

RE: 4111083 - 5011 Ray Rd Spring Lake, NC

Trenco 818 Soundside Rd Edenton, NC 27932

Site Information:Project Customer: Carolina ConstructionProject Name:Lot/Block: 5011Subdivision: RAY ROADAddress: 5011 RAY ROADState: NC

 Name Address and License # of Structural Engineer of Record, If there is one, for the building.

 Name:
 License #:

 Address:
 State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2018/TPI2014 Wind Code: ASCE 7-16 Wind Speed: 130 mph Roof Load: 40.0 psf Design Program: MiTek 20/20 8.6 Design Method: MWFRS (Envelope)/C-C hybrid Wind ASCE 7-16

Floor Load: N/A psf

This package includes 8 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Job ID#	Truss N	ame Date
1	166879413	4111083	A01	7/16/24
2	166879414	4111083	A02	7/16/24
3	166879415	4111083	A03	7/16/24
4	166879416	4111083	A04	7/16/24
5	166879417	4111083		7/16/24
6	166879418	4111083	A06	7/16/24
7	166879419	4111083	A07	7/16/24
8	166879420	4111083	B01	7/16/24

The truss drawing(s) referenced above have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Builders FirstSource-Sumter,SC.

Truss Design Engineer's Name: Tony Miller

My license renewal date for the state of North Carolina is December 31, 2024

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Tony Miller

July 16,2024

1 of 1

Job	Truss	Truss Type	Qty	Ply	5011 Ray Rd Spring Lake, NC	
4111083	A01	Common	1	1	Job Reference (optional)	166879413

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Mon Jul 15 18:00:56 ID:0FbzM2VnL9BwlGdvV3Y90zz_AGA-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:56.4

Plate Offsets (X, Y): [5:0-4-0,0-2-4]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.51	Vert(LL)	-0.08	29-30	>999	360	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15		BC	0.58	Vert(CT)	-0.15	29-30	>999	240			
BCLL	0.0*	Rep Stress Incr	YES		WB	0.56	Horz(CT)	0.01	27	n/a	n/a			
BCDL	10.0	Code	IRC2018	/TPI2014	Matrix-AS		Wind(LL)	0.12	29-30	>999	240	Weight: 184 I	o FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood sh	eathing directly applie	BO	T CHORD	2-34=-196/530, 3; 32-33=-196/530, 3; 30-31=-207/552, 2 27-29=-207/552, 2 25-26=-98/150, 22 23-24=-98/150, 20 21-22=-98/150, 20	3-34=-19 31-32=-19 29-30=-20 26-27=-98 4-25=-98/ 2-23=-98/ 0-21=-98/	5/530, 99/532, 07/552, 3/150, 150, 150, 150,		7) * Th on t 3-00 cho 8) Pro bea join lb u	his truss he botto 5-00 tall rd and a vide me ring plat t 2, 83 lb plift at ic	has be m cho by 2-0 ny oth chanic ce capa o uplift pint 25.	een designed for rd in all areas v 0-00 wide will fi er members. al connection (k able of withstan at joint 18, 117 38 lb uplift at id	r a live load of 20.0psf /here a rectangle t between the bottom by others) of truss to ding 172 lb uplift at lb uplift at joint 26, 107 oint 22, 80 lb uplift at	f 2
JOINTS	1 Brace at Jt(s): 36	, applied.	WE	BS	9-35=-67/54, 29-3	36=-48/10 -3323/5	1, 30-40=-81	/83, 76	join [.] Ib u	t 21, 76 plift at ic	lb uplit	t at joint 20, 41	B lb uplift at joint 27, 9	5
REACTIONS	37, 38, 40 (size) 2=0-3-8, 21=15-3: 24=15-3: 27=15-3: Max Horiz 2=-149 (Max Uplift 2=-172 (22=-38 (25=-102 27=-418 Max Grav 2=512 (L 24=56 (L 24=56 (L 26=79 (L 26=79 (L))	18=15-3-8, 20=15-3-1 8, 22=15-3-8, 23=15- 8, 25=15-3-8, 26=15- 8, 44=15-3-8 _C 13) _C 12), 18=-83 (LC 9) _C 13), 21=-80 (LC 1: _C 13), 23=-95 (LC 2: (LC 12), 44=-83 (LC 2: (LC 12), 44=-83 (LC 2: C 25), 18=178 (LC 2: LC 1), 21=164 (LC 1) LC 26), 23=53 (LC 2: C 3), 25=234 (LC 1), C 12), 27=1165 (LC 1)	8, 3-8, 3-8,), 3), 5), : 25), NC 9) 1), 1),	TES Unbalanced this design. Wind: ASCE Vasd=103m Cat. II; Exp zone and C	26-37=83/76, 25- 15-22=-75/65, 16- 17-20=-127/111, 4 5-40=-910/499, 36 35-36=-898/489, 2 10-27=-500/156, 2 37-38=-209/204, 2 14-39=-212/207, 3 8-36=-96/114, 11- 1 roof live loads ha E 7-16; Vult=130m rph; TCDL=6.0psf; C; Enclosed; MWF -C Corner(3E) -1-2	338158 -21=-126 5-32=-36 6-40=-88 27-35=-9 27-37=-2 38-39=-2 14-23=-4 -37=-84/7 ve been of ph (3-sec BCDL=6 FRS (env +8 to 1-7	145, 24-39=- 145, 24-39=- 120, 60, 4/485, 20/507, 11/206, 08/203, 3/112, 6-40=(8, 12-38=-16 considered fc considered fc considered fc considered fc considered fc a. (2) 2. (2) 2. (2) 3/112, 6-40=(2. (2) 3/112, 6-40=(3/112, 6-	0/50, 0/50, 0/147 or ; ;	9) This Inte R8(10) This stru cho the LOAD (s truss is rnationa 02.10.2 a s truss d ctural w rd and 1 bottom o CASE(S)	and ref esign ood sh /2" gyl chord.	ned in accordan dential Code se erenced standa requires that a r leathing be app osum sheetrock ndard	No. 10. No.	
FORCES	(lb) - Maximum Cor	npression/Maximum		1-7-8 to 14- (2N) 17-6-8	6-8, Corner(3R) 14 to 30-5-8 zone; er	4-6-8 to 1 nd vertica	7-6-8, Exterio	or			i s	and t	Mile	
TOP CHORD	1-2=0/32, 2-3=-606 4-5=-547/316, 5-6= 8-9=-75/352, 9-10= 11-12=-33/308, 12- 15-16=0/124, 16-17 17-18=-101/116, 18	/249, 3-4=-580/287, -148/300, 6-8=-123/3 -47/378, 10-11=-25/3 14=-70/328, 14-15=0, /=-27/114, 3-19=0/32	43, 44, 3) /140, 3) 4) 5) 6)	exposed;C- reactions sh DOL=1.60 Truss desig only. For sta or consult q All plates ar Gable studs This truss h chord live lo	C for members annown; Lumber DOL gned for wind loads uds exposed to wi rd Industry Gable I ualified building de e 2x4 MT20 unles s spaced at 2-0-0 c as been designed vad nonconcurrent	d forces & L=1.60 pla s in the pl ind (norm End Deta esigner as s otherwi pc. for a 10.0 with any	& MWFRS for ate grip ane of the tru al to the face ils as applica \$ per ANSI/TI se indicated. 0 psf bottom other live loa	r uss e), ble, PI 1. ads.		THILL WAY		SE/ 023!	AL 594	

July 16,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	5011 Ray Rd Spring Lake, NC	
4111083	A02	Common	3	1	Job Reference (optional)	166879414

Run: 8,63 S Jul 12 2024 Print: 8,630 S Jul 12 2024 MiTek Industries, Inc. Mon Jul 15 18:00:57 ID:jjFbb41N_hkga1_N4ILToEz_AFU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

30-5-8 |-1-4-8 | |1-4-8 6-2-2 14-6-8 21-3-8 29-1-0 6-2-2 8-4-6 6-9-0 7-9-8 1-4-8 5x6= 5 3x6 -21 22 12 5 3x6 **≈** 3x6 🚽 6 4 3x6 ≠ 7 3

Scale = 1:56.1

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	/TPI2014 * This truss h	CSI TC BC WB Matrix-AS as been designed	0.69 0.47 0.97 for a liv	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL) e load of 20.0	in -0.08 -0.19 0.01 0.11	(loc) 10-19 10-19 8 10-19	l/defl >999 >959 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 135 lb	GRIP 244/190 FT = 20%	
TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she Rigid ceiling directly 1 Row at midpt (size) 2=0-3-8, 8 Max Horiz 2=-149 (L Max Uplift 2=-180 (L 11=-350 (Max Grav 2=495 (LC 11=1562)	athing directly applied applied. 3-11 3=0-3-8, 11=0-3-8 C 13) C 12), 8=-220 (LC 13 LC 12) C 25), 8=533 (LC 26), (LC 1)	5) I. 6)), 7)	on the bottor 3-06-00 tall b chord and ar Provide mec bearing plate joint 2, 220 lb This truss is International R802.10.2 au This truss de structural wo chord and 1/ the bottorn cl	n chord in all areas by 2-00-00 wide will by other members. hanical connection capable of withsta buplift at joint 8 and designed in accord Residential Code s and referenced stand sign requires that a od sheathing be ap 2" gypsum sheetron hord.	where fit betw (by oth nding 1 d 350 lb ance w sections dard AN a minim oplied di ck be a	a rectangle veen the botto ers) of truss t 80 lb uplift at uplift at joint th the 2018 R502.11.1 a R502.11.1 um of 7/16" rectly to the t oplied directly	om to t 11. and top y to						
FORCES TOP CHORD BOT CHORD	(lb) - Maximum Com Tension 1-2=0/32, 2-3=-605/3 5-7=-43/522, 7-8=-5 2-13=-240/533 11-1	pression/Maximum 202, 3-5=-106/586, 37/246, 8-9=0/32 3=-240/533	LO	AD CASE(S)	Standard									

WEBS NOTES

1) Unbalanced roof live loads have been considered for this design.

7-11=-839/397, 7-10=0/310

10-11=-102/450, 8-10=-102/450

3-13=0/305, 3-11=-929/450, 5-11=-785/264,

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -1-4-8 to 1-7-8, Interior (1) 1-7-8 to 14-6-8, Exterior(2R) 14-6-8 to 17-6-8, Interior (1) 17-6-8 to 30-5-8 zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

Junumun . Contraction of the second SEAL 23594 1111111111 July 16,2024

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB Building Component Scietur Information**. Building from the Structure Building Component Advancement of the property damage. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	5011 Ray Rd Spring Lake, NC	
4111083	A03	Roof Special	6	1	Job Reference (optional)	166879415

Run: 8,63 S Jul 12 2024 Print: 8,630 S Jul 12 2024 MiTek Industries, Inc. Mon Jul 15 18:00:58 $ID: AgUs_ga2oJ9UjqzMhACt3Rz_Alf-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f$

Page: 1

Scale = 1:58.3

Plate Offsets (X, Y): [8:0-2-12,0-0-11], [11:0-4-8,0-2-4]

-														
Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		20.0	Plate Grip DOL	1.15		тс	0.72	Vert(LL)	-0.08	10-18	>999	360	MT20	244/190
TCDL		10.0	Lumber DOL	1.15		BC	0.48	Vert(CT)	-0.20	10-18	>907	240		
BCLL		0.0*	Rep Stress Incr	YES		WB	0.67	Horz(CT)	0.02	8	n/a	n/a		
BCDL		10.0	Code	IRC2018	/TPI2014	Matrix-AS		Wind(LL)	0.13	10-18	>999	240	Weight: 133 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wc Rigid ceiling 1 Row at mic (size) 2= Max Horiz 2= Max Horiz 2= 11 Max Grav 2 11	Dod shea directly dpt =0-3-8, 8 =-149 (LC =-195 (LC =-332 (L =-332 (L =-484 (LC	athing directly applied. applied. 3-11, 7-11 =0-3-8, 11=0-3-8 C 13) C 12), 8=-198 (LC 13) LC 13) : 25), 8=448 (LC 26), LC 1)	4) 5) 6) , 7) 8)	* This truss h on the botton 3-06-00 tall b chord and an Bearing at joi using ANSI/T designer sho Provide mecl bearing plate joint 2, 332 lt This truss is International R802.10.2 ar This truss de	as been designed as been designed h chord in all areas y 2-00-00 wide wil y other members. Int(s) 8 considers p PI 1 angle to grair uld verify capacity nanical connection capable of withsta o uplift at joint 11 a designed in accord Residential Codes and referenced stan sign requires that a	for a liv where I fit betw barallel to of beari (by oth anding 1 nd 198 lance w sections dard AN a minim	e load of 20.1 a rectangle veen the botti o grain value a. Building mg surface. ers) of truss I 95 lb uplift at b uplift at join th the 2018 R502.11.1 a ISI/TPI 1. um of 7/16"	Opsf om to t nt 8.					
FORCES	(lb) - Maximu	um Com	pression/Maximum		chord and 1/2	2" gypsum sheetro	ck be a	oplied directly	y to					
TOP CHORD	1-2=0/32, 2-3	3=-579/2	241, 3-5=-62/777,	LO	ane bottom cr	Standard								
BOT CHORD	2-12=-276/50	, 7-8=-50 09, 11-1: 450 8-1	2=-276/509, 0=-103/484											
WEBS	3-12=0/309, 7-11=-1045/4	3-11=-9 443, 7-1	27/445, 5-11=-923/27 0=0/404	5,										
NOTES		- /												in the second se
 Unbalance this design Wind: ASC Vasd=103 Cat. II; Ex zone and 1-7-8 to 14 (1) 17-6-8 exposed;C reactions a DOL=1.60 This truss chord live 	ed roof live load CE 7-16; Vult=-1 imph; TCDL=6. p C; Enclosed; C-C Exterior(21 4-6-8, Exterior(to 30-5-8 zone C-C for membe shown; Lumber) has been desig load nonconcu	ds have 130mph .0psf; BC MWFRS E) -1-4-8 2R) 14-6 a; end ve rs and for r DOL=1 gned for urrent wit	been considered for (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior to 1-7-8, Interior (1) S-8 to 17-6-8, Interior rtical left and right orces & MWFRS for .60 plate grip a 10.0 psf bottom h any other live loads								THUR STREET		SEAL 02359	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component component to the prevent collapse with possible for the Studyer Building Component Advance and Adva and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Timmin' July 16,2024

Job	Truss	Truss Type	Qty	Ply	5011 Ray Rd Spring Lake, NC	
4111083	A04	Roof Special	6	1	Job Reference (optional)	166879416

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Mon Jul 15 18:00:58 ID:i_vvFlrj8HsZGHVqaJnKUuz_AVD-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:58.3

Plate Offsets (X, Y): [2:0-0-6,Edge], [10:0-3-0,0-3-8], [11:0-8-0,0-2-4]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	/TPI2014	CSI TC BC WB Matrix-AS	0.94 0.77 0.88	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.32 -0.67 0.28 0.32	(loc) 10-11 10-11 8 10	l/defl >999 >524 n/a >999	L/d 360 240 n/a 240	PLATES MT20HS MT20 Weight: 133 lb	GRIP 187/143 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP No.1 *Except 2x4 SP No.3 Structural wood shea Rigid ceiling directly a 1 Row at midpt 3 (size) 2=0-3-8, 8: Max Horiz 2=-149 (LC Max Uplift 2=-359 (LC Max Grav 2=1246 (LC	* 2-11:2x4 SP No.2 athing directly applied applied. 3-11, 7-11 =0-3-8 C 13) C 12), 8=-359 (LC 13 C 1), 8=1246 (LC 1)	5) 6) 1. 7) 8)	* This truss h on the bottor 3-06-00 tall b chord and ar Bearing at jo using ANSI/7 designer sho Provide mec bearing plate joint 2 and 3 This truss is International R802.10.2 ar	as been designed in chord in all areas by 2-00-00 wide will by other members. int(s) 8 considers p IPI 1 angle to grain uld verify capacity hanical connection a capable of withsta 59 lb uplift at joint 8 designed in accord Residential Code s and referenced stam	for a liv where fit betw arallel f formuli of beari (by oth nding 3 ance w sections dard AN	e load of 20.0 a rectangle veen the bottu o grain value a. Building ng surface. ers) of truss t 59 lb uplift at th the 2018 R502.11.1 a ISI/TPI 1.	Dpsf om o						
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Maximum Comp Tension 1-2=0/32, 2-3=-2499/ 5-7=-1590/489, 7-8=- 2-12=-653/2263, 11-' 10-11=-813/3822, 8-' 3-12=0/292, 3-11=-87 7-11=-2564/754, 7-10	oression/Maximum /650, 3-5=-1676/487 -4277/991, 8-9=0/32 12=-653/2263, 10=-834/3967 76/431, 5-11=-102/7)=-251/1714	9) , LO 36,	This truss de structural wo chord and 1/ the bottom c AD CASE(S)	sign requires that a od sheathing be ap 2" gypsum sheetro hord. Standard	a minim oplied d ck be a	um of 7/16" rectly to the to pplied directly	iop / to						
1) Unbalance	ed roof live loads have t	been considered for											11	

- this design.
 Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -1-4-8 to 1-7-8, Interior (1) 1-7-8 to 14-6-8, Exterior(2R) 14-6-8 to 17-6-8, Interior (1) 17-6-8 to 30-5-8 zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) All plates are MT20 plates unless otherwise indicated.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

818 Soundside Road Edenton, NC 27932

1111111111

SEAL

023594

The second se

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	5011 Ray Rd Spring Lake, NC	
4111083	A05	Common	11	1	Job Reference (optional)	166879417

Run: 8,63 S Jul 12 2024 Print: 8,630 S Jul 12 2024 MiTek Industries, Inc. Mon Jul 15 18:00:58 ID:r29g1KugbJ7A_nrxH3O6bRz_AZ1-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

30-5-8 |<u>-1-4-8</u> |1-4-8 14-6-8 6-2-2 22-10-14 29-1-0 6-2-2 1-4-8 8-4-6 8-4-6 6-2-2 12 5 Г 4x8= 5 MT20HS 3x10 🝃 22 23 MT20HS 3x10 👟 Δ 6 3x6 **≈** 3x6 ≠ 6-5-0 3 7 6-11-6 21 24 8 0-4-5 ∏ 14 12 25 11 10 13 2x4 II 3x6= 3x6= 3x6 = 2x4 II 3x4= 3x4= 22-10-14 6-2-2 10-6-0 18-7-0 29-1-0 8-1-0 4-3-14 6-2-2 4-3-14 6-2-2

Scale = 1:56.1

Plate Offsets (X, Y): [2:0-0-2,Edge], [8:0-0-2,Edge]

														_
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-AS	0.83 0.88 0.34	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.26 -0.47 0.10 0.13	(loc) 11-13 11-13 8 13	l/defl >999 >740 n/a >999	L/d 360 240 n/a 240	PLATES MT20HS MT20 Weight: 137 lb	GRIP 187/143 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea Rigid ceiling directly (size) 2=0-3-8, 8 Max Horiz 2=-149 (Li Max Uplift 2=-359 (Li Max Grav 2=1326 (Li	athing directly applied applied. ⊨0-3-8 C 13) C 12), 8=-359 (LC 13 C 2), 8=1326 (LC 2)	5) 6) 1. 7) 8) 8)	* This truss I on the bottoo 3-06-00 tall I chord and an Provide mee bearing platt joint 2 and 3 This truss is International R802.10.2 a This truss de	has been designe m chord in all are: by 2-00-00 wide v y other members hanical connection a capable of withs 59 lb uplift at join designed in acco Residential Code nd referenced sta sign requires tha and sheatbing bo	ed for a liv as where vill fit betw s, with BC on (by oth- standing 3 t 8. ordance wi e sections andard AN t a minim	e load of 20.0 a rectangle veen the bott DL = 10.0psi ers) of truss t 59 lb uplift at th the 2018 R502.11.1 a SI/TPI 1. um of 7/16"	Opsf om f. to t and						
FORCES	(lb) - Maximum Com Tension	pression/Maximum		chord and 1/ the bottom c	2" gypsum sheet hord.	rock be ap	oplied directly	y to						
TOP CHORD	1-2=0/32, 2-3=-2649 5-7=-2147/538, 7-8=	/665, 3-5=-2147/538 -2649/666, 8-9=0/32	, LO	AD CASE(S)	Standard									
BOT CHORD	2-14=-665/2422, 13- 11-13=-253/1518, 10 8-10=-517/2422	14=-665/2422,)-11=-517/2422,												
WEBS	3-14=0/168, 3-13=-6 5-11=-146/717, 7-11	49/388, 5-13=-145/7 =-649/389, 7-10=0/1	17, 68											
NOTES														
1) Unbalanc	ed roof live loads have	been considered for											In.	

- this design. 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -1-4-8 to 1-7-8, Interior (1) 1-7-8 to 14-6-8, Exterior(2R) 14-6-8 to 17-6-8, Interior (1) 17-6-8 to 30-5-8 zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) All plates are MT20 plates unless otherwise indicated.
- This truss has been designed for a 10.0 psf bottom 4) chord live load nonconcurrent with any other live loads.

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	5011 Ray Rd Spring Lake, NC	
4111083	A06	Common	2	1	Job Reference (optional)	166879418

Run: 8,63 S Jul 12 2024 Print: 8,630 S Jul 12 2024 MiTek Industries, Inc. Mon Jul 15 18:00:58 ID:hHdeZdo4A2Rgt9V9dcjTb1z_AXt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:56.1

Plate Offsets (X, Y): [2:0-1-0,0-1-8]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-AS	0.70 0.58 0.39	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.14 -0.24 0.02 0.29	(loc) 11-13 11-13 11 11 11-13	l/defl >999 >927 n/a >766	L/d 360 240 n/a 240	PLATES MT20HS MT20 Weight: 137 lb	GRIP 187/143 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASC Vasd=103r	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she Rigid ceiling directly 1 Row at midpt (size) 2=0-3-8, 8 Max Horiz 2=-149 (L Max Uplift 2=-366 (L 11=1618 ((b) - Maximum Com Tension 1-2=0/32, 2-3=-117C 5-7=-362/656, 7-8=- 2-14=-1175/1061, 13 11-13=-31/193, 10-1 8-10=-126/400 3-14=-279/185, 3-13 5-13=-998/720, 5-11 7-11=-708/404, 7-10 d roof live loads have E 7-16; Vult=130mph mph; TCDL=6.0ps; B0	athing directly applied applied. 5-13, 5-11 3=0-3-8, 11=0-3-8 C 13) C 8), 8=-163 (LC 13), LC 8) 2 27), 8=372 (LC 26), (LC 2) pression/Maximum)/1362, 3-5=-627/882, 337/174, 8-9=0/32 3-14=-1175/1061, 1=-126/400, 3=-677/699, =-1192/1068,)=0/195 been considered for (3-second gust) CDL=6.0psf; h=25ft;	4) 5) 4. 6) 7) 8) LO	This truss has chord live loa * This truss h on the bottom 3-06-00 tall b chord and an Provide mech bearing plate joint 2, 163 lb This truss is of International R802.10.2 ar This truss de structural woo chord and 1/2 the bottom ch	s been designed for d nonconcurrent w as been designed h chord in all areas y 2-00-00 wide will y other members, nanical connection capable of withsta uplift at joint 8 and designed in accord Residential Codes and referenced stand sign requires that a bod sheathing be ap " gypsum sheetroo hord. Standard	r a 10.0 ith any for a live where fit betw with BC (by othen nding 3 d 516 lb ance wi ections dard AN a minimu oplied di ck be ap) psf bottom other live load e load of 20.0 a rectangle reen the botto DL = 10.0psf ers) of truss tr 66 lb uplift at joint th the 2018 R502.11.1 a ISI/TPI 1. um of 7/16" rectly to the tr oplied directly	ds. Dpsf o 11. nd op / to		111		TH CA	ROLIN	
Cat. II; Exp zone and C 1-7-8 to 14 (1) 17-6-8 t exposed; p forces & M DOL=1.60 3) All plates a	 C; Enclosed; MWFR C-C Exterior(2E) -1-4-4 -6-8, Exterior(2R) 14- to 30-5-8 zone; end va orch left exposed; C-C WFRS for reactions s plate grip DOL=1.60 and MT20 plates unless 	S (envelope) exterior 8 to 1-7-8, Interior (1) 6-8 to 17-6-8, Interior ertical left and right c for members and hown; Lumber s otherwise indicated.								111111			ER. ER.	annun ann

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component component to the prevent collapse with possible for the Studyer Building Component Advance and Adva and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	5011 Ray Rd Spring Lake, NC	
4111083	A07	Common Supported Gable	1	1	Job Reference (optional)	166879419

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Mon Jul 15 18:00:58 ID:PA_Fve5W5cx8GW5lC9r1tuz_AAF-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:56.4

															_
Loading TCLL (roof) TCDL BCLL BCDL		(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-AS	0.14 0.04 0.09	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01	(loc) - - 37	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 156 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP N 2x4 SP N 2x4 SP N Structural Rigid ceili (size) Max Horiz Max Uplift Max Grav	0.2 0.2 0.3 I wood shea ng directly 2=29-1-0, 21=29-1-0 28=29-1-0 31=29-1-0 31=29-1-0 31=29-1-0 32=-71 (LC 20=-79 (L2 22=-75 (L2 22=-75 (L2 22=-75 (L2 22=-73 (L3 32=-73 (L3 32=-73 (L3 32=-73 (L3 32=-73 (L2 32=-73 (L2 33=-73 (L2 33=	athing directly applie applied. 18=29-1-0, 20=29-1 , 22=29-1-0, 23=29, , 25=29-1-0, 26=29, , 29=29-1-0, 30=29, , 37=29-1-0 C 13), 34=-149 (LC 8), 18=-77 (LC 9), C 13), 21=-73 (LC 1) C 13), 21=-73 (LC 1) C 13), 25=-72 (LC 1) C 12), 31=-75 (LC 1) C 12), 33=-81 (LC 1), C 12), 33=-81 (LC 1), C 12), 33=-81 (LC 1), C 1), 23=160 (LC 24) C 1), 23=160 (LC 24) C 1), 23=167 (LC 22) C 22), 28=167 (LC 22) C 22), 28=167 (LC 24) C 1), 30=160 (LC 24) C 1), 30=160 (LC 24) C 1), 32=155 (LC 1) C 25), 34=198 (LC 1)	E E E E E E E E E E E E E E	NOTES VEBS VIDES) Unbalanced this design.) Unbalanced this design.) Wind: ASCE Vasd=103m Cat. II; Exp (zone and C- 1-7-8 to 14-((2N) 17-6-8 exposed;C-(reactions sh DOL=1.60 3) Truss desig only. For stu see Standar or consult qu 4) All plates art	2-33=-37/149, 32- 31-32=-36/149, 30 29-30=-36/149, 28 26-28=-36/149, 25 24-25=-36/149, 23 22-23=-36/149, 21 20-21=-36/149, 21 20-21=-36/149, 18 10-26=-132/0, 9-28 8-29=-119/114, 6- 5-31=-121/111, 4- 3-33=-128/112, 11 12-24=-119/114, 1 15-22=-121/111, 1 17-20=-128/113 roof live loads hav 7-16; Vult=130mp ph; TCDL=6.0psf; C; Enclosed; MWF C Corner(3E) 1-4 5-8, Corner	33=-36/1 -31=-36/ -29=-36, -26=-36/ -24=-36, -22=-36/ -22=-36/ -22=-37/ 33=-127/1 330=-120/ 330=-120/ 330=-120/ 330=-120/ 330=-120/ 4-23=-11 6-21=-1 7-6-8 to 1 7-6-8 to 1 7-7-6-8 to 1 7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-	49, (149	r N) vr ss s, ole, PI 1.	9) Pr be 2, up 31 up 23 up 10) Th Int R8 11) Th str ch the LOAD	ovide me aring plar 77 lb upli ift at join 73 lb up ift at join 75 lb up ift at join t 18. is truss is ernationa 02.10.2 a is truss d uctural w ord and 1 CASE(S	chanic te capa ft at joint t 29, 7. llift at j t 25, 7 llift at j t 25, 7 llift at j t 20, 7 s desig ll Resi and ref esign i (2" gyl chord.) Sta	al connection (by able of withstand int 18, 74 lb uplift 4 lb uplift at joint oint 32, 81 lb upli 7 lb uplift at joint oint 22, 73 lb upli 1 lb uplift at joint need in accordand dential Code sec ferenced standar requires that a m heathing be appli psum sheetrock l ndard	v others) of truss to ing 71 lb uplift at joint at joint 28, 76 lb 30, 75 lb uplift at joint iff at joint 33, 72 lb 24, 74 lb uplift at joint iff at joint 21, 79 lb 2 and 77 lb uplift at ce with the 2018 tions R502.11.1 and d ANSI/TPI 1. inimum of 7/16" ed directly to the top be applied directly to	
FORCES	(lb) - Max Tension 1-2=0/32, 4-5=-71/1 8-9=-81/2 11-12=-8 ⁻ 14-15=-44 17-18=-10	imum Com 2-3=-150/8 12, 5-6=-46 22, 9-10=-§ 1/222, 12-1 4/117, 15-1 20/37, 18-1	pression/Maximum 31, 3-4=-103/90, 3/138, 6-8=-62/169, 98/272, 10-11=-98/2 4=-62/169, 6=-34/65, 16-17=-47 9=0/32	5 6 7 272, ⁸ 7/25,	 Gable requir Gable studs This truss hat chord live loc * This truss live loc * This truss loc on the botton 3-06-00 tall live loc 	es continuous bott spaced at 2-0-0 or as been designed f ad nonconcurrent has been designec m chord in all area by 2-00-00 wide win ny other members.	om chor c. for a 10.0 with any I for a liv s where Il fit betw	d bearing. O psf bottom other live load e load of 20.0 a rectangle veen the botto	ds. Ipsf om			A A A A A A A A A A A A A A A A A A A	0235	EER. A	

July 16,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	5011 Ray Rd Spring Lake, NC		
4111083	B01	Common Supported Gable	1	1	Job Reference (optional)	166879420	

1)

Run: 8.63 S. Jul 12 2024 Print: 8.630 S. Jul 12 2024 MiTek Industries. Inc. Mon. Jul 15 18:00:58 ID:IPAvcNjh9O9Ogvo_RsJ?fZz_AAj-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

7-0-8 -1-4-8 14-1-0 15-5-8 1-4-8 7-0-8 7-0-8 1-4-8 4x6 =5 12 5 Г 4 6 P 3 7 3-3-8 3-9-14 22 23 8 2 0-4-5 6 14 13 12 11 10 3x4 = 3x4 = 14-1-0 Scale = 1:32.4 Loading Spacing 2-0-0 CSI DEFL l/defl L/d PLATES GRIP (psf) in (loc) TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.14 Vert(LL) n/a n/a 999 MT20 244/190 BC TCDI 10.0 Lumber DOL 1 15 0.06 Vert(CT) 999 n/a n/a BCLL 0.0* Rep Stress Incr YES WB 0.05 Horz(CT) 0.00 19 n/a n/a BCDL 10.0 Code IRC2018/TPI2014 Matrix-AS Weight: 61 lb FT = 20% LUMBER 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) TOP CHORD 2x4 SP No.2 Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; 2x4 SP No.2 Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior BOT CHORD zone and C-C Corner(3E) -1-4-8 to 1-7-8, Exterior(2N) 2x4 SP No.3 OTHERS 1-7-8 to 7-0-8, Corner(3R) 7-0-8 to 10-0-8, Exterior(2N) BRACING 10-0-8 to 15-5-8 zone; end vertical left and right TOP CHORD Structural wood sheathing directly applied. exposed;C-C for members and forces & MWFRS for BOT CHORD Rigid ceiling directly applied. reactions shown; Lumber DOL=1.60 plate grip **REACTIONS** (size) 2=14-1-0, 8=14-1-0, 10=14-1-0, DOL=1.60 11=14-1-0, 12=14-1-0, 13=14-1-0, 3) Truss designed for wind loads in the plane of the truss 14=14-1-0, 15=14-1-0, 19=14-1-0 only. For studs exposed to wind (normal to the face), Max Horiz 2=79 (LC 12), 15=79 (LC 12) see Standard Industry Gable End Details as applicable. Max Uplift 2=-91 (LC 8), 8=-95 (LC 9), 10=-94 or consult qualified building designer as per ANSI/TPI 1. (LC 13), 11=-71 (LC 13), 13=-71 All plates are 2x4 MT20 unless otherwise indicated. 4) (LC 12), 14=-95 (LC 12), 15=-91 5) Gable requires continuous bottom chord bearing. (LC 8), 19=-95 (LC 9) 6) Gable studs spaced at 2-0-0 oc. 2=213 (LC 1), 8=213 (LC 1), Max Grav 7) This truss has been designed for a 10.0 psf bottom 10=214 (LC 1), 11=148 (LC 26), chord live load nonconcurrent with any other live loads. 12=149 (LC 1), 13=148 (LC 25), 8) * This truss has been designed for a live load of 20.0psf 14=214 (LC 1), 15=213 (LC 1), on the bottom chord in all areas where a rectangle 19=213 (I C 1) 3-06-00 tall by 2-00-00 wide will fit between the bottom FORCES (Ib) - Maximum Compression/Maximum chord and any other members. Tension Provide mechanical connection (by others) of truss to 9) TOP CHORD 1-2=0/32, 2-3=-85/57, 3-4=-49/106, bearing plate capable of withstanding 91 lb uplift at joint 4-5=-65/170, 5-6=-65/170, 6-7=-48/105, 2, 95 lb uplift at joint 8, 71 lb uplift at joint 13, 95 lb uplift 7-8=-81/30, 8-9=0/32 at joint 14, 71 lb uplift at joint 11, 94 lb uplift at joint 10, BOT CHORD 2-14=-29/108, 13-14=-14/94, 12-13=-14/94, 91 lb uplift at joint 2 and 95 lb uplift at joint 8. 11-12=-14/94, 10-11=-14/94, 8-10=-29/116 10) This truss is designed in accordance with the 2018 WEBS 5-12=-104/7, 4-13=-117/144, 3-14=-151/177, International Residential Code sections R502.11.1 and White a straight of the straig 6-11=-117/144.7-10=-151/177 R802.10.2 and referenced standard ANSI/TPI 1. anninnin ann NOTES 11) This truss design requires that a minimum of 7/16" SEAL Unbalanced roof live loads have been considered for structural wood sheathing be applied directly to the top this design. chord and 1/2" gypsum sheetrock be applied directly to 23594 the bottom chord. LOAD CASE(S) Standard minn July 16,2024 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters when Design valid for use only with MITeK® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

