

RE: 4111088 - 4983 Ray Rd. Spring Lake, NC

Trenco 818 Soundside Rd Edenton, NC 27932

Site Information: Project Customer: Carolina Construction Project Name: Subdivision: RAY ROAD Lot/Block: 4983 Address: 4983 RAY ROAD City: SPRING LAKE State: NC

Name Address and License # of Structural Engineer of Record, If there is one, for the building. Name: License #: Address: City, County: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2018/TPI2014 Wind Code: ASCE 7-16 Wind Speed: 130 mph Roof Load: 40.0 psf

Design Program: MiTek 20/20 8.6 Design Method: MWFRS (Envelope)/C-C hybrid Wind ASCE 7-16

Floor Load: N/A psf

166896588 4111088

This package includes 30 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Job ID#	I russ Na	me Date	Γ
1 2 3 4	166896559 166896560 166896561 166896562	4111088 4111088 4111088 4111088	A01 A02 A03 A04	7/18/24 7/18/24 7/18/24 7/18/24	
5 6 7	166896563 166896564 166896565	4111088 4111088 4111088	A06 A07	7/18/24 7/18/24 7/18/24	1000
8 9 10	166896566 166896567 166896568	4111088 4111088 4111088	A07P A08 B01	7/18/24 7/18/24 7/18/24	
11 12 13	166896569 166896570 166896571	4111088 4111088 4111088	B02 B03	7/18/24 7/18/24 7/18/24	
14 16	l66896572 l66896573 l66896574	4111088 4111088 4111088	G01 G02 G03	7/18/24 7/18/24 7/18/24	
17 18 19	l66896575 l66896576 l66896577	4111088 4111088 4111088	V01 V02 V03	7/18/24 7/18/24 7/18/24	
20 21 22	166896578 166896579 166896580	4111088 4111088 4111088	V04 V05 V06	7/18/24 7/18/24 7/18/24	
23	166896581	4111088	VÕ7	7/18/24	

١o.	Seal#	Job ID#	Truss Nam	e Date
	166896582	4111088	V08	7/18/24
5	166896583	4111088	V09	7/18/24
6	166896584	4111088	V10	7/18/24
7	166896585	4111088	V11	7/18/24
8	166896586	4111088	V12	7/18/24
9	166896587	4111088	V13	7/18/24
Õ	166896588	4111088	V14	7/18/24

The truss drawing(s) referenced above have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Builders FirstSource-Sumter,SC.

Truss Design Engineer's Name: Gilbert, Eric

My license renewal date for the state of North Carolina is December 31, 2024

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Gilbert, Eric

July 18,2024

1 of 1

Job	Truss	Truss Type	Qty	Ply	4983 Ray Rd. Spring Lake, NC	
4111088	A01	Common Supported Gable	1	1	Job Reference (optional)	166896559

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries. Inc. Tue Jul 16 11:34:46 ID:RJbKBfuK_Da4xG1tpoZOBbyzXMb-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:75.7

Loading		(psf)	Spacing	2-0-0		csi			DEFL	in	(lo	oc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)		20.0	Plate Grip DOL	1.15		TC		0.14	Vert(LL)	n/a		-	n/a	999	MT20	244/190	D
TCDL		10.0	Lumber DOL	1.15		BC		0.12	Vert(CT)	n/a		-	n/a	999			
BCLL		0.0*	Rep Stress Incr	YES		WB		0.21	Horz(CT)	0.01		26	n/a	n/a			
BCDL		10.0	Code	IRC2018	8/TPI2014	Mat	ix-AS								Weight: 308 lb	FT = 20)%
LUMBER					Ν	/lax Gr	av 2=166	(LC 21), 2	27=202 (LC 1),	WE	BS	-	14-38	=-342/58, 13-39=	-126/93,	_
TOP CHORD	2x4 SP N	0.2					28=135	6 (LC 26),	29=167 (LC	1),				12-40	=-119/132, 11-41	=-120/11	8,
BOT CHORD	2x4 SP N	0.2					30=158	(LC 26),	31=160 (LC	1),				10-43	=-120/120, 9-44=	-120/120	,
OTHERS	2x4 SP N	0.3					32=100	(LC 26),	33=160 (LC	20), (6)				7-45= 5 47_	-120/120, 6-46=-	120/121,	
WEDGE	Left: 2x4	SP No.3					37-167	(LC 1), ((LC 26)	38-321 (LC 2	.0 <i>)</i> , 13)				3-47=	-119/119, 4-40=- -07/171_15-37	123/133,	
	Right: 2X4	4 SP NO.3					39=166	(LC 20)	40=159 (LC	25)				16-36	=-119/132 17-35	5=-120/11	8
	0		- the local all and the second line				41=160	(LC 1).	43=160 (LC 2	(5).				18-33	=-120/120, 19-32	2=-120/12	0.
	Structura	I wood she	athing directly applied	d.			44=160	(LC 1),	45=160 (LC 1).				21-31	=-120/120, 22-30)=-119/12	2.
	Rigia cell	ing directly					46=160	(LC 25)	47=158 (LC	<i>,</i> , 1),				23-29	=-123/113, 24-28	8=-110/21	9,
WEB5	I Row at	μαρι	14-38, 13-39, 12-40,				48=167	(LC 25)	49=136 (LC	19),				25-27	=-133/110		
PEACTIONS	(cizo)	2-12 8 0	26_42 9 0 27_42 9	0			50=166	6 (LC 21)			NO	TES					
REACTIONS	(5120)	2=42-0-0, 28=42-8-0	20=42-8-0, 27=42-8	-0, FC	DRCES	(lb) - N	laximum Co	ompressi	on/Maximum		1)	Unba	alanced	roof li	ive loads have be	en consid	dered for
		31=42-8-0	32=42-8-0 $33=42-10$	8-0		Tensio	n					this of	design.				
		35=42-8-0), 36=42-8-0, 37=42-	8-0. TC	OP CHORD	1-2=0/	23, 2-3=-31	8/167, 3-	4=-257/176,		2)	Wind	I: ASCE	7-16	; Vult=130mph (3	-second o	gust)
		38=42-8-0	, 39=42-8-0, 40=42-	8-0,		4-5=-1	99/193, 5-6	=-153/21	4, 6-7=-112/2	247,		Vasc	l=103m	ph; TC	CDL=6.0psf; BCD	L=6.0psf	; h=25ft;
		41=42-8-0	0, 43=42-8-0, 44=42-	8-0,		7-9=-8	2/281, 9-10	=-84/314	, 10-11=-107	/347,		Cat.	II; Exp	C; End	closed; MWFRS (envelope) exterior
		45=42-8-0	0, 46=42-8-0, 47=42-	8-0,		12 14	=129/400, 172/526	12-13=-1:	03/474, 72/526			zone	and C-		ner(3E) -0-10-8 t	0 3-4-0, E	exterior(2N)
		48=42-8-0	0, 49=42-8-0, 50=42-	8-0		15-14	153/474 ·	14-15=-1 16-171	2/320,			3-4-(25 4 0	4-0, C	orner(3R) 21-4-0	to 25-4-0	, Exterior
	Max Horiz	2=260 (LC	C 12), 50=260 (LC 12	2)		17-18	107/342 ·	18-19=-8	2 <i>3</i> / 4 00, 4/278				20-4-0 eed.C_(10 42- 7 for r	o-0 2011e, end for		And right /FRS for
	Max Uplift	2=-88 (LC	C 17), 28=-170 (LC 13	3),		19-21:	=-62/213. 2 ⁻	1-22=-40	/149.			react	tions sh	own l	umber DOI =1.6	0 plate di	rin
		29=-60 (L	C 13), 30=-88 (LC 13	3),		22-23	-17/84, 23-	24=-40/5	0, 24-25=-11	6/48,		DOL	=1.60	0, 1		o plato gi	ip.
		31=-81 (L	C 13), 32=-83 (LC 13 C 13), 35= 81 (LC 13	5), >\		25-26	-152/65									and a	
		33=-02 (L 26_ 02 (L	C 13), 35=-61 (LC 13 C 12) 37= 50 (LC 13	р), ВС	OT CHORD	2-49=-	170/188, 48	8-49=-56	/165,							111,	
		30=-92 (L 3069 (l	C 12) 4089 (LC 12),))		47-48	-56/165, 40	6-47=-56	/165,						IN TH CA	RO	4.
		41=-81 (L	C 12), 43=-83 (LC 12	-), 2)		45-46	-56/165, 44	4-45=-56	/165,					N	A		his .
		44=-82 (L	C 12), 45=-83 (LC 12	-/, 2).		43-44	=-56/165, 4	1-43=-56	165,					~_	CH. FESS	Oit	Paris
		46=-82 (L	C 12), 47=-84 (LC 12	2),		40-41:	-56/165, 39	9-40=-56	(165,						11	16	In
		48=-74 (L	C 12), 49=-136 (LC 1	12),		38-39	=-56/165, 3	7-38=-56	165,								. 1
		50=-88 (L	C 17)			36-37:	=-56/165, 3	2-36=-56	165,				-		SFA	Ľ.	: =
						31-32	-56/165 3	2-33=-30	165				Ξ		02/1	-	- E - E -
						29-30-	-56/165 2	3-29=-56	/165						0363	22	
						27-28	-56/165.20	6-27=-56	/165				-	6	•		: =
														-	·	<u> </u>	1. 2.
														3.5	NGINI	FEN	13
														11	7/0	T. SE	5.5
															A G	ILDY	11
															11		Ā

Continued on page 2

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. WARNING Design valid for use only with MTek connectors. This design is based only upon parameters and property incorporate this design is based only upon parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	4983 Ray Rd. Spring Lake, NC	
4111088	A01	Common Supported Gable	1	1	Job Reference (optional)	166896559

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable. or consult qualified building designer as per ANSI/TPI 1.
- All plates are 2x4 MT20 unless otherwise indicated. 4)
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 8) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 88 lb uplift at joint 2, 69 lb uplift at joint 39, 89 lb uplift at joint 40, 81 lb uplift at joint 41, 83 lb uplift at joint 43, 82 lb uplift at joint 44, 83 lb uplift at joint 45, 82 lb uplift at joint 46, 84 lb uplift at joint 47, 74 lb uplift at joint 48, 136 lb uplift at joint 49, 59 lb uplift at joint 37, 92 lb uplift at joint 36, 81 Ib uplift at joint 35, 82 lb uplift at joint 33, 83 lb uplift at joint 32, 81 lb uplift at joint 31, 88 lb uplift at joint 30, 60 Ib uplift at joint 29, 170 lb uplift at joint 28 and 88 lb uplift at joint 2.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

Run: 8.63 S. Jul 12 2024 Print: 8.630 S. Jul 12 2024 MiTek Industries. Inc. Tue Jul 16 11:34:46 ID:RJbKBfuK_Da4xG1tpoZOBbyzXMb-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

Job	Truss	Truss Type	Qty	Ply	4983 Ray Rd. Spring Lake, NC	
4111088	A02	Common	5	1	Job Reference (optional)	166896560

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Tue Jul 16 11:34:47 ID:L3eXGyC8?vezLd8bVQUARtyzXJc-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Plate Offsets (X, Y): [12:0-4-4,0-4-8], [13:0-4-4,0-4-8]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-AS	0.71 0.62 0.72	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.18 -0.31 0.03 0.17	(loc) 12-13 12-13 10 14-17	l/defl >999 >999 n/a >614	L/d 360 240 n/a 240	PLATES MT20 Weight: 268 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD WEBS	UMBER COP CHORD $2x4$ SP No.2 COT CHORD $2x6$ SP No.2 VEBS $2x4$ SP No.3 BRACING COP CHORD COP CHORD Structural wood sheathing directly applied. NOT CHORD Rigid ceiling directly applied. OP CHORD Rigid ceiling directly applied. VEBS 1 Row at midpt $5-13$, $6-13$, $6-12$, $7-12$, $9-12$ REACTIONS (size) $2=0-3-8$, $10=$ Mechanical, $14=0-3$ Max Horiz $2=260$ (LC 12) Max Uplift Max Uplift $2=-138$ (LC 9), $10=-383$ (LC 13), $14=-518$ (LC 2) Max Grav $2=293$ (LC 25), $10=1428$ (LC 2), $14=2134$ (LC 2) CORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD $1-2=-0/23$, $2-3=-292/444$, $3-5=-1173/407$, $5-6=-1143/538$, $6-7=-1751/689$, $7-9=-1777/537$, $9-10=-2468/660$ COT CHORD $2-14=-364/305$, $11-14=-452/2129$, $10-11=-452/2129$, $10-11=-452/2129$ VEBS $3-14=-1782/555$, $3-13=-202/1421$, $5-13=-385/346$, $6-13=-260/110$, $6-13=-288/1407$, $7-12=-383/340$, 0				s been designed for d nonconcurrent w as been designed a chord in all areas y 2-00-00 wide will y other members, ' rr(s) for truss to tru nanical connection capable of withsta uplift at joint 14 ar designed in accord Residential Code s d referenced stand sign requires that a of sheathing be ap " gypsum sheetron ord. Standard	or a 10.0 rith any for a liv where fit between with BC ss conr (by othen nding 1 ance wise ections dard AN a minime oplied di ck be ap	D psf bottom other live loac e load of 20.0 a rectangle veen the botto DL = 10.0psf. tections. ers) of truss to 38 lb uplift at joint at b uplift at joint at the 2018 R502.11.1 ar (SI/TPI 1. um of 7/16" rectly to the to oplied directly	ds. psf m t t to				WTH CA	ROUT
NOTES 1) Unbalance this design 2) Wind: ASC Vasd=103i Cat. II; Exp zone and C 3-4-11 to 2 (1) 25-7-3 exposed; p forces & M DOL=1.60	d roof live loads have E 7-16; Vult=130mph mph; TCDL=6.0psf; B0 0 C; Enclosed; MWFR3 C-C Exterior(2E) -0-10 11-4-0, Exterior(2R) 21 to 42-8-0 zone; end ve orch left exposed; C-C WFRS for reactions sl plate grip DOL=1.60	been considered for (3-second gust) CDL=6.0psf; h=25ft; 5 (envelope) exterior 8 to 3-4-11, Interior (* -4-0 to 25-7-3, Interior rtical left and right for members and hown; Lumber	1) r							Mannan		SEAL 03632	ER R. KIN

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

July 18,2024

Job	Truss	Truss Type	Qty	Ply	4983 Ray Rd. Spring Lake, NC	
4111088	A03	Common	1	1	Job Reference (optional)	166896561

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Tue Jul 16 11:34:47 ID:ijoi4IrRF5LrFEm8oHrSJ8yzXCK-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:75.9

Plate Offsets (X, Y): [10:0-1-9,Edge], [13:0-4-4,0-4-8], [14:0-4-4,0-4-8]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15	тс	0.71	Vert(LL)	-0.17	13-14	>999	360	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15	BC	0.63	Vert(CT)	-0.29	13-14	>999	240			
BCLL	0.0*	Rep Stress Incr	YES	WB	0.70	Horz(CT)	0.04	10	n/a	n/a			
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-AS		Wind(LL)	0.17	15-18	>615	240	Weight: 268 lb	FT = 20%	
			2) Wind: ASCE	7-16: Vult=130	mph (3-sec	ond aust)							

LUMBER				
TOP CHORD	2x4 SP N	0.2		
BOT CHORD	2x6 SP N	0.2		
WEBS	2x4 SP N	0.3		
BRACING				
TOP CHORD	Structural	wood she	eathing directly applied.	
BOT CHORD	Rigid ceili	ng directl	y applied.	
WEBS	1 Row at	midpt	5-14, 6-14, 6-13, 7-13, 9-13	
REACTIONS	(size)	2=0-3-8, 15=0-3-8	10=3-3-8, 11=0-3-8, 3	
	Max Horiz	2=257 (L	-C 16)	
	Max Uplift	2=-138 (11=-116	LC 9), 10=-278 (LC 13), (LC 13), 15=-514 (LC 12	2)
	Max Grav	2=294 (L 11=380 (C 25), 10=1076 (LC 2), (LC 2), 15=2097 (LC 2)	
FORCES	(lb) - Max Tension	imum Cor	mpression/Maximum	
TOP CHORD	1-2=0/23,	2-3=-291	/442, 3-5=-1136/401,	
	5-6=-1106	5/533, 6-7	=-1677/668,	
	7-9=-169	9/518, 9-1 1/200 12	0=-2192/577	
BOT CHORD	2-10=-30	1/300, 12- 27/1072 4	10 11- 267/1972	
WERS	3-15174	12/551 3-	14-186/1380	
WEBO	5-14=-38	5/346 6-1	4=-248/116	
	6-13=-462	2/1132.7-	13=-392/343.	
	9-13=-53	5/340, 9-1	2=0/175	
NOTES				

 Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 3-4-11, Interior (1) 3-4-11 to 21-4-0, Exterior(2R) 21-4-0 to 25-7-3, Interior (1) 25-7-3 to 42-8-0 zone; end vertical left and right exposed; porch left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
4) * This truss has been designed for a live load of 20.0psf

- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 138 lb uplift at joint 2, 278 lb uplift at joint 10, 514 lb uplift at joint 15 and 116 lb uplift at joint 11.

 This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

 This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	4983 Ray Rd. Spring Lake, NC	
4111088	A04	Roof Special	1	1	Job Reference (optional)	166896562

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Tue Jul 16 11:34:47 ID:Cw9B7HjsOcqiJ1tDoR0a3xyzX0s-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:87.2

Plate Offsets (X, Y): [11:0-3-7,0-0-6], [15:0-3-8,0-2-8], [18:0-4-4,0-4-8]

			i											
Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		20.0	Plate Grip DOL	1.15		TC	0.65	Vert(LL)	-0.15	16-18	>999	360	MT20	244/190
TCDL		10.0	Lumber DOL	1.15		BC	0.62	Vert(CT)	-0.25	16-18	>999	240		
BCLL		0.0*	Rep Stress Incr	YES		WB	0.58	Horz(CT)	0.02	13	n/a	n/a		
BCDL		10.0	Code	IRC201	8/TPI2014	Matrix-AS		Wind(LL)	0.19	19-22	>550	240	Weight: 298 lb	FT = 20%
				2)	Wind ASCE	7-16: Vult=130mm	oh (3-sec	ond aust)						
TOP CHORD	2x4 SP N	lo 2		_,	Vasd=103m	ph: TCDL=6.0psf:	BCDL=6	.0psf: h=25ft	:					
BOT CHORD	2x6 SP N	lo.2			Cat. II: Exp (C: Enclosed: MWF	RS (env	elope) exteri	or					
WEBS	2x4 SP N	lo.2			zone and C-	C Exterior(2E) -0-1	10-8 to 3	-10-11, Inter	ior					
BRACING	2/11 01 11	0.0			(1) 3-10-11 t	o 21-4-0, Exterior(2R) 21-4	-0 to 26-1-3	,					
	Structura		athing directly applie	d	Interior (1) 20	6-1-3 to 48-6-8 zor	ne; end	vertical left a	nd					
BOT CHORD	Rigid ceil	ling directly	annlied Excent	u.	right expose	d; porch left and rig	ght expo	sed;C-C for						
BOT ONORD	6-0-0 oc	hracing 11	-13		members an	d forces & MWFR	S for rea	ctions showr	ר;					
WEBS	1 Row at	midnt	5-18 6-18 6-16 7-1	16	Lumber DOL	.=1.60 plate grip D	OL=1.60)						
11LD0	i now at	mapt	9-16	3)	This truss ha	as been designed f	or a 10.0) psf bottom						
REACTIONS	(size)	2-0-3-8	11-0-3-8 13-0-3-8		chord live loa	ad nonconcurrent v	with any	other live loa	ads.					
REAGINGING	(3120)	19=0-3-8	11=0 0 0, 10=0 0 0,	4)	* This truss h	has been designed	for a liv	e load of 20.	0psf					
	Max Horiz	2=-253 (L	C 13)		on the bottor	m chord in all area	s where	a rectangle						
	Max Uplift	2=-151 (I	C(9) 11=-246 (I C 9))	3-06-00 tall t	by 2-00-00 wide wi	II fit betv	/een the bott	om					
	max opint	13=-516 (LC 13). 19=-473 (LC	,, ;12)	chord and ar	ny other members,	WITH BC	DL = 10.0ps	T.					
	Max Grav	2=368 (LC	C 25), 11=227 (LC 26	6). ⁽ 5)	Provide mec	nanical connection	1 (by oin anding 1	ETS) OF TRUSS	10 +					
		13=1900	(LC 2), 19=1785 (LC	2)	ioint 2, 516 l	b uplift at joint 13.3	246 lb u	blift at joint 1	ι 1					
FORCES	(lb) - Max	kimum Com	pression/Maximum		and 473 lb u	plift at joint 19.		,,	-					
	Tension			6)	This truss is	designed in accord	dance w	ith the 2018						
TOP CHORD	1-2=0/23	, 2-3=-278/	279, 3-5=-1115/489,	-,	International	Residential Code	sections	R502.11.1 a	and					
	5-6=-108	5/651, 6-7=	-1411/738,		R802.10.2 a	nd referenced star	ndard AN	ISI/TPI 1.						
	7-9=-142	4/549, 9-10)=-1335/379,	7)	This truss de	esign requires that	a minim	um of 7/16"						11
	10-11=-3	05/630, 11	-12=0/15		structural wo	ood sheathing be a	pplied d	rectly to the	top				WILL CA	Dille
BOT CHORD	2-19=-10	3/262, 16-1	9=-98/889,		chord and 1/	2" gypsum sheetro	ock be a	oplied directl	y to			1	TH UA	HOM
	15-16=-1	46/1192, 13	3-15=0/128,		the bottom c	hord.							A stee	in Inter
	11-13=-5	68/373		LC	DAD CASE(S)	Standard					/	52	FESS	AND A'
WEBS	10-13=-1	632/635, 3	-19=-1440/511,		. ,									A: I de

NOTES

 Unbalanced roof live loads have been considered for this design.

3-18=-108/1082, 5-18=-386/346,

6-18=-204/241, 6-16=-385/828,

7-16=-419/378, 9-16=-66/168, 9-15=-382/302, 10-15=-269/1168

July 18,2024

SEAL

036322

WILLIAM DATE

A COLUMN A COMPANY

Job	Truss	Truss Type	Qty	Ply	4983 Ray Rd. Spring Lake, NC	
4111088	A05	Roof Special	1	1	Job Reference (optional)	166896563

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Tue Jul 16 11:34:47 ID:Ln4EhovKJjAo45N2Y0nZ1byzX?K-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:87.2

Plate Offsets (X, Y): [11:0-3-7,0-0-6], [15:0-3-8,0-2-8], [18:0-4-4,0-4-8]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.68	Vert(LL)	-0.22	16-18	>999	360	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15	BC	0.68	Vert(CT)	-0.39	16-18	>999	240			
BCLL	0.0*	Rep Stress Incr	YES	WB	0.99	Horz(CT)	0.07	13	n/a	n/a			
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-AS		Wind(LL)	0.14	18	>999	240	Weight: 298 lb	FT = 20%	
LUMBER			2) Wind: ASCE	7-16; Vult=130	mph (3-sec	ond gust)							_

TOP CHORD	2x4 SP N	o.2		
BOT CHORD	2x6 SP N	o.2		
WEBS	2x4 SP N	0.3		
BRACING				
TOP CHORD	Structura	l wood sh	eathing directly	applied.
BOT CHORD	Rigid ceil	ing directl	y applied. Exc	ept:
	6-0-0 oc l	bracing: 1	1-13	•
WEBS	1 Row at	midpt	3-18, 5-18, 6	-18, 7-16
REACTIONS	(size)	2=0-3-8,	11=0-3-8, 13=	0-3-8
	Max Horiz	2=-253 (LC 13)	
	Max Uplift	2=-448 (LC 12), 11=-24	12 (LC 9),
		13=-586	(LC 13)	
	Max Grav	2=1712	(LC 2), 11=159) (LC 26),
		13=2428	s (LC 2)	
FORCES	(lb) - Max	imum Co	mpression/Max	timum
	Tension			
TOP CHORD	1-2=0/23,	2-3=-298	4/937, 3-5=-23	302/808,
	5-6=-227	7/978, 6-7	=-2020/890,	
	7-9=-2033	3/703, 9-1	0=-1690/464,	
	10-11=-4	51/1100, 1	11-12=0/15	
BOT CHORD	2-19=-75	1/2605, 10	6-19=-751/260	5,
	15-16=-2	15/1483,	13-15=-169/19	4,
	11-13=-10	024/514		
WEBS	10-15=-43	39/1761, 1	10-13=-2199/7	94,
	3-19=0/30)5, 3-18≕	720/402, 5-18	=-393/360,
	6-18=-48	3/1188, 6	16=-363/705,	
	7-16=-418	8/379, 9-1	6=-69/377, 9-1	5=-619/368
NOTES				

1) Unbalanced roof live loads have been considered for

this design.

Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft;
Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 3-10-11, Interior (1) 3-10-11 to 21-4-0, Exterior(2R) 21-4-0 to 26-1-3, Interior (1) 26-1-3 to 48-6-8 zone; end vertical left and right exposed; porch right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
3) This truss has been designed for a 10.0 psf bottom

- chord live load nonconcurrent with any other live loads.
 * This truss has been designed for a live load of 20.0psf
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
 5) Provide mechanical connection (by others) of truss to bearing plote capable of withstanding 448 lb uplift at
- bearing plate capable of withstanding 448 lb uplift at joint 2, 586 lb uplift at joint 13 and 242 lb uplift at joint 11.6) This truss is designed in accordance with the 2018

International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	4983 Ray Rd. Spring Lake, NC	
4111088	A06	Roof Special	5	1	Job Reference (optional)	166896564

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Tue Jul 16 11:34:47 ID:MltwxkAdHAkG0g9_?odQ61yzWyP-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Scale = 1:87.2

Plate Offsets	(X, Y):	[10:0-7-12,0-3-0], [12:0-3-7,Edge], [14:0-3-8,0-	2-8], [17:0-3-8,0-2-8], [20:0-4-4,0-4-8]	
---------------	---------	----------------------	------------------------------	--	--

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	тс	0.66	Vert(LL)	-0.29	18-20	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.74	Vert(CT)	-0.51	18-20	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.80	Horz(CT)	0.11	14	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-AS		Wind(LL)	0.18	18-20	>999	240	Weight: 305 lb	FT = 20%

LUMBER								
TOP CHORD	2x4 SP N	o.2						
BOT CHORD	2x6 SP N	o.2						
WEBS	2x4 SP N	0.3						
BRACING								
TOP CHORD	Structura	l wood she	eathing directly applied.					
BOT CHORD	Rigid ceil	ina directly	v applied.					
WEBS	1 Row at midpt 10-14, 3-20, 5-20, 6-20							
	i non ui	mapt	6-18 7-18 9-18					
REACTIONS	(size)	2=0-3-8	12=0-3-8 14=0-3-8					
	Max Horiz	2=0000,	(-13)					
	Max Liplift	2=-233 (1	(C 12) 12 = 207 (C 20)					
		1/617	(I C 13)					
	Max Grav	2-1859 ((10, 13)					
		14-2473	$(C _2)$					
FORCES	(lb) Max							
FORCES	(ID) - Max		npression/maximum					
	1_2_0/23	2-3320	5/1049 3-52625/924					
	5-6=-259	9/1095 6-	7=-2540/1074					
	7-9=-255	7/891 9-1	0=-2908/926					
	10-11=-3	57/1103 1	1-12=-416/1125					
	12-13=0/	15						
BOT CHORD	2-21=-79	3/2867.18	3-21=-793/2867.					
	17-18=-6	38/2581, 1	5-17=-498/2214,					
	14-15=-4	88/2212. 1	2-14=-1062/454					
WEBS	10-17=-1	57/403, 10)-15=-91/151,					
	10-14=-3	743/1066,	11-14=-297/214,					
	3-21=0/29	98, 3-20=-	710/400, 5-20=-393/359,					
	6-20=-483/1187, 6-18=-456/1077,							
	7-18=-40	9/372, 9-1	8=-484/313, 9-17=0/146					
NOTES								

1) Unbalanced roof live loads have been considered for

this design.

 Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 3-10-11, Interior (1) 3-10-11 to 21-4-0, Exterior(2R) 21-4-0 to 26-1-3, Interior (1) 26-1-3 to 48-6-8 zone; end vertical left and right exposed; porch right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
 This truss has been designed for a 10.0 psf bottom

- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
 4) * This truss has been designed for a live load of 20.0psf
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 470 lb uplift at
- joint 2, 617 lb uplift at joint 14 and 207 lb uplift at joint 12.6) This truss is designed in accordance with the 2018
- International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

Page: 1

Job	Truss	Truss Type	Qty	Ply	4983 Ray Rd. Spring Lake, NC	
4111088	A07	Common	5	1	Job Reference (optional)	166896565

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Tue Jul 16 11:34:47

Builders FirstSource (Sumter, SC), Sumter, SC - 29153,

Scale = 1:70.6 Plate Offsets (X, Y): [2:0-6-0,0-0-2]

								-					
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	/TPI2014	CSI TC BC WB Matrix-AS	0.60 0.50 0.56	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.08 -0.15 0.03 0.09	(loc) 11-14 11-14 8 11-14	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 176 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD	2x4 SP No.2 2x6 SP No.2 2x4 SP No.3 *Excep Structural wood sheat except end verticals. Rigid ceiling directly 1 Row at midpt (size) 2=0-3-8, 8 Max Horiz 2=533 (LC Max Uplift 2=-257 (L Max Grav 2=1083 (L Max Grav 2=1083 (L (b) - Maximum Com Tension 1-2=0/23, 2-3=-1652 5-6=-889/354, 6-7=- 2-11=-673/1402, 9-1	t* 8-7:2x4 SP No.2 athing directly applied. 6-9, 3-9, 7-8, 6-8, 5-9 3=0-3-8 C 12), 8=-388 (LC 12 C 2), 8=-388 (LC 12 C 2), 8=-1089 (LC 2) pression/Maximum //329, 3-5=-913/170, 41/48, 7-8=-83/66 1=-673/1402	5) 6) 1, 7) 9 LO	Provide mec bearing plate joint 2 and 30 This truss is International R802.10.2 au This truss de structural wo chord and 1/ the bottom c AD CASE(S)	hanical connection capable of withst 88 lb uplift at joint a designed in accorr Residential Code nd referenced star od sheathing be a 2" gypsum sheetro hord. Standard	n (by oth anding 2 8. dance w sections ndard AN a minim pplied d ock be a	ers) of truss ti 57 lb uplift at th the 2018 R502.11.1 a ISI/TPI 1. um of 7/16" rectly to the t oplied directly	o nd op r to					
WEBS	8-9=-106/236 6-9=-493/1165, 3-9= 5-9=-394/349, 3-11=	:-776/414, 6-8=-894/4 :0/340	417,										
NOTES 1) Unbalanc this desig 2) Wind: AS Vasd=103	ed roof live loads have n. CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; B(been considered for (3-second gust) CDL=6.0psf; h=25ft;									1111	ORTH CA	BOI'''''

- Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 21-4-0, Exterior(2E) 21-4-0 to 24-2-4 zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 4) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

Page: 1

Job	Truss	Truss Type	Qty	Ply	4983 Ray Rd. Spring Lake, NC	
4111088	A07P	Common	6	1	Job Reference (optional)	166896566

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Tue Jul 16 11:34:48 ID:o6YbWM8XKEU8vvde2Z_4AzyzSEK-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:70.6 Plate Offsets (X, Y): [2:0-6-0,0-0-2]

		-												
L oading TCLL (roof) TCDL 3CLL 3CDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-AS	0.59 0.50 0.56	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.08 -0.15 0.02 0.09	(loc) 11-14 11-14 8 11-14	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 187 lb	GRIP 244/190 FT = 20%	
LUMBER FOP CHORD 30T CHORD WEBS BRACING FOP CHORD WEBS REACTIONS FORCES	2x4 SP No.2 2x6 SP No.2 *Excep 2x4 SP No.3 *Excep Structural wood she except end verticals Rigid ceiling directly 1 Row at midpt (size) 2=0-3-8, 8 Max Horiz 2=533 (LC Max Uplift 2=-257 (L Max Grav 2=1083 (L (lb) - Maximum Com Tension 1-2=0/23, 2-3=-1655	t* 9-8:2x4 SP No.2 t* 8-7:2x4 SP No.2 athing directly applie applied. 6-9, 5-9, 3-9, 7-8, 6 3=0-3-8 C 12) C 12), 8=-388 (LC 1 .C 2), 8=-388 (LC 1 .C 2), 8=-1087 (LC 2 pression/Maximum 5/329, 3-5=-904/170,	5) 6) -8 -8 (2))	Provide mec bearing plate joint 2 and 3 This truss is International R802.10.2 al R802.10.2 al this truss de structural wo chord and 1/ the bottom c AD CASE(S)	hanical connectior e capable of withst 88 lb uplift at joint designed in accorn Residential Code nd referenced star isign requires that od sheathing be a 2" gypsum sheetro hord. Standard	h (by oth anding 2 8. dance w sections idard AN a minim pplied d pock be a	ers) of truss to 57 lb uplift at ith the 2018 R502.11.1 at ISI/TPI 1. um of 7/16" rectly to the to oplied directly	o nd op to						
BOT CHORD	5-6=-880/353, 6-7=- 2-11=-673/1404, 9-1 8-9=-109/237 6-9=-490/1149, 5-9=	40/52, 7-8=-82/67 1=-673/1404, 394/349_3-9=-788/	/414											
NOTES	3-11=0/347, 6-8=-88	37/414	- 1-,										П.,	
 Unbalance this design Wind: ASC Vasd=103 Cat. II; Ex zone and 2-1-8 to 2⁻ 	ed roof live loads have CE 7-16; Vult=130mph mph; TCDL=6.0psf; B(p C; Enclosed; MWFR C-C Exterior(2E) -0-10 1-4-0, Exterior(2E) 21	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterio -8 to 2-1-8, Interior (4-0 to 24-2-4 zone; e	r or (1) end							Land	A L	OR FESS	ROUN	

vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom

chord live load nonconcurrent with any other live loads. 4)

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0 psf.

111100000 Community . 036322 G mm July 18,2024

Job	Truss	Truss Type	Qty	Ply	4983 Ray Rd. Spring Lake, NC	
4111088	A08	Common Supported Gable	1	1	Job Reference (optional)	166896567

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Tue Jul 16 11:34:48 ID:RJbKBfuK_Da4xG1tpoZOBbyzXMb-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:70.6	
----------------	--

Plate Offsets (X, Y): [2:Edge,0-0-14]

																	-
Loading TCLL (roof) TCDL BCLL BCDL		(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-AS	0.07 0.09 0.15	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(lo	oc) - - 2	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 200	GRI 244/ Ib FT =	P /190 = 20%	
LUMBER TOP CHORD BOT CHORD WEBS DTHERS WEDGE BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP N 2x4 SP N 2x4 SP N 2x4 SP N Left: 2x4 Structura except er Rigid ceil 1 Row at (size) Max Horiz Max Uplift	0.2 0.2 0.2 *Excep 0.3 SP No.3 I wood sheat nd verticals. ing directly midpt 2=24-4-0, 19=24-4-0 26=26-26-26-26-26-26-26-26-26-26-26-26-26-2	t* 15-18:2x4 SP No.3 athing directly applie applied. 16-17, 14-19, 13-20, 12-21, 15-18 17=24-4-0, 18=24-4 , 24=24-40, 21=24-4 , 24=24-40, 28=24-4 , 230=24-4-0, 31=24-2 212), 31=533 (LC 12 C 13), 18=-56 (LC 12	T(3 B(4, 4-0, 4-0, 4-0, 4-0, 4-0, 10, N(2) N(3), 1)	OP CHORD 1	-2=0/23, 2-3=-582, +-5=-454/167, 5-6= '-9=-278/100, 9-10; 1-12=-103/41, 12- -3-14=-30/103, 14- 6-17=-15/30 -30=-362/128, 29-; 27-28=-1/0, 26-27= -4-25=-1/0, 22-24=; 20-21=-1/0, 19-20=; 7-18=-1/0 4-19=-119/45, 13-; 2-21=-119/120, 9-; -26=-120/120, 6-2; -28=-119/121, 4-2; -30=-101/196, 15- roof live loads have	/216, 3- -395/14 =-220/7 13=-51/ 15=-29/ 30=-1/0, 25 -1/0, 21 -1/0, 21 -1/0, 18 20=-120/ 25=-122 7=-120/ 9=-125/ 18=-96/ e been of	4=-509/189, 5, 6-7=-337/1 7, 10-11=-162 49, 189, 15-16=-7/ 189, 15-16=-7/ 10, -26=-1/0, -26=-1/0, -26=-1/0, -22=-1/0, -19=-1/0, 5/113, 20/120, 1/120, 1/20,	22, 2/55, (19,	8) 9) 10) 11)	* This on th 3-06- chorc Provi beari 17, 1 uplift 29, 1 This 1 Interr R802 This struc chorc the b AD C /	s truss e botto 00 tall d and a de mec 3 lb up at joint 2 lb up at joint 94 lb u truss is ationa 2.10.2 a truss du tural we d and 1 ottom c ASE(S)	has be m cho by 2-0 ny oth chanic e capa 27, 8 lift at ji 27, 8 lift at ji 20 lift at ji 20 li 20 lift at ji	een designed f rd in all areas 10-00 wide will er members. al connection f able of withstar oint 19, 84 lb u 2 lb uplift at joi joint 25, 83 lb u 7 lb uplift at joi joint 30 and 5 ned in accorda dential Code erenced stand requires that a heathing be ap posum sheetrooc	or a live l where a fit between 'by others ading 18 plift at jon nt 22, 82 plift at jon nt 28, 65 6 lb uplift ance with ections R lard ANS minimum plied dire k be app	load of 20.0psf rectangle en the bottom s) of truss to Ib uplift at joint int 20, 83 Ib Ib uplift at joint int 26, 81 Ib Ib uplift at joint at joint 18. the 2018 t502.11.1 and I/TPI 1. n of 7/16" ctly to the top lied directly to	
FORCES	Max Grav (Ib) - Max Tension	21=-83 (L1 24=-83 (L1 24=-82 (L1 28=-87 (L1 30=-194 (l) 2=313 (LC 23=313 (LC 23=13 (LC 20=166 (L 22=160 (L 22=160 (L 29=167 (L 31=313 (L timum Com	C 12), 22=-84 (LC 12 C 12), 22=-82 (LC 12 C 12), 25=-82 (LC 12 C 12), 25=-81 (LC 12 C 12), 29=-65 (LC 12 LC 12) C 12), 17=19 (LC 1), C 26), 19=161 (LC 1 C 25), 21=160 (LC 25 C 1), 24=160 (LC 25 C 1), 26=160 (LC 25 C 1), 26=160 (LC 25 C 1), 26=158 (LC 25 C 1), 30=124 (LC 25 C 12) pression/Maximum	2), 2) 2), 2), 2), 2), 2), 5), 3) 3), 3), 3), 4) 5) 6) 7)	Wind: ASCE Vasd=103mp Cat. II; Exp C zone and C-(2-1-8 to 21-4 vertical left e MWFRS for r grip DOL=1.6 Truss design only. For stu see Standarc or consult qu All plates are Gable requir Gable studs This truss ha chord live loa	7-16; Vult=130mph bh; TCDL=6.0psf; B ;; Enclosed; MWFR C Corner(3E) -0-10 -0, Corner(3E) 21-4 yposed; C-C for me eactions shown; Lu ion and for wind loads in ds exposed to wind l Industry Gable Er alified building desi 2x4 MT20 unless spaced at 2-0-0 oc. s been designed for d nonconcurrent w	n (3-sec SCDL=6 SS (envi- 8 to 2- 4-0 to 2 mbers a umber I n the pl d (norm nd Detai igner as otherwis or chor	ond gust) .0psf; h=25ft; elope) exterio 1-8, Exterior(2 4-2-4 zone; ei and forces & DOL=1.60 plat and of the tru al to the face) ils as applicat s per ANSI/TP se indicated. d bearing.	r 2N) nd te ss , ble, PI 1. ds.			Withhar		SE 036 SE 036	AL 322 NEER GILP	A A A A A A A A A A A A A A A A A A A	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org)

818 Soundside Road Edenton, NC 27932

July 18,2024

and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty Ply		4983 Ray Rd. Spring Lake, NC	
4111088	B01	Common Supported Gable	1	1	Job Reference (optional)	166896568

1)

Run: 8.63 S. Jul 12 2024 Print: 8.630 S. Jul 12 2024 MiTek Industries. Inc. Tue Jul 16 11:34:48 ID:yIDjhW6HvhETAJJDv6Bl0qyzVzD-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	4983 Ray Rd. Spring Lake, NC				
4111088	B02	Common	1	1	Job Reference (optional)	166896569			

Scale =	1:33.9
---------	--------

Scale = 1:33.9												
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.31	Vert(LL)	-0.02	5-8	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.25	Vert(CT)	-0.04	5-8	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.11	Horz(CT)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-AS		Wind(LL)	0.03	5-8	>999	240	Weight: 55 lb	FT = 20%
	IMBER 6) This truss is designed in accordance with the 2018 International Residential Code sections R502 11 1 and											

BOT CHORD	2x6 SP N	0.2
WEBS	2x4 SP N	0.3
BRACING		
TOP CHORD	Structural	wood sheathing directly applied.
BOT CHORD	Rigid ceili	ing directly applied.
REACTIONS	(size)	2=0-3-8, 4=0-3-8
	Max Horiz	2=89 (LC 16)
	Max Uplift	2=-159 (LC 12), 4=-129 (LC 13)
	Max Grav	2=548 (LC 1), 4=491 (LC 1)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	
TOP CHORD	1-2=0/23,	2-3=-686/387, 3-4=-686/395
BOT CHORD	2-5=-229/	/544, 4-5=-229/544
WEBS	3-5=-14/2	93

NOTES

1) Unbalanced roof live loads have been considered for this design.

Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 6-2-0, Exterior(2R) 6-2-0 to 9-2-0, Interior (1) 9-2-0 to 12-4-0 zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- * This truss has been designed for a live load of 20.0psf 4) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 129 lb uplift at joint 4 and 159 lb uplift at joint 2.

R802.10.2 and referenced standard ANSI/TPI 1.

6-2-0

7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

6-2-0

Job	Truss	Truss Type	Qty	Ply	4983 Ray Rd. Spring Lake, NC	
4111088	B03	Common	1	1	Job Reference (optional)	166896570

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Tue Jul 16 11:34:48 ID:BUG7abDwoSNBlhVywVrstkyzVz4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

6-2-0	12-4-0
6-2-0	6-2-0

Scale -	1.32.5
Scale =	1.32.3

WEBS

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-AS	0.31 0.25 0.11	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.02 -0.04 0.00 0.03	(loc) 4-10 4-10 3 4-7	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 54 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x6 SP No.2 2x4 SP No.3 Structural wood shea Rigid ceiling directly (size) 1=0-3-8, 3 Max Horiz 1=-69 (LC Max Uplift 1=-129 (LI Max Grav 1=493 (LC	athing directly applie applied. 8=0-3-8 13) C 12), 3=-129 (LC 1; C 12), 3=493 (LC 1)	 6) This truss is International R802.10.2 ai 7) This truss de structural wo chord and 1/ the bottom c LOAD CASE(S) 3) 	designed in accc Residential Cod nd referenced sta sign requires tha od sheathing be 2" gypsum sheet hord. Standard	ordance wi e sections andard AN at a minim applied di trock be ap	th the 2018 R502.11.1 a ISI/TPI 1. um of 7/16" rectly to the oplied directl	and top y to					
FORCES TOP CHORD BOT CHORD	(lb) - Maximum Com Tension 1-2=-691/399, 2-3=-6 1-4=-236/550, 3-4=-2	pression/Maximum 691/402 236/550										

NOTES
1) Unbalanced roof live loads have been considered for

2-4=-18/294

- this design.
 Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior (1) 3-0-0 to 6-2-0, Exterior(2R) 6-2-0 to 9-2-0, Interior (1) 9-2-0 to 12-4-0 zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 129 lb uplift at joint 1 and 129 lb uplift at joint 3.

Job	Truss	Truss Type	Qty	Ply	4983 Ray Rd. Spring Lake, NC	
4111088	B04	Common Girder	1	2	Job Reference (optional)	166896571

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Tue Jul 16 11:34:48 ID:QDJXTgKagDVwK4hgyuVzldyzVyx-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:33.9

Plate Offsets (X, Y): [7:0-5-0,0-4-8]

Loading	(ps	sf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20	0.0	Plate Grip DOL	1.15		тс	0.33	Vert(LL)	-0.06	6-7	>999	360	MT20	244/190
TCDL	10	0.0	Lumber DOL	1.15		BC	0.96	Vert(CT)	-0.12	6-7	>999	240		
BCLL	0).0*	Rep Stress Incr	NO		WB	0.54	Horz(CT)	0.03	5	n/a	n/a		
BCDL	10	0.0	Code	IRC2	018/TPI2014	Matrix-MS		Wind(LL)	0.07	6-7	>999	240	Weight: 135 lb	FT = 20%
LUMBER					4) Wind: ASCE	7-16; Vult=130mp	h (3-sec	cond gust)						
TOP CHORD	2x4 SP No.2				Vasd=103m	oh; TCDL=6.0psf; I	BCDL=6	.0psf; h=25ft	;					
BOT CHORD	2x6 SP No.2				Cat. II; Exp (; Enclosed; MWFI	RS (env	elope) exterio	or					
WEBS	2x4 SP No.2				zone; end ve	rtical left and right	expose	d; Lumber						
BRACING					DOL=1.60 p	ate grip DOL=1.60)							
TOP CHORD	Structural wood	d shea	athing directly applied	l or	This truss hat chord live load	is been designed fo ad nonconcurrent v	or a 10.0 vith anv) psf bottom other live loa	ds.					
	4-6-11 OC purili Pigid coiling dir	1S.	applied or 10.0.0 oc		6) * This truss I	as been designed	for a liv	e load of 20.0	Opsf					
BOT CHORD	bracing.	ecuy	applied of 10-0-0 oc		on the botton	n chord in all areas	s where	a rectangle						
REACTIONS	(size) 1=0-3	3-8, 5	=0-3-8		shord and a	by 2-00-00 wide wi		veen the botto	JIII					
	Max Horiz 1=-69	9 (LC	13)		 Provide med 	hanical connection	(hv oth	ers) of truss t	0					
	Max Uplift 1=-1	129 (L	_C 8), 5=-1102 (LC 9)	bearing plate	capable of withsta	andina 1	129 lb uplift :	at					
	Max Grav 1=39	999 (L	C 2), 5=3904 (LC 2)		joint 1 and 1	102 lb uplift at joint	5.							
FORCES	(lb) - Maximum	Comp	pression/Maximum		8) This truss is	designed in accord	dance w	ith the 2018						
	Tension				International	Residential Code	sections	R502.11.1 a	ind					
TOP CHORD	1-2=-6864/1933	3, 2-3=	=-5184/1484,		R802.10.2 a	nd referenced stan	dard AN	ISI/TPI 1.						
	3-4=-5184/1483	3, 4-5=	=-6860/1933		Use Simpso	Strong-Tie HTU2	6 (10-16	6d Girder,						
BOLCHORD	1-8=-1740/6088	8,7-8= 0 5 6-	=-1740/6088, - 1660/6080		14-10dx1 1/2	2 I russ) or equivale	ent spac	ed at 2-0-0 o	C					
WEBS	2-8/18/1630	0, 0-0- 2-7	-1735/573		max. starting	at 2-0-12 from the	e lett end	1 to 10-0-12 t	0					
WEBS	3-7=-1212/437	9 <u>4</u> -7=	=-1726/572		10) Fill all pail by	los whore hanger	ic in cor	n chora.	bor					
	4-6=-421/1635	0, 11-	- 1120/012,			Stondord	15 111 COI		Del.					
NOTES					1) Dood L Bo	of Live (balanced):	Lumbor	Incrosco-1	15					1111
1) 2-nly truss	to be connected	toget	her with 10d		 Deau + Ro Plate Increi 		Lumber	increase=1.	15,			13	IN TH CA	Roill
(0.131"x3") nails as follows:	logou			Uniform Lo	ads (lb/ft)						15	R	2 Main
Top chord	s connected as fo	ollows	: 2x4 - 1 row at 0-9-0		Vert: 1-3	=-60, 3-5=-60, 9-1;	2=-20					27	Jaco J	Divert
oc.					Concentrat	ed Loads (lb)					1		19 10	Vary /
Bottom ch	ords connected a	is follo	ws: 2x6 - 2 rows		Vert: 7=-	1293 (B), 15=-129	3 (B), 16	6=-1293 (B),			-		. 4	1. 1.
staggered	at 0-7-0 oc.				17=-129	3 (B), 18=-1293 (B)	()/			=		SEA	L 🕴 🗄
Web conn	ected as follows:	2x4 -	1 row at 0-9-0 oc.								Ξ.	- 8	0000	
2) All loads a	re considered eq	ually a	applied to all plies,								1		0363	22 : :
except if n	oted as front (F) of	or bac	K (B) face in the LOA	AD.								- C	1	3 - Z
CASE(S)	section. Ply to ply	conni oode r	ections have been									5	1. A	all S
unless oth	erwise indicated	Jaus I	(\Box, \Box)									20	NGINE	ENAS
3) Unbalance	ed roof live loads	have I	been considered for									11,	710	- Frist
this design	ופטעט איז												IL A G	ILD
													1111	un lin

July 18,2024

A WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org)
and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	4983 Ray Rd. Spring Lake, NC	
4111088	G01	Common Supported Gable	1	1	Job Reference (optional)	166896572

11-0-0

11-0-0

Builders FirstSource (Sumter, SC), Sumter, SC - 29153,

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries. Inc. Tue Jul 16 11:34:48 ID:sGsotZRbVIxcib4o5GkSijyzW1z-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

22-10-8 0-10-8 22-0-0 11-0-0

Scale	= 1	1:45.	1
ooulo		1.40.	

	(psf) 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES		CSI TC BC WB	0.07 0.08 0.07	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 11	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
	10.0	Code	IRC20	18/TPI2014	Matrix-AS							Weight: 132 lb	FT = 20%
2x4 SP N 2x6 SP N 2x4 SP N Structural Rigid ceili (size) Max Horiz Max Uplift Max Grav	0.2 0.2 0.3 mg directly 1=22-0-0, 14=22-0-0 21=22-0-0 26=22-0-0 26=22-0-0 1=-17 (LC 13=-131 (15=-88 (L 19=-81 (L) 23=-17 (L) 23=-17 (L) 23=-17 (L) 23=-17 (L) 23=-160 (L) 23=-160 (L) 23=-160 (L) 23=-17 (L) 23=-17 (L) 20=167 (L) 20=167 (L) 20=167 (L) 20=167 (L) 20=167 (L) 20=173 (L)	athing directly applied applied. 11=22-0-0, 13=22-0, 15=22-0-0, 16=22- , 19=22-0-0, 20=22- , 22=22-0-0, 23=22- , 22=22-0-0, 23=22- , 22=22-0-0, 23=22- , 23=-143 (LC 1 13), 11=-15 (LC 13), 14=-65 (LC 13), 16=-80 (LC 12), 212), 22=-143 (LC 12), 213), 26=-15 (LC 12), 213), 16=-165 (LC 26), 21), 11=173 (LC 1), C 26), 14=135 (LC 12), C 12), 16=-165 (LC 26), C 1), 21=-130 (LC 1), C 25), 23=111 (LC 1 C 1)	d. 2 -0, 2 0-0, 0-0, 0-0, 0-0, 17) 13), 3), 2), 3 12), 3 12), 3 3), 4 (), 4 ()	WEBS 6 37 37 9 10 10 Unbalanced 1 this design. 2 20 Wind: ASCE Vasd=103mp Cat. II; Exp C 20ne and C-C 3-0-0 to 11-0 (2N) 14-0-0 t exposed; C-C reactions sho DOL=1.60 30 Truss design or consult qu 41 plates are 41 plates are Gable studs a: 5) Gable studs a: 7) This truss ha chord live loa * This truss ha	3-17=-112/1, 5-19 3-21=-111/111, 2: 7-16=-126/115, 8: 3-21=-112/111, 10: roof live loads ha 7-16; Vult=130m ph; TCDL=6.0psf; Corner(3E) 0-0 -0, Corner(3E) 0-0	e=-126/11 -22=-150, -15=-121, 0-13=-14' ve been of BCDL=6 FRS (env- 0 to 3-0- 1-0-0 to 1 end vertic d forces & _=1.60 pl: s in the pl nd (norm End Deta ssigner as s otherwi ttom chor oc. for a 10.0 with any d for a 10.0	4, 4-20=-122/ 195, 126, 7/165 considered for ond gust) .0psf; h=25ft; elope) exterior 0, Exterior(2N 4-0-0, Exterior 0, Exterior (2N 4-0-0, Exterior al left and rigf & MWFRS for ate grip ane of the tru al to the face) ils as applicat s per ANSI/TP se indicated. d bearing. 0 psf bottom other live load e load of 20.0	r r) r hle, l 1. ss , ss , le, l 1.	11) This stru cho the LOAD (s truss d ctural w rd and 1 bottom o CASE(S)	esign 1 ood sh /2" gyf chord.) Star	requires that a mi reathing be applie bosum sheetrock t ndard	nimum of 7/16" ad directly to the top he applied directly to
(Ib) - Max	imum Com	pression/Maximum		3-06-00 tall b	v 2-00-00 wide w	/ill fit betv	een the botto	m		/	5	O'. FESS	101 Ving
Tension D 1-2=-136/56, 2-3=-87/74, 3-4=-62/106, 4-5=-68/159, 5-6=-91/221, 6-7=-91/221, 7-8=-68/159, 8-9=-51/92, 9-10=-57/34, 10-11=-103/32, 11-12=0/23 D 1-22=-38/162, 21-22=-33/162, 10-21=-33/162, 19-20=-33/162, 17-19=-33/162, 14-15=-33/162, 13-14=-33/162, 11-13=-33/162				 3-06-00 fail b chord and an an Provide mecl bearing plate 1, 15 lb uplift at joint 20, 60 80 lb uplift at at joint 14, 13 and 15 lb upl 10) This truss is a International R802.10.2 ar 	yy 2-00-00 wide w yy other members hanical connectio capable of withs at joint 11, 81 lb D lb uplift at joint 1 joint 16, 88 lb up 81 lb uplift at joint 1 designed in acco Residential Code ad referenced sta	in fit betw in (by oth tanding 1 uplift at jo 21, 143 lb lift at join 13, 17 lb rdance w a sections ndard AN	reen the botto ers) of truss to 7 lb uplift at jc bint 19, 89 lb u uplift at joint t 15, 65 lb upl uplift at joint ith the 2018 R502.11.1 au (SI/TPI 1.	n pint uplift 22, ift 1		A CHILLING		SEA 0363	L 22 EER. KTIII
	2x4 SP N 2x6 SP N 2x4 SP N Structural Rigid ceili (size) Max Horiz Max Uplift Max Uplift Max Grav (lb) - Max Tension 1-2=-136/ 4-5=-68/1 7-8=-68/1 10-11=-11 1-22=-38/ 20-21=-3: 15-16=-3: 13-14=-3:	(psf) 20.0 10.0 0.0* 10.0 2x4 SP No.2 2x6 SP No.2 2x4 SP No.3 Structural wood sheat Rigid ceiling directly (size) 1=22-0-0, 14=22-0-0 26=22-0-0 Max Horiz 1=-143 (Li Max Uplift 1=-17 (LC 13=-131 (li 15=-88 (Li) 23=-17 (Li) Max Grav 1=111 (LC 13=-31 (Li) 15=-86 (Li) 23=-17 (Li) Max Grav 1=111 (LC 13=-131 (li) 15=-86 (Li) 23=-17 (Li) Max Grav 1=111 (LC 15=-166 (Li) 23=-17 (Li) Max Grav 1=111 (LC 15=-166 (Li) 23=-17 (Li) Max Grav 1=111 (LC 15=-166 (Li) 23=-17 (Li) 15=-136/56, 2-3=-8: 4-5=-68/159, 5-6=-9: 7-8=-68/159, 5-6=-9: 7-8=-68/159, 5-6=-9: 7-8=-68/159, 5-6=-9: 7-8=-68/159, 5-6=-9: 7-8=-68/159, 5-6=-9: 7-8=-68/159, 5-6=-9: 7-19==-33/162, 11-1 15-16==-33/162, 14-1 13-14=-33/162, 11-1	$\begin{array}{c cccc} (psf) \\ 20.0 \\ 10.0 \\ 10.0 \\ 0.0^* \\ 10.0 \\ 0.0^* \\ 10.0 \\ 2x4 SP No.2 \\ 2x6 SP No.2 \\ 2x4 SP No.3 \\ \hline \\ Structural wood sheathing directly applie \\ Rigid ceiling directly applied. \\ (size) \\ 1=22-0-0, 11=22-0-0, 13=22-0 \\ 14=22-0-0, 15=22-0-0, 16=22-17=22-0-0, 19=22-0-0, 23=22-26=22-0-0 \\ \hline \\ Max Horiz \\ 1=-17 (LC 13), 11=-15 (LC 13) \\ 13=-131 (LC 13), 14=-65 (LC 13) \\ 15=-88 (LC 13), 16=-80 (LC 12) \\ 22=-17 (LC 13), 26=-15 (LC 13) \\ 15=-88 (LC 12), 22=-143 (LC 22) \\ 23=-17 (LC 13), 26=-15 (LC 13) \\ 15=-151 (LC 22), 19=-164 (LC 22) \\ 20=167 (LC 1), 11=-173 (LC 1), \\ 13=231 (LC 25), 23=-111 (LC 12) \\ 22=245 (LC 25), 23=-111 (LC 12) \\ 22=245 (LC 25), 23=-111 (LC 12) \\ 26=173 (LC 1) \\ \hline \\ (b) - Maximum Compression/Maximum Tension \\ 1-2=-136/56, 2-3=-87/74, 3-4=-62/106, \\ 4-5=-68/159, 5-6=-91/221, 6-7=-91/221, \\ 7-8=-68/159, 5-6=-91/221, 6-7=-91/221, \\ 7-8=-68/159, 5-6=-91/221, 6-7=-91/221, \\ 7-8=-68/159, 5-6=-91/221, 6-7=-91/221, \\ 7-8=-68/159, 5-6=-91/221, 6-7=-91/221, \\ 7-8=-68/159, 5-6=-91/221, 6-7=-91/221, \\ 7-8=-68/159, 5-6=-91/22, 9-10=-57/34, \\ 10-11=-103/32, 11-12=-0/23 \\ 1-22=-33/162, 12-22=-33/162, \\ 12-2=-33/162, 14-15=-33/162, \\ 13-14=-33/162, 11-13=-33/162 \\ \hline \end{array}$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(psf) 20.0 Plate Grip DOL 1.0 0.0°Spacing Plate Grip DOL 1.15CSI TC 0.07 BC 0.07 BC 0.07 BC10.0Code1.15BC BC 0.08 WB 0.07 Matrix-AS2x4 SP No.2 2x6 SP No.2 2x6 SP No.2WEBS $6-17=-112/1, 5-19=-126/11$ Structural wood sheathing directly applied. (size) $6-17=-112/1, 5-19=-126/11$ Structural wood sheathing directly applied. (size)WEBS $6-17=-112/1, 5-19=-126/11$ Structural wood sheathing directly applied. (size) $9-14=212/15, 8-15=-121/10-11-12/15, 8-15=-121/10-11-12/15, 8-15=-121/10-10-10-12/15, 8-15=-121/10-10-10-10-10-10-10-10-10-10-10-10-10-1$	$ \begin{array}{ c c c c c } \hline (psf) \\ 20.0 \\ Plate Grip DOL \\ 1.15 \\ Lumber DOL \\ 1.0 \\ \hline (psi) \\ 0.0^{\circ} \\ Rep Stress Incr \\ YES \\ Code \\ \hline (RC2018/TPI2014 \\ \hline (Matrix-AS \\ \hline (Matr$				$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(psf) Spacing 2-0-0 CSI DEFL in (loc) Vielt L/d PLATES 20.0 Plate Grip DOL 1.15 TC 0.07 Vert(C1) n'a - n'a 999 0.0 Rep Stress Incr YES BC 0.08 Vert(C1) n'a n'a </td

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

July 18,2024

Job	Truss	Truss Type	Qty	Ply	4983 Ray Rd. Spring Lake, NC	
4111088	G02	Common	1	1	Job Reference (optional)	166896573

2)

3)

4)

5)

Run: 8.63 S. Jul 12 2024 Print: 8.630 S. Jul 12 2024 MiTek Industries. Inc. Tue Jul 16 11:34:48 ID:hVKnPtK041F6azk0Qo3piKyzW0p-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

818 Soundside Road

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	4983 Ray Rd. Spring Lake, NC	
4111088	G03	Common	10	1	Job Reference (optional)	166896574

2)

3)

4)

5)

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Tue Jul 16 11:34:48

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	4983 Ray Rd. Spring Lake, NC	
4111088	V01	Valley	1	1	Job Reference (optional)	166896575

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Tue Jul 16 11:34:49 ID:u57We7JIREfoDzMCgZT7CwyzUDw-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

21-3-12

Scale = 1:54.1														
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-AS	0.26 0.26 0.22	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(loc) - - 8	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 98 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood shee except end verticals. Rigid ceiling directly 1 Row at midpt (size) 8=21-3-12 11=21-3-1 4=21-3-1 Max Horiz 14=-453 (Max Uplift 8=-35 (LC 10=-115 (13=-170 (Max Grav 8=175 (LC 10=311 (L 13=431 (L 13=431 (L)	athing directly applied. 1-14 2, 9=21-3-12, 10=21- 12, 13=21-3-12, 12 LC 13) LC 13), 11=-174 (LC LC 13), 14=-69 (LC 1 2, 1), 9=457 (LC 2), LC 2), 11=372 (LC 2), LC 2), 14=160 (LC 2) pression/Maximum	2) 3) 4) 5) 6) 7) 3-12, 8) 13), (3) 9)	Truss design only. For stu see Standard or consult qu All plates are Gable requirn Gable studs 3 This truss ha chord live loa * This truss h on the botton 3-06-00 tall b chord and ar Provide mech bearing plate 14, 35 lb upli uplift at joint at joint 9. This truss is International R802.10.2 ar	hed for wind loads i ds exposed to wind d Industry Gable Er alified building des 2x4 MT20 unless es continuous botto spaced at 4-0-0 oc s been designed for d nonconcurrent w has been designed n chord in all areas by 2-00-00 wide will yo other members, hanical connection capable of withsta ft at joint 8, 170 lb o 11, 115 lb uplift at j designed in accord Residential Code stand cian canvice that	n the pl d (norm d Deta igner as otherwi m chor im chor im chor in a 10.0 vith any for a liv where fit betw with BC (by oth nding 6 uplift at oint 10 ance w sections dard AN a minim	ane of the tru al to the face) ils as applicat s per ANSI/TF se indicated. d bearing.) psf bottom other live load e load of 20.0 a rectangle veen the botto DL = 10.0psf ers) of truss tr 9 lb uplift at jo joint 13, 174 and 121 lb up ith the 2018 R502.11.1 a ISI/TPI 1. um of 7/16"	ss , , ple, Pl1. ds. ppsf om o point lb blift nd						
TOP CHORD	Tension 1-14=-95/100, 1-2=- 3-5=-299/127, 5-6=- 7-8=-426/177	77/40, 2-3=-186/81, 386/159, 6-7=-392/14	42,	structural wo chord and 1/2 the bottom cl	od sheathing be ap 2" gypsum sheetro nord.	plied di ck be aj	rectly to the to oplied directly	op to					Politi	
BOT CHORD	13-14=-171/451, 11- 10-11=-171/451, 9-1 8-9=-171/451	-13=-171/451, 0=-171/451,		AD CAGE(3)	Glanuaru					4	i li	ORIFESE	De la	1
WEBS	2-13=-257/228, 3-11 5-10=-224/168, 7-9=	=-240/219, 294/139								111		2	K	1111
NOTES 1) Wind: AS(Vasd=103 Cat. II; Ex zone and 3-1-12 to 2 MWFRS for grip DOL=	CE 7-16; Vult=130mph Bmph; TCDL=6.0psf; B(p C; Enclosed; MWFR: C-C Exterior(2E) 0-1-1 21-3-12 zone;C-C for n or reactions shown; Lu -1.60	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior 2 to 3-1-12, Interior (nembers and forces a mber DOL=1.60 plat	1) & e							HILL WAY	A A A A A A A A A A A A A A A A A A A		ER. K	ALL DALL

. . . .

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

GI minin July 18,2024

Job	Truss	Truss Type	Qty	Ply	4983 Ray Rd. Spring Lake, NC	
4111088	V02	Valley	1	1	Job Reference (optional)	166896576

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Tue Jul 16 11:34:49 ID:85iL6?dbJDx6LyLCC1xDGPyzUDW-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

17-3-12

Scale = 1:53.9

Loading TCUL (roof) (psf) 20.0 Spacing Plate Grip DOL 2-0-0 1.15 CSI DEFL in (loc) Videl Lude PLATES GRIP TCDL 0.0 0.0 Rep Stress Incr YES 0.15 Veri(LL) n/a - n/a 999 BCL 0.0 10.0 Code IRC2018/TPI201 Matrix-S Horiz(TL) 0.01 7 n/a n/a Matrix-S LUMBER TOP CHORD 2x4 SP No.2 Code IRC2018/TPI201 Gable requires continuous bottom chord bearing. Gable squires continuous bottom chord bearing. Gable squires continuous bottom chord bearing. Gable squires continuous bottom chord in all areas where a rectangle - - - n/a n/a Neight: 79 lb FT = 20% BACING TOP CHORD Structural wood sheathing directly applied or FOP CHORD -<																
TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.27 Vert(LL) n'a - n'a 999 MT20 244/190 BCL 0.0* Lumber DOL 1.15 BC 0.19 Vert(IL) n'a - n'a 999 Mt20 244/190 BCDL 0.0* Rep Stress Incr YES WB 0.16 Vert(IL) n'a - n'a 999 Weight: 79 lb FT = 20% LUMBER Code IRC2018/TPI2014 Matrix-S Horiz(TL) 0.01 7 n'a n'a Weight: 79 lb FT = 20% LUMBER Code istas is a been designed for a lop abotion chord is	Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCDL 10.0 Lumber DOL 1.15 BC 0.18 Ver(TL) n/a - n/a n/a n/a BCLL 0.0 Rep Stress Incr IRC2018/TPI2014 WB 0.16 Horiz(TL) 0.01 7 n/a n/a n/a LUMBER Code IRC2018/TPI2014 WB 0.16 Horiz(TL) 0.01 7 n/a n/a n/a DOP CHORD 2x4 SP No.2 Stress Incr IRC2018/TPI2014 Matrix-S Gable requires continuous bottom chord bearing. Gable requires continuous bottom Gable requires continuous bottom Interview Intervi	TCLL (roof)		20.0	Plate Grip DOL	1.15		TC	0.27	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
BCLL 0.0* Rep Stress Incr YES WB 0.16 Horiz(TL) 0.01 7 n/a N/a BCDL 10.0 Code IRC2018/TP12014 Matrix-S Horiz(TL) 0.01 7 n/a N/a LUMBER Code IRC2018/TP12014 Matrix-S Horiz(TL) 0.01 7 n/a N/a LUMBER Code Gable requires continuous bottom chord bearing. Status Stable studs spaced at 40-0 oc. This truss has been designed for a live load. This truss has been designed for a live load. This truss has been designed for a live load. This truss has been designed for a live load. This truss has been designed for a live load. Provide mechanical connection (by others) of truss to be the bottom chord and any other live load. Provide mechanical connection (by others) of truss to be truss to be truss in the bottom chord and any other live load. Provide mechanical connection (by others) of truss to be truss in designed in accordance with the 2018 Provide mechanical connection (by others) of truss to be truss in the stable of grid of 10.0 psf. Provide mechanical connectin (by others) of truss to be acigned in accordance with	TCDL		10.0	Lumber DOL	1.15		BC	0.19	Vert(TL)	n/a	-	n/a	999			
BCDL 10.0 Code IRC2018/TPI2014 Matrix-S Weight: 79 lb FT = 20% LUMBER TOP CHORD 2x4 SP No.2 63ble requires continuous bottom chord bearing. 5 Gable studs spaced at 4-0-0 oc. 5 Gable studs spaced at 4-0-0 oc. 67 7 This truss has been designed for a 10.0 psf bottom chord live load of 20.0 psf on the bottom chord in all areas where a rectangle 7 7 This truss has been designed for a 10.0 psf bottom chord live load of 20.0 psf on the bottom chord in all areas where a rectangle 3 6 9	BCLL		0.0*	Rep Stress Incr	YES		WB	0.16	Horiz(TL)	0.01	7	n/a	n/a			
LUMBER TOP CHORD 2x4 SP No.2 6 able requires continuous bottom chord bearing. SOT CHORD 2x4 SP No.2 6 able studies spaced at 4-00 cc. OTHERS 2x4 SP No.3 6 able studies spaced at 4-00 cc. OTHERS 2x4 SP No.3 7 modelines. TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc putins, except end verticals. 7 modelines. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc putins, except end verticals. 7 modeline members, with BCDL = 10.0psf. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. 7 modeline members, with BCDL = 10.0psf. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. 8 provide mechanical connection (by others) of truss to bracing plate capable of withstanding G7 lb uplift at joint 12, 173 lb uplift at joint 11, 171 lb uplift at joint 12, 173 hz uplift at	BCDL		10.0	Code	IRC20	18/TPI2014	Matrix-S							Weight: 79 lb	FT = 20%	
 IOP CHORD 2x4 SP No.2 IOB COT CHORD 2x4 SP No.2 IOB CHORD 2x4 SP No.3 IOB CHORD 2x4 SP No.3 IT CP CHORD Structural wood sheathing directly applied or 10-00 c bracing. IN WEBS 1ROW at midpt 1-12 REACTIONS (size) 7=17.3-12, 8=17.3-12, 9=17.3-12, 11=17.3-12, 12=17.3-12, 12=17.3-12, 13=17.3-12, 12=17.3-12, 13=17.3-12,		0.4 00 N				4) Gable require	es continuous botto	om chor	d bearing.							
BOT CHORD 2x4 SP No.3 OTHERS 2x4 SP NO.3 OTH		2x4 SP NC).Z			b) Gable studs	spaced at 4-0-0 of	;. or o 10 () pef bottom							
 Wiebs 2x4 SP No.3 OTHERS 2x4 SP No.3 BRACING BRACING TOP CHORD Structural wood sheathing directly applied or 10-0-0 oc bracing. WEBS 1 Row at midpt 1-12 REACTIONS (size) 7-17-3-12, 8-17-3-12, 9=17-3-12, 1=17-3-12, 9=17-3-12, 8-17-3-12, 9=17-3-12, 1=1-7-3-12, 9=17-3-12, 1=1-7-3-12, 9=17-3-12, 1=1-7-3-12, 9=17-3-12, 9=17-3-12, 9=17-3-12, 9=17-3-12, 9=17-3-12, 9=17-3-12, 1=1-7-3-12, 9=17-3-12, 9=17-3-12, 9=17-3-12, 9=17-3-12, 9=17-3-12, 9=17-3-12, 9=17-3-12, 1=1-17-3-12, 1=1-7-3-3-12, 1=1-7-3-3-	BUICHURD	2x4 SP NC).Z			chord live los	d popeopeurront w	vith any	other live leav	de						
BRACING Structural wood sheathing directly applied or 6-0-0 co purlins, except end verticals. on the bottom chord in all areas where a rectangle BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. rectangle directly applied or 10-0-0 oc bracing. on the bottom chord and any other members, with BCDL = 10.0psl. WEBS 1 Row at midpt 1-12 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 67 lb uplift at joint 11, 171 lb uplift at joint 12, 173 lb uplift at joint 13, 11-173 (LC 13), 11-173 (LC 13), 12-67 (LC 13) Max Grav 7-150 (LC 2), 8-395 (LC 2), 9-334 (LC 2), 9-334 (LC 2), 11-2441 (LC 2), 12-156 (LC 2) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 11-12-493/108, 1-2-77/29, 2-3=-195/82, 8-39-149/392, r4=-149/392, r4=-149/392, e3-e149/392, r4=-149/392, e3-e149/392, r4=-149/392, e3-e149/392, e3-e1-232/216, 5-8-e275/179 WEBS 2-11-263/239, 3-9-223/216, 5-8-275/179 NoTES 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) / vacd-104 south test for the forther f	OTHERS	2x4 SP No 2x4 SP No	0.3 0.3			 7) * This truss h 	as been designed	for a liv	e load of 20.0	us.)psf						
 Hor ChOKD Structural wood sheat may be deviced by applied or 10-0-0 oc bracing. WEBS 1 Row at midpt 1-12 WEBS 1 Row at midpt 1-12 REACTIONS (size) 7-17-3-12, 8-17-3-12, 9-17-3-12, 11=17-3-12, 12=17-3-12, 11=17-3-12, 12=17-3-12, 9-17-3-12, 11=17-3-12, 12=17-3-12, 9-17-3-12, 9-17-3-12, 9-17-3-12, 12=17-3-12, 9-17-3-12, 9-17-3-12, 9-17-3-12, 9-17-3-12, 11=17-3-12, 12=17-3-12, 9-17-3-12, 9-17-3-12, 9-17-3-12, 9-17-3-12, 11=17-3-12, 12=17-3-12, 9-17-3-12, 12=17-3-12, 9-17-3-12, 11=17-3-12, 12=17-3-12, 9-17-3-12, 11=17-3-12, 12=17-3-12, 9-17-3-12, 9-17-3-12, 12=17-3-12, 9-17-3-12, 11=17-3-12, 12=17-3-12, 9-17-3-12, 11=17-3-12, 12=17-3-12, 9-17-3-12, 12=17-3-12, 9-17-3-12, 12=17-3-12, 9-17-3-12, 12=17-3-12, 9-17-3-12, 12=17-3-12, 9-17-3-12, 12=17-3-12, 12=17-3-12, 9-17-3-12, 12=17-3		Structural	wood chor	athing directly applied	d or	on the bottor 3-06-00 tall b	n chord in all areas by 2-00-00 wide wi	s where Il fit betv	a rectangle	om						
 BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. WEBS 1 Row at midpt 1-12 REACTIONS (size) 7=17-3-12, 8=17-3-12, 9=17-3-12, 11=17-3-12, 12=17-3-12, 11=17-3-12, 12=17-3-12, 11=17-3-12, 12=17-3-12, 11=17-3-12, 12=17-3-12, 11=1-73-12, 12=17-3-12, 11=1-73-12, 12=17-3-12, 11=1-73-12, 12=17-3-12, 11=1-73-12, 12=17-3-12, 11=1-73-12, 12=17-3-12, 11=1-73-12, 12=17-3-12, 11=1-73-12, 12=17-3-12, 11=1-73-12, 12=17-3-12, 11=1-73-12, 12=17-3-12, 11=1-73-12, 12=17-67 (LC 13), 11=-173 (LC 13), 12=-67 (LC 13), 11=-173 (LC 13), 12=-67 (LC 13), 12=-67 (LC 13), 12=-150 (LC 2), 9=343 (LC 20), 11=441 (LC 2), 12=156 (LC 2) FORCES (b) - Maximum Compression/Maximum Tension TOP CHORD 11-12=-149/392, 9-11=-149/392, 8-9=-149/392, 8-9=-149/392, 8-9=-149/392, 8-9=-149/392, 8-9=-232/216, 5-8=-275/179 WEBS 2.11=-263/239, 3-9=-223/216, 5-8=-275/179 NOTES 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasch-103mpb: TCDL = 6 0nsf: BCDL = 6		6-0-0 oc p	urlins, exc	cept end verticals.	u 01	chord and ar	y other members,	with BC	DL = 10.0psf							
WEBS 1 Row at midpt 1-12 REACTIONS (size) 7-17-3-12, 8=17-3-12, 9=17-3-12, 11=17-3-12, 12=17-3-12, 11=17-3-12, 12=17-3-12, 11=-473 (LC 13), 12=-67 (LC 13), 11=-473 (LC 13), 12=-67 (LC 12), 8=395 (LC 2), 9=3943 (LC 20), 11=441 (LC 2), 12=156 (LC 2) 12, 173 (Bup lift at joint 11, 171 Ib uplift at joint 9 and 126 Ib uplift at joint 11, 171 Ib uplift at joint 9. FORCES (Ib) - Maximum Compression/Maximum Tension 1=-473 (LC 13), 12=-47/129, 2-3=-195/82, 3-5=-306/124, 5-6=-390/171, 6-7=-395/148 Standard BOT CHORD 1-12=-149/392, 9=-11=-149/392, 8=-149/392, 7=-149/392, 8=-149/392,	BOT CHORD	Rigid ceilir bracing.	ng directly	applied or 10-0-0 oc		 Provide mec bearing plate 	hanical connection capable of withsta	i (by oth anding 6	ers) of truss to 7 lb uplift at jo	o oint						
REACTIONS (size) 7=17-3-12, 8=17-3-12, 9=17-3-12, 11=17-3-12, 12=17-3-12, 12=394 (LC 13), 12=-173-12, 12=394 (LC 13), 9=-171 (LC 13), 11=-173 (LC 13), 12=-67 (LC 13), 11=-173 (LC 13), 12=-67 (LC 13), 11=-173 (LC 2), 8=395 (LC 2), 9=343 (LC 20), 11=441 (LC 2), 12=156 (LC 2) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. FORCES (lb) - Maximum Compression/Maximum Tension To Uptimize a contrast of the section of the sectin of the section of the sectin of the section	WEBS	1 Row at r	nidpt	1-12		12, 173 lb up	olift at joint 11, 171	lb uplift	at joint 9 and	126						
Max Horiz 12=-394 (LC 13) Max Uplift 8=-126 (LC 13), 9=-171 (LC 13), 11=-173 (LC 13), 12=-67 (LC 13) Max Grav 7=150 (LC 22), 8=395 (LC 2), 9=343 (LC 20), 11=441 (LC 2), 12=156 (LC 2) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-12=-93/108, 1-2=-77/29, 2-3=-195/82, 3-5=-305/124, 5-6=-390/171, 6-7=-395/148 BOT CHORD 11-12=-149/392, 9=-11=-149/392, 8-9=-149/392, 7-8=-149/392 WEBS 2-11=-263/239, 3-9=-223/216, 5-8=-275/179 NOTES 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph: TCDL = 6 0nst: BCDL = 6 0nst: b=25ft;	REACTIONS	(size)	7=17-3-12	2, 8=17-3-12, 9=17-3 2, 12=17-3-12	8-12,) This truss is	designed in accord	dance w	th the 2018							
Max Uplift 8=-126 (LC 13), 9=-171 (LC 13), 11=-173 (LC 13), 12=-67 (LC 13) R802.10.2 and referenced standard ANSI/TPT1. LOAD CASE(S) Standard Max Grav 7=150 (LC 22), 8=395 (LC 2), 9=343 (LC 20), 11=441 (LC 2), 12=156 (LC 2) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-12=-93/108, 1-2=-77/29, 2-3=-195/82, 3-5=-305/124, 5-6=-390/171, 6-7=-395/148 BOT CHORD 11-12=-149/392, 9-11=-149/392, 8-9=-149/392, 7-8=-149/392 WEBS 2-11=-263/239, 3-9=-223/216, 5-8=-275/179 NOTES 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasc4103mpb; TCDI = 6 0nsf; BCDI = 6 0ns		Max Horiz	12=-394 (I	LC 13)		International	Residential Code	sections	R502.11.1 a	nd						
11=-173 (LC 13), 12=-67 (LC 13) 12-67 (LC 13) 12-67 (LC 13) Max Grav 7=150 (LC 22), 8=395 (LC 2), 9=343 (LC 20), 11=441 (LC 2), 12=156 (LC 2) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-12=-93/108, 1-2=-77/29, 2-3=-195/82, 3-5=-305/124, 5-6=-390/171, 6-7=-395/148 BOT CHORD 11-12=-149/392, 9-11=-149/392, 8-9=-149/392, 7-8=-149/392 WEBS 2-11=-263/239, 3-9=-223/216, 5-8=-275/179 NOTES 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasc4=103mph; TCDI = 6 0nsf; BCDI = 6 0nsf; b=25ft;		Max Uplift	8=-126 (L	C 13), 9=-171 (LC 13	3),	R802.10.2 a	nd referenced stan Standard	dard AN	ISI/TPI 1.							
Wiak Grav P=130 (LC 22), 0=30 (LC 2), 9=343 (LC 20), 11=441 (LC 2), 12=156 (LC 2) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-12=-93/108, 1-2=-77/29, 2-3=-195/82, 3-5=-305/124, 5-6=-390/171, 6-7=-395/148 BOT CHORD 11-12=-149/392, 9-11=-149/392, 8-9=-149/392, 7-8=-149/392 WEBS 2-11=-263/239, 3-9=-223/216, 5-8=-275/179 NOTES 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasc4=103mph; TCDI = 6 Onsf: BCDI = 6 Onsf: b=25ft;		Max Gray	11=-173 (I	LC 13), 12=-67 (LC 1	13)		otaridara									
12=156 (LC 2) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-12=-93/108, 1-2=-77/29, 2-3=-195/82, 3-5=-305/124, 5-6=-390/171, 6-7=-395/148 BOT CHORD 11-12=-149/392, 9-11=-149/392, 8-9=-149/392, 7-8=-149/392 WEBS 2-11=-263/239, 3-9=-223/216, 5-8=-275/179 NOTES 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasc4=103mph; TCDI =6 0nsf; BCDI =6 0nsf; b=25ft;			9=343 (I C	(102), 0=333 (102), (102), (102))											
FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-12=-93/108, 1-2=-77/29, 2-3=-195/82, 3-5=-305/124, 5-6=-390/171, 6-7=-395/148 BOT CHORD 11-12=-149/392, 9-11=-149/392, 8-9=-149/392, 7-8=-149/392 WEBS 2-11=-263/239, 3-9=-223/216, 5-8=-275/179 NOTES 1) 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDI =6 0nsf; BCDI =6 0nsf; b=25ft;			12=156 (L	.C 2)	,											
Tension TOP CHORD 1-12=-93/108, 1-2=-77/29, 2-3=-195/82, 3-5=-305/124, 5-6=-390/171, 6-7=-395/148 BOT CHORD 11-12=-149/392, 9-11=-149/392, 8-9=-149/392, 7-8=-149/392 WEBS 2-11=-263/239, 3-9=-223/216, 5-8=-275/179 NOTES 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasce 103mph; TCDI =6 0nsf; BCDI =6 0nsf; b=25ft;	FORCES	(lb) - Maxi	mum Com	pression/Maximum												
TOP CHORD 1-12=-93/108, 1-2=-77/29, 2-3=-195/82, 3-5=-305/124, 5-6=-390/171, 6-7=-395/148 BOT CHORD 11-12=-149/392, 9-11=-149/392, 8-9=-149/392, 7-8=-149/392 WEBS 2-11=-263/239, 3-9=-223/216, 5-8=-275/179 NOTES 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph: TCDI =6 0nsf: BCDI =6 0nsf: b=25ft;		Tension														
3-5=-305/124, 5-6=-390/171, 6-7=-395/148 BOT CHORD 11-12=-149/392, 9-11=-149/392, 8-9=-149/392, 7-8=-149/392 WEBS 2-11=-263/239, 3-9=-223/216, 5-8=-275/179 NOTES 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph: TCDI =6 0nsf: BCDI =6 0nsf: b=25ft:	TOP CHORD	1-12=-93/	108, 1-2=-7	77/29, 2-3=-195/82,												
BOT CHORD 11-12=-149/392, 9-11=-149/392, 8-9=-149/392, 7-8=-149/392 WEBS 2-11=-263/239, 3-9=-223/216, 5-8=-275/179 NOTES 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph: TCDI =6 0nsf: BCDI =6 0nsf: b=25ft:		3-5=-305/	124, 5-6=-3	390/171, 6-7=-395/14	48											
WEBS 2-11=-263/239, 3-9=-223/216, 5-8=-275/179 NOTES Office ESSIGN 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph: TCDL = 6 0nsf: BCDL = 6 0nsf: b=25ft;	BOT CHORD	11-12=-14 8-9=-149/3	9/392, 9-1 392. 7-8=-´	1=-149/392, 149/392										W''LL CA	Dalla	
NOTES 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL =6 0nsf; BCDL =6 0nsf; b=25ft;	WEBS	2-11=-263	/239, 3-9=	-223/216, 5-8=-275/	179								1	att	TOL	
1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph: TCDL =6 Onsf: BCDL =6 Onsf: b=25ft:	NOTES												31	O' EESS	10 m	
Vasd=103mph; TCDI =6 0nsf; BCDI =6 0nsf; h=25ft;	1) Wind: ASC	CE 7-16; Vul	t=130mph	(3-second gust)								2	55		A.Y.	1
	Vasd=103	8mph; TCDL=	=6.0psf; B0	CDL=6.0psf; h=25ft;										.2 -	- qu	-
Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior	Cat. II; Ex	p C; Enclose	d; MWFR	S (envelope) exterior	r							-		CEA	n b	3
zone and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior (1)	zone and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior (1)											=	:	SEA	- :	
3-1-12 to 10-1-12 zone; U-L to the memory Lumbers and torces & = 036322 =	3-1-12 to	16-1-12 ZONE	e;C-C for m	members and forces of more than the second s	ă.								:	0363	22 :	-
arin DOL -1 60	arin DOI -	-1 60	SHOWH, LU	TIDEL DOL=1.00 plat	le							-				3
ging Disclerions 2) Truss designed for wind loads in the plane of the truss	2) Truss des	sianed for wi	nd loads in	the plane of the true	ss								-	1. A.		3
only. For study exposed to wind (normal to the face),	only. For	studs expos	ed to wind	(normal to the face).									- 1	NOIN	EFRICAS	2
see Standard Industry Gable End Details as applicable,	see Stand	lard Industry	Gable End	d Details as applicab	ole,								1	ALC: GIN	- ER N	
or consult qualified building designer as per ANSI/TPI 1.	or consult	qualified bui	Iding desig	oner as per ANSI/TP	Y 1.									AG	ILBUIN	
3) All plates are 2x4 MT20 unless otherwise indicated.	All plates a	are 2x4 MT2	0 unless o	therwise indicated.										111111	in the second se	

July 18,2024

Page: 1

Job	Truss	Truss Type	Qty	Ply	4983 Ray Rd. Spring Lake, NC	
4111088	V03	Valley	1	1	Job Reference (optional)	166896577

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Tue Jul 16 11:34:49 ID:4ILX5VsWq3KP7tIrpWngXQyzUDD-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Coolo		1.46.0	
Scale	=	1:40.8	

oading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.35	Vert(LL)	n/a	-	n/a	999	MT20	244/190
FCDL	10.0	Lumber DOL	1.15		BC	0.23	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.10	Horiz(TL)	0.01	4	n/a	n/a		
BCDL	10.0	Code	IRC2018	3/TPI2014	Matrix-S							Weight: 62 lb	FT = 20%
UMBER			6)	* This truss h	as been designed	for a liv	e load of 20.0	Dosf					
OP CHORD	2x4 SP No.2		-,	on the botton	n chord in all areas	where	a rectangle						
BOT CHORD	2x4 SP No.2			3-06-00 tall b	y 2-00-00 wide will	fit betv	veen the botto	om					
VEBS	2x4 SP No.3			chord and an	y other members,	with BC	DL = 10.0psf						
DTHERS	2x4 SP No.3		7)	Provide mecl	hanical connection	(by oth	ers) of truss t	0					
BRACING				bearing plate	capable of withsta	nding 7	0 lb uplift at j	oint					
TOP CHORD	Structural wood she	athing directly applie	ed or 8)	7, 155 lb upli This truss is	ft at joint 6 and 225 designed in accord	5 lb uplif ance w	t at joint 5. ith the 2018						
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 or	, C	International R802.10.2 ar	Residential Code s	sections	R502.11.1 a ISI/TPI 1.	ind					
REACTIONS	(size) 4=13-9-14 7=13-9-14	4, 5=13-9-14, 6=13-9 4	_{9-14,} LC	AD CASE(S)	Standard								
	Max Horiz 7=-342 (L	C 13)											
	Max Uplift 5=-225 (L	.C 13). 6=-155 (LC 1	3).										
	7=-70 (LC	2 13)	- / /										
	Max Grav 4=192 (LC	C 22), 5=457 (LC 2),											
		(100 2), 7 = 109 (100 2)											
ORCES	(ID) - Maximum Com Tension	ipression/iviaximum											
TOP CHORD	1-7=-99/115, 1-2=-7 3-4=-367/164	8/41, 2-3=-202/84,											
BOT CHORD	6-7=-149/385, 5-6=-	149/385, 4-5=-149/3	885										
VEBS	2-6=-233/249, 3-5=-	316/321											
NOTES												, uninnin	
) Wind: AS	CE 7-16; Vult=130mph	(3-second gust)										"TH CA	Rollin
Vasd=103	3mph; TCDL=6.0psf; B	CDL=6.0psf; h=25ft;									X	R	in the second
Cat. II; Ex	vp C; Enclosed; MWFR	S (envelope) exterio	r								65	FESS	OF Vin
zone and	C-C Exterior(2E) 0-1-1	2 to 3-1-12, Interior	(1)								2		
3-1-12 to	13-2-13 zone;C-C for n	nembers and forces	&							0	-	27	
MWFRS1	for reactions shown; Lu	imber DOL=1.60 pla	te							-	:	SEV	1 : =
grip DOL:	=1.6U	a tha miana af tha two								=	:	SLA	5 : 5
() Iruss de	signed for wind loads if	i the plane of the tru	155							1	:	0363	22 : =
Unity. FOr	Siluus exposed to WINd	d Details as applicat	1, No							-	8		1 - E
	t qualified building dooi	a Details as applicat	л с , DI1							-	-	Sec. 19	- 1 - E
Gable rec	uires continuous botto	m chord bearing								0	10	N. SNOW	-FRIAS
) Gable let	ids snared at 4-0-0 oc	in choru bearing.									1	A GIN	E. A.N
											1	10	BEN

- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 3)
- 4) Gable studs spaced at 4-0-0 oc.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

minin July 18,2024

GI

Page: 1

Job	Truss	Truss Type	Qty	Ply	4983 Ray Rd. Spring Lake, NC	
4111088	V04	Valley	1	1	Job Reference (optional)	166896578

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Tue Jul 16 11:34:49 ID:FtWhOG?QFRjsxZezyKUFUkyzUD2-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:42.5

Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		20.0	Plate Grip DOL	1.15		TC	0.20	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL		10.0	Lumber DOL	1.15		BC	0.16	Vert(TL)	n/a	-	n/a	999		
BCLL		0.0*	Rep Stress Incr	YES		WB	0.08	Horiz(TL)	0.01	4	n/a	n/a		
BCDL		10.0	Code	IRC2018	3/TPI2014	Matrix-S							Weight: 51 lb	FT = 20%
LUMBER				6)	* This truss h	as been designed	for a liv	e load of 20.0	Opsf					
TOP CHORD	2x4 SP N	lo.2			on the bottor	n chord in all areas	where	a rectangle						
BOT CHORD	2x4 SP N	lo.2			3-06-00 tall b	y 2-00-00 wide will	l fit betv	veen the botto	om					
WEBS	2x4 SP N	lo.3			chord and ar	y other members,	with BC	DL = 10.0psf						
OTHERS	2x4 SP N	lo.3		7)	Provide mec	hanical connection	(by oth	ers) of truss t	0					
BRACING					bearing plate	capable of withsta	anding 6	6 lb uplift at j	oint					
TOP CHORD	Structura 6-0-0 oc	al wood she	athing directly applie cept end verticals	ed or 8)	7, 175 lb upli This truss is	tt at joint 6 and 164 designed in accord	ance w	t at joint 5.						
BOT CHORD	Rigid ceil bracing.	ling directly	applied or 10-0-0 oc	;	International R802.10.2 a	Residential Code s	sections dard AN	R502.11.1 a ISI/TPI 1.	nd					
REACTIONS	(size)	4=11-9-14 7=11-9-14	4, 5=11-9-14, 6=11-9 4	_{9-14,} LC	OAD CASE(S)	Standard								
	Max Horiz	7=-289 (L	C 13)											
	Max Uplift	5=-164 (L	C 13), 6=-175 (LC 1	3),										
		7=-66 (LC	: 13)											
	Max Grav	4=134 (L0 6=396 (L0	C 22), 5=329 (LC 2), C 2), 7=161 (LC 2)											
FORCES	(lb) - Max Tension	kimum Com	pression/Maximum											
TOP CHORD	1-7=-94/1 3-4=-318	122, 1-2=-7 /153	9/38, 2-3=-220/98,											
BOT CHORD WEBS	6-7=-138 2-6=-260	/311, 5-6=- /284, 3-5=-	138/311, 4-5=-138/3 232/237	11										
NOTES													munn	un,
1) Wind: AS	CE 7-16: Vu	ult=130mph	(3-second aust)										W'TH CA	ROUL
Vasd=103	Smph; TCDL	_=6.0psf; B	CDL=6.0psf; h=25ft;									AN'	R	
Cat. II; Ex	p C; Enclos	ed; MWFR	S (envelope) exterio	r							/	51	ESS	TON Vin
zone and	C-C Exterio	or(2E) 0-1-1	2 to 4-4-11, Interior	(1)							4			
4-4-11 to	11-2-13 zor	ne;C-C for r	nembers and forces	&							-		:0	- K : /
MWFRS f	for reactions	s shown; Lu	mber DOL=1.60 pla	te							-		CEA	1 1 3
grip DOL=	=1.60										=	1	SEA	L : :
2) Truss de	signed for w	/ind loads ir	the plane of the tru	SS								:	0363	22 : =
only. For study exposed to wind (normal to the face),										1			- 1 2	
see Standard Industry Gable End Details as applicable,												1. Contraction 1. Con	1 5	
or consult qualified building designer as per ANSI/TPT1.											- 1	N. ENO	-cRi'L S	
 Gable requires continuous bottom chord bearing. Cable stude spaced at 4.0.0 co. 												1	S, GIN	EF R N

- 2 only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable requires continuous bottom chord bearing.
- 4) Gable studs spaced at 4-0-0 oc.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

July 18,2024

Page: 1

818 Soundside Road Edenton, NC 27932

G

mmm

Job	Truss	Truss Type	Qty	Ply	4983 Ray Rd. Spring Lake, NC	
4111088	V05	Valley	1	1	Job Reference (optional)	166896579

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Tue Jul 16 11:34:49 ID:0P?i4?5RMvjjvoFVQ?d7oQyzUCw-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:36.2

oading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.35	Vert(LL)	n/a	-	n/a	999	MT20	244/190
FCDL	10.0	Lumber DOL	1.15		BC	0.22	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.11	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018	8/TPI2014	Matrix-S							Weight: 40 lb	FT = 20%
	2v4 SD No 2		6)	* This truss h	has been designed	l for a liv	e load of 20.	0psf					
	2X4 SP N0.2			3-06-00 tall b	2 - 00 - 00 wide wi	I fit het	a rectangle	om					
	2x4 SP No.2 2x4 SP No.3			chord and ar	v other members	ii iit boti	veen the bott	om					
THERS	2x4 SP No 3		7)	Provide mec	hanical connection	n (bv oth	ers) of truss	to					
			,	bearing plate	e capable of withsta	anding 5	2 lb uplift at	joint					
	Structural wood she	athing directly applie	ad or	5 and 235 lb	uplift at joint 4.	-		-					
	6-0-0 oc purlins, exc	cept end verticals.	8)	This truss is	designed in accore	dance w	ith the 2018						
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 or	D	International R802.10.2 ar	Residential Code nd referenced star	sections	s R502.11.1 a ISI/TPI 1.	and					
REACTIONS	(size) 3=9-9-14, Max Horiz 5=-237 (L Max Uplift 4=-235 (L Max Grav 3=169 (LC (LC 1)	4=9-9-14, 5=9-9-14 C 13) C 13), 5=-52 (LC 13 C 1), 4=458 (LC 1), 5) 5=100	OAD CASE(S)	Standard								
ORCES	(lb) - Maximum Com Tension	pression/Maximum											
FOP CHORD	1-5=-77/119, 1-2=-79	9/25, 2-3=-262/132											
BOT CHORD	4-5=-126/283, 3-4=-7	126/283											
NEBS	2-4=-334/366												
NOTES													
I) Wind: ASC Vasd=103	CE 7-16; Vult=130mph mph; TCDL=6.0psf; B0	(3-second gust) CDL=6.0psf; h=25ft;										mun	U117

- Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-1-12 to 4-4-11, Interior (1) 4-4-11 to 9-2-13 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 3) Gable studs spaced at 4-0-0 oc.
- 4)
- This truss has been designed for a 10.0 psf bottom 5) chord live load nonconcurrent with any other live loads.

WITTER TO A DESCRIPTION OF THE PARTY OF THE MALINE IN THE SEAL 036322 GI minin

July 18,2024

Job	Truss	Truss Type	Qty	Ply	4983 Ray Rd. Spring Lake, NC	
4111088	V06	Valley	1	1	Job Reference (optional)	166896580

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Tue Jul 16 11:34:49 ID:JIwMYOAqj2cjEtHrKzFmavyzUCp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:31.9

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20 ⁷	18/TPI2014	CSI TC BC WB Matrix-S	0.19 0.12 0.10	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 31 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, exi Rigid ceiling directly bracing. (size) 3=7-9-14, Max Horiz 5=-185 (L Max Uplift 4=-176 (L Max Grav 3=97 (LC (LC 1)	athing directly applia cept end verticals. applied or 10-0-0 or 4=7-9-14, 5=7-9-14 C 13) C 13), 5=-66 (LC 13 1), 4=344 (LC 1), 5=	6 7 ed or 8 c 4 L 1) =127	 * This truss on the botto 3-06-00 tall chord and a Provide me bearing plat 5 and 176 ll This truss is Internationa R802.10.2 a OAD CASE(S) 	has been desig om chord in all a by 2-00-00 wid nny other memb chanical conne- te capable of wid b uplift at joint 4 s designed in ac al Residential C- and referenced) Standard	ned for a liv areas where e will fit betw ers. ction (by oth ithstanding 6 ccordance w ode sections standard AN	e load of 20. a rectangle veen the bott ers) of truss 56 lb uplift at th the 2018 \$ R502.11.1 a ISI/TPI 1.	.0psf tom to joint and					
FORCES	(lb) - Maximum Com Tension	pression/Maximum											
TOP CHORD	1-5=-94/146, 1-2=-7	9/34, 2-3=-244/112											
BOT CHORD	4-5=-103/245. 3-4=-	103/245											

WEBS

NOTES

1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-1-12 to 4-4-11, Interior (1) 4-4-11 to 7-2-13 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2-4=-255/335

- Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 3)

Gable studs spaced at 4-0-0 oc. 4)

This truss has been designed for a 10.0 psf bottom 5) chord live load nonconcurrent with any other live loads.

Job	Truss	Truss Type	Qty	Ply	4983 Ray Rd. Spring Lake, NC	
4111088	V07	Valley	1	1	Job Reference (optional)	166896581

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Tue Jul 16 11:34:49 ID:4IPND7HrqWcbC6uNofOevbyzUCh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:33.6

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.24 0.15 0.10	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 34 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 3=8-7-6, 4 Max Horiz 5=-206 (L Max Uplift 4=-197 (L Max Grav 3=127 (LC (LC 1)	athing directly applia cept end verticals. applied or 10-0-0 or 4=8-7-6, 5=8-7-6 C 13) C 13), 5=-62 (LC 13 C 1), 4=384 (LC 1), 5	6) 7) ed or 8) c LC 5=119	* This truss I on the bottor 3-06-00 tall Is chord and ar Provide mecc bearing plate 5 and 197 lb This truss is International R802.10.2 a DAD CASE(S)	has been designe in chord in all area by 2-00-00 wide w by other members hanical connection e capable of withs uplift at joint 4. designed in accoo Residential Code nd referenced sta Standard	d for a live as where vill fit betw s, n (by othe tanding 6 rdance wi e sections indard AN	e load of 20.0 a rectangle veen the botto ers) of truss t 2 lb uplift at j th the 2018 R502.11.1 a ISI/TPI 1.	Dpsf om oint nd					
FORCES	(lb) - Maximum Com Tension	pression/Maximum											
TOP CHORD BOT CHORD WEBS	1-5=-89/137, 1-2=-7 4-5=-112/260, 3-4=- 2-4=-283/344	9/34, 2-3=-250/120 112/260											
NOTES 1) Wind: ASO Vasd=103 Cat. II; Ex zone and 4-4-11 to 5	CE 7-16; Vult=130mph Bmph; TCDL=6.0psf; B p C; Enclosed; MWFR C-C Exterior(2E) 0-1-1 8-0-5 zone;C-C for me	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior 2 to 4-4-11, Interior mbers and forces &	or (1)									WITH CA	ROLA

- MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable,
- or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing. 3)
- Gable studs spaced at 4-0-0 oc. 4)
- This truss has been designed for a 10.0 psf bottom 5) chord live load nonconcurrent with any other live loads.

VIIIIIIIIIIIIIIIIIIIIIIIII WWWWWWWW SEAL 036322 GI minin July 18,2024

Job	Truss	Truss Type	Qty	Ply	4983 Ray Rd. Spring Lake, NC	
4111088	V08	Valley	1	1	Job Reference (optional)	166896582

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Tue Jul 16 11:34:49 ID:NeK1hXMEBfVbYAxkid0Hh3yzUCa-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale =	1:39.8
---------	--------

Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)		20.0	Plate Grip DOL	1.15		TC	0.21	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
TCDL		10.0	Lumber DOL	1.15		BC	0.15	Vert(TL)	n/a	-	n/a	999			
BCLL		0.0*	Rep Stress Incr	YES		WB	0.09	Horiz(TL)	0.00	4	n/a	n/a			
BCDL		10.0	Code	IRC2018/TP	12014	Matrix-S							Weight: 45 lb	FT = 20%	
LUMBER				6) * T	This truss h	as been designed	l for a liv	e load of 20.0)psf						
TOP CHORD	2x4 SP N	0.2		Óon	the bottor	n chord in all areas	s where	a rectangle							
BOT CHORD	2x4 SP N	0.2		3-0	06-00 tall b	y 2-00-00 wide wi	ill fit betw	een the botto	om						
WEBS	2x4 SP N	0.3		ch	ord and ar	y other members,	with BC	DL = 10.0psf							
OTHERS	2x4 SP N	0.3		7) Pr	ovide mec	hanical connectior	n (by oth	ers) of truss t	0						
BRACING				be	aring plate	capable of withst	anding 6	5 lb uplift at j	oint						
TOP CHORD	Structural	wood she	athing directly applie	dor 7,	180 lb upli	ft at joint 6 and 13	9 lb uplif	t at joint 5.							
	6-0-0 oc r	ourlins. exe	cept end verticals.	8) Th	is truss is	designed in accord	dance w	th the 2018							
BOT CHORD	Rigid ceili	ng directly	applied or 10-0-0 oc	; Int R8	ernational	Residential Code	sections	R502.11.1 a	nd						
	bracing.				CASE(S)	Standard									
REACTIONS	(size)	4=10-7-6, 7=10-7-6	5=10-7-6, 6=10-7-6	, LOAD	UAUL(U)	Otandard									
	Max Horiz	7=-258 (L	C 13)												
	Max Uplift	5=-139 (L	C 13), 6=-180 (LC 1	3),											
		7=-65 (LC	: 13)												
	Max Grav	4=106 (LC	C 13), 5=278 (LC 2),												
FORCES	(lb) Max	0=309 (LC	(100 1000 1000 1000 1000 1000 1000 1000 1000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 100000 100000 10000 10000 10000 100000 100000 100000 100000 100000 1000000 1000000 10000000 10000000 100000000 100000000000000000000000000000000000												
FURCES	(ID) - Max Tension		pression/iviaximum												
TOP CHORD	1-7=-93/1 3-4=-313/	27, 1-2=-79 149	9/37, 2-3=-230/105,												
BOT CHORD	6-7=-129/	294, 5-6=-	129/294, 4-5=-129/2	94											
WEBS	2-6=-265/	304, 3-5=-2	200/230												
NOTES													minin	1111	
1) Wind: ASC	CE 7-16; Vu	lt=130mph	(3-second gust)										WAH CA	ROY	
Vasd=103	Smph; TCDL	=6.0psf; B0	CDL=6.0psf; h=25ft;									S	R	. Alle	
Cat. II; Ex	p C; Enclose	ed; MWFR	S (envelope) exterio	r								- and	O. FESS	Oile:	
zone and	C-C Exterio	r(2E) 0-1-1	2 to 4-4-11, Interior	(1)							/	55		743	2
4-4-11 to	10-0-5 zone	;C-C for me	embers and forces &	ι									1 - X		1
MWFRS f	or reactions	shown; Lu	mber DOL=1.60 plat	te							-		CEA	n 1.	-E
grip DOL=	=1.60										=		SEA	L 1	-
Truss des	signed for w	ind loads ir	the plane of the true	SS							1		0363	22 :	-
only. For	studs expos	ed to wind	(normal to the face)	,							1			:	1
see Stand	lard Industry	Gable End	d Details as applicab	ole,									30 C		1
or consult	qualified bu	liaing desig	gner as per ANSI/TP	11.								2.	N. En	cRik.	5
 Gable req Coble study 	de encord a		n chora bearing.									20	GIN	== 0.	
4) Gable Stu	us spaced a	ι 4-0-0 0C.	a 10.0 pof bottom									1	C .	BEN	

- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 3)
- 4) Gable studs spaced at 4-0-0 oc.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

G minin

July 18,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	4983 Ray Rd. Spring Lake, NC	
4111088	V09	Valley	1	1	Job Reference (optional)	166896583

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Tue Jul 16 11:34:49 ID:8Bp2NGSFI7VTVPYGAJ990lyzUCS-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:44.2

Loading TCLL (roof) TCDL	(psf) 20.0 10.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15		CSI TC BC	0.21 0.16	DEFL Vert(LL) Vert(TL)	in n/a n/a	(loc) - -	l/defl n/a n/a	L/d 999 999	PLATES MT20	GRIP 244/190
BCLL BCDL	0.0* 10.0	Rep Stress Incr Code	YES IRC2018	3/TPI2014	WB Matrix-S	0.09	Horiz(TL)	0.01	4	n/a	n/a	Weight: 56 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood sh 6-0-0 oc purlins, e Rigid ceiling direct bracing. (size) 4=12-7- 7=12-7- Max Horiz 7=-310 Max Horiz 5= 186.	eathing directly appli xcept end verticals. ly applied or 10-0-0 c 6, 5=12-7-6, 6=12-7- 6 LC 13) LC 13)	6) 7) ed or 8) 6, LO	* This truss I on the botton 3-06-00 tall I chord and an Provide mec bearing plate 7, 169 lb upl This truss is International R802.10.2 a AD CASE(S)	as been designe n chord in all area by 2-00-00 wide w y other members hanical connectio e capable of withs fit at joint 6 and 11 designed in acco Residential Code nd referenced sta Standard	d for a liv as where vill fit betv s, with BC on (by oth tanding 6 86 lb uplil rdance w e sections indard AN	e load of 20.0 a rectangle veen the bott DL = 10.0psi ers) of truss 1 7 Ib uplift at j ft at joint 5. ith the 2018 R502.11.1 <i>a</i> ISI/TPI 1.	Opsf om f. to ioint and					
	7=-67 (L Max Grav 4=158 (6=389 (LC 13), 0=109 (LC .C 13) LC 22), 5=375 (LC 2) LC 2), 7=163 (LC 2)	, ,										
FORCES	(lb) - Maximum Co Tension	mpression/Maximum											
TOP CHORD	1-7=-95/117, 1-2=- 3-4=-356/157	78/39, 2-3=-215/93,											
BOT CHORD WEBS	6-7=-142/363, 5-6= 2-6=-252/278, 3-5=	=-142/363, 4-5=-142/ =-262/283	363										
NOTES 1) Wind: AS0 Vasd=103 Cat. II; Ex zone and	CE 7-16; Vult=130mp 3mph; TCDL=6.0psf; p C; Enclosed; MWF C-C Exterior(2E) 0-1	h (3-second gust) BCDL=6.0psf; h=25ff RS (envelope) exteri -12 to 3-1-12, Interior	; or · (1)							6	THE	OR FESS	ROLIN

MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

3-1-12 to 12-0-5 zone;C-C for members and forces &

- Gable requires continuous bottom chord bearing. 3)
- 4) Gable studs spaced at 4-0-0 oc.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

GI

SEAL 036322

Willing the

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Variation

Job	Truss	Truss Type	Qty	Ply	4983 Ray Rd. Spring Lake, NC	
4111088	V10	Valley	1	1	Job Reference (optional)	166896584

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Tue Jul 16 11:34:49 ID:zLAJeJX0uyFcDK?QXZGZG0yzUCM-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Scale	=	1:48.6	

Loading TCLL (roof) TCDL BCLL BCDL		(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-S	0.19 0.18 0.13	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 67 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No 2x4 SP No 2x4 SP No 2x4 SP No Structural 6-0-0 oc p Rigid ceilli bracing. (size) Max Horiz Max Uplift Max Grav	0.2 0.2 0.3 wood she urlins, ex ng directly 5=14-7-6, 8=14-7-6, 9=-362 (L 6=-143 (L 8=-174 (L 5=160 (LC 7=351 (LC (LC 2))	athing directly appli cept end verticals. applied or 10-0-0 o 6=14-7-6, 7=14-7-6 9=14-7-6 C 13) C 13), 7=-167 (LC 1 C 13), 9=-67 (LC 1 C 13), 6=290 (LC 2) C 2), 8=428 (LC 2),	ed or e nc 13), L , 9=159	 Gable studs This truss ha chord live loa This truss f on the bottor 3-06-00 tall t chord and ar Provide mec Provide mec 174 lb upli uplift at joint This truss is International R802.10.2 ar CAD CASE(S) 	spaced at 4-0-0 o is been designed ad nonconcurrent has been designee in chord in all area yo 2-00-00 wide w hy other members hanical connectio e capable of withs ff at joint 8, 167 lk 6. designed in accor Residential Code nd referenced sta Standard	c. for a 10.0 with any d for a liv as where ill fit betw s, with BC n (by oth tanding 6 o uplift at rdance w s sections ndard AN	D psf bottom other live loa e load of 20. a rectangle veen the bott DL = 10.0ps ers) of truss i joint 7 and 1 ith the 2018 R502.11.1 a ISI/TPI 1.	ads. Opsf om f. to joint 43 lb and					
FORCES	(lb) - Maxi Tension	mum Com	pression/Maximum											
TOP CHORD	1-995/1	18 1-27	8/32 2-3206/89											

TOP CHORD	1-9=-95/108, 1-2=-78/32, 2-3=-206/89,
	3-4=-332/140, 4-5=-433/179
BOT CHORD	8-9=-153/400, 7-8=-153/400, 6-7=-153/400,
	5-6=-153/400
WEBS	2-8=-257/264, 3-7=-243/237, 4-6=-207/222

NOTES

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior (1) 3-1-12 to 14-0-5 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) All plates are 2x4 MT20 unless otherwise indicated.
- 4) Gable requires continuous bottom chord bearing.

Page: 1

Job	Truss	Truss Type	Qty	Ply	4983 Ray Rd. Spring Lake, NC	
4111088	V11	Valley	1	1	Job Reference (optional)	166896585

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Tue Jul 16 11:34:49 ID:gGm5kkfHX1WBQtmL6gSwg7yzUCC-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Loading TCLL (roof) TCDL 3CLL 3CDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.22 0.19 0.19	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(loc) - - 6	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 80 lb	GRIP 244/190 FT = 20%	, 0
LUMBER TOP CHORD 30T CHORD WEBS DTHERS BRACING TOP CHORD 30T CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. 1 Row at midpt (size) 6=16-7-6 10=16-7- Max Horiz 11=-414 Max Uplift 7=-189 (I 10=-177 Max Grav 6=184 (L 8=350 (L 11=157 (eathing directly applie ccept end verticals. / applied or 10-0-0 or 1-11 ; 7=16-7-6, 8=16-7-6 6, 11=16-7-6 (LC 13), 8=-156 (LC 1 (LC 13), 11=-66 (LC 22), 7=384 (LC 2), C 22), 10=439 (LC 2), LC 2)	4) 5) 6) 7) vd or ; 8) , 9) 3), LC	Gable require Gable studs i This truss ha chord live loa * This truss h on the bottom 3-06-00 tall b chord and ar Provide mecl bearing plate 11, 177 lb up lb uplift at join This truss is International R802.10.2 ar	es continuous bott spaced at 4-0-0 oc s been designed fi d nonconcurrent v as been designed n chord in all areas y 2-00-00 wide wil y other members, nanical connectiom capable of withsta lift at joint 10, 156 nt 7. designed in accord Residential Code d referenced stan Standard	om choro cor a 10.0 or a 10.0 or a 10.0 or a live s where Il fit betw with BC a (by othe anding 6 Ib uplift dance wi sections dard AN	d bearing.) psf bottom other live loa e load of 20.1 a rectangle veen the bott DL = 10.0psi 6 lb uplift at j at joint 8 anc th the 2018 R502.11.1 a SI/TPI 1.	ads. Opsf f. to joint f 189 and						
FORCES TOP CHORD BOT CHORD	(lb) - Maximum Con Tension 1-11=-94/100, 1-2= 4-5=-312/127, 5-6= 10-11=-162/434, 8- 7-8=-162/434, 6-7=	npression/Maximum -77/29, 2-4=-197/85, -442/183 10=-162/434, -162/434										WITH CA	ROUN	
VEBS NOTES I) Wind: ASC Vasd=103 Cat. II; Exj zone and I 3-1-12 to 4 MWFRS fr grip DOL= 2) Truss des only. For see Stand or consult 3) All plates a	2-10=-261/251, 4-8 CE 7-16; Vult=130mph imph; TCDL=6.0psf; B p C; Enclosed; MWFR C-C Exterior(2E) 0-1- 16-0-5 zone;C-C for m or reactions shown; Lut c1.60 signed for wind loads is studs exposed to wind ard Industry Gable Er qualified building des are 2x4 MT20 unless	=-228/208, 5-7=-268/ CDL=6.0psf; h=25ft; SC (envelope) exterior 12 to 3-1-12, Interior nembers and forces & umber DOL=1.60 pla in the plane of the trud d (normal to the face) nd Details as applicat igner as per ANSI/TF otherwise indicated.	r (1) k te ss , ole, 11.							CN 111111		SEA 0363	22 ER ILBER 18,202	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	4983 Ray Rd. Spring Lake, NC	
4111088	V12	Valley	1	1	Job Reference (optional)	166896586

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Tue Jul 16 11:34:50 ID:9XRBDKUZHECPCTYcffB5zgyzUB7-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

18-1	-14
------	-----

Scale = 1:52.8												1		
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.16 0.15 0.15	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(loc) - - 10	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 116 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 6-0-0 oc purlins, exx Rigid ceiling directly bracing. 1 Row at midpt (size) 10=18-1-1 14=18-1-1 14=18-1-1 17=18-1-1 19=18-1-1 Max Uplift 11=-150 (I 13=-88 (LI 15=-82 (LI 18=-81 (LI 15=-82 (LI 18=-81 (LI 12=108 (L 12=108 (L 12=108 (L 14=157 (L 17=159 (L 19=61 (LC) 19=-46/72, 1-2=-4' 3-4=-209/63, 4-6=-21 7-8=-426/132, 8-9=-4 18-19=-174/583, 12- 15-17=-174/583, 12- 11-12=-174/583, 12- 11-12=-174/583, 12- 11-12=-125/185, 3-17	athing directly applie cept end verticals. applied or 10-0-0 oc 1-19 14, 11=18-1-14, 14, 13=18-1-14, 14, 13=18-1-14, 14, 15=18-1-14, 14, 15=18-1-14, 14, 15=18-1-14, 14, 15=18-1-14, 14, 12=-56 (LC 1 C 13), 12=-56 (LC 1 C 13), 12=-56 (LC 1 C 13), 17=-84 (LC 1: C 13), 17=-84 (LC 1: C 13), 17=-84 (LC 1: C 13), 13=-174 (LC 1) 1, 15=161 (LC 1) 2, 1) 115, 2-3=-135/40, 80/85, 6-7=-351/107, 481/143, 9-10=-604/ 18=-174/583, 13=-174/583, 13=-174/583, 11=-174/583	1) d or 2) 3) 4) 5) 6) 7) 13), 3), 3), 8), 3), 8) , 9) LC	Wind: ASCE Vasd=103mp Cat. II; Exp C zone and C- 3-1-12 to 17- MWFRS for r grip DOL=1.6 Truss desigr only. For stu see Standarc or consult qu All plates are Gable require Gable studs : This truss ha chord live loa * This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and an Provide mecl bearing plate 19, 81 lb upli This truss is International R802.10.2 ar DAD CASE(S)	7-16; Vult=130mp b; TCDL=6.0ps; C Enclosed; MWF C Corner(3E) 0-1- 6-13 zone; C-C for reactions shown; I 30 hed for wind loads ds exposed to wird a Industry Gable E alified building de 2x4 MT20 unless es continuous bott spaced at 2-0-0 or s been designed f d nonconcurrent t has been designed n chord in all area by 2-00-00 wide wi by other members. hanical connection capable of withst ft at joint 18, 84 lb 15, 81 lb uplift at j ft at joint 18, 84 lb 15, 81 lb uplift at ft at joint 12 and 1 designed in accor Residential Code hd referenced star Standard	oh (3-sec BCDL=6 RS (env 12 to 3-1 r membe Lumber I in the p hd (norm ind Deta signer as so therwit for a 10.0 with any f for a liv s where ill fit betw h (by oth anding 3 upliff at oint 14, 8 50 lb up dance w sections hdard AN	ond gust) .0psf; h=25ft; elope) exterio -12, Exterior(rs and forces DOL=1.60 pla ane of the tru al to the face) ils as applicat s per ANSI/TF se indicated. d bearing.) psf bottom other live load e load of 20.0 a rectangle ween the bottot 5 lb uplift at jc joint 17, 82 lb 38 lb uplift at js joint 17, 82 lb 38 lb uplift at js is lb up	or (2N) & te (ISS), ole, ole, ole, ole, ole, ole, ole, ole				SEA 03632	ROJN -22	Manunun
NOTES	7-13=-128/147, 8-12	!=-85/99, 9-11=-209/2	276									A. G	ILBL III	

NOTES

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

July 18,2024

_

Job	Truss	Truss Type	Qty	Ply	4983 Ray Rd. Spring Lake, NC	
4111088	V13	Valley	1	1	Job Reference (optional)	166896587

5-0-0

Builders FirstSource (Sumter, SC), Sumter, SC - 29153,

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Tue Jul 16 11:34:50 ID:eLA7qYkA0tBn3IvOBnXFeOyzU9W-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

9-5-1

Page: 1

10-0-0

10-0-0

..... 1.20 2

Scale = 1.20.2	<u>-</u>												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TE	⊃I2014	CSI TC BC WB Matrix-AS	0.25 0.24 0.13	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 32 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORE BOT CHORE OTHERS BRACING TOP CHORE BOT CHORE FORCES TOP CHORE BOT CHORE WEBS	 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she Rigid ceiling directly (size) 1=10-1-0, Max Horiz 1=53 (LC Max Uplift 1=-23 (LC 4=-170 (L Max Grav 1=90 (LC (LC 1) (lb) - Maximum Com Tension 1-2=-211/347, 2-3=- 1-4=-254/268, 3-4=- 2-4=-536/448 	athing directly applie applied. , 3=10-1-0, 4=10-1-0 16) 5 12), 3=-34 (LC 13), C 12) 25), 3=90 (LC 26), 4 apression/Maximum 201/347 254/268	7) * or 3- ct 8) P d. 1, 9) B st 10) Ti 10) Ti 11) Ti st ct th LOAL	This truss ha n the bottom •06-00 tall by hord and any rovide mech aring plate (a 34 lb uplift a eveled plate urface with tr his truss is d 802.10.2 and his truss des ructural woo hord and 1/2 the bottom che D CASE(S)	as been designed chord in all area / 2-00-00 wide w / other members anical connectio capable of withs at joint 3 and 17/ or shim required russ chord at join lesigned in accoo Residential Code d referenced sta sign requires that d sheathing be a " gypsum sheetr ord. Standard	d for a liv is where ill fit betw n (by oth tanding 2) lb uplift d to provious tt(s) 1, 3. dance wi e sections ndard AN t a minim applied di ock be ap	e load of 20.0 a rectangle veen the botto ers) of truss t 3 lb uplift at j at joint 4. de full bearing ith the 2018 R502.11.1 a (SI/TPI 1. um of 7/16" rectly to the t oplied directly	Opsf om oint g nd op r to					
NOTES 1) Unbaland this desig 2) Wind: AS Vasd=10 Cat. II; E: zone and 3-0-0 to 5	ced roof live loads have n. iCE 7-16; Vult=130mph 3mph; TCDL=6.0psf; Br xp C; Enclosed; MWFR 10-C Exterior(2E) 0-0-0 5-0-8, Exterior(2R) 5-0-8	been considered for (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterio to 3-0-0, Interior (1) 8 to 8-0-8, Interior (1)	r I									WITH CA	ROLA

- 8-0-8 to 10-1-0 zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss
- 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing. 4)
- 5) Gable studs spaced at 4-0-0 oc.
- 6)
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

Job	Truss	Truss Type	Qty	Ply	4983 Ray Rd. Spring Lake, NC				
4111088	V14	Valley	1	1	Job Reference (optional)	166896588			

3-0-0

3-0-0

Builders FirstSource (Sumter, SC), Sumter, SC - 29153,

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Tue Jul 16 11:34:50 ID:Pue8WHqC8LBf0XXxfTg7z4yzU9O-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

3x6 = 2

5-5-1

2-5-1

6-0-0

3x4 🥃

3x4 👟

6-0-0

0-6-15

Scale = 1:23.2

Plate Offsets (X, Y): [2:0-3-0,Edge]

Loading FCLL (roof) FCDL SCLL SCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI20	CSI TC BC WB 14 Matrix-AS	0.29 0.22 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 17 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD 30T CHORD 30T CHORD 30T CHORD 30T CHORD 30T CHORD 30T CHORD 30T CHORD	2x4 SP No.2 2x4 SP No.2 Structural wood she Rigid ceiling directly (size) 1=6-1-0, 3 Max Horiz 1=31 (LC Max Uplift 1=-65 (LC Max Grav 1=-63 (LC (lb) - Maximum Com Tension 1-2=-464/439, 2-3=- 1-3=-398/409	athing directly applie applied. 3=6-1-0 12) 2 12), 3=-65 (LC 13) C 1), 3=243 (LC 1) ipression/Maximum 464/408	8) Provious bearing 1 and 9) Bevel surfac 10) This to Interm R802 11) This to struct chord the book LOAD CA	de mechanical connec ig plate capable of with 65 lb uplift at joint 3. ed plate or shim requir ize with truss chord at jir russ is designed in acc ational Residential Co 10.2 and referenced s russ design requires the ural wood sheathing b and 1/2" gypsum sheathing b and 1/2" gypsum sheathing b and 1/2" Standard	tion (by oth hstanding 6 red to provid oint(s) 1, 3. cordance wi de sections standard AN hat a minim e applied di etrock be ap	ers) of truss i 5 lb uplift at j de full bearin th the 2018 R502.11.1 a SI/TPI 1. um of 7/16" rectly to the i oplied directly	to joint g and top y to					
NOTES	ed roof live loads have	been considered for										
2) Wind: AS Vasd=10 Cat. II; Ex	n. CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; Bi cp C; Enclosed; MWFR	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterio	r									

- zone and C-C Exterior(2E) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss
- 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 4)
- Gable studs spaced at 4-0-0 oc. 5)
- This truss has been designed for a 10.0 psf bottom 6)
- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 7)
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

