

RE: 24050248

182 Serenity-Roof-329 A COP GRH

Trenco 818 Soundside Rd Edenton, NC 27932

Site Information:

Customer: David Weekley Homes Project Name: 24050248

Lot/Block: 182 Model:

Address: Subdivision: Serenity

City: State: NC

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2018/TPI2014 Design Program: MiTek 20/20 8.7

Wind Code: ASCE 7-16 Wind Speed: 130 mph Roof Load: 40.0 psf Floor Load: N/A psf

This package includes 63 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
1	165500357	CJ2	5/13/2024	21	165500377	PBA4	5/13/2024
2	165500358	HJ57	5/13/2024	22	165500378	PBA3	5/13/2024
3	165500359	EJ4B	5/13/2024	23	165500379	PBA2	5/13/2024
4	165500360	MH01	5/13/2024	24	165500380	PBA1	5/13/2024
5	165500361	MH02	5/13/2024	25	165500381	PBA	5/13/2024
6	165500362	L02	5/13/2024	26	165500382	H02	5/13/2024
7	165500363	L01	5/13/2024	27	165500383	H01	5/13/2024
8	165500364	VLD5	5/13/2024	28	165500384	K01	5/13/2024
9	165500365	VLG5	5/13/2024	29	165500385	EJ4	5/13/2024
10	165500366	VLD7	5/13/2024	30	165500386	EJ4A	5/13/2024
11	165500367	VLD6	5/13/2024	31	165500387	A03	5/13/2024
12	165500368	VLD4	5/13/2024	32	165500388	A02	5/13/2024
13	165500369	VLD3	5/13/2024	33	165500389	A01	5/13/2024
14	165500370	VLD2	5/13/2024	34	165500390	K02	5/13/2024
15	165500371	VLD1	5/13/2024	35	165500391	A08	5/13/2024
16	165500372	VLG6	5/13/2024	36	165500392	A07	5/13/2024
17	165500373	VLG4	5/13/2024	37	165500393	A06	5/13/2024
18	165500374	VLG3	5/13/2024	38	165500394	A05	5/13/2024
19	165500375	VLG2	5/13/2024	39	165500395	A04	5/13/2024
20	165500376	VLG1	5/13/2024	40	165500396	G02	5/13/2024

The truss drawing(s) referenced above have been prepared by

Truss Engineering Co. under my direct supervision

based on the parameters provided by Carter Components (Sanford, NC)).

Truss Design Engineer's Name: Tony Miller

My license renewal date for the state of North Carolina is December 31, 2024

North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

RE: 24050248 - 182 Serenity-Roof-329 A COP GRH

Trenco 818 Soundside Rd Edenton, NC 27932

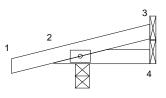
Site Information:

Project Customer: David Weekley Homes Project Name: 24050248 Lot/Block: 182 Subdivision: Ser

Subdivision: Serenity Address:

City, County: State: NC

No.	Seal#	Truss Name	Date
41	165500397	G01	5/13/2024
42	165500398	D02	5/13/2024
43	165500399	D01	5/13/2024
44	165500400	VLC3	5/13/2024
45	165500401	VLC2	5/13/2024
46	165500402	VLC1	5/13/2024
47	165500403	VLB6	5/13/2024
48	165500404	VLB5	5/13/2024
49	165500405	VLB4	5/13/2024
50	165500406	VLB3	5/13/2024
51	165500407	VLB2	5/13/2024
52	165500408	VLB1	5/13/2024
53	165500409	B05	5/13/2024
54	165500410	B04	5/13/2024
55	165500411	B03	5/13/2024
56	165500412	B02	5/13/2024
57	165500413	B01	5/13/2024
58	165500414	C03	5/13/2024
59	165500415	C02	5/13/2024
60	165500416	C01	5/13/2024
61	165500417	E01	5/13/2024
62	165500418	E02	5/13/2024
63	165500419	C04	5/13/2024


Job	Truss	Truss Type	Qty	Ply	182 Serenity-Roof-329 A COP GRH	
24050248	CJ2	Jack-Open	2	1	Job Reference (optional)	165500357

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri May 10 10:28:18

ا	
-0-10-8	1-11-11
0-10-8	1-11-11

3 12 3 F

Page: 1

Scale = 1:23.7

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.08	Vert(LL)	0.00	5	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.07	Vert(CT)	0.00	5	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 7 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or

1-11-11 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size)

2=0-3-8, 3= Mechanical, 4= Mechanical

Max Horiz 2=29 (LC 10)

Max Uplift 2=-86 (LC 10), 3=-8 (LC 14), 4=-4

(LC 11)

2=234 (LC 21), 3=25 (LC 21), 4=20 Max Grav

(LC 7)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/17, 2-3=-115/125

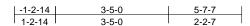
BOT CHORD 2-4=-121/139

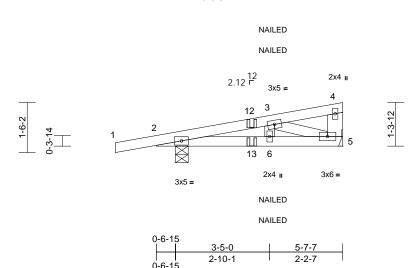
- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Bearings are assumed to be: , Joint 2 User Defined .
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 4 lb uplift at joint 4, 8 lb uplift at joint 3 and 86 lb uplift at joint 2.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall


building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	182 Serenity-Roof-329 A COP GRH	
24050248	HJ57	Diagonal Hip Girder	1	1	Job Reference (optional)	165500358

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri May 10 10:28:20 ID:nMTt61WohGqC4tdJQuQQzgyi1OK-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:34.7

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.19	Vert(LL)	0.00	6	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.15	Vert(CT)	-0.01	6	>999	180		
TCDL	10.0	Rep Stress Incr	NO	WB	0.08	Horz(CT)	0.00	5	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 23 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2

2x4 SP No.3 *Except* 4-5:2x6 SP No.2 WFBS

BRACING

TOP CHORD Structural wood sheathing directly applied or

5-7-7 oc purlins, except end verticals. **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 2=0-4-10, 5= Mechanical

Max Horiz 2=46 (LC 33)

Max Uplift 2=-146 (LC 8), 5=-65 (LC 8)

Max Grav 2=430 (LC 19), 5=214 (LC 19)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD

1-2=0/17, 2-3=-366/243, 3-4=-15/10,

4-5=-75/24

BOT CHORD 2-6=-240/346, 5-6=-100/346 **WEBS** 3-6=-13/82, 3-5=-363/105

NOTES

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; porch left and right exposed; Lumber DOL=1.60 plate
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
 - All bearings are assumed to be User Defined .
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to 9) bearing plate capable of withstanding 65 lb uplift at joint
- 10) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) "NAILED" indicates 3-10d (0.148"x3") or 2-12d (0.148"x3.25") toe-nails per NDS guidlines.
- 13) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

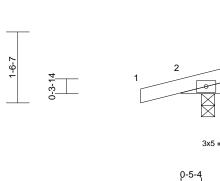
Uniform Loads (lb/ft)

Vert: 1-4=-60, 5-7=-20

Concentrated Loads (lb)

Vert: 13=2 (F=1, B=1)


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	182 Serenity-Roof-329 A COP GRH	
24050248	EJ4B	Jack-Open	2	1	Job Reference (optional)	165500359

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri May 10 10:28:19 ID: gULXnTbdkc2aFYwQ74WH4Ryi1Mx-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?ff Page: 1

4-0-12 3-7-8

Scale = 1:24.9

Loading	(psf)	Spacing	2-0-0	csı		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.20	Vert(LL)	0.01	4-9	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.14	Vert(CT)	-0.02	4-9	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 14 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No 2

BRACING

TOP CHORD Structural wood sheathing directly applied or

4-0-12 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 2=0-3-8, 3= Mechanical, 4=

Mechanical Max Horiz 2=47 (LC 10)

2=-103 (LC 10), 3=-37 (LC 10), Max Uplift

4=-13 (LC 10)

Max Grav 2=328 (LC 21), 3=119 (LC 21), 4=62 (LC 7)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/18, 2-3=-114/133

BOT CHORD 2-4=-128/139

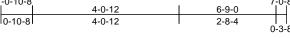
- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Bearings are assumed to be: , Joint 2 User Defined .
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 37 lb uplift at joint 3, 13 lb uplift at joint 4 and 103 lb uplift at joint 2.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

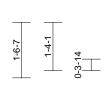
LOAD CASE(S) Standard

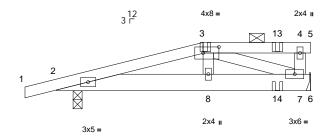
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall



Job	Truss	Truss Type	Qty	Ply	182 Serenity-Roof-329 A COP GRH	
24050248	MH01	Half Hip Girder	1	1	Job Reference (optional)	165500360


Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri May 10 10:28:20 ID:ISsvCrchB6VoiJmNU0Vlxxyi1Le-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


NAUED

Page: 1

		Speciai	NAIL	.EU
0-5-8				7-0-8
	4-2-8		6-9-0	
0-5-8	3-9-0		2-6-8	0-3-8

Scale = 1:31.9

Plate Offsets (X, Y): [3:0-5-4,0-2-0]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.23	Vert(LL)	-0.01	8-12	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.24	Vert(CT)	-0.02	8-12	>999	180		
TCDL	10.0	Rep Stress Incr	NO	WB	0.19	Horz(CT)	0.00	7	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 34 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No 2 BOT CHORD 2x6 SP No 2 **WEBS** 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins, except 2-0-0 oc purlins: 3-5.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size)

2=0-3-0. 7= Mechanical

Max Horiz 2=49 (LC 8)

Max Uplift 2=-182 (LC 8), 7=-156 (LC 8)

Max Grav 2=550 (LC 34), 7=508 (LC 33)

FORCES (lb) - Maximum Compression/Maximum

Tension TOP CHORD 1-2=0/17, 2-3=-780/241, 3-4=0/0, 4-5=0/0

BOT CHORD 2-8=-241/732, 7-8=-252/770, 6-7=0/0

3-8=-72/251, 4-7=-164/51, 3-7=-818/268

WEBS NOTES

- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; porch left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads
- Provide adequate drainage to prevent water ponding.

- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 156 lb uplift at joint
- 11) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 14) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.
- 15) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 213 lb down and 107 lb up at 4-0-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 16) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (lb/ft)

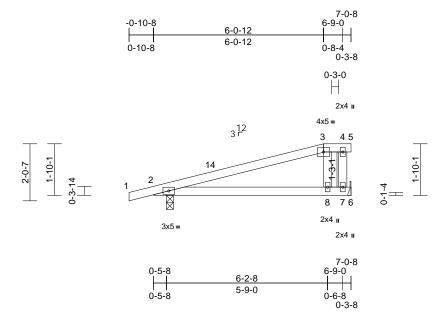
Vert: 1-3=-60, 3-5=-60, 2-6=-20

Concentrated Loads (lb)

Vert: 8=-213 (B), 3=-59 (B), 13=-61 (B), 14=-28 (B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall


building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	182 Serenity-Roof-329 A COP GRH	
24050248	MH02	Half Hip	1	1	Job Reference (optional)	l65500361

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri May 10 10:28:21 ID:KCvvUO7fLjVtydn3rsiDZbyi1Fp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:41.1

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.64	Vert(LL)	0.15	8-13	>535	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.57	Vert(CT)	-0.19	8-13	>421	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.05	Horz(CT)	0.00	2	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 26 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 WFBS

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins, except 2-0-0 oc purlins: 3-5.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing

REACTIONS (size)

2=0-3-0, 7= Mechanical

Max Horiz 2=66 (LC 10)

Max Uplift 2=-139 (LC 10), 7=-94 (LC 10)

Max Grav 2=440 (LC 38), 7=287 (LC 38)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/17, 2-3=-113/129, 3-4=0/0, 4-5=0/0

BOT CHORD 2-8=-124/136, 7-8=0/0, 6-7=0/0

WEBS 3-8=-212/177, 4-7=-56/18

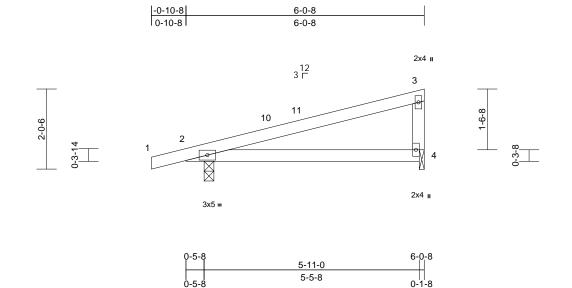
NOTES

- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Exterior(2R) 2-1-8 to 6-0-12. Exterior(2E) 6-0-12 to 7-0-8 zone: porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.

- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 94 lb uplift at joint
- 11) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

May 13,2024


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

Job	Truss	Truss Type	Qty	Ply	182 Serenity-Roof-329 A COP GRH	
24050248	L02	Monopitch	8	1	Job Reference (optional)	165500362

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri May 10 10:28:20 Page: 1

Scale = 1:29.2

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.57	Vert(LL)	0.08	4-9	>882	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.40	Vert(CT)	-0.10	4-9	>689	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	2	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 21 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 WFBS

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins, except end verticals. **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 2=0-3-0, 4=0-1-8

Max Horiz 2=65 (LC 10)

Max Uplift 2=-127 (LC 10), 4=-83 (LC 10) Max Grav 2=423 (LC 21), 4=271 (LC 21)

(lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/18, 2-3=-117/137, 3-4=-194/163

BOT CHORD 2-4=-132/141

NOTES

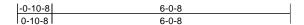
FORCES

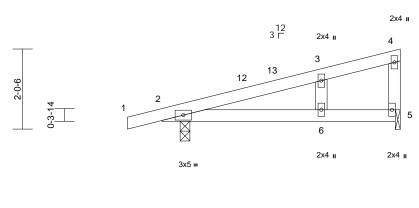
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 2-10-12, Exterior(2E) 2-10-12 to 5-10-12 zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

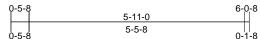
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Bearings are assumed to be: Joint 4 SP No.3. Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 10) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 4 and 2. This connection is for uplift only and does not consider lateral forces.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)




Job	Truss	Truss Type	Qty	Ply	182 Serenity-Roof-329 A COP GRH	
24050248	L01	Monopitch	1	1	Job Reference (optional)	165500363

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri May 10 10:28:20

Page: 1

Scale = 1:29.2

Loading	(psf)	Spacing	1-11-4	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.42	Vert(LL)	0.09	6-11	>801	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.46	Vert(CT)	-0.12	6-11	>601	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.02	Horz(CT)	0.00	2	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 23 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 WFBS OTHERS 2x4 SP No.3

BRACING

BOT CHORD

TOP CHORD Structural wood sheathing directly applied or

> 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc

bracing

REACTIONS (size)

2=0-3-0, 5=0-1-8 Max Horiz 2=63 (LC 10)

Max Uplift 2=-123 (LC 10), 5=-81 (LC 10)

Max Grav 2=409 (LC 21), 5=263 (LC 21)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/17, 2-3=-113/133, 3-4=-36/32,

4-5=-149/126

BOT CHORD 2-6=-128/136, 5-6=0/0

WEBS 3-6=-87/70

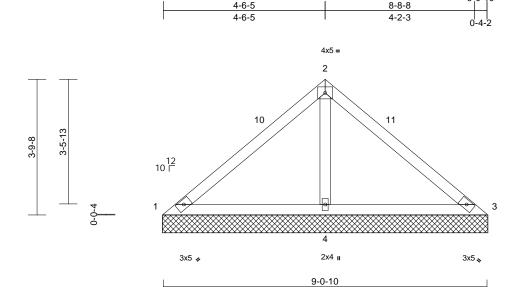
NOTES

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 2-10-12, Exterior(2E) 2-10-12 to 5-10-12 zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

- 4) Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Bearings are assumed to be: Joint 5 SP No.3.
- 10) Bearing at joint(s) 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 11) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 5.
- 12) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 5 and 2. This connection is for uplift only and does not consider lateral forces.
- 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	182 Serenity-Roof-329 A COP GRH	
24050248	VLD5	Valley	1	1	Job Reference (optional)	165500364

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri May 10 10:28:23 ID:NM3Z3jjUOsZCUlcg4sDncXyi376-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Scale = 1:32.2

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.40	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.39	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.21	Horiz(TL)	0.00	3	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 34 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 **OTHERS**

BRACING

TOP CHORD Structural wood sheathing directly applied or

9-0-10 oc purlins.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

REACTIONS (size) 1=9-1-3, 3=9-1-3, 4=9-1-3, 9=9-1-3

Max Horiz 1=-85 (LC 10)

Max Uplift 1=-136 (LC 21), 3=-1 (LC 15),

4=-57 (LC 15), 9=-1 (LC 15)

Max Grav 1=131 (LC 20), 3=4 (LC 21), 4=897

(LC 21), 9=4 (LC 21)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=-124/428, 2-3=-189/509

1-4=-295/131, 3-4=-339/157 **BOT CHORD WEBS** 2-4=-756/206

NOTES

- Unbalanced roof live loads have been considered for 1) this design
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-0 to 3-0-0, Exterior(2R) 3-0-0 to 6-1-3, Exterior(2E) 6-1-3 to 9-1-3 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.

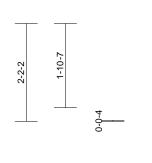
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.

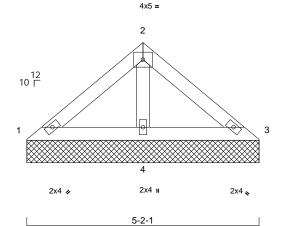
 * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 136 lb uplift at joint 1, 1 lb uplift at joint 3, 57 lb uplift at joint 4 and 1 lb uplift
- 11) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 1, 3, 9.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job	Truss	Truss Type	Qty	Ply	182 Serenity-Roof-329 A COP GRH	
24050248	VLG5	Valley	1	1	Job Reference (optional)	165500365

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri May 10 10:28:24 ID:NocWnBzN1oTHB2KDr3rn1JyiMMV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:25.7

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.10	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.13	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.04	Horiz(TL)	0.00	4	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 19 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 OTHERS

BRACING

Structural wood sheathing directly applied or TOP CHORD

5-2-1 oc purlins.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

REACTIONS (size) 1=5-2-1, 3=5-2-1, 4=5-2-1 Max Horiz 1=47 (LC 13)

Max Uplift 3=-6 (LC 15), 4=-38 (LC 14)

Max Grav 1=92 (LC 20), 3=92 (LC 21), 4=323

(LC 21)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-84/117, 2-3=-84/117

BOT CHORD 1-4=-95/97, 3-4=-95/97

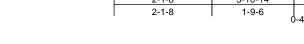
WEBS 2-4=-236/111

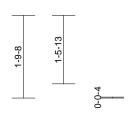
NOTES

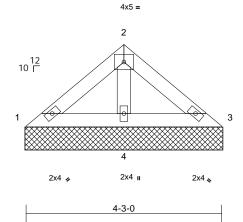
- Unbalanced roof live loads have been considered for
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

- 5) Unbalanced snow loads have been considered for this design.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 6 lb uplift at joint 3 and 38 lb uplift at joint 4.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard




May 13,2024


Job	Truss	Truss Type	Qty	Ply	182 Serenity-Roof-329 A COP GRH	
24050248	VLD7	Valley	1	1	Job Reference (optional)	165500366

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri May 10 10:28:23 ID:CTJXfDa4PaYXYgchQWvHEbyi3?Y-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Scale = 1:25

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.06	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.08	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.03	Horiz(TL)	0.00	4	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 15 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 **OTHERS**

BRACING

TOP CHORD Structural wood sheathing directly applied or

4-3-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

REACTIONS (size) 1=4-3-10, 3=4-3-10, 4=4-3-10

Max Horiz 1=-38 (LC 10)

1=-1 (LC 14), 3=-8 (LC 15), 4=-26 Max Uplift

(IC 14)

Max Grav 1=81 (LC 20), 3=81 (LC 21), 4=251

(LC 20)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-74/83, 2-3=-74/83

1-4=-67/73, 3-4=-67/73 **BOT CHORD**

WEBS 2-4=-169/73

NOTES

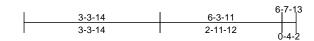
- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable. or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

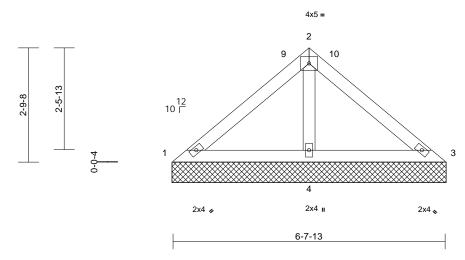
- Unbalanced snow loads have been considered for this design.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 1 lb uplift at joint 1, 8 lb uplift at joint 3 and 26 lb uplift at joint 4.
- 11) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 1, 3.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job	Truss	Truss Type	Qty	Ply	182 Serenity-Roof-329 A COP GRH	
24050248	VLD6	Valley	1	1	Job Reference (optional)	165500367

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri May 10 10:28:23 ID:NM3Z3jjUOsZCUlcg4sDncXyi376-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:28.2

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.21	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.22	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.07	Horiz(TL)	0.00	4	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 25 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 **OTHERS**

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-7-13 oc purlins.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

REACTIONS (size) 1=6-8-7, 3=6-8-7, 4=6-8-7

Max Horiz 1=61 (LC 11)

Max Uplift 1=-10 (LC 21), 3=-10 (LC 20),

4=-63 (LC 14)

Max Grav 1=101 (LC 20), 3=101 (LC 21),

4=478 (LC 20)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-86/201, 2-3=-86/201

1-4=-160/140, 3-4=-160/140 **BOT CHORD**

WEBS 2-4=-376/180

NOTES

- Unbalanced roof live loads have been considered for 1) this design
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-0 to 3-0-0, Exterior(2R) 3-0-0 to 3-8-7, Exterior(2E) 3-8-7 to 6-8-7 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.

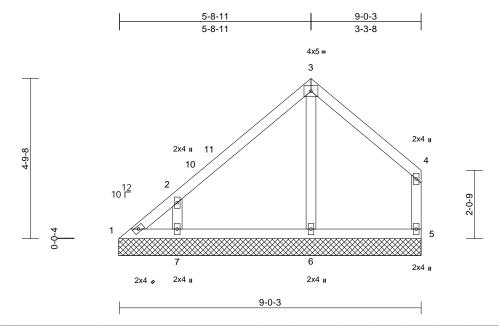
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

 * This truss has been designed for a live load of 20.0psf
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 10 lb uplift at joint 1, 10 lb uplift at joint 3 and 63 lb uplift at joint 4.
- 11) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 1, 3.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job Truss Truss Type Qtv Ply 182 Serenity-Roof-329 A COP GRH 165500368 24050248 VLD4 Valley 1 Job Reference (optional)

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri May 10 10:28:23 ID:vAVBsNisdZRLs81UW9iY4Kyi377-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scal	le	=	1	.34	

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.29	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.11	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.09	Horiz(TL)	0.00	5	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 40 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 WFBS OTHERS 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing

REACTIONS (size)

1=9-0-8, 5=9-0-8, 6=9-0-8, 7=9-0-8

Max Horiz 1=130 (LC 11)

1=-60 (LC 10), 5=-59 (LC 15), Max Uplift

6=-11 (LC 11), 7=-135 (LC 14) 1=93 (LC 13), 5=218 (LC 21),

Max Grav 6=300 (LC 20), 7=378 (LC 20)

FORCES (lb) - Maximum Compression/Maximum

Tension 1-2=-160/148, 2-3=-161/125, 3-4=-145/141,

TOP CHORD 4-5=-192/130

BOT CHORD 1-7=-31/42, 6-7=-24/42, 5-6=-24/42 WFBS 3-6=-218/59. 2-7=-359/287

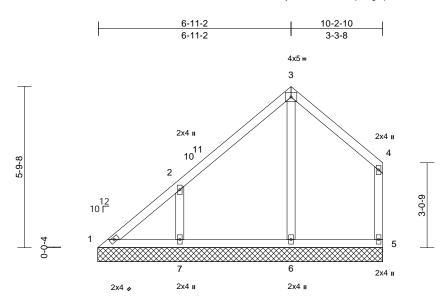
NOTES

- Unbalanced roof live loads have been considered for this design
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-0 to 3-0-0, Exterior(2R) 3-0-0 to 5-9-0, Exterior(2E) 5-9-0 to 8-10-12 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this desian.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.

 * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 59 lb uplift at joint 5, 60 lb uplift at joint 1, 11 lb uplift at joint 6 and 135 lb
- 11) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 1.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	182 Serenity-Roof-329 A COP GRH	
24050248	VLD3	Valley	1	1	Job Reference (optional)	165500369

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri May 10 10:28:22 ID:vAVBsNisdZRLs81UW9iY4Kyi377-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:41.4

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.30	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.10	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.13	Horiz(TL)	0.00	5	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 49 lb	FT = 20%

10-2-10

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 WFBS OTHERS 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc

BOT CHORD bracing

REACTIONS (size) 1=10-2-14, 5=10-2-14, 6=10-2-14,

7=10-2-14 Max Horiz 1=166 (LC 11)

Max Uplift

1=-48 (LC 10), 5=-52 (LC 15), 6=-20 (LC 11), 7=-150 (LC 14)

Max Grav 1=141 (LC 25), 5=206 (LC 21),

6=307 (LC 20), 7=395 (LC 20)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-185/155, 2-3=-164/137, 3-4=-127/154,

4-5=-179/134

1-7=-35/125. 6-7=-35/49. 5-6=-35/49

WFBS 3-6=-236/70. 2-7=-326/244

NOTES

BOT CHORD

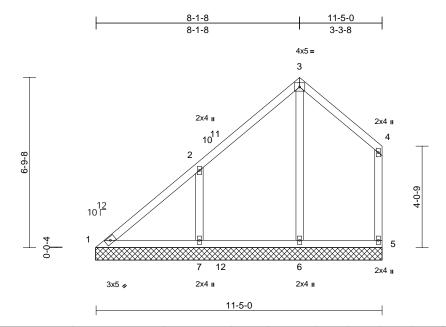
- 1) Unbalanced roof live loads have been considered for this design
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-0 to 2-11-6, Interior (1) 2-11-6 to 3-11-6, Exterior(2R) 3-11-6 to 6-11-6, Exterior(2E) 6-11-6 to 10-1-2 zone; cantilever left and right exposed end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this design.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 52 lb uplift at joint 5, 48 lb uplift at joint 1, 20 lb uplift at joint 6 and 150 lb uplift at joint 7.
- 11) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 1.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

Job	Truss	Truss Type	Qty	Ply	182 Serenity-Roof-329 A COP GRH	
24050248	VLD2	Valley	1	1	Job Reference (optional)	165500370

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri May 10 10:28:22 ID:vAVBsNisdZRLs81UW9iY4Kyi377-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.30	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.17	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.20	Horiz(TL)	0.00	5	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 58 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 WFBS OTHERS 2x4 SP No.3

BRACING

BOT CHORD

TOP CHORD Structural wood sheathing directly applied or

> 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc

bracing

REACTIONS (size) 1=11-5-5, 5=11-5-5, 6=11-5-5,

7=11-5-5 Max Horiz 1=202 (LC 11)

Max Uplift 1=-42 (LC 10), 5=-53 (LC 10),

6=-29 (LC 11), 7=-177 (LC 14) Max Grav 1=201 (LC 30), 5=203 (LC 6),

6=411 (LC 24), 7=502 (LC 24)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-269/176, 2-3=-177/156, 3-4=-123/173,

4-5=-173/143

1-7=-50/211. 6-7=-46/70. 5-6=-46/70

3-6=-250/80, 2-7=-364/245 WFBS

NOTES

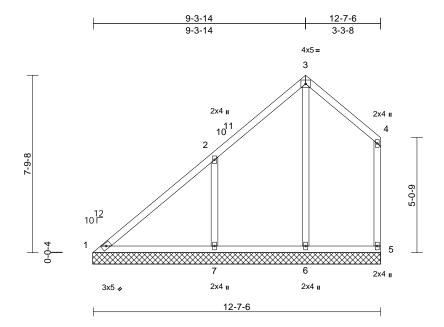
BOT CHORD

- 1) Unbalanced roof live loads have been considered for this design
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior (1) 3-0-0 to 5-1-13, Exterior(2R) 5-1-13 to 8-1-13, Exterior(2E) 8-1-13 to 11-3-9 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this 5) design.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 53 lb uplift at joint 5, 42 lb uplift at joint 1, 29 lb uplift at joint 6 and 177 lb uplift at joint 7.
- 11) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 1.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

Job	Truss	Truss Type	Qty	Ply	182 Serenity-Roof-329 A COP GRH	
24050248	VLD1	Valley	1	1	Job Reference (optional)	l65500371

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri May 10 10:28:22 ID:vAVBsNisdZRLs81UW9iY4Kyi377-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Sca	ما	_	1	.5	n	G

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	I/defI	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.38	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.29	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.27	Horiz(TL)	0.01	5	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 66 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 WFBS OTHERS 2x4 SP No.3

BRACING

BOT CHORD

TOP CHORD Structural wood sheathing directly applied or

> 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc

bracing

REACTIONS (size) 1=12-7-11, 5=12-7-11, 6=12-7-11,

7=12-7-11 Max Horiz 1=238 (LC 11)

1=-37 (LC 10), 5=-58 (LC 10), Max Uplift

6=-38 (LC 11), 7=-211 (LC 14)

Max Grav 1=253 (LC 25), 5=207 (LC 25),

6=389 (LC 24), 7=608 (LC 24)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-340/214, 2-3=-192/180, 3-4=-134/195,

4-5=-170/157

BOT CHORD 1-7=-63/283. 6-7=-60/90. 5-6=-60/90

3-6=-256/100, 2-7=-418/258 WFBS

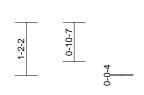
NOTES

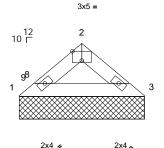
- 1) Unbalanced roof live loads have been considered for this design
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior (1) 3-0-0 to 6-4-3, Exterior(2R) 6-4-3 to 9-4-3, Exterior(2E) 9-4-3 to 12-5-15 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this design.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 58 lb uplift at joint 5, 37 lb uplift at joint 1, 38 lb uplift at joint 6 and 211 lb uplift at joint 7.
- 11) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 1.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall



Job	Truss	Truss Type	Qty	Ply	182 Serenity-Roof-329 A COP GRH	
24050248	VLG6	Valley	1	1	Job Reference (optional)	165500372

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri May 10 10:28:24 $ID:_TGVzwPShYnlowCr7nxwhhyiMJM-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?ff$

2-9-4

Scale = 1:25.5

Plate Offsets (X, Y): [2:0-2-8,Edge]

Loading	(psf)	Spacing	2-0-0	csı		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.06	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.06	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 8 lb	FT = 20%

LUMBER

2x4 SP No.2 TOP CHORD BOT CHORD 2x4 SP No.2

BRACING

Structural wood sheathing directly applied or TOP CHORD

2-9-4 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 1=2-9-4, 3=2-9-4

Max Horiz 1=-23 (LC 10) Max Uplift 1=-1 (LC 14), 3=-9 (LC 15) Max Grav 1=97 (LC 20), 3=122 (LC 21)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-146/59, 2-3=-158/64

BOT CHORD 1-3=-35/113

NOTES

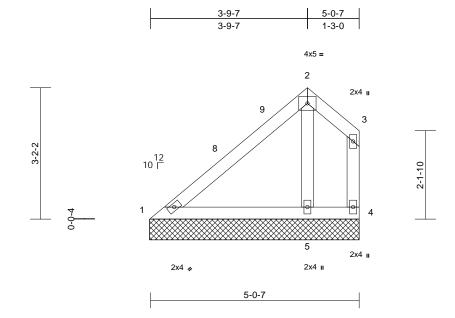
- Unbalanced roof live loads have been considered for 1)
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable. or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- Gable requires continuous bottom chord bearing.

- 7) Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 1 lb uplift at joint 1 and 9 lb uplift at joint 3.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

May 13,2024

Page: 1


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

Job	Truss	Truss Type	Qty	Ply	182 Serenity-Roof-329 A COP GRH	
24050248	VLG4	Valley	1	1	Job Reference (optional)	165500373

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries. Inc. Fri May 10 10:28:24 ID:n6mDrPobKViGVuGX17aVTMyiMMj-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:27.8

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.20	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.25	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.03	Horiz(TL)	0.00	4	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 23 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 WFBS OTHERS 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or

5-0-7 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc

bracing.

BOT CHORD REACTIONS (size)

1=5-0-12, 4=5-0-12, 5=5-0-12

Max Horiz 1=90 (LC 14)

Max Uplift 4=-35 (LC 35), 5=-60 (LC 14)

Max Grav 1=145 (LC 20), 4=27 (LC 21),

5=294 (LC 20)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-172/63, 2-3=-28/38, 3-4=-55/48

BOT CHORD 1-5=-120/171, 4-5=0/0

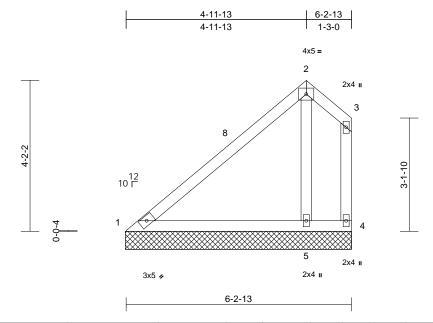
WEBS 2-5=-145/82

NOTES

- 1) Unbalanced roof live loads have been considered for this design
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-0 to 3-0-0, Exterior(2R) 3-0-0 to 3-9-12, Exterior(2E) 3-9-12 to 4-11-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

- 5) Unbalanced snow loads have been considered for this design.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 35 lb uplift at joint 4 and 60 lb uplift at joint 5.
- 11) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 1.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

Job	Truss	Truss Type	Qty	Ply	182 Serenity-Roof-329 A COP GRH	
24050248	VLG3	Valley	1	1	Job Reference (optional)	165500374

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri May 10 10:28:24 ID:8XWFmUSO9a2NXRYyqXZioEyiMNA-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Sca	le	=	1	:31	1.9

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.37	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.41	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.06	Horiz(TL)	0.01	4	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 30 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 WFBS OTHERS 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or

> 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc

bracing.

BOT CHORD REACTIONS (size)

1=6-3-2, 4=6-3-2, 5=6-3-2

Max Horiz 1=127 (LC 14)

Max Uplift 4=-78 (LC 35), 5=-93 (LC 14) Max Grav 1=185 (LC 20), 4=17 (LC 14),

5=393 (LC 20)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-221/81, 2-3=-30/36, 3-4=-58/45

BOT CHORD 1-5=-153/229, 4-5=0/0

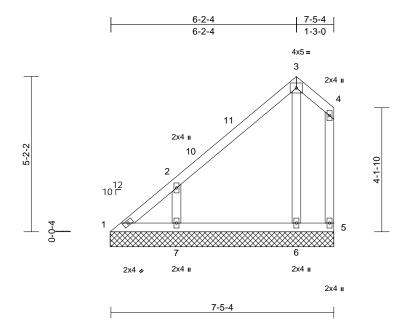
WEBS 2-5=-189/123

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-0 to 3-0-0, Exterior(2R) 3-0-0 to 5-0-2, Exterior(2E) 5-0-2 to 6-1-6 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

- 5) Unbalanced snow loads have been considered for this design.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 78 lb uplift at joint 4 and 93 lb uplift at joint 5.
- 11) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 1.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	182 Serenity-Roof-329 A COP GRH	
24050248	VLG2	Valley	1	1	Job Reference (optional)	165500375

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri May 10 10:28:23 ID:f3RS_KE6O2nxMgAUnIFT3RyiMNS-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:38.4

Loading TCLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.15	CSI TC	0.25	DEFL Vert(LL)	in n/a	(loc)	l/defl n/a	L/d 999	PLATES MT20	GRIP 244/190
Snow (Pf)	20.0	Lumber DOL	1.15	ВС	0.09	Vert(TL)	n/a	-	n/a	999	WITZO	244/100
TCDL BCLL	10.0 0.0*	Rep Stress Incr Code	YES IRC2018/TPI2014	WB Matrix-MP	0.10	Horiz(TL)	0.00	5	n/a	n/a		
BCDL	10.0										Weight: 39 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 WFBS OTHERS 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing

REACTIONS (size)

1=7-5-8, 5=7-5-8, 6=7-5-8, 7=7-5-8

Max Horiz 1=164 (LC 14)

Max Uplift 1=-27 (LC 12), 5=-33 (LC 15), 6=-23 (LC 14), 7=-146 (LC 14)

1=111 (LC 14), 5=48 (LC 21),

Max Grav 6=219 (LC 20), 7=343 (LC 24)

FORCES

(lb) - Maximum Compression/Maximum Tension

TOP CHORD

1-2=-279/173, 2-3=-102/66, 3-4=-30/33, 4-5=-58/40

BOT CHORD 1-7=-22/29 6-7=0/0 5-6=0/0 3-6=-155/97, 2-7=-370/331

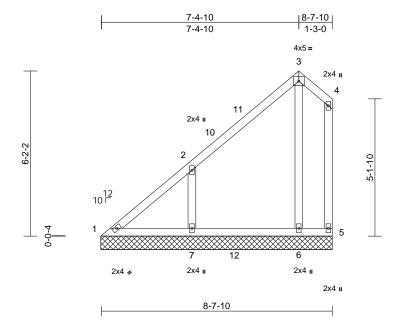
WFBS NOTES

- Unbalanced roof live loads have been considered for this design
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-0 to 3-0-0, Exterior(2R) 3-0-0 to 6-2-9, Exterior(2E) 6-2-9 to 7-3-12 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this desian.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.

 * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 33 lb uplift at joint 5, 27 lb uplift at joint 1, 23 lb uplift at joint 6 and 146 lb
- 11) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 1.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	182 Serenity-Roof-329 A COP GRH	
24050248	VLG1	Valley	1	1	Job Reference (optional)	165500376

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri May 10 10:28:23 ID:Y15h7GgdScsbER4SWOvSfXyiMOB-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.25	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.13	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.10	Horiz(TL)	0.00	5	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 48 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 WFBS OTHERS 2x4 SP No.3

BRACING

BOT CHORD

TOP CHORD Structural wood sheathing directly applied or

> 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 1=8-7-15, 5=8-7-15, 6=8-7-15,

> 7=8-7-15 Max Horiz 1=200 (LC 14)

Max Uplift 5=-33 (LC 15), 6=-20 (LC 14), 7=-167 (LC 14)

1=140 (LC 26), 5=51 (LC 21), Max Grav

6=295 (LC 24), 7=462 (LC 24)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-263/173, 2-3=-103/64, 3-4=-30/31,

4-5=-58/37

1-7=-64/120, 6-7=0/0, 5-6=0/0

BOT CHORD 3-6=-150/89, 2-7=-374/299 WFBS

NOTES

- 1) Unbalanced roof live loads have been considered for this design
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior (1) 3-0-0 to 4-4-15, Exterior(2R) 4-4-15 to 7-4-15, Exterior(2E) 7-4-15 to 8-6-3 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this desian.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

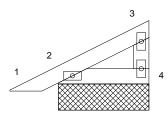
 * This truss has been designed for a live load of 20.0psf
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 33 lb uplift at joint 5, 20 lb uplift at joint 6 and 167 lb uplift at joint 7.
- 11) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 1.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qtv 182 Serenity-Roof-329 A COP GRH 165500377 24050248 PBA4 Piggyback 1 Job Reference (optional)


Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri May 10 10:28:21 ID:HBnipX?q_HaSfOcSlgUcbbyiJct-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

-0-11-1	1-8-12
0-11-1	1-8-12

Page: 1

2x4 =

2x4 II

1-8-12

Scale = 1:22

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.04	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.03	Vert(CT)	n/a	-	n/a	999			
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	2	n/a	n/a			
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP									
BCDL	10.0										Weight: 8 lb	FT = 20%	

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 WFBS

BRACING

TOP CHORD Structural wood sheathing directly applied or

2-8-5 oc purlins, except end verticals. **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc

bracing.

2=1-8-12, 4=1-8-12, 5=1-8-12 REACTIONS (size) Max Horiz 2=39 (LC 14), 5=39 (LC 14)

Max Uplift 2=-17 (LC 14), 4=-13 (LC 14), 5=-17 (LC 14)

Max Grav 2=144 (LC 21), 4=75 (LC 21), 5=144 (LC 21)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/23, 2-3=-23/18, 3-4=-48/34

BOT CHORD 2-4=-5/20

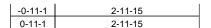
- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.

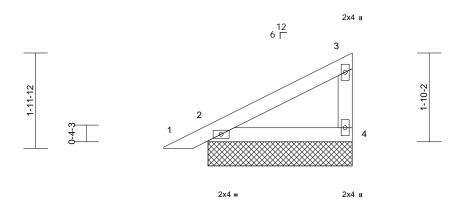
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom 8) chord live load nonconcurrent with any other live loads.
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 13 lb uplift at joint 4, 17 lb uplift at joint 2 and 17 lb uplift at joint 2.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

LOAD CASE(S) Standard

May 13,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall



Job	Truss	Truss Type	Qty	Ply	182 Serenity-Roof-329 A COP GRH	
24050248	PBA3	Piggyback	2	1	Joh Reference (optional)	165500378

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri May 10 10:28:21 ID:7_DWPyn153XQCG6H4kihg?yiJfk-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:23.9

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.14	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.13	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	2	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 13 lb	FT = 20%

2-11-15

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 WFBS

BRACING

TOP CHORD Structural wood sheathing directly applied or 3-11-8 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

2=2-11-15, 4=2-11-15, 5=2-11-15 REACTIONS (size) Max Horiz 2=62 (LC 14), 5=62 (LC 14) Max Uplift 2=-18 (LC 14), 4=-28 (LC 14),

> 5=-18 (LC 14) Max Grav 2=218 (LC 21), 4=153 (LC 21),

5=218 (LC 21) (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/25, 2-3=-48/37, 3-4=-104/73


BOT CHORD 2-4=-25/43

FORCES

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.

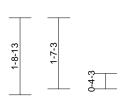
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom 8) chord live load nonconcurrent with any other live loads.
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 28 lb uplift at joint 4, 18 lb uplift at joint 2 and 18 lb uplift at joint 2.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

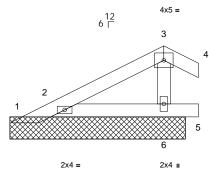
LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)




Job	Truss	Truss Type	Qty	Ply	182 Serenity-Roof-329 A COP GRH	
24050248	PBA2	Piggyback	1	1	Joh Reference (optional)	165500379

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri May 10 10:28:21

ID:7_DWPyn153XQCG6H4kihg?yiJfk-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

-0-11-1	2-6-1	3-3-7
0-11-1	2-6-1	0-9-5

2-6-1	3-3-7
2-6-1	0-9-5

Scale = 1:26

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.11	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.10	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.03	Horz(CT)	0.00	2	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 14 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 WFBS

BRACING

TOP CHORD Structural wood sheathing directly applied or

3-11-8 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 1=3-11-8, 2=3-11-8, 6=3-11-8, 7=3-11-8

Max Horiz 1=51 (LC 14)

Max Uplift 1=-53 (LC 21), 2=-52 (LC 14),

7=-52 (LC 14)

1=38 (LC 14), 2=236 (LC 21), Max Grav

6=180 (LC 1), 7=236 (LC 21)

FORCES (lb) - Maximum Compression/Maximum

Tension

1-2=-88/85, 2-3=-32/40, 3-4=0/31 TOP CHORD

BOT CHORD 2-6=-19/2. 5-6=0/0

WFBS 3-6=-116/108

NOTES 1) Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10

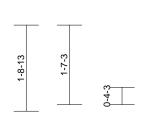
- 5) Unbalanced snow loads have been considered for this desian.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 11) Bearing at joint(s) 2, 1, 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 52 lb uplift at joint 2, 53 lb uplift at joint 1 and 52 lb uplift at joint 2.
- 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 14) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

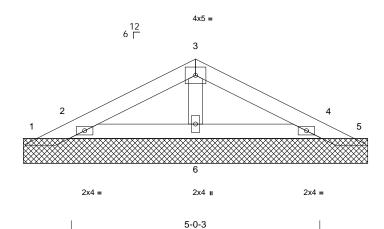
LOAD CASE(S) Standard

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)




Job	Truss	Truss Type	Qty	Ply	182 Serenity-Roof-329 A COP GRH	
24050248	PBA1	Piggyback	8	1	Job Reference (optional)	165500380

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri May 10 10:28:21 ID:?8ITrSbZAyBKSCdSL9yiiLyiJhG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

-0-11-1	2-6-1	5-0-3	5-11-4
0-11-1	2-6-1	2-6-1	0-11-1

Scale = 1:23.2

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.12	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.07	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.02	Horiz(TL)	0.00	4	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 20 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 OTHERS

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size)

1=6-11-5, 2=6-11-5, 4=6-11-5, 5=6-11-5, 6=6-11-5, 7=6-11-5,

10=6-11-5

Max Horiz 1=-25 (LC 15)

Max Uplift 1=-53 (LC 21), 2=-47 (LC 14), 4=-48 (LC 15), 5=-50 (LC 22),

7=-47 (LC 14), 10=-48 (LC 15)

Max Grav 1=25 (LC 14), 2=290 (LC 21),

4=277 (LC 22), 5=14 (LC 15),

6=170 (LC 21), 7=290 (LC 21),

10=277 (LC 22)

FORCES (lb) - Maximum Compression/Maximum

Tension

3-6=-90/42

TOP CHORD 1-2=-32/54, 2-3=-65/55, 3-4=-65/55, 4-5=-12/53

BOT CHORD 2-6=-11/28 4-6=-12/28 WFBS

NOTES

- Unbalanced roof live loads have been considered for this design
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

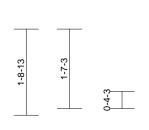
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this 5) design.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 47 lb uplift at joint 2, 48 lb uplift at joint 4, 53 lb uplift at joint 1, 50 lb uplift at joint 5, 47 lb uplift at joint 2 and 48 lb uplift at joint 4.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

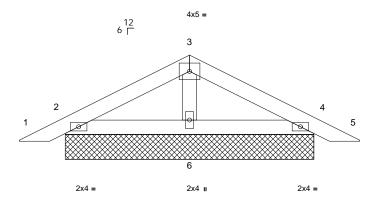
LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)




Job	Truss	Truss Type	Qty	Ply	182 Serenity-Roof-329 A COP GRH	
24050248	PBA	Piggyback	1	1	Job Reference (optional)	165500381

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri May 10 10:28:21

 $ID: XgDf3INHPQvtHRF_HNdUzYyiJhY-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?ffactorial and the property of the$

-0-11-1	2-6-1	5-0-3	5-11-4	
0-11-1	2-6-1	2-6-1	0-11-1	

5-0-3

Scale =	1:23.2	

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.09	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.10	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.02	Horz(CT)	0.00	4	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 20 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 OTHERS

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 2=5-0-3, 4=5-0-3, 6=5-0-3, 7=5-0-3,

11=5-0-3

Max Horiz 2=25 (LC 14), 7=25 (LC 14) Max Uplift 2=-31 (LC 14), 4=-35 (LC 15), 6=-3

(LC 14), 7=-31 (LC 14), 11=-35 (LC

15)

Max Grav 2=196 (LC 21), 4=196 (LC 22),

6=194 (LC 21), 7=196 (LC 21),

11=196 (LC 22)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/24, 2-3=-57/57, 3-4=-57/57, 4-5=0/24


BOT CHORD 2-6=-5/35, 4-6=0/35 3-6=-101/44 WEBS

NOTES

- Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face). see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.

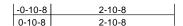
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 31 lb uplift at joint 2, 35 lb uplift at joint 4, 3 lb uplift at joint 6, 31 lb uplift at joint 2 and 35 lb uplift at joint 4.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 13) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

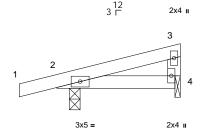
LOAD CASE(S) Standard

Page: 1

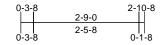
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall


building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Job	Truss	Truss Type	Qty	Ply	182 Serenity-Roof-329 A COP GRH	
24050248	H02	Jack-Closed	9	1	Job Reference (optional)	165500382

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri May 10 10:28:19 ID:JZY989jmNtkp0yAOw6RgmPyiMvh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


Page: 1

Scale = 1:26.8

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.09	Vert(LL)	0.00	4-7	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.10	Vert(CT)	-0.01	4-7	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	2	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 11 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 WFBS

BRACING

TOP CHORD Structural wood sheathing directly applied or 2-10-8 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 2=0-3-0, 4=0-1-8 Max Horiz 2=36 (LC 10)

Max Uplift 2=-76 (LC 10), 4=-39 (LC 10)

Max Grav 2=221 (LC 21), 4=127 (LC 21) (lb) - Maximum Compression/Maximum

FORCES Tension

TOP CHORD 1-2=0/17, 2-3=-68/33, 3-4=-83/75

BOT CHORD 2-4=-50/52

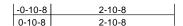
NOTES

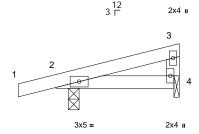
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

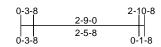
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 7) Bearings are assumed to be: Joint 2 User Defined , Joint 4 SP No.3.
- Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 10) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 4 and 2. This connection is for uplift only and does not consider lateral forces.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Job	Truss	Truss Type	Qty	Ply	182 Serenity-Roof-329 A COP GRH	
24050248	H01	Jack-Closed	2	1	Job Reference (optional)	165500383


Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri May 10 10:28:19 ID:JZY989jmNtkp0yAOw6RgmPyiMvh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:26.8

Loading	(psf)	Spacing	1-11-4	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.09	Vert(LL)	0.00	4-7	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.10	Vert(CT)	-0.01	4-7	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	2	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 11 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 WFBS

BRACING

TOP CHORD Structural wood sheathing directly applied or 2-10-8 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS (size) 2=0-3-0, 4=0-1-8

Max Horiz 2=35 (LC 10)

Max Uplift 2=-73 (LC 10), 4=-38 (LC 10)

Max Grav 2=214 (LC 21), 4=123 (LC 21) (lb) - Maximum Compression/Maximum

FORCES Tension

1-2=0/17, 2-3=-66/32, 3-4=-80/73 TOP CHORD

BOT CHORD 2-4=-48/51

NOTES

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

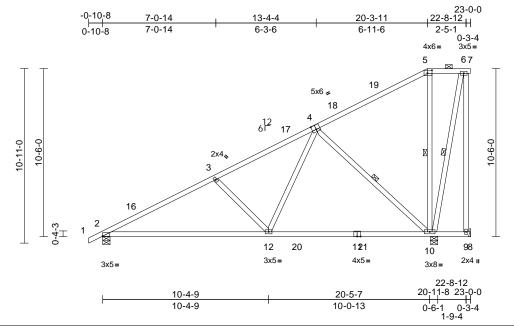
- Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Bearings are assumed to be: Joint 2 User Defined , Joint 4 SP No.3.
- 10) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 11) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 12) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 4 and 2. This connection is for uplift only and does not consider lateral forces.
- 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Ply Job Truss Truss Type Qtv 182 Serenity-Roof-329 A COP GRH 165500384 24050248 K01 Piggyback Base 1 Job Reference (optional)

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri May 10 10:28:20 ID:xa1Os7ns4F4A5BZ91BVIt8yi2Be-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:72.1

Plate Offsets (X, Y): [2:Edge,0-0-4], [4:0-3-0,0-3-4], [5:0-3-8,0-2-4]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.83	Vert(LL)	-0.27	10-12	>902	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.87	Vert(CT)	-0.43	12-15	>577	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.53	Horz(CT)	0.03	10	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 150 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No 2 BOT CHORD

2x4 SP No.1 *Except* 11-8:2x4 SP No.2 **WEBS** 2x4 SP No.3 *Except* 10-6:2x4 SP No.2 BRACING

TOP CHORD

Structural wood sheathing directly applied or

3-3-7 oc purlins, except 2-0-0 oc purlins (10-0-0 max.): 5-7.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing, Except:

6-0-0 oc bracing: 9-10. **WEBS** 1 Row at midpt

5-10, 6-10, 4-10 REACTIONS 2=0-5-8, 9= Mechanical, 10=0-5-8 (size)

Max Horiz 2=387 (LC 14)

Max Uplift 2=-52 (LC 14), 9=-393 (LC 44),

10=-231 (LC 14)

Max Grav 2=919 (LC 40), 9=19 (LC 14),

10=1643 (LC 40)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD

1-2=0/23, 2-3=-1449/43, 3-5=-1191/196,

5-6=-5/72. 6-7=0/0

BOT CHORD 2-12=-329/1354, 10-12=-179/732, 9-10=-5/1,

8-9=0/0

6-9=-38/337, 5-10=-422/169, 6-10=-330/25,

3-12=-435/200, 4-12=-25/826,

4-10=-1091/250

NOTES

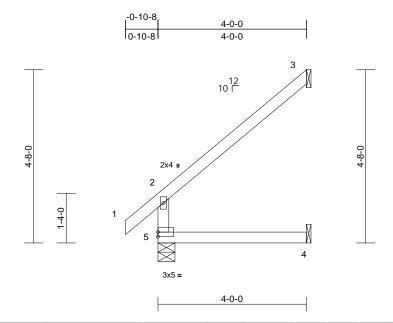
WEBS

Unbalanced roof live loads have been considered for

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 17-3-11. Exterior(2R) 17-3-11 to 20-3-11. Exterior(2E) 20-3-11 to 23-0-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Refer to girder(s) for truss to truss connections.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 393 lb uplift at joint
- 11) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 10. This connection is for uplift only and does not consider lateral forces.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	182 Serenity-Roof-329 A COP GRH	
24050248	EJ4	Jack-Open	22	1	Job Reference (optional)	165500385

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries. Inc. Fri May 10 10:28:19 ID:d3hD92STipIWgxctoeVD3ZyiMtS-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:31.1

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.52	Vert(LL)	0.03	4-5	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.36	Vert(CT)	-0.03	4-5	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	-0.06	3	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MR								
BCDL	10.0										Weight: 17 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 WFBS

BRACING

TOP CHORD Structural wood sheathing directly applied or 4-0-0 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 3= Mechanical, 4= Mechanical, 5=0-5-8

Max Horiz 5=129 (LC 14)

Max Uplift 3=-99 (LC 14), 4=-8 (LC 14)

Max Grav 3=178 (LC 21), 4=73 (LC 7), 5=307

(LC 21)

FORCES (lb) - Maximum Compression/Maximum

Tension

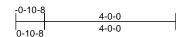
TOP CHORD 2-5=-283/75, 1-2=0/39, 2-3=-142/88

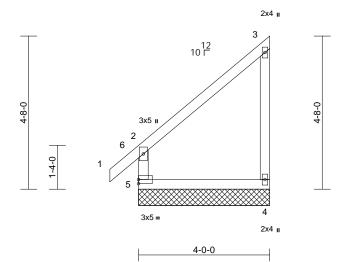
BOT CHORD 4-5=0/0

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Bearings are assumed to be: , Joint 5 User Defined .
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 99 lb uplift at joint 3 and 8 lb uplift at joint 4.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard




May 13,2024

Job	Truss	Truss Type	Qty	Ply	182 Serenity-Roof-329 A COP GRH	
24050248	EJ4A	Jack-Open	1	1	Joh Reference (optional)	165500386

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri May 10 10:28:19 ID:ClcXAL8ntWAFloQVACTkwtyiMoh-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Scale = 1:35.1

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.41	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.28	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.07	Horz(CT)	n/a	-	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 23 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 WFBS

BRACING

TOP CHORD Structural wood sheathing directly applied or 4-0-0 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 4=4-0-0, 5=4-0-0

Max Horiz 5=126 (LC 14) Max Uplift 4=-105 (LC 14)

Max Grav 4=223 (LC 21), 5=317 (LC 21)

FORCES (lb) - Maximum Compression/Maximum

Tension TOP CHORD 2-5=-290/64, 1-2=0/49, 2-3=-140/88

BOT CHORD 4-5=0/0WEBS 3-4=-176/178

NOTES

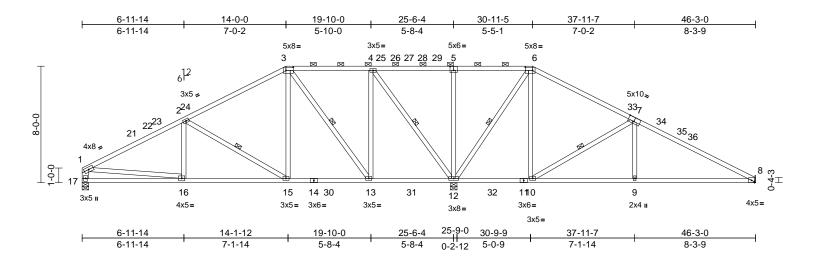
- Unbalanced roof live loads have been considered for 1)
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- Gable requires continuous bottom chord bearing

- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SP No.2.
- 10) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 4. This connection is for uplift only and does not consider lateral forces.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	182 Serenity-Roof-329 A COP GRH	
24050248	A03	Hip	1	1	Job Reference (optional)	165500387

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri May 10 10:28:15 ID:d2_gHEcziVw5P8LG6eS_rEyi3?V-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:79.1

Plate Offsets (X, Y): [3:0-6-0,0-2-8], [5:0-3-0,0-3-4], [6:0-6-0,0-2-8], [7:0-5-0,0-3-4]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.96	Vert(LL)	-0.17	9-20	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.81	Vert(CT)	-0.32	9-20	>774	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.73	Horz(CT)	0.03	8	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 274 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 *Except* 7-8,7-6:2x4 SP No.1

BOT CHORD 2x4 SP No.2

WEBS 2x4 SP No.3 *Except* 17-1:2x6 SP No.2

BRACING TOP CHORD

Structural wood sheathing directly applied, except end verticals, and 2-0-0 oc purlins

(6-0-0 max.): 3-6.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing, Except:

6-0-0 oc bracing: 12-13,10-12. **WEBS** 2-15, 3-13, 4-12, 6-12, 1 Row at midpt

7-10

REACTIONS (size) 8= Mechanical, 12=0-5-8, 17=0-5-8

Max Horiz 17=-138 (LC 15)

Max Uplift 8=-109 (LC 15), 12=-158 (LC 15), 17=-124 (LC 14)

8=718 (LC 44), 12=2613 (LC 45),

17=997 (LC 36)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-1446/201, 2-3=-789/186, 3-4=-233/144,

4-6=0/869, 1-17=-909/160, 6-8=-1064/266

BOT CHORD 16-17=-139/295, 15-16=-202/1232, 13-15=-48/631, 12-13=-138/312,

10-12=-176/143, 9-10=-75/895, 8-9=-75/895 2-16=0/233, 2-15=-804/179, 3-15=-14/666,

7-9=0/349, 5-12=-521/146, 3-13=-949/105,

4-13=-16/987, 4-12=-1587/191,

1-16=-63/1003, 6-10=-32/765,

6-12=-1408/138, 7-10=-1088/221

NOTES

WEBS

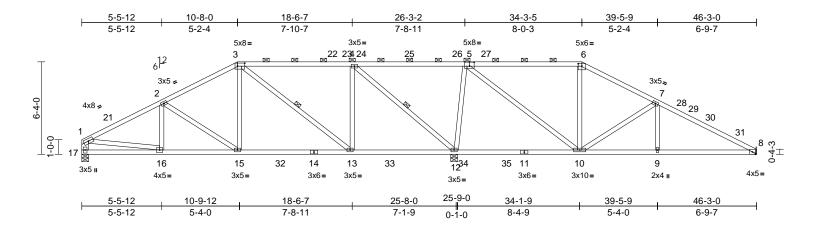
Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-2-12 to 4-10-4, Interior (1) 4-10-4 to 7-5-8, Exterior(2R) 7-5-8 to 20-6-8, Interior (1) 20-6-8 to 24-4-13, Exterior(2R) 24-4-13 to 37-5-13, Interior (1) 37-5-13 to 41-7-8, Exterior(2E) 41-7-8 to 46-3-0 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 109 lb uplift at joint
- 10) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 17 and 12. This connection is for uplift only and does not consider lateral forces.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not


a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	182 Serenity-Roof-329 A COP GRH	
24050248	A02	Hip	1	1	Job Reference (optional)	165500388

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries. Inc. Fri May 10 10:28:15 ID:G7I4v5m?S53dyvwRJiljnNyi372-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:79

Plate Offsets (X, Y): [3:0-6-0,0-2-8], [5:0-3-12,0-3-4], [6:0-3-0,0-2-0]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.86	Vert(LL)	-0.15	10-12	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.75	Vert(CT)	-0.26	10-12	>965	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.97	Horz(CT)	0.03	8	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 254 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 *Except* 3-5,5-6:2x4 SP No.1

BOT CHORD 2x4 SP No.2

WEBS 2x4 SP No.3 *Except* 17-1:2x6 SP No.2

BRACING TOP CHORD

Structural wood sheathing directly applied or 3-10-3 oc purlins, except end verticals, and

2-0-0 oc purlins (4-2-2 max.): 3-6.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing, Except:

6-0-0 oc bracing: 10-12. **WEBS** 3-13, 4-12 1 Row at midpt

REACTIONS 8= Mechanical, 12=0-5-8, 17=0-5-8 (size)

Max Horiz 17=-97 (LC 19)

Max Uplift 8=-119 (LC 15), 12=-193 (LC 10), 17=-135 (LC 14)

8=823 (LC 44), 12=2604 (LC 45),

17=1071 (LC 36)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-1510/216, 2-3=-1151/219,

3-4=-625/180, 4-6=-369/845, 6-7=-551/183,

7-8=-1306/222, 1-17=-989/164 **BOT CHORD** 16-17=-94/241, 15-16=-203/1276,

13-15=-103/965, 12-13=-81/601,

10-12=-730/157, 9-10=-119/1079,

8-9=-119/1079

2-16=-64/100, 2-15=-516/119, 3-15=0/552,

3-13=-698/63, 4-13=0/714, 4-12=-1869/228,

5-12=-1372/266, 5-10=-111/1315, 6-10=-266/93, 7-10=-841/172, 7-9=0/243,

1-16=-110/1078

NOTES

WEBS

1) Unbalanced roof live loads have been considered for this design.

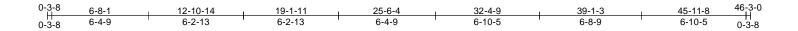
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-2-12 to 4-10-4, Exterior(2R) 4-10-4 to 17-2-8. Interior (1) 17-2-8 to 27-8-13. Exterior (2R) 27-8-13 to 40-9-13, Interior (1) 40-9-13 to 41-7-8, Exterior(2E) 41-7-8 to 46-3-0 zone; cantilever left and right exposed: end vertical left and right exposed: C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this
- Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 119 lb uplift at joint
- 10) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 17 and 12. This connection is for uplift only and does not consider lateral forces.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

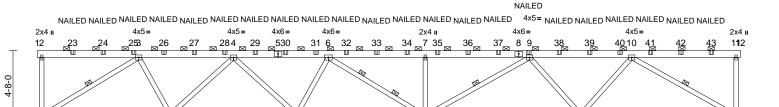
LOAD CASE(S) Standard

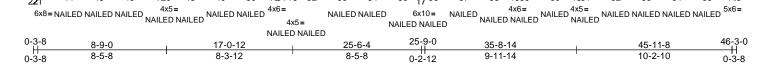
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not

a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Job	Truss	Truss Type	Qty	Ply	182 Serenity-Roof-329 A COP GRH	
24050248	A01	Flat	1	1	Job Reference (optional)	165500389


Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri May 10 10:28:14 ID:C?sBVu?G6imTJZQMRH739iyiJIv-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


1659

58

Page: 1

55

56

17

57

54

53

Scale = 1:75.8

2**2**1

Plate Offsets (X, Y): [14:0-3-0,0-3-8], [17:0-5-0,0-4-4], [21:0-3-8,0-4-0]

46

4720 48 49

50

195118

52

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.84	Vert(LL)	-0.12	14-15	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.66	Vert(CT)	-0.26	14-15	>926	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.95	Horz(CT)	0.06	14	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 322 lb	FT = 20%

LUMBER

2x6 SP No.2 TOP CHORD BOT CHORD 2x6 SP No.2 **WEBS** 2x4 SP No.3

44

45

BRACING

TOP CHORD 2-0-0 oc purlins (4-10-7 max.): 1-12.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing, Except:

8-5-2 oc bracing: 20-21 7-11-11 oc bracing: 18-20.

WEBS 3-21, 9-17, 10-14 1 Row at midpt

WEBS 2 Rows at 1/3 pts 6-17

REACTIONS (size) 14= Mechanical, 17=0-5-8, 21=0-5-8

14=-432 (LC 11), 17=-1635 (LC Max Uplift 10), 21=-584 (LC 11)

Max Grav 14=1165 (LC 1), 17=4241 (LC 1), 21=1580 (LC 1)

FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD

1-2=0/0. 2-3=0/0. 3-4=-2024/800. 4-6=-1344/528, 6-7=-715/1711,

7-9=-715/1711, 9-10=-1018/366, 10-11=0/0, 11-12=0/0

BOT CHORD 21-22=0/0, 20-21=-778/1833

18-20=-864/2039, 17-18=-372/853,

15-17=-238/517, 14-15=-520/1168, 13-14=0/0

WEBS 7-17=-858/472, 11-14=-308/159,

2-21=-269/137, 3-21=-2196/932, 3-20=-50/481, 4-20=-35/147, 4-18=-989/478,

6-18=-353/1109, 6-17=-3071/1303, 9-17=-2613/1118, 9-15=-206/804, 10-15=-261/247, 10-14=-1370/610

NOTES

1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner (3) 0-0-0 to 5-0-0, Exterior (2) 5-0-0 to 41-3-0, Corner (3) 41-3-0 to 46-3-0 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

Unbalanced snow loads have been considered for this

Provide adequate drainage to prevent water ponding.

This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

Refer to girder(s) for truss to truss connections.

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 1635 lb uplift at joint 17 and 432 lb uplift at joint 14.

H10A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 21. This connection is for uplift only and does not consider lateral forces.

10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

12) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.

13) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (lb/ft)

Vert: 1-12=-60, 13-22=-20

Concentrated Loads (lb)

1561

60

62

64

63

65

1413

Vert: 9=-118 (F), 23=-118 (F), 24=-118 (F), 25=-118 (F), 26=-118 (F), 27=-118 (F), 28=-118 (F), 29=-118

(F), 30=-118 (F), 31=-118 (F), 32=-118 (F), 33=-118

(F), 34=-118 (F), 35=-118 (F), 36=-118 (F), 37=-118

(F), 38=-118 (F), 39=-118 (F), 40=-118 (F), 41=-118 (F), 42=-118 (F), 43=-118 (F), 44=-32 (F), 45=-32 (F),

46=-32 (F), 47=-32 (F), 48=-32 (F), 49=-32 (F),

50=-32 (F), 51=-32 (F), 52=-32 (F), 53=-32 (F),

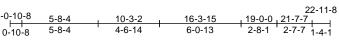
54=-32 (F), 55=-32 (F), 56=-32 (F), 57=-32 (F),

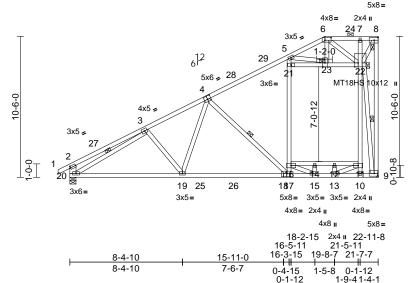
58=-32 (F), 59=-32 (F), 60=-32 (F), 61=-32 (F),

62=-32 (F), 63=-32 (F), 64=-32 (F), 65=-32 (F)

THE THE PERSON

May 13,2024


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not



Qty Ply Job Truss Truss Type 182 Serenity-Roof-329 A COP GRH 165500390 24050248 K02 Attic 3 1 Job Reference (optional)

Carter Components (Sanford, NC), Sanford, NC - 27332.

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri May 10 10:28:20 ID:ZXFgd0VIQCtq_cCKGIK2vpyi2Sn-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:85.8

Plate Offsets (X, Y): [2:0-0-12,0-1-8], [4:0-3-0,0-3-0], [6:0-5-8,0-2-4], [18:0-3-0,0-3-0], [22:0-3-8,0-3-0], [23:0-3-8,0-2-0]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.79	Vert(LL)	-0.33	17-19	>823	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.73	Vert(CT)	-0.58	17-19	>466	180	MT18HS	244/190
TCDL	10.0	Rep Stress Incr	YES	WB	0.91	Horz(CT)	0.04	9	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH		Attic	0.12	11-16	>529	360		
BCDL	10.0										Weight: 200 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No 2

2x4 SP No.1 *Except* 16-11:2x4 SP No.3, **BOT CHORD**

18-9:2x4 SP No.2

WEBS 2x4 SP No.3 *Except* 8-9,21-22:2x4 SP No.2, 5-17,7-10:2x4 SP No.1, 20-2:2x6 SP

No.2, 9-22:2x4 SP 2400F 2.0E

BRACING

BOT CHORD

TOP CHORD Structural wood sheathing directly applied or 4-0-14 oc purlins, except end verticals, and

2-0-0 oc purlins (10-0-0 max.): 6-8.

Rigid ceiling directly applied or 6-0-0 oc

bracing.

WFBS 1 Row at midpt 4-17, 3-20, 9-22

JOINTS 1 Brace at Jt(s): 22,

23.8

REACTIONS (size) 9= Mechanical 20=0-5-8

> Max Horiz 20=352 (LC 14) Max Uplift 20=-33 (LC 14)

Max Grav 9=1607 (LC 41), 20=1212 (LC 41)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 6-7=-170/2014, 7-8=-158/1841,

8-9=-257/2910, 2-20=-432/137, 1-2=0/30, 2-3=-506/116, 3-5=-1728/2, 5-6=-95/967

BOT CHORD 19-20=-297/1616, 17-19=-191/1446,

15-17=-79/1296, 13-15=0/1087,

10-13=-8/270, 9-10=-34/681, 14-16=-409/0,

12-14=-409/0, 11-12=-409/0

WEBS 3-19=-110/158, 4-19=-21/449,

4-17=-786/198, 16-17=-49/732, 16-21=0/837, 5-21=0/770, 10-11=0/388, 11-22=0/879, 7-22=-244/65, 21-23=-52/697,

22-23=-1574/106, 3-20=-1364/0, 6-23=0/303,

5-23=-2305/157, 9-22=-4891/248, 8-22=-3432/295, 6-22=-1478/127,

14-15=-113/105. 15-16=-358/133.

12-13=-365/0, 11-13=0/898

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 14-9-1, Exterior(2R) 14-9-1 to 19-9-12, Exterior(2E) 19-9-12 to 22-9-12 zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads
- Provide adequate drainage to prevent water ponding.
- All plates are MT20 plates unless otherwise indicated.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

10) Ceiling dead load (5.0 psf) on member(s). 21-23, 22-23; Wall dead load (5.0psf) on member(s).16-21, 11-22

Page: 1

- 11) Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 14-16, 12-14, 11-12
- 12) Refer to girder(s) for truss to truss connections.
- 13) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 20. This connection is for uplift only and does not consider lateral forces.
- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 15) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 16) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not

a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overal building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	182 Serenity-Roof-329 A COP GRH	
24050248	A08	Attic	2	1	Job Reference (optional)	165500391

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri May 10 10:28:16 ID:nZLG3VUHdq?4Tuf_s0oesByilZ6-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

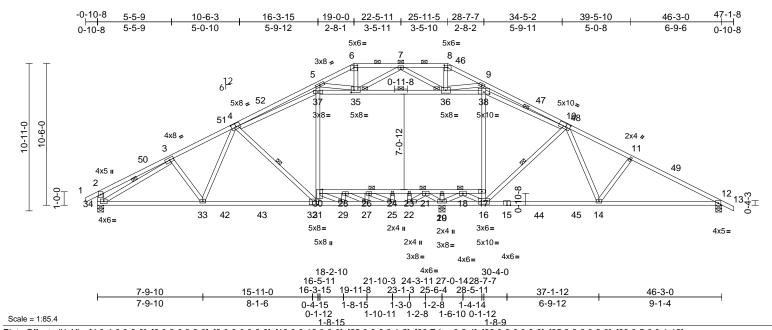


Plate Offsets (X, Y): [4:0-4-0,0-3-0], [6:0-3-0,0-2-0], [8:0-3-0,0-2-0], [10:0-3-12,0-3-0], [22:0-3-8,0-1-8], [30:Edge,0-2-4], [32:0-2-0,0-3-0], [35:0-2-8,0-2-0], [38:0-5-0,0-1-12]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	I/defI	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.77	Vert(LL)	-0.53	31-33	>575	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.92	Vert(CT)	-0.86	31-33	>353	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.92	Horz(CT)	0.13	12	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH		Attic	-0.32	17-30	>465	360		
BCDL	10.0										Weight: 335 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No 1 **BOT CHORD**

2x4 SP 2400F 2.0E *Except* 30-17:2x4 SP

No.1

WEBS 2x4 SP No.3 *Except* 5-31,9-16:2x4 SP

No.1, 37-38:2x4 SP No.2, 34-2:2x6 SP No.2

BRACING TOP CHORD

Structural wood sheathing directly applied or 2-2-0 oc purlins, except end verticals, and

2-0-0 oc purlins (5-5-11 max.): 6-8.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing. WEBS 1 Row at midpt 35-36, 4-31, 3-34, 10-16,

JOINTS 1 Brace at Jt(s): 35,

36, 21, 18

REACTIONS 12=0-5-8 19=0-5-8 34=0-5-8 (size)

Max Horiz 34=-168 (LC 19)

Max Uplift 12=-2 (LC 14), 34=-119 (LC 14) Max Grav

12=1775 (LC 48), 19=2161 (LC

10-38

40), 34=2111 (LC 38)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 6-7=-1266/131, 7-8=-648/149,

2-34=-494/144, 8-9=-784/153, 9-11=-3403/570, 11-12=-3581/80

12-13=0/23, 1-2=0/30, 2-3=-620/122,

3-5=-3616/182, 5-6=-1395/137

BOT CHORD 33-34=-211/2906, 31-33=-125/2902,

29-31=-7/2738, 27-29=0/3079, 25-27=0/3140,

22-25=-565/2259, 19-22=-1519/946,

16-19=-539/898, 14-16=0/2680,

12-14=0/3151, 28-30=-812/281, 26-28=-1014/686, 24-26=-490/1674,

23-24=-490/1674, 21-23=-490/1674,

20-21=-220/3620, 18-20=-220/3620,

17-18=-39/501

WEBS

30-31=-26/682, 30-37=0/979, 5-37=0/1288, 16-17=-375/58, 17-38=-337/184,

9-38=-1009/107, 35-37=-93/1377

35-36=-1502/46, 36-38=-3239/209,

10-14=-52/706, 11-14=-364/167,

4-31=-686/200, 4-33=-11/271, 3-33=0/241,

3-34=-2921/43, 19-20=-500/0, 24-25=-19/223, 22-23=-678/0,

7-35=-189/406, 6-35=-9/432, 8-36=-22/210,

7-36=-767/120, 5-35=-2600/160,

9-36=-60/1229, 10-16=-680/266,

4-37=-230/833, 10-38=-2835/177, 29-30=-435/530, 28-29=-311/174,

27-28=-460/230, 26-27=-46/330,

25-26=-1381/29, 21-22=0/1940,

19-21=-1392/0, 18-19=-1933/192,

16-18=-228/1900

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 3-9-0, Interior (1) 3-9-0 to 12-5-8, Exterior(2R) 12-5-8 to 32-5-13, Interior (1) 32-5-13 to 42-6-0, Exterior(2E) 42-6-0 to 47-1-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.

- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- Provide adequate drainage to prevent water ponding. All plates are 3x5 MT20 unless otherwise indicated.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 10) Ceiling dead load (5.0 psf) on member(s). 35-37, 35-36, 36-38; Wall dead load (5.0psf) on member(s).30-37,
- 11) Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 28-30, 26-28, 24-26, 23-24, 21-23, 20-21, 18-20, 17-18
- 12) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at it(s) 34 and 12. This connection is for uplift only and does not consider lateral forces.

Continued on page 2

WARNING - Ver

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not

a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overal building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	182 Serenity-Roof-329 A COP GRH	
24050248	A08	Attic	2	1	Job Reference (optional)	l65500391

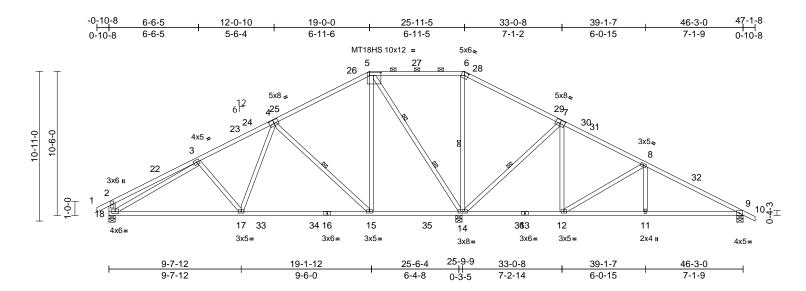
Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri May 10 10:28:16 $ID: nZLG3VUHdq? 4Tuf_s0oesByilZ6-RfC? PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC? full for the control of the cont$

- 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 14) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 15) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard

May 13,2024

Page: 2



818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	182 Serenity-Roof-329 A COP GRH	
24050248	A07	Piggyback Base	1	1	Job Reference (optional)	165500392

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri May 10 10:28:16 ID:mnZqp49xwCxjCaSirOxFxlyi2dZ-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:84

Plate Offsets (X, Y): [4:0-4-0,0-3-0], [5:0-10-0,0-2-8], [6:0-3-0,0-2-7], [7:0-4-0,0-3-0]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.99	Vert(LL)	-0.24	15-17	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.99	Vert(CT)	-0.40	15-17	>774	180	MT18HS	244/190
TCDL	10.0	Rep Stress Incr	YES	WB	0.82	Horz(CT)	0.03	9	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 277 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 *Except* 5-6:2x4 SP No.1

2x4 SP No.2 BOT CHORD

WEBS 2x4 SP No.3 *Except* 18-2:2x6 SP No.2,

14-5:2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied,

except end verticals, and 2-0-0 oc purlins

(10-0-0 max.): 5-6.

BOT CHORD Rigid ceiling directly applied or 2-2-0 oc

bracing.

WEBS 1 Row at midpt 6-14, 4-15, 7-14

WEBS 2 Rows at 1/3 pts 5-14

REACTIONS 9=0-5-8, 14=0-5-8, 18=0-5-8 (size)

Max Horiz 18=-168 (LC 19)

Max Uplift 9=-125 (LC 15), 14=-145 (LC 15),

18=-136 (LC 14) 9=619 (LC 45), 14=2932 (LC 47),

18=980 (LC 37)

FORCES (lb) - Maximum Compression/Maximum

Tension TOP CHORD

1-2=0/30. 2-3=-572/163. 3-5=-1113/192.

5-6=0/839, 6-8=-215/1049, 8-9=-798/188,

9-10=0/23, 2-18=-474/173

BOT CHORD 17-18=-230/1047, 15-17=-122/767, 14-15=-123/270, 12-14=-210/127,

11-12=-71/645, 9-11=-71/645

WEBS 5-15=-57/1019, 6-14=-826/120,

3-17=-245/167, 4-17=-4/625, 7-12=0/645, 8-11=0/284, 8-12=-763/169, 3-18=-805/37,

4-15=-986/225, 7-14=-1134/227,

5-14=-1671/186

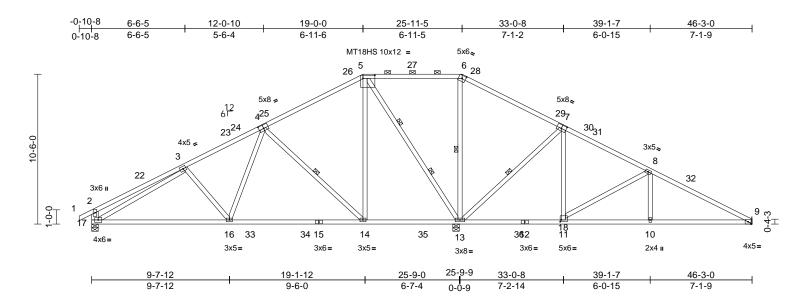
NOTES

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 3-9-0, Interior (1) 3-9-0 to 12-5-8, Exterior(2R) 12-5-8 to 32-5-13, Interior (1) 32-5-13 to 42-6-0, Exterior(2E) 42-6-0 to 47-1-8 zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- Provide adequate drainage to prevent water ponding.
- All plates are MT20 plates unless otherwise indicated. 7)
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 10) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 14, 9, and 18. This connection is for uplift only and does not consider lateral forces.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not

a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	182 Serenity-Roof-329 A COP GRH	
24050248	A06	Piggyback Base	2	1	Job Reference (optional)	165500393

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri May 10 10:28:16 ID:86vrdMjsFRcFbhb4agr6lvyi2gi-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Scale = 1:80.7

Plate Offsets (X, Y): [4:0-4-0,0-3-0], [5:0-10-0,0-2-8], [6:0-3-0,0-2-7], [7:0-4-0,0-3-0], [11:0-1-0,0-1-8]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.99	Vert(LL)	-0.24	14-16	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.98	Vert(CT)	-0.40	14-16	>774	180	MT18HS	244/190
TCDL	10.0	Rep Stress Incr	YES	WB	0.82	Horz(CT)	0.03	9	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 275 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 *Except* 5-6:2x4 SP No.1

BOT CHORD 2x4 SP No.2

WEBS 2x4 SP No.3 *Except* 17-2:2x6 SP No.2,

7-11,13-5:2x4 SP No.2

BRACING TOP CHORD

Structural wood sheathing directly applied,

except end verticals, and 2-0-0 oc purlins

(10-0-0 max.): 5-6.

BOT CHORD Rigid ceiling directly applied or 2-2-0 oc bracing.

WEBS 1 Row at midpt

6-13, 4-14, 7-13 **WEBS** 2 Rows at 1/3 pts 5-13

REACTIONS 9= Mechanical, 13=0-5-8, 17=0-5-8 (size)

Max Horiz 17=-155 (LC 19)

Max Uplift 9=-106 (LC 15), 13=-150 (LC 15),

17=-135 (LC 14) 9=570 (LC 39), 13=2928 (LC 47),

17=978 (LC 37)

FORCES (lb) - Maximum Compression/Maximum

Tension TOP CHORD

1-2=0/30. 2-3=-572/163. 3-5=-1109/190.

5-6=0/832, 6-8=-192/1040, 8-9=-786/184,

2-17=-474/173

16-17=-235/1043, 14-16=-127/765,

13-14=-119/263, 11-13=-202/125,

10-11=-81/650, 9-10=-81/650

WEBS 3-16=-244/167, 4-16=-4/624, 5-14=-57/1019,

6-13=-821/126, 11-18=0/315, 7-18=0/629,

8-10=0/281, 8-18=-778/174, 3-17=-801/35, 4-14=-986/225, 7-13=-1139/228,

5-13=-1668/187

NOTES

BOT CHORD

1) Unbalanced roof live loads have been considered for this design.

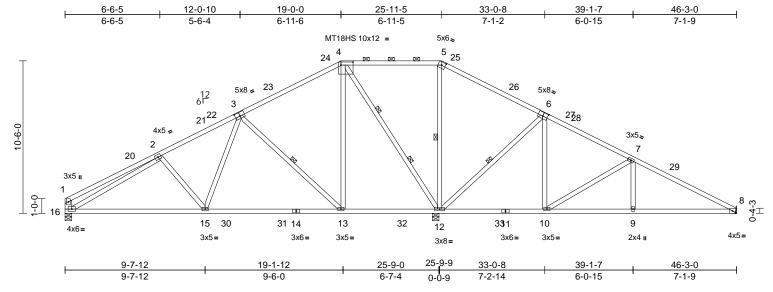
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 3-9-0, Interior (1) 3-9-0 to 12-5-8, Exterior(2R) 12-5-8 to 32-5-13, Interior (1) 32-5-13 to 41-7-8, Exterior(2E) 41-7-8 to 46-3-0 zone; cantilever left and right exposed; end vertical left and right exposed C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- Provide adequate drainage to prevent water ponding.
- All plates are MT20 plates unless otherwise indicated. 7)
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Refer to girder(s) for truss to truss connections.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 106 lb uplift at joint
- 12) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 13 and 17. This connection is for uplift only and does not consider lateral forces.
- 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

14) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Page: 1

LOAD CASE(S) Standard

🗥 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	182 Serenity-Roof-329 A COP GRH	
24050248	A05	Piggyback Base	3	1	Job Reference (optional)	165500394

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries. Inc. Fri May 10 10:28:16 ID:JB5bLQFGF3C9vTBFkpkf65yi2p3-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:79.3

Plate Offsets (X, Y): [3:0-4-0,0-3-0], [4:0-10-0,0-2-8], [5:0-3-0,0-2-7], [6:0-4-0,0-3-0]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	1.00	Vert(LL)	-0.24	13-15	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.98	Vert(CT)	-0.40	13-15	>773	180	MT18HS	244/190
TCDL	10.0	Rep Stress Incr	YES	WB	0.91	Horz(CT)	0.03	8	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 274 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 *Except* 4-5:2x4 SP No.1

2x4 SP No.2 BOT CHORD

WEBS 2x4 SP No.3 *Except* 12-4:2x4 SP No.2,

16-1:2x6 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied,

except end verticals, and 2-0-0 oc purlins

(10-0-0 max.): 4-5.

BOT CHORD Rigid ceiling directly applied or 2-2-0 oc

bracing.

WEBS 1 Row at midpt 3-13, 5-12, 6-12

WEBS 2 Rows at 1/3 pts 4-12

8= Mechanical, 12=0-5-8, 16=0-5-8 REACTIONS (size)

Max Horiz 16=-177 (LC 15)

Max Uplift 8=-103 (LC 15), 12=-102 (LC 15),

16=-102 (LC 14)

8=563 (LC 38), 12=2941 (LC 46),

16=917 (LC 36) (lb) - Maximum Compression/Maximum

Tension

FORCES

TOP CHORD

1-2=-451/103, 2-4=-1107/192, 4-5=0/849 5-7=-205/1059, 7-8=-774/180, 1-16=-355/111

BOT CHORD 15-16=-222/1047, 13-15=-108/757,

12-13=-123/271, 10-12=-216/123,

9-10=-77/640, 8-9=-77/640

WEBS 2-15=-257/173, 3-15=-9/634, 3-13=-986/229,

4-13=-60/1019, 4-12=-1677/163, 5-12=-831/167, 6-12=-1135/230, 6-10=-1/647, 7-10=-767/171, 7-9=0/285,

2-16=-892/78

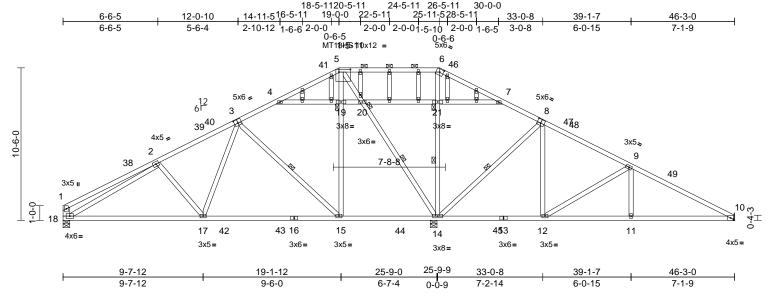
NOTES

Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-2-12 to 4-10-4, Interior (1) 4-10-4 to 14-4-8, Exterior(2R) 14-4-8 to 30-6-13, Interior (1) 30-6-13 to 41-7-8, Exterior(2E) 41-7-8 to 46-3-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- Provide adequate drainage to prevent water ponding.
- All plates are MT20 plates unless otherwise indicated. 6)
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Refer to girder(s) for truss to truss connections.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 103 lb uplift at joint
- 11) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 12 and 16. This connection is for uplift only and does not consider lateral forces.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	182 Serenity-Roof-329 A COP GRH	
24050248	A04	Piggyback Base	1	1	Job Reference (optional)	165500395

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri May 10 10:28:15 ID:nVtzValjZPhBKcQfHQvk1ryi2vS-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:79.3

Plate Offsets (X, Y): [3:0-3-0,0-3-0], [5:0-9-8,0-2-4], [6:0-3-0,0-2-7], [8:0-3-0,0-3-0]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.85	Vert(LL)	-0.24	15-17	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.99	Vert(CT)	-0.40	15-17	>773	180	MT18HS	244/190
TCDL	10.0	Rep Stress Incr	YES	WB	0.98	Horz(CT)	0.04	10	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 311 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 *Except* 5-6:2x4 SP No.1

BOT CHORD 2x4 SP No.2

WEBS 2x4 SP No.3 *Except* 14-5:2x4 SP No.2,

18-1:2x6 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or

5-2-12 oc purlins, except end verticals, and 2-0-0 oc purlins (10-0-0 max.): 5-6.

BOT CHORD Rigid ceiling directly applied or 2-2-0 oc

bracing.

WEBS 1 Row at midpt 3-15, 14-20, 14-21, 8-14 **JOINTS**

1 Brace at Jt(s): 19, 20, 21

REACTIONS (size) 10= Mechanical, 14=0-5-8,

18=0-5-8

Max Horiz 18=-177 (LC 15)

Max Uplift 10=-114 (LC 15), 14=-83 (LC 15), 18=-111 (LC 14)

Max Grav 10=588 (LC 44), 14=2879 (LC 46),

18=935 (LC 36)

FORCES (lb) - Maximum Compression/Maximum

Tension

1-2=-434/98, 2-4=-1162/188, 4-5=-87/533, TOP CHORD

5-6=-35/1220, 1-18=-340/106, 6-7=-89/1386, 7-9=-257/791, 9-10=-841/206

BOT CHORD 17-18=-239/1097, 15-17=-115/773,

14-15=-45/284, 12-14=-179/145,

11-12=-102/702, 10-11=-102/702

WEBS 2-17=-282/185, 3-17=-19/655,

3-15=-792/170, 15-19=-20/887

5-19=-20/889, 5-20=-1687/150, 14-20=-1626/144, 14-21=-916/202,

6-21=-918/202, 8-14=-952/174, 8-12=-8/662,

9-12=-796/183, 9-11=0/284, 2-18=-955/103,

20-21=-604/221, 7-21=-547/207

4-19=-562/210, 19-20=-517/212,

NOTES

- Unbalanced roof live loads have been considered for 1) this design
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-2-12 to 4-10-4, Interior (1) 4-10-4 to 14-4-8, Exterior(2R) 14-4-8 to 30-3-15, Interior (1) 30-3-15 to 41-7-8, Exterior(2E) 41-7-8 to 46-3-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this 5) design.
- Provide adequate drainage to prevent water ponding.
- All plates are MT20 plates unless otherwise indicated.
- All plates are 2x4 MT20 unless otherwise indicated.
- Gable studs spaced at 2-0-0 oc.
- 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 12) Refer to girder(s) for truss to truss connections.
- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 114 lb uplift at joint 10.

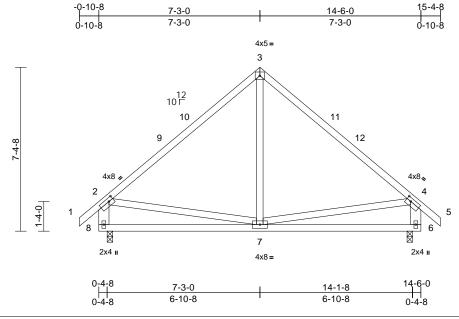
- 14) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at it(s) 14 and 18. This connection is for uplift only and does not consider lateral forces.
- 15) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 16) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

May 13,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not


a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overal building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	182 Serenity-Roof-329 A COP GRH	
24050248	G02	Common	4	1	Job Reference (optional)	165500396

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri May 10 10:28:19 ID:yXi_UOz?Sc_PgMaEgZ8rkWyiMjl-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:51.9

Plate Offsets (X, Y): [2:0-2-8,0-1-12], [4:0-2-8,0-1-12]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.97	Vert(LL)	-0.05	7-8	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.43	Vert(CT)	-0.10	7-8	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.17	Horz(CT)	0.01	6	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 89 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No 2 **BOT CHORD** 2x4 SP No.2

WEBS 2x4 SP No.3 *Except* 8-2,6-4:2x6 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied,

except end verticals. **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 6=0-3-0, 8=0-3-0

Max Horiz 8=200 (LC 13) Max Uplift 6=-57 (LC 15), 8=-57 (LC 14)

Max Grav 6=703 (LC 22), 8=702 (LC 21)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD

1-2=0/42, 2-3=-624/270, 3-4=-624/270, 4-5=0/42, 2-8=-640/266, 4-6=-641/260

BOT CHORD 7-8=-277/397, 6-7=-174/368

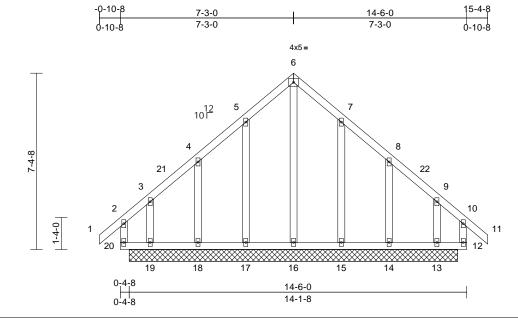
WEBS 3-7=-153/281, 2-7=-173/286, 4-7=-178/287

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 4-3-0, Exterior(2R) 4-3-0 to 10-3-0, Interior (1) 10-3-0 to 12-4-8, Exterior(2E) 12-4-8 to 15-4-8 zone; end vertical left and right exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOI = 1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

- 4) Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 57 lb uplift at joint 8 and 57 lb uplift at joint 6.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job)	Truss	Truss Type	Qty	Ply	182 Serenity-Roof-329 A COP GRH	
240	050248	G01	Common Supported Gable	1	1	Job Reference (optional)	I65500397

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri May 10 10:28:19 ID:mLR7vN0R3K1chD22YTDJ1syiMI_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:48.2

Plate Offsets (X, Y): [10:0-0-0,Edge]

Loading	(psf)	Spacing	1-11-4	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.19	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.16	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.27	Horz(CT)	0.00	13	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MR								
BCDL	10.0										Weight: 98 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No 2 BOT CHORD 2x4 SP No.2 **WEBS** 2x4 SP No.3 **OTHERS** 2x4 SP No.3

BRACING

BOT CHORD

TOP CHORD Structural wood sheathing directly applied or

10-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 6-0-0 oc

REACTIONS (size) 13=13-9-0, 14=13-9-0, 15=13-9-0, 16=13-9-0, 17=13-9-0, 18=13-9-0,

19=13-9-0 Max Horiz 19=191 (LC 13)

Max Uplift 13=-103 (LC 14), 14=-133 (LC 15), 15=-58 (LC 15), 17=-58 (LC 14), 18=-135 (LC 11), 19=-105 (LC 15)

Max Grav 13=241 (LC 25), 14=224 (LC 26), 15=276 (LC 22), 16=250 (LC 28), 17=276 (LC 21), 18=226 (LC 30),

19=245 (LC 31)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 2-20=-45/56, 1-2=0/38, 2-3=-70/130,

3-4=-86/135, 4-5=-82/192, 5-6=-126/282, 6-7=-126/282, 7-8=-80/193, 8-9=-82/132,

9-10=-67/128, 10-11=0/38, 10-12=-44/55

BOT CHORD 19-20=-115/98, 18-19=-113/131,

17-18=-113/131, 16-17=-113/131, 15-16=-113/131, 14-15=-113/131,

13-14=-113/131, 12-13=-113/131 6-16=-283/66, 5-17=-231/118,

4-18=-154/126, 3-19=-142/148,

7-15=-231/115, 8-14=-153/135, 9-13=-149/138

NOTES

WEBS

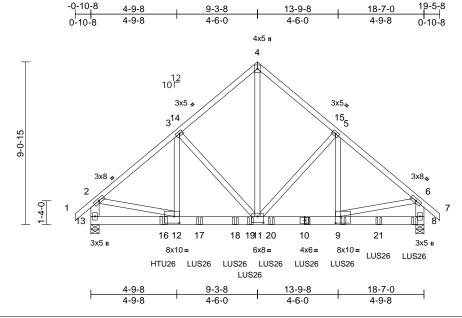
- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-10-8 to 2-1-8, Exterior(2N) 2-1-8 to 4-3-0, Corner(3R) 4-3-0 to 10-3-0, Exterior(2N) 10-3-0 to 12-4-8. Corner(3E) 12-4-8 to 15-4-8 zone: end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- All plates are 2x4 MT20 unless otherwise indicated
- Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- Gable studs spaced at 2-0-0 oc.
- 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 58 lb uplift at joint 17, 135 lb uplift at joint 18, 105 lb uplift at joint 19, 58 lb uplift at joint 15, 133 lb uplift at joint 14 and 103 lb uplift at joint 13.
- 13) Non Standard bearing condition. Review required.
- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job Truss Truss Type Qtv Ply 182 Serenity-Roof-329 A COP GRH 165500398 24050248 D02 2 Common Girder 1 Job Reference (optional)

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri May 10 10:28:18 ID:MxFwBELagtZwqajGkCZLsqyi1sF-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:64.3

Plate Offsets (X, Y): [9:0-3-8,0-4-8], [11:0-4-0,0-4-4], [12:0-3-8,0-4-8]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.36	Vert(LL)	-0.06	11-12	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.67	Vert(CT)	-0.10	11-12	>999	180		
TCDL	10.0	Rep Stress Incr	NO	WB	0.73	Horz(CT)	0.01	8	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 290 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No 2 BOT CHORD 2x6 SP No.2

WEBS 2x4 SP No.3 *Except* 13-2,8-6:2x6 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 8=0-5-8, 13=0-5-8 Max Horiz 13=-237 (LC 10)

Max Uplift 8=-757 (LC 13), 13=-781 (LC 12)

Max Grav 8=3999 (LC 20), 13=3630 (LC 19)

FORCES (lb) - Maximum Compression/Maximum

Tension

1-2=0/42, 2-3=-4126/906, 3-4=-3118/703, TOP CHORD

4-5=-3119/704, 5-6=-3710/732, 6-7=0/42,

2-13=-3477/751, 6-8=-3116/610

BOT CHORD 12-13=-276/440, 11-12=-686/3102,

9-11=-474/2784, 8-9=-97/353

4-11=-790/3507, 5-11=-770/263, 5-9=-127/715, 3-11=-1212/460,

3-12=-383/1245, 2-12=-545/2922,

6-9=-423/2522

NOTES

WEBS

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:

Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc, 2x6 - 2 rows staggered at 0-9-0 oc. Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc.

Web connected as follows: 2x4 - 1 row at 0-9-0 oc.

All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B). unless otherwise indicated.

- 3) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II: Exp B: Enclosed: MWFRS (envelope) exterior zone: end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- 7) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads
- This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) LGT2 Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 13 and 8. This connection is for uplift only and does not consider lateral forces.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) Use Simpson Strong-Tie HTU26 (20-10d Girder, 11-10dx1 1/2 Truss, Single Ply Girder) or equivalent at 4-0-12 from the left end to connect truss(es) to back face of bottom chord.
- 13) Use Simpson Strong-Tie LUS26 (4-10d Girder, 3-10d Truss, Single Ply Girder) or equivalent spaced at 2-0-0 oc max. starting at 6-0-12 from the left end to 18-0-12 to connect truss(es) to back face of bottom chord.
- 14) Fill all nail holes where hanger is in contact with lumber.

- 15) LGT2 Hurricane ties must have two studs in line below the truss.
- 16) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 573 lb down and 113 lb up at 18-4-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

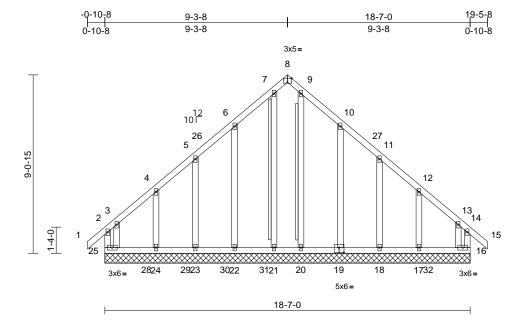
Uniform Loads (lb/ft)

Vert: 1-2=-60, 2-4=-60, 4-6=-60, 6-7=-60, 8-13=-20 Concentrated Loads (lb)

Vert: 10=-540 (B), 9=-540 (B), 8=-555 (B), 16=-1145 (B), 17=-803 (B), 18=-698 (B), 19=-568 (B), 20=-540 (B), 21=-548 (B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall



Ply Job Truss Truss Type Qtv 182 Serenity-Roof-329 A COP GRH 165500399 24050248 D01 Common Girder 1 1 Job Reference (optional)

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri May 10 10:28:18 ID:FxfwZql0vU_XFGKn2XT8rqyiMvf-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:58.6

Plate Offsets (X, Y):	[8:0-2-8,Edge],	[19:0-3-0,0-3-0]
-----------------------	-----------------	------------------

Loading	(psf)	Spacing	1-11-4	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.17	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.09	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	NO	WB	0.18	Horz(CT)	0.00	16	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MR								
BCDL	10.0										Weight: 139 lb	FT = 20%

LU	MBE	R

TOP CHORD 2x4 SP No 2 **BOT CHORD** 2x4 SP No 2 **WEBS** 2x4 SP No.3

OTHERS 2x4 SP No.3 *Except* 0-0,0-0:2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

WEBS 2x4 SP No.2 - 7-21, 9-20 Fasten (2X) T and I braces to narrow edge of

web with 10d (0.131"x3") nails, 6in o.c., with 3in minimum end distance.

Brace must cover 90% of web length.

REACTIONS (size)

16=18-7-0, 17=18-7-0, 18=18-7-0, 19=18-7-0, 20=18-7-0, 21=18-7-0, 22=18-7-0, 23=18-7-0, 24=18-7-0,

25=18-7-0

Max Horiz 25=-230 (LC 10)

Max Uplift 16=-126 (LC 9), 17=-264 (LC 13), 18=-89 (LC 13), 19=-162 (LC 13), 20=-20 (LC 30), 21=-23 (LC 31),

22=-161 (LC 12), 23=-93 (LC 12), 24=-225 (LC 12), 25=-144 (LC 8)

16=315 (LC 22), 17=413 (LC 23), Max Grav 18=262 (LC 20), 19=371 (LC 20),

20=267 (LC 20), 21=270 (LC 19), 22=371 (LC 19), 23=271 (LC 19).

24=354 (LC 22), 25=328 (LC 23)

FORCES

(lb) - Maximum Compression/Maximum

Tension

TOP CHORD 2-25=-179/146, 1-2=0/38, 2-3=-69/68, 3-4=-160/143, 4-5=-102/135, 5-6=-100/177,

6-7=-92/235, 7-8=-54/150, 8-9=-54/147, 9-10=-92/226, 10-11=-86/170, 11-12=-89/128, 12-13=-137/121. 13-14=-66/66. 14-15=0/38.

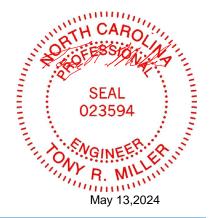
14-16=-171/141

BOT CHORD 24-25=-105/123, 23-24=-105/123,

22-23=-105/123, 21-22=-105/123, 20-21=-105/123, 18-20=-105/123,

17-18=-104/123, 16-17=-104/123

WEBS 7-21=-146/16, 9-20=-146/2, 6-22=-217/127, 5-23=-135/73, 4-24=-186/167,


3-25=-253/212, 10-19=-215/128, 11-18=-135/74, 12-17=-180/164,

13-16=-224/180

NOTES

- Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- All plates are 2x4 MT20 unless otherwise indicated
- Gable requires continuous bottom chord bearing.

- 9) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 10) Gable studs spaced at 2-0-0 oc.
- 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 144 lb uplift at joint 25, 126 lb uplift at joint 16, 23 lb uplift at joint 21, 20 lb uplift at joint 20, 161 lb uplift at joint 22, 93 lb uplift at joint 23, 225 lb uplift at joint 24, 162 lb uplift at joint 19, 89 lb uplift at joint 18 and 264 lb uplift at joint 17.
- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Continued on page 2

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	182 Serenity-Roof-329 A COP GRH	
24050248	D01	Common Girder	1	1	Job Reference (optional)	165500399

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries. Inc. Fri May 10 10:28:18 ID:FxfwZql0vU_XFGKn2XT8rqyiMvf-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 2

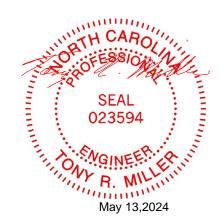
15) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 113 lb down and 46 lb up at 0-1-12, 108 lb down and 53 lb up at 2-1-8, 108 lb down and 53 lb up at 4-1-8, 108 lb down and 53 lb up at 6-1-8, 108 lb down and 53 lb up at 8-1-8, 108 lb down and 53 lb up at 10-1-8, 108 lb down and 53 lb up at 12-1-8, 108 lb down and 53 lb up at 14-1-8, 108 lb down and 53 lb up at 16-1-8, and 108 lb down and 53 lb up at 16-5-8, and 113 lb down and 46 lb up at 18-5-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

16) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

LOAD CASE(S) Standard

Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

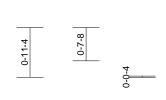
Uniform Loads (lb/ft)

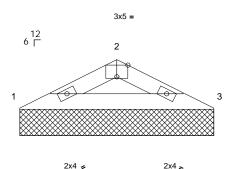

Vert: 1-2=-58, 2-8=-58, 8-14=-58, 14-15=-58,

16-25=-19

Concentrated Loads (lb)

Vert: 25=-113, 16=-113, 20=-108, 19=-108, 18=-108, 17=-108, 28=-108, 29=-108, 30=-108, 31=-108,


32=-108



Job	Truss	Truss Type	Qty	Ply	182 Serenity-Roof-329 A COP GRH	
24050248	VLC3	Valley	1	1	Joh Reference (optional)	165500400

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri May 10 10:28:22 ID: 6YjZWYB5B7Uvbhl0NmirjpyiMQ5-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?ff

3-8-0

Scale = 1:21.8

Plate Offsets (X, Y): [2:0-2-8,Edge]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.10	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.11	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 10 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

BRACING

Structural wood sheathing directly applied or TOP CHORD

3-8-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 1=3-8-0, 3=3-8-0 Max Horiz 1=12 (LC 18)

Max Uplift 1=-15 (LC 14), 3=-15 (LC 15)

Max Grav 1=164 (LC 20), 3=164 (LC 21)

FORCES (lb) - Maximum Compression/Maximum

Tension TOP CHORD 1-2=-276/123, 2-3=-276/123

BOT CHORD 1-3=-96/238

NOTES

- Unbalanced roof live loads have been considered for 1)
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable. or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- Gable requires continuous bottom chord bearing.

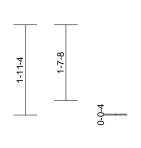
- 7) Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 15 lb uplift at joint 1 and 15 lb uplift at joint 3.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

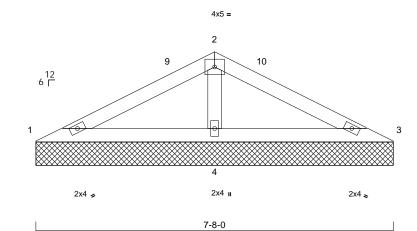
LOAD CASE(S) Standard

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall


building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job	Truss	Truss Type	Qty	Ply	182 Serenity-Roof-329 A COP GRH	
24050248	VLC2	Valley	1	1	Job Reference (optional)	l65500401

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri May 10 10:28:22 ID:TF?1?R2a0Rzc9rqigFV1EHyiMQH-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scal	le	=	1	.24	7

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.25	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.26	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.07	Horiz(TL)	0.00	4	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 24 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 OTHERS

BRACING

TOP CHORD Structural wood sheathing directly applied or

7-8-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

REACTIONS (size) 1=7-8-0, 3=7-8-0, 4=7-8-0

Max Horiz 1=28 (LC 14)

Max Unlift 1=-10 (LC 14), 3=-16 (LC 15),

4=-41 (LC 14)

Max Grav 1=113 (LC 20), 3=113 (LC 21),

4=514 (LC 20)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-127/260, 2-3=-127/260 BOT CHORD

1-4=-224/150, 3-4=-224/150 2-4=-378/206

WEBS NOTES

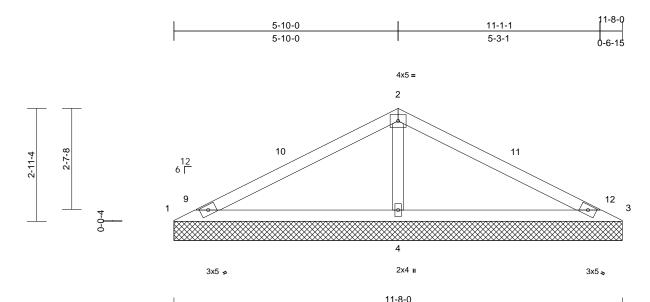
- Unbalanced roof live loads have been considered for 1) this design
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-8 to 3-0-8, Exterior(2R) 3-0-8 to 4-8-8, Exterior(2E) 4-8-8 to 7-8-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

 * This truss has been designed for a live load of 20.0psf
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 10 lb uplift at joint 1, 16 lb uplift at joint 3 and 41 lb uplift at joint 4.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	182 Serenity-Roof-329 A COP GRH	
24050248	VLC1	Valley	1	1	Job Reference (optional)	165500402

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri May 10 10:28:22 ID:tY8k3ftoJ8CbTim0rIFlfKyiMQV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:30

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.60	Vert(LL)	n/a		n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.55	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.16	Horiz(TL)	0.01	4	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 38 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 OTHERS

BRACING

Structural wood sheathing directly applied or TOP CHORD

10-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

REACTIONS (size) 1=11-8-0, 3=11-8-0, 4=11-8-0

Max Horiz 1=-44 (LC 15)

Max Uplift 1=-61 (LC 21), 3=-61 (LC 20),

4=-79 (LC 14)

Max Grav 1=107 (LC 20), 3=108 (LC 21),

4=913 (LC 20)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-180/533, 2-3=-180/533 BOT CHORD

1-4=-409/231, 3-4=-409/231

WFBS 2-4=-716/360

NOTES

- Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-8 to 3-0-8, Exterior(2R) 3-0-8 to 8-8-8, Exterior(2E) 8-8-8 to 11-8-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.

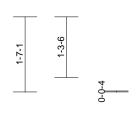
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

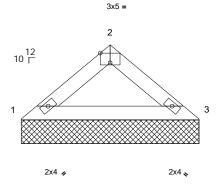
 * This truss has been designed for a live load of 20.0psf
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 61 lb uplift at joint 1, 61 lb uplift at joint 3 and 79 lb uplift at joint 4.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Page: 1


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job	Truss	Truss Type	Qty	Ply	182 Serenity-Roof-329 A COP GRH	
24050248	VLB6	Valley	1	1	Job Reference (optional)	165500403

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri May 10 10:28:22 ID:I1WsfNLJadaI6S5S?wRMc2yiMOb-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

3-9-2

Scale = 1:24.3

Plate Offsets (X, Y): [2:0-2-8,Edge]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.11	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.09	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 12 lb	FT = 20%

LUMBER

2x4 SP No.2 TOP CHORD BOT CHORD 2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or

3-9-2 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 1=3-9-2, 3=3-9-2

Max Horiz 1=-33 (LC 10) Max Uplift 1=-12 (LC 14), 3=-12 (LC 15)

Max Grav 1=177 (LC 20), 3=177 (LC 21)

FORCES

(lb) - Maximum Compression/Maximum

Tension

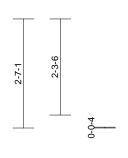
TOP CHORD 1-2=-230/86, 2-3=-230/86

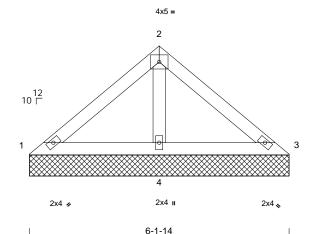
BOT CHORD 1-3=-52/168

NOTES

- Unbalanced roof live loads have been considered for 1)
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable. or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- Gable requires continuous bottom chord bearing.

- 7) Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 12 lb uplift at joint 1 and 12 lb uplift at joint 3.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


LOAD CASE(S) Standard



Job	Truss	Truss Type	Qty	Ply	182 Serenity-Roof-329 A COP GRH	
24050248	VLB5	Valley	1	1	Joh Reference (optional)	165500404

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri May 10 10:28:22 ID:E86BWEAv60hQp8RadHfrVuyiMOq-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:27.3

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.17	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.19	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.06	Horiz(TL)	0.00	4	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 23 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 **OTHERS**

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-1-14 oc purlins.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

REACTIONS (size) 1=6-1-14, 3=6-1-14, 4=6-1-14

Max Horiz 1=56 (LC 11)

Max Uplift 3=-3 (LC 15), 4=-53 (LC 14)

Max Grav 1=100 (LC 20), 3=100 (LC 21),

4=417 (LC 21)

FORCES (lb) - Maximum Compression/Maximum

Tension TOP CHORD

1-2=-88/166, 2-3=-88/166 **BOT CHORD**

1-4=-133/125, 3-4=-133/125

WEBS 2-4=-320/153

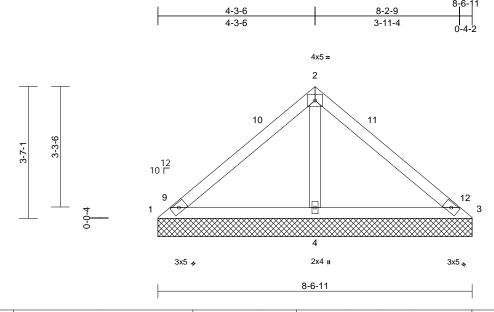
NOTES

- Unbalanced roof live loads have been considered for
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

- 5) Unbalanced snow loads have been considered for this design.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 3 lb uplift at joint 3 and 53 lb uplift at joint 4.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

May 13,2024


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

Job	Truss	Truss Type	Qty	Ply	182 Serenity-Roof-329 A COP GRH	
24050248	VLB4	Valley	1	1	Job Reference (optional)	165500405

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri May 10 10:28:22 ID:fRGuaS?7PjwP7_NuoKPZxxyiMP2-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scal	le	=	1	.31	1

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.40	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.38	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.14	Horiz(TL)	0.00	4	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 32 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 OTHERS

BRACING

Structural wood sheathing directly applied or TOP CHORD

8-6-11 oc purlins.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

REACTIONS (size) 1=8-6-11, 3=8-6-11, 4=8-6-11

Max Horiz 1=80 (LC 11)

Max Uplift 1=-47 (LC 21), 3=-47 (LC 20),

4=-104 (LC 14)

1=87 (LC 20), 3=87 (LC 21), 4=689 Max Grav

(LC 21)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-126/318, 2-3=-126/318

1-4=-245/186, 3-4=-245/186 BOT CHORD

WFBS 2-4=-558/256

NOTES

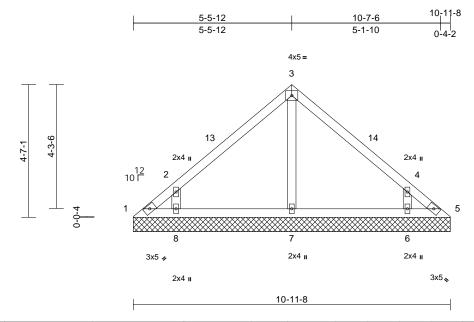
- Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Exterior(2R) 3-0-5 to 5-7-0, Exterior(2E) 5-7-0 to 8-7-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

 * This truss has been designed for a live load of 20.0psf
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 47 lb uplift at joint 1, 47 lb uplift at joint 3 and 104 lb uplift at joint 4.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	182 Serenity-Roof-329 A COP GRH	
24050248	VLB3	Valley	1	1	Job Reference (optional)	165500406

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri May 10 10:28:21 ID:7MIrD_p5BovgCX9psz7pHZyiMPI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:39.8

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.33	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.12	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.09	Horiz(TL)	0.00	5	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 44 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 OTHERS

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 1=10-11-8, 5=10-11-8, 6=10-11-8, 7=10-11-8, 8=10-11-8

Max Horiz 1=-103 (LC 10)

Max Uplift 1=-48 (LC 12), 5=-22 (LC 13),

6=-135 (LC 15), 8=-139 (LC 14)

Max Grav 1=70 (LC 11), 5=50 (LC 15), 6=452 (LC 21), 7=248 (LC 21), 8=452 (LC

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-134/105, 2-3=-227/110, 3-4=-227/110,

4-5=-112/73 **BOT CHORD**

1-8=-37/73, 7-8=-23/73, 6-7=-23/73,

5-6=-46/73 WEBS


3-7=-160/3, 2-8=-468/266, 4-6=-468/266

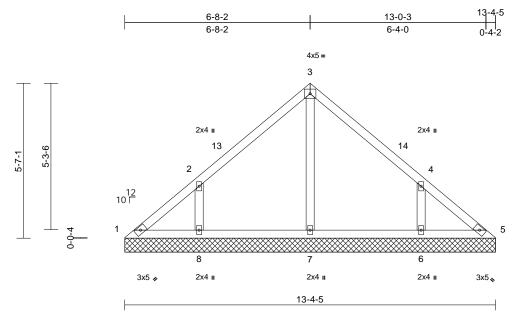
NOTES

- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Exterior(2R) 3-0-5 to 7-11-13, Exterior(2E) 7-11-13 to 10-11-13 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this 5) design.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 48 lb uplift at joint 1, 22 lb uplift at joint 5, 139 lb uplift at joint 8 and 135 lb uplift at joint 6.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

	Job	Truss	Truss Type	Qty	Ply	182 Serenity-Roof-329 A COP GRH	
Ŀ	24050248	VLB2	Valley	1	1	Job Reference (optional)	165500407

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri May 10 10:28:21 ID:?s0wUXfxFoGW9XfJblOIFpyiMPV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:41.5

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.33	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.12	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.11	Horiz(TL)	0.00	5	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 57 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 **OTHERS**

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 1=13-4-5, 5=13-4-5, 6=13-4-5, 7=13-4-5, 8=13-4-5

Max Horiz 1=127 (LC 11)

1=-27 (LC 10), 6=-144 (LC 15), Max Uplift

8=-148 (LC 14)

Max Grav 1=111 (LC 30), 5=88 (LC 24),

6=440 (LC 21), 7=281 (LC 21),

8=440 (LC 20)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-139/114, 2-3=-198/115, 3-4=-198/115,

4-5=-110/74

BOT CHORD 1-8=-45/107, 7-8=-45/86, 6-7=-45/86,

5-6=-45/86 WEBS

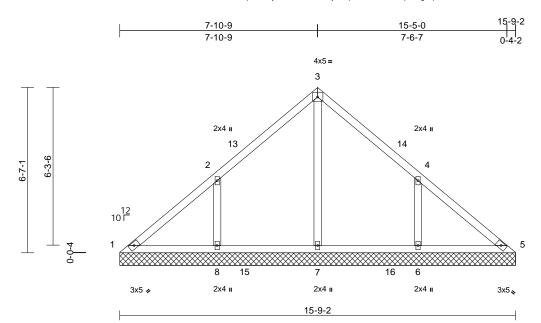
3-7=-197/0. 2-8=-376/194. 4-6=-376/194

NOTES

- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Interior (1) 3-0-5 to 3-8-7, Exterior(2R) 3-8-7 to 9-8-7, Interior (1) 9-8-7 to 10-4-10, Exterior(2E) 10-4-10 to 13-4-10 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this 5) design.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 27 lb uplift at joint 1, 148 lb uplift at joint 8 and 144 lb uplift at joint 6.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	182 Serenity-Roof-329 A COP GRH	
24050248	VLB1	Valley	1	1	Job Reference (optional)	165500408

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri May 10 10:28:21 ID:a0pNIiPOyfIMIS7TQY13RbyiMPp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:45.9

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.32	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.16	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.20	Horiz(TL)	0.00	5	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 69 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 OTHERS

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS (size) 1=15-9-2, 5=15-9-2, 6=15-9-2, 7=15-9-2, 8=15-9-2

Max Horiz 1=150 (LC 13)

Max Uplift 1=-22 (LC 10), 6=-169 (LC 15),

8=-172 (LC 14)

Max Grav 1=127 (LC 30), 5=104 (LC 21), 6=483 (LC 6), 7=452 (LC 24),

8=483 (LC 5)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-152/196, 2-3=-143/154, 3-4=-143/133,

4-5=-124/156 **BOT CHORD**

1-8=-89/134, 7-8=-89/119, 6-7=-89/119,

5-6=-89/119

WEBS 3-7=-264/0. 2-8=-383/207. 4-6=-383/206

NOTES

- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Interior (1) 3-0-5 to 4-10-14, Exterior(2R) 4-10-14 to 10-10-14, Interior (1) 10-10-14 to 12-9-6, Exterior(2E) 12-9-6 to 15-9-6 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this 5) design.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 22 lb uplift at joint 1, 172 lb uplift at joint 8 and 169 lb uplift at joint 6.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Ply Job Truss Truss Type Qtv 182 Serenity-Roof-329 A COP GRH 165500409 24050248 B₀5 1 Common Supported Gable 1 Job Reference (optional)

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri May 10 10:28:17 ID:M4IN5iqbNbjp2?MHQ1tHxmyiM4c-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

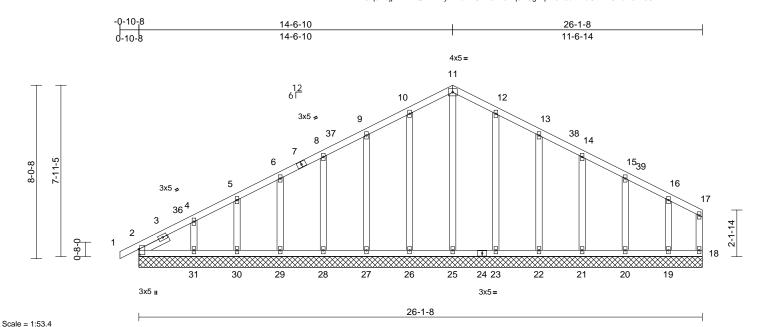


Plate Offsets (X, Y): [2:0-3-1,0-0-5]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.07	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.04	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.18	Horz(CT)	0.00	2	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 167 lb	FT = 20%

TOP CHORD 2x4 SP No 2 2x4 SP No.2 BOT CHORD **WEBS** 2x4 SP No.3 **OTHERS** 2x4 SP No.3 **SLIDER**

Left 2x4 SP No.3 -- 1-6-0 BRACING

TOP CHORD

LUMBER

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size)

2=26-1-8, 18=26-1-8, 19=26-1-8, 20=26-1-8, 21=26-1-8, 22=26-1-8, 23=26-1-8, 25=26-1-8, 26=26-1-8, 27=26-1-8, 28=26-1-8, 29=26-1-8, 30=26-1-8, 31=26-1-8, 32=26-1-8

Max Horiz 2=162 (LC 14), 32=162 (LC 14) Max Uplift 2=-37 (LC 15), 19=-61 (LC 15),

20=-41 (LC 15), 21=-44 (LC 15), 22=-46 (LC 15), 23=-40 (LC 15), 26=-43 (LC 14), 27=-45 (LC 14), 28=-43 (LC 14), 29=-47 (LC 14), 30=-30 (LC 14), 31=-89 (LC 14),

32=-37 (LC 15)

Max Grav 2=150 (LC 1), 18=50 (LC 1) 19=146 (LC 37), 20=164 (LC 1), 21=174 (LC 22), 22=228 (LC 22),

23=245 (LC 22), 25=197 (LC 28) 26=245 (LC 21), 27=228 (LC 21). 28=174 (LC 21), 29=163 (LC 36), 30=149 (LC 21), 31=199 (LC 36),

32=150 (LC 1)

(lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/23, 2-4=-147/97, 4-5=-103/100, 5-6=-75/123, 6-8=-58/146, 8-9=-62/170, 9-10=-81/217, 10-11=-99/259, 11-12=-99/259, 12-13=-81/217, 13-14=-62/169,

14-15=-51/126, 15-16=-38/74, 16-17=-20/20, 17-18=-37/20

BOT CHORD 2-31=-2/11, 30-31=-2/11, 29-30=-2/11,

28-29=-2/11, 27-28=-2/11, 26-27=-2/11, 25-26=-2/11, 23-25=-2/11, 22-23=-2/11,

21-22=-2/11, 20-21=-2/11, 19-20=-2/11, 18-19=-2/11

WFBS 11-25=-164/28. 10-26=-205/71.

9-27=-188/81, 8-28=-135/76, 6-29=-128/79 5-30=-119/69, 4-31=-152/111, 12-23=-205/71, 13-22=-188/82, 14-21=-135/74

15-20=-129/92, 16-19=-117/123

NOTES

Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-10-8 to 2-1-8, Exterior(2N) 2-1-8 to 11-6-10, Corner(3R) 11-6-10 to 17-6-10, Exterior(2N) 17-6-10 to 22-11-12, Corner(3E) 22-11-12 to 25-11-12 zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this

6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

Page: 1

- All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 43 lb uplift at joint 26, 45 lb uplift at joint 27, 43 lb uplift at joint 28, 47 lb uplift at joint 29, 30 lb uplift at joint 30, 89 lb uplift at joint 31, 40 lb uplift at joint 23, 46 lb uplift at joint 22, 44 lb uplift at joint 21, 41 lb uplift at joint 20, 61 lb uplift at joint 19, 37 lb uplift at joint 2 and 37 lb uplift at joint 2.
- 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Continued on page 2

FORCES

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE

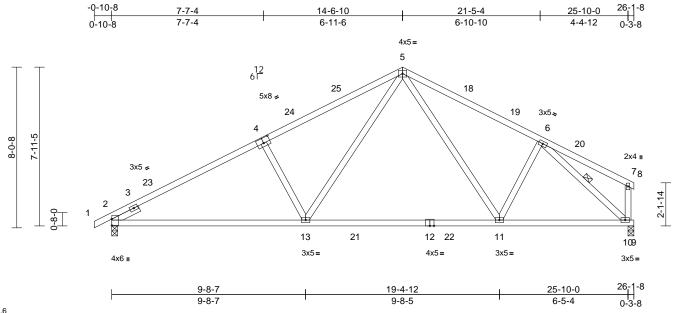
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	182 Serenity-Roof-329 A COP GRH	
24050248	B05	Common Supported Gable	1	1	Job Reference (optional)	165500409

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri May 10 10:28:17 ID: M4IN5 iqbNbjp2? MHQ1 tHxmyiM4 c-RfC? PsB70 Hq3NSgPqnL8 w3uITXbGKWrCDoi7J4 zJC? full fill for the control of the control

Page: 2

LOAD CASE(S) Standard



Ply Job Truss Truss Type Qty 182 Serenity-Roof-329 A COP GRH 165500410 24050248 B04 2 1 Common Job Reference (optional)

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri May 10 10:28:17 ID:k5WnkA1pKwccVpv24eS10Pyiddc-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:57.6

Plate Offsets (X, Y): [2:0-3-13,0-0-1], [4:0-4-0,0-3-0]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.89	Vert(LL)	-0.30	11-13	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.75	Vert(CT)	-0.46	11-13	>670	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.38	Horz(CT)	0.04	10	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 137 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.1 *Except* 4-1:2x4 SP No.2 BOT CHORD

2x4 SP No.1 **WEBS** 2x4 SP No.3

SLIDER Left 2x4 SP No.3 -- 1-6-0

BRACING

TOP CHORD Structural wood sheathing directly applied. **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc

bracing.

WEBS 1 Row at midpt REACTIONS (size) 2=0-3-8, 10=0-3-8

Max Horiz 2=161 (LC 14)

Max Uplift 2=-123 (LC 14), 10=-86 (LC 15)

Max Grav 2=1198 (LC 5), 10=1171 (LC 6)

FORCES (lb) - Maximum Compression/Maximum

Tension TOP CHORD 5-6=-1488/241, 6-7=-28/92, 7-8=0/8,

1-2=0/23, 2-5=-1991/273

BOT CHORD 2-13=-285/1719, 11-13=-68/1048,

10-11=-124/1168, 9-10=0/0

WEBS 5-13=-113/893, 6-11=-52/231, 5-11=-64/350, 4-13=-476/235, 7-10=-98/50, 6-10=-1620/172

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 11-6-10, Exterior(2R) 11-6-10 to 17-6-10, Interior (1) 17-6-10 to 23-1-8. Exterior(2E) 23-1-8 to 26-1-8 zone: end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 10. This connection is for uplift only and does not consider lateral forces.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

Ply Job Truss Truss Type Qty 182 Serenity-Roof-329 A COP GRH 165500411 24050248 B₀3 1 Common Job Reference (optional)

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri May 10 10:28:17 ID:qTloy7GVe?cqcW?KuvHXv5yiMxZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

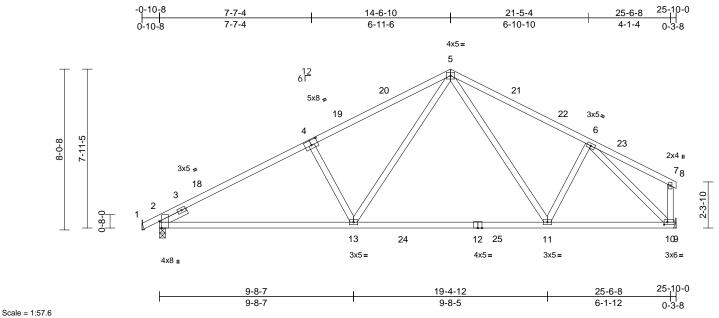


Plate Offsets (X, Y): [2:0-4-1,Edge], [4:0-4-0,0-3-0], [10:0-2-0,0-1-8]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.89	Vert(LL)	-0.32	11-13	>965	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.90	Vert(CT)	-0.49	11-13	>624	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.98	Horz(CT)	0.04	10	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 136 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.1 *Except* 4-1:2x4 SP No.2 2x4 SP No.2 *Except* 12-2:2x4 SP No.1 BOT CHORD

WEBS 2x4 SP No.3 SLIDER Left 2x4 SP No.3 -- 1-6-0

BRACING

TOP CHORD Structural wood sheathing directly applied. **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 1= Mechanical, 2=0-3-8, 10=

Mechanical

1=165 (LC 14) Max Horiz

Max Uplift 1=-158 (LC 7), 2=-209 (LC 14),

10=-84 (LC 15)

Max Grav 1=99 (LC 14), 2=1304 (LC 3),

10=1157 (LC 6)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-191/130, 2-5=-1938/269,

5-6=-1418/236, 6-7=-23/90, 7-8=0/8

BOT CHORD 2-13=-216/1670. 11-13=-69/1014.

10-11=-120/1089, 9-10=0/0

WEBS 5-13=-99/875, 6-11=-19/264, 5-11=-59/306, 4-13=-474/227, 7-10=-87/43, 6-10=-1563/172

NOTES

- Unbalanced roof live loads have been considered for 1) this design
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-9-12 to 2-2-4, Interior (1) 2-2-4 to 11-6-10, Exterior(2R) 11-6-10 to 17-6-10, Interior (1) 17-6-10 to 22-10-0, Exterior(2E) 22-10-0 to 25-10-0 zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.

 * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 158 lb uplift at joint 1 and 84 lb uplift at joint 10.
- One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

Ply Job Truss Truss Type Qty 182 Serenity-Roof-329 A COP GRH 165500412 24050248 B02 8 1 Common Job Reference (optional)

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri May 10 10:28:17 ID:hkaQ_v4an9Q_6Fi1krtRK5yiMDK-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

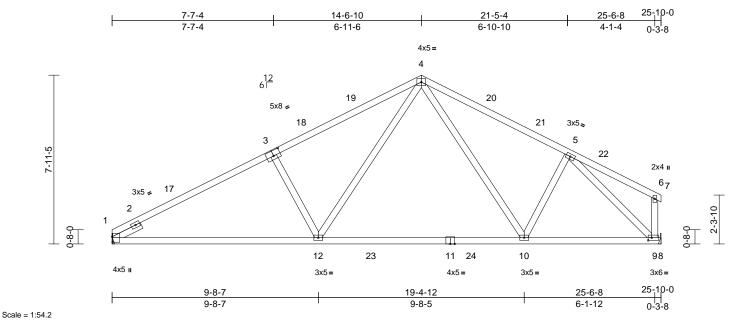


Plate Offsets (X, Y): [1:0-3-1,0-0-5], [3:0-4-0,0-3-0], [9:0-2-0,0-1-8]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.86	Vert(LL)	-0.32	10-12	>972	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.88	Vert(CT)	-0.48	10-12	>641	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.98	Horz(CT)	0.04	9	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 134 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.1 *Except* 3-1:2x4 SP No.2 BOT CHORD 2x4 SP No.1 *Except* 11-8:2x4 SP No.2

WEBS 2x4 SP No.3 SLIDER Left 2x4 SP No.3 -- 1-6-0

BRACING

TOP CHORD Structural wood sheathing directly applied or

2-2-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

REACTIONS (size) 1= Mechanical, 9= Mechanical

Max Horiz 1=150 (LC 14)

Max Uplift 1=-105 (LC 14), 9=-83 (LC 15)

Max Grav 1=1142 (LC 5), 9=1159 (LC 6) FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-4=-1965/276, 4-5=-1425/238, 5-6=-23/90,

6-7=0/8

BOT CHORD 1-12=-296/1699, 10-12=-72/1022,

9-10=-121/1094, 8-9=0/0 3-12=-479/235, 4-12=-114/901,

4-10=-60/304, 5-10=-19/265, 6-9=-86/43,

5-9=-1570/174

NOTES

WEBS

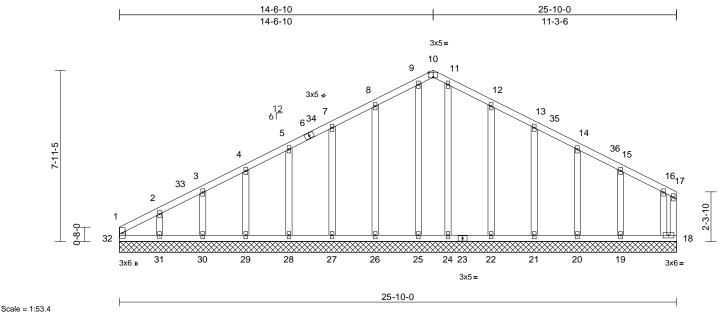
- Unbalanced roof live loads have been considered for
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior (1) 3-0-0 to 11-6-10, Exterior(2R) 11-6-10 to 17-6-10, Interior (1) 17-6-10 to 22-10-0. Exterior(2E) 22-10-0 to 25-10-0 zone:C-C for members and forces & MWFRS for reactions shown: Lumber DOL=1.60 plate grip DOL=1.60

- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.

 * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 105 lb uplift at joint 1 and 83 lb uplift at joint 9.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

Ply Job Truss Truss Type Qtv 182 Serenity-Roof-329 A COP GRH 165500413 24050248 B01 1 Common Supported Gable 1 Job Reference (optional)

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri May 10 10:28:17 ID:FNWJPV9PY63BhDnj6k2w3GyiMH5-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

Plate Offsets	(X, Y):	[10:0-2-8,Edge]

Loading	(psf)	Spacing	1-11-4	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.12	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.05	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.15	Horiz(TL)	0.00	18	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MR								
BCDL	10.0										Weight: 168 lb	FT = 20%

TOP CHORD	2x4 SP No.2
BOT CHORD	2x4 SP No.2
WEBS	2x4 SP No.3
OTHERS	2x4 SP No.3

BRACING TOP CHORD **BOT CHORD**

LUMBER

Structural wood sheathing directly applied or

6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc

REACTIONS (size)

18=25-10-0, 19=25-10-0, 20=25-10-0, 21=25-10-0, 22=25-10-0, 24=25-10-0, 25=25-10-0, 26=25-10-0, 27=25-10-0, 28=25-10-0, 29=25-10-0, 30=25-10-0, 31=25-10-0, 32=25-10-0 Max Horiz 32=144 (LC 14) Max Uplift 18=-9 (LC 14), 19=-69 (LC 15) 20=-35 (LC 15), 21=-42 (LC 15), 22=-57 (LC 15), 26=-52 (LC 14), 27=-41 (LC 14), 28=-42 (LC 14), 29=-45 (LC 14), 30=-31 (LC 14),

31=-96 (LC 14), 32=-36 (LC 15) Max Grav 18=106 (LC 1), 19=176 (LC 36), 20=150 (LC 21), 21=209 (LC 21), 22=237 (LC 21), 24=166 (LC 21),

25=170 (LC 20), 26=237 (LC 20), 27=207 (LC 20), 28=156 (LC 20), 29=155 (LC 35), 30=156 (LC 1), 31=158 (LC 35), 32=114 (LC 26)

(lb) - Maximum Compression/Maximum Tension

BOT CHORD

TOP CHORD 1-32=-84/37, 1-2=-154/79, 2-3=-109/85, 3-4=-89/106, 4-5=-70/128, 5-7=-71/155, 7-8=-82/197, 8-9=-98/249, 9-10=-87/219, 10-11=-87/219, 11-12=-98/249, 12-13=-82/198, 13-14=-71/154, 14-15=-61/114, 15-16=-44/43, 16-17=-6/15, 17-18=-14/41

31-32=-4/21, 30-31=-4/21, 29-30=-4/21, 28-29=-4/21, 27-28=-4/21, 26-27=-4/21, 25-26=-4/21, 24-25=-4/21, 22-24=-4/21,

21-22=-4/21, 20-21=-4/21, 19-20=-4/21, 18-19=-4/21

9-25=-138/1, 11-24=-134/1, 8-26=-196/94, 7-27=-169/72, 5-28=-123/75, 4-29=-122/74, 3-30=-122/80, 2-31=-125/129, 12-22=-197/94, 13-21=-170/74 14-20=-119/67, 15-19=-136/134,

NOTES

WEBS

1) Unbalanced roof live loads have been considered for

16-18=-85/33

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) 0-1-12 to 3-1-12, Exterior(2N) 3-1-12 to 11-6-10, Corner(3R) 11-6-10 to 17-6-10, Exterior(2N) 17-6-10 to 22-8-4, Corner(3E) 22-8-4 to 25-8-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

- 5) Unbalanced snow loads have been considered for this desian.
- 6) All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- Gable studs spaced at 2-0-0 oc.
- 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 36 lb uplift at joint 32, 9 lb uplift at joint 18, 52 lb uplift at joint 26, 41 lb uplift at joint 27, 42 lb uplift at joint 28, 45 lb uplift at joint 29, 31 lb uplift at joint 30, 96 lb uplift at joint 31, 57 lb uplift at joint 22, 42 lb uplift at joint 21, 35 lb uplift at joint 20 and 69 lb uplift at joint 19.

May 13,2024

Continued on page 2

FORCES

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	182 Serenity-Roof-329 A COP GRH	
24050248	B01	Common Supported Gable	1	1	Job Reference (optional)	165500413

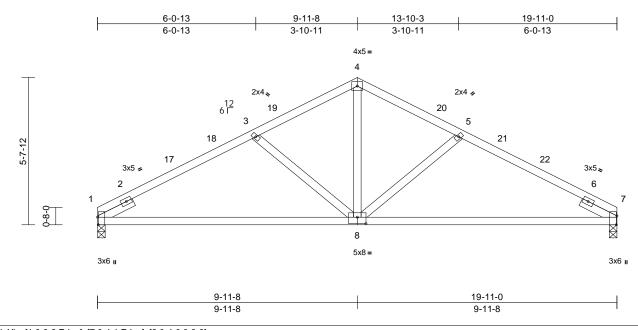
13) This truss is designed in accordance with the 2018

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri May 10 10:28:17

ID:FNWJPV9PY63BhDnj6k2w3GyiMH5-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?ff

International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard

Page: 2


818 Soundside Road Edenton, NC 27932

Qty Ply Job Truss Truss Type 182 Serenity-Roof-329 A COP GRH 165500414 24050248 C03 2 1 Common Job Reference (optional)

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries. Inc. Fri May 10 10:28:18 ID:9d4dhesW3iCMikBVI9aq0ryidW5-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:44.2

Plate Offsets (X, Y): [1:0-3-8,Edge], [7:0-4-1,Edge], [8:0-4-0,0-3-0]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.35	Vert(LL)	-0.13	8-11	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.85	Vert(CT)	-0.27	8-11	>869	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.24	Horz(CT)	0.02	7	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 90 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 2x4 SP No.2 **BOT CHORD WEBS** 2x4 SP No.3

SLIDER Left 2x4 SP No.3 -- 1-6-0, Right 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or

5-0-4 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 1=0-3-8, 7=0-3-8 Max Horiz 1=79 (LC 14)

Max Uplift 1=-76 (LC 14), 7=-76 (LC 15)

Max Grav 1=847 (LC 20), 7=847 (LC 21)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-3=-1240/268, 3-4=-971/226, 4-5=-971/226,

5-7=-1240/268

BOT CHORD 1-7=-207/1104

WEBS 4-8=-86/613, 5-8=-420/167, 3-8=-420/167

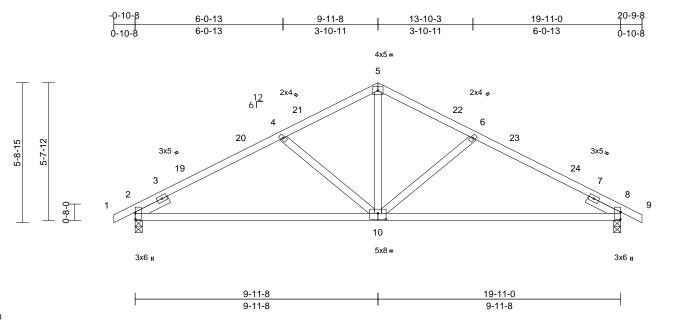
NOTES

- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior (1) 3-0-0 to 6-11-8. Exterior(2R) 6-11-8 to 12-11-8. Interior (1) 12-11-8 to 16-11-0, Exterior(2E) 16-11-0 to 19-11-0 zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown: Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

- 4) Unbalanced snow loads have been considered for this design.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 1 and 7. This connection is for uplift only and does not consider lateral forces.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not

a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overal building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	182 Serenity-Roof-329 A COP GRH	
24050248	C02	Common	9	1	Job Reference (optional)	l65500415

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri May 10 10:28:18 ID:s0dYfRZTiKBmq2LtL68C2nyidWT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:47.3

Plate Offsets (X, Y): [2:0-3-0,0-0-1], [8:0-3-9,0-0-1], [10:0-4-0,0-3-0]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.34	Vert(LL)	-0.13	10-13	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.85	Vert(CT)	-0.27	10-13	>874	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.24	Horz(CT)	0.03	8	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 93 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 2x4 SP No.2 **BOT CHORD WEBS** 2x4 SP No.3

SLIDER Left 2x4 SP No.3 -- 1-6-0, Right 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or

5-0-5 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 2=0-3-8. 8=0-3-8

Max Horiz 2=86 (LC 14)

Max Uplift 2=-93 (LC 14), 8=-93 (LC 15)

Max Grav 2=900 (LC 21), 8=900 (LC 22)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/23, 2-4=-1284/260, 4-5=-966/219,

5-6=-966/219, 6-8=-1284/260, 8-9=0/23

BOT CHORD 2-8=-194/1097

5-10=-78/607, 6-10=-416/166, 4-10=-416/166 **WEBS**

NOTES

- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 6-11-8, Exterior(2R) 6-11-8 to 12-11-8, Interior (1) 12-11-8 to 17-9-8, Exterior(2E) 17-9-8 to 20-9-8 zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

- 4) Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 8. This connection is for uplift only and does not consider lateral forces.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not

a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Ply Job Truss Truss Type Qtv 182 Serenity-Roof-329 A COP GRH 165500416 24050248 C01 1 Common Supported Gable 1 Job Reference (optional)

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri May 10 10:28:17 ID:HgQOZjQ?_97iryHX?XwsQlyidVM-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

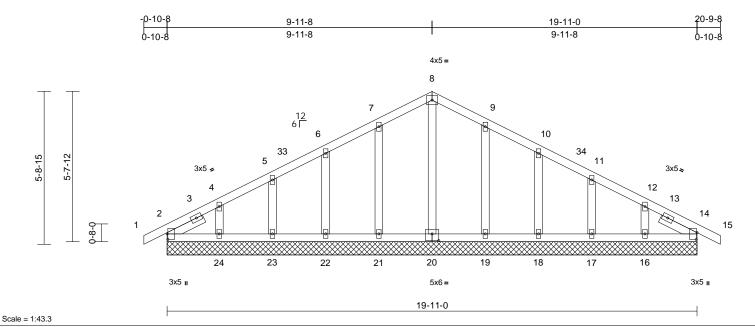


Plate Offsets (X, Y): [2:0-2-8,0-0-5], [14:0-3-1,0-0-5], [20:0-3-0,0-3-0]

Loading	(psf)	Spacing	1-11-4	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.07	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.03	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.08	Horz(CT)	0.00	14	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 109 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 **OTHERS** 2x4 SP No.3

SLIDER Left 2x4 SP No.3 -- 1-6-0, Right 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS (size) 2=19-11-0. 14=19-11-0. 16=19-11-0, 17=19-11-0, 18=19-11-0. 19=19-11-0. 20=19-11-0. 21=19-11-0.

22=19-11-0, 23=19-11-0. 24=19-11-0, 25=19-11-0 29=19-11-0

Max Horiz 2=83 (LC 14), 25=83 (LC 14) Max Uplift 2=-15 (LC 15), 16=-59 (LC 15), 17=-39 (LC 15), 18=-44 (LC 15),

19=-43 (LC 15), 21=-44 (LC 14), 22=-44 (LC 14), 23=-37 (LC 14), 24=-67 (LC 14), 25=-15 (LC 15)

Max Grav 2=136 (LC 21), 14=136 (LC 22), 16=153 (LC 37), 17=170 (LC 22),

18=221 (LC 22), 19=238 (LC 22), 20=143 (LC 28), 21=238 (LC 21), 22=221 (LC 21), 23=170 (LC 21), 24=153 (LC 36), 25=136 (LC 21),

29=136 (LC 22)

FORCES (lb) - Maximum Compression/Maximum

Tension TOP CHORD

1-2=0/23, 2-4=-88/46, 4-5=-66/54, 5-6=-50/77, 6-7=-58/117, 7-8=-72/162, 8-9=-72/162, 9-10=-58/117, 10-11=-48/70, 11-12=-41/25, 12-14=-53/22, 14-15=0/23

BOT CHORD

2-24=-13/87, 23-24=-13/87, 22-23=-13/87, 21-22=-13/87, 19-21=-13/87, 18-19=-13/87, 17-18=-13/87, 16-17=-13/87, 14-16=-13/87 8-20=-104/0, 7-21=-199/78, 6-22=-182/81, 5-23=-132/77. 4-24=-121/99. 9-19=-199/78. 10-18=-182/81, 11-17=-132/77, 12-16=-121/99

NOTES

WEBS

- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-10-8 to 1-11-8, Exterior(2N) 1-11-8 to 6-11-8, Corner(3R) 6-11-8 to 12-11-8, Exterior (2N) 12-11-8 to 17-9-8, Corner(3E) 17-9-8 to 20-9-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 15 lb uplift at joint 2, 44 lb uplift at joint 21, 44 lb uplift at joint 22, 37 lb uplift at joint 23, 67 lb uplift at joint 24, 43 lb uplift at joint 19, 44 lb uplift at joint 18, 39 lb uplift at joint 17, 59 lb uplift at joint 16 and 15 lb uplift at joint 2.
- 13) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 14, 29.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Ply Job Truss Truss Type Qtv 182 Serenity-Roof-329 A COP GRH 165500417 24050248 E01 1 Common Supported Gable 1 Job Reference (optional)

Carter Components (Sanford, NC), Sanford, NC - 27332.

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri May 10 10:28:19 ID:msPYNoIIActYsq9j0KJ?_WyiMxX-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

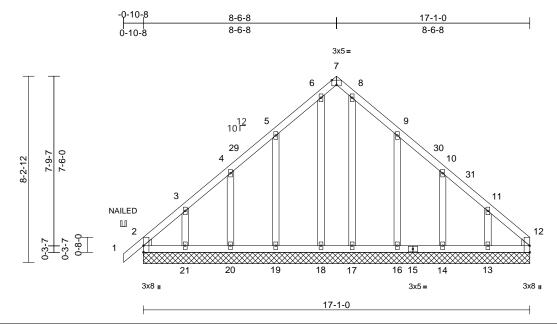


Plate Offsets (X, Y): [2:Edge,0-0-1], [7:0-2-8,Edge], [12:Edge,0-0-1]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.26	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.15	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.13	Horz(CT)	0.01	12	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 111 lb	FT = 20%

LUMBER

Scale = 1:50.9

TOP CHORD 2x4 SP No 2 2x4 SP No 2 BOT CHORD **OTHERS** 2x4 SP No.3 WEDGE Left: 2x4 SP No.3 Right: 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins.

BOT CHORD

Max Uplift

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS (size)

2=17-1-0. 12=17-1-0. 13=17-1-0. 14=17-1-0, 16=17-1-0, 17=17-1-0, 18=17-1-0, 19=17-1-0, 20=17-1-0, 21=17-1-0, 22=17-1-0, 26=17-1-0 Max Horiz 2=178 (LC 13), 22=178 (LC 13) 2=-209 (LC 10), 12=-33 (LC 13),

13=-128 (LC 15), 14=-63 (LC 57), 16=-96 (LC 57), 18=-12 (LC 11), 19=-98 (LC 56), 20=-80 (LC 14), 21=-199 (LC 56), 22=-209 (LC 10),

26=-33 (LC 13)

Max Grav 2=301 (LC 56), 12=148 (LC 15), 13=200 (LC 26), 14=179 (LC 47), 16=267 (LC 47), 17=178 (LC 22), 18=178 (LC 21), 19=272 (LC 46), 20=171 (LC 25), 21=271 (LC 49), 22=301 (LC 56), 26=148 (LC 15)

FORCES (lb) - Maximum Compression/Maximum

Tension TOP CHORD

1-2=-107/87, 2-3=-215/130, 3-4=-139/106, 4-5=-95/81, 5-6=-107/137, 6-7=-67/115, 7-8=-67/115, 8-9=-107/137, 9-10=-82/45, 10-11=-110/67, 11-12=-203/101

BOT CHORD 2-21=-180/204, 20-21=-74/183, 19-20=-74/183, 18-19=-74/183,

17-18=-74/183, 16-17=-74/183, 14-16=-74/183, 13-14=-74/183, 12-13=-74/183 6-18=-146/31 8-17=-145/4 5-19=-227/142

4-20=-151/118, 3-21=-161/172, 9-16=-225/140. 10-14=-148/114.

11-13=-156/157

NOTES

WFBS

- 1) Unbalanced roof live loads have been considered for this design
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-10-8 to 1-10-4, Exterior(2N) 1-10-4 to 5-6-8, Corner(3R) 5-6-8 to 11-6-8, Exterior(2N) 11-6-8 to 14-1-0, Corner(3E) 14-1-0 to 17-1-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 2-0-0 oc.

- 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 209 lb uplift at joint 2, 33 lb uplift at joint 12, 12 lb uplift at joint 18, 98 lb uplift at joint 19, 80 lb uplift at joint 20, 199 lb uplift at joint 21, 96 lb uplift at joint 16, 63 lb uplift at joint 14, 128 lb uplift at joint 13, 209 lb uplift at joint 2 and 33 lb uplift at joint 12
- 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.
- 15) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

Continued on page 2

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE Design valid for use only with MiTek@ connectors. This design is based only upon parameters shown, and is for an individual building component, not

a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overal building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Ply Qty Job Truss Truss Type 182 Serenity-Roof-329 A COP GRH 165500417 24050248 E01 Common Supported Gable 1 1 Job Reference (optional)

Carter Components (Sanford, NC), Sanford, NC - 27332,

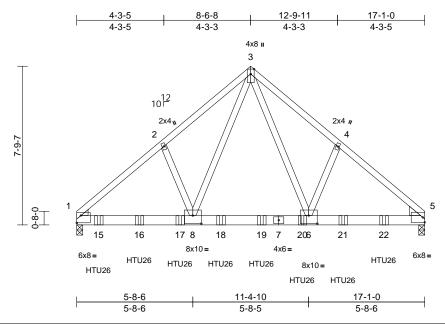
Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri May 10 10:28:19 $ID: msPYNoIIActYsq9j0KJ?_WyiMxX-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?ff$

Page: 2

Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (lb/ft)

Vert: 1-7=-60, 7-12=-60, 22-26=-20

Concentrated Loads (lb) Vert: 1=92 (B)



Qty Ply Job Truss Truss Type 182 Serenity-Roof-329 A COP GRH 165500418 24050248 E02 2 Common Girder 1 Job Reference (optional)

Carter Components (Sanford, NC), Sanford, NC - 27332

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri May 10 10:28:19 ID:b7_VE9M3qjmyqXpPx6mIdSyiMBg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:56.5

Plate Offsets (X, Y): [1:Edge,0-4-4], [6:0-5-0,0-4-12], [8:0-5-0,0-4-12]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.52	Vert(LL)	-0.09	6-8	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.47	Vert(CT)	-0.16	6-8	>999	180		
TCDL	10.0	Rep Stress Incr	NO	WB	0.82	Horz(CT)	0.02	5	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 218 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No 2 2x6 SP 2400F 2.0E **BOT CHORD WEBS** 2x4 SP No.3 WEDGE Left: 2x4 SP No.3 Right: 2x6 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or

4-8-7 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing

REACTIONS (size) 1=0-3-8, 5=0-3-8

1=167 (LC 11) Max Horiz

Max Uplift 1=-542 (LC 12), 5=-492 (LC 13)

1=5452 (LC 5), 5=4977 (LC 6)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-5985/622, 2-3=-5962/706,

3-4=-5914/701, 4-5=-5969/617

BOT CHORD 1-8=-510/4586, 6-8=-265/3066,

5-6=-425/4542

WEBS 3-8=-491/3950, 2-8=-324/185,

3-6=-480/3855, 4-6=-298/197

NOTES

2-ply truss to be connected together with 10d (0.131"x3") nails as follows:

Top chords connected as follows: 2x4 - 1 row at 0-9-0

Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-8-0 oc.

Web connected as follows: 2x4 - 1 row at 0-9-0 oc. All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

- 3) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 5 and 1. This connection is for uplift only and does not consider lateral forces.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802 10 2 and referenced standard ANSI/TPI 1
- 11) Use Simpson Strong-Tie HTU26 (20-10d Girder, 11-10dx1 1/2 Truss, Single Ply Girder) or equivalent spaced at 2-0-0 oc max. starting at 1-1-0 from the left end to 9-1-0 to connect truss(es) to back face of bottom chord
- 12) Use Simpson Strong-Tie HTU26 (20-10d Girder, 11-10dx1 1/2 Truss, Single Ply Girder) or equivalent spaced at 2-0-0 oc max. starting at 11-1-0 from the left end to 15-1-0 to connect truss(es) to back face of bottom chord
- 13) Fill all nail holes where hanger is in contact with lumber.

LOAD CASE(S) Standard

Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (lb/ft)

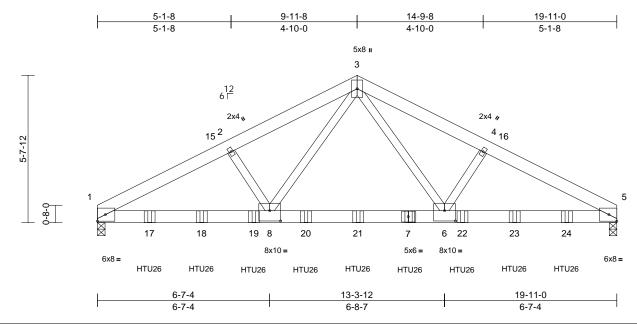
Vert: 1-3=-60, 3-5=-60, 9-12=-20

Concentrated Loads (lb)

Vert: 15=-1037 (B), 16=-1037 (B), 17=-1037 (B), 18=-1037 (B), 19=-1037 (B), 20=-1037 (B), 21=-1037

(B), 22=-1037 (B)

a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overal building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job Truss Truss Type Qtv Ply 182 Serenity-Roof-329 A COP GRH 165500419 24050248 C04 Common Girder 2 1 Job Reference (optional)

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries. Inc. Fri May 10 10:28:18 ID:pZm2gFLO1_c4sbz_J6gZukyi2?I-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:44.2

Plate Offsets (X, Y): [6:0-5-0,0-4-12], [8:0-5-0,0-4-12]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.36	Vert(LL)	-0.15	6-8	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.70	Vert(CT)	-0.28	6-8	>859	180		
TCDL	10.0	Rep Stress Incr	NO	WB	0.61	Horz(CT)	0.05	5	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 250 lb	FT = 20%

LUMBER

2x6 SP No.2 TOP CHORD **BOT CHORD** 2x6 SP 2400F 2.0E

WEBS 2x4 SP No.3 *Except* 8-3,6-3:2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or

4-8-11 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 1=0-3-8, 5=0-3-8

Max Horiz 1=-79 (LC 38)

Max Uplift 1=-504 (LC 12), 5=-507 (LC 13)

Max Grav 1=5845 (LC 5), 5=5876 (LC 6) (lb) - Maximum Compression/Maximum

FORCES Tension

1-2=-9784/855, 2-3=-9654/870,

3-4=-9643/870, 4-5=-9773/855 BOT CHORD

1-8=-786/8729, 6-8=-462/5891, 5-6=-708/8721

WEBS 2-8=-334/173, 3-8=-448/4964,

3-6=-447/4945, 4-6=-339/171

NOTES

TOP CHORD

- 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:
 - Top chords connected as follows: 2x6 2 rows staggered at 0-9-0 oc.
 - Bottom chords connected as follows: 2x6 2 rows staggered at 0-7-0 oc.
- Web connected as follows: 2x4 1 row at 0-9-0 oc.
- All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 3) Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 1 and 5. This connection is for uplift only and does not consider lateral forces.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) Use Simpson Strong-Tie HTU26 (20-10d Girder, 11-10dx1 1/2 Truss. Single Ply Girder) or equivalent spaced at 2-0-0 oc max. starting at 2-0-0 from the left end to 18-0-0 to connect truss(es) to back face of bottom
- 12) Fill all nail holes where hanger is in contact with lumber.

LOAD CASE(S) Standard

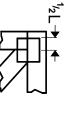
Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (lb/ft)

Vert: 1-3=-60, 3-5=-60, 9-12=-20

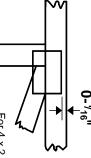
Concentrated Loads (lb)

Vert: 7=-1037 (B), 17=-1037 (B), 18=-1037 (B), 19=-1037 (B), 20=-1037 (B), 21=-1037 (B), 22=-1037 (B), 23=-1037 (B), 24=-1035 (B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not

a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overal building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Symbols

PLATE LOCATION AND ORIENTATION

Center plate on joint unless x, y offsets are indicated.
Dimensions are in ft-in-sixteenths.
Apply plates to both sides of truss and fully embed teeth.

For 4 x 2 orientation, locate plates 0- $\frac{1}{16}$ from outside edge of truss.

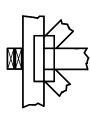
₹

This symbol indicates the required direction of slots in connector plates.

*Plate location details available in MiTek software or upon request.

PLATE SIZE

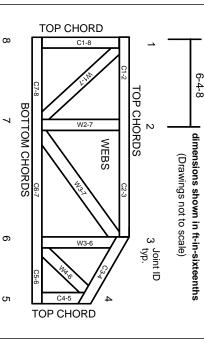
4 × 4


The first dimension is the plate width measured perpendicular to slots. Second dimension is the length parallel to slots.

LATERAL BRACING LOCATION

Indicated by symbol shown and/or by text in the bracing section of the output. Use T or I bracing if indicated.

BEARING


Indicates location where bearings (supports) occur. Icons vary but reaction section indicates joint number/letter where bearings occur Min size shown is for crushing only.

Industry Standards: ANSI/TPI1: National Design Specification for Metal

DSB-22:

Plate Connected Wood Truss Construction.
Design Standard for Bracing.
Building Component Safety Information,
Guide to Good Practice for Handling,
Installing, Restraining & Bracing of Metal
Plate Connected Wood Trusses.

Numbering System

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

Product Code Approvals

ICC-ES Reports:

ESR-1988, ESR-2362, ESR-2685, ESR-3282 ESR-4722, ESL-1388

Design General Notes

Trusses are designed for wind loads in the plane of the truss unless otherwise shown.

Lumber design values are in accordance with ANSI/TPI 1 section 6.3 These truss designs rely on lumber values established by others.

© 2023 MiTek® All Rights Reserved

MiTek

MiTek Engineering Reference Sheet: MII-7473 rev. 1/2/2023

▲ General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI
- Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.
- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- Cut members to bear tightly against each other.

'n

- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.

œ

- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- Top chords must be sheathed or purlins provided at spacing indicated on design.
- Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others.
- Do not cut or alter truss member or plate without prior approval of an engineer.
- Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- The design does not take into account any dynamic or other loads other than those expressly stated.