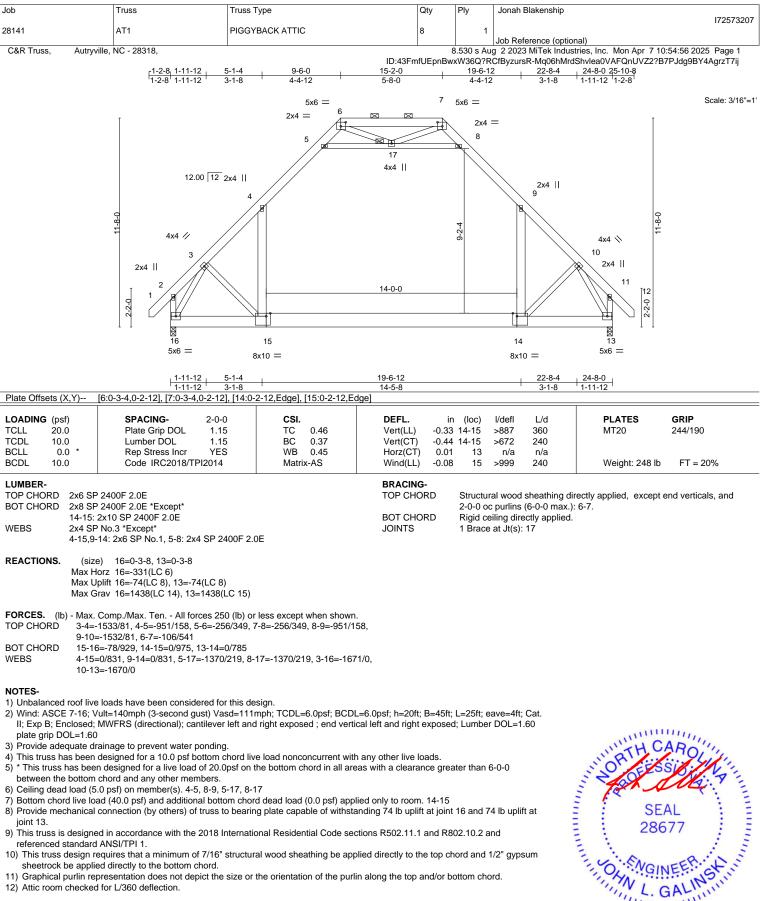


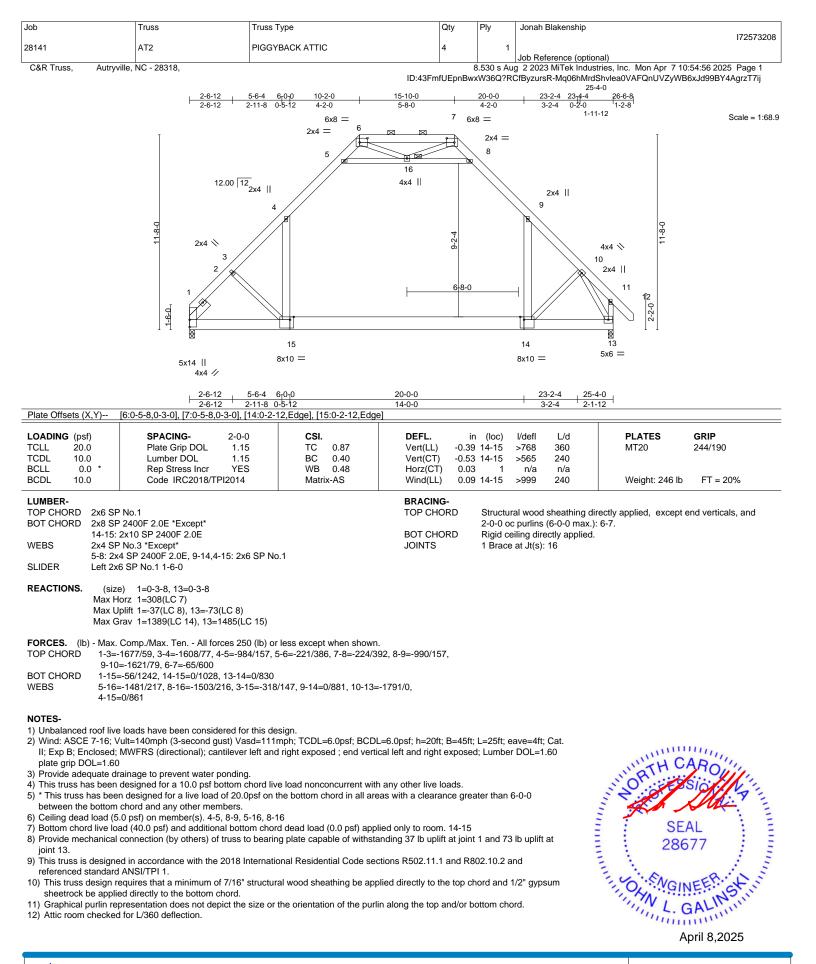
Site In Project Lot/Bld Model Addres City: Genera Drawin	formation t Customer ock: ss: al Truss Er ogs Show S	Blakenship ngineering Classification	Project riteria & ing Cond	St Desig	ubdivision: ate: n Loads (In s):		-	Trenco 818 Soundside Rd Edenton, NC 27932
Wind C	ode: ASCE	C2018/TPI20 27-16 [All Hei			De		MWFRS (D	virectional) ASCE 7-16 [All Heights]
	peed: 120 r bad: 40.0 ps				FI	oor Load: N/A	A psf	
	loof Height				E	xposure Categ	ory: B	
No. 1 2 3 4 5 6 7 8 9 10 112 13 14 16 17	Seal# 172573207 172573208 172573209 172573210 172573211 172573213 172573214 172573215 172573216 172573216 172573219 172573219 172573220 172573220 172573222	Truss Name AT1 AT2 CJ1 CJ2 G1 G2 J1 J2 J3 J4 J5 J6 J7 J8 J9 J11 PB1	4/8/25 4/8/25 4/8/25 4/8/25 4/8/25 4/8/25 4/8/25 4/8/25 4/8/25 4/8/25 4/8/25 4/8/25 4/8/25 4/8/25 4/8/25 4/8/25	No. 35 36 37 39 40 41 43 44 45 46 47 48 49 50	Seal# 172573241 172573242 172573243 172573244 172573245 172573246 172573246 172573247 172573248 172573250 172573250 172573253 172573254 172573255 172573255 172573258 172573258 172573258 172573259 172573260 172573261 172573262 172573263	Truss Name T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 TG1 TG2 TG3 TG4	4/8/25 4/8/25 4/8/25 4/8/25 4/8/25 4/8/25 4/8/25 4/8/25 4/8/25 4/8/25 4/8/25 4/8/25 4/8/25 4/8/25 4/8/25 4/8/25	
18 19 20 21 22 23 25 26 27 28 29 30 31 32 34	172573223 172573224 172573224 172573225 172573227 172573228 172573229 172573231 172573232 172573233 172573233 172573234 172573236 172573236 172573238 172573238 172573239 172573239 172573240	PB2 PB3 PB4 PB5 PB6 PB7 PB7 PB8 PB9 PB10 PB11 PB12 T1 PB12 T1 T2 T3 T4 T3 T4 T5 T6	4/8/25 4/8/25 4/8/25 4/8/25 4/8/25 4/8/25 4/8/25 4/8/25 4/8/25 4/8/25 4/8/25 4/8/25 4/8/25 4/8/25 4/8/25 4/8/25 4/8/25 4/8/25 4/8/25 4/8/25	52 55 55 55 55 55 55 55 55 55 66 23 45 66 66 66 66 66	172573258 172573259 172573260 172573261 172573262 172573263 172573264 172573266 172573266 172573266 172573267 172573268 172573269 172573270 172573270 172573271 172573271	TG5 TG6 TGE1 TGE2 TSGE1 TSGE2 V1	4/8/25 4/8/25 4/8/25 4/8/25 4/8/25 4/8/25 4/8/25 4/8/25 4/8/25 4/8/25 4/8/25 4/8/25 4/8/25 4/8/25 4/8/25 4/8/25 4/8/25 4/8/25	


The truss drawing(s) referenced above have been prepared by Truss Engineering Co. under my direct supervision based on the parameters

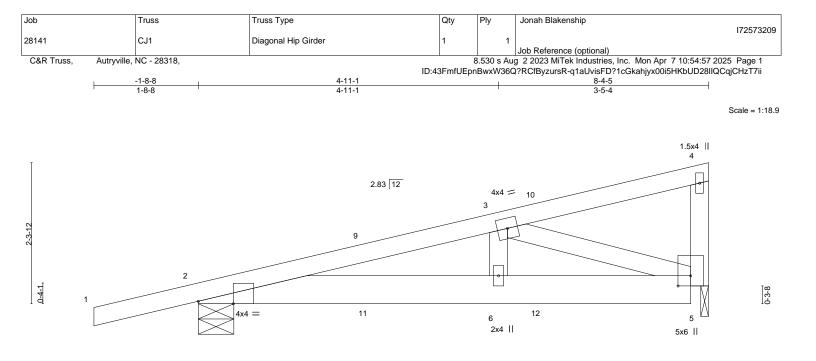
My license renewal date for the state of North Carolina is December 31, 2025 **IMPORTANT NOTE:** The seal on these truss component designs is a conference that the engineer named is licensed in the iurisdiction (a) is a conference that the engineer named is licensed in the iurisdiction (a) is a conference that the engineer named is licensed in the iurisdiction (a) is a conference that the engineer named is licensed in the iurisdiction (a) is a conference that the engineer named is licensed in the iurisdiction (a) is a conference that the engineer named is licensed in the iurisdiction (a) is a conference that the engineer named is licensed in the iurisdiction (a) is a conference that the engineer named is licensed in the iurisdiction (a) is a conference that the engineer named is licensed in the iurisdiction (a) is a conference that the engineer named is licensed in the iurisdiction (a) is a conference that the engineer named is licensed in the iurisdiction (a) is a conference that the engineer named is licensed in the iurisdiction (a) is a conference that the engineer name (b) is a conference designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Galinski, John

April 8,2025


10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord 12) Attic room checked for L/360 deflection.


GA1

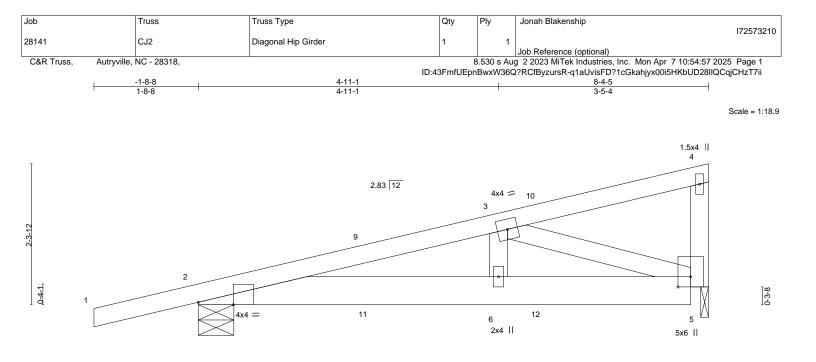
April 8,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall a futs system: Denote use, the building designer inder very the applications of design had needed an intervent with a policitation of the system of the state of the system of the syste and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcaccomponents.com)

	<u> </u>	<u>4-11-1</u> 4-11-1				3-4-5 3-5-4	
Plate Offsets (X,Y)	[2:0-6-14,Edge], [5:0-2-0,0-2-8]				C		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrNOCode IRC2018/TPI2014	CSI. TC 0.23 BC 0.21 WB 0.20 Matrix-MP	DEFL. Vert(LL) -0.0 Vert(CT) -0.0 Horz(CT) 0.0 Wind(LL) 0.0	03 6-8 >99 01 5 n/	9 360 9 240 a n/a	PLATES MT20 Weight: 43 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x6 SP WEBS 2x4 SP	' No.1		BRACING- TOP CHORD BOT CHORD			rectly applied or 6-0-0 or 10-0-0 oc bracing.) oc purlins.
Max H Max U	e) 2=0-7-0, 5=0-1-8 orz 2=61(LC 19) plift 2=-34(LC 4) rav 2=463(LC 1), 5=360(LC 1)						
TOP CHORD 2-3=- BOT CHORD 2-6=0	Comp./Max. Ten All forces 250 (lb) of 716/0)/686, 5-6=0/686 725/0	r less except when showr	ι.				
 II; Exp B; Enclosed; plate grip DOL=1.60 2) This truss has been 3) * This truss has been between the bottom 	fult=120mph (3-second gust) Vasd=95m MWFRS (directional); cantilever left and designed for a 10.0 psf bottom chord liv n designed for a live load of 20.0psf on chord and any other members. considers parallel to grain value using A	d right exposed ; end vert re load nonconcurrent wit the bottom chord in all are	ical left and right expos h any other live loads. eas with a clearance gr	ed; Lumber DOI	_=1.60		
 6) Provide mechanical 7) This truss is designer referenced standard 8) Hanger(s) or other c 	connection (by others) of truss to bearin connection (by others) of truss to bearin ed in accordance with the 2018 Internati	ng plate capable of withst onal Residential Code se ufficient to support conce	ctions R502.11.1 and F	802.10.2 and wn and 11 lb up	at	SE 28 OKN L.	SIST
and 5 lb down at 2-s design/selection of s	9-8, 5 lb down at 2-9-8, and 23 lb down such connection device(s) is the respons S) section, loads applied to the face of t	at 5-7-7, and 23 lb dowr sibility of others.	n at 5-7-7 on bottom ch		chulu,	SE 28	AL 677
1) Dead + Roof Live (b Uniform Loads (plf) Vert: 1-4=-6 Concentrated Loads		Increase=1.15				MGI	GALIN

LOAD CASE(S) Standard


Concentrated Loads (lb)

Vert: 10=-19(F=-9, B=-9) 11=-5(F=-2, B=-2) 12=-40(F=-20, B=-20)

munn

April 8,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oullapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCB Building Component Scietu Information available from the Structural Building Component Section Component Scietul Information available from the Structural Building Component Scietul Information** and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

4-11-1 4-11-1					8-4-5			
Plate Offsets (X,Y)	[2:0-6-14,Edge], [5:0-2-0,0-2-8]	-					3-3-4	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO Code IRC2018/TPI2014	CSI. TC 0.23 BC 0.21 WB 0.20 Matrix-MP	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.02 -0.03 0.01 0.01	6-8 > 6-8 > 5	l/defl L/d >999 360 >999 240 n/a n/a >999 240	PLATES MT20 Weight: 43 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x6 SP WEBS 2x4 SP	No.1		BRACING- TOP CHOR BOT CHOR				directly applied or 6-0-0 d or 10-0-0 oc bracing.) oc purlins.
Max H Max U Max G FORCES. (Ib) - Max.	e) 2=0-7-0, 5=0-1-8 orz 2=61(LC 4) plift 2=-34(LC 4) rav 2=463(LC 1), 5=360(LC 1) Comp./Max. Ten All forces 250 (lb) c 716/0	r less except when shown						
	0/686, 5-6=0/686							
	ult=120mph (3-second gust) Vasd=95r MWFRS (directional); cantilever left an							
2) This truss has been	designed for a 10.0 psf bottom chord li							
,	n designed for a live load of 20.0psf on chord and any other members.	the bottom chord in all are	eas with a clearance	e greate	er than 6-	0-0		
4) Bearing at joint(s) 5	considers parallel to grain value using	ANSI/TPI 1 angle to grain	formula. Building	designer	should v	verify		
capacity of bearing s	surface. connection (by others) of truss to beari	ng plate at joint(s) 5						CARO

5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 5.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 34 lb uplift at joint 2.
7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

8) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 39 lb down and 11 lb up at 2-9-8, 39 lb down and 11 lb up at 2-9-9, and 65 lb down and 36 lb up at 5-7-7, and 65 lb down and 36 lb up at 5-7-9 on top chord, and 5 lb down at 2-9-8, 5 lb down at 2-9-9, and 23 lb down at 5-7-7, and 23 lb down at 5-7-9 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

9) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

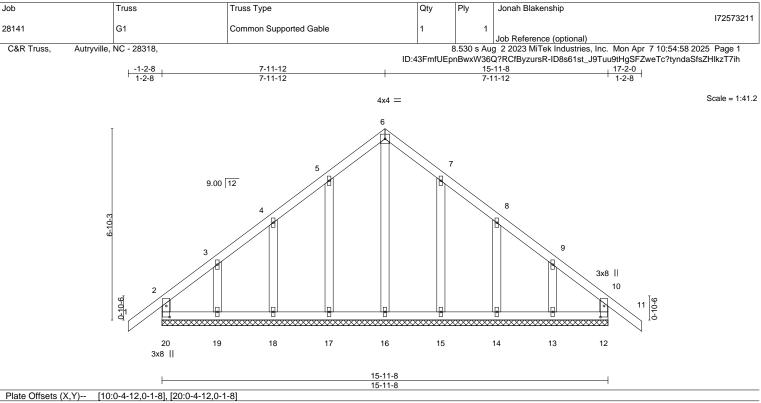
LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-4=-60, 2-5=-20

Concentrated Loads (lb)


Vert: 10=-19(F=-9, B=-9) 11=-5(F=-2, B=-2) 12=-40(F=-20, B=-20)

SEAL 28677

April 8,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2018/TPI2014	CSI. TC 0.13 BC 0.05 WB 0.10 Matrix-R	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.01 0.00	(loc) 11 11 12	l/defl n/r n/r n/a	L/d 120 120 n/a	PLATES MT20 Weight: 98 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SF	2 No.2		BRACING- TOP CHOF		Structu	Iral wood	sheathing di	rectly applied or 6-0-0) oc purlins,

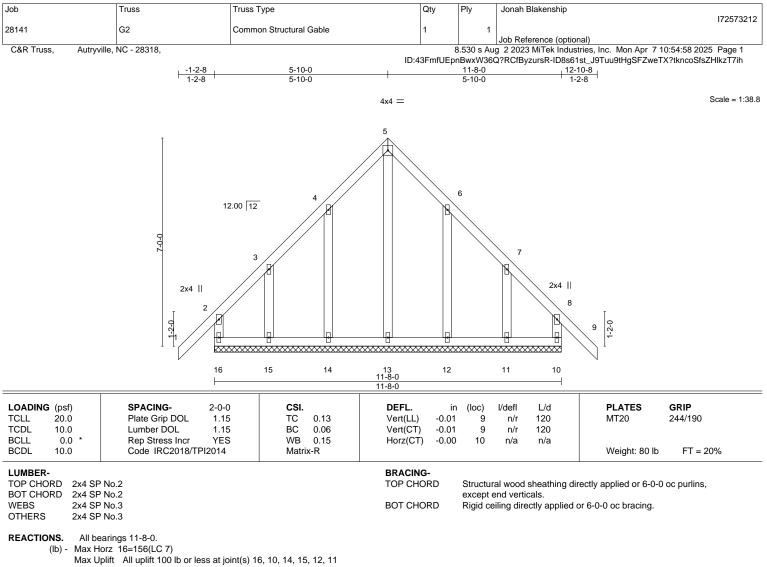
LUMBER-		BRACING-	
TOP CHORD	2x4 SP No.2	TOP CHORD	Structural wood sheathing directly applied or 6-0-0 oc purlir
BOT CHORD	2x4 SP No.2		except end verticals.
WEBS	2x4 SP No.3	BOT CHORD	Rigid ceiling directly applied or 6-0-0 oc bracing.
OTHERS	2x4 SP No.3		

REACTIONS. All bearings 15-11-8.

(lb) - Max Horz 20=134(LC 7)

Max Uplift All uplift 100 lb or less at joint(s) 20, 12, 17, 18, 19, 15, 14, 13 Max Grav All reactions 250 lb or less at joint(s) 20, 12, 16, 17, 18, 19, 15, 14, 13

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.


NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=24ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 1.5x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 20, 12, 17, 18, 19, 15, 14, 13.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

April 8,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Max Opint An upint 100 bo ness at joint(s) 10, 10, 14, 15, 12, 11 Max Grav All reactions 250 lb or less at joint(s) 16, 10, 13, 14, 15, 12, 11

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=24ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

All plates are 1.5x4 MT20 unless otherwise indicated.

5) Gable requires continuous bottom chord bearing.

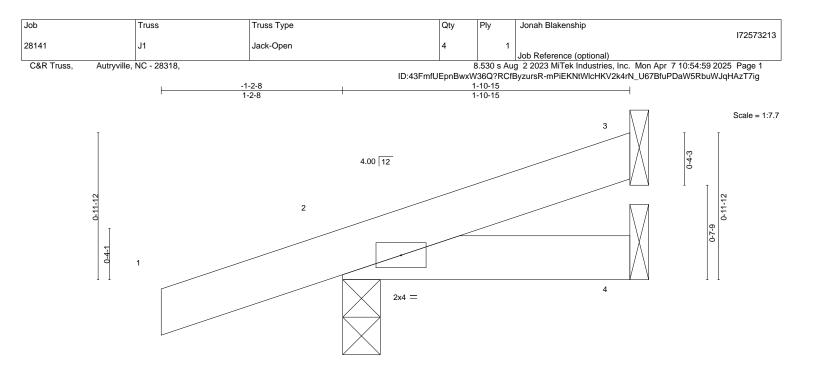
6) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

7) Gable studs spaced at 2-0-0 oc.

8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.

10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 16, 10, 14, 15, 12, 11.


11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

April 8,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcaccomponents.com)

A MiTek Affili 818 Soundside Road

			I	1-10-15 1-10-15				
LOADING (psf) TCLL 20.0	SPACING- 2-0-0 Plate Grip DOL 1.15	CSI. TC 0.10	DEFL. Vert(LL) -0.0	n (loc)	l/defl >999	L/d 360	PLATES MT20	GRIP 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.02	Vert(CT) -0.0	5 7	>999	240	WIT20	244/190
BCLL 0.0 * BCDL 10.0	Rep Stress Incr YES Code IRC2018/TPI2014	WB 0.00 Matrix-MP	Horz(CT) 0.0 Wind(LL) -0.0		n/a >999	n/a 240	Weight: 8 lb	FT = 20%

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2

REACTIONS. (size) 3=Mechanical, 2=0-3-0, 4=Mechanical

Max Horz 2=28(LC 8)

Max Uplift 3=-1(LC 8), 2=-32(LC 8) Max Grav 3=35(LC 1), 2=172(LC 1), 4=29(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

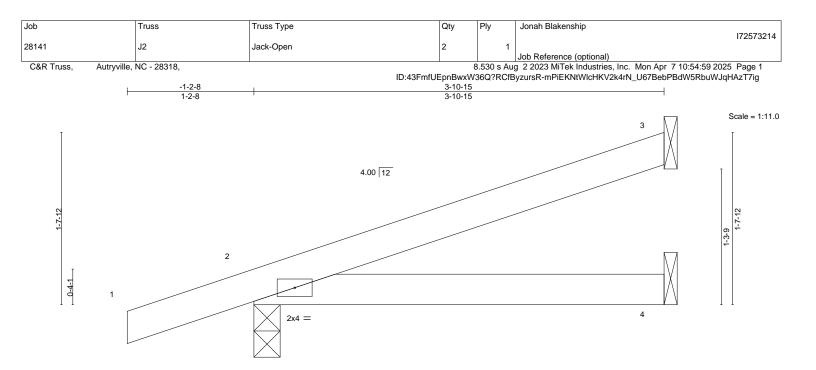
 Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


Structural wood sheathing directly applied or 1-10-15 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

April 8,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

			3-10-15 3-10-15						
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.18 BC 0.15 WB 0.00 Matrix-MP	DEFL. in Vert(LL) -0.01 Vert(CT) -0.02 Horz(CT) 0.00 Wind(LL) 0.00	4-7 4-7 2	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 14 lb	GRIP 244/190 FT = 20%	

TOP CHORD

BOT CHORD

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2

REACTIONS. (size) 3=Mechanical, 2=0-3-0, 4=Mechanical

Max Horz 2=42(LC 8)

Max Uplift 3=-13(LC 8), 2=-23(LC 8)

Max Grav 3=94(LC 1), 2=238(LC 1), 4=68(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

 Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

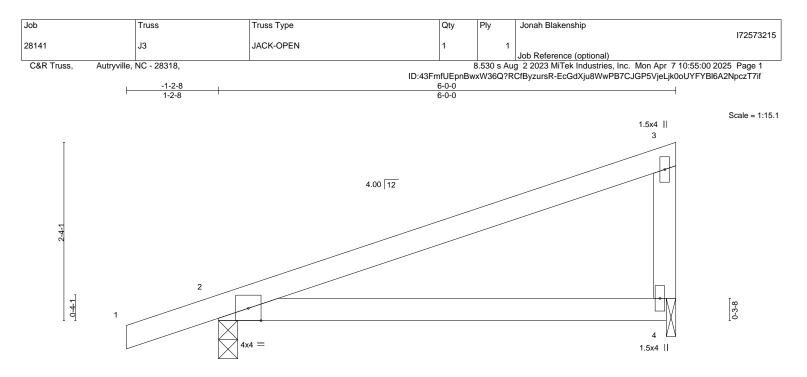
3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2.

6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Structural wood sheathing directly applied or 3-10-15 oc purlins.


Rigid ceiling directly applied or 10-0-0 oc bracing.

April 8,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

LUMBER-

		<u> </u>					
LOADING (psf) TCLL 20.0 TCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15	CSI. TC 0.46 BC 0.36	DEFL. in (loc) I/defl L/d Vert(LL) -0.05 4-7 >999 360	PLATES GRIP MT20 244/190			
BCLL 0.0 * BCDL 10.0	Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	WB 0.03 Matrix-AS	Vert(CT) -0.11 4-7 >650 240 Horz(CT) 0.00 2 n/a n/a Wind(LL) 0.03 4-7 >999 240	Weight: 23 lb FT = 20%			

TOP CHORD

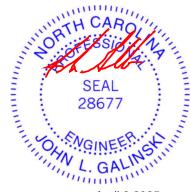
BOT CHORD

Structural wood sheathing directly applied.

Rigid ceiling directly applied.

LUMBER-

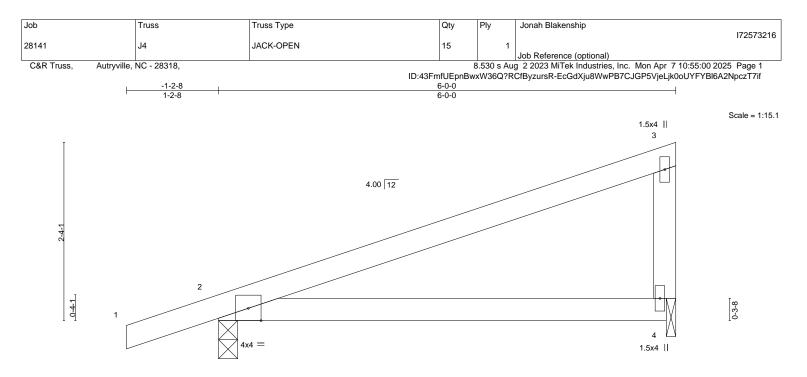
TOP CHORD 2x4 SP No 2 2x4 SP No.2 BOT CHORD


WEBS 2x4 SP No.3

REACTIONS. 2=0-3-0, 4=0-1-8 (size) Max Horz 2=57(LC 8) Max Uplift 2=-17(LC 8) Max Grav 2=314(LC 1), 4=227(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-


- 1) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 4) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

April 8,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design that the operating of the second se and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

		<u>6-0-0</u> 6-0-0					
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d PLATES GRIP Vert(LL) -0.05 4-7 >999 360 MT20 244/190				
TCLL 20.0	Plate Grip DOL 1.15	TC 0.46					
TCDL 10.0	Lumber DOL 1.15	BC 0.36	Vert(CT) -0.11 4-7 >650 240				
BCLL 0.0 *	Rep Stress Incr YES	WB 0.03	Horz(CT) 0.00 2 n/a n/a				
BCDL 10.0	Code IRC2018/TPI2014	Matrix-AS	Wind(LL) 0.03 4-7 >999 240 Weight: 23 lb FT = 20%				

TOP CHORD

BOT CHORD

Structural wood sheathing directly applied.

Rigid ceiling directly applied.

LUMBER-

TOP CHORD 2x4 SP No 2 2x4 SP No.2 BOT CHORD

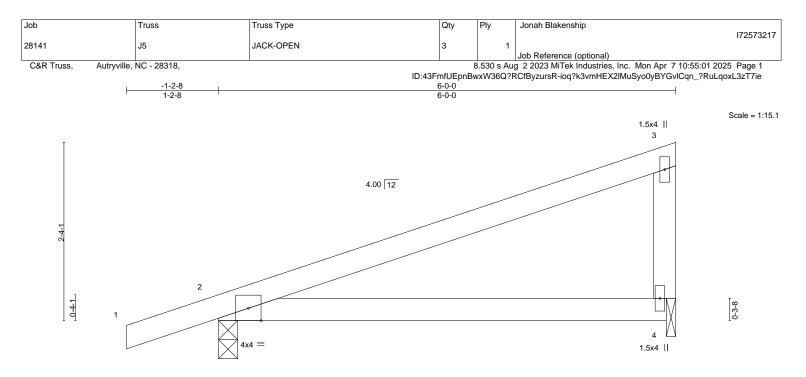
WEBS 2x4 SP No.3

REACTIONS. 2=0-3-0, 4=0-1-8 (size) Max Horz 2=57(LC 8) Max Uplift 2=-17(LC 8) Max Grav 2=314(LC 1), 4=227(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 4) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.



April 8,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design that the operating of the second se and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

	6-0-0 6-0-0							
OADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
CLL 20.0	Plate Grip DOL 1.15	TC 0.46	Vert(LL) -().05 4- 7	>999	360	MT20	244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.36	Vert(CT) -(0.11 4-7	>650	240		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.03	Horz(CT) (0.00 2	n/a	n/a		
BCDL 10.0	Code IRC2018/TPI2014	Matrix-AS	Wind(LL) (0.03 4-7	>999	240	Weight: 23 lb	FT = 20%

TOP CHORD

BOT CHORD

Structural wood sheathing directly applied.

Rigid ceiling directly applied.

LUMBER-

TOP CHORD 2x4 SP No 2 2x4 SP No.2 BOT CHORD

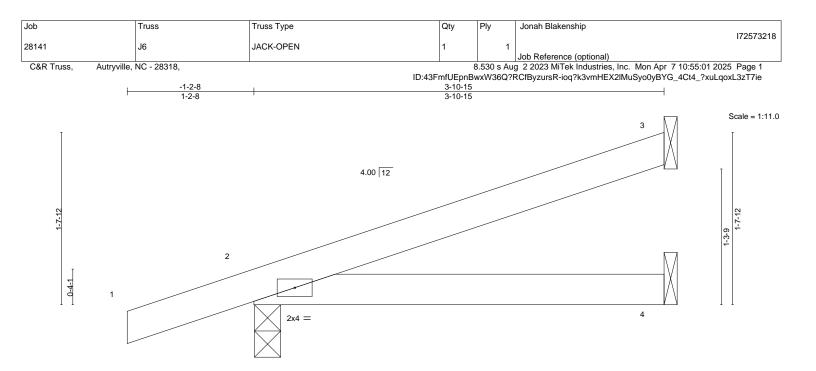
WEBS 2x4 SP No.3

REACTIONS. 2=0-3-0, 4=0-1-8 (size) Max Horz 2=57(LC 8) Max Uplift 2=-17(LC 8) Max Grav 2=314(LC 1), 4=227(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 4) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.



April 8,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design that the operating of the second se and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

		3-10-15 3-10-15					
LOADING (psf) TCLL 20.0 TCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15	CSI. TC 0.18 BC 0.15	DEFL. in (loc) I/defl L/d Vert(LL) -0.01 4-7 >999 360 Vert(CT) -0.02 4-7 >999 240	PLATES GRIP MT20 244/190			
BCLL 0.0 * BCDL 10.0	Rep Stress Incr YES Code IRC2018/TPI2014	WB 0.00 Matrix-MP	Horz(CT) 0.00 2 n/a n/a Wind(LL) 0.00 4-7 >999 240	Weight: 14 lb FT = 20%			

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2

REACTIONS. (size) 3=Mechanical, 2=0-3-0, 4=Mechanical

Max Horz 2=42(LC 8)

Max Uplift 3=-13(LC 8), 2=-23(LC 8)

Max Grav 3=94(LC 1), 2=238(LC 1), 4=68(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

 Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60

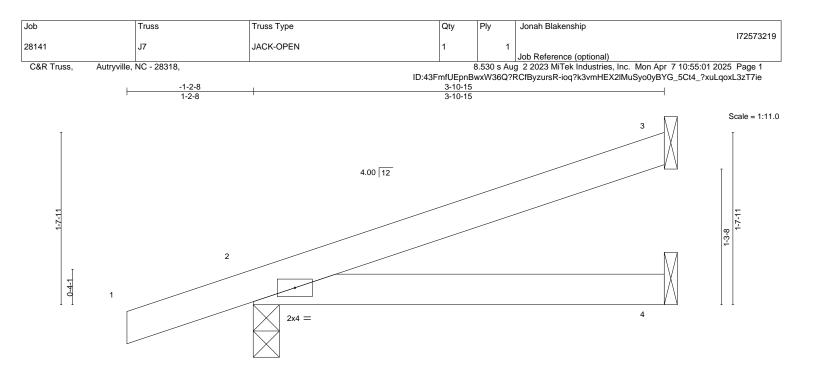
2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Structural wood sheathing directly applied or 3-10-15 oc purlins.


Rigid ceiling directly applied or 10-0-0 oc bracing.

April 8,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

		3-10-15 3-10-15					
LOADING (psf) TCLL 20.0 TCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15	CSI. TC 0.18 BC 0.15	DEFL. in (loc) l/defl L/d PLATES GRIP Vert(LL) -0.01 4-7 >999 360 MT20 244/190 Vert(CT) -0.02 4-7 >999 240 MT20 244/190				
BCLL 0.0 * BCDL 10.0	Rep Stress Incr YES Code IRC2018/TPI2014	WB 0.00 Matrix-MP	Horz(CT) 0.00 2 n/a n/a Wind(LL) 0.00 4-7 >999 240 Weight: 14 lb FT = 20%				

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2

REACTIONS. (size) 3=Mechanical, 2=0-3-0, 4=Mechanical

Max Horz 2=42(LC 8)

Max Uplift 3=-13(LC 8), 2=-23(LC 8) Max Grav 3=94(LC 1), 2=238(LC 1), 4=68(LC 3)

Max Grav 3=34(E0 1), 2=230(E0 1), 4=00(E0 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

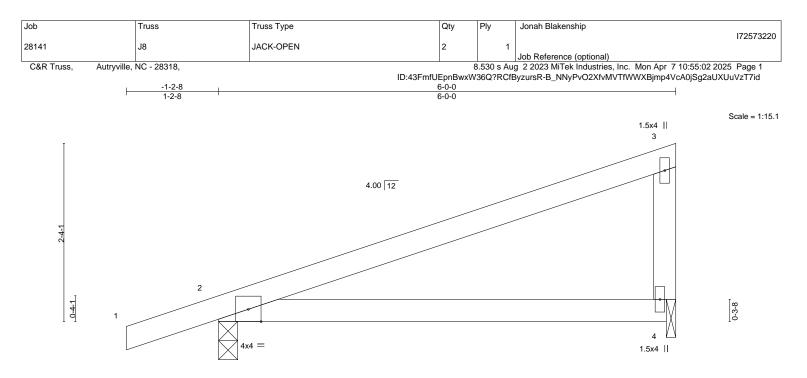
NOTES-

- Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Structural wood sheathing directly applied or 3-10-15 oc purlins.


Rigid ceiling directly applied or 10-0-0 oc bracing.

April 8,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

	6-0-0 6-0-0						
LOADING (psf) TCLL 20.0 TCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15	CSI. TC 0.46 BC 0.36	DEFL. in (loc) l/defl L/d PLATES GRIP Vert(LL) -0.05 4-7 >999 360 MT20 244/190 Vert(CT) 0.14 4.7 >959 340 MT20 244/190				
BCLL 0.0 * BCDL 10.0	Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	WB 0.03 Matrix-AS	Vert(CT) -0.11 4-7 >650 240 Horz(CT) 0.00 2 n/a n/a Wind(LL) 0.03 4-7 >999 240 Weight: 23 lb FT = 20%				

TOP CHORD

BOT CHORD

Structural wood sheathing directly applied.

Rigid ceiling directly applied.

LUMBER-

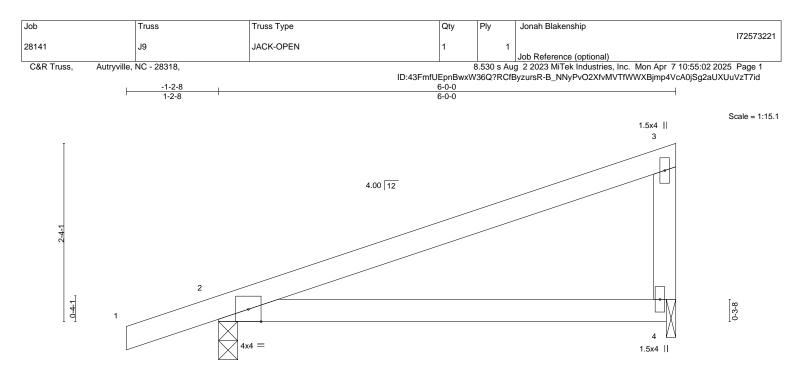
TOP CHORD 2x4 SP No 2 2x4 SP No.2 BOT CHORD

WEBS 2x4 SP No.3

REACTIONS. 2=0-3-0, 4=0-1-8 (size) Max Horz 2=57(LC 8) Max Uplift 2=-17(LC 8) Max Grav 2=314(LC 1), 4=227(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-


- 1) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 4) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

April 8,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design that the operating of the second se and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

<u>6-0-0</u> 6-0-0									
_OADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP	
TCLL 20.0	Plate Grip DOL 1.15	TC 0.46	Vert(LL) -0.)5 4-7	>999	360	MT20	244/190	
TCDL 10.0	Lumber DOL 1.15	BC 0.36	Vert(CT) -0.	1 4-7	>650	240			
BCLL 0.0 *	Rep Stress Incr YES	WB 0.03	Horz(CT) 0.	0 2	n/a	n/a			
BCDL 10.0	Code IRC2018/TPI2014	Matrix-AS	Wind(LL) 0.	03 4-7	>999	240	Weight: 23 lb	FT = 20%	

TOP CHORD

BOT CHORD

Structural wood sheathing directly applied.

Rigid ceiling directly applied.

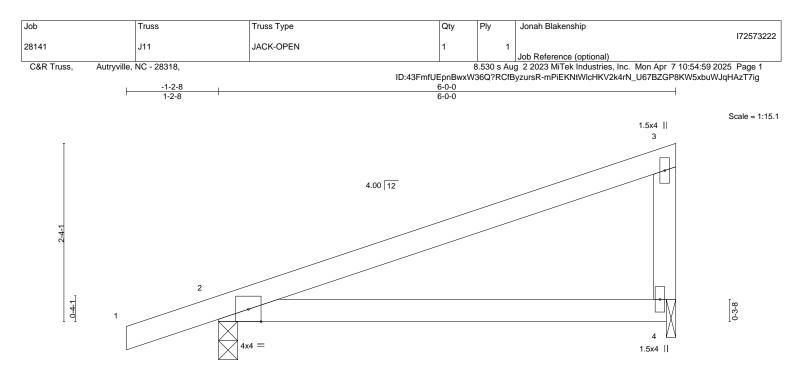
TOP CHORD 2x4 SP No 2 2x4 SP No.2 BOT CHORD WEBS

2x4 SP No.3

REACTIONS. 2=0-3-0, 4=0-1-8 (size) Max Horz 2=57(LC 8) Max Uplift 2=-17(LC 8) Max Grav 2=314(LC 1), 4=227(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-


- 1) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 4) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

April 8,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design that the operating of the second se and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

	6-0-0 6-0-0						
LOADING (psf) TCLL 20.0 TCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15	CSI. TC 0.46 BC 0.36	DEFL. in (loc) l/defl L/d PLATES GRIP Vert(LL) -0.05 4-7 >999 360 MT20 244/190 Vert(CT) 0.14 4.7 >959 340 MT20 244/190				
BCLL 0.0 * BCDL 10.0	Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	WB 0.03 Matrix-AS	Vert(CT) -0.11 4-7 >650 240 Horz(CT) 0.00 2 n/a n/a Wind(LL) 0.03 4-7 >999 240 Weight: 23 lb FT = 20%				

TOP CHORD

BOT CHORD

Structural wood sheathing directly applied.

Rigid ceiling directly applied.

LUMBER-

TOP CHORD 2x4 SP No 2 2x4 SP No.2 BOT CHORD

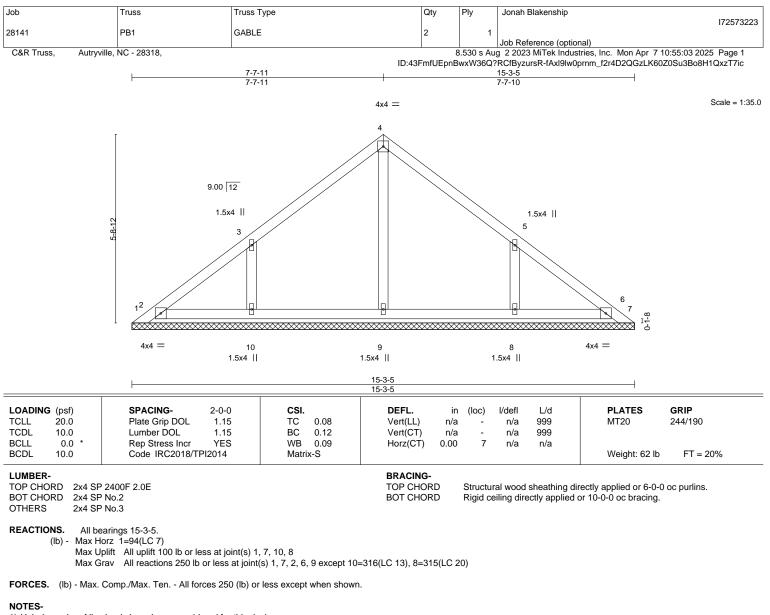
WEBS 2x4 SP No.3

REACTIONS. 2=0-3-0, 4=0-1-8 (size) Max Horz 2=57(LC 8) Max Uplift 2=-17(LC 8) Max Grav 2=314(LC 1), 4=227(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 4) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.



April 8,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design that the operating of the second se and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=24ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

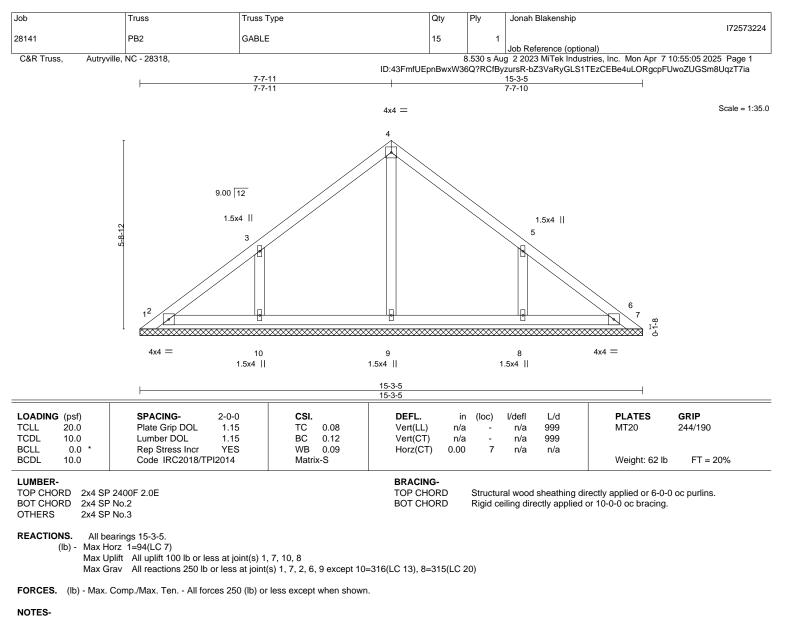
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 4-0-0 oc.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 7, 10, 8.
9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and

referenced standard ANSI/TPI 1.


 See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

April 8,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

A MITEK Affilia 818 Soundside Road

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=24ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

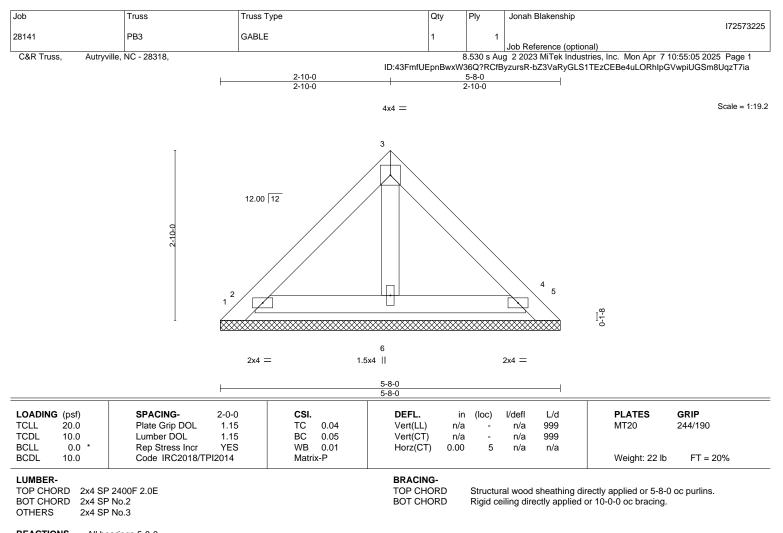
3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 4-0-0 oc.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 7, 10, 8.
9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and


referenced standard ANSI/TPI 1.

 See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

April 8,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Max Uplift All uplift 100 lb or less at joint(s) 5, 2, 4 except 1=-111(LC 13) Max Grav All reactions 250 lb or less at joint(s) 1, 5, 2, 4, 6

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=24ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

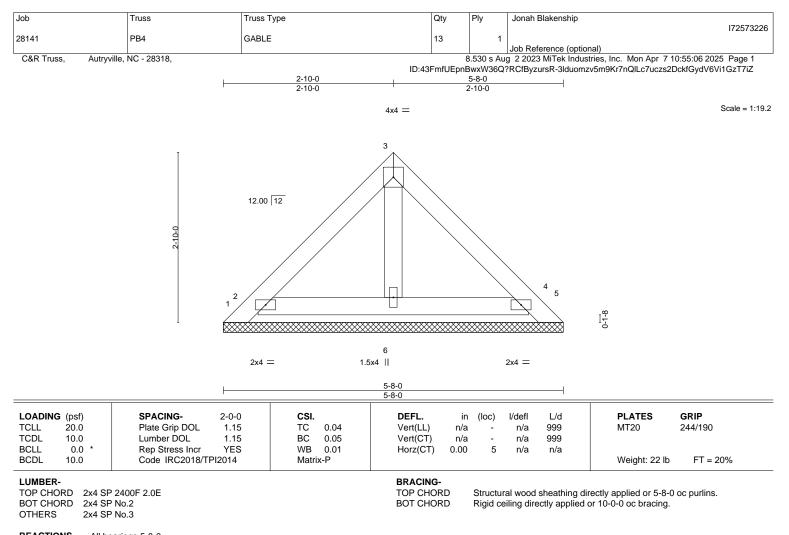
3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 4-0-0 oc.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 2, 4 except (jt=lb) 1=111.


9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

April 8,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Max Uplift All uplift 100 lb or less at joint(s) 5, 2, 4 except 1=-111(LC 13) Max Grav All reactions 250 lb or less at joint(s) 1, 5, 2, 4, 6

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

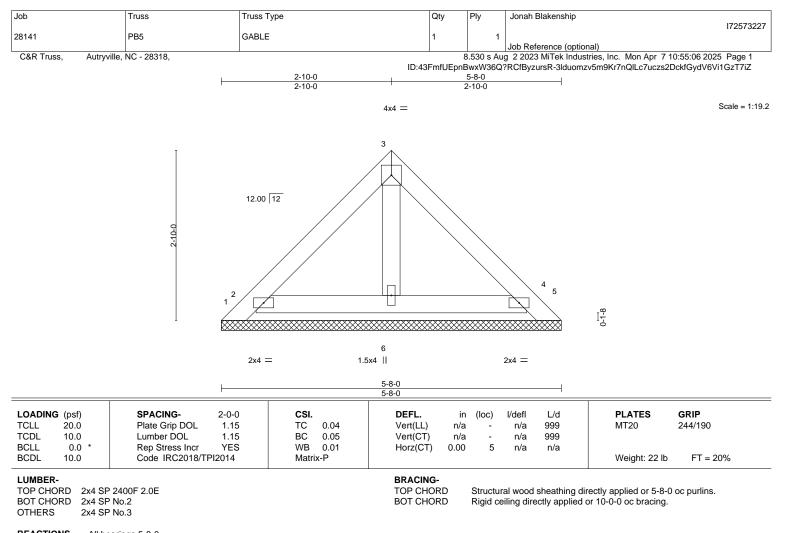
NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=24ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 4-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 2, 4 except (jt=lb) 1=111.


9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

April 8,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Max Uplift All uplift 100 lb or less at joint(s) 5, 2, 4 except 1=-111(LC 13) Max Grav All reactions 250 lb or less at joint(s) 1, 5, 2, 4, 6

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=24ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

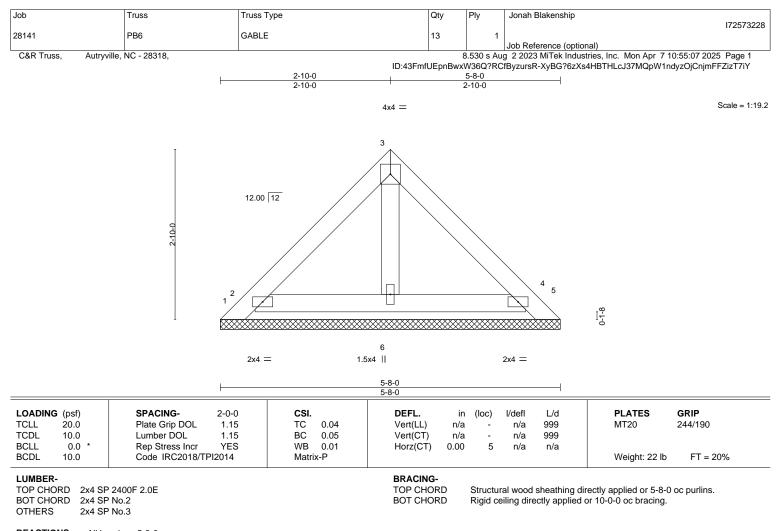
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 4-0-0 oc.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 2, 4 except (jt=lb) 1=111.

9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

April 8,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

A MiTek Aff 818 Soundside Road Edenton, NC 27932

Max Uplift All uplift 100 lb or less at joint(s) 5, 2, 4 except 1=-111(LC 13) Max Grav All reactions 250 lb or less at joint(s) 1, 5, 2, 4, 6

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=24ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

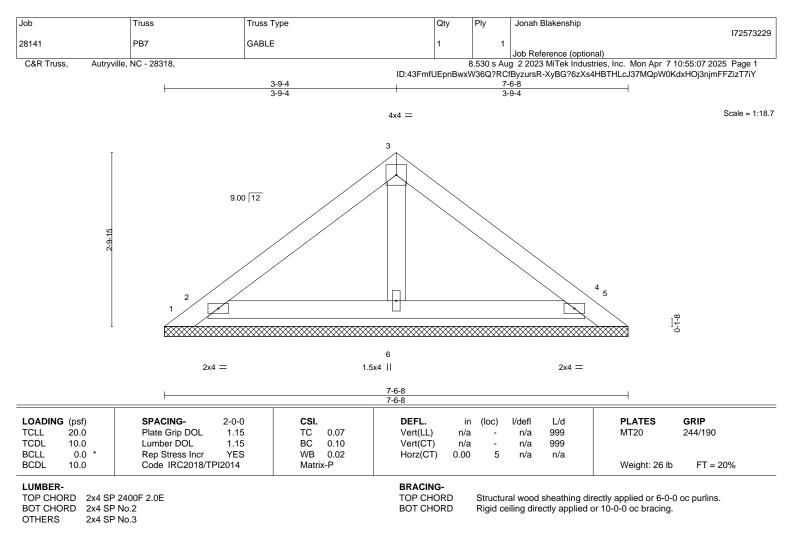
3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 4-0-0 oc.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 2, 4 except (jt=lb) 1=111.


9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

April 8,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

REACTIONS. All bearings 7-6-8.

(lb) - Max Horz 1=45(LC 7)

Max Uplift All uplift 100 lb or less at joint(s) 2, 4 except 1=-137(LC 13), 5=-117(LC 14)

Max Grav All reactions 250 lb or less at joint(s) 1, 5, 6 except 2=310(LC 13), 4=306(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=24ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

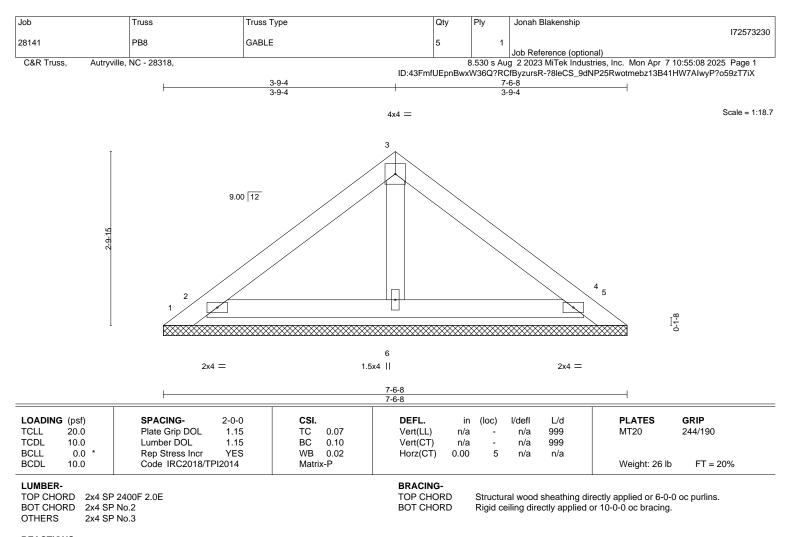
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 4-0-0 oc.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4 except (jt=lb) 1=137, 5=117.

9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

April 8,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

A MiTek A 818 Soundside Road Edenton, NC 27932

REACTIONS. All bearings 7-6-8.

(lb) - Max Horz 1=45(LC 7)

Max Uplift All uplift 100 lb or less at joint(s) 2, 4 except 1=-137(LC 13), 5=-117(LC 14)

Max Grav All reactions 250 lb or less at joint(s) 1, 5, 6 except 2=310(LC 13), 4=306(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=24ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

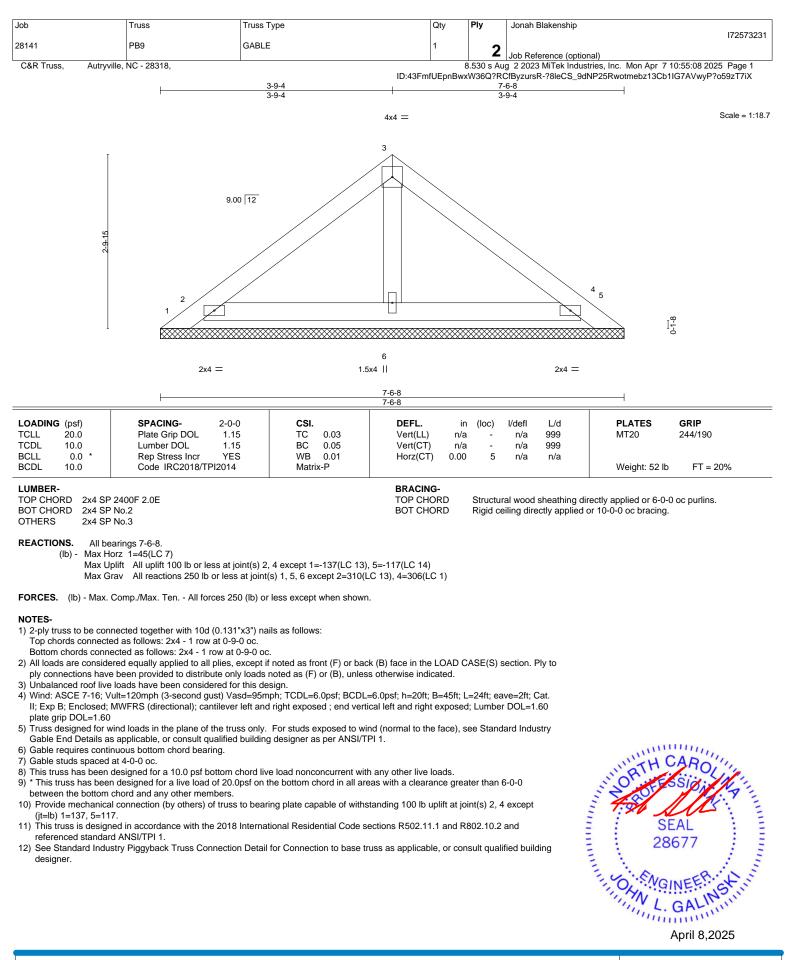
3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 4-0-0 oc.

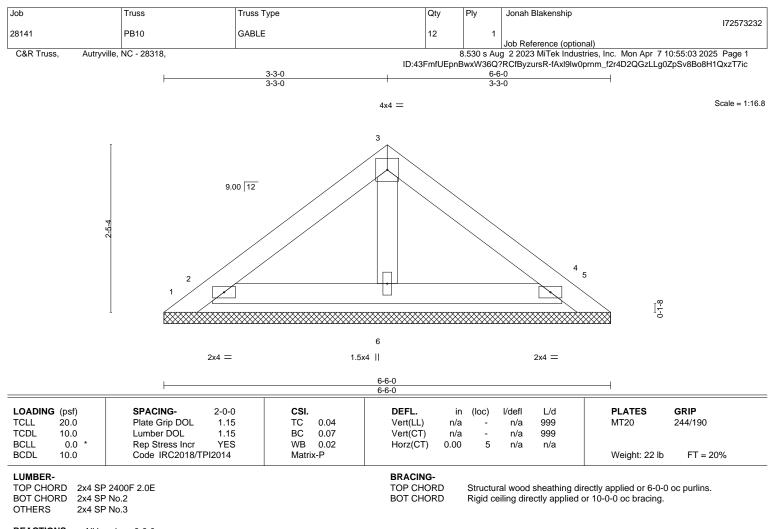
6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4 except (jt=lb) 1=137, 5=117.


9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.


April 8,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

RENCO A MITCH ATHINA

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

- Max Horz 1=-38(LC 6)

Max Uplift All uplift 100 lb or less at joint(s) 1, 5, 2, 4 Max Grav All reactions 250 lb or less at joint(s) 1, 5, 2, 4, 6

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=24ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

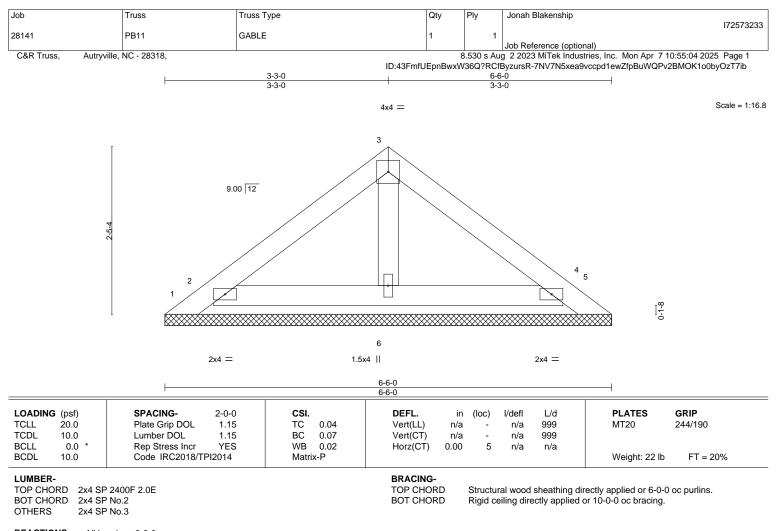
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 4-0-0 oc.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5, 2, 4.

9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and


referenced standard ANSI/TPI 1. 10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

April 8,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

A MiTek Affili 818 Soundside Road

REACTIONS. All bearings 6-6-0.

Max Uplift All uplift 100 lb or less at joint(s) 1, 5, 2, 4 Max Grav All reactions 250 lb or less at joint(s) 1, 5, 2, 4, 6

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=24ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

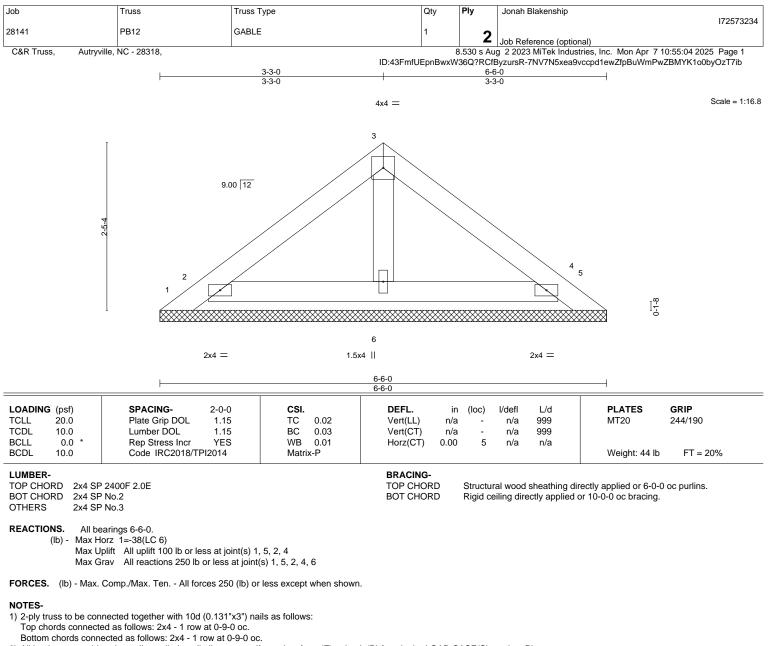
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 4-0-0 oc.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5, 2, 4.
9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and

referenced standard ANSI/TPI 1.


 See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

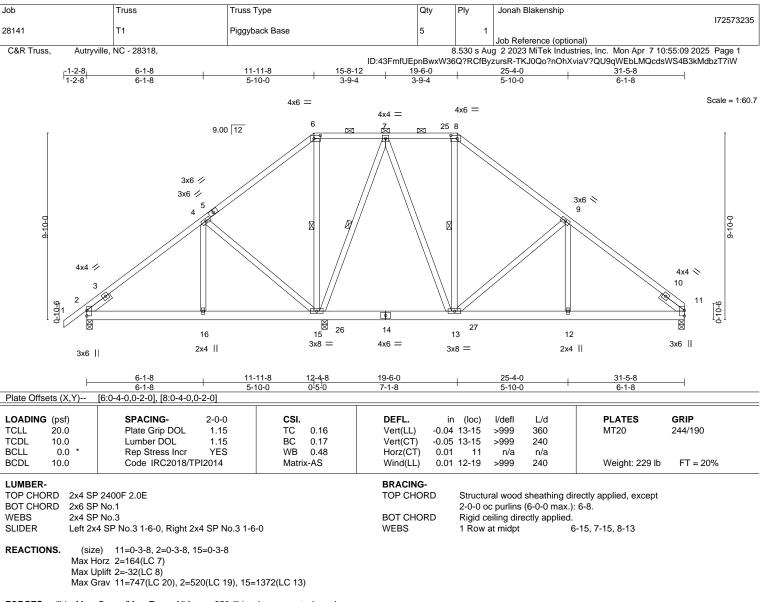
April 8,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

⁽lb) - Max Horz 1=-38(LC 6)

- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 3) Unbalanced roof live loads have been considered for this design.
- 4) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=24ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 5) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 4-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.


- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5, 2, 4.
 This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

April 8,2025

TRENCO A MITEK Affiliate

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-4=-436/54, 7-8=-393/106, 8-9=-571/98, 9-11=-897/38

BOT CHORD 2-16=-21/331, 15-16=-21/331, 12-13=0/653, 11-12=0/653

WEBS 4-15=-414/68, 6-15=-314/0, 7-15=-681/0, 7-13=0/497, 9-13=-394/72

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

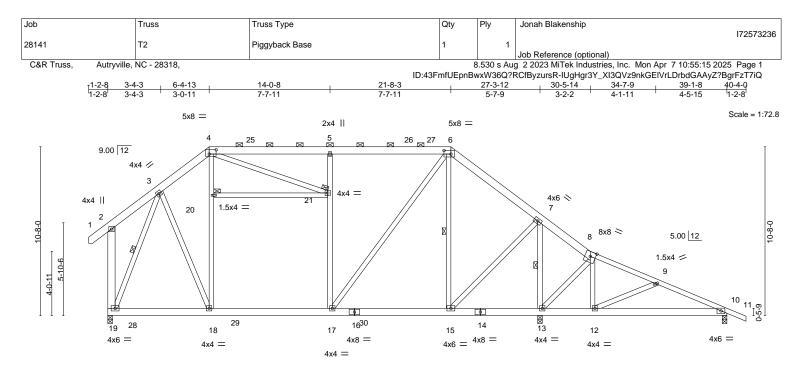
3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2.

7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

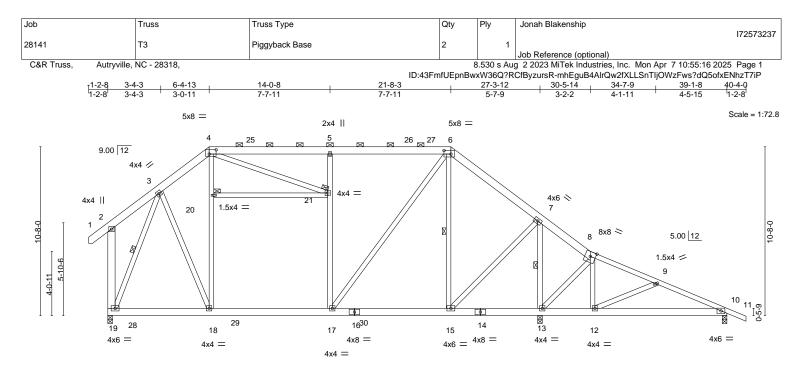
9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

April 8,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/ITP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

F		4-0-8 -7-11	21-8-3 7-7-11	27-3-12 5-7-9	30-5-14 3-2-2	<u>39-1-8</u> 8-7-10	
Plate Offsets (X,Y)	[4:0-5-4,0-3-4], [6:0-5-4,0-2-12]	-7-11	7-7-11	5-1-5	5-2-2	0-7-10	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.26 BC 0.39 WB 0.65 Matrix-AS	Vert(CT) -0.1 Horz(CT) -0.1	in (loc) l/defl 15 15-17 >999 24 15-17 >999 01 10 n/a 05 15-17 >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 349 lb	GRIP 244/190 FT = 20%
8-11: 2 BOT CHORD 2x6 SI WEBS 2x4 SI	P No.1 *Except* 2x4 SP 2400F 2.0E P No.1 P No.3 *Except* 5-17: 2x4 SP No.2, 2-19: 2x6 SP No.	I	BRACING- TOP CHORD BOT CHORD WEBS JOINTS	Structural wood 2-0-0 oc purlins Rigid ceiling di 1 Row at midpl 1 Brace at Jt(s)	s (6-0-0 max.): rectly applied.	rectly applied, except 6 4-6. -15, 7-13, 3-19	and verticals, and
Max H Max U	ze) 13=0-3-8, 19=0-3-8, 10=0-3-8 Horz 19=-244(LC 6) Uplift 19=-5(LC 8), 10=-180(LC 21) Grav 13=2391(LC 14), 19=1211(LC	13), 10=132(LC 1)					
TOP CHORD 3-4= 9-1(BOT CHORD 18-1 10-1 WEBS 3-18	 Comp./Max. Ten All forces 250 (l -739/111, 4-5=-661/107, 5-6=-638/1 0=-91/776, 2-19=-283/135 19=0/490, 17-18=0/693, 15-17=-28/2 12=-689/103 3=0/579, 17-21=-412/85, 5-21=-436/3 3=-2221/0, 8-12=0/363, 9-12=-381/56 	Ú7, 6-7=-342/103, 7-8=-22/1 52, 13-15=-1020/89, 12-13=- 4, 6-17=0/750, 6-15=-843/13	287, 8-9=-87/1001, 909/119,				
 Wind: ASCE 7-16; II; Exp B; Enclosed plate grip DCL=1.6 Provide adequate d This truss has beer truss has beer truss has beer truss has beer Provide mechanica 10=180. This truss is design referenced standard 	drainage to prevent water ponding. n designed for a 10.0 psf bottom cho en designed for a live load of 20.0ps n chord and any other members, with al connection (by others) of truss to b ned in accordance with the 2018 Inte	95mph; TCDL=6.0psf; BCDL and right exposed ; end ver d live load nonconcurrent wi on the bottom chord in all ar BCDL = 10.0psf. earing plate capable of withst national Residential Code se	tical left and right expos th any other live loads. reas with a clearance gr tanding 100 lb uplift at ju ections R502.11.1 and F	ed; Lumber DOL= eater than 6-0-0 pint(s) 19 except (ji 8802.10.2 and	Cat. 1.60 ≔lb)	SE/ 286	AR OUNT

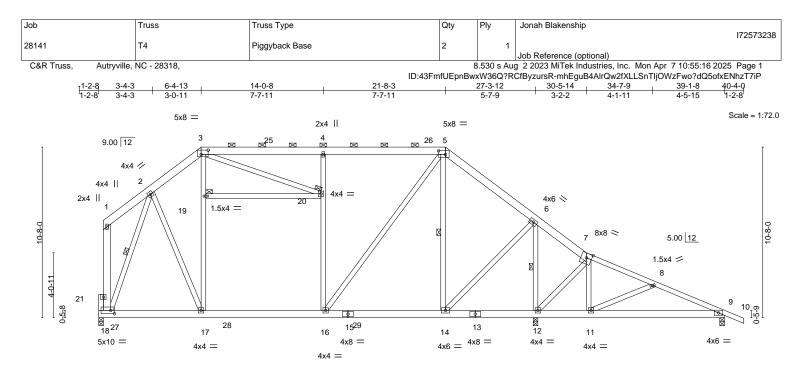
app sheetrock be applied directly to the bottom chord.


9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

April 8,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

F		-0-8 7-11	21-8-3 7-7-11	<u>27-3-12</u> 5-7-9	30-5-14	<u>39-1-8</u> 8-7-10	
Plate Offsets (X,Y)	[4:0-5-4,0-3-4], [6:0-5-4,0-2-12]	7-11	7-7-11	5-7-9	3-2-2	0-7-10	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.26 BC 0.39 WB 0.65 Matrix-AS	Vert(CT) -0.1 Horz(CT) -0.0	in (loc) l/defl 15 15-17 >999 24 15-17 >999 01 10 n/a 05 15-17 >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 349 lb	GRIP 244/190 FT = 20%
8-11: 2 BOT CHORD 2x6 SF WEBS 2x4 SF	P No.1 *Except* 2x4 SP 2400F 2.0E P No.1 P No.3 *Except* -17: 2x4 SP No.2, 2-19: 2x6 SP No.1		BRACING- TOP CHORD BOT CHORD WEBS JOINTS		is (6-0-0 max.): irectly applied. it 6	rectly applied, except 6 4-6. -15, 7-13, 3-19	and verticals, and
Max H Max U	te) 13=0-3-8, 19=0-3-8, 10=0-3-8 Horz 19=-244(LC 6) Jplift 19=-5(LC 8), 10=-180(LC 21) Grav 13=2391(LC 14), 19=1211(LC 1	3), 10=132(LC 1)					
TOP CHORD 3-4= 9-10 BOT CHORD 18-11 10-12 WEBS 3-18	Comp./Max. Ten All forces 250 (lb -739/111, 4-5=-661/107, 5-6=-638/10)=-91/776, 2-19=-283/135 9=0/490, 17-18=0/693, 15-17=-28/25 2=-689/103 =0/579, 17-21=-412/85, 5-21=-436/8 =-2221/0, 8-12=0/363, 9-12=-381/56,	7, 6-7=-342/103, 7-8=-22/12 2, 13-15=-1020/89, 12-13=- -, 6-17=0/750, 6-15=-843/13	287, 8-9=-87/1001, 909/119,				
 Wind: ASCE 7-16; N II; Exp B; Enclosed; plate grip DOL=1.60 Provide adequate d This truss has been * This truss has been between the bottom Provide mechanical 10=180. This truss is design referenced standard 	rainage to prevent water ponding. designed for a 10.0 psf bottom chord en designed for a live load of 20.0psf o chord and any other members, with I connection (by others) of truss to be ed in accordance with the 2018 Interr	5mph; TCDL=6.0psf; BCDL and right exposed ; end vert live load nonconcurrent wit on the bottom chord in all ar 3CDL = 10.0psf. aring plate capable of withst ational Residential Code se	tical left and right expos th any other live loads. reas with a clearance gr tanding 100 lb uplift at ju ections R502.11.1 and F	ed; Lumber DOL= eater than 6-0-0 pint(s) 19 except (8802.10.2 and	; Cat. :1.60 jt=lb) sum	SE/ 286	AL 77


sheetrock be applied directly to the bottom chord.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

April 8,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

1	6-4-13	14-0-8	1	21-8-3	27-	-3-12	30-5-14	39-1-8	1
	6-4-13	7-7-11		7-7-11	5-	-7-9	3-2-2	8-7-10	
Plate Offsets (X,Y)	[3:0-5-4,0-3-4], [5:0-	5-4,0-2-12], [18:0-2·	-12,0-2-8]						
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- Plate Grip DO Lumber DOL Rep Stress In Code IRC20	1.15 cr YES	CSI. TC 0.26 BC 0.39 WB 0.65 Matrix-AS	DEFL. Vert(LL) Vert(CT) Horz(CT Wind(LL)		4-16 >999 4-16 >999 9 n/a	9 360 9 240 a n/a	PLATES MT20 Weight: 347 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x6 SP No.1 *Except* 7-10: 2x4 SP 2400F 2.0E TOP CHORD Structural wood sheathing directly applied, except 2-0-0 oc purlins (6-0-0 max.): 3-5. BOT CHORD 2x6 SP No.1 BOT CHORD Rigid ceiling directly applied. WEBS 2x4 SP No.3 *Except* 3-17,4-16: 2x4 SP No.2, 1-18: 2x6 SP No.1 WEBS 1 Row at midpt 5-14, 6-12, 2-18									
Max Max	size) 12=0-3-8, 18=0- (Horz 18=-143(LC 8) (Uplift 9=-181(LC 21) (Grav 12=2387(LC 14)		9=131(LC 1)						
TOP CHORD 2-3 8-9 BOT CHORD 17 WEBS 2-4	ax. Comp./Max. Ten A 3=-709/60, 3-4=-638/69 3=-86/778 -18=0/455, 16-17=0/66 17=0/575, 16-20=-413/7 12=-2214/13, 7-11=0/36	, 4-5=-614/69, 5-6= 8, 12-14=-1009/107 79, 4-20=-437/80, 5-	-317/61, 6-7=-17/127 , 11-12=-897/115, 9- 16=0/743, 5-14=-839	4, 7-8=-83/988, 11=-691/98					
NOTES-									

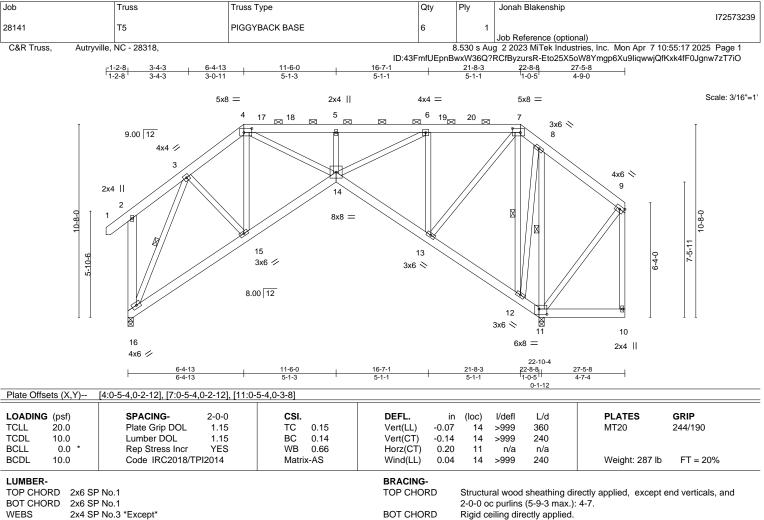
1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=24ft; eave=5ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.

- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 9=181.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.



April 8,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

818 Soundside Road

WEBS

1 Row at midpt

2x4 SP No.3 *Except* 2-16: 2x6 SP No.1, 9-10: 2x4 SP No.2

REACTIONS. (size) 11=0-3-8, 16=0-3-8 Max Horz 16=-193(LC 6)

Max Grav 11=1303(LC 1), 16=961(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 3-4=-874/102, 4-5=-1776/70, 5-6=-1776/70, 6-7=-643/69, 2-16=-260/134

BOT CHORD 15-16=-103/559, 14-15=-47/829, 13-14=-29/780 WFBS

3-15=0/440, 4-15=-372/18, 4-14=0/1255, 5-14=-274/53, 6-14=-11/1282, 6-13=-965/63, 7-13=0/942, 7-12=-675/19, 8-12=0/462, 8-11=-875/15, 3-16=-986/0

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=24ft; eave=4ft; Cat.

II; Exp B; Enclosed; MWFRS (directional); cantilever left exposed ; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60 3) Provide adequate drainage to prevent water ponding.

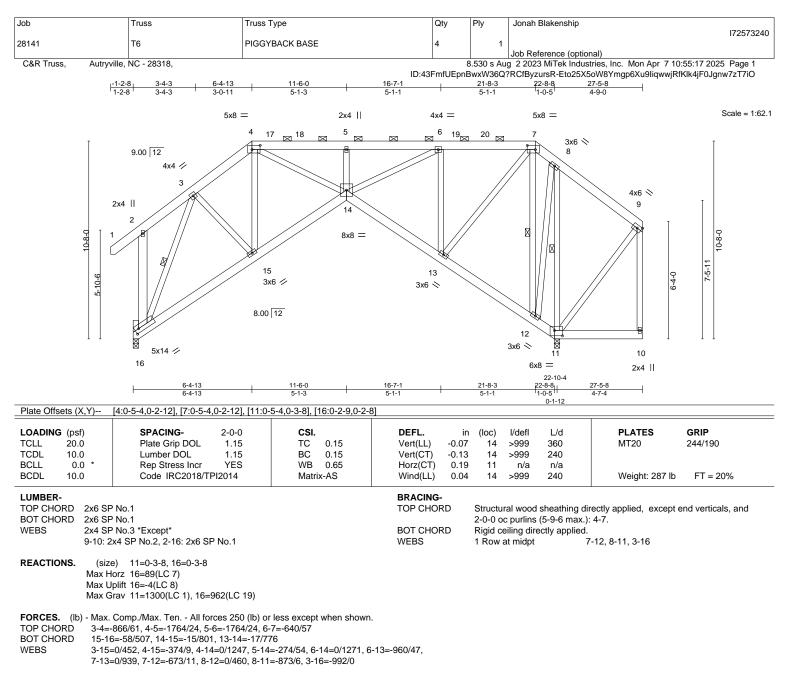
4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

6) Bearing at joint(s) 16 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.


9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

7-12, 8-11, 3-16

April 8,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left exposed ; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60
 3) Provide adequate drainage to prevent water ponding.

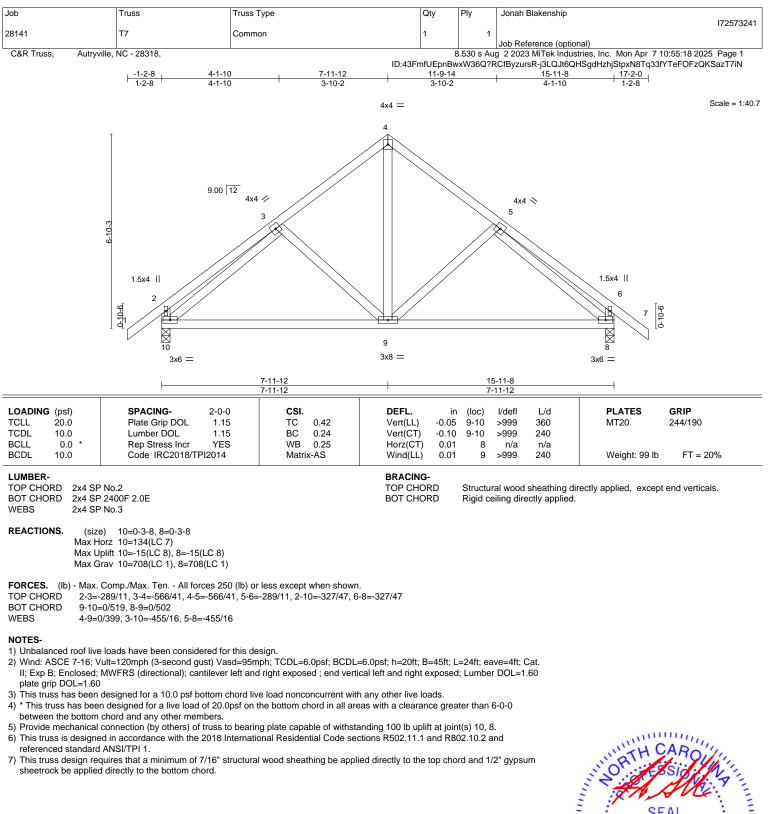
This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

6) Bearing at joint(s) 16 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 16.

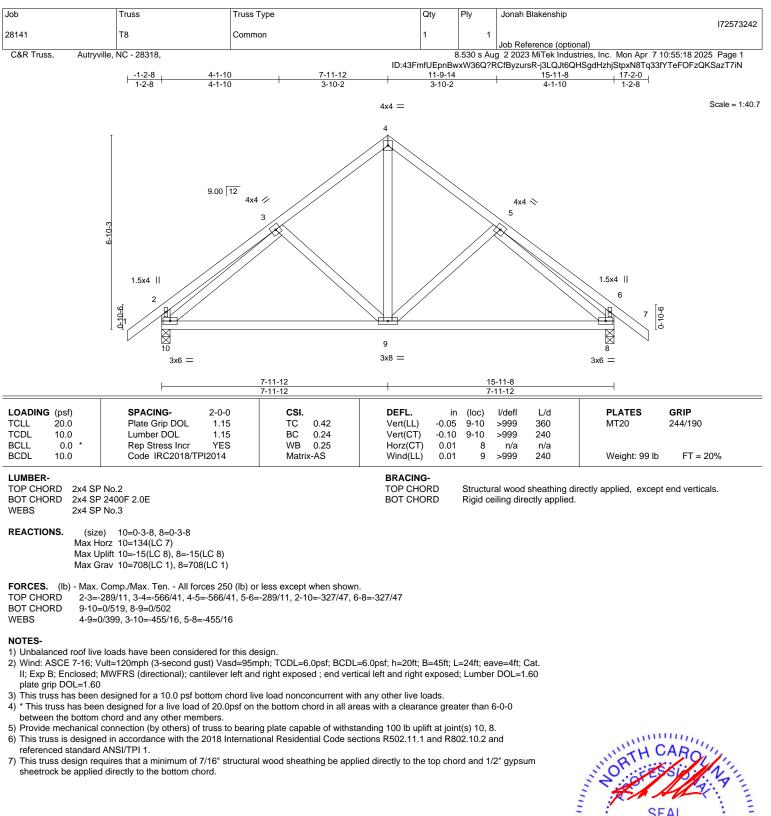
 This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

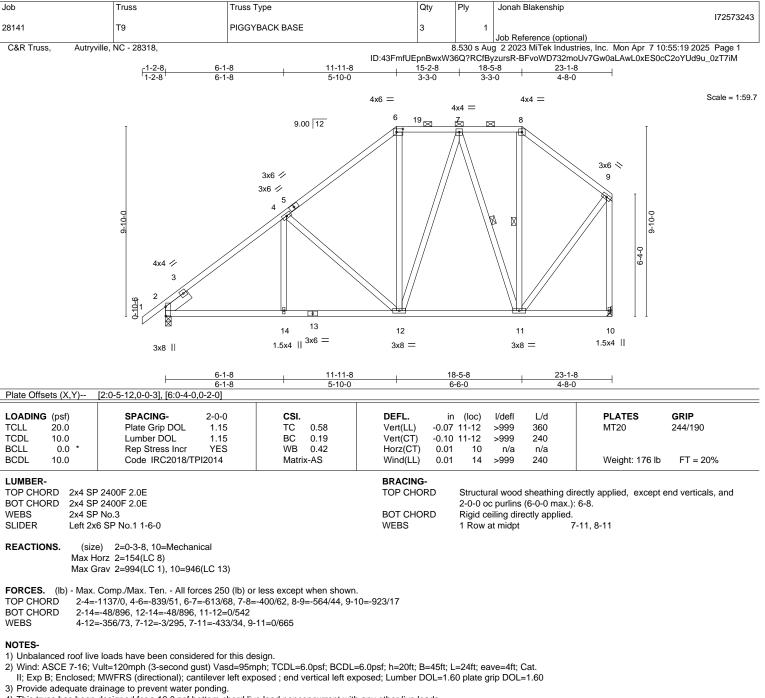
April 8,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)



April 8,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


A MITEK Affili

818 Soundside Road

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

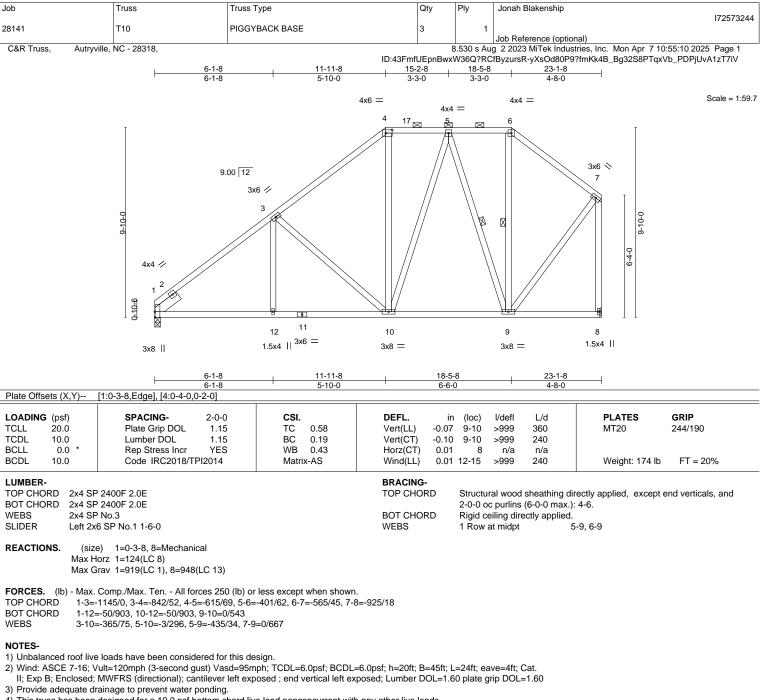
4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.

Refer to girder(s) for truss to truss connections.

7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.


9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

April 8,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/ITP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

. RENU

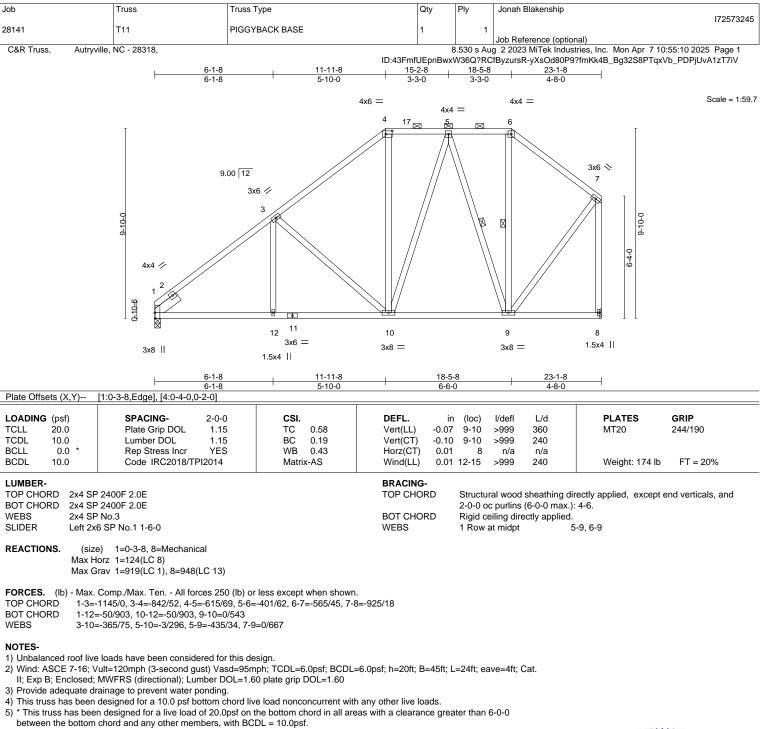
4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.

Refer to girder(s) for truss to truss connections.

7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

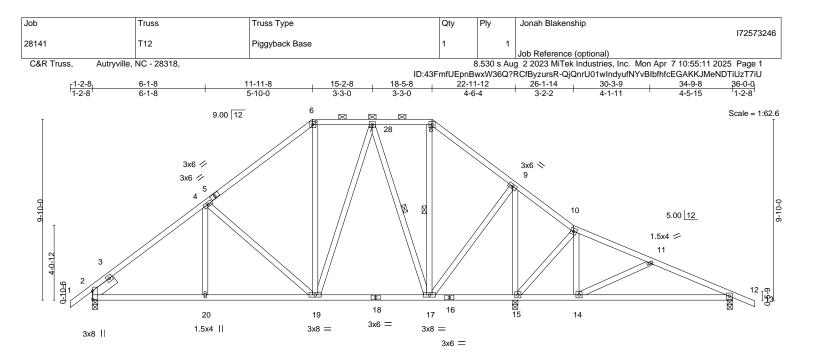

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

April 8,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

6) Refer to girder(s) for truss to truss connections.

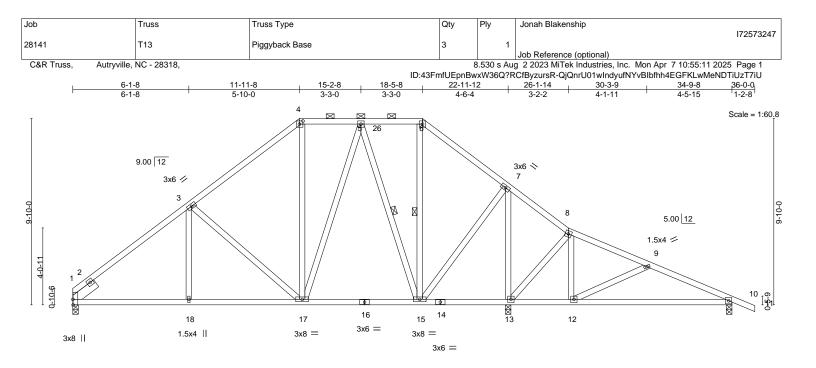
7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

April 8,2025

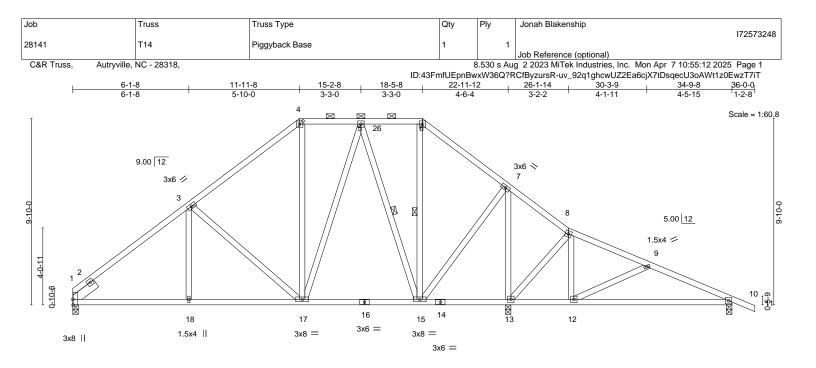
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcaccomponents.com)



	L	6-1-8	11-11-8		18-5-8	22-11		26-1	14	34-9-8	
Plate Offset	ats (X Y)	<u>6-1-8</u> [2:0-5-8,0-0-3], [6:0-2-4	5-10-0		6-6-0	4-6	-4	3-2	-2	8-7-10	
	//3 (//, 1)	<u>[2.0 0 0,0 0 0], [0.0 2 -</u>	r,0 2 0j								
LOADING	(psf)	SPACING-	2-0-0	CSI.	DEF	L. in	(loc)	l/defl	L/d	PLATES	GRIP
	20.0	Plate Grip DOL	1.15	TC 0.30	Vert		14-27	>999	360	MT20	244/190
	10.0	Lumber DOL	1.15	BC 0.23	Vert		14-27	>922	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB 0.84	Horz			n/a	n/a		
BCDL	10.0	Code IRC2018/	TPI2014	Matrix-AS	Wind	l(LL) 0.01	19	>999	240	Weight: 233 lb	FT = 20%
LUMBER- TOP CHOR BOT CHOR WEBS	RD 2x4 SI 2x4 SI	P No.2 P 2400F 2.0E P No.3			top bot	CING- CHORD CHORD	2-0-0 o Rigid c	c purlins eiling dire	(6-0-0 max ctly applied	ý.	
SLIDER	Left 2	x6 SP No.1 1-6-0			WEB	S	1 Row	at midpt		7-17, 8-17	
	Max U Max ((Ib) - Max	Horz 2=-167(LC 6) Jplift 2=-2(LC 8), 12=-9(Grav 2=948(LC 19), 15= . Comp./Max. Ten All 1	1531(LC 1), 12=	less except when sh							
TOP CHOR		-1068/9, 4-6=-775/72, 6 2=-535/6	-7=-560/85, 7-8=	-315/87, 8-9=-470/80), 9-10=0/270,						
BOT CHOR WEBS	4-19)=0/888, 19-20=0/888, 1)=-361/71, 7-19=0/334, 7 4=0/365, 11-14=-370/55	7-17=-474/6, 9-17		/4, 10-15=-422/0	,					
NOTES-											
 Unbalani Wind: AS II; Exp B plate grip 	SCE 7-16; ' 3; Enclosed p DOL=1.6		gust) Vasd=95m cantilever left and	ph; TCDL=6.0psf; B0					60		1155
		Irainage to prevent wate									A
		1T20 unless otherwise in		- lood nonconcurrent	المحافة برهم ملاسيا	ive leede				IN TH C	ARO
6) * This tru	uss has bee	n designed for a 10.0 psf en designed for a live loa n chord and any other m	ad of 20.0psf on t	he bottom chord in a			iter than	6-0-0		NUMBER S	Spiller .
8) This trus	ss is design	I connection (by others) ed in accordance with th d ANSI/TPI 1.								SE/	AL
 This trus sheetroc 	ss design re ck be applie	equires that a minimum of directly to the bottom epresentation does not d	chord.			•			m	SE/ 286	
ioj Giaphic	ical putiin fe	presentation does not d			punin along the	top and/of b	Suom Ch	oru.		NGIN	FEREN

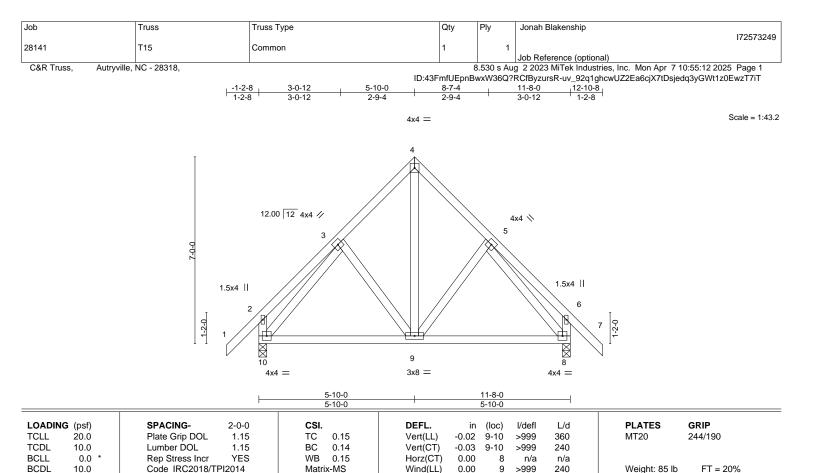
L. GALININ

April 8,2025


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

⊢	6-1-8	11-11-8	18-5-8	22-11-1		1-14	34-9-8	
<u> </u>	6-1-8	5-10-0	6-6-0	4-6-4	3-	2-2	8-7-10	
Plate Offsets	(X,Y) [1:0-3-8,Edge	9], [4:0-2-4,0-2-0]						
	0.0 Plate 0	ING- 2-0-0 Grip DOL 1.15 er DOL 1.15	CSI. TC 0.15 BC 0.22	Vert(LL) -0.07	(loc) l/def 12-25 >999 12-25 >981	360	PLATES MT20	GRIP 244/190
	0.0 * Rep S	tress Incr YES IRC2018/TPI2014	WB 0.80 Matrix-AS	Horz(CT) 0.02		n/a	Weight: 231 lb	FT = 20%
LUMBER- TOP CHORD BOT CHORD WEBS SLIDER		3-0		BRACING- TOP CHORD BOT CHORD WEBS	Structural wo 2-0-0 oc purli Rigid ceiling o 1 Row at mid	ns (6-0-0 max lirectly applied		
REACTIONS.	(size) 1=0-3-8, Max Horz 1=-162(L Max Uplift 10=-13(L	13=0-3-8, 10=0-3-8 C 6)	=483(LC 20)	-				
FORCES. (I TOP CHORD			or less except when shown. 6=-342/91, 6-7=-506/85, 8-9	9=-255/0,				
BOT CHORD WEBS	1-18=0/912, 17-18		12=0/519 5=0/738, 7-13=-1109/0, 8-1	3=-433/3,				
NOTES-								
 Unbalance Wind: ASC II; Exp B; E plate grip E 	E 7-16; Vult=120mph (inclosed; MWFRS (dire DOL=1.60	ectional); cantilever left ar	esign. nph; TCDL=6.0psf; BCDL=6 d right exposed ; end vertica			t; Cat. =1.60	~~~~	1115
	equate drainage to pre re 4x4 MT20 unless ot						11111 C	AD
5) This truss I6) * This truss between th	has been designed for has been designed fo e bottom chord and an	a 10.0 psf bottom chord I r a live load of 20.0psf or y other members, with B0	ve load nonconcurrent with a the bottom chord in all area CDL = 10.0psf. ng plate capable of withstan	s with a clearance grea			SE 286	
 This truss i referenced 	s designed in accordar standard ANSI/TPI 1.	ice with the 2018 Internation	ional Residential Code secti	ions R502.11.1 and R8	02.10.2 and		SE	AL
sheetrock l	be applied directly to th	e bottom chord.	al wood sheathing be applied r the orientation of the purlin			osum	286	77
- •	· ·	·		- ·			NGIN SNGIN	FERIN

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)



	L	6-1-8	11-11-8	18-5-8		22-11-1	2	26-1-1	4	34-9-8	
		6-1-8	5-10-0	6-6-0		4-6-4		3-2-2		8-7-10	
Plate Offse	ets (X,Y)	[1:0-3-8,Edge], [4:0-2-	4,0-2-0]								
LOADING TCLL	(psf) 20.0	SPACING- Plate Grip DOL	2-0-0 1.15	CSI. TC 0.15	DEFL. Vert(LL)		(loc) 12-25	l/defl >999	L/d 360	PLATES MT20	GRIP 244/190
TCDL BCLL	10.0 0.0 *	Lumber DOL Rep Stress Inc	1.15 YES	BC 0.22 WB 0.80	Vert(CT) Horz(CT)	-0.14 0.02	12-25 10	>981 n/a	240 n/a		
BCDL	10.0	Code IRC2018	/TPI2014	Matrix-AS	Wind(LL)	0.01	18-21	>999	240	Weight: 231 lb	FT = 20%
LUMBER- TOP CHOF BOT CHOF WEBS SLIDER	RD 2x4 SF 2x4 SF	2400F 2.0E 2400F 2.0E 2005 2.0E 2003 6 SP No.1 1-6-0		· /	BRACING- TOP CHOR BOT CHOR WEBS	RD	2-0-0 c Rigid c	oc purlins	sheathing ((6-0-0 max ctly applied		
REACTION	NS. (siz Max H Max U	e) 1=0-3-8, 13=0-3-8 lorz 1=-162(LC 6) plift 10=-13(LC 8) lrav 1=886(LC 19), 13		-483(LC 20)							
TOP CHOP	RD 1-3≕ 9-10:	1096/14, 3-4=-800/76 =-586/14	4-5=-581/89, 5-6	r less except when shown. 5=-342/91, 6-7=-506/85, 8-1	9=-255/0,						
BOT CHOF WEBS	3-17	=0/912, 17-18=0/912, ⁻ =-367/73, 5-17=0/323, =0/361, 9-12=-369/52		12=0/519 5=0/738, 7-13=-1109/0, 8- ⁻	13=-433/3,						
NOTES-											
	ced roof live	e loads have been con	sidered for this de	sian							
2) Wind: A II; Exp B	SCE 7-16; \	/ult=120mph (3-second MWFRS (directional);	d gust) Vasd=95n	hph; TCDL=6.0psf; BCDL= d right exposed ; end vertic					at. 60		
		rainage to prevent wat								, in the second s	in the second se
		T20 unless otherwise i								IN TH C	ARO
6) * This tru	uss has bee		ad of 20.0psf on	ve load nonconcurrent with the bottom chord in all area DL = 10.0psf.			ter than	6-0-0		I'I OFFICE	SPK Nor
8) This trus	ss is designe			ng plate capable of withstan onal Residential Code sect				and		SEL 286	AL
9) This trus	ss design re			l wood sheathing be applie	ed directly to the t	op cho	rd and 1	I/2" gypsu	m	286	77
10) Graphi	ical purlin re	presentation does not	depict the size or	the orientation of the purlir	n along the top ar	nd/or bo	ottom ch	nord.		THE SOUND	ala

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

1.11	MBER-	
LU		

TOP CHORD 2x4 SP No.2 2x4 SP 2400F 2.0E BOT CHORD 2x4 SP No.3 WEBS

REACTIONS. (size) 10=0-3-8, 8=0-3-8 Max Horz 10=156(LC 7) Max Uplift 10=-19(LC 8), 8=-19(LC 8) Max Grav 10=536(LC 1), 8=536(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. 3-4=-347/59, 4-5=-347/59 TOP CHORD

BOT CHORD 9-10=0/293

WEBS 4-9=-39/269, 3-10=-354/0, 5-8=-354/0

NOTES-

1) Unbalanced roof live loads have been considered for this design.

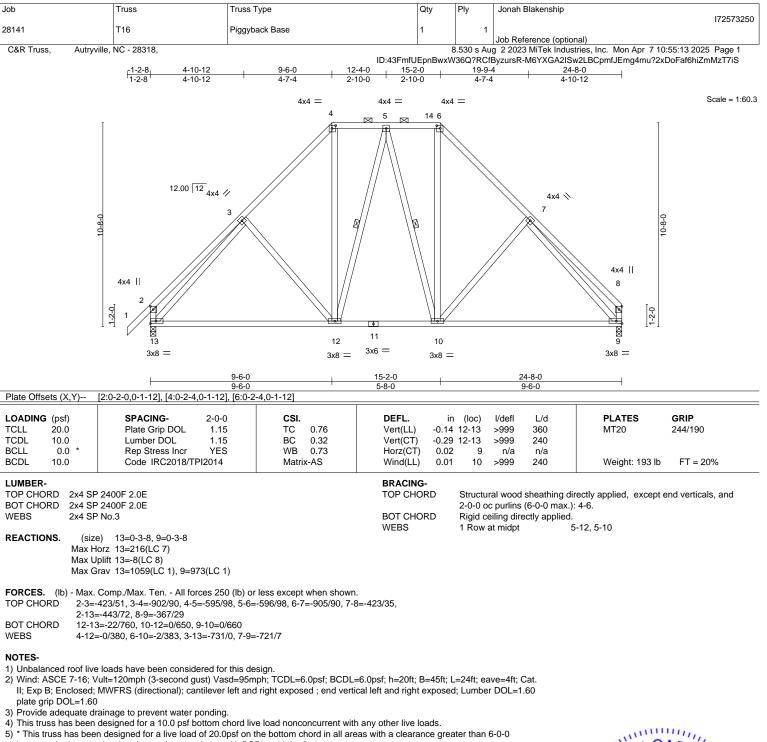
2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 10, 8. 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and

referenced standard ANSI/TPI 1.


April 8,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design that the operating of the second se and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

BRACING-TOP CHORD

- Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD
 - Rigid ceiling directly applied or 10-0-0 oc bracing.



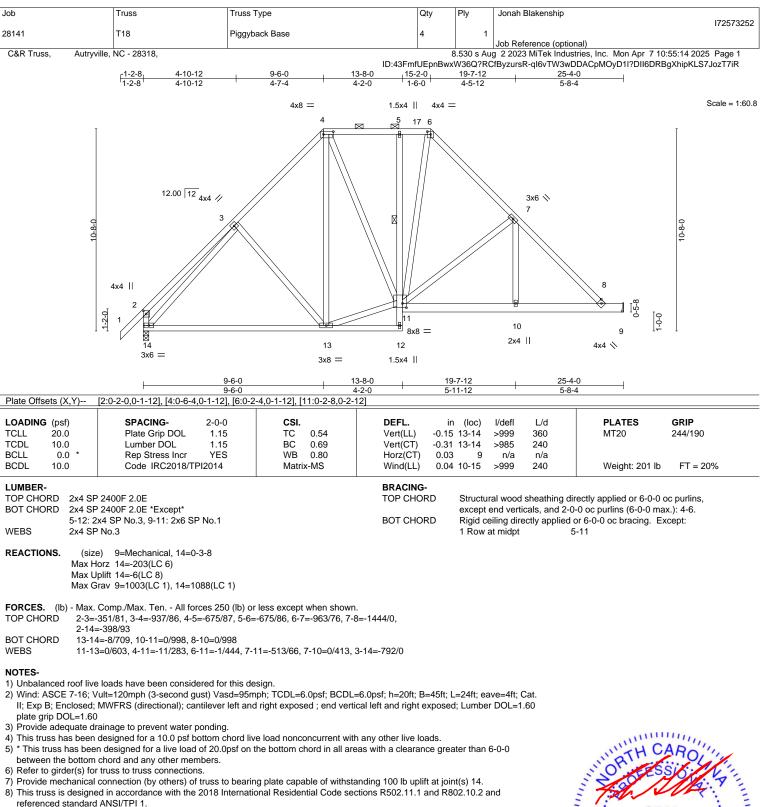
- between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 13.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

TRENGINEERING BY A MITEK Affiliate

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/ITP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

6) Refer to girder(s) for truss to truss connections.

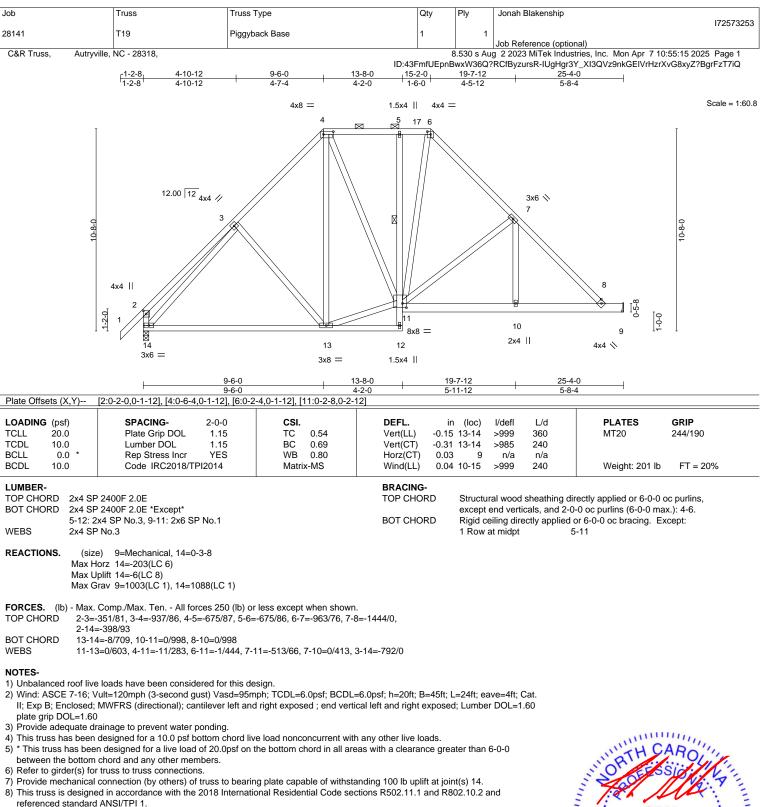
Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 14.
 This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and


referenced standard ANSI/TPI 1.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

April 8,2025

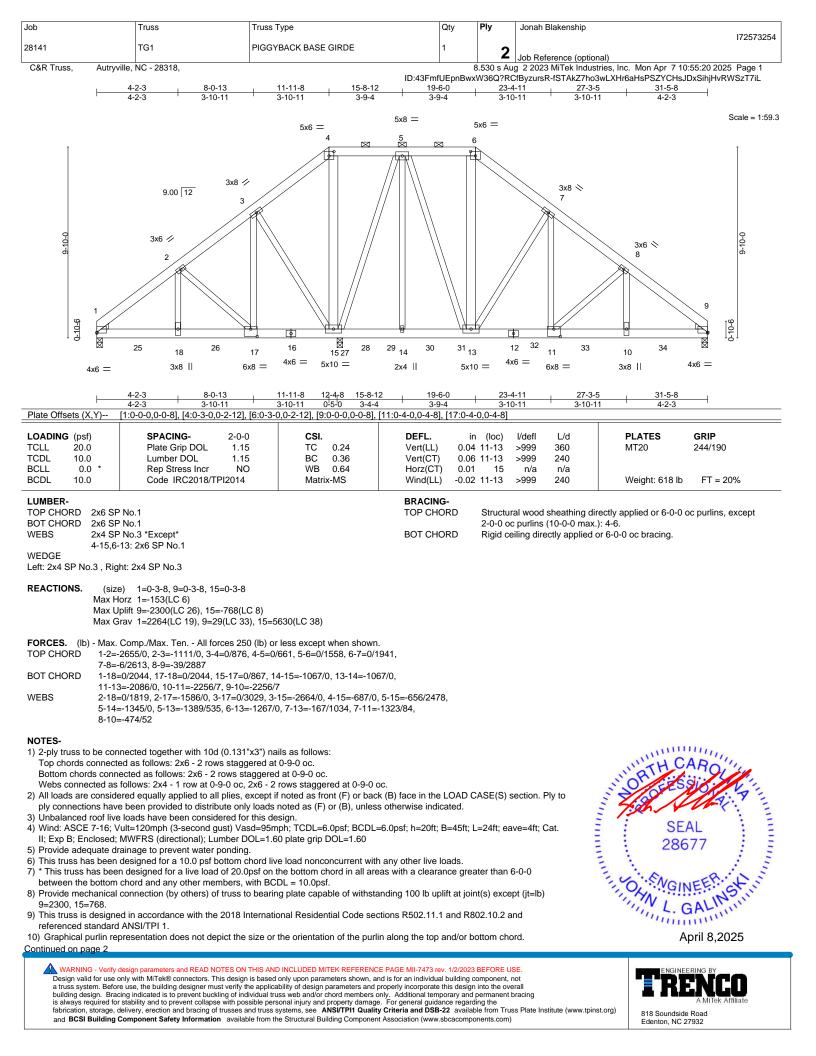
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)



9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

April 8,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)



9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

April 8,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

- [·	lob	Truss	Truss Type	Qty	Ply	Jonah Blakenship
						172573254
	28141	TG1	PIGGYBACK BASE GIRDE	1	2	
					2	Job Reference (optional)
	C&R Truss, Autryville,	NC - 28318,		8	3.530 s Aug	g 2 2023 MiTek Industries, Inc. Mon Apr 7 10:55:20 2025 Page 2
			ID:43Fmf	UEpnBwx	W36Q?RC	fByzursR-fSTAkZ7ho3wLXHr6aHsPSZYCHsJDxSihjHvRWSzT7iL

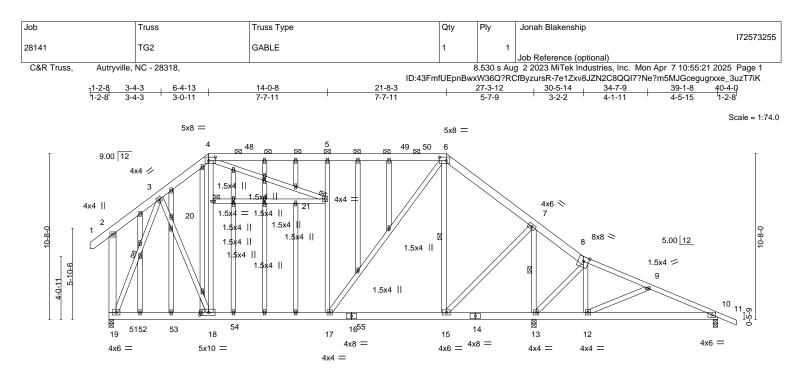
NOTES-

11) This truss has large uplift reaction(s) from gravity load case(s). Proper connection is required to secure truss against upward movement at the bearings. Building designer must provide for uplift reactions indicated.

12) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 906 lb down at 2-0-12, 906 lb down at 4-0-12, 906 lb down at 6-0-12, 908 lb down at 8-0-12, 908 lb down at 10-0-12, 902 lb down at 12-0-12, 899 lb down at 12-3-4, 13 lb down and 850 lb up at 13-1-4, 13 lb down and 850 lb up at 15-1-4, 843 lb up at 17-1-4, 843 lb up at 19-1-4, 13 lb down and 850 lb up at 21-1-4, 13 lb down and 850 lb up at 21-1-4, 13 lb down and 850 lb up at 21-1-4, and 125 lb up at 31-1-4, and 175 lb up at 25-1-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15


Uniform Loads (plf) Vert: 1-4=-60, 4-6=-60, 6-9=-60, 19-22=-20

Concentrated Loads (lb)

Vert: 16=-899(B) 18=-897(B) 17=-899(B) 15=-1798(B) 13=389(B) 11=391(B) 10=125(B) 24=125(B) 25=-897(B) 26=-897(B) 28=391(B) 29=391(B) 30=389(B) 32=391(B) 33=175(B) 34=389(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

F	6-4-13	14-0-8		I-8-3 7-11		7-3-12 5-7-9		30-5-14	<u>39-1-8</u> 8-7-10	
Plate Offsets (X,Y) [[4:0-5-4,0-2-12], [6:0-5-4,						0-0-12]	3-2-2	8-7-10	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2018/TF	2-0-0 1.15 1.15 NO Pl2014	CSI. TC 0.29 BC 0.54 WB 0.65 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	-0.15 -0.24 0.01		l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 442 lb	GRIP 244/190 FT = 20%
8-11: 2x BOT CHORD 2x6 SP WEBS 2x4 SP	No.3 *Except* 17: 2x4 SP No.2, 2-19: 2:	x6 SP No.1		BRACING- TOP CHOR BOT CHOR WEBS JOINTS	:D :D	except Rigid ce 1 Row a	end vert	icals, and 2 ectly applie	directly applied or 6-0-0 2-0-0 oc purlins (6-0-0 ma ad or 6-0-0 oc bracing. 6-15, 7-13, 3-19	
Max Ho Max Up) 13=0-3-8, 19=0-3-8, prz 19=-244(LC 6) olift 13=-15(LC 34), 10=- rav 13=2405(LC 14), 19=	180(LC 28)	207(LC 1)							
TOP CHORD 3-4=-{ 9-10= BOT CHORD 18-19: 10-12: WEBS 3-18=	Comp./Max. Ten All for 375/67, 4-5=-745/74, 5-6 -244/777, 2-19=-292/126 0/563, 17-18=0/781, 15 =-691/243 0/619, 17-21=-458/82, 5- -2247/72, 8-13=-274/0, 8	=-725/73, 6-7=-43 5 5-17=-14/322, 13-1 -21=-476/83, 6-17=	7/61, 7 ⁻ 8=-173/1296, 8 5=-1021/211, 12-13=-{ =0/779, 6-15=-839/66,	920/265,						
NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-16; Vi II; Exp B; Enclosed; I plate grip DOL=1.60 3) Truss designed for w Gable End Details as 4) Provide adequate dra 5) All plates are 2x4 MT 6) Gable studs spaced a 7) This truss has been between the bottom d 9) Provide mechanical of 10=180.	loads have been conside ult=120mph (3-second gu WWFRS (directional); car ind loads in the plane of applicable, or consult qu anage to prevent water p 20 unless otherwise indi	ered for this design ust) Vasd=95mph; ntilever left and rig the truss only. Fo ualified building de bonding. icated. ottom chord live lo of 20.0psf on the l nbers, with BCDL truss to bearing pl	n. TCDL=6.0psf; BCDL= ht exposed ; end vertic r studs exposed to win signer as per ANSI/TP ad nonconcurrent with pottom chord in all area = 10.0psf. ate capable of withsta	al left and right e: d (normal to the f l 1. any other live loa as with a clearand	kposed; ace), se ds. ce great	Lumbe ee Stanc er than (s) 13 e	r DOL=1 lard Indu 6-0-0 xcept (jt	Cat. .60 ustry =lb)	SE 286	ARO SOLAR AL 577

- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0
- between the bottom chord and any other members, with BCDL = 10.0psf.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 13 except (jt=lb) 10=180.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB Building Component Scietus Information**, and the from the Structure Building Component Advance interport of the property damage. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

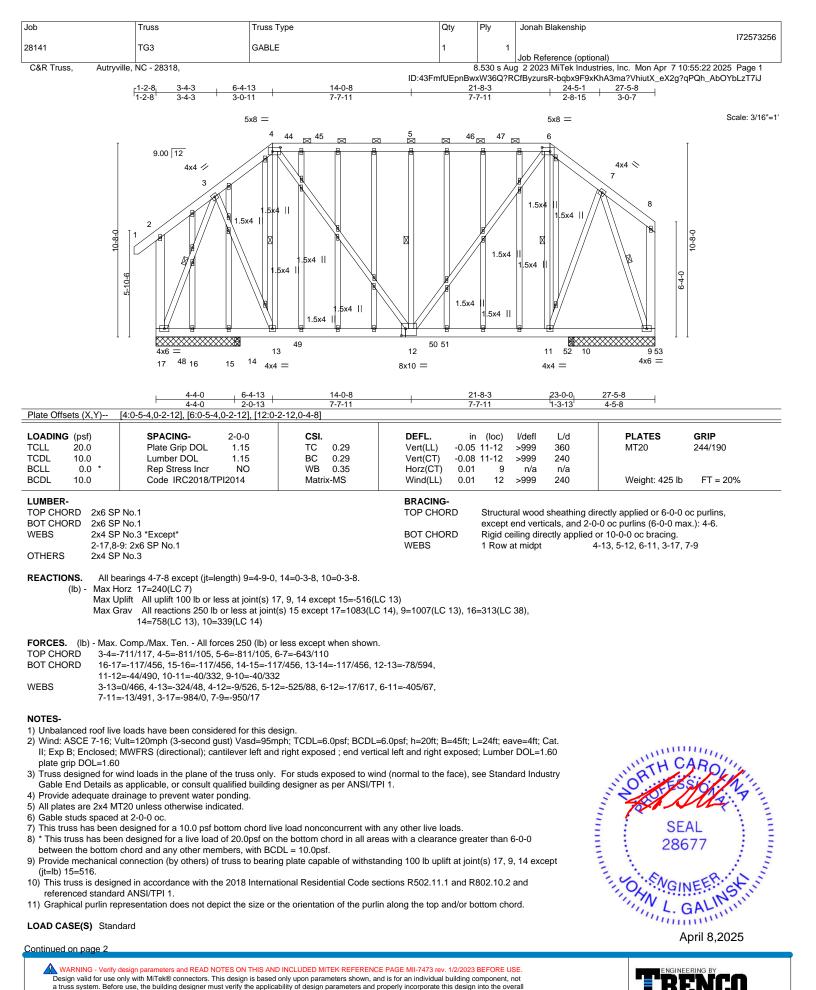
11111 April 8,2025

Job	Truss	Truss Type	Qty	Ply	Jonah Blakenship
					172573255
28141	TG2	GABLE	1	1	Job Reference (optional)
	NC 20240				a 2 2022 MiTek Industrias Inc. Man Ant. 7 10:55:21 2025 Dags 2

C&R Truss, Autryville, NC - 28318,

8.530 s Aug 2 2023 MiTek Industries, Inc. Mon Apr 7 10:55:21 2025 Page 2 ID:43FmfUEpnBwxW36Q?RCfByzursR-7e1Zxv8JZN2C8QQI7?Ne?m5MJGcegugrxxe_3uzT7iK

LOAD CASE(S) Standard


1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-2=-60, 2-4=-60, 4-6=-60, 6-8=-60, 8-11=-60, 19-45=-20

Concentrated Loads (lb) Vert: 19=-218 52=-207 53=-207

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

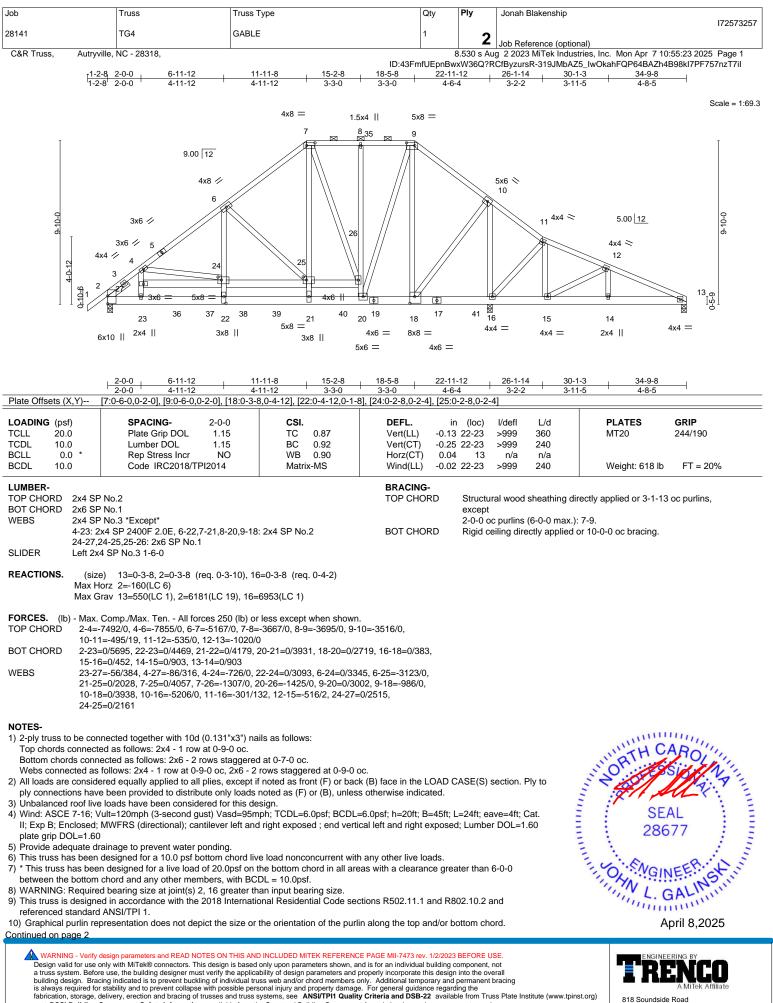
bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	-	Truss	Truss Type	Qty	Ply	Jonah Blakenship
						172573256
28141	-	TG3	GABLE	1	1	
						Job Reference (optional)
C&R Truss,	Autryville, N	IC - 28318,		8	3.530 s Aug	g 2 2023 MiTek Industries, Inc. Mon Apr 7 10:55:22 2025 Page 2

8.530 s Aug 2 2023 MiTek Industries, Inc. Mon Apr 7 10:55:22 2025 Page 2 ID:43FmfUEpnBwxW36Q?RCfByzursR-bqbx9F9xKhA3ma?VhiutX_eX2g?qPQh_AbOYbLzT7iJ

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)


Vert: 1-2=-60, 2-4=-60, 4-6=-60, 6-8=-60, 9-17=-20

Concentrated Loads (lb)

Vert: 16=-207 15=-207

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

[Job	Truss	Truss Type	Qty	Ply	Jonah Blakenship
						172573257
	28141	TG4	GABLE	1	2	
					_	Job Reference (optional)
	C&R Truss, Autryville,	NC - 28318,			3.530 s Au	g 2 2023 MiTek Industries, Inc. Mon Apr 7 10:55:23 2025 Page 2
			ID:43Fm	nfUEpnBw:	xW36Q?R	CfByzursR-319JMbAZ5_lwOkahFQP64BAZh4B98kl7PF757nzT7il

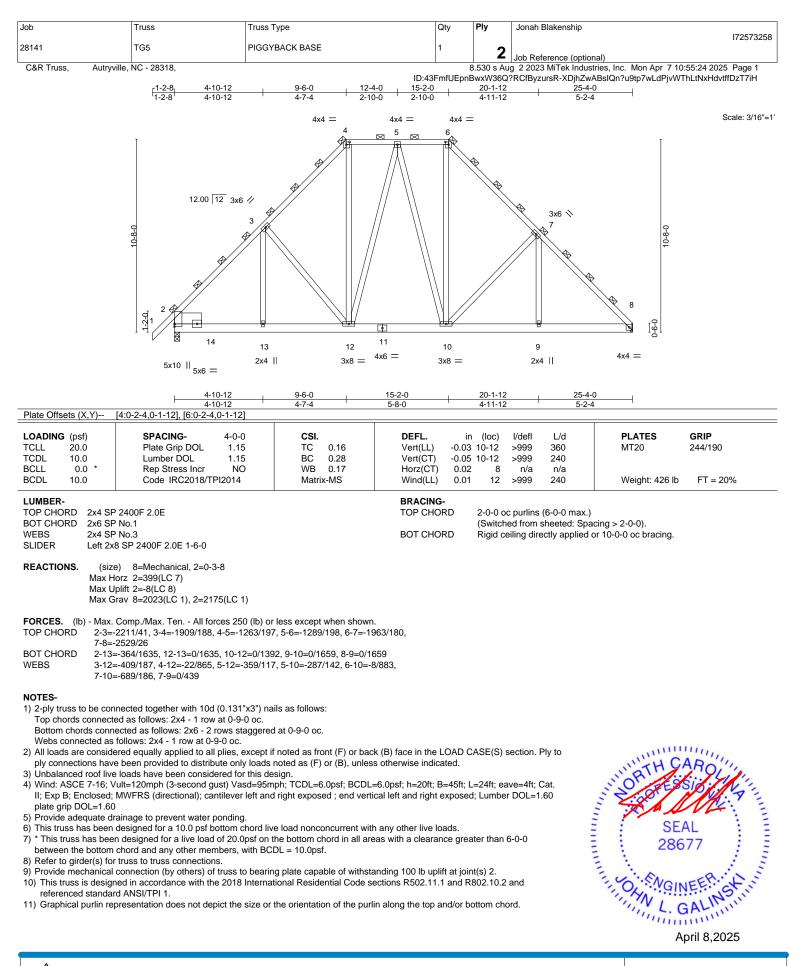
NOTES-

11) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 985 lb down at 2-0-12, 983 lb down at 4-0-12, 983 lb down at 6-0-12, 983 lb down at 8-0-12, 983 lb down at 10-0-12, 983 lb down at 10-0-12, 985 lb down at 20-0-12, and 985 lb down at 20-0-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)


Vert: 1-7=-60, 7-9=-60, 9-11=-60, 11-13=-60, 28-31=-20

Concentrated Loads (lb)

Vert: 19=-985(B) 23=-985(B) 21=-983(B) 18=-985(B) 17=-985(B) 36=-983(B) 37=-983(B) 38=-983(B) 39=-983(B) 40=-985(B) 41=-985(B) 41=-9

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qt	/ Ply	Jonah Blakenship		
28141	TG6	PIGGYBACK ATTIC	1	2			172573259
C&R Truss, Autr	yville, NC - 28318,			8.530 s Au	Job Reference (option g 2 2023 MiTek Industr	ries, Inc. Mon Apr 71	
					HByzursR-?PG3nGBpd 25-4	-0	wdcl6QsZcCCgzT7iG
	2-6-12	5-6-4 6 ₁ 0-0 10-2-0 2-11-8 0-5-12 4-2-0	<u>15-10-0</u> 5-8-0	20-0-0 4-2-0	<u>23-2-4</u> 23 ₁ 4-4 3-2-4 0-2-0	<u>26-6-8</u> 1-2-8	
		6x8 =		7 6x8 =	1-11-	12	Scale = 1:68.9
	Ī	3x6 =		3x6 =		I	
		5		→ ₹ ⁸			
	12.00		16 4x4				
		4x8			3x6		
	q					Ģ	
	0- 8- 1- 1- 2x4 ≫					4x4 ∕\ /	
	3.				10)	
		15-5-8				2x4	
	1						
	1-0-0						
			21 3-9-8 22	2			
	5.44 11	15 8x10 =	 		14 9-10-8 MT20HS =	13 5x6 =	
	5x14 4x4 //	11-8-0					
	2-6-12	5-6-4 6 ₁ 0 ₁ 0 2-11-8 0-5-12	20-0-0		23-2-4 25-4-		
Plate Offsets (X,Y)	<u>2-6-12</u> [6:0-5-8,0-3-0], [7:0-5-8,0-3-	<u>2-11-8_0-5-12</u> 0], [9:0-3-0,Edge], [14:0-4-12,Edge]	14-0-0 , [15:0-2-12,Edge]		3-2-4 2-1-1	2 '	
LOADING (psf)	SPACING-	3-0-0 CSI .	DEFL.	in (loc)	l/defl L/d	PLATES	GRIP
TCLL 20.0 TCDL 10.0		1.15 TC 0.81 1.15 BC 0.73	Vert(LL) Vert(CT)		>578 360 >406 240	MT20 MT20HS	244/190 187/143
BCLL 0.0 * BCDL 10.0	Rep Stress Incr Code IRC2018/TPI2	NO WB 0.50	Horz(CT) Wind(LL)	0.02 1	n/a n/a >999 240	Weight: 493 lb	
				0.10 14 10	2000 240	Weight. 400 lb	11 - 2070
	SP 2400F 2.0E		BRACING- TOP CHOR		purlins (6-0-0 max.),		
	SP 2400F 2.0E *Except* 5: 2x10 SP 2400F 2.0E		BOT CHOR		d from sheeted: Space		
WEBS 2x4 S	SP No.3 *Except* 2x4 SP 2400F 2.0E, 9-14,4-15	2 2 2 5 5 P No 1	JOINTS	0	at Jt(s): 6, 7, 16, 11	J	
	2x6 SP No.1 1-6-0						
	ize) 1=0-3-8, 13=0-3-8						
	Horz 1=462(LC 7) Uplift 1=-102(LC 8), 13=-164((LC 8)					
Max	Grav 1=3167(LC 14), 13=348	5(LC 16)					
()	•	s 250 (lb) or less except when show 5=-2215/266, 5-6=0/1080, 7-8=0/10					
9-1	10=-4262/199, 10-11=-62/290,	6-7=-72/1624, 11-13=-102/253	077, 0-92230/203				
WEBS 5-1		, 3-15=-468/218, 6-16=-50/253, 7-1	6=-49/256,				
10-	13=-4790/0, 9-14=0/2723, 10-	14=-53/475, 4-15=0/2514					
NOTES- 1) 2-ply truss to be o	onnected together with 10d (0.	131"x3") nails as follows:					
Top chords conne	cted as follows: 2x6 - 2 rows s	taggered at 0-9-0 oc, 2x4 - 1 row at vs staggered at 0-9-0 oc, 2x10 - 2 ro		0.00			0.00
Webs connected a	as follows: 2x4 - 1 row at 0-9-0	oc, 2x6 - 2 rows staggered at 0-9-0	oc.			TH C	ARO
		es, except if noted as front (F) or ba only loads noted as (F) or (B), unle			ection. Ply to	SE 280	Sid: Min
	ve loads have been considere Vult=140mph (3-second gust)	d for this design.) Vasd=111mph; TCDL=6.0psf; BCE	0L=6.0psf; h=20ft; B	=45ft; L=25ft; ea	ave=4ft; Cat.		Mar 1
II; Exp B; Enclose plate grip DOL=1.		ever left and right exposed ; end ver	tical left and right ex	posed; Lumber	DOL=1.60	SE	AL E
	drainage to prevent water pon				=	280	677 E
	en designed for a 10.0 psf botto	om chord live load nonconcurrent wi					1.1
7) This truss has bee		20.0psf on the bottom chord in all an ers.	reas with a clearanc	e greater than 6	-0-0	THY ENGL	NEER
7) This truss has bee	m chord and any other membe		pplied only to room	14-15		THE AN I	AL INSULL
 8) * This truss has be between the botto 9) Ceiling dead load 	(5.0 psf) on member(s). 4-5, 8	i donom choro dead idad (U U dsh a					
 7) This truss has bee 8) * This truss has bee between the botto 9) Ceiling dead load 10) Bottom chord live 11) Provide mechani 	(5.0 psf) on member(s). 4-5, 8 e load (40.0 psf) and additional	russ to bearing plate capable of with		ft at joint(s) exce	ept (jt=lb)	in the second se	
 7) This truss has bee 8) * This truss has bee between the botto 9) Ceiling dead load 10) Bottom chord live 11) Provide mechani 1=102, 13=164. 12) This truss is desi 	(5.0 psf) on member(s). 4-5, 8 e load (40.0 psf) and additional cal connection (by others) of the gned in accordance with the 2		standing 100 lb upli		spt (jt=iD)	11111	April 8,2025
 7) This truss has bee 8) * This truss has bee between the botto 9) Ceiling dead load 10) Bottom chord live 11) Provide mechani 1=102, 13=164. 	(5.0 psf) on member(s). 4-5, 8 e load (40.0 psf) and additional cal connection (by others) of the gned in accordance with the 2	russ to bearing plate capable of with	standing 100 lb upli		spt (jt=iD)	11111	April 8,2025
 This truss has bee This truss has bee This truss has bee This truss has bee between the botto Ceiling dead load Bottom chord live Bottom chord live Provide mechani 1=102, 13=164. This truss is desi contineierengeses 	(5.0 psf) on member(s). 4-5, 8 a load (40.0 psf) and additional cal connection (by others) of tr gned in accordance with the 2 lard ANSI/TPI 1.	russ to bearing plate capable of with	standing 100 lb upli sections R502.11.1 ICE PAGE MII-7473 rev. 1 and is for an individual bu	and R802.10.2 a	and E.	11111	April 8,2025

is always required for stability and to prevent coulapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria and DSE-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Jonah Blakenship
					172573259
28141	TG6	PIGGYBACK ATTIC	1	2	
				_	Job Reference (optional)
C&R Truss, Autryville,	NC - 28318,			3.530 s Au	g 2 2023 MiTek Industries, Inc. Mon Apr 7 10:55:25 2025 Page 2
		ID:43Fm	fUEpnBw	W36Q?R0	fByzursR-?PG3nGBpdcYed2j4MrRa9cGw6twdcl6QsZcCCgzT7iG

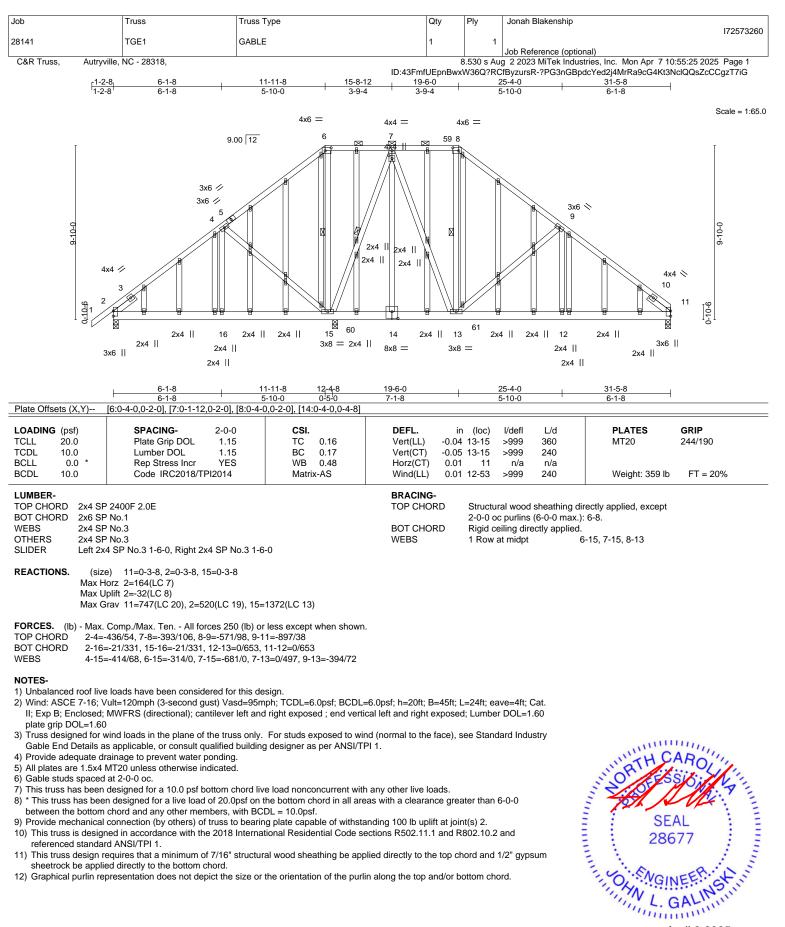
NOTES-

13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
14) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 1207 lb down and 50 lb up at 11-8-0, and 1207 lb down and 50 lb up at 15-5-8 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

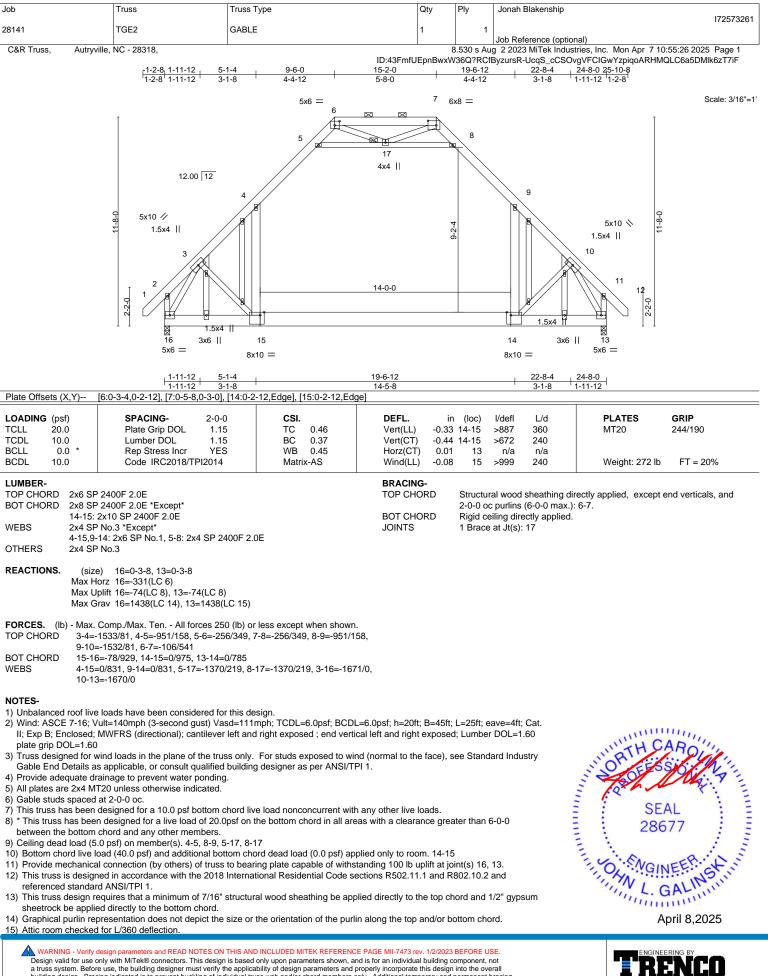
15) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard

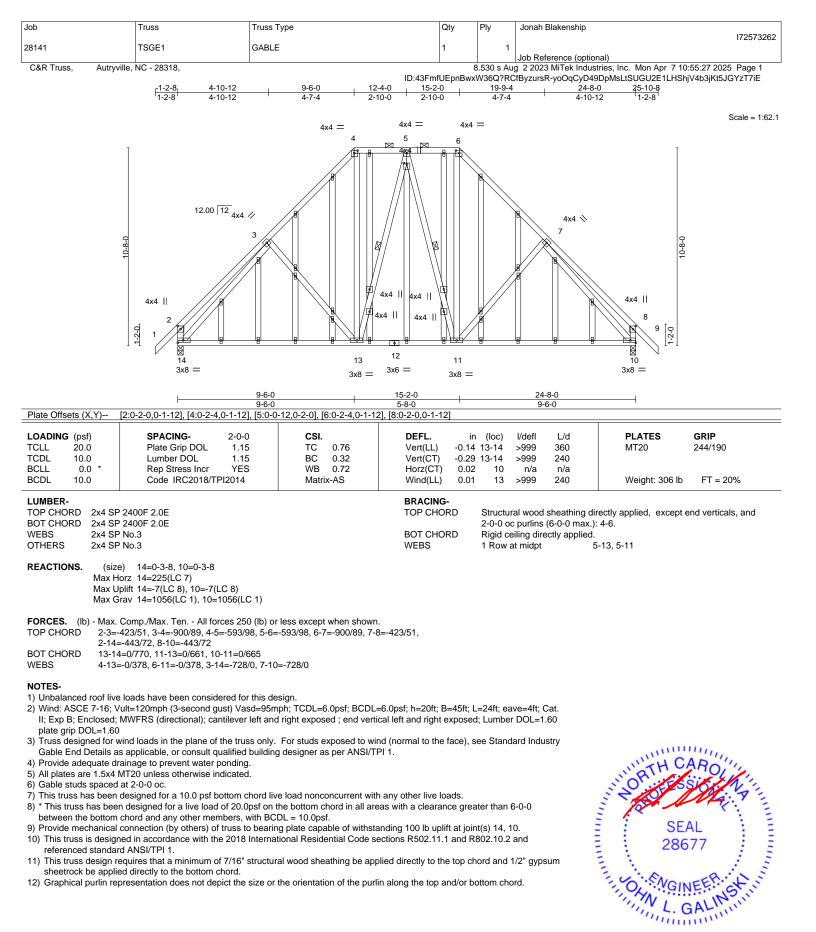
1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15


Uniform Loads (plf)

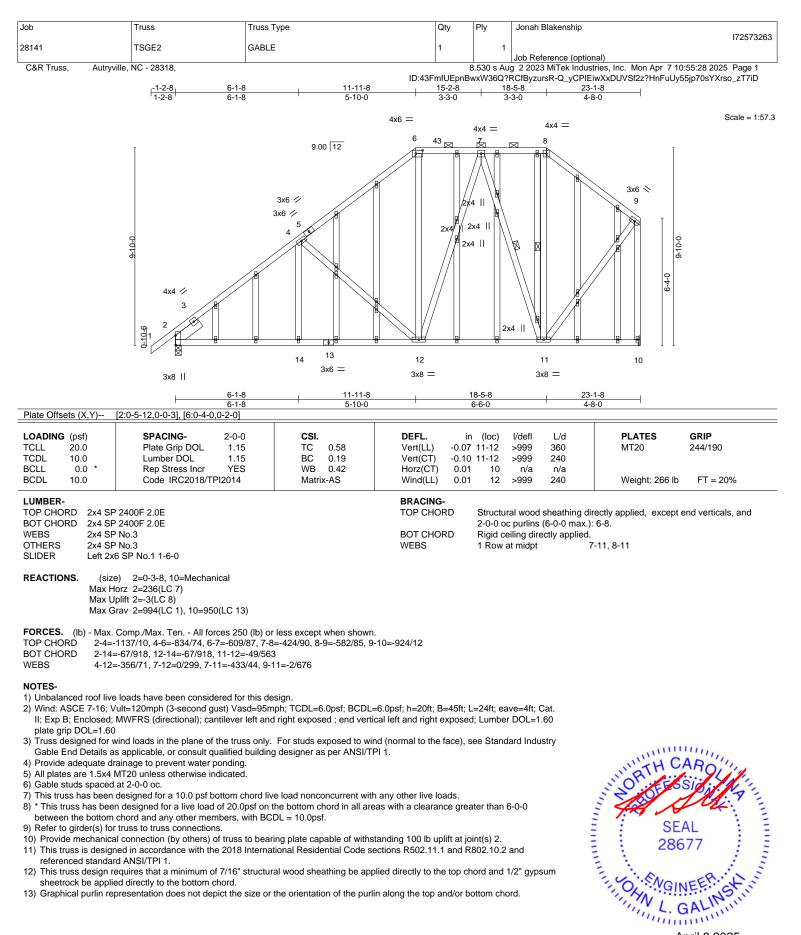
Vert: 13-17=-30, 1-4=-90, 4-5=-105, 5-6=-90, 7-8=-90, 8-9=-105, 9-11=-90, 11-12=-90, 6-7=-90, 5-8=-15


Concentrated Loads (lb) Vert: 21=-650(F) 22=-650(F)

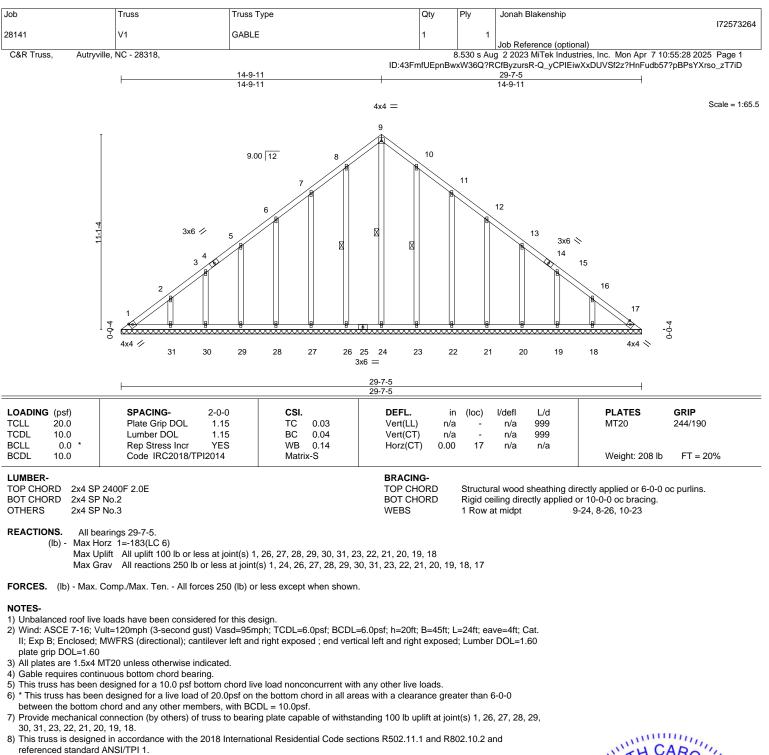
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication for the trust Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



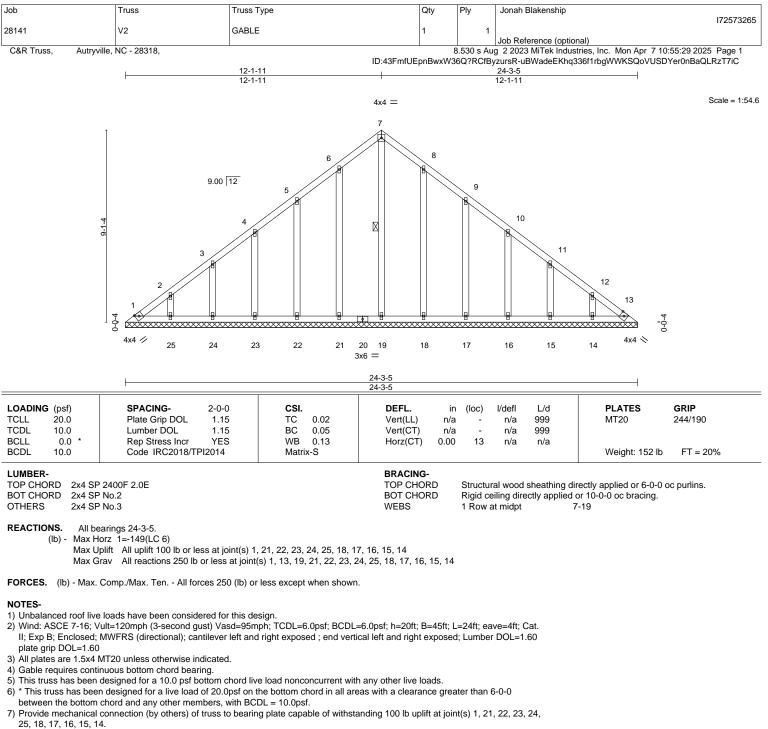
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)



building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

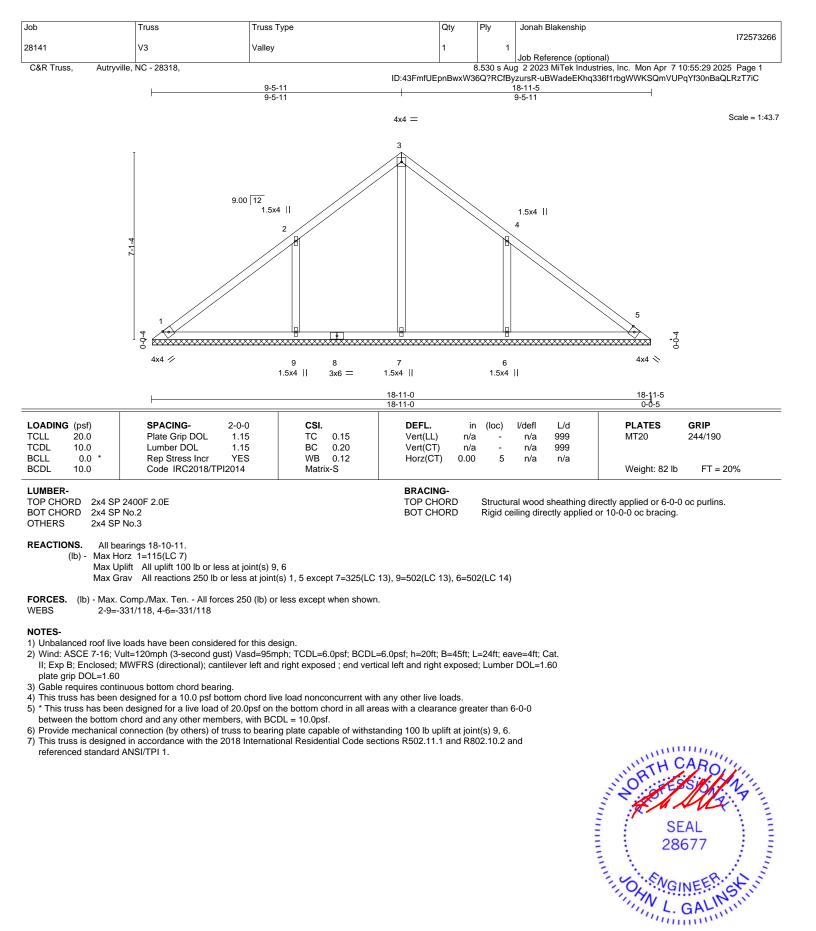

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com) April 8,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcaccomponents.com)


A MiTe 818 Soundside Road

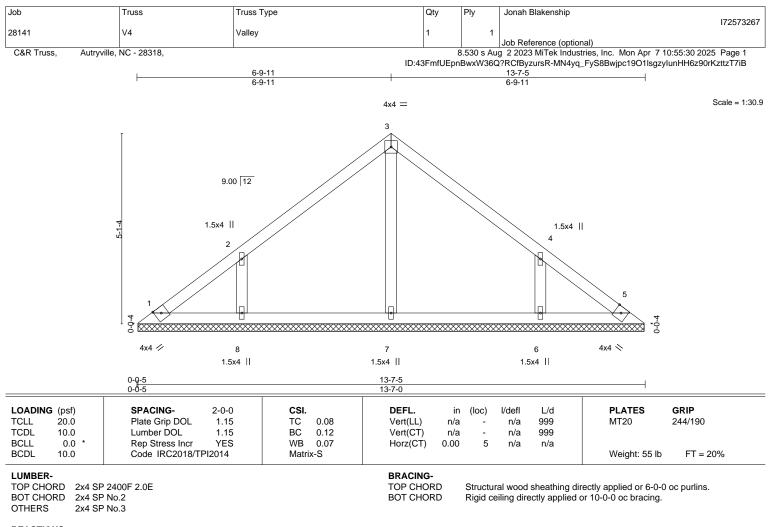
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

A MiTek Af 818 Soundside Road



8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

April 8,2025


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

818 Soundside Road

REACTIONS. All bearings 13-6-11. (Ib) - Max Horz 1=-81(LC 6

 Max Horz 1=-81(LC 6) Max Uplift All uplift 100 lb or less at joint(s) 8, 6

Max Grav All reactions 250 lb or less at joint(s) 1, 5, 7 except 8=308(LC 19), 6=308(LC 20)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

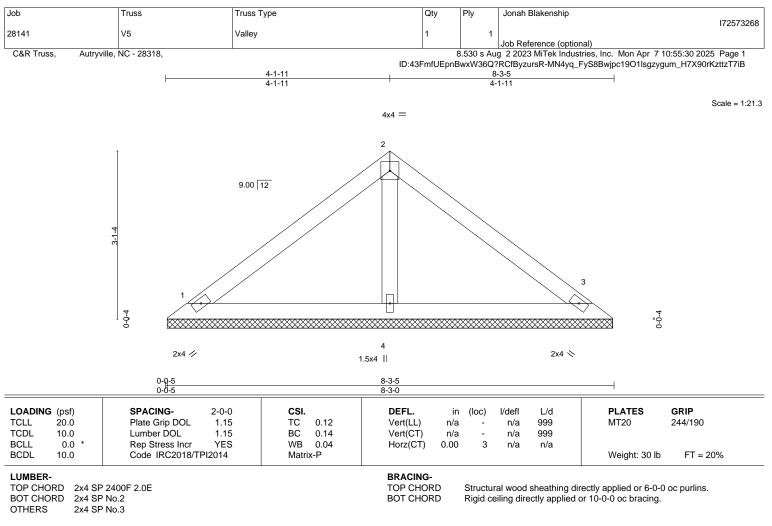
NOTES-

1) Unbalanced roof live loads have been considered for this design.

 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60

3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 6.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and
- referenced standard ANSI/TPI 1.



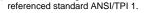
April 8,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

818 Soundside Road

REACTIONS. (size) 1=8-2-11, 3=8-2-11, 4=8-2-11 Max Horz 1=47(LC 7) Max Uplift 1=-14(LC 8), 3=-14(LC 8) Max Grav 1=170(LC 1), 3=170(LC 1), 4=253(LC 1)

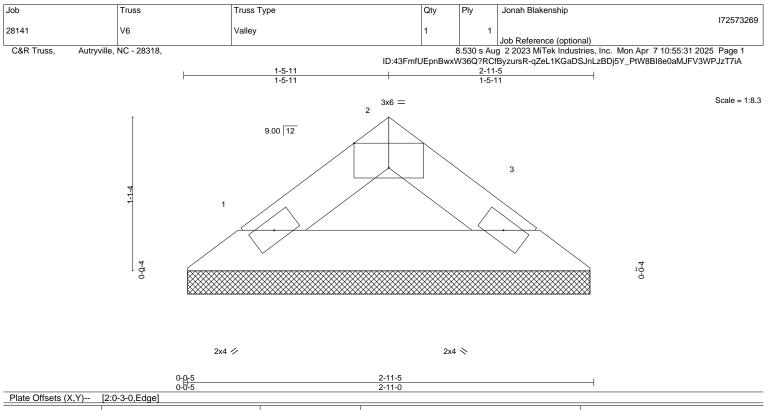
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.


NOTES-

1) Unbalanced roof live loads have been considered for this design.

 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60

3) Gable requires continuous bottom chord bearing.


- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and

April 8,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2018/TPI2014	CSI. TC 0.01 BC 0.05 WB 0.00 Matrix-P	DEFL. Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 8 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SP	2400F 2.0E		BRACING- TOP CHOR	D	Structu	ral wood	sheathing d	irectly applied or 2-1	1-5 oc purlins.

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD 2x4 SP 2400F 2.0E BOT CHORD 2x4 SP No.2

REACTIONS. (size) 1=2-10-11, 3=2-10-11 Max Horz 1=-13(LC 6) Max Grav 1=83(LC 1), 3=83(LC 1)

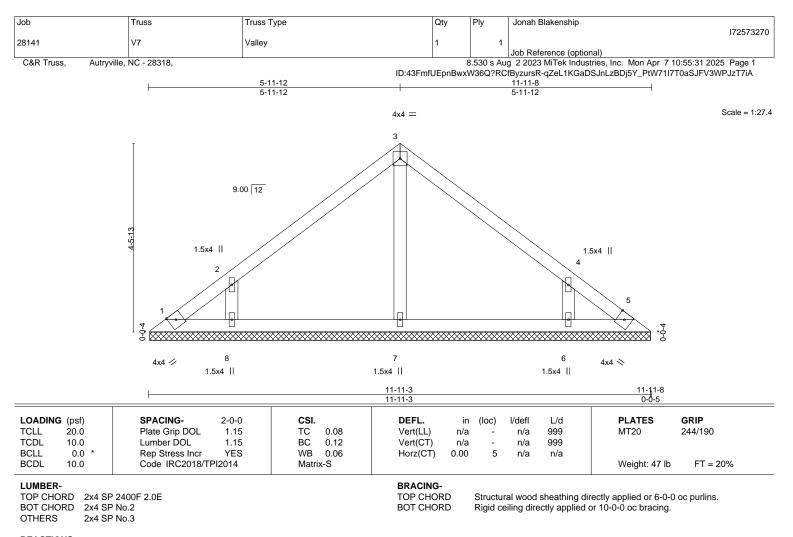
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.


- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

April 8,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB Building Component Scietus Information**, and the from the Structure Building Component Advance interport of the property damage. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

REACTIONS. All bearings 11-10-13. (lb) - Max Horz 1=-71(LC 6)

Max Uplift All uplift 100 lb or less at joint(s) 1, 5, 8, 6

Max Grav All reactions 250 lb or less at joint(s) 1, 5, 7 except 8=295(LC 19), 6=295(LC 20)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

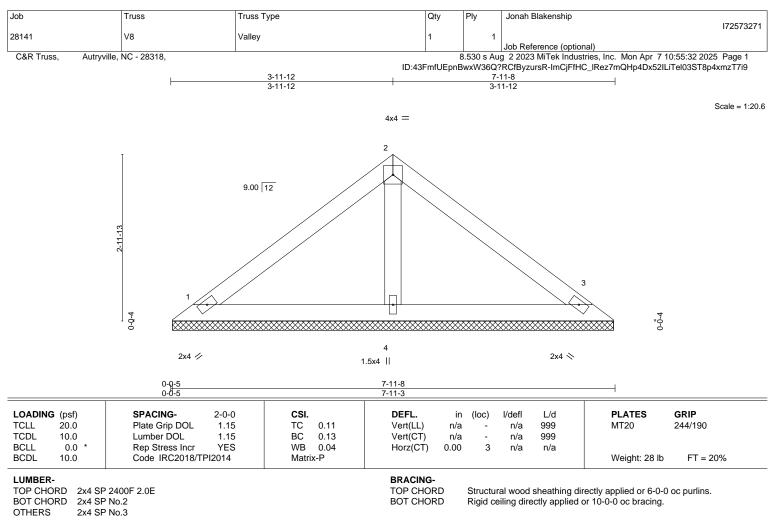
 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5, 8, 6.


 This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

April 8,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

REACTIONS. (size) 1=7-10-13, 3=7-10-13, 4=7-10-13 Max Horz 1=45(LC 7) Max Uplift 1=-14(LC 8), 3=-14(LC 8) Max Grav 1=162(LC 1), 3=162(LC 1), 4=242(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

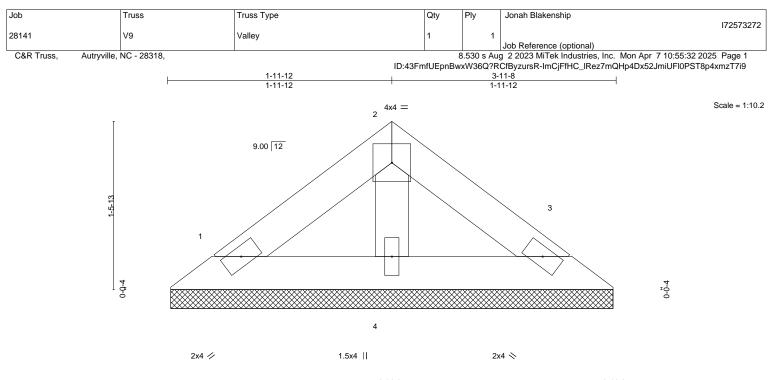
 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.


7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

SEAL 28677

April 8,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

A MiTek Affili 818 Soundside Road

		1	3-11-3 3-11-3					<u>3-11</u> -8 0-0-5			
LOADING (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.15	тс	0.02	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL 10.0	Lumber DOL	1.15	BC	0.02	Vert(CT)	n/a	-	n/a	999		
BCLL 0.0 *	Rep Stress Incr	YES	WB	0.01	Horz(CT)	0.00	3	n/a	n/a		
BCDL 10.0	Code IRC2018/T	PI2014	Matri	ĸ-P						Weight: 13 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

2x4 SP 2400F 2.0E BOT CHORD 2x4 SP No.2

TOP CHORD

OTHERS 2x4 SP No.3

REACTIONS. 1=3-10-13, 3=3-10-13, 4=3-10-13 (size) Max Horz 1=-20(LC 6) Max Uplift 1=-6(LC 8), 3=-6(LC 8) Max Grav 1=71(LC 1), 3=71(LC 1), 4=105(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Structural wood sheathing directly applied or 3-11-8 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

April 8,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

HOW THE SEA THURSDAY TO THE TANK SEAL 28677 GA

