

Trenco 818 Soundside Rd Edenton, NC 27932

Re: 28141 Jonah Blakenship\Mrtyle Beach

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by C & R Truss.

Pages or sheets covered by this seal: I67205812 thru I67205877

My license renewal date for the state of North Carolina is December 31, 2024.

North Carolina COA: C-0844

Johnson, Andrew

July 30,2024

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

12) Attic room checked for L/360 deflection.

July 30,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

JOY minin

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

A MiTek A 818 Soundside Road Edenton, NC 27932

Plate Offsets (X,Y)- (2-0-6-14,Edge), [5:0-2-0:0-2-8] 4111 35-4 LOADING (ps) TCOL SPACINC- 2-0-0 CSL In (loc) Idea (Idea (I		L	4-11-1			8-4-5	
Plate Offseis (XY)- (2.06-14.Edge), [5.0-2.0.0-2.8] LOADING (ps) SPACING- 2-0-0 CSI. DEFL in (loc) Uddit L/d PLATES GRIP TCUL 20.0 Plate Grip DOL 1.15 BC 0.23 VerifL1 -0.03 6.8 -989 360 MT20 244/190 TCUL 20.0 Rep StressIns NO WS 0.21 VerifL1 -0.03 6.8 -989 240 Weight: 43 lb FT = 20% BCDL 10.0 Rep StressIns NO WS 0.21 VerifL1 -0.03 6.8 -989 240 Weight: 43 lb FT = 20% UMBER Code IRC2018/TPL2014 Matrix-MP WindL1 0.01 6.8 -989 240 Weight: 43 lb FT = 20% UMBER Code IRC2018/TPL2014 Matrix-MP WindL1 0.01 6.8 -989 240 Weight: 43 lb FT = 20% UMBER Code IRC2018/TPL2014 Matrix-MP WindL1 0.01 6.8 -989 240 Weight: 43 lb FT = 20% UMBER Code SP No.3 Structural wood shea			4-11-1		1	3-5-4	1
LOADING [UBS] SPACING 2-0-0 Plate Gip DOL CSI. 1.5 DEFL TC in field Lob PLATES GRIP TCLL 10.0 - Long DOL 1.55 TC 0.23 Vert(CT) 0.03 6.6 9.893 900 MT20 244/190 LUMERT Code IRC2018/TPI2014 Matrix-MP Wind(LL) 0.01 6.6 9.893 240 Weight: 43 ib FT = 20% LUMERT TOP CHORD 24.5 PN N.1 TS 0.21 FT ACONG TS FT acong TS 0.21 FT acong TS 0.21 FT acong TS TS <t< td=""><td>Plate Offsets (X,Y)</td><td>[2:0-6-14,Edge], [5:0-2-0,0-2-8]</td><td></td><td></td><td></td><td></td><td></td></t<>	Plate Offsets (X,Y)	[2:0-6-14,Edge], [5:0-2-0,0-2-8]					
LUMBER- TOP CHORD 2x4 SP No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD 2x4 SP No.3 BOT CHORD Structural wood sheathing directly applied or 10-0-0 oc bracing. REACTIONS. (size) 2=0-7:0, 5=0-1-8 Max Horz 2=83(LC 4) Max Grav 2=483(LC 1), 5=-26(LC 4) Max Grav 2=483(LC 1), 5=-26(LC 4) Max Grav 2=483(LC 1), 5=-260(LC 1) Reaction 2 FORCES. (b) - Max. Comp./Max. Ten All forces 250 (b) or less except when shown. TOP CHORD 2:3=-716/0 BOT CHORD 2:3=-716/0 2-6=-34/686, 5-6=-34/686 WEES 3-5=-725/36 NOTES- 01 Wind: ASCE 7-16; Vull=140mph (3-second gust) Vasd=111mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 3) "This truss has been designed for a 10.0 psf bottom chord live load enconcurrent with any other live loads. 4) Bearing a Ling(Is) 5 considers parallel to grain value using ANSI/TP1 1 angle to grain formula. Building designer should verify capacity of bearingial connection (by others) of truss to bearing plate capable of withstanding 100 b uplift at joint(s) 2, 5. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 b down and 45 b up at 5-77, on to the town etcol. 9) Hanger(45 October condrace with the	LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO Code IRC2018/TPI2014	CSI. TC 0.23 BC 0.21 WB 0.20 Matrix-MP	DEFL. in Vert(LL) -0.02 Vert(CT) -0.03 Horz(CT) 0.01 Wind(LL) 0.01	(loc) I/defl L 6-8 >999 36 6-8 >999 24 5 n/a n 6-8 >999 24	/d PLATES 50 MT20 40 40 Weight: 43 lb	GRIP 244/190 FT = 20%
 FORCES. (b) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-716/0 BOT CHORD 2-46=-34686, 5-56=-34/686 WEBS 3-5=-725/36 NOTES- 1) Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 3) * This truss has been designed for a 10.0 psf bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members. 4) Bearing at joint(s) 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 5. 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 8) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 53 lb down and 15 lb up at 2-9.8, 53 lb down and 2.9-9.8, 61 b down at 2-9-9.8, and 24 lb down at 5-7.7, and 24 lb down at 5-7.7 on bottom chord. The design/selection of such connection device(s) is the responsibility of others. 9) In the LOAD CASE(S) Standard 1) Dead + Root Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-4=-60, 2-5=-20 Concentrated Loads (pl). Vert: 1-4=-60, 2-5=-20 Concentrate Loads (b) 	LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x6 SF WEBS 2x4 SF REACTIONS. (siz: Max H Max U Max G	P No.2 P No.1 P No.3 e) 2=0-7-0, 5=0-1-8 lorz 2=83(LC 4) plift 2=-93(LC 4), 5=-25(LC 4) rav 2=463(LC 1), 5=360(LC 1)	·	BRACING- TOP CHORD BOT CHORD	Structural wood shea Rigid ceiling directly	athing directly applied or 6-0- applied or 10-0-0 oc bracing.	0 oc purlins.
 NOTES- Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members. Bearing at joint(s) 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. Provide mechanical connection (by others) of truss to bearing plate at joint(s) 5. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 5. This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 53 lb down and 15 lb up at 2-9-8, and 24 lb down at 5-7-7, and 80 lb down and 48 lb up at 5-7-7 on top chord, and 6 lb down at 2-9-8, and 24 lb down at 5-7-7, and 80 lb down and 48 lb up at 5-7-7 on top chord, and 6 lb down at 2-9-8, and 24 lb down at 5-7-7, and 24 lb down at 5-7-7 on top chord, and 6 lb down at 2-9-8, and 24 lb down at 5-7-7, and 80 lb down and 48 lb up at 5-7-7 on top chord, and 6 lb down at 2-9-8, and 24 lb down at 5-7-7, and 24 lb down at 5-7-7 on top chord, and 6 lb down at 2-9-8, and 24 lb down at 5-7-7, and 24 lb down at 5-7-7 on top chord, and 6 lb down at 2-9-8, and 24 lb down at 5-7-7, and 24 lb down at 5-7-7 on top chord, loads applied to the face of	FORCES. (lb) - Max. TOP CHORD 2-3=- BOT CHORD 2-6=- WEBS 3-5=-	Comp./Max. Ten All forces 250 (lb) or 716/0 34/686, 5-6=-34/686 725/36	less except when shown.				
	NOTES- 1) Wind: ASCE 7-16; V II; Exp B; Enclosed; plate grip DOL=1.60 2) This truss has been 3) * This truss has been 4) Bearing at joint(s) 5 capacity of bearing s 5) Provide mechanical 6) Provide mechanical 7) This truss is designer referenced standard 8) Hanger(s) or other of 2-9-8, 53 lb down ar and 6 lb down at 2- design/selection of 9) In the LOAD CASE(LOAD CASE(S) Stan 1) Dead + Roof Live (t Uniform Loads (plf) Vert: 1-4=-f Concentrated Loads	Ault=140mph (3-second gust) Vasd=111 MWFRS (directional); cantilever left and designed for a 10.0 psf bottom chord liv n designed for a live load of 20.0psf on t chord and any other members. considers parallel to grain value using A surface. connection (by others) of truss to bearin do in accordance with the 2018 Internation ANSI/TPI 1. connection device(s) shall be provided so do 15 lb up at 2-9-8, and 80 lb down and 9-8, 6 lb down at 2-9-8, and 24 lb down such connection device(s) is the respons S) section, loads applied to the face of t dard dard alanced): Lumber Increase=1.15, Plate 50, 2-5=-20 5 (lb)	mph; TCDL=6.0psf; BCDL d right exposed ; end vertic re load nonconcurrent with the bottom chord in all area NSI/TPI 1 angle to grain for ag plate at joint(s) 5. ng plate capable of withsta onal Residential Code sec ufficient to support concent d 48 lb up at 5-7-7, and 86 at 5-7-7, and 24 lb down sibility of others. he truss are noted as front Increase=1.15	=6.0psf; h=20ft; B=45ft; cal left and right exposed any other live loads. as with a clearance great ormula. Building design nding 100 lb uplift at join tions R502.11.1 and R80 trated load(s) 53 lb down 0 lb down and 48 lb up a at 5-7-7 on bottom choin t (F) or back (B).	L=24ft; eave=4ft; Cat. t; Lumber DOL=1.60 ter than 6-0-0 er should verify ht(s) 2, 5. 02.10.2 and h and 15 lb up at t 5-7-7 on top chord, rd. The	Attractor Attractor 45 45 45	EAL 844

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

	L	4-11-1		-	8-4-5		
		4-11-1		I	3-5-4		
Plate Offsets (X,Y)	[2:0-6-14,Edge], [5:0-2-0,0-2-8]						
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrNOCodeIRC2018/TPI2014	CSI. TC 0.23 BC 0.21 WB 0.20 Matrix-MP	DEFL. in Vert(LL) -0.02 Vert(CT) -0.03 Horz(CT) 0.01 Wind(LL) 0.01	(loc) l/defl 6-8 >999 6-8 >999 5 n/a 6-8 >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 43 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x6 SP WEBS 2x4 SP REACTIONS. (size Max H Max U Max G	No.2 No.1 No.3 b) 2=0-7-0, 5=0-1-8 prz 2=83(LC 19) polift 2=-93(LC 4), 5=-25(LC 4) ray 2=463(LC 1). 5=360(LC 1)		BRACING- TOP CHORD BOT CHORD	Structural wood s Rigid ceiling dired	sheathing directly tty applied or 10-	applied or 6-0-0 0-0 oc bracing.	oc purlins.
FORCES. (lb) - Max. TOP CHORD 2-3=- BOT CHORD 2-6=- WEBS 3-5=-	Comp./Max. Ten All forces 250 (lb) or 716/0 34/686, 5-6=-34/686 725/36	less except when shown.					
NOTES- 1) Wind: ASCE 7-16; V II; Exp B; Enclosed; plate grip DOL=1.60 2) This truss has been 3) * This truss has been 4) Bearing at joint(s) 5 capacity of bearing s 5) Provide mechanical 6) Provide mechanical 7) This truss is designer referenced standard 8) Hanger(s) or other c 2-9-8, 53 lb down at and 6 lb down at 2-6 design/selection of s 9) In the LOAD CASE(S) Stand 1) Dead + Roof Live (bi Uniform Loads (plf) Vert: 1-4=-6	ult=140mph (3-second gust) Vasd=1110 MWFRS (directional); cantilever left and designed for a 10.0 psf bottom chord liv n designed for a live load of 20.0psf on 1 chord and any other members. considers parallel to grain value using A urface. connection (by others) of truss to bearir d in accordance with the 2018 Internation ANSI/TPI 1. onnection device(s) shall be provided so d 15 lb up at 2-9-9, and 20 lb down and -8, 6 lb down at 2-9-9, and 24 lb down uch connection device(s) is the respons S) section, loads applied to the face of the dard alanced): Lumber Increase=1.15, Plate 0, 2-5=-20	mph; TCDL=6.0psf; BCDL: d right exposed ; end vertic re load nonconcurrent with the bottom chord in all area NSI/TPI 1 angle to grain for ng plate at joint(s) 5. ng plate at	=6.0psf; h=20ft; B=45ft; cal left and right exposed any other live loads. as with a clearance grea ormula. Building designe nding 100 lb uplift at join tions R502.11.1 and R8(trated load(s) 53 lb dowr 0 lb down and 48 lb up at at 5-7-9 on bottom chor c (F) or back (B).	L=24ft; eave=4ft; (; Lumber DOL=1.6 ter than 6-0-0 er should verify t(s) 2, 5. 12.10.2 and h and 15 lb up at t 5-7-9 on top cho d. The	rd,	SE 458 NOREN	AROLINA SILVALIA AL SA4
Concentrated Loads Vert: 10=-19	(ID) 9(F=-9, B=-9) 11=-5(F=-2, B=-2) 12=-40	(F=-20, B=-20)				Ju	uly 30,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

 BOT CHORD
 2x4 SP No.2
 structural wood sheatining directly applied of 6-0-0 oc bracing.

 BOT CHORD
 2x4 SP No.2
 except end verticals.

 WEBS
 2x4 SP No.3
 BOT CHORD
 Rigid ceiling directly applied or 6-0-0 oc bracing.

 OTHERS
 2x4 SP No.3
 BOT CHORD
 Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS. All bearings 15-11-8.

(lb) - Max Horz 20=182(LC 7)

Max Uplift All uplift 100 lb or less at joint(s) 20, 12, 17, 18, 19, 15, 14, 13 Max Grav All reactions 250 lb or less at joint(s) 20, 12, 16, 17, 18, 19, 15, 14, 13

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=24ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 1.5x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 20, 12, 17, 18, 19, 15, 14, 13.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Max Grav All reactions 250 lb or less at joint(s) 16, 10, 14, 15, 12, 11 except 13=263(LC 8)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=24ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) All plates are 1.5x4 MT20 unless otherwise indicated.

5) Gable requires continuous bottom chord bearing.

6) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 16, 10, 14, 15, 12, 11.

11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

			<u>1-</u> 1-				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.10 BC 0.02 WB 0.00 Matrix-MP	DEFL. in Vert(LL) -0.00 Vert(CT) -0.00 Horz(CT) 0.00 Wind(LL) -0.00	(loc) l/def 7 >999 7 >999 2 n/a 7 >999	i L/d 360 240 a n/a 240	PLATES MT20 Weight: 8 lb	GRIP 244/190 FT = 20%

BRACING-TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2

REACTIONS. (size) 3=Mechanical, 2=0-3-0, 4=Mechanical

Max Horz 2=38(LC 8)

Max Uplift 3=-5(LC 8), 2=-58(LC 8) Max Grav 3=35(LC 1), 2=172(LC 1), 4=29(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=24ft; eave=4ft; Cat.
- II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60
- plate grip DOL=1.60 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Structural wood sheathing directly applied or 1-10-15 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

	3-10-15 3-10-15										
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.18 BC 0.15 WB 0.00 Matrix-MP	DEFL. Vert(LL) - Vert(CT) - Horz(CT) Wind(LL)	in (loc -0.01 4-7 -0.02 4-7 0.00 2 0.01 4-7) l/defl 7 >999 7 >999 2 n/a 7 >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 14 lb	GRIP 244/190 FT = 20%			

LUMBER-

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2

REACTIONS. (size) 3=Mechanical, 2=0-3-0, 4=Mechanical

Max Horz 2=57(LC 8)

Max Uplift 3=-25(LC 8), 2=-54(LC 8)

Max Grav 3=94(LC 1), 2=238(LC 1), 4=68(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=24ft; eave=4ft; Cat.

II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60

plate grip DOL=1.60 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

TOP CHORD BOT CHORD Structural wood sheathing directly applied or 3-10-15 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

	6-0-0 6-0-0												
LOADING (p	sf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL 20	0.0	Plate Grip DOL	1.15	TC	0.46	Vert(LL)	-0.05	4-7	>999	360	MT20	244/190	
TCDL 10	0.0	Lumber DOL	1.15	BC	0.36	Vert(CT)	-0.11	4-7	>650	240			
BCLL 0	0.0 *	Rep Stress Incr	YES	WB	0.03	Horz(CT)	0.00	2	n/a	n/a			
BCDL 10	0.0	Code IRC2018/T	PI2014	Matrix	k-AS	Wind(LL)	0.04	4-7	>999	240	Weight: 23 lb	FT = 20%	
LUMBER-						BRACING-							

TOP CHORD

BOT CHORD

Structural wood sheathing directly applied.

Rigid ceiling directly applied.

LUMBER-

TOP CHORD 2x4 SP No 2 2x4 SP No.2 BOT CHORD WEBS

2x4 SP No.3 REACTIONS.

2=0-3-0, 4=0-1-8 (size) Max Horz 2=77(LC 8) Max Uplift 2=-54(LC 8), 4=-24(LC 8) Max Grav 2=314(LC 1), 4=227(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 4) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4. 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and
- referenced standard ANSI/TPI 1.
- 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design and the second design much reacting of design and the second design much reacting and and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

	ŀ	6-0-0 6-0-0									
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2018/TF	2-0-0 1.15 1.15 YES Pl2014	CSI. TC 0.46 BC 0.36 WB 0.03 Matrix-AS	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.05 -0.11 0.00 0.04	(loc) 4-7 4-7 2 4-7	l/defl >999 >650 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 23 lb	GRIP 244/190 FT = 20%	

TOP CHORD

BOT CHORD

Structural wood sheathing directly applied.

Rigid ceiling directly applied.

LUMBER-

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2WEBS2x4 SP No.3

WEBS 2x4 SP No.3 REACTIONS. (size) 2=0-3-

TONS. (size) 2=0-3-0, 4=0-1-8 Max Horz 2=77(LC 8) Max Uplift 2=-54(LC 8), 4=-24(LC 8) Max Grav 2=314(LC 1), 4=227(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.
 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and
- referenced standard ANSI/TPI 1.
- 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

818 Soundside Road

	ŀ	6-0-0 6-0-0									
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2018/TF	2-0-0 1.15 1.15 YES Pl2014	CSI. TC 0.46 BC 0.36 WB 0.03 Matrix-AS	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.05 -0.11 0.00 0.04	(loc) 4-7 4-7 2 4-7	l/defl >999 >650 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 23 lb	GRIP 244/190 FT = 20%	

TOP CHORD

BOT CHORD

Structural wood sheathing directly applied.

Rigid ceiling directly applied.

LUMBER-

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2WEBS2x4 SP No.3

WEBS 2x4 SP No.3 **REACTIONS.** (size) 2=0-3-1

10NS. (size) 2=0-3-0, 4=0-1-8 Max Horz 2=77(LC 8) Max Uplift 2=-54(LC 8), 4=-24(LC 8) Max Grav 2=314(LC 1), 4=227(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

818 Soundside Road

		3-10-15 3-10-15										
LOADING	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC TC	0.18	Vert(LL)	-0.01	4-7	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.15	Vert(CT)	-0.02	4-7	>999	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	2	n/a	n/a		
BCDL	10.0	Code IRC2018/TP	12014	Matrix	-MP	Wind(LL)	0.01	4-7	>999	240	Weight: 14 lb	FT = 20%

TOP CHORD

BOT CHORD

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2

REACTIONS. (size) 3=Mechanical, 2=0-3-0, 4=Mechanical

Max Horz 2=57(LC 8)

Max Uplift 3=-25(LC 8), 2=-54(LC 8) Max Grav 3=94(LC 1), 2=238(LC 1), 4=68(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=24ft; eave=4ft; Cat.

II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60

plate grip DOL=1.60 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2.

6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Structural wood sheathing directly applied or 3-10-15 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

LUMBER-

	3-10-15 3-10-15										
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.18 BC 0.15 WB 0.00 Matrix-MP	DEFL. i Vert(LL) -0.0 Vert(CT) -0.0 Horz(CT) 0.0 Wind(LL) 0.0	n (loc) 1 4-7 2 4-7) 2 1 4-7	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 14 lb	GRIP 244/190 FT = 20%			

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2

REACTIONS. (size) 3=Mechanical, 2=0-3-0, 4=Mechanical

Max Horz 2=57(LC 8)

Max Uplift 3=-25(LC 8), 2=-54(LC 8)

Max Grav 3=94(LC 1), 2=238(LC 1), 4=68(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=24ft; eave=4ft; Cat.

II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Structural wood sheathing directly applied or 3-10-15 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

	6-0-0 6-0-0									
LOADING (psf) SPACING- TCLL 20.0 Plate Grip DOL TCDL 10.0 Lumber DOL BCLL 0.0 * Rep Stress Incr BCDL 10.0 Code IRC2018/T	2-0-0 1.15 1.15 YES PI2014	CSI. TC 0.46 BC 0.36 WB 0.03 Matrix-AS	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.05 -0.11 0.00 0.04	(loc) 4-7 4-7 2 4-7	l/defl >999 >650 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 23 lb	GRIP 244/190 FT = 20%	

TOP CHORD

BOT CHORD

Structural wood sheathing directly applied.

Rigid ceiling directly applied.

LUMBER-

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2WEBS2x4 SP No.3

VEBS 2x4 SP No.3

REACTIONS. (size) 2=0-3-0, 4=0-1-8 Max Horz 2=77(LC 8) Max Uplift 2=-54(LC 8), 4=-24(LC 8) Max Grav 2=314(LC 1), 4=227(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

A MITek Affi 818 Soundside Road

	ŀ	6-0-0 6-0-0									
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2018/TF	2-0-0 1.15 1.15 YES Pl2014	CSI. TC 0.46 BC 0.36 WB 0.03 Matrix-AS	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.05 -0.11 0.00 0.04	(loc) 4-7 4-7 2 4-7	l/defl >999 >650 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 23 lb	GRIP 244/190 FT = 20%	

TOP CHORD

BOT CHORD

Structural wood sheathing directly applied.

Rigid ceiling directly applied.

LUMBER-

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2WEBS2x4 SP No.3

WEBS 2x4 SP No.3 REACTIONS. (size) 2=0-3

TONS. (size) 2=0-3-0, 4=0-1-8 Max Horz 2=77(LC 8) Max Uplift 2=-54(LC 8), 4=-24(LC 8) Max Grav 2=314(LC 1), 4=227(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 4) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

A MiTek Aff 818 Soundside Road Edenton, NC 27932

6-0-0 6-0-0											
LOADING (psf) SPACING TCLL 20.0 Plate Grip TCDL 10.0 Lumber D BCLL 0.0 * Rep Stress BCDL 10.0 Code IRC	- 2-0-0 DOL 1.15 OL 1.15 s Incr YES :2018/TPI2014	CSI. TC 0.46 BC 0.36 WB 0.03 Matrix-AS	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.05 -0.11 0.00 0.04	(loc) 4-7 4-7 2 4-7	l/defl >999 >650 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 23 lb	GRIP 244/190 FT = 20%		

TOP CHORD

BOT CHORD

Structural wood sheathing directly applied.

Rigid ceiling directly applied.

LUMBER-

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2WEBS2x4 SP No.3

WEBS 2x4 SP No.3 REACTIONS. (size) 2=0-3

10NS. (size) 2=0-3-0, 4=0-1-8 Max Horz 2=77(LC 8) Max Uplift 2=-54(LC 8), 4=-24(LC 8) Max Grav 2=314(LC 1), 4=227(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.
 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and
- referenced standard ANSI/TPI 1.
- 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

818 Soundside Road

July 30,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

KENL

July 30,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

BENC

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=24ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 4-0-0 oc.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5 except (jt=lb) 1=129, 2=105, 4=105.

9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

2) Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=24ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) Gable requires continuous bottom chord bearing.

5) Gable studs spaced at 4-0-0 oc.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5 except (jt=lb) 1=129, 2=105, 4=105.

9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

A MiTek Affil 818 Soundside Road

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) Gable requires continuous bottom chord bearing.

5) Gable studs spaced at 4-0-0 oc.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5 except (jt=lb) 1=129, 2=105, 4=105.

9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

 Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=24ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) Gable requires continuous bottom chord bearing.

5) Gable studs spaced at 4-0-0 oc.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5 except (jt=lb) 1=129, 2=105, 4=105.

9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

A MiTek Affili 818 Soundside Road

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 4-0-0 oc.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 152 lb uplift at joint 1, 125 lb uplift at joint 5, 118 lb uplift at joint 2 and 118 lb uplift at joint 4.

9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

- II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 4-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 152 lb uplift at joint 1, 125 lb uplift at joint 5, 118 lb uplift at joint 2 and 118 lb uplift at joint 4.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

818 Soundside Road

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

I RENC

Max Uplift All uplift 100 lb or less at joint(s) 5, 2, 4 except 1=-101(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 1, 5, 4, 6 except 2=254(LC 13)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=24ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 4-0-0 oc.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 2, 4 except (jt=lb) 1=101.

9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

A MITIEK A 818 Soundside Road Edenton, NC 27932

Max Uplift All uplift 100 lb or less at joint(s) 5, 2, 4 except 1=-101(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 1, 5, 4, 6 except 2=254(LC 13)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=24ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 4-0-0 oc.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 2, 4 except (jt=lb) 1=101.

9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

between the bottom chord and any other members.

10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 2, 4 except (jt=lb) 1=101.

11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

12) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

RENCO A MITEK Affiliate

818 Soundside Road

Plate Offsets (X,Y)	[6:0-4-0,0-2-0], [8:0-4-0,0-2-0]			_
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.16 BC 0.17 WB 0.50 Matrix-AS	DEFL. in (loc) l/defl L/d PLATES GRIP Vert(LL) -0.04 13-15 >999 360 MT20 244/190 Vert(CT) -0.05 13-15 >999 240 MT20 244/190 Horz(CT) 0.01 11 n/a n/a Wind(LL) 0.01 12-19 >999 240 Weight: 229 lb FT = 20%	

LUMBER-		BRACING-		
TOP CHORD	2x4 SP 2400F 2.0E	TOP CHORD	Structural wood sheathing	directly applied, except
BOT CHORD	2x6 SP No.1		2-0-0 oc purlins (6-0-0 max	x.): 6-8.
WEBS	2x4 SP No.3	BOT CHORD	Rigid ceiling directly applie	ed.
SLIDER	Left 2x4 SP No.3 1-6-0, Right 2x4 SP No.3 1-6-0	WEBS	1 Row at midpt	6-15, 7-15, 8-13
	-			

REACTIONS. (size) 11=0-3-8, 2=0-3-8, 15=0-3-8 Max Horz 2=233(LC 7) Max Uplift 11=-68(LC 8), 2=-94(LC 8), 15=-73(LC 8) Max Grav 11=753(LC 14), 2=520(LC 19), 15=1400(LC 13)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-4=-436/100, 7-8=-415/181, 8-9=-590/172, 9-11=-897/129

BOT CHORD 2-16=-56/374, 15-16=-56/374, 12-13=-17/653, 11-12=-17/653

WEBS 4-15=-440/137, 6-15=-314/24, 7-15=-703/54, 7-13=-7/521, 9-13=-414/140

NOTES-

1) Unbalanced roof live loads have been considered for this design.

 2) Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=31ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 68 lb uplift at joint 11, 94 lb uplift at joint 2 and 73 lb uplift at joint 15.

7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

	6-4-13 14-0	-8 21	-8-3	27-3-12	30-5-14	39-1-8	
	6-4-13 7-7-	11 7-	7-11	5-7-9	3-2-2	8-7-10	
Plate Offsets (X,Y)	[4:0-5-4,0-3-4], [6:0-5-4,0-2-12]						
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2018/TPI2014	CSI. TC 0.26 BC 0.39 WB 0.65 Matrix-AS	DEFL. ir Vert(LL) -0.15 Vert(CT) -0.24 Horz(CT) 0.01 Wind(LL) 0.08	n (loc) l/defl 15-17 >999 15-17 >999 10 n/a 15-17 >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 349 lb	GRIP 244/190 FT = 20%
LUMBER-		II	BRACING-				
TOP CHORD 2x6 SP 8-11: 2 BOT CHORD 2x6 SP WEBS 2x4 SP 4-18,5-	No.1 *Except* x4 SP 2400F 2.0E No.1 No.3 *Except* 17: 2x4 SP No.2, 2-19: 2x6 SP No.1		TOP CHORD BOT CHORD WEBS JOINTS	Structural woo 2-0-0 oc purlin Rigid ceiling d 1 Row at midp 1 Brace at Jt(s	d sheathing direc is (6-0-0 max.): 4- irectly applied. it 6-1: 5): 20, 21	tly applied, except e 6. 5, 7-13, 3-19	nd verticals, and
REACTIONS. (size Max H Max U Max G	e) 13=0-3-8, 19=0-3-8, 10=0-3-8 orz 19=-342(LC 6) plift 13=-165(LC 8), 19=-111(LC 8), 10= rav 13=2455(LC 14), 19=1233(LC 13),	180(LC 21) 10=132(LC 1)					
FORCES. (lb) - Max. TOP CHORD 3-4=- 8-9=- BOT CHORD 18-19 10-12 WEBS 3-18- 7-15=	Comp./Max. Ten All forces 250 (lb) of 767/202, 4-5=-685/199, 5-6=-663/198, 226/1041, 9-10=-199/776, 2-19=-312/2/ 9=-59/546, 17-18=0/741, 15-17=-84/292 2=-689/209 =-17/593, 17-21=-412/141, 5-21=-436/1 43/1619, 7-13=-2275/169, 8-12=0/363	less except when shown. 5-7=-369/151, 7-8=-170/13: 03 , 13-15=-1076/237, 12-13= 42, 6-17=-51/763, 6-15=-85 , 9-12=-381/109, 3-19=-974	36, -957/264, 66/107, 4/8				
NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-16; V II; Exp B; Enclosed; plate grip DOL=1.60 3) Provide adequate df 4) This truss has been 5) * This truss has been between the bottom 6) Provide mechanical joint 19 and 180 lb u 7) This truss is designer referenced standard	e loads have been considered for this de fult=140mph (3-second gust) Vasd=111 MWFRS (directional); cantilever left and ainage to prevent water ponding. designed for a 10.0 psf bottom chord liv n designed for a live load of 20.0psf on chord and any other members, with BC connection (by others) of truss to bearin plift at joint 10. ed in accordance with the 2018 Internati ANSI/TPI 1.	sign. mph; TCDL=6.0psf; BCDL= d right exposed ; end vertica e load nonconcurrent with a the bottom chord in all area DL = 10.0psf. g plate capable of withstan onal Residential Code section	-6.0psf; h=20ft; B=45ft; al left and right expose any other live loads. s with a clearance grea iding 165 lb uplift at join ions R502.11.1 and R8	L=39ft; eave=5 d; Lumber DOL= ater than 6-0-0 nt 13, 111 lb upli 02.10.2 and	ft; Cat. :1.60 ft at	SE/	AROLINI CARPACT

ural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB Building Component Scitut Information**. Building from the Structure Building Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

	ł	6-4-13	14-0-8			21-8-3		2	27-3-12		30-5-14		39-1-8		
Plate Offset	ts (X Y)	6-4-13 [4:0-5-4 0-3-4] [6:0-5-4 0-2	-12]			/-/-11			5-7-9		3-2-2		8-7-10		
	10 (71,17		· · ~]												
LOADING	(psf)	SPACING-	2-0-0	CSI.			DEFL.	in	(loc)	l/defl	L/d		PLATES	GRIP	
TCLL	20.0	Plate Grip DOL	1.15	TC	0.26		Vert(LL)	-0.15	15-17	>999	360		MT20	244/190	
BCLI	0.0 *	Rep Stress Incr	YES	WB	0.39		Horz(CT)	-0.24	10-17	>999 n/a	240 n/a				
BCDL	10.0	Code IRC2018/TPI2	2014	Matrix	-AS		Wind(LL)	0.08	15-17	>999	240		Weight: 349 lb	FT = 20%	
LUMBER-							BRACING-								
TOP CHOR	D 2x6 SP	No.1 *Except*					TOP CHOR	D	Structu	ral wood	sheathing	directly	applied, except e	end verticals, and	
	8-11: 2	x4 SP 2400F 2.0E							2-0-0 o	c purlins	s (6-0-0 ma	ax.): 4-6.			
BOT CHOR	D 2x6 SP	No.1					BOT CHOR	D	Rigid ce	eiling dir	ectly appli	ed.			
WEBS	2x4 SP	No.3 *Except*					WEBS		1 Row a	at midpt	. 00. 04	6-15,	7-13, 3-19		
	4-18,5-	17: 2x4 SP NO.2, 2-19: 2x6	5P NO.1				JUINTS		I Brace	at JI(S)	: 20, 21				
REACTION	IS. (size	e) 13=0-3-8, 19=0-3-8, 10	=0-3-8												
	Max H	orz 19=-342(LC 6)													
	Max U	plift 13=-165(LC 8), 19=-11	1(LC 8), 10=-1	B0(LC 21)											
	Max G	rav 13=2455(LC 14), 19=1	233(LC 13), 10	=132(LC 1)										
FORCES	(lb) - Max	Comp /Max Ten - All force	es 250 (lb) or le	ss evcent i	when show	'n									
TOP CHOR	(15) Wax. RD 3-4=-	767/202, 4-5=-685/199, 5-6	=-663/198, 6-7	=-369/151	, 7-8=-168/	/1336,									
	8-9=-	224/1041, 9-10=-197/776, 2	2-19=-312/203		,	,									
BOT CHOR	RD 18-19	=-59/546, 17-18=0/741, 15	-17=-84/292, 1	3-15=-107	6/236, 12-1	13=-957	/263,								
	10-12	2=-689/208	- 04 400/440	0 47 54	700 0 45	050/40									
WEBS	3-18=	=-17/593, 17-21=-412/141, 5 /1/1610, 7-132275/160	21=-436/142, 8-12=0/363 0	6-1/=-51/	/63,6-15=	-856/10 .074/8	106,								
	7-10-	41/1013, 7-132273/103,	0-12-0/303, 9	-12301/1	103, 3-13	314/0									
NOTES-															
1) Unbalan	ced roof live	loads have been considered	ed for this desig	jn.											
2) Wind: AS	SCE 7-16; V	ult=140mph (3-second gus	t) Vasd=111mp	h; TCDL=6	6.0psf; BCI	DL=6.0p	osf; h=20ft; B	=45ft; I	L=39ft; e	ave=5ft	; Cat.			1.1.201	
II; EXP B	; Enclosed;	WWFRS (directional); canti	lever left and ri	gnt expose	ea ; ena vei	rtical let	t and right ex	posea	; Lumbe	r DOL=	1.60			in the second se	
3) Provide a	adequate dr	ainage to prevent water po	ndina.										IN THU	ARO	
4) This trus	s has been	designed for a 10.0 psf bot	om chord live I	oad nonco	ncurrent w	ith any	other live load	ds.				^	10h	Si Alle	
5) * This tru	iss has beei	n designed for a live load of	20.0psf on the	bottom ch	ord in all a	reas wi	h a clearanc	e great	ter than	6-0-0		11	Trick 1	Mineia	
between	the bottom	chord and any other memb	ers, with BCDL	= 10.0psf								0.0	:0 V	4: 3	
6) Provide i ioint 19 c	mechanical	connection (by others) of tr	uss to bearing	plate capal	ble of withs	standing	165 ID uplift	at joint	t 13, 111	Ib uplif	tat	Ξ	. OF	AL 1	
7) This trus	s is designe	ed in accordance with the 20)18 Internation	al Resident	tial Code s	ections	R502 11 1 a	nd R80)2 10 2 a	ind		-	: SE/	AL E	
reference	ed standard	ANSI/TPI 1.										Ξ	458	44 : =	
8) This trus	s design red	quires that a minimum of 7/*	16" structural w	ood sheatl	hing be app	olied dir	ectly to the to	op chor	rd and 1/	2" gyps	um	Ξ	1	1 E	
sheetroc	k be applied	d directly to the bottom chor	d.									1		1 1 2 3	

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

.10 minim July 30,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

	⊢	6-4-13	14-0-8			21-8-3		2	7-3-12		30-5-14	39-1-8	
Plate Offsets (X	Y) [?	3.0-5-4 0-3-4] [5.0-5-4	 0-2-12] [18:0-2-	12 0-2-81		7-7-11			5-7-9		3-2-2	8-7-10	
		5.0 0 1,0 0 1], [0.0 0 1	<u>1,0 2 12], [10.0 2</u>	12,0 2 0]									
LOADING (psf)		SPACING-	2-0-0	CSI.			DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0		Plate Grip DOL	1.15	TC	0.26		Vert(LL)	-0.15	14-16	>999	360	MT20	244/190
TCDL 10.0		Lumber DOL	1.15	BC	0.39		Vert(CT)	-0.24	14-16	>999	240		
BCLL 0.0	*	Rep Stress Incr	YES	WB	0.65		Horz(CT)	0.01	9	n/a	n/a		
BCDL 10.0	10.0 Code IRC2018/TPI2014 Matrix-AS							0.08	14-16	>999	240	Weight: 347 lb	FT = 20%
LUMBER-	I						BRACING-						
TOP CHORD 2	2x6 SP I	No.1 *Except*					TOP CHORD Structural wood sheathing directly applied, except						
7	7-10: 2x	4 SP 2400F 2.0E						_	2-0-0 oc	c purlins	(6-0-0 max	x.): 3-5.	
BOT CHORD 2	2x6 SP I	No.1					BOICHOR	D	Rigid ce	eiling dir	ectly applie	ed.	
WEBS 2	2X4 SP I 2 1 7 4 1		OVE SD No.1				WEBS		1 Row a	at midpt	. 10. 20	5-14, 6-12, 2-18	
3	5-17,4-1	0. 284 SF NU.2, 1-10.	2X0 3P NU.1				JUINTS		I DIACE	al JI(S)	. 19, 20		
REACTIONS.	(size)	12=0-3-8, 18=0-3-8	3. 9=0-3-8										
1	Max Ho	rz 18=-194(LC 8)	,										
1	Max Up	lift 12=-194(LC 8), 18:	=-69(LC 8), 9=-18	31(LC 21)									
I	Max Gra	av 12=2449(LC 14), 1	8=1136(LC 13), 9	9=131(LC 1))								
TORCES. (ID) -	- Max. C	omp./Max. Ten All 1	orces 250 (Ib) or	less except	when show	NN.							
TOP CHORD	2-3=-7	21/133, 3-4=-003/148	, 4-5=-630/145, 5 o	-0=-335/95,	0-7=-172/	1318,							
	17-18-	-37/500 16-17-0/709	0	12-14106	2/2/0 11-	12-0/1	/267						
BOT CHORD	9-11=-	691/212	, 14-1071/200,	12-14-100	2/240, 11-	12341	/201,						
WEBS	2-17=-	9/586, 16-20=-413/13	4, 4-20=-437/138	, 5-16=-38/7	754, 5-14=-	-851/119),						
	6-14=-	60/1611, 6-12=-2266/	213, 7-11=0/363,	8-11=-381/	111, 2-18=	-1015/6	2						
NOTES													
1) Unbalanced re	oof live l	ands have been cons	idered for this de	sian									
2) Wind: ASCE 7	7-16: \/u	It-140mph (3-second	nuet) Vaed-111r	nnh: TCDI –	6 Onsf: BC	DI -6 0	osf: h=20ft: B	-45ft·	I –30ft∙ ≏	ave-5ft	Cat		
II: Exp B: Encl	losed N	WFRS (directional): c	antilever left and	right expos	ed · end ve	ertical lef	t and right ex	nosed	· Lumber	DOI = 1	60		um.
plate grip DOL	L=1.60	(directional), c		ingin expect	ou , onu ro		r ana ngini on		,				AD
3) Provide adequ	uate dra	inage to prevent wate	r ponding.									THU	ARO
4) This truss has	s been d	esigned for a 10.0 psf	bottom chord live	e load nonco	oncurrent w	vith any	other live load	ds.				1 of LER	Sin All
5) * This truss ha	as been	designed for a live loa	ad of 20.0psf on t	ne bottom cl	hord in all a	areas wi	th a clearanc	e great	ter than 6	6-0-0		1 Dirice 1	Mixin
between the b	oottom c	hord and any other me	embers, with BCI	DL = 10.0pst	f.								1
 Provide mecha joint 18 and 18 	anical c 81 lb up	onnection (by others) lift at joint 9.	of truss to bearin	g plate capa	ble of with	standing	194 lb uplift	at join	t 12, 69 l	b uplift a	at	E / 0=	
7) This truss is d	lesigned	I in accordance with th	e 2018 Internatio	nal Resider	tial Code s	sections	R502.11.1 a	nd R80)2.10.2 a	nd			
referenced sta	andard A	ANSI/TPI 1.										- • 458	544 • -

8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

a trust system and the solution was the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

BRENCO A MiTek Affiliat

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

A MITEK Affiliate

July 30,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcaccomponents.com)

A MiTek 818 Soundside Road Edenton, NC 27932

July 30,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

A MiTek Affi

L	6-1-8	11-11-8		18-5-8	1	22-11-12	26-1-14	34-9-8	
	6-1-8	5-10-0	1	6-6-0		4-6-4	3-2-2	8-7-10	
Plate Offsets (X,Y)	[2:0-5-8,0-0-3], [6:0-2-4,0	-2-0]							
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2018/TP	2-0-0 1.15 1.15 YES 12014	CSI. TC 0.30 BC 0.23 WB 0.84 Matrix-AS		DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in (loc) -0.07 14-27 -0.15 14-27 0.01 12 0.02 19	l/defl L/d >999 360 >922 240 n/a n/a >999 240	PLATES MT20 Weight: 233 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF SLIDER Left 2x	P No.2 P 2400F 2.0E P No.3 66 SP No.1 1-6-0				BRACING- TOP CHOP BOT CHOP WEBS	RD Structo 2-0-0 o RD Rigid o 1 Row	ural wood sheathing oc purlins (6-0-0 max ceiling directly applie at midpt	directly applied, except (.): 6-8. d. 7-17, 8-17	
REACTIONS. (siz Max H Max U Max C	e) 2=0-3-8, 15=0-3-8, 12 Horz 2=-241(LC 6) Jplift 2=-103(LC 8), 15=-13 Grav 2=957(LC 13), 15=15	2=0-3-8 35(LC 8), 12=-5 31(LC 1), 12=4	59(LC 8) 462(LC 20)						
FORCES. (lb) - Max. TOP CHORD 2-4= 11-11 BOT CHORD 2-20 WEBS 4-19 10-11	Comp./Max. Ten All forr -1079/112, 4-6=-789/161, 2=-535/54 =0/951, 19-20=0/951, 17-1 =-388/136, 7-19=-17/358, 5=-422/49, 10-14=0/365, 1	ces 250 (lb) or 6-7=-579/172, 9=0/548, 12-1 7-17=-496/53, 1-14=-370/107	less except when s 7-8=-320/150, 8-9= 4=0/472 9-17=0/794, 9-15= 7	shown. 480/142, -1173/121,	9-10=0/270,				
 NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-16; V II; Exp B; Enclosed; plate grip DOL=1.60 3) Provide adequate d 4) All plates are 4x4 M 5) This truss has been 6) * This truss has beetween the bottom 7) Provide mechanical joint 15 and 59 lb up 8) This truss is design referenced standard 9) This truss design re sheetrock be applie 10) Graphical purlin re 	e loads have been conside /ult=140mph (3-second gu MWFRS (directional); car) rainage to prevent water p IT20 unless otherwise indic designed for a 10.0 psf bd or chord and any other mem connection (by others) of olift at joint 12. ed in accordance with the 2 d ANSI/TPI 1. quires that a minimum of 7 d directly to the bottom cho presentation does not dep	ered for this de ist) Vasd=111r tillever left and onding. cated. tom chord live of 20.0psf on the bers, with BCI truss to bearin 2018 Internatio 7/16" structural ord. ict the size or t	sign. nph; TCDL=6.0psf; right exposed ; end e load nonconcurre he bottom chord in DL = 10.0psf. g plate capable of v onal Residential Co- wood sheathing be the orientation of th	BCDL=6.0 d vertical le nt with any all areas w vithstandin de sections e applied di e purlin alc	psf; h=20ft; f ft and right e other live loo ith a clearan g 103 lb uplif s R502.11.1 a rectly to the f ng the top an	B=45ft; L=35ft; xposed; Lumbo ads. ce greater thar t at joint 2, 135 and R802.10.2 top chord and f nd/or bottom cf	eave=4ft; Cat. er DOL=1.60 n 6-0-0 i lb uplift at and 1/2" gypsum nord.	SE 458	AROLINA SOUS

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

1	6-1-8	11-11-8	18-5-8	1	22-11-12	1 26-1-14	L I	34-9-8	1
l I	6-1-8	5-10-0	6-6-0		4-6-4	3-2-2	1	8-7-10	1
Plate Offsets (X Y)	[1:0-3-8 Edge] [4:0-2-4 0	-2-01							
	[1.0 0 0,Edg0]; [1.0 2 1,0	20]							
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2018/TF	2-0-0 1.15 1.15 YES Pl2014	CSI. TC 0.15 BC 0.22 WB 0.80 Matrix-AS	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in (lo -0.07 12-2 -0.14 12-2 0.02 0.01 18-2	c) l/defl 25 >999 25 >981 10 n/a 21 >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 231 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF SLIDER Left 2x	2400F 2.0E 2400F 2.0E 2 No.3 66 SP No.1 1-6-0			BRACING TOP CHO BOT CHO WEBS	- RD Stru 2-0- RD Rigi 1 R	uctural wood s -0 oc purlins (6 id ceiling direc ow at midpt	heathing dir 5-0-0 max.): tly applied. 5-	ectly applied, except 4-6. -15, 6-15	
REACTIONS. (siz Max H Max L Max C	e) 1=0-3-8, 13=0-3-8, 1 Horz 1=-233(LC 6) Jplift 1=-65(LC 8), 13=-12- Grav 1=902(LC 13), 13=14	0=0-3-8 4(LC 8), 10=-6 490(LC 1), 10=	7(LC 8) 483(LC 20)						
FORCES. (lb) - Max. TOP CHORD 1-3= 9-10 BOT CHORD 1-18 WEBS 3-17 8-13	Comp./Max. Ten All for -1108/121, 3-4=-815/169,)=-586/72 =0/976, 17-18=0/976, 15- =-393/139, 5-17=-14/346, =-433/55, 8-12=0/361, 9-1	ces 250 (lb) or 4-5=-600/178, 17=0/573, 10-1 5-15=-481/49, 2=-369/103	less except when shown 5-6=-348/159, 6-7=-515/ 2=-0/519 7-15=0/752, 7-13=-1121/	153, 8-9=-255/22 /107,	, ,				
 NOTES- 1) Unbalanced roof liva 2) Wind: ASCE 7-16; N II; Exp B; Enclosed; plate grip DOL=1.60 3) Provide adequate d 4) All plates are 4x4 M 5) This truss has been 6) * This truss has been 6) * This truss has been 6) * This truss has been 7) Provide mechanical 13 and 67 lb uplift a 8) This truss is design referenced standard 9) This truss design resheetrock be applie 10) Graphical purlin re 	e loads have been conside /ult=140mph (3-second gr MWFRS (directional); car) rainage to prevent water p T20 unless otherwise indi designed for a 10.0 psf b in designed for a live load chord and any other men connection (by others) of t joint 10. ed in accordance with the d ANSI/TPI 1. quires that a minimum of d directly to the bottom ch presentation does not dep	ered for this de ust) Vasd=111r ntilever left and oonding. cated. ottom chord liv of 20.0psf on t nbers, with BCI truss to bearin 2018 Internatio 7/16" structural ord. pict the size or	sign. mph; TCDL=6.0psf; BCDI I right exposed ; end verti- he bottom chord in all are DL = 10.0psf. g plate capable of withsta onal Residential Code sec I wood sheathing be appli the orientation of the purli	L=6.0psf; h=20ft; cal left and right any other live lo as with a clearar anding 65 lb uplif ctions R502.11.1 ed directly to the n along the top a	B=45ft; L=35 exposed; Lur ads. ace greater th at joint 1, 12 and R802.10 top chord an nd/or bottom	5ft; eave=4ft; C nber DOL=1.6 nan 6-0-0 24 lb uplift at jc 0.2 and nd 1/2" gypsun n chord.	Dat. o	SE 458	AROLINA AL 344

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

	1	6-1-8	11-11-8	1	18-5-8	1	22-11-1	12	26-1-	14 1	34-9-8	1
	ſ	6-1-8	5-10-0	1	6-6-0	1	4-6-4		3-2-	2	8-7-10	
Plate Offse	ets (X,Y)	[1:0-3-8,Edge], [4:0-2-4,0)-2-0]									
		[
	(nef)	SPACING-	2-0-0	190		DEEL	in	(loc)	l/dofl	L/d	DIATES	GPIP
TOU	20.0		2-0-0	TC	0.45		0.07	40.05	. 000	200	MTOO	244/400
TOLL	20.0	Plate Grip DOL	1.15	10	0.15	Vert(LL)	-0.07	12-25	>999	360	M120	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.22	Vert(CT)	-0.14	12-25	>981	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.80	Horz(CT)	0.02	10	n/a	n/a		
BCDL	10.0	Code IRC2018/T	PI2014	Matri	x-AS	Wind(LL)	0.01	18-21	>999	240	Weight: 231 lb	FT = 20%
LUMBER-	•					BRACING	i-					
TOP CHO	RD 2x4 SF	2400F 2.0E				TOP CHO	RD	Structu	iral wood	sheathing dir	rectly applied, except	
BOT CHO	RD 2x4 SF	2400F 2.0E						2-0-0 0	oc purlins	(6-0-0 max.):	4-6.	
WEBS	2x4 SF	No 3				BOT CHO	RD	Rigid c	eilina dir	ectly applied		
SLIDER	Loft 2v	6 SP No 1 1-6-0				WEBS		1 Row	at midnt	5000 0000	-15 6-15	
OLIDEIX	Len ZA	0.01 110.1 1-0-0				WLDO		TROW	armupt	5	-13, 0-13	
REACTIO	NS (siz	a) 1-0-3-8 13-0-3-8 1	0-0-3-8									
REACTIO		$(-2)^{-1} = (-3)^{-2} = (-3)$	0=0-3-0									
	Max H	1012 1=-233(LC 6)	44.0.0	7/1 (0, 0)								
	Max U	12 - 12 = 12	4(LC 8), 10=-6	7(LC 8)								
	Max G	Grav 1=902(LC 13), 13=1	490(LC 1), 10=	483(LC 20)								
FORCES.	(lb) - Max.	Comp./Max. Ten All for	rces 250 (lb) or	less except	when shown.							
TOP CHO	RD 1-3=-	-1108/121, 3-4=-815/169,	4-5=-600/178,	5-6=-348/15	59, 6-7=-515/1	53, 8-9=-255/22	2.					
	9-10	=-586/72	,		,	,						
BOT CHO	RD 1-18-	-0/976 17-18-0/976 15-	17-0/573 10-1	20/519								
WERS	2 17	- 202/120 5 17- 14/246	5 15- 491/40	7 15-0/752	7 12- 1121/	107						
WEBS	0.40	=-393/139, 3-17=-14/340,	3-13=-401/49,	7-15=0/752	, /-13=-1121/	107,						
	8-13	=-433/55, 8-12=0/361, 9-	12=-369/103									
NOTES-												
 Unbalar 	nced roof live	e loads have been consid	ered for this de	sign.								
2) Wind: A	ASCE 7-16; \	/ult=140mph (3-second g	ust) Vasd=111ı	mph; TCDL=	6.0psf; BCDL	=6.0psf; h=20ft;	B=45ft;	L=35ft;	eave=4ft	Cat.		
II; Exp I	B; Enclosed;	MWFRS (directional); ca	ntilever left and	I right expos	ed ; end vertic	al left and right	exposed	d; Lumbe	er DOL=1	.60		
plate or	ip DOL=1.60)		0 1		0	•					
3) Provide	adequate di	rainage to prevent water i	oonding									1111.
 4) All plate 	e are 4v4 M	T20 unless otherwise ind	icated									a million
F) This true		designed for a 10.0 meth									THU	ARO
5) This tru	iss has been	designed for a 10.0 psi b		e load nonce		any other live ic	aus.				1 N RI	
6) " I NIS TI	russ nas bee	n designed for a live load	of 20.0pst on t	ne bottom c	nord in all area	as with a clearai	ice grea	ater than	6-0-0		S.O'.EES	SIN
betwee	n the bottom	chord and any other mer	nbers, with BC	DL = 10.0ps	t.						LATA OL	L'anne
Provide	e mechanical	connection (by others) of	truss to bearin	ig plate capa	able of withsta	nding 65 lb uplif	at joint	1, 124 I	b uplift at	joint 🕓		1. 2
13 and	67 lb uplift at	t joint 10.										
8) This tru	iss is designe	ed in accordance with the	2018 Internatio	onal Resider	ntial Code sec	tions R502.11.1	and R80	02.10.2	and	-	SF SF	
referen	ced standard	I ANSI/TPI 1.										. : :
9) This tru	iss design re	quires that a minimum of	7/16" structural	wood shea	thing be applie	ed directly to the	top cho	rd and 1	/2" avpsi	ım 📮	: : 458	344 : =
sheetro	ck he annlie	d directly to the bottom ch	ord						- 9,00			· · · · · · · · · · · · · · · · · · ·
10) Grand	ical nurlin ro	presentation does not do	nict the size or	the orientati	on of the nurli	a along the top of	nd/or b	ottom of	ord			1. E
iu) Giaph	icai puriiri re	presentation dues not de		une unentatio		along the top a		Short Cr	iuiu.		27:A.	a: 23
											A SNOU	LEFT ON

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0

between the bottom chord and any other members.5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 81 lb uplift at joint 10 and 81 lb uplift at joint 8.

6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 77 lb uplift at joint 8 and 125 lb uplift at joint 14.

8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

July 30,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

E RENCO

July 30,2024

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS//TPI Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Jonah Blakenship\Mrtyle Beach	
						167205859
28141	TG1	Piggyback Base Girder	1	2		
				2	Job Reference (optional)	
C&R Truss. Autrvville.	NC - 28318.			8.530 s Au	a 2 2023 MiTek Industries, Inc. Tue Jul 30 10:53:59 2024	Page 2

ID:43FmfUEpnBwxW36Q?RCfByzursR-ashM_ltgZSFmJU3SZ6HRjHADqYPwgaeMQsS_T8ysurc

NOTES-

- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 12) This truss has large uplift reaction(s) from gravity load case(s). Proper connection is required to secure truss against upward movement at the bearings. Building designer must provide for uplift reactions indicated.
- 13) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 906 lb down and 94 lb up at 2-0-12, 906 lb down and 94 lb up at 4-0-12, 906 lb down and 94 lb up at 6-0-12, 908 lb down and 95 lb up at 8-0-12, 908 lb down and 95 lb up at 10-0-12, 900 lb down and 95 lb up at 12-0-12, 809 lb down and 95 lb up at 12-3-4, 228 lb down and 850 lb up at 13-1-4, 228 lb down and 850 lb up at 13-1-4, 228 lb down and 850 lb up at 25-1-4, 208 lb down and 843 lb up at 19-1-4, 228 lb down and 850 lb up at 21-1-4, 228 lb down and 850 lb up at 23-1-4, 228 lb down and 850 lb up at 29-1-4, and 231 lb down and 844 lb up at 31-1-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-4=-60, 4-6=-60, 6-9=-60, 19-22=-20 Concentrated Loads (lb)

Vert: 16=-899(B) 18=-897(B) 17=-899(B) 15=-1798(B) 11=391(B) 10=389(B) 24=385(B) 25=-897(B) 26=-897(B) 28=391(B) 29=391(B) 30=389(B) 31=389(B) 32=391(B) 33=391(B) 34=389(B)

	6-4-13 6-4-13	14-0-8 7-7-11	21-8-3 7-7-11	<u>27-3-12</u> 5-7-9	30-5-14	<u> </u>			
Plate Offsets (X,Y)	[4:0-5-4,0-2-12], [6:0-5-4,0-2-12],	[29:0-2-0,0-0-6], [30:0-1-8,0-0-	-12], [33:0-1-11,0-0-	12], [35:0-1-8,	0-0-12]				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO Code IRC2018/TPI2014	CSI. TC 0.29 BC 0.54 WB 0.65 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in (loc) -0.15 15-17 -0.24 15-17 0.01 10 0.09 15-17	l/defl L/d >999 360 >999 240 n/a n/a >999 240	PLATES MT20 Weight: 442 lb	GRIP 244/190 FT = 20%		
LUMBER- TOP CHORD 2x6 SI 8-11: 2 BOT CHORD 2x6 SI WEBS 2x4 SI 4-18,5 OTHERS 2x4 SI REACTIONS. (siz	P No.1 *Except* 2x4 SP 2400F 2.0E P No.1 P No.3 *Except* -17: 2x4 SP No.2, 2-19: 2x6 SP N P No.3 2e) 13=0-3-8, 19=0-3-8, 10=0-3-	o.1 3	BRACING- TOP CHORI BOT CHORI WEBS JOINTS	D Structu except D Rigid ca 1 Row a 1 Brace	ral wood sheathing d end verticals, and 2- eiling directly applied at midpt e at Jt(s): 20, 21	irectly applied or 6-0-0 0-0 oc purlins (6-0-0 ma or 6-0-0 oc bracing. 6-15, 7-13, 3-19	oc purlins, ix.): 4-6.		
Max H Max U Max C	Max Horz 19=-342(LC 6) Max Uplift 13=-236(LC 34), 19=-208(LC 8), 10=-180(LC 28) Max Grav 13=2503(LC 14), 19=1768(LC 38), 10=207(LC 1) CORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. OP CHORD 3-4=-900/229, 4-5=-771/216, 5-6=-752/215, 6-7=-466/170, 7-8=-336/1427,								
FORCES. (lb) - Max. TOP CHORD 3-4= 8-9= BOT CHORD 18-1	FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 3-4=-900/229, 4-5=-771/216, 5-6=-752/215, 6-7=-466/170, 7-8=-336/1427, 8-9=-398/1136, 9-10=-366/790, 2-19=-321/207 BOT CHORD 18-19=-78/621, 17-18=0/831, 15-17=-122/364, 13-15=-1144/371, 12-13=-1047/424, 10-246/12/262								
10-1 WEBS 3-18 7-15 3-19	BOT CHORD 18-19=-78/621, 17-18=0/831, 15-17=-122/364, 13-15=-1144/371, 12-13=-1047/424, 10-12=-691/362 WEBS 3-18=-25/635, 17-21=-458/151, 5-21=-476/152, 6-17=-60/792, 6-15=-882/164, 7-15=-123/1659, 7-13=-2349/271, 8-13=-274/39, 8-12=0/362, 9-12=-389/117, 3-19=-1128/31								
NOTES- 1) Unbalanced roof liv 2) Wind: ASCE 7-16; ' II; Exp B; Enclosed: plate grip DCL=1.6i 3) Truss designed for Gable End Details a 4) Provide adequate d 5) All plates are 2x4 M 6) Gable studs spaced 7) This truss has been 8) * This truss has been between the bottom 9) Provide mechanical joint 19 and 180 lb 10) This truss is designed referenced standa 11) Graphical purlin reference	e loads have been considered for Vult=140mph (3-second gust) Vas MWFRS (directional); cantilever lo wind loads in the plane of the trus as applicable, or consult qualified l trainage to prevent water ponding. IT20 unless otherwise indicated. d at 2-0-0 oc. d designed for a 10.0 psf bottom cl en designed for a live load of 20.0p n chord and any other members, w l connection (by others) of truss to uplift at joint 10. ned in accordance with the 2018 l rd ANSI/TPI 1. spresentation does not depict the s	this design. d=111mph; TCDL=6.0psf; BCD eft and right exposed ; end vert s only. For studs exposed to wi wilding designer as per ANSI/T ord live load nonconcurrent wit sf on the bottom chord in all ar ith BCDL = 10.0psf. bearing plate capable of withst nternational Residential Code s ize or the orientation of the pur	DL=6.0psf; h=20ft; B= tical left and right exp ind (normal to the fa TPI 1. th any other live load reas with a clearance tanding 236 lb uplift is sections R502.11.1 a flin along the top and	=45ft; L=39ft; e posed; Lumbe ce), see Stand ds. e greater than at joint 13, 208 and R802.10.2 4/or bottom che	eave=5ft; Cat. r DOL=1.60 dard Industry 6-0-0 8 lb uplift at and ord.	SE 458 SE	AROLINA SOUTHER AL SA44 VEER SOUTHER JOHNSTITUTE		

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Jonah Blakenship\Mrtyle Beach	
						67205860
28141	TG2	GABLE	1	1		
					Job Reference (optional)	
C&R Truss, Autryville,	NC - 28318,			8.530 s Au	g 2 2023 MiTek Industries, Inc. Tue Jul 30 10:54:00 2024 F	Page 2
		ID:43Fn	nfUEpnBw	xW36Q?R	CfByzursR-22FkCeuIKmNdxeee7gogFUjP0yiNP2yVfWBY?a	aysurb

NOTES-

12) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 218 lb down and 32 lb up at 0-2-12, and 207 lb down and 44 lb up at 2-0-12, and 207 lb down and 44 lb up at 4-0-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-2=-60, 2-4=-60, 4-6=-60, 6-8=-60, 8-11=-60, 19-45=-20

Concentrated Loads (lb)

Vert: 19=-218 52=-207 53=-207

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Jonah Blakenship\Mrtyle Beach	
						167205861
28141	TG3	GABLE	1	1		
					Job Reference (optional)	
C&R Truss, Autryville,	C&R Truss, Autryville, NC - 28318, 8.530 s Aug 2 2023 MiTek Industries, Inc. Tue Jul 30 10:54:01 2024 Page 2					

ID:43FmfUEpnBwxW36Q?RCfByzursR-WFp6P_vw54VUYoDqhXJvoiFalL5Z8azfuAx5X1ysura

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-2=-60, 2-4=-60, 4-6=-60, 6-8=-60, 9-17=-20

Concentrated Loads (lb)

Vert: 16=-207 15=-207

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Jonah Blakenship\Mrtyle Beach	
						167205862
28141	TG4	GABLE	1	2		
				-	Job Reference (optional)	
C&R Truss, Autryville,	NC - 28318,			8.530 s Au	Ig 2 2023 MiTek Industries, Inc. Tue Jul 30 10:54:02 2024	Page 2

8.530 s Aug 2 2023 MiTek Industries, Inc. Tue Jul 30 10:54:02 2024 Page 2 ID:43FmfUEpnBwxW36Q?RCfByzursR-?RNUcKvYsNdKAyn0FFq8KvocOlHutuao6qge4TysurZ

NOTES-

10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
12) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 985 lb down and 97 lb up at 2-0-12, 983 lb down and 76 lb up at 4-0-12, 983 lb down and 76 lb up at 4-0-12, 983 lb down and 76 lb up at 10-0-12, 983 lb down and 76 lb up at 12-0-12, 985 lb down and 76 lb up at 12-0-12, 985 lb down and 76 lb up at 12-0-12, 985 lb down and 97 lb up at 14-0-12, 985 lb down and 97 lb up at 16-0-12, 985 lb down and 97 lb up at 22-0-12, and 985 lb down and 97 lb up at 2

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-7=-60, 7-9=-60, 9-11=-60, 11-13=-60, 28-31=-20

Concentrated Loads (lb)

Vert: 19=-985(B) 23=-985(B) 21=-983(B) 18=-985(B) 17=-985(B) 36=-983(B) 37=-983(B) 38=-983(B) 39=-983(B) 40=-985(B) 41=-985(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcaccomponents.com)

and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Jonah Blakenship\Mrtyle Beach	
						167205864
28141	TG6	PIGGYBACK ATTIC	1	2		
				_	Job Reference (optional)	
C&R Truss, Autryville,	NC - 28318,			8.530 s Au	g 2 2023 MiTek Industries, Inc. Tue Jul 30 10:54:03 2024	Page 2
		ID:43Fm	nfUEpnBw:	xW36Q?R	CfByzursR-TdxsqgwAdhmBo6MDoyLNt7Lrc9lqcU1xLUQC	cvysurY

NOTES-

12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

13) Attic room checked for L/360 deflection.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

A MiTek A

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

A MiTek 818 Soundside Road

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcaccomponents.com)

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 26, 27, 28, 29, 30, 31, 23, 22, 21, 20, 19, 18, 17.

8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

A MiTek Affili 818 Soundside Road

- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0
- between the bottom chord and any other members, with BCDL = 10.0psf. 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 13, 21, 22, 23, 24, 25, 18, 17, 16, 15, 14.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

REACTIONS. (size) 1=8-2-11, 3=8-2-11, 4=8-2-11 Max Horz 1=64(LC 7) Max Uplift 1=-36(LC 8), 3=-36(LC 8) Max Grav 1=170(LC 1), 3=170(LC 1), 4=253(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

 This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Horz(CT)

BRACING-

TOP CHORD

BOT CHORD

0.00

3

n/a

n/a

Rigid ceiling directly applied or 10-0-0 oc bracing.

FORCES.	(lb) - Max. Comp./Max.	Ten All forces 250 (lb) o	r less except when shown.
	()		

BCLL

BCDL

LUMBER-

BOT CHORD

REACTIONS.

0.0

TOP CHORD 2x4 SP 2400F 2.0E

2x4 SP No.2

(size)

Max Horz 1=-18(LC 6) Max Uplift 1=-6(LC 8), 3=-6(LC 8) Max Grav 1=83(LC 1), 3=83(LC 1)

10.0

NOTES-

1) Unbalanced roof live loads have been considered for this design.

Rep Stress Incr

1=2-10-11, 3=2-10-11

Code IRC2018/TPI2014

2) Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

WB

Matrix-P

0.00

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

YES

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

FT = 20%

Weight: 8 lb

Structural wood sheathing directly applied or 2-11-5 oc purlins.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

TRENCO A MiTek Affiliate

Max Uplift All uplift 100 lb or less at joint(s) 1, 5, 8, 6

Max Grav All reactions 250 lb or less at joint(s) 1, 5, 7 except 8=310(LC 13), 6=310(LC 14)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 5) between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5, 8, 6.

7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall a fuss system. Before use, the building designer index very the applications of design had used in property incorporate into easign much used to the system building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional terms are grading the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

REACTIONS. (size) 1=7-10-13, 3=7-10-13, 4=7-10-13 Max Horz 1=61(LC 7) Max Uplift 1=-34(LC 8), 3=-34(LC 8) Max Grav 1=162(LC 1), 3=162(LC 1), 4=242(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

 This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

818 Soundside Road

		3-11-3 3-11-3		0-0-5	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. DEFL. TC 0.02 Vert(LL) BC 0.02 Vert(CT) WB 0.01 Horz(CT) Matrix-P Horz(CT) Horz(CT)	in (loc) l/defl n/a - n/a n/a - n/a 0.00 3 n/a	L/d PLATES 999 MT20 999 n/a Weight: 13 lb	GRIP 244/190 FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

2x4 SP 2400F 2.0E TOP CHORD BOT CHORD 2x4 SP No.2

OTHERS 2x4 SP No.3

REACTIONS. 1=3-10-13, 3=3-10-13, 4=3-10-13 (size) Max Horz 1=-27(LC 6) Max Uplift 1=-15(LC 8), 3=-15(LC 8) Max Grav 1=71(LC 1), 3=71(LC 1), 4=105(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Structural wood sheathing directly applied or 3-11-8 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

MILLIN in manut THILLING SEAL innin July 30,2024
