6)
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

GILB The Given September 13,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	164 Blueberry - Southeastern	
P03440-15869	B01	Common	3	1	I6- Job Reference (optional)	8180379

Run: 8.82 S Aug 30 2024 Print: 8.820 S Aug 30 2024 MiTek Industries, Inc. Thu Sep 12 11:29:54 ID:FznXshABFG0SQ7SaGL73x8yk1S6-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Plate Offsets (X, Y):	[1:Edge,0-1-7],	[3:0-3-8,Edge]
-----------------------	-----------------	----------------

Scale = 1:56.8

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TF	PI2014	CSI TC BC WB Matrix-MS	0.70 0.41 0.08	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.04 -0.09 0.00	(loc) 4-5 4-5 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 87 lb	GRIP 244/190 FT = 20%	
JUMBER FOP CHORD 30T CHORD WEBS 3RACING FOP CHORD 30T CHORD 30T CHORD REACTIONS FORCES FORCES TOP CHORD 30T CHORD WEBS 10 Unbalance this design WINCLASC Vasd=103 II; Exp B; I and C-C E to 6-11-8, to 13-9-4 z for membe Lumber DU 3) Building D verifying R requireme 4) This truss	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 *Excep Structural wood shee 5-6-4 oc purlins, exit Rigid ceiling directly bracing. (size) 4=0-3-8, 6 Max Horiz 6=-229 (L Max Uplift 4=-94 (LC Max Grav 4=545 (LC (lb) - Maximum Com Tension 1-2=-493/155, 2-3= 3-4=-485/142 5-6=-257/298, 4-5=- 2-5=-4/249, 1-5=-87/ ed roof live loads have b. CE 7-10; Vult=130mph mph; TCDL=6.0psf; BK Enclosed; MWFRS (en exterior (2) 0-11-2 to 3- Exterior (3) 0-10-2 to 3- Exterior	t* 6-1,4-3:2x4 SP Not athing directly applie cept end verticals. applied or 10-0-0 oc 3=0-3-8 C 8) C 1), 6==94 (LC 13) C 1), 6=545 (LC 1) pression/Maximum 493/155, 1-6=-485/1 100/150 /236, 3-5=-89/237 been considered for (3-second gust) CDL=3.0psf; h=25ft; ivelope) exterior zon 1-12, Interior (1) 9- and right exposed;C- RS for reactions sho V=1.60 ever responsible for overs rain loading of this truss compon r a 10.0 psf bottom	5) * - or 3- 5.3 ch 9d or 7) Pr be 5 6 LOAD 42, 42, 42, 7 Cat. re -12 -11-8 -C wm; hent.	This truss h in the bottom -06-00 tall by hord and any il bearings a rovide mech earing plate and 94 lb up D CASE(S)	as been designed a chord in all areas y 2-00-00 wide wil y other members. Ire assumed to be nanical connection capable of withsta plift at joint 4. Standard	for a liv s where Il fit betw SP No. (by oth anding 9	e load of 20.0 a rectangle veen the bott 2 . ers) of truss t 4 lb uplift at j	Opsf om to joint				SEA 0363	L 22 EEF	Mannan and Andrews
chord live	load nonconcurrent wi	th any other live load	ds.								1		. RV .V	-

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

GI 11111111 September 13,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	164 Blueberry - Southeastern	
P03440-15869	B01E	Common Supported Gable	1	1	Job Reference (optional)	168180380

Run: 8.82 S Aug 30 2024 Print: 8.820 S Aug 30 2024 MiTek Industries, Inc. Thu Sep 12 11:29:54 ID:cC6sUCR_31nK3V8pYzXDqnyk1Rm-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

13-1	1-0	

Scolo		1.55.2
Scale	=	1:55.3

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2	015/TPI2014	CSI TC BC WB Matrix-MR	0.31 0.17 0.12	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 10	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 106 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 *Excep No.2 Structural wood she 6-0-0 oc purlins, exx Rigid ceiling directly bracing. 1 Row at midpt (size) 10=13-11 12=13-11 14=13-11 16=13-11 18=13-11 Max Horiz 18=-229 (12=-118 (15=-115 (17=-304 (Max Grav 10=319 (L 14=295 (L 16=174 (L 16=174 (L) 16=174	t* 14-5,15-4,13-6:2x4 athing directly applied cept end verticals. applied or 10-0-0 oc 5-14 -0, 11=13-11-0, -0, 15=13-11-0, -0, 15=13-11-0, -0, 17=13-11-0, -0, 17=13-11-0, -0 LC 13), 11=-292 (LC 12 LC 13), 13=-115 (LC LC 12), 16=-118 (LC 14) LC 2), 18=-311 (LC 14) LC 3), 11=351 (LC 14) LC 3), 13=192 (LC 22 LC 13), 15=192 (LC 25 LC 19), 17=363 (LC 14)	SP or 8), 13), 12), 0), 9),	 WEBS NOTES 1) Unbalanced this design. 2) Wind: ASCE Vasd=103mg II; Exp B; En and C-C Cor to 6-11-8, Cc to 13-9-4 zor for members Lumber DOL 3) Truss design only. For stuse Standard or consult qu 4) Building Des verifying Rai requirements 5) All plates are 6) Gable requir 7) Truss to bar and the standard or consult qu 	5-14=-356/233, 4- 3-16=-174/138, 2- 3-13=-157/125, 7- 3-11=-189/168 roof live loads hav 7-10; Vult=130m ph; TCDL=6.0psf; closed; MWFRS (ner (3) 0-1-12 to 2 mer (3) 0-12 to 2 mer (3) 0-12 to 2 mer (3) 0-12 to 2 mer (3) 0-12 to 2	15=-157/ 17=-193/ 12=-174/ ve been of BCDL=3 envelope 2-11-8, E 9-11-8, if 14 and rigil VFRS for DOL=1.6(in the pland in the plan	125, 169, 138, considered for cond gust) .0psf; h=25ft; .) exterior zon xterior (2) 2-1 Exterior (2) 9- nt exposed;C- reactions sho' ane of the trus ane of the trus ane of the trus s per ANSI/TP consible for ain loading truss compon erwise indicate d bearing. e or securely ianonal web	Cat. e 1-8 11-8 C wn; s , le, I 1. ent. ed.	12) Pro bea 18, upii join 11. LOAD (vide me ring plat 294 Ib u ft at join t 13, 118 CASE(S	chanic: te capa pipifit at t 16, 30 b upi) Star	al connection (by ble of withstandin joint 10, 115 lb u /4 lb uplift at joint iff at joint 12 and ndard	others) of truss to 1g 311 lb uplift at joint olift at joint 15, 118 lb 17, 115 lb uplift at 292 lb uplift at joint
FORCES TOP CHORD BOT CHORD	(lb) - Maximum Com Tension 1-18=-197/179, 1-2= 3-4=-169/203, 4-5=- 6-7=-169/203, 7-8=- 9-10=-187/169 17-18=-120/119, 16- 15-16=-120/119, 14- 13-14=-120/119, 12- 11-12=-120/119, 10-	pression/Maximum -205/193, 2-3=-116/1 252/301, 5-6=-252/30 109/124, 8-9=-195/18 -17=-120/119, -15=-120/119, -13=-120/119, -11=-120/119	26, 1, 2,	 8) Gable studs 9) This truss ha chord live loa 10) * This truss f on the bottor 3-06-00 tall b chord and ar 11) All bearings 	spaced at 2-0-0 o is been designed ad nonconcurrent has been designer n chord in all area by 2-00-00 wide w by other members are assumed to be	rc. for a 10.0 with any d for a liv as where vill fit betw a. e SP No.) psf bottom other live loac e load of 20.0 a rectangle veen the botto 2.	ls. psf m		() CHILLING		SEA 0363	L 22 LBERTIN

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

A MITEK Atfili 818 Soundside Road Edenton, NC 27932

September 13,2024

Job	Truss	Truss Type	Qty	Ply	164 Blueberry - Southeastern	
P03440-15869	BV1	Valley	1	1	Job Reference (optional)	168180381

Run: 8.82 S Aug 30 2024 Print: 8.820 S Aug 30 2024 MiTek Industries, Inc. Thu Sep 12 11:29:55 ID:nJG0ozatTPAmtBUwinDon6yk1Rb-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:25.9

Loading TCLL (roof) TCDL BCLL BCDL		(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20 ²	15/TPI2014	CSI TC BC WB Matrix-MP	0.24 0.23 0.15	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 35 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No 2x4 SP No 2x4 SP No Structural 8-6-8 oc p Rigid ceilin bracing. (size) Max Horiz Max Uplift Max Grav (lb) - Maxi Tension	0.2).2).3 wood shea urlins. ng directly 1=8-6-8, 3 1=-101 (Li 1=-22 (LC 4=-203 (Li (LC 1) mum Com	athing directly applied applied or 6-0-0 oc 3=8-6-8, 4=8-6-8 C 8) : 24), 3=-22 (LC 23), C 12) 23), 3=63 (LC 24), 4: pression/Maximum	5 6 7 8 d or 9 1 1 =628	 Gable requirt Gable studs : This truss ha chord live loa * This truss h on the botton 3-06-00 tall b chord and ar All bearings a Provide mech bearing plate , 22 lb uplift OAD CASE(S) 	es continuous bot spaced at 4-0-0 o s been designed ad nonconcurrent nas been designed n chord in all area by 2-00-00 wide w yo other members are assumed to be hanical connection capable of withst at joint 3 and 203 Standard	tom chor c. for a 10.0 with any d for a liv is where ill fit betv e SP No. n (by oth tanding 2 3 lb uplift	d bearing.) psf bottom other live loa e load of 20.0 a rectangle veen the botto 2. ers) of truss to 2 lb uplift at jo at joint 4.	ds.)psf om o oint						
TOP CHORD	1-2=-130/2	247, 2-3=- ⁻	129/241												

BOT CHORD 1-4=-234/176, 3-4=-234/176 WEBS 2-4=-472/234

NOTES

 Unbalanced roof live loads have been considered for this design.
 Wind: ASCE 7-10; Vult=130mph (3-second gust)

 Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) 0-0-4 to 3-0-4, Interior (1) 3-0-4 to 4-3-8, Exterior (2) 4-3-8 to 7-3-8, Interior (1) 7-3-8 to 8-6-12 zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	164 Blueberry - Southeastern	
P03440-15869	BV2	Valley	1	1	Job Reference (optional)	168180382

Run: 8.82 S Aug 30 2024 Print: 8.820 S Aug 30 2024 MiTek Industries, Inc. Thu Sep 12 11:29:55 ID:8H4vrgd0Ixo3_zMuUKpzU9yk1RW-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

6-6-8

Scale = 1:22.1

_

Loading TCLL (roof)		(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.13	DEFL Vert(LL)	in n/a	(loc) -	l/defl n/a	L/d 999	PLATES MT20	GRIP 244/190
TCDL		10.0	Lumber DOL	1.15		BC	0.14	Vert(TL)	n/a	-	n/a	999		
BCLL BCDL		0.0* 10.0	Rep Stress Incr Code	YES IRC201	5/TPI2014	WB Matrix-MP	0.07	Horiz(TL)	0.00	3	n/a	n/a	Weight: 26 lb	FT = 20%
LUMBER				7)	This truss ha	s been designed fo	or a 10.0) psf bottom						
TOP CHORD	2x4 SP No.	2			chord live loa	d nonconcurrent w	ith any	other live loa	ds.					
BOT CHORD	2x4 SP No.	2		8)	* This truss h	as been designed	for a liv	e load of 20.0)psf					
OTHERS	2x4 SP No.	.3			on the botton	n chord in all areas	where	a rectangle						
BRACING					s-06-00 tail b	y 2-00-00 wide will	i iit betw	een the bollo	om					
TOP CHORD	Structural v 6-6-8 oc pu	vood shea Irlins	athing directly applie	ed or 9)	All bearings a	are assumed to be	SP No.	2.						
BOT CHORD	Rigid ceiling bracing.	g directly	applied or 6-0-0 oc	10	 Provide mech bearing plate 	nanical connection capable of withsta	(by oth Inding 1	ers) of truss t 24 lb uplift at	o joint					
REACTIONS	(size) 1	1=6-6-8, 3	=6-6-8, 4=6-6-8		4.	O								
	Max Horiz 1	1=76 (LC	9)	LC	DAD CASE(S)	Standard								
	Max Uplift 4	4=-124 (L0	C 12)											
	Max Grav 1 (1=68 (LC) (LC 1)	23), 3=68 (LC 24), 4	1=427										
FORCES	(lb) - Maxin	num Com	pression/Maximum											
	Tension													
TOP CHORD	1-2=-68/15	2, 2-3=-6	//144											
WEBS	1-4=-144/1 2-4=-290/1	20, 3-4=-` 43	144/120											
NOTES	2 12 200/1	10												
1) Unbalance	ed roof live loa	ads have	been considered for	r										
this design	1.													
2) Wind: ASC	CE 7-10; Vult=	=130mph	(3-second gust)											11
Vasd=103	mph; TCDL=	6.0psf; B0	CDL=3.0psf; h=25ft;	Cat.									N''LL CA	Dille
II; Exp B; I	Enclosed; MV	VFRS (en	velope) exterior zon	e								1	THUA	NOW
and C-C E	xterior (2) zo	ne; cantile	ever left and right	_								5	ON-FESS	K. Ani
exposed ;	c-C for memic	r DOI = 1	60 plate grip								/	$\leq \epsilon$	OFLOZ	A Sing
DOI = 1.60		ei DOL=I	.oo plate grip								2			M A
 Truss desi 	ianed for wind	d loads in	the plane of the trus	ss							1		0.54	
only. For	studs expose	d to wind	(normal to the face)	,									SEA	L <u>; </u>
see Stand	ard Industry (Gable End	Details as applicat	ole,							= =		0363	22 : E
or consult	qualified build	ding desig	gner as per ANSI/TF	PI 1.							1			1 2
4) Building D	esigner/Proje	ect engine	er responsible for								-			1 3
verifying R	ain Load = 5	.0 (psf) cc	overs rain loading									- 1	N.ENO	ERIX S
F) Cable room	nus specific to	o ine use i	or this truss compon	ient.								1	S. GIN	F.F. AN
6) Gable stud	ds spaced at	4-0-0 oc.	n choru bearing.									1	CA G	IL BEIN

6) Gable studs spaced at 4-0-0 oc.

A. GI A. GILIN September 13,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	164 Blueberry - Southeastern	
P03440-15869	BV3	Valley	1	1	Job Reference (optional)	168180383

Run: 8.82 S Aug 30 2024 Print: 8.820 S Aug 30 2024 MiTek Industries, Inc. Thu Sep 12 11:29:55 ID:N?6JklkfAixnZLYcWjT4L3yk1RN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4-6-8

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI20	14	CSI TC BC WB Matrix-MP	0.05 0.07 0.03	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 17 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 4-6-8 oc purlins. Rigid ceiling directly bracing. (size) 1=4-6-8, 3 Max Horiz 1=-52 (LC Max Uplift 1=-3 (LC	athing directly applie applied or 6-0-0 oc 3=4-6-8, 4=4-6-8 - 8) 13), 3=-6 (LC 13), 4=	7) This tr chord 8) * This on the 3-06-(chord 9) All bea 10) Provic bearin 6 Ib up LOAD CA	russ has live load truss has bottom 20 tall by and any arings a de mech ng plate plift at jo SE(S)	s been designed f d nonconcurrent t as been designed chord in all area: y 2-00-00 wide wi y other members. re assumed to be anical connectior capable of withst int 3 and 66 lb up Standard	or a 10.0 with any for a liv s where Il fit betv e SP No. to (by oth anding 3 plift at joi) psf bottom other live loa e load of 20.0 a rectangle veen the botto 2. ers) of truss t lb uplift at joi nt 4.	ds. Dpsf om ro int 1,						

1=61 (LC 23), 3=61 (LC 24), 4=261 (LC 1) FORCES (Ib) - Maximum Compression/Maximum Tension

(LC 12)

TOP CHORD 1-2=-51/78, 2-3=-51/70 BOT CHORD 1-4=-75/68, 3-4=-75/68 2-4=-155/62 WEBS

Max Grav

NOTES

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.
- Gable requires continuous bottom chord bearing. 5)
- 6) Gable studs spaced at 4-0-0 oc.

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	164 Blueberry - Southeastern	
P03440-15869	C01	Common	6	1	Job Reference (optional)	168180384

Run: 8.82 S Aug 30 2024 Print: 8.820 S Aug 30 2024 MiTek Industries, Inc. Thu Sep 12 11:29:55 ID:R92PSi7keXzFOG?mOR2bepyk1Qt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:45.1

-

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.19 0.39 0.18	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.03 -0.07 0.01	(loc) 8-10 8-10 8	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 88 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she: 6-0-0 oc purlins. Rigid ceiling directly bracing.	athing directly applie	5) ed or 7) c Lu	* This truss h on the bottor 3-06-00 tall b chord and ar All bearings a Provide mec bearing plate 11 and 129 II DAD CASE(S)	as been designed a chord in all areas y 2-00-00 wide wil y other members. are assumed to be nanical connection capable of withsta o uplift at joint 8. Standard	for a liv where fit betv SP No. (by oth inding 1	e load of 20. a rectangle veen the bott 2 . ers) of truss 29 lb uplift a	0psf om to t joint					
REACTIONS	(size) 8=0-3-8, 11=0-3-8 Max Horiz 11=120 (LC 9) Max Uplift 8=-129 (LC 13), 11=-129 (LC 12) Max Gray 8=667 (LC 1), 11=667 (LC 1)												
FORCES	(lb) - Maximum Com Tension	pression/Maximum											
TOP CHORD	1-2=-87/45, 2-3=-78/ 4-5=-503/132, 5-6=-	, 2-3=-78/48, 3-4=-503/132, 32, 5-6=-78/48, 6-7=-87/45											
BOT CHORD	DRD 1-11=0/73, 10-11=-127/464, 8-10=-51/423, 7-8=0/73												

NOTES

WEBS

1) Unbalanced roof live loads have been considered for this design.

6-8=-109/93

4-10=-38/268, 2-11=-109/93, 3-11=-587/158, 3-10=-97/121, 5-10=-98/122, 5-8=-587/158,

- Wind: ASCE 7-10; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) 0-0-0 to 3-0-0, Interior (1) 3-0-0 to 8-4-0, Exterior (2) 8-4-0 to 11-4-0, Interior (1) 11-4-0 to 16-8-0 zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

1111111 Vannonna MARINE IN INTERNET SEAL 036322 GI (1111111) September 13,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	164 Blueberry - Southeastern	
P03440-15869	C01E	Common Supported Gable	1	1	Job Reference (optional)	168180385

Run: 8.82 S Aug 30 2024 Print: 8.820 S Aug 30 2024 MiTek Industries, Inc. Thu Sep 12 11:29:55 ID:5YteE25wo72u?Z684EULugyk1Pd-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

1-5-12		
1-4-0	15-2-4	16-8-0
1-4-0	13-8-8	1-5-12
0-1-12		

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.07	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15	BC	0.08	Vert(TL)	n/a	-	n/a	999			
BCLL	0.0*	Rep Stress Incr	YES	WB	0.08	Horiz(TL)	0.00	12	n/a	n/a			
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-MS							Weight: 86 lb	FT = 20%	

LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP N 2x4 SP N 2x4 SP N 2x4 SP N Structural 10-0-0 oc Rigid ceili	o.2 o.2 o.3 o.3 I wood sheathing directly applied or purlins. ing directly applied or 6-0-0 oc
REACTIONS	bracing. (size)	12=14-0-0, 13=14-0-0, 14=14-0-0, 15=14-0-0, 17=14-0-0, 18=14-0-0,
	Max Horiz Max Uplift	19=14-0-0, 20=14-0-0, 21=14-0-0 21=120 (LC 9) 12=-89 (LC 9), 13=-103 (LC 13), 14=-67 (LC 13), 15=-69 (LC 13), 18=-70 (LC 12), 19=-66 (LC 12), 20=-112 (I C 9) 21=-105 (I C 8)
	Max Grav	12=196 (LC 19), 13=153 (LC 1), 14=170 (LC 20), 15=177 (LC 20), 17=201 (LC 22), 18=177 (LC 1), 19=169 (LC 19), 20=165 (LC 10), 21=208 (LC 20)
FORCES	(lb) - Max	imum Compression/Maximum
TOP CHORD	Tension 1-2=-66/1 4-5=-58/1 7-8=-58/1	05, 2-3=-77/106, 3-4=-38/106, 17, 5-6=-100/134, 6-7=-100/128, 13, 8-9=-29/102, 9-10=-66/97,
BOT CHORD	10-11=-58 1-21=-83/ 18-19=-78 14-15=-78	3/99 /71, 20-21=-78/63, 19-20=-78/63, /63, 17-18=-78/63, 15-17=-78/63, /63, 13-14=-78/63, 12-13=-78/63,
WEBS	11-12=-78 6-17=-160 3-20=-113 9-13=-109	3/63)/0, 5-18=-137/81, 4-19=-129/82, 3/87, 7-15=-137/81, 8-14=-130/82, 9/83, 2-21=-101/60, 10-12=-98/60

or

-0,

-0,

NOTES

Scale - 1:44 1

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner (3) 0-0-0 to 3-0-0, Exterior (2) 3-0-0 to 8-4-0, Corner (3) 8-4-0 to 11-4-0, Exterior (2) 11-4-0 to 16-8-0 zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Building Designer/Project engineer responsible for 4) verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.
- All plates are 2x4 (||) MT20 unless otherwise indicated. 5) 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. 8) * This truss has been designed for a live load of 20.0psf
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 9) All bearings are assumed to be SP No.2 .
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 70 lb uplift at joint 18, 66 lb uplift at joint 19, 112 lb uplift at joint 20, 69 lb uplift at joint 15, 67 lb uplift at joint 14, 103 lb uplift at joint 13, 105 lb uplift at joint 21 and 89 lb uplift at joint

12. 11) Non Standard bearing condition. Review required. LOAD CASE(S) Standard

Page: 1

818 Soundside Road

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Statu Information** available from the Structural Building Component Advection and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	164 Blueberry - Southeastern	
P03440-15869	CV1	Valley	1	1	Job Reference (optional)	168180386

Run: 8.82 S Aug 30 2024 Print: 8.820 S Aug 30 2024 MiTek Industries, Inc. Thu Sep 12 11:29:55 ID:s5MgwnBxwa3lynjgYwdDCMyk1PV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale =	1:33.3
---------	--------

10-11-7

														_
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI2	2014	CSI TC BC WB Matrix-MS	0.35 0.31 0.16	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 37 lb	GRIP 244/190 FT = 20%	_
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 10-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=11-0-5, Max Horiz 1=-75 (LC Max Uplift 1=-40 (LC	athing directly applied o applied or 6-0-0 oc 3=11-0-5, 4=11-0-5 8) 24), 3=-40 (LC 23),	5) Gab 6) Gab 7) This cho 8) * Th or on t 3-06 cho 9) All b 10) Pro bea 1,4 410 Pac	ble require ble studs s s truss has ord live load his truss ha the bottom 6-00 tall by ord and any bearings a vvide mech aring plate to lb uplift	is continuous botto paced at 4-0-0 oc s been designed for d nonconcurrent v as been designed a chord in all areas y 2-00-00 wide wil y other members. re assumed to be panical connection capable of withsta at joint 3 and 167	om chora or a 10.0 vith any for a live where l fit betw SP No (by othe anding 4 lb uplift	d bearing.) psf bottom other live load e load of 20.0 a rectangle reen the botto 2. ers) of truss to 0 lb uplift at jo at joint 4.	ds. psf m D pint						-

4=-167 (LC 12) Max Grav 1=70 (LC 23), 3=70 (LC 24), 4=841 (LC 1) FORCES (lb) - Maximum Compression/Maximum

Tension TOP CHORD 1-2=-120/434, 2-3=-120/434 BOT CHORD 1-4=-346/153, 3-4=-346/153

2-4=-656/214 WEBS

NOTES

1) Unbalanced roof live loads have been considered for this design.

Wind: ASCE 7-10; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) 0-0-0 to 3-0-0, Interior (1) 3-0-0 to 5-6-2, Exterior (2) 5-6-2 to 8-6-2, Interior (1) 8-6-2 to 11-0-5 zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.

surface with truss chord at joint(s) 1, 3.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	164 Blueberry - Southeastern	
P03440-15869	CV2	Valley	1	1	Job Reference (optional)	168180387

Run: 8.82 S Aug 30 2024 Print: 8.820 S Aug 30 2024 MiTek Industries, Inc. Thu Sep 12 11:29:55 ID:ddribXIy113dw0KD0bm5X2yk1PN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 3-9-2 7-6-11 3-9-9 3-9-9 3-9-2 7-6-5 3-9-2 3-9-2 4x6 = 2

7-6-5

Scale = 1:18

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MP	0.17 0.17 0.08	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 25 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 7-6-5 oc purlins. Rigid ceiling directly bracing. (size) 1=7-7-2, 3 Max Horiz 1=-51 (LC Max Uplift 1=-9 (LC (LC 12) Max Grav 1=72 (LC (LC 1))	eathing directly applie applied or 6-0-0 oc 3=7-7-2, 4=7-7-2 2 10) 12), 3=-17 (LC 13), 4 23), 3=72 (LC 24), 4	6) 7) 8) d or 9) 10 98 11 -=516 LC	Gable studs a This truss ha chord live loa * This truss h on the bottom 3-06-00 tall b chord and an All bearings a)) Provide med bearing plate 17 Ib uplift at 1) Beveled plate surface with DAD CASE(S)	spaced at 4-0-0 d spaced at 4-0-0 d as been designed ad nonconcurrent has been designe n chord in all are- yy 2-00-00 wide v yy other members are assumed to b hanical connectic e capable of withs piont 3 and 98 lb e or shim require truss chord at join Standard	oc. I for a 10.0 with any d for a liv as where will fit betw s. De SP No. on (by oth standing 9 uplift at j d to provin nt(s) 1, 3.) psf bottom other live loa e load of 20.1 a rectangle reen the botti 2. ers) of truss t lb uplift at jo int 4. de full bearin	ads. Opsf om to vint 1, g						
FORCES	(lb) - Maximum Com	npression/Maximum												

F

Tension TOP CHORD 1-2=-71/236, 2-3=-71/236 BOT CHORD 1-4=-203/106, 3-4=-203/106 2-4=-364/128

WEBS

NOTES

1) Unbalanced roof live loads have been considered for this design.

Wind: ASCE 7-10; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) 0-0-0 to 3-0-0, Interior (1) 3-0-0 to 3-9-9, Exterior (2) 3-9-9 to 6-6-3, Interior (1) 6-6-3 to 7-7-2 zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

Building Designer/Project engineer responsible for 4) verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.

Gable requires continuous bottom chord bearing. 5)

3

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB Building Component Scitut Information**. Building from the Structure Building Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	164 Blueberry - Southeastern	
P03440-15869	PB1	Piggyback	1	1	Job Reference (optional)	168180388

Run: 8.82 S Aug 30 2024 Print: 8.820 S Aug 30 2024 MiTek Industries, Inc. Thu Sep 12 11:29:55 ID:SvaBEl2Up2LA9mdRm3SCeoyk2bs-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

0-9-4

Page: 1

Scale = 1:26.5

Plate Offsets (X, Y): [2:0-4-6,0-1-8], [4:0-4-6,0-1-8]

3-11-13

0-9-4

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	5/TPI2014	CSI TC BC WB Matrix-MP	0.07 0.09 0.01	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 40 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x6 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 2=6-4-9, 4 10=6-4-9 Max Horiz 2=90 (LC Max Uplift 2=-69 (LC 7=-223 (LC Max Grav 2=23 (LC (LC 3), 7= 1)	athing directly applie applied or 10-0-0 or 4=6-4-9, 6=6-4-9, 7= 11), 7=90 (LC 11) 2 13), 4=-74 (LC 13), 2 13), 10=-74 (LC 13), 2 1), 4=223 (LC 1), 6 -223 (LC 1), 10=223	4) ed or 5 5) 6-4-9, 7) 8) 5=132 9) (LC 10	only. For stu see Standard or consult qu Building Des verifying Raii requirements Gable require Gable studs This truss ha chord live loa * This truss ha on the botton 3-06-00 tall b chord and an All bearings a 9 Provide mecl bearing late	Idds exposed to wind dis exposed to wind di Industry Gable El alified building des igner/Project engir n Load = 5.0 (psf) s specific to the use es continuous bottt spaced at 2-0-0 oc s been designed for ad nonconcurrent v has been designed n chord in all areas by 2-00-00 wide wil by other members. are assumed to be hanical connection e capable of withste	(norm nd Deta signer as neer res covers r e of this om chor b or a 10.0 vith any for a liv s where I fit betv SP No. (by oth anding 6	alto the face is as applical per ANSI/TF ponsible for ain loading truss compor d bearing.) psf bottom other live loa e load of 20.0 a rectangle veen the botto 2. ers) of truss t 9 lb uplift at i	o o o o o o o o o o o o o o o o o o o						
TOP CHORD BOT CHORD WEBS	(ib) - Maximum Com Tension 1-2=0/19, 2-3=-159/ 4-5=0/19 2-6=-60/90, 4-6=-31, 3-6=-61/40	108, 3-4=-154/110, /90	11	2, 74 lb uplift uplift at joint) See Standard Detail for Con consult qualit	at joint 4, 69 lb up 4. d Industry Piggyba nnection to base tr fied building design	ilift at joi ick Trus russ as a ner.	nt 2 and 74 lk s Connection applicable, or	0				mmm		
NOTES 1) Unbalanc this desig 2) Wind: AS Vasd=102 II; Exp B; and C-C 3-11-13, I 7-7-10 zo members	ed roof live loads have n. CE 7-10; Vult=130mph 3mph; TCDL=6.0psf; Bo Enclosed; MWFRS (er Exterior (2) 0-4-0 to 3-4 Exterior (2) 3-11-13 to 7 ne; cantilever left and r and forces & MWFRS	been considered for (3-second gust) CDL=3.0psf; h=25ft; ivelope) exterior zon -0, Interior (1) 3-4-0 7-2-2, Interior (1) 7-2 ight exposed ;C-C fc for reactions shown.	Cat. le to -2 to or	AD CASE(S)	Stanuard					Continue.		SEA 0363	RO(111 14 1 22	Manning

Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

GI A. GIL September 13,2024

C

Job	Truss	Truss Type	Qty	Ply	164 Blueberry - Southeastern	
P03440-15869	PB2	Piggyback	10	1	Job Reference (optional)	168180389

3-11-13

ò

0-9-4

Run: 8.82 S Aug 30 2024 Print: 8.820 S Aug 30 2024 MiTek Industries, Inc. Thu Sep 12 11:29:56 ID:KPHGWJuLt2i05m7xVqj9c2yk2c3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

0-1-8

0-9-4

3-2-5 7-2-2 3-11-13 3-11-13 3-11-9 7-11-2 3-11-9 3-11-9 4x6 =3 12 12 ⊏ 13 14 4 2 5 6 3x6 = 3x6 = 2x4 🛛 0-9-4 7-11-2 7-1-14 6-4-9

Scale - 1:26.5

00010 - 1.20.0												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-MP	0.09 0.09 0.05	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 40 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x6 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=7-11-1 5=7-11-1 Max Horiz 1=-90 (LI Max Uplift 1=-220 (LI 7=-232 (II Max Grav 1=187 (L 5=137 (L (LC 19)	eathing directly applied y applied or 6-0-0 oc 0, 2=7-11-10, 4=7-11-1 0, 6=7-11-10, 7=7-11-1 C 8) LC 19), 2=-232 (LC 12) C 13), 6=-42 (LC 13), LC 12) C 12), 2=397 (LC 19), C 1), 6=277 (LC 1), 7=	 Truss desig only. For st see Standa or consult q Building De verifying Ra requiremen Gable studs Gable studs Gable studs This truss h chord live ld * This truss on the botto 3-06-00 tall chord and a All bearings Provide me bearing plat 	ned for wind loads in uds exposed to wind d Industry Gable Er- ualified building des signer/Project engin in Load = 5.0 (psf) c s specific to the use res continuous botto spaced at 4-0-0 oc as been designed for ad nonconcurrent w has been designed m chord in all areas by 2-00-00 wide will ny other members. are assumed to be chanical connection e capable of withsta	n the pla d (norm nd Detai igner as eer resp covers r o of this or a 10.0 <i>i</i> th any for a liv o where I fit betw SP No. (by oth indig 2	ane of the trus al to the face) Is as applicat s per ANSI/TF ponsible for ain loading truss compon d bearing.) psf bottom other live load e load of 20.0 a rectangle reen the botto 2. ers) of truss to 32 lb uplift at	ss , ble, 211. nent. ds. psf om joint					
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Maximum Cor Tension 1-2=-175/229, 2-3= 4-5=-94/32 2-6=-70/91, 4-6=-70 3-6=-180/53	npression/Maximum -116/115, 3-4=-86/80, D/91	2, 220 lb up at joint 6 an 11) See Standa Detail for Cr consult qua	Int at joint 1, 20 lb uj d 232 lb uplift at join rd Industry Piggybar onnection to base tru ified building design) Standard	piift at jo it 2. ck Truss uss as a ner.	oint 5, 42 lb up s Connection applicable, or	ouft				, mining	uun,

NOTES

1) Unbalanced roof live loads have been considered for this design.

Wind: ASCE 7-10; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) 0-4-0 to 3-4-0, Interior (1) 3-4-0 to 3-11-13, Exterior (2) 3-11-13 to 7-2-2, Interior (1) 7-2-2 to 7-7-10 zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	164 Blueberry - Southeastern	
P03440-15869	PB3	Piggyback	1	2	Job Reference (optional)	168180390

Run: 8.82 S Aug 30 2024 Print: 8.820 S Aug 30 2024 MiTek Industries, Inc. Thu Sep 12 11:29:56 ID:g6Zk?ClpiMCjfwDdoJVL7Wyk2cF-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:26.5

Plate Offsets	(X, Y):	[2:0-4-6,0-1-8], [5:0-4-6,0-1-8]	
---------------	---------	----------------------------------	--

Loading	(psf)	Spacing	3-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.06	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.05	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	NO		WB	0.03	Horz(CT)	0.00	5	n/a	n/a		
BCDL	10.0	Code	IRC2015	5/TPI2014	Matrix-MP							Weight: 84 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x6 SP No.2 2x4 SP No.2 2x4 SP No.3 2-0-0 oc purlins (6-0 (Switched from she Rigid ceiling directly bracing. (size) 2=6-4-9, 9=6-4-9, Max Horiz 2=135 (L Max Uplift 2=-65 (L0 8=-161 (L) 12=-97 (L) Max Grav 2=231 (L 7=176 (L)	D-0 max.) eted: Spacing > 2-0-0 / applied or 10-0-0 oc 5=6-4-9 C 11), 9=135 (LC 11) C 13), 5=-97 (LC 13), .C 12), 9=-65 (LC 13) .C 13) C 20), 5=298 (LC 1), C 3), 8=215 (LC 19),	4)). ,-4-9, 5) , 6) ,7)	Wind: ASCE Vasd=103mp II; Exp B; En and C-C Exte 3-11-13, Exte 7-7-10 zone; members and Lumber DOL Truss design only. For stu see Standard or consult qu Building Des verifying Rain requirements Gable require Cable stude	7-10; Vult=130mg h; TCDL=6.0psf; closed; MWFRS (erior (2) 0-4-0 to 3 erior (2) 3-11-13 to cantilever left and f orces & MWFR =1.60 plate grip D ed for wind loads ds exposed to win I Industry Gable gner/Project engi b Load = 5.0 (psf) specific to the us specord at 4.0.0 o	bh (3-sec BCDL=3 envelope -4-0, Inte o 7-2-2, I d right ex S for rea DOL=1.60 in the pla nd (norm End Detai signer as neer resp covers r. se of this tom chor	orond gust) .0psf; h=25ft;) exterior zor erior (1) 3-4-0 nterior (1) 7-2 posed ;C-C fictions shown) ane of the tru al to the face ils as applical s per ANSI/Tf consible for ain loading truss compord d bearing.	Cat. ie to 2-2 to or ; ss ss ble, Pl 1. nent.					
FORCES	9=231 (L (Ib) - Maximum Con Topoion	C 20), 12=298 (LC 1) npression/Maximum	9)	This truss ha chord live loa	s been designed d nonconcurrent	for a 10.0 with any) psf bottom other live loa	ds.					
TOP CHORD	1-2=0/29, 2-3=-198, 4-5=-170/112, 5-6=	/100, 3-4=-200/158, 0/29	10)	* This truss h on the botton 3-06-00 tall b	as been designed n chord in all area v 2-00-00 wide w	d for a liv is where ill fit betw	e load of 20.0 a rectangle /een the botto)psf om					11.5
BOT CHORD	2-8=-66/109, 7-8=-9	9/100, 5-7=-29/100		chord and an	v other members	in ne both		2111				111111	
WEBS	4-7=-90/40, 3-8=-21	9/171	11)) All bearings a	are assumed to be	e SP No.	2.					WITH CA	Roill
NOTES			12	Provide mec	nanical connection	n (by oth	ers) of truss t	0			1	A	
 2-ply truss Top chord follows: 2x Bottom ch follows: 2x All loads except if n CASE(S) s provided tu unless oth Unbalance 	to be connected toge s connected with 10d (6 - 2 rows staggered ords connected with 1 (4 - 1 row at 0-9-0 oc. are considered equally toted as front (F) or bas section. Ply to ply con o distribute only loads therwise indicated. ed roof live loads have	ther as follows: (0.131"x3") nails as at 0-9-0 oc. 0d (0.131"x3") nails a applied to all plies, ick (B) face in the LO, nections have been noted as (F) or (B), e been considered for	12) as 13) AD 14) LO	 bearing plate 2, 97 lb uplift at joint 2 and See Standard Detail for Coo consult qualiti Graphical pu or the orienta bottom chorce DAD CASE(S) 	capable of withst at joint 5, 161 lb o 97 lb uplift at join d Industry Piggyba nection to base t ied building desig flin representation tion of the purlin a	anding 6 uplift at jo t 5. ack Truss ack Truss russ as a jner. n does no along the	s Ib uplift at j bint 8, 65 lb u s Connection applicable, or bt depict the s top and/or	oint plift iize		Contraction of the second seco		SEA 0363	L 22 EEER BELIII

September 13,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	164 Blueberry - Southeastern	
P03440-15869	PB4	Piggyback	1	1	Job Reference (optional)	168180391

7-2-8

7-2-8

84 Components (Dunn, NC), Dunn, NC - 28334,

Run: 8.81 E Jul 25 2024 Print: 8.810 E Jul 25 2024 MiTek Industries, Inc. Thu Sep 12 13:51:38 ID:sgg1ALTN6IIzOOyCy_byigyk2cc-dDInEB4YG4X4LUwWCxs798vCDJy4uAUW1dpUfKyeM73

11-4-0

4-1-8

Page: 1

Scale = 1:36.8

Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		20.0	Plate Grip DOL	1.15		TC	0.22	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL		10.0	Lumber DOL	1.15		BC	0.22	Vert(CT)	n/a	-	n/a	999		
BCLL		0.0*	Rep Stress Incr	YES		WB	0.05	Horz(CT)	0.00	2	n/a	n/a		
BCDL		10.0	Code	IRC2	15/TPI2014	Matrix-MS							Weight: 56 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x6 SP No 2x4 SP No 2x4 SP No Structural 6-0-0 oc p Rigid ceili	5.2 5.2 5.3 wood shea purlins, exa ng directly	athing directly applie sept end verticals. applied or 10-0-0 oc	d or	 This truss h chord live lo thord live lo the botto 3-06-00 tall chord and a All bearings capacity of Deputy on the botto 	as been designed ad nonconcurrent has been designe m chord in all are by 2-00-00 wide v ny other members are assumed to b 565 psi.	I for a 10.0 t with any ed for a live as where will fit betw s. be SP No.1) psf bottom other live loa e load of 20.0 a rectangle reen the botto 2 crushing	ds.)psf om					
REACTIONS	bracing. (Ib/size) Max Horiz Max Uplift	2=326/9-9 6=296/9-9 8=326/9-9 2=84 (LC 2=-88 (LC 6=-23 (LC	-3, 5=217/9-9-3, -3, 7=0/9-9-3, -3 12), 8=84 (LC 12) 12), 5=-54 (LC 13), 12), 8=-88 (LC 12)	 Provide me bearing plat 2, 54 lb upli uplift at join This truss is Internationa R802.10.2 a Soo Standa 	chanical connection e capable of withs ft at joint 5, 23 lb ut t 2. c designed in account l Residential Code and referenced start referenced start	on (by othe standing 8 uplift at join ordance wi e sections andard AN	ers) of truss t 8 lb uplift at j nt 6 and 88 lb th the 2015 R502.11.1 a SI/TPI 1.	o oint o nd						
FORCES	(lb) - Maxi Tension	mum Com	pression/Maximum		Detail for C	onnection to base	truss as a	pplicable, or						
TOP CHORD	Consult qualified building designe LOAD 1-2=0/21, 2-11=-192/71, 11-12=-148/74, 3-12=-143/91, 3-13=-111/94, 4-13=-191/78, 5-7=0/0, 4-5=-193/87													
BOT CHORD WEBS	2-6=-61/1 3-6=-201/	32, 5-6=-12 84, 4-6=-53	2/32 3/121											
NOTES 1) Unbalance this design	ed roof live l	oads have	been considered for										TH CA	Route

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) 0-6-6 to 3-6-6, Interior (1) 3-6-6 to 7-3-0, Exterior (2) 7-3-0 to 10-3-0, Interior (1) 10-3-0 to 11-2-12 zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.
- Gable requires continuous bottom chord bearing. 4)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	164 Blueberry - Southeastern	
P03440-15869	PB5	Piggyback	10	1	Job Reference (optional)	168180392

Run: 8.82 S Aug 30 2024 Print: 8.820 S Aug 30 2024 MiTek Industries, Inc. Thu Sep 12 11:29:56 ID:Kbi_ptHLtNHFUwk80dIC2lyk2cs-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

1-:	3-5	11-0-8	11-4-0
1-:	3-5	9-9-3	0-3-8

Scale = 1:36.7	7								00	0			
Loading TCLL (roof) TCDL BCLL BCDL LUMBER TOP CHORE	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014) Building De: verifying Ra	CSI TC BC WB Matrix-MS signer/Project ei in Load = 5.0 (p	0.23 0.21 0.07 ngineer res	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 2	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 50 lb	GRIP 244/190 FT = 20%
BOT CHORE WEBS OTHERS BRACING TOP CHORE BOT CHORE REACTIONS	 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 2=9-9-3, f 8=9-9-3 Max Horiz 2=84 (LC Max Uplift 2=-64 (LC 6=-81 (LC Max Grav 2=277 (LC 6=-820 (LC 	athing directly applie cept end verticals. applied or 10-0-0 oc 5=9-9-3, 6=9-9-3, 7=5 12), 8=84 (LC 12) 12), 8=-64 (LC 12) 12), 8=-64 (LC 12) C 1), 5=159 (LC 24), C 1), 8=277 (LC 1)	5 6 7 d or 8 9-9-3, 9 1	requirement Gable requi Gable studs This truss h chord live lo * This truss on the botto 3-06-00 tall chord and a) All bearings 0) Provide me bearing plat 2, 62 lb uplif uplift at joint 1) See Standa	ts specific to the res continuous I is spaced at 4-0-1 as been designe ad nonconcurre has been design m chord in all ai by 2-00-00 wide ny other member are assumed to chanical connec e capable of with f at joint 5, 81 lb t 2.	use of this bottom choi o oc. ed for a 10. nt with any need for a liv reas where e will fit betw ers. b be SP No tion (by oth hstanding (o uplift at jour yback Trus	truss compoind bearing. 0 psf bottom other live load ve load of 20.0 a rectangle ween the botting .2. ers) of truss t 64 lb uplift at j int 6 and 64 ll ss Connection	nent. Dpsf om oint o					
FORCES	 (lb) - Maximum Com Tension 1-2=0/21, 2-3=-94/7 4-5=-130/75 	pression/Maximum 9, 3-4=-91/67, 5-7=0,	_{′0,} L	consult qualified building designer. LOAD CASE(S) Standard									
BOT CHORD WEBS	2-6=-47/49, 5-6=-14 3-6=-295/125	/37											
NOTES 1) Unbaland this desig 2) Wind: AS Vasd=10 II; Exp B; and C-C 7-3-0, Ex 11-2-12 z members Lumber I	ced roof live loads have gn. SCE 7-10; Vult=130mph 30mph; TCDL=6.0psf; Bi ; Enclosed; MWFRS (er Exterior (2) 0-6-6 to 3-6 terior (2) 7-3-0 to 10-3- zone; cantilever left and s and forces & MWFRS DOL=1.60 plate grip DC	been considered for (3-second gust) CDL=3.0psf; h=25ft; ivelope) exterior zonu- i-6, Interior (1) 3-6-6 f 0, Interior (1) 10-3-0 i right exposed ;C-C f for reactions shown; iL=1.60	Cat. e io io or							1		SEA 0363	
 Truss de only. For only. 	signed for wind loads in r studs exposed to wind	the plane of the trus (normal to the face),	S								in s	ANGIN	EERRAIN

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

G

unnun 1 September 13,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	164 Blueberry - Southeastern	
P03440-15869	PB6	Piggyback	1	1	Job Reference (optional)	168180393

Run: 8.82 S Aug 30 2024 Print: 8.820 S Aug 30 2024 MiTek Industries, Inc. Thu Sep 12 11:29:56 ID:g0S1jyw9jTdMVT0Zp1HONByk2dJ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

1	1-3-5	13-1-11	14-5-0
I	1-3-5	11-10-6	1-3-5

Scale = 1:36.7

Loading TCLL (roof) TCDL BCLL BCDL	(ps 20. 10. 0. 10.	f) 0 0 0* 0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0- 1.15 1.15 YES IRC:	0 5 2015	/TPI2014	CSI TC BC WB Matrix-MS	0.08 0.09 0.05	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 6	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 65 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x6 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood 6-0-0 cc purlins. Rigid ceiling dire bracing. (size) 2=11-	shea ectly a	thing directly appli applied or 10-0-0 o 6=11-10-6, 8=11-	ed or oc 10-6,	3) 4) 5) 6) 7)	Truss design only. For stu see Standard or consult qu Building Des verifying Rain requirements Gable require Gable studs This truss ha	ed for wind loads in ds exposed to wind I Industry Gable Er alified building des igner/Project engin n Load = 5.0 (psf) of s specific to the use se continuous bott spaced at 2-0-0 oc s been designed fo	n the pl d (norm nd Deta igner as eer res covers r e of this om chor	ane of the tru al to the face ils as applica s per ANSI/T ponsible for ain loading truss compo d bearing.	nss ble, PI 1. nent.					
FORCES	ACTIONS (size) 2=11-10-6, 6=11-10-6, 8=11-10-6, 9=11-10-6, 9=11-10-6, 10=11-10-6, 10=11-10-6, 10=11-10-6, 10=11-10-6, 11=11-10-6, 15=11-10-6, 11=11-10-6, 15=11-10-6, 11=11-10-6, 15=11-10-6, 11=11-10-6, 15=11-10-6, 11=11-10-6, 15=11-10-6, 11=11-10-6, 15=11-10-6, 11=11-10-6, 15=11-10-6, 11=11-10-6, 15=11-10-6, 11=11-10-6, 15=11-10-6, 11=11-10-6, 15=11-10-6, 11=11-10-6, 15=11-10-6, 11=11-10-6, 15=11-10-6, 11=11-10-6, 15=11-10-6, 11=11-10-6, 15=11-10-6, 11=10-6, 1														
TOP CHORD	Tension 1-2=0/21, 2-3=-7 4-5=-89/105, 5-6 2-10=-19/55, 9-7	70/62 6=-67 10=0/	, 3-4=-89/100, /50, 6-7=0/21 55, 8-9=0/55, 6-8=	-3/55	11) LO	See Standard Detail for Con consult qualit AD CASE(S)	d Industry Piggyba nnection to base tri fied building desigr Standard	ck Trus uss as a ier.	s Connection applicable, or						11111
 NOTES Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=3.0psf; h=25f; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) 0-6-6 to 3-6-6, Interior (1) 3-6-6 to 7-3-0, Exterior (2) 7-3-0 to 10-3-0, Interior (1) 10-3-0 to 13-11-10 zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 												A CONTRACTOR OF		SEA 0363	

September

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	164 Blueberry - Southeastern	
P03440-15869	PB7	Piggyback	9	1	Job Reference (optional)	168180394

Run: 8.82 S Aug 30 2024 Print: 8.820 S Aug 30 2024 MiTek Industries, Inc. Thu Sep 12 11:29:56 ID:glwb98jUjFUmysDIJyUPBbyk2da-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

l	1-3-5	13-1-11	14-5-0
Γ	1-3-5	11-10-6	1-3-5

Scale = 1:36.7

Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		20.0	Plate Grip DOL	1.15		TC	0.21	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL		10.0	Lumber DOL	1.15		BC	0.28	Vert(CT)	n/a	-	n/a	999		
BCLL		0.0*	Rep Stress Incr	YES		WB	0.05	Horz(CT)	0.00	11	n/a	n/a		
BCDL		10.0	Code	IRC201	5/TPI2014	Matrix-MS							Weight: 59 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS	2x6 SP N 2x4 SP N 2x4 SP N	lo.2 lo.2 lo.3		3)	Truss design only. For stu see Standard or consult qu Building Des	ed for wind loads uds exposed to wir d Industry Gable E ualified building de igner/Project engi	in the pland (norm and Deta signer as neer res	ane of the tru al to the face ils as applica per ANSI/TI ponsible for	ss), ble, Pl 1.					
TOP CHORD	Structura 6-0-0 oc	l wood shea purlins.	athing directly applie	ed or	verifying Rai	n Load = 5.0 (psf) s specific to the us	covers r e of this	ain loading truss compo	nent.					
BOT CHORD	Rigid ceil bracing.	ing directly	applied or 10-0-0 oc	5	Gable requir Gable studs	es continuous bot spaced at 4-0-0 o	tom chor c.	d bearing.						
REACTIONS	(size) Max Horiz Max Uplift Max Grav	2=11-10-6 7=11-10-6 2=56 (LC 2=-95 (LC 6=-25 (LC 11=-108 (2=344 (LC (LC 1), 7= 1)	5, 4=11-10-6, 6=11-1 5, 11=11-10-6 12), 7=56 (LC 12) 12), 7=56 (LC 12) 12), 7=-95 (LC 13) 12), 7=-95 (LC 12), LC 13) C 1), 4=344 (LC 1), 6 344 (LC 1), 11=344	 -10-6, 6=11-10-6, 1-10-6 5-56 (LC 12) -108 (LC 13), -9-95 (LC 12), -344 (LC 1), 6=355 C 1), 11=344 (LC C 12, C 13, C 14, C 14, C 15, C 14, C 14, C 15, C 14, C 15, C 15, C 14, C 14, C 15, C 15, C 14, C 14, C 15, C 14, <li< td=""><td></td><td></td><td></td><td></td></li<>										
FORCES	(lb) - Max Tension	kimum Com	pression/Maximum	1	at joint 2 and) See Standar	108 lb uplift at joi d Industry Piggyba	int 4. ack Trus	s Connection	P					
TOP CHORD	1-2=0/21 4-5=0/21	, 2-3=-249/ [,]	131, 3-4=-249/137,		Detail for Connection to base truss as applicable, or consult qualified building designer.									
BOT CHORD WEBS	2-6=-51/1 3-6=-205	184, 4-6=-3 /53	5/184	L	DAD CASE(S)	Standard							mmm	unin,
NOTES												10	N'TH CA	Rollin
1) Unbalance this design) Unbalanced roof live loads have been considered for this design.													

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) 0-6-6 to 3-6-6, Interior (1) 3-6-6 to 7-3-0, Exterior (2) 7-3-0 to 10-3-0, Interior (1) 10-3-0 to 13-11-10 zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

September 13,2024

SEAL 036322 WWWWWWWW

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

(11111) WWWWWW

