

Trenco 818 Soundside Rd Edenton, NC 27932

Re: ELV C EP B2 628 ELV C EP B2

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Builders FirstSource (Apex,NC).

Pages or sheets covered by this seal: I66014010 thru I66014051

My license renewal date for the state of North Carolina is December 31, 2024.

North Carolina COA: C-0844

June 5,2024

Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	628 ELV C EP B2	
ELV C EP B2	A01	Common	4	1	Job Reference (optional)	166014010

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue Jun 04 10:59:30 ID:Be0VNTHUdJV1PMEhy0ydXfzIBVu-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	628 ELV C EP B2	
ELV C EP B2	A03H	Common	6	1	Job Reference (optional)	166014011

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue Jun 04 10:59:31

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

818 Soundside Road

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	628 ELV C EP B2	
ELV C EP B2	A06	Нір	1	1	Job Reference (optional)	166014012

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue Jun 04 10:59:31 ID:jNLPutSCt6pqdISQQ1DRE6zIBWz-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:68.2

Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 13.2/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015/	/TPI2014	CSI TC BC WB Matrix-MS	0.95 0.93 0.53	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.29 -0.54 0.16	(loc) 11-13 11-13 10	l/defl >999 >824 n/a	L/d 240 180 n/a	PLATES MT20 MT20HS Weight: 206 lb	GRIP 244/190 187/143 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.1 *Excep 2x4 SP No.1 2x4 SP No.3 Right 2x6 SP No.2 Structural wood she 1-5-5 oc purlins, exc 2-0-0 oc purlins (2-2 Rigid ceiling directly bracing. 1 Row at midpt (size) 10= Mech Max Horiz 16=109 (L Max Grav 10=1640)	t* 1-3:2x4 SP No.2 - 2-5-0 athing directly applie -0 max.): 3-7. applied or 2-2-0 oc 4-15, 5-11, 2-16 vanical, 16=0-3-8 _C 13) (LC 37), 16=1677 (L	3) d or 4) 5) 6) 7) 8) C 37) 9)	** TCLL: ASC DOL=1.15 PI snow); Ps= v DOL=1.15 PI Exp B; Fully I surface Roof design : slope. Unbalanced : design. Provide adec All plates are This truss ha chord live loa * This truss ha	CE 7-10; Pr=20.0 p ate DOL=1.00); Pf- aries (min. roof sno ate DOL=1.00) see Exp.; Ct=1.10; Uno snow load has bee snow loads have be uate drainage to p MT20 plates unles s been designed fo id nonconcurrent w as been designed a	sf (roof =20.0 p pw=13.2 bow=13.2 bow=13.2 bow=13.2 bow=13.2 constant structor revent v so other or a 10.0 constant for a liv where	live load: Lu sf (flat roof 2 psf Lumber ases; Catego ed slippery ed to accour asidered for t water pondin wise indicate 0 psf bottom other live loa e load of 20.	mber bry II; ht for g. g. ads. Opsf					
FORCES	(lb) - Maximum Com Tension	pression/Maximum		3-06-00 tall b chord and an	y 2-00-00 wide will y other members, v	fit betw with BC	veen the bott DL = 10.0ps	om f.					
TOP CHORD	1-2=-628/18, 2-3=-2 4-5=-3261/251, 5-7= 7-8=-2589/208, 8-10	628/208, 3-4=-2255/ 2242/205,)2534/213	205, 10)	Bearings are capacity of 5	assumed to be: Jo 65 psi.	int 16 S	SP No.1 crus	hing					
BOT CHORD	1-16=-1/495, 15-16= 13-15=-138/3205, 1 10-11123/2072	2334/213 139/2125, 1-13=-138/3203,	11) 12)	This truss is a International	designed in accord Residential Code s	ss conr ance w sections	R502.11.1 a	and				mun	117.
WEBS	2-15=-240/238, 3-15 4-15=-1269/145, 4-1 5-11=-1279/143, 7-1 2-16=-2040/246	5=-6/917, 3=0/233, 5-13=0/23 1=-5/853, 8-11=-190	13) 6,)/282,	Graphical pu or the orienta bottom chord	rlin representation tition of the purlin al	does no ong the	top and/or	size		4	T	ORTH CA	ROUT
NOTES			1)	AD CASE(S)	Stanuaru	horina		Dioto				10	1. 1.
 Unbalance this design Wind: ASC Vasd=91n II; Exp B; I and C-C E exposed; members Lumber D 	ed roof live loads have CE 7-10; Vult=115mph ph; TCDL=6.0psf; BC Enclosed; MWFRS (er ixterior (2) zone; cantil end vertical left and rig and forces & MWFRS DL=1.60 plate grip DO	been considered for (3-second gust) DL=6.0psf; h=30ft; C ivelope) exterior zon ever left and right ght exposed;C-C for for reactions shown; IL=1.33	Cat. e	Dead + Sno Increase=1. Uniform Loa Vert: 1-3=	w (palanced): Lum 00 ads (lb/ft) =-46, 3-7=-60, 7-10	ber Inc	rease=1.15, 7-20=-20	Plate		THE DAY	A A A A A A A A A A A A A A A A A A A		22 EPERTUUM

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

G minim June 5,2024

Job	Truss	Truss Type	Qty	Ply	628 ELV C EP B2	
ELV C EP B2	A06GR	Hip Girder	1	1	Job Reference (optional)	166014013

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue Jun 04 10:59:33 ID:jNLPutSCt6pqdISQQ1DRE6zIBWz-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:65.7

Plate Offsets	(X, Y): [1:0-1-0,Edge],	, [1:0-0-8,0-11-6], [3:0	0-7-8,0-2-	0], [9:0-3-8,0-2	-0], [19:0-5-0,0-5-4	.]							
Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 13.2/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 NO IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.93 0.59 0.92	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.33 -0.56 0.10	(loc) 17-18 17-18 12	l/defl >999 >813 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 247 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD WEBS WEDGE SLIDER BRACING TOP CHORD BOT CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD	2x4 SP No.2 *Excep 7-9:2x4 SP No.1 2x6 SP DSS 2x4 SP No.3 Left: 2x6 SP No.2 Right 2x4 SP No.3 - Structural wood she 2-6-8 oc purlins, exc 2-0-0 oc purlins (2-1 Rigid ceiling directly bracing. 1 Row at midpt (size) 1=0-3-8, ' Max Horiz 1=79 (LC Max Uplift 1=-535 (L Max Grav 1=2569 (I (Ib) - Maximum Corr Tension 1-2=-3221/743, 2-3= 3-4=-4865/1278, 4-5 5-6=-5727/1502, 6-5 8-9=-3228/808, 9-10 10-12=-3493/800 1-21=-679/2660, 20 18-20=-1509/5745, 15-17=-1233/4930, 13-14=-659/192, 2-22	- 2-5-0 Pathing directly applied cept 1-8 max.): 3-9. y applied or 7-0-8 oc 8-14 12= Mechanical 54) JC 9), 12=-529 (LC 8) LC 33), 12=2514 (LC npression/Maximum =-3665/930, 5=-4872/1281, 8=-5727/1502, 0=-3667/905, 12-13=-619/2660, 17-18=-1509/5745, 14-15=-1233/4930, 2-13=-641/2913 0=-235/618, 3-20=0/2	1) 2) 3) d or 4) 5) (33) (7) 8) 8) 9) 1(11 241, 12	Unbalanced this design. Wind: ASCE Vasd=91mpl II; Exp B; En cantilever lef right expose ** TCLL: ASC DOL=1.15 P snow); Ps= \ DOL=1.15 P Exp B; Fully surface Roof design slope. Unbalanced design. Provide adec This truss ha chord live los * This truss ha chord live los * This truss that chord and ar Bearings are capacity of 6 D) Refer to gird Provide mecc bearing platte joint 12 and 3 20 This truss is	roof live loads hav roof live loads hav 7-10; Vult=115mp 1; TCDL=6.0ps; B closed; MWFRS (et and right exposed d; Lumber DOL=1. CE 7-10; Pr=20.0 p late DOL=1.00); P varies (min. roof sn late DOL=1.00) se Exp.; Ct=1.10; Und snow load has bee snow loads have b quate drainage to p is been designed f ad nonconcurrent v has been designed f has been designed f	e been of h (3-sec CDL=6.1 enveloped ; end v 60 plate bost (roof =20.0 p ow=13.1 e load c obstruct en reduc prevent of or a 10. vith any for a liv s where ll fit betw boint 1 Sl uss conn (by oth anding 5 : 1. dance w	considered for cond gust) Dpsf; h=30ft; exterior zo vertical left ar grip DOL=1 live load: Lu sf (flat roof 2 psf Lumber asses; Catego ed slippery wed to accour asidered for t water pondin 0 psf bottom other live loa e load of 20. a rectangle ween the bott DDSS crushi mections. ers) of truss i29 lb uplift a ith the 2015	or Cat. ne; nd .33 mber ory II; ory II; dds. 0psf om ing to t		1		Weight 247 10 OR FESS SEA 0363	ROUTING
NOTES	3-19=-632/2210, 4-1 5-19=-1135/325, 5-7 6-17=-528/207, 8-17 8-14=-2223/662, 9-1 10-14=-190/398, 10	19=-606/233, 18=0/288, 5-17=-49/3 7=-322/1040, 8-15=0/ 14=-344/1500, -13=-184/85	9, /265, 13	International R802.10.2 ar Graphical pu or the orienta bottom chore	Residential Code nd referenced stan rlin representation ation of the purlin a d.	sections dard AN does no long the	R502.11.1 a ISI/TPI 1. of depict the s top and/or	and size		115.		A. G	E.R. KIN

Continued on page 2 WARNING - Ver Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MTek connectors. This design is based only upon parameters and property incorporate this design is based only upon parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

June 5,2024

Job	Truss	Truss Type	Qty	Ply	628 ELV C EP B2	
ELV C EP B2	A06GR	Hip Girder	1	1	Job Reference (optional)	166014013

14) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 155 Ib down and 43 lb up at 2-4-8, 97 lb down and 62 lb up at 6-4-8, 86 lb down and 68 lb up at 8-4-8, 86 lb down and 68 lb up at 10-4-8, 86 lb down and 68 lb up at 12-4-8, 86 lb down and 68 lb up at 14-4-8, 86 lb down and 68 lb up at 16-4-8, 86 lb down and 68 lb up at 18-4-8, 86 lb down and 68 lb up at 20-4-8, 86 lb down and 68 lb up at 22-4-8, 86 lb down and 68 lb up at 24-4-8, 86 lb down and 68 lb up at 26-4-8, and 86 lb down and 68 lb up at 28-4-8, and 86 lb down and 68 lb up at 30-4-8 on top chord, and 49 lb down at 2-4-8, 186 lb down and 43 lb up at 4-4-8, 37 lb down and 14 lb up at 6-4-8, 36 lb down and 17 lb up at 8-4-8, 36 lb down and 17 lb up at 10-4-8, 36 lb down and 17 lb up at 12-4-8, 36 lb down and 17 lb up at 14-4-8, 36 lb down and 17 lb up at 16-4-8, 36 lb down and 17 lb up at 18-4-8, 36 lb down and 17 lb up at 20-4-8, 36 lb down and 17 lb up at 22-4-8, 36 lb down and 17 lb up at 24-4-8, 36 lb down and 17 lb up at 26-4-8, 36 lb down and 17 lb up at 28-4-8, 36 lb down and 17 lb up at 30-4-8, 37 lb down and 14 lb up at 32-4-8, and 186 lb down and 43 lb up at 34-4-8, and 232 lb down and 32 lb up at 36-4-8 on bottom chord. The design/selection of such connection device(s) is the responsibility of others. 15) In the LOAD CASE(S) section, loads applied to the face

of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.00

Uniform Loads (lb/ft)

- Vert: 1-3=-46, 3-9=-60, 9-12=-46, 1-22=-20
- Concentrated Loads (lb)
 - Vert: 13=-186 (F), 30=-137 (F), 31=-17 (F), 32=-15 (F), 34=-15 (F), 35=-15 (F), 36=-15 (F), 37=-15 (F), 38=-15 (F), 41=-15 (F), 42=-15 (F), 43=-15 (F), 44=-15 (F), 45=-15 (F), 47=-15 (F), 48=-49 (F), 49=-186 (F), 50=-23 (F), 51=-23 (F), 52=-23 (F), 53=-23 (F), 55=-23 (F), 55=-23 (F), 55=-23 (F), 55=-23 (F), 57=-23 (F), 58=-23 (F), 55=-23 (F), 60=-23 (F), 61=-23 (F), 62=-23 (F), 63=-23 (F), 64=-232 (F)

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue Jun 04 10:59:33 ID:jNLPutSCt6pqdISQQ1DRE6zIBWz-RfC?PsB70Hq3NSqPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	628 ELV C EP B2	
ELV C EP B2	A06H	Нір	1	1	Job Reference (optional)	166014014

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue Jun 04 10:59:33 ID:jNLPutSCt6pgdISQQ1DRE6zIBWz-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Particle Provided Provided		<u>⊢6</u>	-7-0 -7-0	<u>12-8-14</u> 6-1-14		<u>19-4-8</u> 6-7-10		<u>26-0-2</u> 6-7-10		<u>31-9</u> 5-9-	9 <u>-5</u> -3		<u>37-10-0</u> 6-0-11	
Parte Offsets (X, Y): [1:0-4:3.Edge] [3:0-4:10.Edge] Ladding (cf) Parte GR point 20-0 in (co) (idel) (idel) Mitz PLATES GRIP TCLL (roof) 0:00 Lumber DOL 1.15 is 0:00 Vert(CT) -0.70 14-16 -5650 180 SOUL 0:00 Code IRC2015/TPI2014 Matrix-MS Vert(CT) -0.70 14-16 -5650 180 Mitz 187/143 BOL 0:00 Code IRC2015/TPI2014 Matrix-MS Vert 11-16 -6650 180 Mitz Vert 11-16 -6650 180 Mitz Vert 11-16 -6650 180 Mitz Vert 11-16 -6650 180 -060 <	$\frac{7.9-11}{7.7-12}$	0-11-0 0-11-0 0-11-0	7 ¹² 4x6 = 26 20 3x 8-0-1 7-1-1	0 30 30 66=	6x8= 6x8= 3 3 3 3 1 4 0-0 1 4-5 0-8 0	27 27 27 27 27 27 27 27 27 27	3x4= 4 0-10-8 4-0-0	28 28 28 28 28 20 20 20 20 21 21 21 21 20 23 23 23 23 23 23 23 23 23 23	6x8= 5 34 34		9 3x	2x4 // 6 4=	29 4x6 7 7 7-10-0 7-10-0 7-1-1	6x8 II
Leading TCLL (roof) (pst) 20.0 Spacing Plate Grip DOL Lumber DOL Code 20.0 CSI TC 0.86 U DEFL Vert(I) in (loc) Videt Ld PLATES PLATES GRIP TCDL (roof) 13.00 Rep Stress Intr ICOD Stress 11.65 BC 0.97 Vert(I) -0.03 14-16 -989 240 MT20H S 187/143 TCDL (roof) 10.0 Code IICODISTPI2014 Marix-MS Vert(I) -0.03 14-16 -989 240 MT20H S 187/143 BCDL 0.00 Code IICODISTPI2014 Marix-MS Vert(I) -0.01 16 8 mran Vert(I) -0.05 16.05 <th>Plate Offsets (</th> <th>X, Y): [1:0-4-3,Edge]</th> <th>, [3:0-4-10,Edge], [5:0</th> <th>-4-10,Edge]</th> <th></th> <th>-</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	Plate Offsets (X, Y): [1:0-4-3,Edge]	, [3:0-4-10,Edge], [5:0	-4-10,Edge]		-								
 LUMBER TOP CHORD 2x4 SP No.1 "Except 5-8:2x4 SP SS DCT CHORD 2x4 SP No.1 "Except 15-12:2x4 SP No.2 WEBS 2x4 SP No.3 "Except 15-12:2x4 SP No.2 Wind: ASCE 7-10; Vull=115mph (3-second gust) Vasd=91mph, TCDL=6.0pst; BCDL=6.0pst; B	Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 13.2/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015/T	PI2014	CSI C 3C VB Matrix-MS	0.86 0.97 0.38	DEFL Vert(LL) -0.3 Vert(CT) -0.7 Horz(CT) 0.7	in (loc) 33 14-16 70 14-16 16 8	l/defl >999 >650 n/a	L/d 240 180 n/a	PLATES MT20 MT20HS Weight: 235	GRIP 244/190 187/143 Ib FT = 20 ^o	%
	LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Unbalance this design	2x4 SP No.1 *Excep 2x4 SP No.1 *Excep 2x4 SP No.3 Left: 2x8 SP DSS Right 2x6 SP No.2 - Structural wood she 2-2-0 oc purlins, ex 2-0-0 oc purlins, ex 2-0-0 oc purlins, ex 2-2-0 oc bracing: 11 1 Row at midpt (size) 1=0-3-8, Max Horiz 1=140 (L Max Grav 1=140 (L Max Grav 1=1806 ((lb) - Maximum Cor Tension 1-2=-3040/120, 2-3 3-4=-2256/122, 4-5 5-6=-2530/184, 6-8 1-20=-49/2530, 19- 14-16=0/2511, 10-1 8-9=-79/2170, 15-1 12-13=-45/18 2-20=-569/172, 3-2 18-19=-559/106, 4- 4-12=-522/149, 10- 5-9=-135/456, 6-9= 13-14==81/0 ed roof live loads have b.	pt* 5-8:2x4 SP SS pt* 18-12:2x4 SP No.2 2-5-0 eathing directly applied cept 9-12 max.): 3-5. y applied or 10-0-0 oc 4-16,10-14. 2-18 4-19, 4-10, 5-9 8= Mechanical C 13) LC 38), 8=1811 (LC 3 npression/Maximum =-2832/178, =-2299/117, =-2640/112 20=0/2119, 16-19=0/2 4=0/2511, 9-10=0/208 8=-45/18, 13-15=-45/1 0=-112/744, 3-19=0/79 18=-521/148, 12=-562/106, 5-10=0/ -347/176, 15-16=-45/0	2) V V V I II a a for 3) * E E 5 4) F 5 5) L 6 7) A 8) T 5 5) L 6 8, 7) A 8) T 5 511, 00 E 8, 10 F 8, 11) F 91, 12) T 867, F 91, 13) C 0 5 1, 13) C	Vind: ASCE 7- /asd=91mph; T ; Exp B; Enclo and C-C Exteric exposed ; end v nembers and fo umber DOL=1 * TCLL: ASCE DOL=1.15 Plate now); Ps= vari DOL=1.15 Plate xp B; Fully Ex urface & Aoof design sno lope. Jubalanced sno lesign. Provide adequa II plates are M 'his truss has b thord live load i This truss has b thord and any o Barapacity of 565 Refer to girder(: This truss is deen thernational Ref 8002.10.2 and Graphical purlir or the orientatio bottom chord. D CASE(S) S Dead + Snow Increase=1.00 Uniform Loads	10; Vult=115mp TCDL=6.0psf; Bi sed; MWFRS (6 or (2) zone; cant vertical left and 1 orces & MWFRS .60 plate grip D 7-10; PT=20.0 p e DOL=1.00); Pf es (min. roof sn a DOL=1.00); Pf es (min. roof sn a DOL=1.00) se p.; Ct=1.10; Und ow load has bee ow load has bee ow loads have b the drainage to p T20 plates unle been designed fn nonconcurrent v been designed fn noconcurrent v been designed fn orden designed	h (3-sec CDL=6.C cnvelope illever lei ight exp S for rea OL=1.33 sf (roof =20.0 p.2 e load ca obstructe en reduct een con orevent v ss other or a 10.C vith any for a live s where s is where s is conn dance wi sections dard AN does no long the	ond gust) upsf; h=30ft; Cat.) exterior zone ft and right osed;C-C for ctions shown; if it roof psf Lumber ases; Category II; ed to account for sidered for this vater ponding. wise indicated. psf bottom other live loads. e load of 20.0psf a rectangle even the bottom DL = 10.0psf. No.1 crushing ections. th the 2015 R502.11.1 and SI/TPI 1. t depict the size top and/or ease=1.15, Plate		Vert: 1-3 12-18=-2	=-46, 3 20	-5=-60, 5-8= NTH C SE 036	AR SI AL 322 NEFR GILBE Une 5,202	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org)
and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	628 ELV C EP B2	
ELV C EP B2	A07	Нір	1	1	Job Reference (optional)	l66014015

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue Jun 04 10:59:34 ID:Be0VNTHUdJV1PMEhy0ydXfzIBVu-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:68.2

Plate Offsets (X, Y): [1:0-1-1,Edge],	[1:0-0-8,Edge], [4:0-	4-10,Edge	e], [6:0-4-10,Ec	lge], [9:0-4-0,Edge	e]								
Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 13.2/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MS	0.91 0.93 0.24	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.38 -0.63 0.10	(loc) 10-12 10-12 9	l/defl >999 >740 n/a	L/d 240 180 n/a	PLATES MT20 MT20HS Weight: 210 lb	GRIP 244/190 187/143 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP SS *Except* 2x4 SP SS *Except* 2x4 SP No.3 Left: 2x8 SP DSS Right: 2x6 SP DSS Structural wood shea except 2-0-0 oc purlins (3-1 Rigid ceiling directly bracing. 1 Row at midpt (size) 1=0-3-8, 9 Max Horiz 1=163 (LC Max Uplift 1=-13 (LC	4-6:2x4 SP No.2 13-11:2x4 SP No.1 athing directly applied 1-6 max.): 4-6. applied or 2-2-0 oc 5-12 1=0-3-8 2 13) : 16), 9=-13 (LC 17)	3) 4) 5) 6) 7) 8) 9)	** TCLL: ASC DOL=1.15 P snow); Ps= v DOL=1.15 P Exp B; Fully surface Roof design slope. Unbalanced design. Provide adec All plates are This truss ha chord live loa * This truss ha on the bottor 3-06-00 tall b	CE 7-10; Pr=20.0 CE 7-10; Pr=20.0); P raries (min. roof sr late DOL=1.00); se Exp.; Ct=1.10; Un snow load has be snow loads have l quate drainage to MT20 plates unle s been designed ad nonconcurrent has been designed n chord in all area y 2-00-00 wide w	psf (roof f=20.0 p now=13.: obstruct obstruct been cor prevent for a 10. with any d for a liv s where ill fit betv	live load: Lu sf (flat roof 2 psf Lumber ases; Catego ed slippery ed to accour sidered for t water pondin wise indicate 0 psf bottom other live loa e load of 20. a rectangle ween the bott	mber bry II; his g. ads. Opsf om						
FORCES	(lb) - Maximum Com Tension 1-2=-2645/200, 2-4= 4-5=-1785/228, 5-6	-2395/245, -1785/228, -2795/245,	10) 11)	chord and ar All bearings a of 565 psi. Provide mec bearing plate	are assumed to be hanical connection capable of withst	, with BC e SP SS n (by oth anding 1	DL = 10.0ps crushing cap ers) of truss 3 lb uplift at	f. bacity to joint					u _{11.}	
BOT CHORD WEBS	1-14=-121/2155, 12- 10-12=0/1647, 9-10= 4-14=-64/635, 2-14= 5-12=-611/105, 6-12 8-10=-465/188	-2049/200 14=0/1647, 86/2154 464/186, 4-12=-74/5 =-74/533, 6-10=-64/6	12) 532, 533, 13)	 9 and 13 b u 9 and	designed in accor Residential Code nd referenced star rlin representatior ation of the purlin a	dance w sections ndard AN n does no along the	ith the 2015 R502.11.1 a ISI/TPI 1. ot depict the top and/or	and size		4	- AI	ORTH CA	ROUN	7
NOTES				bottom chord	1.					Ξ	÷	SEAL		
 Unbalance this design Wind: ASG Vasd=91n II; Exp B; and C-C E exposed ; members Lumber D 	ed roof live loads have CE 7-10; Vult=115mph nph; TCDL=6.0psf; BCI Enclosed; MWFRS (en Exterior (2) zone; cantilé end vertical left and rig and forces & MWFRS for OL=1.60 plate grip DO	been considered for (3-second gust) DL=6.0psf; h=30ft; C velope) exterior zone ever left and right ght exposed;C-C for for reactions shown; L=1.33	LO 1) at.	LOAD CASE(s) Standard 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.00 Uniform Loads (lb/ft) Vert: 1-4=-46, 4-6=-60, 6-9=-46, 15-20=-20 036322 Image: Margin and Mar								ER.K.		

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

June 5,2024

Job	Truss	Truss Type	Qty	Ply	628 ELV C EP B2	
ELV C EP B2	A07H	Нір	1	1	Job Reference (optional)	l66014016

1)

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue Jun 04 10:59:34

Page: 1

818 Soundside Road

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	628 ELV C EP B2	
ELV C EP B2	A08	Нір	1	1	Job Reference (optional)	166014017

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue Jun 04 10:59:34 ID:Be0VNTHUdJV1PMEhy0ydXfzIBVu-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

32-7-13 6-1-3 11-9-4 17-5-5 21-3-11 26-11-12 38-9-0 6-1-3 5-8-1 5-8-1 3-10-7 5-8-1 5-8-1 6-1-3 5x6= 5x6= 0-1-15 1-15 5 6 -<u>9</u>-01 9 28 29 3x4 3x4 🧔 12 71 4 7 3x6 🖌 2x4 🖌 27 30 10-6-10 10-4-11 2x4. 3x6. 10-4-11 8 З 2 9 26 31 10 0-4-9 ⊤ X 15 32 33 14 13 12 34 35 11 3x4= MT20HS 3x10 = MT20HS 3x10 = 3x4= 6x8 🗤 7x10= 6x12= 0-11-0 38-9-0 9-10-13 19-2-11 28-10-3 37-10-0 8-11-13 9-3-14 9-7-7 8-11-13 0-11-0 0-11-0 Scale = 1:69.5 Plate Offsets (X, Y): [1:0-4-0,Edge], [10:0-0-8,Edge] Loading 2-0-0 CSI DEFL in l/defl L/d PLATES GRIP (psf) Spacing (loc) TCLL (roof) 20.0 Plate Grip DOL 1.00 TC 0.84 Vert(LL) -0.37 11-13 >999 240 MT20 244/190 13.2/20.0 Snow (Ps/Pf) Lumber DOL 1.15 BC 0.87 Vert(CT) -0.61 11-13 >761 180 MT20HS 187/143 TCDL Rep Stress Incr WB Horz(CT) 10.0 YES 0.40 0.11 10 n/a n/a BCLL 0.0 Code IRC2015/TPI2014 Matrix-MS BCDL 10.0 Weight: 224 lb FT = 20% LUMBER 2) Wind: ASCE 7-10; Vult=115mph (3-second gust) 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. Increase=1.00 TOP CHORD 2x4 SP No.2 *Except* 1-3.8-10:2x4 SP SS II; Exp B; Enclosed; MWFRS (envelope) exterior zone Uniform Loads (lb/ft) 2x4 SP SS *Except* 14-12:2x4 SP No.1 BOT CHORD and C-C Exterior (2) zone; cantilever left and right Vert: 1-5=-46, 5-6=-60, 6-10=-46, 16-21=-20 WEBS 2x4 SP No.3 WEDGE Left: 2x8 SP DSS exposed : end vertical left and right exposed:C-C for members and forces & MWFRS for reactions shown; Right: 2x6 SP DSS Lumber DOL=1.60 plate grip DOL=1.33 BRACING ** TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber 3) TOP CHORD Structural wood sheathing directly applied or DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof 2-2-0 oc purlins, except snow); Ps= varies (min. roof snow=13.2 psf Lumber 2-0-0 oc purlins (4-4-15 max.): 5-6. DOL=1.15 Plate DOL=1.00) see load cases; Category II; BOT CHORD Rigid ceiling directly applied or 10-0-0 oc Exp B; Fully Exp.; Ct=1.10; Unobstructed slippery bracing. surface WEBS 1 Row at midpt 4-13.7-13 4) Roof design snow load has been reduced to account for REACTIONS (size) 1=0-3-8, 10=0-3-8 slope. Max Horiz 1=195 (LC 13) Unbalanced snow loads have been considered for this 5) Max Uplift 1=-29 (LC 16), 10=-29 (LC 17) desian. Max Grav 1=1831 (LC 38), 10=1831 (LC 38) 6) Provide adequate drainage to prevent water ponding. FORCES (lb) - Maximum Compression/Maximum All plates are MT20 plates unless otherwise indicated. 7) Tension This truss has been designed for a 10.0 psf bottom 8) TOP CHORD 1-2=-2766/187, 2-4=-2568/189, chord live load nonconcurrent with any other live loads. 4-5=-1950/217, 5-6=-1675/220, * This truss has been designed for a live load of 20.0psf 9) 6-7=-1950/217, 7-9=-2566/189, on the bottom chord in all areas where a rectangle 9-10=-2769/188 3-06-00 tall by 2-00-00 wide will fit between the bottom BOT CHORD 1-15=-147/2273, 13-15=-26/2099, chord and any other members, with BCDL = 10.0psf. 11-13=-14/2098, 10-11=-86/2272 10) All bearings are assumed to be SP SS crushing capacity WEBS 4-15=0/346, 2-15=-160/132, 4-13=-755/146, of 565 psi. Vinnerson 5-13=-24/652, 6-13=-24/652, 7-13=-755/146, Provide mechanical connection (by others) of truss to VIIIIIIIIIIII 7-11=0/344, 9-11=-160/134 bearing plate capable of withstanding 29 lb uplift at joint SEAL NOTES 10 and 29 lb uplift at joint 1. 036322 1) Unbalanced roof live loads have been considered for 12) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and this design. R802.10.2 and referenced standard ANSI/TPI 1. 13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord LOAD CASE(S) Standard G minn June 5,2024 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	628 ELV C EP B2	
ELV C EP B2	A08H	Нір	1	1	Job Reference (optional)	166014018

TCDL

BCLL

BCDL

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue Jun 04 10:59:34

818 Soundside Road

Edenton, NC 27932

Page: 1

bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	628 ELV C EP B2	
ELV C EP B2	A09	Нір	1	1	Job Reference (optional)	l66014019

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue Jun 04 10:59:35 ID:Be0VNTHUdJV1PMEhy0ydXfzIBVu-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

6-0-15 11-8-11 19-4-8 27-0-5 32-8-1 38-9-0 5-7-13 6-0-15 7-7-13 7-7-13 5-7-13 6-0-15 6x8= 2x4 🛛 6x8= S 24 3 25 4 5 Ξ± \bowtie 12 7 è 2x4、 2x4 🖌 2 6

Scale = 1:67.8

Plate Offsets (X, Y): [1:0-1-1,Edge],	[1:0-0-8,Edge], [3:0-4	4-10,Edge	e], [5:0-4-10,Eo	dge], [7:0-1-1,Edge	e], [7:0-0	-8,Edge]							
Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 13.2/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MS	0.93 0.96 0.88	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.34 -0.60 0.11	(loc) 8-10 8-10 7	l/defl >999 >781 n/a	L/d 240 180 n/a	PLATES MT20 MT20HS Weight: 201 lb	GRIP 244/190 187/143 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Unbalance this desigr 2) Wind: ASC Vasd=91n II; Exp B; I and C-C E exposed ; members ; Lumber Di	2x4 SP SS 2x4 SP No.1 2x4 SP No.3 Left: 2x8 SP DSS Right: 2x6 SP DSS Structural wood shea 3-3 oc purlins, exce 2-0-0 oc purlins, exce 2-0-0 oc purlins (2-2- Rigid ceiling directly i bracing, Except: 2-2-0 oc bracing: 7-8 (size) 1=0-3-8, 7 Max Horiz 1=131 (LC Max Grav 1=1730 (Li (b) - Maximum Comp Tension 1-2=-2385/212, 2-3=: 3-4=-2645/256, 4-5=: 5-6=-2278/211, 6-7=: 1-12=-113/1919, 10- 8-10=-33/1964, 7-8=: 3-12=0/425, 2-12=-31 4-10=-985/166, 5-10: 6-8=-303/196 ed roof live loads have I b CE 7-10; Vult=115mph ph; TCDL=6.0psf; BCD Enclosed; MWFRS (em ixterior (2) zone; cantile end vertical left and rig and forces & MWFRS f OL=1.60 plate grip DOI	athing directly applied ept -0 max.): 3-5. applied or 10-0-0 oc 3. =0-3-8 : 13) C 38), 7=1730 (LC 3 pression/Maximum -2280/211, -2645/256, -2395/212 12=-33/1965, -107/1918 02/196, 3-10=-103/9 =-103/908, 5-8=0/42 been considered for (3-second gust) DL=6.0psf; h=30ft; C velope) exterior zone sver left and right ht exposed;C-C for for reactions shown; L=1.33	3) 4) d or 5) 6) 7) 8) 9) 8) 10 11 07, 12 07, 12 1) at.	** TCLL: AS DOL=1.15 P snow); Ps= ; DOL=1.15 P Exp B; Fully surface Roof design slope. Unbalanced design. Provide aded All plates are This truss ha chord live loc * This truss 1 on the bottor 3-06-00 tall H chord and an) All bearings capacity of 5) This truss is International R802.10.2 a) Graphical pu or the orient: bottom chorc SAD CASE(S) Dead + Sm Increase=1 Uniform Lo Vert: 1-3	CE 7-10; Pr=20.0 (late DOL=1.00); P varies (min. roof sr late DOL=1.00) se Exp.; Ct=1.10; Un snow load has bee snow loads have to quate drainage to g a MT20 plates unle as been designed fad nonconcurrent to has been designed in chord in all area by 2-00-00 wide wi hy other members, are assumed to be i65 psi. designed in accorr Residential Code nd referenced star urlin representation ation of the purlin a d. Standard bw (balanced): Lur .00 ads (lb/ft) =-46, 3-5=-60, 5-7	psf (roof f=20.0 p now=13.2 e load c obstructure por reduction por reduction por revent to por a 10.0 with any l for a live with BC e SP No. dance w sections dard AN o does no along the mber Inc =-46, 13	live load: Lur sf (flat roof 2 psf Lumber ases; Catego ed slippery ed to accoun usidered for th water ponding wise indicate 0 psf bottom other live load e load of 20.0 a rectangle reen the botth DL = 10.0psf th the 2015 r R502.11.1 a ISJ/TPI 1. ot depict the se top and/or rease=1.15, I	nber ry II; t for nis g. d. ds. Opsf om size		A tribute		SEAL 03632	22 E.R. L.B.F. e 5,202	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	628 ELV C EP B2	
ELV C EP B2	A10	Нір	1	1	Job Reference (optional)	166014020

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue Jun 04 10:59:35 ID:Be0VNTHUdJV1PMEhy0ydXfzIBVu-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:67.5

Plate Offsets (2	X, Y): [1:0-0-15,Edge]], [9:0-0-15,Edge]											
Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 13.2/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015	/TPI2014	CSI TC BC WB Matrix-MS	0.84 0.94 0.51	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.31 -0.57 0.15	(loc) 10-12 10-12 9	l/defl >999 >819 n/a	L/d 240 180 n/a	PLATES MT20 MT20HS Weight: 199 lb	GRIP 244/190 187/143 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD WEBS REACTIONS FORCES TOP CHORD	2x4 SP SS 2x4 SP No.1 2x4 SP No.3 Left: 2x8 SP DSS Right: 2x8 SP DSS Structural wood shea 2-5-14 oc purlins, ex 2-0-0 oc purlins (2-17 Rigid ceiling directly bracing. 1 Row at midpt (size) 1=0-3-8, 9 Max Horiz 1=99 (LC Max Grav 1=1760 (L (lb) - Maximum Com Tension 1-2=-2596/214, 2-3= 3-4=-2610/208, 7-8= 8-9=-2596/214	athing directly applie cept 1-8 max.): 3-7. applied or 2-2-0 oc 4-14, 6-10 9=0-3-8 13) C 37), 9=1760 (LC 3 pression/Maximum -2762/209, -3751/267, -2762/209,	3) 4) 5) 6) 7) 8) 9) 37) 10) 11)	** TCLL: ASC DOL=1.15 PI snow); PS= v DOL=1.15 PI Exp B; Fully surface Roof design slope. Unbalanced design. Provide adec All plates are This truss ha on the bottor 3-06-00 tall b chord and ar All bearings a capacity of 5 This truss as International R802.10.2 ar	CE 7-10; Pr=20.0 p: late DOL=1.00); Pf= varies (min. roof snc late DOL=1.00) see Exp.; Ct=1.10; Uno snow load has been snow loads have be quate drainage to pi MT20 plates unles is been designed fo ad onconcurrent w has been designed fo ad onconcurrent	sf (roof =20.0 p =20.0	live load: Lur sf (flat roof 2 psf Lumber ases; Catego ed slippery ed to accoun usidered for th water ponding wise indicate 0 psf bottom other live loa e load of 20.0 a rectangle veen the botto DL = 10.0psf 1 crushing ith the 2015 rsf502.11.1 a ISI/TPI 1.	nber ry II; t for nis g. d. ds. Dpsf c m					
BOT CHORD	1-14=-114/2086, 12- 10-12=-161/3679, 9-	14=-161/3679, 10=-114/2086	12)	Graphical pu or the orienta	rlin representation of the purlin al	does no ong the	ot depict the s top and/or	size			J.	RTHUA	SLING
WEBS	3-14=0/906, 4-14=-1 4-12=0/238, 6-12=0/ 7-10=0/906, 8-10=-1	410/158, 2-14=-134/ 238, 6-10=-1410/158 35/379	/379, ^{8,} LO 1)	bottom choro AD CASE(S) Dead + Sno	l. Standard ow (balanced): Lum	- ber Inc	rease=1.15, I	Plate		4	Ì	Ref 1	The second second
NOTES			,	Increase=1	.00					-	:	SEA	1 1
 Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-10; Vult=115mph (3-second gust) Vocd=01mph; TCDL=6 0pcf; BCDL=6 0pcf; b=20ff; Cot 				Uniform Loa Vert: 1-3	ads (lb/ft) =-46, 3-7=-60, 7-9=	-46, 15	-20=-20			11111		0363	22

Vasd=91mph: TCDL=6.0psf: BCDL=6.0psf: h=30ft: Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	628 ELV C EP B2	
ELV C EP B2	A10GR	Hip Girder	1	1	Job Reference (optional)	166014021

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue Jun 04 10:59:36 ID:Be0VNTHUdJV1PMEhy0ydXfzIBVu-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:65.1

Plate Offsets ((X, Y): [1:0-1-0,Edge],	[1:0-0-8,0-11-6], [3:0-	-7-8,0-2-0], [9:0-3-8,0-2·	0], [11:0-1-4,Edge], [11:0-	0-8,0-11-6], [18:0-5-0	,0-5-0]					
Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 13.2/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 NO IRC2015	/TPI2014	CSI TC BC WB Matrix-MS	0.91 0.58 0.91	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.33 -0.55 0.11	(loc) 16-17 16-17 11	l/defl >999 >842 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 249 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS	2x4 SP No.2 *Excep 7-9:2x4 SP No.1 2x6 SP DSS 2x4 SP No.3 Left: 2x6 SP No.2 Right: 2x6 SP No.2 Structural wood shea 2-7-12 oc purlins, ex 2-0-0 oc purlins (2-1) Rigid ceiling directly bracing. 1 Row at midpt (size) 1=0-3-8, 1 Max Horiz 1=-80 (LC Max Uplift 1=-533 (LI Max Grav 1=2553 (L (lb) - Maximum Com Tension 1-2=-3199/740, 2-3= 3-4=-4839/1276, 4-5 5-6=-5647/1485, 6-8 8-9=-3118/786, 9-10 10-11=-3024/690 1-20=-677/2642, 19- 17-19=-1500/5683, 1 14-16=-1217/4829, 1 2-13=-549/2536, 11 2-20=-554/191, 2-19 3-18=-631/2198, 4-1 5-16=-527/206, 8-16 8-13=-2234/665, 9-1	t* 3-7:2x4 SP SS, athing directly applied teept -13 max.): 3-9. applied or 7-0-12 oc 8-13 [1=0-3-8 :8] C 9), 11=-492 (LC 13 C 33), 11=2391 (LC 3 pression/Maximum -3638/926, =-4839/1276, =-5647/1485, =-5647/1485, =-3555/880, 20=-677/2642, 16-17=-1500/5683, 13-14=-1217/4829, 1-12=-549/2536 =-234/613, 3-19=0/24 8=-605/233, 7=0/286, 5-16=-68/43 =-326/1069, 8-14=0/2 3=-335/1454,	1) 2) 1 or 4) 5) 33) 7) 8) 9) 10) 43, 11) 43, 12) 257, 12)	Unbalanced this design. Wind: ASCE Vasd=91mpH II; Exp B; Enn cantilever lef right exposed ** TCLL: ASC DOL=1.15 P Exp B; Fully surface Roof design slope. Unbalanced design. Provide aded This truss ha chord live loa * This truss ha chord live loa exp Chord and ar All bearings a clapacity of 6 Provide mec bearing plate joint 1 and 4% This truss is International R802.10.2 an Graphical pu or the orienta	roof live loads have 7-10; Vult=115mp n; TCDL=6.0psf; BG closed; MWFRS (et t and right exposed t; Lumber DOL=1.0); Pf aries (min. roof sn ate DOL=1.00); Pf aries (min. roof sn ate DOL=1.00) set Exp.; Ct=1.10; Unc snow loads have b quate drainage to p s been designed n chord in all areas by 2-00-00 wide will y other members. are assumed to be 60 psi. hanical connection capable of withsta 20 buplift at joint 1 designed in accord Residential Codes and referenced stan rlin representation tion of the purlin a L	e been of h (3-sec CDL=6.0 nrveloped d; end v 60 plate part of pow=13.2 e load c obstructor e load c obstructor e load c obstructor a 10.0 vith any for a liv s where l fit betw SP DSS (by oth anding 5 11. bance w sections dard AN does no long the	considered fo considered fo posf; h=30ft; () exterior zor vertical left an grip DOL=1. live load: Lur sf (flat roof 2 psf Lumber asses; Catego ed slippery ed to accoun asidered for th water ponding 0 psf bottom other live loa a rectangle veen the botto S crushing ers) of truss t i33 lb uplift at ith the 2015 is R502.11.1 a ISI/TPI 1. ot depict the s e top and/or	or Cat. ne; d 33 mber ory II; tfor his g. dds. Opsf om to to tand				SEA 0363	ROLING 22	Manual Contraction of the Contra
NOTES	10-13=-242/645, 10-	12=-537/171									11	CA. G	ILBENN	

Continued on page 2 Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. WARNING Design valid for use only with MTek connectors. This design is based only upon parameters and property incorporate this design is based only upon parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

June 5,2024

Job	Truss	Truss Type	Qty	Ply	628 ELV C EP B2	
ELV C EP B2	A10GR	Hip Girder	1	1	Job Reference (optional)	166014021

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue Jun 04 10:59:36

ID:Be0VNTHUdJV1PMEhy0ydXfzIBVu-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

Builders FirstSource (Apex, NC), Apex, NC - 27523,

13) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 155 Ib down and 43 lb up at 2-4-8, 97 lb down and 62 lb up at 6-4-8, 86 lb down and 68 lb up at 8-4-8, 86 lb down and 68 lb up at 10-4-8, 86 lb down and 68 lb up at 12-4-8, 86 lb down and 68 lb up at 14-4-8, 86 lb down and 68 lb up at 16-4-8, 86 lb down and 68 lb up at 18-4-8, 86 lb down and 68 lb up at 20-4-8, 86 lb down and 68 lb up at 22-4-8, 86 lb down and 68 lb up at 24-4-8, 86 lb down and 68 lb up at 26-4-8, and 86 lb down and 68 lb up at 28-4-8, and 86 lb down and 68 lb up at 30-4-8 on top chord, and 49 lb down at 2-4-8, 186 lb down and 43 lb up at 4-4-8, 37 lb down and 14 lb up at 6-4-8, 36 lb down and 17 lb up at 8-4-8, 36 lb down and 17 lb up at 10-4-8, 36 lb down and 17 lb up at 12-4-8, 36 lb down and 17 lb up at 14-4-8, 36 lb down and 17 lb up at 16-4-8, 36 lb down and 17 lb up at 18-4-8, 36 lb down and 17 lb up at 20-4-8, 36 lb down and 17 lb up at 22-4-8, 36 lb down and 17 lb up at 24-4-8, 36 lb down and 17 lb up at 26-4-8, 36 lb down and 17 lb up at 28-4-8, 36 lb down and 17 lb up at 30-4-8, 37 lb down and 14 lb up at 32-4-8, and 186 lb down and 43 lb up at 34-4-8, and 49 lb down at 36-4-8 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

14) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

Dead + Snow (balanced): Lumber Increase=1.15, Plate 1) Increase=1.00

Uniform Loads (lb/ft)

Vert: 1-3=-46, 3-9=-60, 9-11=-46, 1-11=-20

- Concentrated Loads (lb) Vert: 29=-137 (B), 30=-17 (B), 31=-15 (B), 33=-15
 - (B), 34=-15 (B), 35=-15 (B), 36=-15 (B), 37=-15 (B), 40=-15 (B), 41=-15 (B), 42=-15 (B), 43=-15 (B), 44=-15 (B), 46=-15 (B), 47=-49 (B), 48=-186 (B), 49=-23 (B), 50=-23 (B), 51=-23 (B), 52=-23 (B), 53–23 (B), 54–23 (B), 55–23 (B), 56–23 (B), 57–23 (B), 58–23 (B), 59–23 (B), 60–23 (B), 61–23 (B), 62–23 (B), 63–186 (B), 64–49 (B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design and the second way the approximation of design and the property incorporate this design into the overall building design. Bracing indicated is to prevent building of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	628 ELV C EP B2	
ELV C EP B2	B01GRC	Common Girder	1	3	Job Reference (optional)	166014022

Scale = 1:74.9

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue Jun 04 10:59:37 ID:0qSBljUG6KjQ1vAirZaJCRzIBIj-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Plate Offsets (X, Y)	: [1:0-9-12,0-2-2], [1:0-4-	l,1-0-14], [9:0-4-10,0-2-12], [′	11:0-3-8,0-4-12], [12:0-7-0,0-7-	12], [14:0-8-0,0-3-4], [15:0-8-0,0-2-0
----------------------	-----------------------------	----------------------------------	----------------------------------	--

Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL	(psf) 20.0 10.1/20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 NO IRC2015	5/TPI2014	CSI TC BC WB Matrix-MS	0.15 0.39 0.98	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.07 -0.14 0.04	(loc) 12-14 10-11 9	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 MT20HS	GRIP 244/190 187/143	
BCDL	10.0											Weight: 892 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS WEDGE SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	LUMBER COP CHORD 2x8 SP DSS SOT CHORD 2x10 SP 2400F 2.0E or 2x10 SP DSS SOT CHORD 2x10 SP 2400F 2.0E or 2x10 SP DSS WEBS 2x4 SP No.3 *Except* 12-5:2x4 SP No.2 WEBS 2x4 SP No.3 *Except* 12-5:2x4 SP No.2 WEDGE Left: 2x8 SP DSS SLIDER Right 2x4 SP No.3 4-10-0 BRACING FOP CHORD FOP CHORD Structural wood sheathing directly applied or 10-0-0 oc bracing. 3OT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (size) 1=0-3-8, 9=0-3-8, (req. 0-3-12) Max Horiz Max Horiz 1=207 (LC 7) Max Grav 1=9131 (LC 1), 9=11145 (LC 23) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD TOP CHORD 1-2=-12238/0, 2-4=-10539/0, 4-5=-8206/0, 5-6=-8196/0, 6-8=-10459/0, 8-9=-10379/0 SOT CHORD 1-2=-0/9189, 14-15=0/9189, 12-14=-0/8083, 11-12=0/8041, 10-11=0/9116, 9-10=0/9152 WEBS 2-15=-361/2180, 2-14=-1516/432, 414-0/8206			 All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated. Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; Lumber DoL=1.60 plate grip DOL=1.33 TCLL: ASCE 7-10; Pr=20.0 psf (flat roof live load: Lumber DOL=1 15 Plate DOL=1.00; Pf=20 0 psf (flat roof live load: Lomber DOL=1.03) 								ce(s) shall be entrated load(s) 249- 1620 lb down at 1809 lb down at 12, 1667 lb down at 12, and 1667 lb down 24-11-12 on bottom ch connection device r Increase=1.15, Pla)4 /n e ate	
FORCES	Max Horiz 1=207 (LC 7) Max Grav 1=9131 (LC 1), 9=11145 (LC 23) CES (Ib) - Maximum Compression/Maximum Tension CHORD 1-2=-12238/0, 2-4=-10539/0, 4-5=-8206/0, 5-6=-8196/0, 6-8=-10459/0, 8-9=-10379/0			snow); Ps=10 DOL=1.00); 0 Unobstructed Roof design s	0.1 psf (roof snow: Category II; Exp B; d slippery surface snow load has bee	Lumbe Fully E	r DOL=1.15 F xp.; Ct=1.10; red to accoun	Plate t for	Vert: 1-5=-40, 5-9=-40, 16-20=-20 Concentrated Loads (lb) Vert: 15=-2494 (B), 14=-1791 (B), 18=-1310 (B), 25=-1620 (B), 26=-1809 (B), 27=-1859 (B).					
BOT CHORD	5-6=-8196/0, 6-8=-1 1-15=0/9189, 14-15 11-12=0/8041, 10-1	0459/0, 8-9=-10379/0 =0/9189, 12-14=0/80 1=0/9116, 9-10=0/91) 83, 7) 52 8)	slope. All plates are This truss ha	MT20 plates unles	ss other or a 10.0	erwise indicated. 28=-1307 (B), 29=-1307 (B), 30=-130 31=-1307 (B), 32=-1307 (B))=-1307 (B),		
WEBS	2-15=-361/2180, 2-1 4-14=0/4720, 4-12=- 6-12=-3333/0, 6-11= 8-10=0/2549	4=-1516/432, -3503/0, 5-12=0/9762 =0/4359, 8-11=-1618/	2, 9) 0,	this truss has been designed for a live bad of 20.0psf on the bottom chord in all areas where a rectangle						ROLIN				
NOTES 1) 3-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x8 - 2 rows staggered at 0-9-0 oc. Bottom chords connected as follows: 2x10 - 5 rows staggered at 0-5-0 oc. Web connected as follows: 2x4 - 1 row at 0-9-0 oc, Except member 2-15 2x4 - 2 rows staggered at 0-4-0 oc, member 4-14 2x4 - 1 row at 0-5-0 oc.			10 11 12	chord and an) WARNING: F than input be) All bearings a crushing cap) This truss is o International R802.10.2 ar	y other members. Required bearing s aring size. are assumed to be acity of 660 psi. designed in accord Residential Code s and referenced stan	ize at jo SP DS lance w sections dard AN	int(s) 9 great S or 2400F 2. ith the 2015 : R502.11.1 a ISI/TPI 1.	er .0E .nd		Weininger.		SEA 0363	L 22 EER. KIN	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

TRENGINEERING BY AMITEK Affiliate

818 Soundside Road Edenton, NC 27932

June 5,2024

Job	Truss	Truss Type	Qty	Ply	628 ELV C EP B2	
ELV C EP B2	B02	Common	1	1	Job Reference (optional)	166014023

Scale = 1:76.5

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue Jun 04 10:59:37 ID:c5Td3hHYNCYRSqJ3fFsTmlzIBPR-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

- 1410 0110010 (, , ,): [:::::= ::::::::::::::::::::::::::::	[1:0 0 0,Edg0]												
Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 10.1/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2018	5/TPI2014	CSI TC BC WB Matrix-MS	0.69 0.86 0.35	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.23 -0.38 0.03	(loc) 8-10 8-10 7	l/defl >999 >814 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 160 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASC Vasd=91m II; Exp B; I and C-C E exposed ; members	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Right: 2x10 SP DSS Structural wood she 4-0-8 oc purlins. Rigid ceiling directly bracing. 1 Row at midpt (size) 7=0-3-8, 7 Max Horiz 11=216 (L Max Uplift 7=-10 (LC Max Grav 7=1134 (L (lb) - Maximum Com Tension 1-2=-480/97, 2-4=-1 6-7=-1250/122 1-11=-27/270, 10-11 7-8=-31/891 4-8=-126/605, 6-8=- 2-10=-293/232, 2-11 ed roof live loads have hoph; TCDL=6.0psf; BC Enclosed; MWFRS (er Exterior (2) zone; cantil end vertical left and fig and force & MWFRS (er	athing directly applied applied or 10-0-0 oc 2-11 11=0-3-8 _C 11) C 26), 11=-10 (LC 14) _C 26), 11=1112 (LC 2 pression/Maximum 177/233, 4-6=-1156/23 I=-80/1018, 8-10=0/67 301/225, 4-10=-118/63 I=-902/37 been considered for a (3-second gust) IDL=6.0psf; h=30ft; Ca twelope) exterior zone lever left and right ght exposed; C-C for for reacting shown:	3) 4) 5) 6) 7) 25) 8) 36, 9) 77, LC 32, at.	TCLL: ASCE DOL=1.15 P snow); Ps=1 DOL=1.00); ' Roof design slope. This truss ha chord live loa * This truss ha chord and ar All bearings capacity of 5 Provide mec bearing plate 11 and 10 lb This truss is International R802.10.2 ar DAD CASE(S)	7-10; Pr=20.0 ps late DOL=1.00); P 0.1 psf (roof snow Category II; Exp B d slippery surface snow load has be s been designed t ad nonconcurrent has been designed in chord in all area by 2-00-00 wide w by other members are assumed to be 65 psi. hanical connection capable of withst uplift at joint 7. designed in accor Residential Code nd referenced star Standard	f (roof liv f=20.0 p : Lumbe :; Fully E en reduc for a 10. with any d for a liv is where ill fit betv , with BC e SP No. n (by oth tanding 1 dance w sections ndard AN	e load: Lumb sf (flat roof r DOL=1.15 F xp.; Ct=1.10; ed to accour 0 psf bottom other live load e load of 20.1 a rectangle veen the bottt DL = 10.0psi 2 crushing ers) of truss t 0 lb uplift at j ith the 2015 R502.11.1 <i>a</i> ISI/TPI 1.	per Plate ht for hds. Opsf om f. to joint				NITH CA OR FESS SEA 0363	ROLUL L 22	

Lumber DOL=1.60 plate grip DOL=1.33

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

GI munin June 5,2024

Job	Truss	Truss Type	Qty	Ply	628 ELV C EP B2	
ELV C EP B2	B02GC	Common Supported Gable	1	1	Job Reference (optional)	166014024

Loading

TCDL

BCLL

BCDL

OTHERS

WEBS

FORCES

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue Jun 04 10:59:37

Page: 1

818 Soundside Road

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	628 ELV C EP B2	
ELV C EP B2	J01	Jack-Open	24	1	Job Reference (optional)	166014025

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue Jun 04 10:59:37 ID:JkIOGBKadJ0yIH6P5AwMNBz9hOs-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:32.5

Plate Offsets ((X, Y): [1:0-4-4,0-0-12]], [1:0-1-4,0-10-2]												
Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 10.1/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MP	0.20 0.19 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.02 -0.03 -0.02	(loc) 3-8 3-8 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 MT20HS Weight: 26 lb	GRIP 244/190 187/143 FT = 20%	
LUMBER 5) This truss has been designed for a 10.0 psf bottom TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 WEDGE Left: 2x10 SP DSS BRACING on the bottom chord in all areas where a rectangle TOP CHORD Structural wood sheathing directly applied or 4-11-0 oc purlins. 6) BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (size) 1=0-3-8, 2= Mechanical 3= Max Horiz 1=120 (LC 14) Max Grav 1=236 (LC 2), 2=106 (LC 25), 3=70 (LC 5) FORCES (lb) - Maximum Compression/Maximum														
Max Grav 1=236 (LC 2), 2=106 (LC 25), 3=70 (LC 5) FORCES (b) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-91/68 BOT CHORD 1-3=-11/9/4 WEBS 2-3=0/0 NOTES 1) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed : end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plsf grip DOL=1.33 2) TCLL: ASCE 7-10; Pr=20.0 psf (flor for live load: Lumber DOL=1.15 Plate DOL=1.00; Category II; Exp B; Fully Exp.; Ct=1.10; Unobstructed slippery surface 3) Roof design snow load has been reduced to account for slope.										ROUTING 22 ILBERTITION ILBERTI				

TRENGINEERING BY A MITek Affiliate

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	628 ELV C EP B2	
ELV C EP B2	J02	Half Hip	4	1	Job Reference (optional)	166014026

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue Jun 04 10:59:38 ID:nfKKvj7YPO?DOquL9pdckpz9hP6-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4-11-0 4-5-0 4-5-0 0-6-0 5x6 II 2 12 10 Г 4-1-3 4-0-12 MT20HS 3x10 0-4-9 Y 3 2x4 🛛 3x4 =

Scale = 1:34.5

Plate Offsets (X, Y): [1:0-0-4,Edge], [1:0-1-4,0-10-2], [2:0-2-8,Edge]

				·										
Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL	(psf) 20.0 10.1/20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MP	0.22 0.22 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.02 -0.03 0.02	(loc) 3-8 3-8 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 MT20HS	GRIP 244/190 187/143	
BCDL	10.0											Weight: 26 lb	FT = 20%	
LUMBER FOP CHORD 30T CHORD WEBS WEDGE 3RACING FOP CHORD 30T CHORD 3	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left: 2x10 SP DSS Structural wood shea 4-11-0 oc purlins, ex Rigid ceiling directly bracing. (size) 1=0-3-8, 2 Mechanica (size) 1=0-3-8, 2 (size) 1=0-3, 2 (size) 1=0-3, 2 (size) 1=0-3, 2 (size)	athing directly applie xcept end verticals. applied or 10-0-0 oc 2= Mechanical, 3= al 213) 213) 213, 3=-2 (LC 14) 22), 2=116 (LC 25), pression/Maximum /0 (3-second gust) DL=6.0psf; h=30ft; C velope) exterior zon ever left and right ght exposed;C-C for for reactions shown; L=1.33 roof live load: Lumbe 20.0 psf (flat roof .umber DOL=1.15 PI -ully Exp.; Ct=1.10; reduced to account s otherwise indicated	5) 6) (d or 7) 5 9) 10 3=70 11 LC 2at. e 2at. e for 1.	This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar Bearings are capacity of 5 Refer to gird Provide mec bearing plate 2 and 2 lb up) This truss is International R802.10.2 a) Gap betweed diagonal or v DAD CASE(S)	as been designed i ad nonconcurrent has been designed in chord in all area by 2-00-00 wide w hy other members. assumed to be: , 65 psi. er(s) for truss to tr hanical connection e capable of withst blift at joint 3. designed in accor Residential Code nd referenced star n inside of top cho rertical web shall r Standard	for a 10. with any d for a liv is where ill fit betv Joint 1 \$ uss conr n (by oth tanding 5 rdance w sections indard AN rod bearin not excee	D psf bottom other live loz e load of 20. a rectangle veen the bott SP No.2 crus ections. ers) of truss 3 lb uplift at ith the 2015 i R502.11.1 a ISI/TPI 1. ng and first ad 0.500in.	ads. Opsf iom hing to joint and		M. TITTIN.		SEA 0363	ROL L 22 ILBERTIT	Annunner.

- 3) slope.
- 4) All plates are MT20 plates unless otherwise indicated.

June 5,2024

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	628 ELV C EP B2	
ELV C EP B2	J03	Half Hip	4	1	Job Reference (optional)	166014027

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue Jun 04 10:59:38 ID:QQ?0IBskaeDLIRC6tBERrAz9hPS-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

818 Soundside Road Edenton, NC 27932

21-01-2	6-1-0	10 T2 MT20HS 3x10 II	2 11 3 The second seco	2-10-12
		2x4 =	2x4 II 3x4 =	

0-11-0 3-2-0 4-11-0 0-11-0 2-3-0 1-9-0

Scale = 1:26.4

Plate Offsets ()	X, Y): [1:0-4-2,0-0-12	2], [1:0-1-4,0-10-2], [2	:0-6-4,0-2	-0]								-	
Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 10.1/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MP	0.10 0.06 0.03	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 6 6 1	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 MT20HS Weight: 31 lb	GRIP 244/190 187/143 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left: 2x10 SP DSS Structural wood she 4-11-0 cc purlins, e 2-0-0 oc purlins: 2-3 Rigid ceiling directly bracing. (size) 1=0-3-8, 4 Max Horiz 1=76 (LC Max Uplift 1=-4 (LC Max Grav 1=318 (LC	athing directly applie xcept end verticals, a applied or 10-0-0 oc 4= Mechanical 15) 16), 4=-31 (LC 13) C 35), 4=206 (LC 34)	4) 5) 6) 7) d or 8) and 9) 10 11	Roof design slope. Unbalanced design. Provide adee All plates are This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar)) Bearings are capacity of 5)) Refer to gird 2) Provide mec	snow load has be snow loads have l quate drainage to a MT20 plates unle as been designed ad nonconcurrent has been designed n chord in all area by 2-00-00 wide w y other members. assumed to be: J 65 psi. er(s) for truss to tr hanical connection	en reduc been cor prevent ' ess other for a 10. with any d for a liv with any d for a liv s where ill fit betv Joint 1 Sl uss conr n (by oth	ed to account nsidered for the water ponding wise indicate 0 psf bottom other live loa the load of 20.0 a rectangle veen the bottom P No.2 crushin nections. ers) of truss t	t for nis g. d. ds. Dpsf om ng					
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASC	(lb) - Maximum Com Tension 1-2=-137/45, 2-3=-3 1-5=-118/116, 4-5=- 2-5=-8/68, 2-4=-130 d roof live loads have F Z-10: Vult=115mph	npression/Maximum 7/40, 3-4=-102/31 71/101 /81 been considered for (3-second qust)	13 14 L(bearing plate 4 and 4 lb up 3) This truss is International R802.10.2 a 4) Graphical pu or the orienta bottom chore DAD CASE(S)	e capable of withst blift at joint 1. designed in accor Residential Code nd referenced star Irlin representation ation of the purlin a d. Standard	tanding 3 rdance w sections ndard AN n does no along the	B1 Ib uplift at j ith the 2015 S R502.11.1 a NSI/TPI 1. Dt depict the s e top and/or	oint Ind size			- AL	NITH CA	NRO MAR

- Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- 3) ** TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof snow); Ps= varies (min. roof snow=10.1 psf Lumber DOL=1.15 Plate DOL=1.00) see load cases; Category II; Exp B; Fully Exp.; Ct=1.10; Unobstructed slippery surface
- Dead + Snow (balanced): Lumber Increase=1.15, Plate 1) Increase=1.00 Uniform Loads (lb/ft)
 - Vert: 1-2=-40, 2-3=-60, 4-6=-20

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	628 ELV C EP B2	
ELV C EP B2	J03GR	Half Hip Girder	3	1	Job Reference (optional)	166014028

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue Jun 04 10:59:38 ID:4SB7FUocm6b2egK84eeG87z9hPX-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:27.3

Plate Offsets (X, Y): [1:0-4-2,0-0-12], [1:0-1-4,0-10-2], [2:0-6-4,0-2-0]

	(, .). [], [,], [,	-1									
Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 10.1/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 NO IRC201	5/TPI2014	CSI TC BC WB Matrix-MP	0.68 0.09 0.04	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 -0.01 0.00	(loc) 4-5 4-5 1	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 MT20HS Weight: 27 lb	GRIP 244/190 187/143 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD	2x4 SP No.2 *Excep 2x4 SP No.2 2x4 SP No.3 Left: 2x10 SP DSS Structural wood she: 4-11-0 oc purlins, e: 2-0-0 oc purlins; 2-3	t* 2-3:2x4 SP No.3 athing directly appliec xcept end verticals, a	4) 5) 6) 7) d or 8) nd 9)	Roof design slope. Unbalanced design. Provide ade All plates are This truss ha chord live loa * This truss h	snow load has be snow loads have quate drainage to e MT20 plates unl as been designed ad nonconcurrent has been designe	een reduc been cou prevent ess othe for a 10. with any d for a liv	eed to accour nsidered for t water pondin wise indicate 0 psf bottom other live loa e load of 20.	nt for his g. ed. ods. Opsf	Co	Vert: 1-2 oncentra Vert: 12	2=-40, ited Los =0 (B)	2-3=-60, 4-6=-2(ads (lb)	
BOT CHORD	Rigid ceiling directly bracing. (size) 1=0-3-8, 3 Mechanic Max Horiz 1=42 (LC Max Uplift 1=-14 (LC Max Grav 1=261 (LC 4=78 (LC	applied or 10-0-0 oc = Mechanical, 4= al 11) : 12), 3=-29 (LC 8) : 31), 3=183 (LC 30), 7)	10 11 12	 9) * I his truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 10) Bearings are assumed to be: , Joint 1 SP No.2 crushing capacity of 565 psi. 11) Refer to girder(s) for truss to truss connections. 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 29 lb uplift at joint 									
FORCES TOP CHORD BOT CHORD WEBS NOTES	(lb) - Maximum Com Tension 1-2=-180/45, 2-3=-1 1-5=-37/91, 4-5=-27/ 2-5=0/100, 2-4=-101	pression/Maximum 5/11, 3-4=0/0 /92 /20	13 14	 and 14 b (This truss is International R802.10.2 a Graphical pu or the orienta bottom chore 	Jplift at joint 1. designed in acco Residential Code nd referenced sta Jrlin representation ation of the purlin d.	rdance w sections ndard Al n does no along the	ith the 2015 R502.11.1 a NSI/TPI 1. ot depict the s top and/or	and size				WITH CA	RO
 Unbalanc this desig Wind: AS Vasd=91 II; Exp B; cantilever right expc 3) ** TCLL: DOL=1.1 snow); P: DOL=1.1 Exp B; Fit Surface 	ed roof live loads have n. CE 7-10; Vult=115mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (en r left and right exposed ssed; Lumber DOL=1.00; Pf= SF late DOL=1.00); Pf= s= varies (min. roof sno 5 Plate DOL=1.00) see ully Exp.; Ct=1.10; Unot	been considered for (3-second gust) DL=6.0psf; h=30ft; C; velope) exterior zone; end vertical left and 0 plate grip DOL=1.3; f (roof live load: Luml 20.0 psf (flat roof w=10.1 psf Lumber load cases; Category sstructed slippery	15 at. ;; 3 ber 17 (II; LC 1)	 Gap betwee diagonal or v Hanger(s) or provided suf down and 7 down and 7 down and 10 design/selec responsibility In the LOAD of the truss a DAD CASE(S) Dead + Sm 	n inside of top chc vertical web shall in r other connection ficient to support d bup at 2-11-12 (c) bup at 2-11-12 ction of such conner v of others. CASE(S) section are noted as front Standard ow (balanced): Lu	ord bearin not exceed device(s concentra on top ch on botto ection de , loads a (F) or ba	ng and first ad 0.500in.)) shall be ated load(s) 3 ord, and 4 lb m chord. Th vice(s) is the pplied to the ck (B). rease=1.15,	88 lb e face Plate		Contraction of the second seco	tin and the second seco	SEA 0363	L 22 LBERTIN

- DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof snow); Ps= varies (min. roof snow=10.1 psf Lumber DOL=1.15 Plate DOL=1.00) see load cases; Category II; Exp B; Fully Exp.; Ct=1.10; Unobstructed slippery surface
- 17) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.00

Uniform Loads (lb/ft)

June 5,2024

mumm

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	628 ELV C EP B2	
ELV C EP B2	J04	Jack-Open	3	1	Job Reference (optional)	166014029

2-3-12

12 7 Г

4x8 II

Builders FirstSource (Apex, NC), Apex, NC - 27523,

Scale = 1:21.5

Loading

TCDL

BCLL

BCDL

LUMBER

WEDGE

BRACING

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

FORCES

NOTES

2)

3) slope

TOP CHORD

BOT CHORD

TCLL (roof)

Snow (Ps/Pf)

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries. Inc. Tue Jun 04 10:59:38 ID:n6GUn5jDPyj2lbHoAg0dMez9hPe-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

-8-12

2

Page: 1

4) Unbalanced snow loads have been considered for this design.

G mm June 5,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	628 ELV C EP B2	
ELV C EP B2	J05	Half Hip	1	1	Job Reference (optional)	166014030

1-7-7

1-7-7

12 10 Г

Builders FirstSource (Apex, NC), Apex, NC - 27523,

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue Jun 04 10:59:38 ID:YTKn9GRDW48gtgI87ZaTF5z9hOj-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4-11-0

3-3-9

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication for the trust structure Bucking Component Advancement and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

4x8 =

Scale = 1:27.3

surface

slope.

3)

Plate Offsets (X, Y): [1:0-4-2,0-0-12], [1:0-1-4,0-10-2], [2:0-6-4,0-2-0]

DOL=1.15 Plate DOL=1.00) see load cases; Category II; Exp B; Fully Exp.; Ct=1.10; Unobstructed slippery

Roof design snow load has been reduced to account for

Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 10.1/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MP	0.37 0.08 0.04	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 -0.01 0.00	(loc) 4-5 4-5 1	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 MT20HS Weight: 27 lb	GRIP 244/190 187/143 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left: 2x10 SP DSS Structural wood shea 4-11-0 oc purlins, ea 2-0-0 oc purlins: 2-3 Rigid ceiling directly bracing. (size) 1=0-3-8, 4 Max Horiz 1=42 (LC Max Uplift 1=-10 (LC Max Grav 1=261 (LC	athing directly applied xcept end verticals, a applied or 10-0-0 oc H= Mechanical 15) : 16), 4=-20 (LC 13) C 35), 4=252 (LC 34)	4) 5) 6) 7) d or 8) ind 9) 10	Unbalanced design. Provide adec All plates are This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar Bearings are capacity of 5) Refer to gird) Provide mec bearing plate 4 and 10 b	snow loads have be quate drainage to p MT20 plates unles is been designed for ad nonconcurrent w has been designed in chord in all areas by 2-00-00 wide will by other members. assumed to be: Jo 65 psi. er(s) for truss to tru hanical connection is capable of withsta plift at joint 1.	revent v ss other or a 10.0 ith any for a liv where fit betv int 1 SI ss conr (by oth nding 2	nsidered for th water ponding wise indicate 0 psf bottom other live loa e load of 20.0 a rectangle veen the botto P No.2 crushi nections. ers) of truss t 0 lb uplift at j	nis g. d. opsf om ng oint					
TOP CHORD BOT CHORD WEBS NOTES 1) Wind: ASC Vasd=91m II; Exp B; I and C-C E exposed ; members : Lumber DU 2) ** TCLL: A DOL=1.15 snow); Ps:	(ib) - Maximum Com Tension 1-2=-179/45, 2-3=-2 1-5=-58/90, 4-5=-48, 2-5=0/100, 2-4=-101 CE 7-10; Vult=115mph ph; TCDL=6.0psf; BC Enclosed; MWFRS (en xterior (2) zone; cantil end vertical left and rig and forces & MWFRS OL=1.60 plate grip DO SCE 7-10; Pr=20.0 ps Plate DOL=1.00); Pf= = varies (min. roof sno	pression/Maximum 1/22, 3-4=-183/57 /92 /37 (3-second gust) DL=6.0psf, h=30ft; C ivelope) exterior zone ever left and right ght exposed;C-C for for reactions shown; L=1.33 f (roof live load: Lumi 20.0 psf (flat roof w=10.1 psf Lumber	12 13 LC at. 1)	 This truss is International R802.10.2 ar Graphical pu or the orienta bottom chorc CAD CASE(S) Dead + Sno Increase=1 Uniform Loa Vert: 1-2: 	designed in accord Residential Code s nd referenced stand rlin representation of ation of the purlin al standard bw (balanced): Lum .00 ads (lb/ft) =-40, 2-3=-60, 4-6=	ance w ections dard AN does no ong the ber Inc	ith the 2015 i R502.11.1 a ISJ/TPI 1. ot depict the s top and/or rease=1.15, F	ind size Plate		Contraction of the second seco		SEA 0363	ROUNT L

Job	Truss	Truss Type	Qty	Ply	628 ELV C EP B2	
ELV C EP B2	J06	Jack-Open	2	1	Job Reference (optional)	166014031

4-1-8

Builders FirstSource (Apex, NC), Apex, NC - 27523,

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue Jun 04 10:59:38 ID:dZ4AXST6Wcy49PoITNCnU7z9hTq-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

C/I

Scale = 1:22.4

Plate Offsets (X, Y): [1:0-4-0,Edge], [1:0-0-8,Edge]

Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 18.7/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MP	0.08 0.07 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 -0.01 0.00	(loc) 3-8 3-8 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 14 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD 30T CHORD 30T CHORD 30T CHORD 30T CHORD 30T CHORD 30T CHORD REACTIONS FORCES TOP CHORD B0T CHORD B0T CHORD B0T CHORD NOTES 1) Wind: ASI Vasd=91T II; Exp B; and C-C F exposed ; members Lumber D 2) TCLL: AS DOL=1.0(Unobstruc 3) Roof desi slope. 4) Unbalanc design.	2x4 SP No.2 2x4 SP No.2 Left: 2x4 SP No.3 Structural wood shea 4-1-8 oc purlins. Rigid ceiling directly bracing. (size) 1=0-3-0,2 Mechanica Max Horiz 1=31 (LC Max Uplift 1=-12 (LC Max Grav 1=225 (LC (LC 7) (lb) - Maximum Com Tension 1-2=-14/14 1-3=-22/8 CE 7-10; Vult=115mph mph; TCDL=6.0psf; BCI Enclosed; MWFRS (en Exterior (2) zone; cantile end vertical left and rig and forces & MWFRS (en Exterior (2) zone; cantile end vertical left and rig and forces & MWFRS (en Exterior (2) zone; cantile end vertical left and rig and forces & MWFRS (en Exterior (2) zone; cantile end vertical left and rig and forces & MWFRS (en Exterior (2) zone; cantile end vertical left and rig and forces gip DO (CE 7-10; Pr=20.0 psf (fo 5 Plate DOL=1.00); Pf= =18.7 psf (roof snow: L D); Category II; Exp B; F	athing directly applie applied or 10-0-0 oc 2= Mechanical, 3= al 12) 12), 2=-19 (LC 12) 2 2), 2=65 (LC 22), 3 pression/Maximum (3-second gust) DL=6.0psf; h=30ft; C velope) exterior zon ever left and right pht exposed;C-C for for reactions shown; L=1.33 roof live load: Lumbe 20.0 psf (flat roof .umber DOL=1.15 PI Fully Exp.; Ct=1.10; reduced to account en considered for thi	5) 6) (d or 9) =45 LO eat. e ar ate for is	This truss ha chord live loa * This truss h on the bottom 3-06-00 tall b chord and an Bearings are capacity of 5 Refer to girdd Provide mecl bearing plate 2 and 12 lb u) This truss is i International R802.10.2 ar	s been designed fo ad nonconcurrent w has been designed in chord in all areas by 2-00-00 wide wil y other members. assumed to be: , , 65 psi. er(s) for truss to tri hanical connection capable of withsta plift at joint 1. designed in accord Residential Code s and referenced stan Standard	or a 10.0 vith any for a liv s where I fit betw Joint 1 S uss con (by oth anding 1 dance w sections dard AN	 psf bottom other live loa e load of 20.0 a rectangle veen the botto P No.2 crush nections. ers) of truss t 9 lb uplift at juict ith the 2015 R502.11.1 a ISI/TPI 1. 	ds.)psf om ning oint nd				SEA OBC SEA O363		

June 5,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

ENGINEERING BY A MITCH A HITIDA

Job	Truss	Truss Type	Qty	Ply	628 ELV C EP B2	
ELV C EP B2	J07	Jack-Open	4	1	Job Reference (optional)	166014032

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue Jun 04 10:59:38 ID:pDIAzr0KwRch2KkxcKWLpdz9hT7-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

3-11-0

Scale = 1:22.4

Plate Offsets (X, Y): [1:0-4-0,Edge], [1:0-0-8,Edge]

1-3-14

	(X, I). [1.0 I 0,Eugo],	[1.0 0 0,2090]												
Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 18.7/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MP	0.06 0.06 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 3-8 3-8 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 14 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD NOTES 1) Wind: AS Vasd=91r II; Exp B; and C-C I exposed ; members Lumber D 2) TCLL: AS DOL=1.0 Unobstru 3) Roof desi slope. 4) Unbalanc design.	2x4 SP No.2 2x4 SP No.2 Left: 2x4 SP No.3 Structural wood she: 3-11-0 oc purlins. Rigid ceiling directly bracing. (size) 1=0-3-0,2 Mechanic Max Horiz 1=29 (LC Max Uplift 1=-11 (LC Max Grav 1=218 (LC (LC 7) (lb) - Maximum Com Tension 1-2=-12/14 1-3=-19/4 CE 7-10; Vult=115mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (er Exterior (2) zone; cantil ; end vertical left and rig and forces & MWFRS (er Exterior (2) zone; cantil ; end vertical left and rig and forces & MWFRS (er Exterior (2) zone; cantil ; end vertical left and rig and forces & MWFRS (er Exterior (2) zone; contil ; end vertical left and rig and forces & MWFRS (er Exterior (2) zone; contil ; end vertical left and rig and forces with the properties of th	athing directly applie applied or 10-0-0 oc 2= Mechanical, 3= al 12) 2 12), 2=-17 (LC 12) 2 2), 2=58 (LC 2), 3= pression/Maximum (3-second gust) DL=6.0psf; h=30ft; Civielope) exterior zon ever left and right ght exposed;C-C for for reactions shown; L=1.33 roof live load: Lumber 20.0 psf (flat roof _umber DOL=1.15 P Fully Exp.; Ct=1.10; n reduced to account even considered for th	5) 6) 2 8) 9) -41 LO Cat. e r late for is	This truss ha chord live loa * This truss f on the bottor 3-06-00 tall b chord and ar Bearings are capacity of 5 Refer to gird Provide mec bearing plate 2 and 11 lb u 0 This truss is International R802.10.2 ar	as been designed f ad nonconcurrent has been designed n chord in all area by 2-00-00 wide wi y other members. assumed to be: , 65 psi. er(s) for truss to the hanical connection e capable of withst uplift at joint 1. designed in accor Residential Code nd referenced star Standard	for a 10.0 with any 5 of a liv 5 where Joint 1 S russ con n (by oth anding 1 dance w sections ndard AN	D psf bottom other live load e load of 20.0 a rectangle veen the botto SP No.2 crush nections. ers) of truss to 7 lb uplift at ju ith the 2015 s R502.11.1 a ISI/TPI 1.	ds.)psf om oing oint nd				SEA 0363	ROUT L 22 ILBER	

June 5,2024

ENGINEERING BY ERENCEO A MITEK Affiliate 818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	628 ELV C EP B2	
ELV C EP B2	M01	Monopitch	6	1	Job Reference (optional)	166014033

6-9-0

Builders FirstSource (Apex, NC), Apex, NC - 27523,

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue Jun 04 10:59:38 ID:naDdeTJuPVQtDNhGAXPfzUz9hQA-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:27

Plate Offsets (X, Y): [1:0-2-8,Edge], [1:0-1-0,1-2-8]

Loading TCLL (roof) Snow (Ps/Pf) TCDL 3CLL 3CDL	(psf) 20.0 17.2/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MP	0.47 0.37 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.05 -0.11 0.00	(loc) 3-8 3-8 1	l/defl >999 >752 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 25 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD FORCES	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left: 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 1=0-3-8, 3 Max Horiz 1=74 (LC Max Uplift 1=-18 (LC Max Grav 1=307 (LC (lb) - Maximum Com Tension 1-2=-68/53, 2-3=-15 1-3=-111/91	athing directly appli cept end verticals. applied or 10-0-0 o 3=0-1-8 15) 2 12), 3=-24 (LC 16) C 2), 3=-26 (LC 23) apression/Maximum 3/89	6) 7) c 8) c 9) 1(11	* This truss I on the bottor 3-06-00 tall I chord and a Bearings are capacity of 5 565 psi. Bearing at jo using ANSI/ designer sho Provide meo bearing plate 1 and 24 lb t 1) This truss is International R802.10.2 a DAD CASE(S)	has been designed in chord in all area by 2-00-00 wide w by other members a assumed to be: J 665 psi, Joint 3 SP int(s) 3 considers TPI 1 angle to grai by an angle to grai by a considers thanical connection a tipint(s) 3. thanical connection a capable of withst uplift at joint 3. designed in accor Residential Code ind referenced star Standard	d for a liv is where ill fit betv Joint 1 SI No.3 cru parallel t in formula y of bear n (by oth tanding 1 dance w sections ndard AN	e load of 20. a rectangle veen the bott P No.2 crush ishing capac o grain value a. Building ng surface. ers) of truss 8 lb uplift at ith the 2015 R502.11.1 a ISI/TPI 1.	Opsf tom ing ity of e to joint and					
NOTES					Otandard								
 Wind: ASC Vasd=91n II; Exp B; I and C-C E exposed ; 	CE 7-10; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er Exterior (2) zone; cantil end vertical left and re	(3-second gust) DL=6.0psf; h=30ft; (nvelope) exterior zor lever left and right ght exposed;C-C for	Cat. ne								and the	ORTH CA	ROLLIN

members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33 TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber 2) DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof

- snow); Ps=17.2 psf (roof snow: Lumber DOL=1.15 Plate DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.10; Unobstructed slippery surface 3) Roof design snow load has been reduced to account for
- slope
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	628 ELV C EP B2	
ELV C EP B2	M01G	Monopitch Supported Gable	2	1	Job Reference (optional)	l66014034

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue Jun 04 10:59:38 ID:jEspdyXpxLqA?lewn0F6FUz9hPt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

		000			
Scale = 1:24.3	I				
Plate Offsets (X, Y): [1:0-2-8,0-0-8], [1:0-1-0,1-2-8]					

Plate Olisets	(A, T). [1.0-2-0,0-0-0]	, [1.0-1-0, 1-2-0]											
Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 17.2/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015/TF	PI2014	CSI TC BC WB Matrix-MP	0.11 0.11 0.03	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 28 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORE BOT CHORE WEBS OTHERS WEDGE BRACING TOP CHORE BOT CHORE	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Left: 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing.	Pathing directly applied cept end verticals. r applied or 10-0-0 oc 5=5-10-0 6=5-10-0	3) T(D' Sr D' Ui 4) R' Sl 0r 5) Ui 6) G 6) G 7) Th ct	CLL: ASCE IOL=1.15 Pla now); Ps=17 OL=1.00); C Inobstructed toof design s lope. Inbalanced s esign. iable studs s his truss has hord live loa	7-10; Pr=20.0 psf ate DOL=1.00); Pf 2.2 psf (roof snow: Category II; Exp B; I slippery surface snow load has bee snow loads have b spaced at 2-0-0 oc s been designed fo d nonconcurrent w	(roof liv =20.0 p Lumbe Fully E n reduc een cor or a 10.0 vith any	e load: Lumb sf (flat roof r DOL=1.15 F xp.; Ct=1.10; wed to account insidered for the D psf bottom other live load	er late t for nis					
NEAD HONO	(3)207 7=5-10-0. Max Horiz 1=74 (LC Max Uplift 5=-5 (LC (LC 13) Max Grav 1=268 (L0 (LC 22), 7 2)	, J0=5-10-0 15), 10=74 (LC 15) 13), 6=-19 (LC 12), 7= C 2), 5=59 (LC 22), 6= 7=14 (LC 2), 10=268 (I	8) * or 3- 41 ch 29) Al 196 ca -C 10) Pr	This truss ha n the bottom -06-00 tall by hord and any Il bearings a apacity of 56 rovide mech earing plate	as been designed a chord in all areas y 2-00-00 wide wil y other members. are assumed to be 35 psi. hanical connection capable of withsta	for a liv where I fit betv SP No. (by oth	e load of 20.0 a rectangle veen the botto 2 crushing ers) of truss to b unlift at ioi	ipsf om o					
FORCES	(lb) - Maximum Corr Tension	npression/Maximum	5, 11) N	, 19 lb uplift Ion Standard	at joint 6 and 41 lb	uplift a	it joint 7. w required.	in the second seco					10.
TOP CHORD	1-2=-99/66, 2-3=-70 4-5=-46/33	/49, 3-4=-39/33,	12) Tł In	his truss is c nternational I	designed in accord Residential Code	lance w	ith the 2015 R502.11.1 a	nd				TH CA	RO
WEBS	1-7=-45/34, 6-7=-31 3-6=-144/80, 2-7=-4	/34, 5-6=-31/34 2/79	R: LOAD	802.10.2 an D CASE(S)	d referenced stan Standard	dard AN	ISI/TPI 1.					OFESE	N. V.
 Wind: AS Vasd=91 Li; Exp B; and C-C exposed members Lumber I Truss de only. Foi see Stan or consul 	CE 7-10; Vult=115mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (er Exterior (2) zone; cantil ; end vertical left and ri and forces & MWFRS OOL=1.60 plate grip DC signed for wind loads in studs exposed to wind dard Industry Gable En t qualified building desi	n (3-second gust) CDL=6.0psf; h=30ft; Ca nvelope) exterior zone lever left and right ght exposed;C-C for for reactions shown; DL=1.33 n the plane of the truss t (normal to the face), d Details as applicable gner as per ANSI/TPI	t. 5 5, 1.							N. C.		SEA 0363	L 22 LBERTIN

June 5,2024

tute (www.tpinst.org)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	628 ELV C EP B2	
ELV C EP B2	M01GR	Monopitch Girder	1	1	Job Reference (optional)	166014035

4-4-0

4-4-0

Builders FirstSource (Apex, NC), Apex, NC - 27523,

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue Jun 04 10:59:38 ID:x3DDYLCprYznpOEnLwHJnHz9hRb-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

7-11-8

3-7-8

Page: 1

Scale =	1:30
---------	------

Plate Offsets (X, Y): [1:0-3-0,Edge], [1:0-0-8,Edge]

Loading ICLL (roof) Snow (Ps/Pf) ICDL BCLL BCDL LUMBER IOP CHORD	(psf) 20.0 18.7/20.0 10.0 0.0* 10.0 2x4 SP No.2	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 NO IRC2015/TPI2014 6) * This truss I on the botton 2.06.00 trill	CSI TC 0.43 BC 0.67 WB 0.42 Matrix-MP	DEFL Vert(LL) - Vert(CT) - Horz(CT) ve load of 20.0ps a rectangle	in (loc) 0.05 4-5 0.08 4-5 0.01 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 34 lb	GRIP 244/190 FT = 20%	
BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP SS 2x4 SP No.3 Left: 2x4 SP No.3 Structural wood shea 4-7-7 oc purlins, exc Rigid ceiling directly bracing. (size) 1=0-3-0, 4 Max Horiz 1=63 (LC Max Uplift 1=-52 (LC Max Grav 1=686 (LC	athing directly applie cept end verticals. applied or 10-0-0 oc 4=0-1-8 11) : 8), 4=-72 (LC 12) : 19), 4=-771 (LC 19)	3-06-00 tall 1 chord and ar Bearings are capacity of 5 565 psi. 8) Bearing at jo using ANSI/ designer sho 9) Provide mec bearing plate 10) Provide mec bearing plate 1 and 72 lb o	by 2-00-00 wide will fit bet ny other members. e assumed to be: Joint 1 S 565 psi, Joint 4 SP No.3 cr bint(s) 4 considers parallel TPI 1 angle to grain formu- buld verify capacity of bea chanical connection (by ot e at joint(s) 4. chanical connection (by ot e capable of withstanding uplift at joint 4.	ween the bottom P SS crushing ushing capacity to grain value la. Building ring surface. hers) of truss to hers) of truss to 52 lb uplift at joir	of nt					
FORCES FOP CHORD 30T CHORD WEBS NOTES 1) Wind: ASC Vasd=91m II; Exp 8; II cantilever right expos DOL=1.15 snow); Ps: DOL=1.00 Unobstruc 3) Roof desig slope. 4) Unbalance design. 5) This truss chord live	(lb) - Maximum Com Tension 1-2=-1406/118, 2-3= 1-5=-116/1333, 4-5= 2-5=-18/681, 2-4=-14 CE 7-10; Vult=115mph nph; TCDL=6.0psf; BCI Enclosed; MWFRS (en left and right exposed sed; Lumber DOL=1.60 CE 7-10; Pr=20.0 psf (I Plate DOL=1.00); Pf= =18.7 psf (roof snow: L); Category II; Exp B; F ted slippery surface in snow load has been ed snow loads have be has been designed for load nonconcurrent with	pression/Maximum 36/24, 3-4=-124/27 116/1333 401/137 (3-second gust) DL=6.0psf; h=30ft; C vvelope) exterior zone ; end vertical left and 0 plate grip DOL=1.3 roof live load: Lumbe 20.0 psf (flat roof - umber DOL=1.15 Pl - ully Exp.; Ct=1.10; n reduced to account then considered for thi - a 10.0 psf bottom th any other live load	 11) This truss is International R802.10.2 a 12) Hanger(s) oi provided suf Ib down and Ib down and Ib up at 6-2: at. such connec (at. such connec (at.	designed in accordance v Residential Code section nd referenced standard A r other connection device(ficient to support concentr 35 lb up at 4-2-4, and 36 4 on bottom chord. The d tion device(s) is the respo (CASE(S) section, loads a are noted as front (F) or b Standard ow (balanced): Lumber In .00 ads (lb/ft) i=-57, 4-6=-20 ed Loads (lb) 453 (B), 11=-361 (B)	vith the 2015 s R502.11.1 and NSI/TPI 1. s) shall be ated load(s) 453 1 lb down and 4(lesign/selection insibility of other: or (B). crease=1.15, Pla	t 0 of s. se			SEA 0363	L 22 ILBERT	

- chord live load nonconcurrent with any other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

June 5,2024

Job	Truss	Truss Type	Qty	Ply	628 ELV C EP B2	
ELV C EP B2	M02	Monopitch	9	1	Job Reference (optional)	166014036

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue Jun 04 10:59:38 ID:t5ir7zClO2VZLeOq_Hswnz9hSu-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:26

Plate Offsets (X, Y): [1:0-4-0,Edge], [1:0-0-8,Edge]

Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL LUMBER	(psf) 20.0 18.7/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015/TPI: 6) * Th	2014 CSI TC BC WB Matrix-MP	0.70 0.55 0.00 ned for a liv	DEFL Vert(LL) Vert(CT) Horz(CT) e load of 20.	in -0.10 -0.21 0.01 0psf	(loc) 3-8 3-8 1	l/defl >966 >451 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 28 lb	GRIP 244/190 FT = 20%
TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left: 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 1=0-3-0, 3 Max Horiz 1=63 (LC Max Uplift 1=-24 (LC Max Grav 1=365 (LC	athing directly applie cept end verticals. applied or 10-0-0 oc 3=0-1-8 15) 12), 3=-25 (LC 16) 2 2), 3=279 (LC 23)	ed or 565 cho ed or 8) Bea set or 665 8) Bea set usir des 9) Pro bea 10) Pro bea 10 ar	the bottom chord in all ai 6-00 tall by 2-00-00 wide ord and any other member arings are assumed to be vacity of 565 psi, Joint 3 5 psi. aring at joint(s) 3 conside ng ANSI/TPI 1 angle to g igner should verify capa vide mechanical connec aring plate at joint(s) 3. wide mechanical connec aring plate capable of wit nd 25 lb uplift at joint 3.	reas where e will fit betw ers. 2: Joint 1 SF SP No.3 cru ers parallel t grain formula city of beari tion (by oth tion (by oth hstanding 2	a rectangle veen the bott No.2 crush ushing capac o grain value a. Building ng surface. ers) of truss ers) of truss 4 lb uplift at	to to to joint					
FORCES TOP CHORD BOT CHORD	(Ib) - Maximum Com Tension 1-2=-89/45, 2-3=-19 1-3=-91/109	pression/Maximum 0/87	11) This Inte R80 LOAD (s truss is designed in acc ernational Residential Co 02.10.2 and referenced s CASE(S) Standard	cordance w de sections standard AN	ith the 2015 R502.11.1 a ISI/TPI 1.	and					
 Wind: ASi Vasd=91r II; Exp B; and C-C E exposed; members Lumber D TCLL: AS DOL=1.00 Unobstruc Roof desi slope. Unbalancc design 	CE 7-10; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er Exterior (2) zone; cantil end vertical left and rig and forces & MWFRS OL=1.60 plate grip DO CE 7-10; Pr=20.0 psf (5 Plate DOL=1.00); Pf= =18.7 psf (roof snow: L 0); Category II; Exp 8; f icted slippery surface gn snow loads have be	(3-second gust) DL=6.0psf; h=30ft; C ivelope) exterior zon ever left and right ght exposed;C-C for for reactions shown; L=1.33 roof live load: Lumbe :20.0 psf (flat roof .umber DOL=1.15 P Fully Exp.; Ct=1.10; in reduced to account een considered for th	Cat. e er late for						N. 11111111	The second secon	SEA 0363	L 22 EER. KIN

- snow); Ps=18.7 psf (roof snow: Lumber DOL=1.15 Plate DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.10; Unobstructed slippery surface 3) Roof design snow load has been reduced to account for
- slope
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

G

minim

June 5,2024

Job	Truss	Truss Type	Qty	Ply	628 ELV C EP B2	
ELV C EP B2	T01	Half Hip	1	1	Job Reference (optional)	166014037

1-9-14

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue Jun 04 10:59:39 ID:Tc7QmB_W40iLedsJH8y53Uz9hRt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:25

Plate Offsets (X, Y): [1:0-4-0,Edge], [1:0-0-8,Edge]

Lumber DOL=1.60 plate grip DOL=1.33

** TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber

Roof design snow load has been reduced to account for

DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof snow); Ps= varies (min. roof snow=18.7 psf Lumber DOL=1.15 Plate DOL=1.00) see load cases; Category II; Exp B; Fully Exp.; Ct=1.10; Unobstructed slippery

2)

3)

surface

slope.

Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 18.7/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MP	0.34 0.34 0.16	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.02 -0.04 0.00	(loc) 5-10 5-10 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 32 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left: 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing.	athing directly applie cept end verticals, ar -0 max.): 2-3. applied or 10-0-0 oc	4) 5) 6) 7) d or nd : 8)	Unbalanced design. Provide adec This truss ha chord live loa * This truss f on the bottor 3-06-00 tall b chord and ar Bearings are capacity of 5 565 pci	snow loads have l quate drainage to is been designed to ad nonconcurrent has been designed n chord in all area yo 2-00-00 wide w yo other members. assumed to be: J 65 psi, Joint 4 SP	been cor for a 10.0 with any d for a liv s where ill fit betv No.3 cru	vater pondin.) psf bottom other live loa e load of 20.1 a rectangle veen the bott ² No.2 crushi shing capac	his g. ads. Opsf tom ing ity of					
REACTIONS	(size) 1=0-3-0, 4 Max Horiz 1=48 (LC Max Uplift 1=-26 (LC Max Grav 1=478 (LC (lb) - Maximum Com Tension	I=0-1-8 15) : 12), 4=-23 (LC 12) C 36), 4=263 (LC 35) pression/Maximum	9) 10) 11)	Bearing at jo using ANSI/I designer sho Provide mec bearing plate	int(s) 4 considers PI 1 angle to grain ould verify capacity hanical connection at joint(s) 4. hanical connection	parallel t n formula / of beari n (by oth	o grain value a. Building ng surface. ers) of truss t ers) of truss t	e to					
TOP CHORD BOT CHORD WEBS NOTES 1) Wind: ASC Vasd=91m II; Exp B; I and C-C E exposed ; members a	1-2=-358/68, 2-3=-2 1-5=-83/306, 4-5=-2 2-5=-109/69, 3-5=-8 CE 7-10; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (en end vertical left and rig and forces & MWFRS	96/74, 3-4=-289/83 1/23 3/393 (3-second gust) DL=6.0psf; h=30ft; C velope) exterior zon ever left and right ght exposed;C-C for for reactions shown;	12; cat. 13; e LO 1)	bearing plate 1 and 23 lb u This truss is International R802.10.2 ar Graphical pu or the orienta bottom chorce AD CASE(S) Dead + Sno	capable of withst uplift at joint 4. designed in accor Residential Code nd referenced star rlin representatior ation of the purlin a f. Standard wy (balanced): Lui	dance w sections ndard AN n does no along the	th the 2015 R502.11.1 a ISI/TPI 1. to depict the stop and/or rease=1.15,	joint and size Plate		4		OR THESS	ROUNT

- Dead + Snow (balanced): Lumber Increase=1.15, Plate 1) Increase=1.00
 - Uniform Loads (lb/ft) Vert: 1-2=-57, 2-3=-60, 4-6=-20

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	628 ELV C EP B2	
ELV C EP B2	T02	Half Hip	1	1	Job Reference (optional)	166014038

6-1-8

6-1-8

Builders FirstSource (Apex, NC), Apex, NC - 27523,

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue Jun 04 10:59:39 ID:iWbYyqUAz6PIcAeFqJCFMez9hSX-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

9-9-8

3-8-0

1-10-8

7J4zJC?f

Scale = 1:24.3

Plate Offsets (X, Y): [1:0-4-0,Edge], [1:0-0-8,Edge]

and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for

Lumber DOL=1.60 plate grip DOL=1.33

3)

surface

members and forces & MWFRS for reactions shown;

** TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof snow); Ps= varies (min. roof snow=18.7 psf Lumber DOL=1.15 Plate DOL=1.00) see load cases; Category II; Exp B; Fully Exp.; Ct=1.10; Unobstructed slippery

Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 18.7/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MS	0.31 0.30 0.23	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.03 -0.04 0.00	(loc) 5-10 5-10 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 40 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left: 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex 2-0-0 oc purlins (6-0	athing directly applie cept end verticals, ar- 0 max.): 2-3.	4) 5) 6) 7) ed or nd 8)	Roof design slope. Unbalanced design. Provide adeo This truss ha chord live loa * This truss h on the bottor	snow load has b snow loads have quate drainage to is been designed ad nonconcurren nas been designe n chord in all are	een reduc e been cor o prevent v I for a 10.0 t with any ed for a liv as where	ed to accour isidered for the vater ponding) psf bottom other live loa e load of 20.0 a rectangle	nt for his g. nds. Opsf					
BOT CHORD	Rigid ceiling directly bracing. (size) 1=0-3-0, 4 Max Horiz 1=50 (LC Max Uplift 1=-32 (LC Max Grav 1=550 (LC	applied or 10-0-0 or 4= Mechanical 15) 2 12), 4=-28 (LC 12) 2 35), 4=381 (LC 34)	9) 10 11	3-06-00 tall b chord and ar Bearings are capacity of 5) Refer to gird) Provide mec bearing plate	by 2-00-00 wide way other members assumed to be: 65 psi. er(s) for truss to hanical connection capable of withs	will fit betw s. Joint 1 SF truss conr on (by oth standing 2	veen the bott P No.2 crushi nections. ers) of truss t 8 lb uplift at j	om ing to joint					
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASC Vasd=91n II: Exp B: I	(lb) - Maximum Com Tension 1-2=-577/109, 2-3=- 1-5=-127/519, 4-5=- 2-5=-115/87, 3-5=-1 ed roof live loads have n. CE 7-10; Vult=115mph nph; TCDL=6.0psf; BC Enclosed: MWERS (er	pression/Maximum 508/112, 3-4=-347/9 20/42 09/549 been considered for (3-second gust) DL=6.0psf; h=30ff; C welope) exterior zon	12 11 13 13 13 13 13 13 10 12 12 12 12	4 and 32 lb u) This truss is International R802.10.2 ai) Graphical pu or the orienta bottom chore DAD CASE(S) Dead + Sno Increase=1 Uniform Lo	uplift at joint 1. designed in acco Residential Cod and referenced star rlin representation ation of the purlin J. Standard ow (balanced): Lu .00 ads (lb/ft)	ordance wi e sections andard AN on does no a along the umber Incl	ith the 2015 R502.11.1 a ISI/TPI 1. of depict the s top and/or rease=1.15, I	and size Plate		l	I MAN	ORTH CA	ROUTIN

Vert: 1-2=-57, 2-3=-60, 4-6=-20

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	628 ELV C EP B2	
ELV C EP B2	Т03	Half Hip	1	1	Job Reference (optional)	166014039

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue Jun 04 10:59:39 ID:xX9NPjoUr5hckAdFLngLP6z9hS7-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Pa

Scale = 1:24.7

Plate Offsets (X, Y): [1:0-4-0,Edge], [1:0-0-8,Edge]

Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 18.7/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MP	0.28 0.28 0.16	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.02 -0.03 0.00	(loc) 5-10 5-10 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 32 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left: 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex 2-0-0 oc purlins (6-0	athing directly applic cept end verticals, a -0 max.): 2-3.	4) 5) 6) 7) ed or nd 8)	Roof design slope. Unbalanced design. Provide aded This truss ha chord live loa * This truss h on the bottor	snow load has bee snow loads have b quate drainage to p is been designed fo ad nonconcurrent w has been designed n chord in all areas w 2 000 wide wit	n reduc een cor revent or a 10.1 vith any for a liv s where	ed to accour nsidered for t water pondin 0 psf bottom other live loa re load of 20.1 a rectangle	nt for his g. ads. Opsf					
BOT CHORD REACTIONS FORCES	Rigid ceiling directly bracing. (size) 1=0-3-0, 4 Max Horiz 1=46 (LC Max Uplift 1=-26 (LC Max Grav 1=473 (LC (lb) - Maximum Com Tension	applied or 10-0-0 od 4=0-1-8 15) 2 12), 4=-23 (LC 12) C 36), 4=277 (LC 35 pression/Maximum	9) 10)	chord and ar Bearings are capacity of 5 565 psi. Bearing at jo using ANSI/ designer sho	y 2-00-00 wide will by other members. assumed to be: Jo 65 psi, Joint 4 SP I int(s) 4 considers p IFI 1 angle to grain build verify capacity hanical connection	bint 1 Sl No.3 cru barallel t formul of bear	P No.2 crushi ushing capac to grain value a. Building ing surface.	ing ity of					
TOP CHORD BOT CHORD WEBS NOTES 1) Unbaland this desig 2) Wind: AS Vasd=91	ed roof live loads have n. CE 7-10; Vult=115mph mbh; TCDI =6 0nsf; BC	16/79, 3-4=-269/82 0/21 /384 been considered for (3-second gust) DI =6 0nsf: h=30ff: (12) r 13) Cat 14)	bearing plate Provide mec bearing plate 1 and 23 lb u This truss is International R802.10.2 au Graphical pu	a ti joint(s) 4. hanical connection capable of withsta uplift at joint 4. designed in accorc Residential Code s nd referenced stan rlin representation	(by oth inding 2 lance w sections dard AN does no	ers) of truss 26 lb uplift at 3 R502.11.1 a VSI/TPI 1. 5 depict the s	to joint and size			ALL	OLTESS	ROLIN

- Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- ** TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof snow); Ps= varies (min. roof snow=18.7 psf Lumber DOL=1.15 Plate DOL=1.00) see load cases; Category II; Exp B; Fully Exp.; Ct=1.10; Unobstructed slippery surface
- 14) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- LOAD CASE(S) Standard
- Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.00 Uniform Loads (lb/ft)
 - Vert: 1-2=-57, 2-3=-60, 4-6=-20

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	628 ELV C EP B2	
ELV C EP B2	Т04	Half Hip	1	1	Job Reference (optional)	166014040

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue Jun 04 10:59:39 ID:95_MIIGpm4gd?eQqPcuZmKz9hU6-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

> 3-9-8 3-9-8

Ŕ 3x4 = 1-1-8 1-1-8

0-4-2

1-3-8 1-3-0

ő

9-0-8

1-3-8

Scale = 1:25.1

Plate Offsets (X, Y): [1:0-4-0,Edge], [1:0-0-8,Edge]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.00	TC	0.08	Vert(LL)	0.00	3-8	>999	240	MT20	244/190
Snow (Ps/Pf)	18.7/20.0	Lumber DOL	1.15	BC	0.07	Vert(CT)	-0.01	3-8	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	2	n/a	n/a		
BCLL	0.0*	Code	IRC2015/TPI201	4 Matrix-MP								
BCDL	10.0										Weight: 14 lb	FT = 20%
			6) This tru	iss has been designed	d for a 10.	0 psf bottom						
TOP CHORD	2x4 SP No.2		chord I	ve load nonconcurren	nt with any	other live loa	ads.					
BOT CHORD	2x4 SP No.2		7) * This 1	russ has been design	ed for a liv	e load of 20.	0psf					
WEDGE	Left: 2x4 SP No.3		on the	bottom chord in all are	eas where	a rectangle						
BRACING			3-06-0) tall by 2-00-00 wide	will fit betw	veen the bott	om					
TOP CHORD	Structural wood she	athing directly applie	ed or chord a	ind any other member	rs.							
	4-1-8 oc purlins.		8) Bearin	is are assumed to be:	:, Joint 1 S	SP No.2 crus	hing					
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 o	c capaci	y ui obo psi. o girder(s) for truce to	o truce con	nections						
	bracing.		10) Provide	mechanical connecti	ion (by oth	ers) of truss	to					
REACTIONS	(size) 1=0-3-0, 2	2= Mechanical, 3=	bearing	plate capable of with	nstanding 1	9 lb uplift at	ioint					
	Mechanic	al	2 and	2 lb uplift at joint 1.	5							
	Max Horiz 1=31 (LC	12)	11) This tru	iss is designed in acc	ordance w	ith the 2015						
	Max Opint $1=-12$ (LC	2), Z=-19 (LC 12)	2_45 Interna	tional Residential Coc	de sections	s R502.11.1 a	and					
	(LC 7)	5 2), 2=05 (LC 22), (R802.1	0.2 and referenced st	tandard AN	ISI/TPI 1.						
FORCES	(lb) - Maximum Com	pression/Maximum	LOAD CAS	E(S) Standard								
	Tension											
TOP CHORD	1-2=-14/14											
BOT CHORD	1-3=-22/8											
NOTES												
1) Wind: AS	CE 7-10; Vult=115mph	(3-second gust)									minin	UUI,
Vasd=91n	nph; TCDL=6.0psf; BC	DL=6.0pst; h=30tt; (Cat.								W'TH CA	Rolly
II; EXP B;	Enclosed; IVIVERS (ef	ivelope) exterior zor	le							1.	R	Ling
exposed .	end vertical left and rid	aht exposed C-C for								5.	FEST	ON: Kiz
members	and forces & MWFRS	for reactions shown	:						Z	Le la		n n
Lumber D	OL=1.60 plate grip DO)L=1.33	,						-		Q.	N 1
2) TCLL: AS	CE 7-10; Pr=20.0 psf (roof live load: Lumb	er						-	:	SEA	1 : =
DOL=1.15	5 Plate DOL=1.00); Pf=	=20.0 psf (flat roof							=		002/	
snow); Ps	=18.7 psf (roof snow: l	Lumber DOL=1.15 F	Plate						-		0363	22 : :
DOL=1.00)); Category II; Exp B; I	Fully Exp.; Ct=1.10;										1
3) Roof doci	neu silppery surface	reduced to accourt	t for							5	·	airs
	yn snow ioau nas beel	r reduced to accoun								2.5	NGIN	EERA
 Unbalance 	ed snow loads have be	en considered for th	nis							11	710	DELIN
design.											11. A. C	ILP III
5) Provide ad	dequate drainage to pr	event water ponding	g.								in nu	11111
											Ju	ne 5,2024
											• • • •	,—

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

4-1-8

3-0-0

3

Job	Truss	Truss Type	Qty	Ply	628 ELV C EP B2	
ELV C EP B2	T05	Half Hip	2	1	Job Reference (optional)	166014041

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue Jun 04 10:59:39 ID:2gp9I5wJp_cq557P8fNSUxz9hTF-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:26.4

Plate Offsets (X, Y): [2:0-5-12,0-2-8]

Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 18.7/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015/	TPI2014	CSI TC BC WB Matrix-MP	0.12 0.11 0.01	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 4-5 4-5 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 13 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design embers 1) Unbalance this design members 1) Unbalance this design the this design the	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 3-11-0 oc purlins, er 2-0-0 oc purlins; 2-3. Rigid ceiling directly bracing. (size) 4= Mecha Max Horiz 6=17 (LC Max Uplift 4=-10 (LC Max Grav 4=118 (LC (lb) - Maximum Com Tension 1-2=-29/48, 2-3=-8/8 1-6=-30/22, 5-6=-11/ 2-5=-70/23 ed roof live loads have b. CE 7-10; Vult=115mph nph; TCDL=6.0psf; BCI Enclosed; MWFRS (en Exterior (2) zone; cantill end vertical left and rig and forces & MWFRS (en Exterior (2) zone; cantill end vertical left and rig SCE 7-10; Pr=20.0 ps 5 Plate DOL=1.00); Pf= = varies (min. roof snor 5 Plate DOL=1.00) see Ily Exp.; Ct=1.10; Unob gn snow load has been	athing directly applied xcept end verticals, ar applied or 10-0-0 oc nical, 6=0-3-0 15) 13), 6=-39 (LC 12) 234), 6=268 (LC 35) pression/Maximum 3, 3-4=-82/33 18, 4-5=-8/8 been considered for (3-second gust) DL=6.0psf; h=30ft; Cz velope) exterior zone ever left and right pht exposed;C-C for for reactions shown; L=1.33 f (roof live load: Lumber load cases; Category sstructed slippery reduced to account f	5) 6) 7) 1 or 8) 10) 10) 11) 12) 13) LOA 1) at. ber 11; for	Unbalanced s design. Provide adeq This truss ha chord live loa * This truss h on the bottom 3-06-00 tall b chord and an Bearings are capacity of 50 Refer to girde Provide mect bearing plate dand 39 lb u This truss is of International R802.10.2 ar Graphical pun or the orienta bottom chord AD CASE(S) Dead + Sno Increase=1. Uniform Loa Vert: 1-2=	snow loads have b juate drainage to p s been designed for di nonconcurrent w ias been designed n chord in all areas y 2-00-00 wide will y other members. assumed to be: Jo 65 psi. er(s) for truss to tru- nanical connection capable of withsta plift at joint 6. designed in accord Residential Code s nd referenced stand- rlin representation tion of the purlin al Standard w (balanced): Lum 00 ads (lb/ft) =-57, 2-3=-60, 4-7=	een cor revent v or a 10.0 for a liv where fit betw int 6 SF uss con (by oth nding 1 ance w sections dard AN does no ong the ber Inc	Asidered for the water ponding 0 psf bottom other live load e load of 20.0 a rectangle veen the botto P No.2 crushin nections. ers) of truss to 0 lb uplift at jo ith the 2015 R502.11.1 a ISI/TPI 1. ot depict the s to p and/or rease=1.15, F	nis J. ds. Jpsf om ng ooint nd ize		Manufacture .		SEA 0363	ROLL 22 E.B.E.R.	

- 3) DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof snow); Ps= varies (min. roof snow=18.7 psf Lumber DOL=1.15 Plate DOL=1.00) see load cases; Category II; Exp B; Fully Exp.; Ct=1.10; Unobstructed slippery surface
- 4) Roof design snow load has been reduced to account for slope.

1111111

June 5,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	628 ELV C EP B2	
ELV C EP B2	TG01	Half Hip Girder	2	1	Job Reference (optional)	166014042

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue Jun 04 10:59:39 ID:xLlf69PTrm6NL?12r_4lztz9hRK-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:23.3

Plate Offsets (X, Y): [1:0-4-0,Edge], [1:0-0-8,Edge]

Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 18.7/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 NO IRC2015/T	PI2014	CSI TC BC WB Matrix-MP	0.90 0.18 0.22	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.02 0.00	(loc) 4-5 4-5 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 33 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD	2x4 SP No.2 *Excep 2x4 SP No.2 2x4 SP No.3 Left: 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex 2-0-0 oc purlins (4-5	t* 2-3:2x4 SP No.3 athing directly applie cept end verticals, at -7 max.): 2-3.	5) L 6) F 7) T 8) * d or o nd 3	Inbalanced lesign. Provide adeo his truss ha hord live loa This truss h n the bottor I-06-00 tall b hord and ar	snow loads have quate drainage to is been designed ad nonconcurrent has been designed n chord in all area by 2-00-00 wide w by other members	been cor prevent for a 10.0 with any d for a liv as where vill fit betv s.	asidered for t water pondin) psf bottom other live loa e load of 20.0 a rectangle veen the bott	his g. ads. Opsf com	Ur Co	hiform Lo Vert: 1-2 oncentra Vert: 2= 14=-12	bads (II 2=-57, ted Loa -2 (F), (F)	o/ft) 2-3=-60, 4-6=-2(ads (lb) 5=-12 (F), 10=-9	8 (F), 13=-2 (F),	
BOT CHORD	Rigid ceiling directly bracing. (size) 1=0-3-0, 4 Max Horiz 1=32 (LC Max Uplift 1=-43 (LC Max Grav 1=531 (LC	applied or 10-0-0 oc 4=0-1-8 11) 2 8), 4=-21 (LC 8) 2 32), 4=363 (LC 31)	; 9) E c 5 10) E u d 11) F	Bearings are apacity of 5 65 psi. Bearing at jo Ising ANSI/7 lesigner sho Provide mec	assumed to be: 65 psi, Joint 4 SP int(s) 4 considers PI 1 angle to grai uld verify capacity hanical connectio	Joint 1 SI PNo.3 cru parallel t in formula y of bear on (by oth	² No.2 crushi ishing capac o grain value a. Building ng surface. ers) of truss	ing ity of e to						
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalancı this desig 2) Wind: AS(Vasd=91n II; Exp B; cantilever richt avpo	(ib) - Maximum Com Tension 1-2=-555/34, 2-3=-5 1-5=-34/530, 4-5=-1 2-5=-67/47, 3-5=-24 ed roof live loads have n. CE 7-10; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed ed: Lumber DOL=16	pression/Maximum 20/32, 3-4=-321/41 1/8 /539 been considered for (3-second gust) DL=6.0psf; h=30ft; C ivelope) exterior zon ; end vertical left and 0 plate art DQL = 12	b 12) F 4 13) T 13) T 14) C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	earing plate Provide mec bearing plate 4 and 43 lb u his truss is International 802.10.2 an Graphical pu or the orient ottom chorc Hanger(s) or rovided suff lown and 16	e at joint(s) 4. hanical connectio capable of withsi plift at joint 1. designed in accor Residential Code nd referenced staa flin representation ation of the purlin 1. other connection ficient to support of lb up at 3-11-0.	n (by oth tanding 2 rdance w e sections ndard AN n does no along the device(s concentra and 38 lk	ers) of truss i 1 lb uplift at j ith the 2015 R502.11.1 a ISI/TPI 1. ot depict the s to p and/or) shall be tted load(s) 3 down and 1	to joint and size 38 lb 2 lb			A.	ORTH CA	ROLIN	1
3) ** TCLL: A DOL=1.15 snow); Ps DOL=1.15 Exp B; Fu surface 4) Roof desid	sed; Lumber DOL=1.0 ASCE 7-10; Pr=20.0 ps 5 Plate DOL=1.00); Pf= = varies (min. roof sno 5 Plate DOL=1.00) see Ily Exp.; Ct=1.10; Unol an snow load has beer	o plate grip DOL=1.3 sf (roof live load: Lun 20.0 psf (flat roof w=18.7 psf Lumber load cases; Categor pstructed slippery	ss u nber u 6 yll; c 16)li o for LOAI	up at 6-0-4 c tt 2-0-4, and connection d n the LOAD of the truss a D CASE(S)	an top chord, and d 12 lb down at 4 om chord. The d evice(s) is the res CASE(S) section are noted as front Standard	98 lb dov -0-4, and esign/sel sponsibili , loads a (F) or ba	vn and 22 lb 12 lb down a ection of suc ty of others. oplied to the ck (B).	up at h face		111111		0363	EERER IIII	ann

Dead + Snow (balanced): Lumber Increase=1.15, Plate

- 3) ** TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof snow); Ps= varies (min. roof snow=18.7 psf Lumber DOL=1.15 Plate DOL=1.00) see load cases; Category II; Exp B; Fully Exp.; Ct=1.10; Unobstructed slippery surface
- 4) Roof design snow load has been reduced to account for slope.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Increase=1.00

1)

G

11111111

June 5,2024

Job	Truss	Truss Type	Qty	Ply	628 ELV C EP B2	
ELV C EP B2	TG02	Half Hip Girder	1	1	Job Reference (optional)	166014043

4-1-8

Builders FirstSource (Apex, NC), Apex, NC - 27523,

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue Jun 04 10:59:39 ID:LZofu7Q19an?WPmH1mc4faz9hSc-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

9-9-8

6-11-8

1-1-8	4-3-4	6-11-8	9-9-8
1-1-8	3-1-12	2-8-4	2-10-0

Scale = 1:24.1

1-4-8

Plate Offsets (X, Y): [1:0-4-0.Edge]. [1:0-0-8.Edge]

	(, .). [[
Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDI	(psf) 20.0 18.7/20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 NO IRC2015	5/TPI2014	CSI TC BC WB Matrix-MS	0.34 0.33 0.20	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.02 -0.04 0.01	(loc) 6-7 6-7 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190	
LUMBER TOP CHORD BOT CHORD WEBS	2x4 SP No.2 *Excep 2x4 SP No.2 2x4 SP No.3	1 ot* 2-4:2x4 SP No.3	4) 5)	Roof design slope. Unbalanced design.	I snow load has bee snow loads have b	n reduc	ed to accour nsidered for th	t for nis	Co	ncentra Vert: 2= 16=-15	ted Loa -7 (F), (F), 17	ads (lb) 13=-5 (F), 14=-5 =-15 (F)	(F), 15=-15 (F),	
WEDGE BRACING TOP CHORD	Left: 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex 2-0-0 oc purlins (5-1	athing directly applie cept end verticals, a 1-14 max.): 2-4.	6) 7) ed or nd 8)	This truss ha chord live loa * This truss h on the bottor	us been designed for ad nonconcurrent w has been designed n chord in all areas	or a 10. with any for a liv where	other live loa e load of 20.0 a rectangle	g. .ds. Opsf						
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 oc	; 9)	3-06-00 tall t chord and ar Bearings are	by 2-00-00 wide will by other members. assumed to be: Jo	fit betw	veen the bott	om na						
REACTIONS	(size) 1=0-3-0, 5 Max Horiz 1=34 (LC Max Uplift 1=-29 (LC Max Grav 1=535 (LC	5= Mechanical 11) C 8), 5=-23 (LC 8) C 31), 5=473 (LC 30)	10 11	capacity of 5 Refer to gird Provide mec	65 psi. er(s) for truss to tru hanical connection	ss conr (by oth	nections. ers) of truss t	:0 oint						
FORCES	(lb) - Maximum Com Tension 1-2=-771/47, 2-3=-7 4-5=-115/21	npression/Maximum 42/46, 3-4=-49/10,	12	5 and 29 lb u) This truss is International	iplift at joint 1. designed in accord Residential Code s	ance w	ith the 2015 R502.11.1 a	ind						
BOT CHORD WEBS	1-7=-40/734, 6-7=-4 2-7=0/81, 3-7=-103/ 3-5=-851/41	4/838, 5-6=-44/838 39, 3-6=0/121,	13) Graphical pu or the orienta bottom chore	rlin representation ation of the purlin al	does no ong the	ot depict the set top and/or	size				WH CA	ROUL	
NOTES 1) Unbalance this design 2) Wind: AS(Vasd=91n II; Exp B; cantilever right expo	ed roof live loads have n. CE 7-10; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6	been considered for (3-second gust) DL=6.0psf; h=30ft; (velope) exterior zon ; end vertical left and 0 plate grip DOL=1.3	Cat. e; d 33	Hanger(s) or provided suff down and 17 up at 5-10-4 top chord, ar 5-10-4, and design/selec responsibility	other connection d ficient to support co / Ib up at 4-1-8, and , and 33 Ib down at dd 16 Ib down at 7-10- tion of such connect / of others.	levice(s incentra d 33 lb nd 17 lt 10-4, a -4 on b ction de) snall be ated load(s) 3 down and 17 o up at 7-10 nd 16 lb dow ottom chord. vice(s) is the	0 lb lb 4 on n at The		Within		SEA 0363	L 22	Monut

3) ** TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof snow); Ps= varies (min. roof snow=18.7 psf Lumber DOL=1.15 Plate DOL=1.00) see load cases; Category II; Exp B; Fully Exp.; Ct=1.10; Unobstructed slippery surface

Vert: 1-2=-57, 2-4=-60, 5-8=-20

SEAL 036322 A. GILBER June 5,2024

Page: 1

I-4-8

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).
 LOAD CASE(S) Standard

Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.00 Uniform Loads (lb/ft)

Job	Truss	Truss Type	Qty	Ply	628 ELV C EP B2	
ELV C EP B2	V01	Valley	1	1	Job Reference (optional)	l66014044

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue Jun 04 10:59:39 ID:E0Zd81oG80YGhiU5ulFJBDzIBZ6-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

22-10-0

Loading TCLL (roof)(psf) 20.0Spacing Plate Grip DOL2-0-0 1.00CSI TCDEFLin(loc)I/deftL/d MT20PLATES RIPSnow (Ps/Pf)10.1/20.010.01.15BC0.16Vert(LL)n/a-n/a999TCDL10.01.00Rep Stress IncrYESWB0.18Vert(TL)n/a-n/a999BCDL10.00.0*CodeIRC2015/TPI2014WB0.18Vert(TL)0.017n/an/aLUMBER TOP CHORD2x4 SP No.220Wind: ASCE 7-10; Vult=115mph (3-second gust)Vasd=91mph; TCDL=6.0psf; h=30ft; Cat.Vasd=91mph; TCDL=6.0psf; h=30ft; Cat.Weight: 114 lbFT = 20%LUMBER TOP CHORD2x4 SP No.220Wind: ASCE 7-10; Vult=115mph (3-second gust)Vasd=91mph; TCDL=6.0psf; h=30ft; Cat.UI; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed; c-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33BOT CHORDRigid ceiling directly applied or 6-0-0 oc purlins.30Trus designed for wind loads in the plane of the truss only. For stude seposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TP1 1.REACTIONS(size)1=22-10-0; 7=22-10-0; 8=22-10-0; TCU L ASCE 7 10: Dre 70 on perf (red) or for merfTCU L ASCE 7 10: Dre 70 on perf (red) or for merf	Scale = 1:64.2		F==					•							
LUMBER2)Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed; c-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33BOT CHORDStructural wood sheathing directly applied or 6-0-0 oc purlins.and C-C Exterior (2) zone; cantilever left and right exposed; c-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33BOT CHORDRigid ceiling directly applied or 6-0-0 oc bracing.3)WEBS1 Row at midpt 1 Row at midpt4-10REACTIONS(size)1=22-10-0, 7=22-10-0, 8=22-10-0, 8=22-10-0, 7=22-10-0, 8=22-10-0,3)	Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 10.1/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MS	0.21 0.16 0.18	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(loc) - - 7	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 114 lb	GRIP 244/190 FT = 20%	
 9=22-10-0, 10=22-10-0, 11=22-10-0, 11=22-10-0, 11=22-10-0, 13=22-10-0, 13=22-10-0, 13=22-10-0, 13=22-10-0, 13=252-10-0, 13=252-10-0, 13=252 (LC 15), 11=-123 (LC 14) Max Uplift 1=-33 (LC 10), 8=-90 (LC 15), 11=-123 (LC 14), 9=-124 (LC 26), 9=472 (LC 26), 9=472 (LC 26), 9=472 (LC 26), 9=472 (LC 26), 10=421 (LC 26), 11=471 (LC 25), 13=356 (LC 25) FORCES (b) · Maximum Compression/Maximum Tension TOP CHORD 1-2=-181/165, 2-3=-138/131, 3-4=-137/160, 4-5=-137/152, 5-6=-94/88, 6-7=-155/120 BOT CHORD 1-12=-102/143, 1-4=-137/160, 4-5=-135/120 BOT CHORD 1-12=-102/143, 1-4=-137/160, 8-9=-208/133 WEBS 4-10=-219/0, 3-11=-278/173, 2-13=-237/135, 5-9=-278/173, 6-8=-236/133 WTES 10 Unbalanced roof live loads have been considered for this design. ANOTES 10 Unbalanced roof live loads have been considered for this design. Column Compression/Maximum Tension COL - ADC CASE(S) Standard COL - ADC CASE(S) Standard 	LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Unbalance this design	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. 1 Row at midpt (size) $1=22-10-1$ 9=22-10-1 1=22-10-1 9=22-10-1 1=22-10-1 0=22-10-1 1=22-10-1 1=22-10-1 0=22-10-1 1=22-10-1 1=22-10-1 1=2-2-10-1 1=2-2-10-1 1=2-10-1 1=2-10-1 (max Grav 1=144 (LC) 8=352 (LC) 10=421 (I 13=356 (I) (Ib) - Maximum Com Tension 1-2=-181/165, 2-3=- 4-5=-137/152, 5-6=- 1-13=-102/147, 11-7 10-11=-102/143, 7-8=- 4-10=-219/0, 3-11=- 5-9=-278/173, 6-8=- ed roof live loads have h.	eathing directly applied / applied or 6-0-0 oc 4-10 0, 7=22-10-0, 8=22-10 0, 10=22-10-0, 10=22-10, 10=22-10, 10=22-10, 10=22-10	2) d or 3) ()-0, 4) 4), 5) (6) (7) (5), 8) 9) 50, 10 135, 11 12 LC	Wind: ASCE Vasd=91mpl II; Exp B; En and C-C Ext exposed ; er members an Lumber DOL Truss desig only. For stu see Standarn or consult qu TCLL: ASCE DOL=1.15 P snow); Ps=1 DOL=1.00;; Unobstructer Roof design slope. Gable requir Gable studs This truss ha chord live loa * This truss ha chord live loa * This truss ha chord live loa * This truss for on the bottor 3-06-00 tall th chord and ar) All bearings capacity of 5) Provide mect 1, 123 lb upl uplift at joint t) This truss is International R802.10.2 a DAD CASE(S)	7-10; Vult=115m h; TCDL=6.0psf; closed; MWFRS erior (2) zone; ca d vertical left and d forces & MWFR =1.60 plate grip ned for wind load uds exposed to w d Industry Gable ualified building di 5-710; Pr=20.0 p; late DOL=1.00); 0.1 psf (roof snov Category II; Exp d slippery surface snow load has but es continuous bo spaced at 4-0-0 d as been designed n chord in all are by 2-00-00 wide v hy other members are assumed to b 165 psi. thanical connectitis e capable of wits; if at joint 11, 94 I 9 and 90 Ib upliff designed in acco Residential Codu nd referenced sta Standard	aph (3-sec BCDL=6. (envelope Aright exp RS for rea DOL=1.3: so in the p ind (norm End Deta esigner a: sf (roof liv Pf=20.0 p w: Lumbe B; Fully E een reduc thom choroc. I for a 10. t with any ed for a liv as where vill fit betts s, with BC be SP No. On (by oth standing 3 b uplift at at joint 8 ordance w e sections andard AN	cond gust) cond gust) cond gust) ops; h=30ft; (a) exterior zor fit and right cosed;C-C for ictions shown a) lane of the tru- ila to the face ils as applical s per ANSI/TFI r DOL=1.15 F xp.; Ct=1.10; ce to account of bearing. 0 psf bottom other live loa re coad; 2 crushing er load of 20.0 a rectangle veen the bottor CDL = 10.0psf 2 crushing ers) of truss t 33 lb uplift at j joint 13, 124 K502.11.1 a USI/TPI 1.	Cat. ne s; Jss J, ble, Pl 1. ver Plate t for ds. Opsf om f. so oint lb				ORTH CA ORTHESS SEA 0363	RO NRO NL 22 E.E.P. F. L.	Name of the second seco

G minim June 5,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

R802.10.2 and referenced standard ANSI/TPI 1.

Job	Truss	Truss Type	Qty	Ply	628 ELV C EP B2	
ELV C EP B2	V02	Valley	1	1	Job Reference (optional)	166014045

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue Jun 04 10:59:40 ID:iC7?LNpuvKg7Js3HSTnYjRzIBZ5-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:59

		i	-										
Loading TCLL (roof) Snow (Ps/Pf) TCDL	(psf) 20.0 10.1/20.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.00 1.15 YES		CSI TC BC WB	0.20 0.19 0.21	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 7	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCLL	0.0*	Code	IRC2015/	/TPI2014	Matrix-MS				-			Maisht OF Ih	FT 200/
	10.0								-			Weight. 95 lb	FT = 2076
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=20-0-6, 3=20-0-6, 13=20-0-6 Max Horiz 1=-158 (L Max Uplift 1=-43 (LC	athing directly applied applied or 10-0-0 oc 7=20-0-6, 8=20-0-6, 10=20-0-6, 11=20-0- 5 C 10) ; 10), 7=-5 (LC 11), 8=	2) or 3) 5, 4)	Wind: ASCE Vasd=91mph II; Exp B; End and C-C Exte exposed ; end members and Lumber DOL Truss design only. For stu see Standard or consult qu TCLL: ASCE DOL=1.15 Pl snow); Ps=11	7-10; Vult=115mp i; TCDL=6.0psf; E closed; MWFRS (irrior (2) zone; can d vertical left and d forces & MWFR =1.60 plate grip D ned for wind loads ds exposed to win H industry Gable alified building de 7-10; Pr=20.0 ps ate DOL=1.00; P 0.1 psf (roof snow	bh (3-sec CDL=6.1 envelope tilever le right exp S for rea OL=1.3 in the p ad (norm ind Deta signer a: f (roof liv f=20.0 p : Lumbe	cond gust) Dpsf; h=30ff; (a) exterior zon ff and right bosed; C-C for ctions shown; alane of the tru al to the face) ils as applicat s per ANSI/TF e load: Lumbu sf (flat roof r DOL=1.15 P	Cat. e ss , ole, 1 1. er late					
	(LC 15), 9 (LC 14), 1 Max Grav 1=109 (LC 8=276 (L 10=387 (L 13=276 (l)=-126 (LC 15), 11=-1 3=-70 (LC 14) C 26), 7=89 (LC 28), C 2), 9=424 (LC 26), LC 28), 11=423 (LC 29) C 2)	26 5) 5), 6) 7)	Unobstructed Roof design slope. Gable require Gable studs	I slippery surface snow load has be es continuous bott spaced at 4-0-0 o	en reductor tom chor	ed to account d bearing.	for					
FORCES	(lb) - Maximum Com	pression/Maximum	8)	This truss ha chord live loa	s been designed t Id nonconcurrent	or a 10.0 with any) psf bottom other live load	ds.					
TOP CHORD	1-2=-175/131, 2-3=-	164/102, 3-4=-154/14	9) 2,	* This truss h on the botton	as been designed n chord in all area	l for a liv s where	e load of 20.0 a rectangle	psf					11111
BOT CHORD	4-5=-154/136, 5-6=- 1-13=-62/122, 11-13 10-11=-62/122, 9-10 7-8=-62/122	127/62, 6-7=-141/90 8=-62/122, 9=-62/122, 8-9=-62/12	^{2,} 10)	3-06-00 tall b chord and an All bearings a capacity of 5	y 2-00-00 wide w y other members are assumed to be	ill fit betv with BC SP No.	veen the botto DL = 10.0psf. 2 crushing	m			A LA	OR FESS	ROLL
WEBS	4-10=-173/4, 3-11=- 5-9=-282/174, 6-8=-	282/174, 2-13=-217/1 215/123	^{25,} 11)	Provide mecl	nanical connection	n (by oth anding 4	ers) of truss to) bint		4	N	K /	
NOTES				1, 5 lb uplift a	at joint 7, 126 lb up	olift at joi	nt 11, 70 lb up	olift		=	1	SEA	L i i
1) Unbalance	d roof live loads have	been considered for		at joint 13, 12	26 lb uplift at joint	9 and 65	ilb uplift at joi	nt		Ξ		0363	22 : E

this design.

12) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	628 ELV C EP B2			
ELV C EP B2	V03	Valley	1	1	Job Reference (optional)	166014046		

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries. Inc. Tue Jun 04 10:59:40 ID:n_DfTBQyMVZ6OSI2IcAz9hzIBX?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

GRIP

244/190

FT = 20%

TOP CHORD	2X4 SP N	0.2
BOT CHORD	2x4 SP N	0.2
OTHERS	2x4 SP N	0.3
BRACING		
TOP CHORD	Structural	l wood sheathing directly applied or purlins.
BOT CHORD	Rigid ceili bracing.	ing directly applied or 6-0-0 oc
REACTIONS	(size)	1=17-2-13, 5=17-2-13, 6=17-2-13, 7=17-2-13, 9=17-2-13
	Max Horiz	1=-136 (LC 12)
	Max Uplift	1=-14 (LC 10), 6=-133 (LC 15), 9=-136 (LC 14)
	Max Grav	1=111 (LC 26), 5=103 (LC 30), 6=471 (LC 26), 7=484 (LC 25), 9=466 (LC 25)
FORCES	(lb) Mov	imum Compression/Maximum

- FORCES Maximum Compression/Maximum Tension TOP CHORD 1-2=-127/226, 2-3=-28/168, 3-4=-16/160, 4-5=-106/190 BOT CHORD 1-9=-147/117, 7-9=-147/113, 6-7=-147/113, 5-6=-147/113 WEBS 3-7=-324/0, 2-9=-303/174, 4-6=-302/173
- NOTES

Scale = 1:51.3 Loading

TCLL (roof)

TCDL

BCLL

BCDL

LUMBER

Snow (Ps/Pf)

- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-10; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

- DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof snow); Ps=10.1 psf (roof snow: Lumber DOL=1.15 Plate DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.10; Unobstructed slippery surface
- 5) Roof design snow load has been reduced to account for slope.
- Gable requires continuous bottom chord bearing. 6)
- Gable studs spaced at 4-0-0 oc. 7)
- This truss has been designed for a 10.0 psf bottom 8)
- chord live load nonconcurrent with any other live loads. 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 10) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 14 lb uplift at joint 1, 136 lb uplift at joint 9 and 133 lb uplift at joint 6.
- 12) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

818 Soundside Road

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type Qty Ply 628 ELV C EP B2		628 ELV C EP B2		
ELV C EP B2	V04	Valley	1	1	Job Reference (optional)	166014047

Scale = 1:43.5 Loading

TCLL (roof)

TCDL

BCLL

BCDL

LUMBER

OTHERS

BRACING

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

FORCES

WEBS

NOTES

1)

2)

3)

TOP CHORD

BOT CHORD

this design.

REACTIONS (size)

Snow (Ps/Pf)

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue Jun 04 10:59:40

Page: 1

June 5,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	628 ELV C EP B2		
ELV C EP B2	V05	Valley	1	1	Job Reference (optional)	l66014048	

5-9-13

5-9-13

Builders FirstSource (Apex, NC), Apex, NC - 27523

Scale = 1:41.1 Loading

TCLL (roof)

TCDL

BCLL

BCDL

LUMBER

OTHERS

BRACING

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

FORCES

WEBS

NOTES

1)

2)

3)

TOP CHORD

BOT CHORD

this design.

REACTIONS (size)

Snow (Ps/Pf)

4-10-7

Spacing

Code

Structural wood sheathing directly applied or

1=11-7-10, 5=11-7-10, 6=11-7-10,

1=-28 (LC 10), 5=-5 (LC 11), 6=-96

1=75 (LC 26), 5=59 (LC 25), 6=309

(LC 26), 7=236 (LC 2), 8=313 (LC

Rigid ceiling directly applied or 10-0-0 oc

7=11-7-10, 8=11-7-10

(LC 15), 8=-99 (LC 14)

(Ib) - Maximum Compression/Maximum

1-2=-98/83, 2-3=-143/85, 3-4=-140/82,

3-7=-150/0. 2-8=-263/161. 4-6=-261/160

1-8=-25/67, 7-8=-20/67, 6-7=-20/67,

Unbalanced roof live loads have been considered for

Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat.

II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right

exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown;

Truss designed for wind loads in the plane of the truss

or consult qualified building designer as per ANSI/TPI 1.

only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable,

Lumber DOL=1.60 plate grip DOL=1.33

Wind: ASCE 7-10; Vult=115mph (3-second gust)

1=-91 (LC 10)

25)

Plate Grip DOL

Rep Stress Incr

Lumber DOL

(psf)

20.0

10.0

0.0

10.0

10 1/20 0

2x4 SP No.2

2x4 SP No.2 2x4 SP No.3

6-0-0 oc purlins.

bracing.

Max Horiz

Max Uplift

Max Grav

Tension

4-5=-78/53

5-6=-21/67

4-6

0-0-4

2-0-0

1.00

1 15

YES

4)

5)

6)

7)

8)

9)

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue Jun 04 10:59:40 ID:FAn1hXRa6ohz?btEsJiChvzIBX_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4x6 =

11-3-8

5-5-11

3 2x4 u 2x4 II 12 10 Г 2 4 5 8 7 6 3x4 🍫 2x4 ı 2x4 II 2x4 🛛 3x4、 11-7-10 CSI DEFL l/defl L/d PLATES GRIP in (loc) TC 0.18 Vert(LL) n/a 999 MT20 244/190 n/a BC 0.12 Vert(TL) n/a n/a 999 WB 0.06 Horiz(TL) 0.00 5 n/a n/a IRC2015/TPI2014 Matrix-MS Weight: 48 lb FT = 20%TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof snow); Ps=10.1 psf (roof snow: Lumber DOL=1.15 Plate DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.10; Unobstructed slippery surface Roof design snow load has been reduced to account for slope. Gable requires continuous bottom chord bearing. Gable studs spaced at 4-0-0 oc. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 10) All bearings are assumed to be SP No.2 crushing capacity of 565 psi. 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 28 lb uplift at joint 1, 5 lb uplift at joint 5, 99 lb uplift at joint 8 and 96 lb

uplift at joint 6. 12) This truss is designed in accordance with the 2015

International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Page: 1

Job	Truss	Truss Type	Qty	Ply	628 ELV C EP B2				
ELV C EP B2	V06	Valley	1	1	Job Reference (optional)	166014049			

4-5-0

4-5-0

Builders FirstSource (Apex, NC), Apex, NC - 27523,

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue Jun 04 10:59:40 ID:FAn1hXRa6ohz?btEsJiChvzIBX_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

8-5-14

4-0-14

8-10-0 0-4-2

8-10-0

Scale = 1:31.8

Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 10.1/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MP	0.26 0.24 0.14	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 33 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 8-10-0 oc purlins. Rigid ceiling directly bracing. (size) 1=8-10-0, Max Horiz 1=-68 (LC Max Uplift 1=-28 (LC 4=-56 (LC Max Grav 1=60 (LC (LC 2)	athing directly applie applied or 6-0-0 oc 3=8-10-0, 4=8-10-0 10) 30), 3=-28 (LC 29), 14) 29), 3=60 (LC 30), 4	4) d or 5) 6) 7) 8) 9) =664	TCLL: ASCE DOL=1.15 P snow); Ps=1 DOL=1.00); Unobstructer Roof design slope. Gable requir Gable studs This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar	7-10; Pr=20.0 p late DOL=1.00); 0.1 psf (roof sno Category II; Exp d slippery surfac snow load has b es continuous be spaced at 4-0-0 s been designer ad nonconcurrer has been design n chord in all are by 2-00-00 wide y other membel	osf (roof liv Pf=20.0 p w: Lumbe B; Fully E e been reduc ottom chor oc. d for a 10.1 tt with any ed for a 10 twith any ed for a 10 twith any ed for a 10 be SP No be SP No	e load: Lumb sf (flat roof r DOL=1.15 f xp.; Ct=1.10; ed to accour d bearing. 0 psf bottom other live loa e load of 20. a rectangle veen the bott 2 crusbing	per Plate at for ads. Opsf om					
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance	(lb) - Maximum Com Tension 1-2=-73/280, 2-3=-73 1-4=-217/113, 3-4=-2 2-4=-493/132 d roof live loads have	pression/Maximum 3/280 217/113 been considered for	11	capacity of 5) Provide mec bearing plate 1, 28 lb uplif ?) This truss is International R802.10.2 a	65 psi. hanical connecti e capable of with at joint 3 and 56 designed in acco Residential Coc nd referenced st	ion (by oth Istanding 2 6 lb uplift a ordance w le sections andard AN	ers) of truss t 8 lb uplift at j t joint 4. th the 2015 t R502.11.1 a ISI/TPI 1.	to joint and					

this design. 2) Wind: ASCE 7-10; Vult=115mph (3-second gust)

Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	628 ELV C EP B2				
ELV C EP B2	V07	Valley	1	1	Job Reference (optional)	166014050			

3-0-3

Builders FirstSource (Apex, NC), Apex, NC - 27523,

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue Jun 04 10:59:40 ID:Ok_LxAhg?8Sx9nNkZcV2ZQzIBSo-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

6-0-6

5-8-4

Scale = 1:27.1

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.00		TC	0.10	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Ps/Pf)	10.1/20.0	Lumber DOL	1.15		BC	0.11	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES		WB	0.06	Horiz(TL)	0.00	3	n/a	n/a		
BCLI	0.0*	Code	IRC201	5/TPI2014	Matrix-MP		- ()						
BCDL	10.0	0000		0,1112011								Weight: 22 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-6 oc purlins. Rigid ceiling directly bracing. (size) 1=6-0-6, 3 Max Horiz 1=-45 (LC Max Uplift 4=-22 (LC Max Grav 1=66 (LC	athing directly applied applied or 6-0-0 oc 3=6-0-6, 4=6-0-6 : 10) : 14) 29), 3=66 (LC 30), 4=	5) 6) 7) 8) or 9) 10 10	 Roof design slope. Gable require Gable studs This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar All bearings capacity of 5 Provide mec 	snow load has be es continuous bot spaced at 4-0-0 o s been designed ad nonconcurrent has been designed n chord in all area by 2-00-00 wide w hy other members are assumed to b 65 psi.	ten reduc tom chor c. for a 10. with any d for a liv as where ill fit betv e SP No. n (by oth	ed to account d bearing. 0 psf bottom other live load e load of 20.0 a rectangle veen the botto 2 crushing ers) of truss to	t for ds. lpsf om					
	(LC 2)	23), 3=00 (20 30), 4=	.000	bearing plate 4.	capable of withs	tanding 2	2 lb uplift at jo	oint					
FORCES TOP CHORD BOT CHORD	(lb) - Maximum Com Tension 1-2=-57/133, 2-3=-5 1-4=-106/63, 3-4=-1	pression/Maximum 7/133 06/63	12 L(2) This truss is International R802.10.2 ar OAD CASE(S)	designed in accor Residential Code nd referenced star Standard	rdance w sections ndard AN	ith the 2015 8 R502.11.1 ai NSI/TPI 1.	nd					
WEB3	2-4=-237/01												
NOTES													
 Unbalance this design Wind: ASC Vasd=91m II; Exp B; E and C-C E exposed ; 	ed roof live loads have DE 7-10; Vult=115mph ph; TCDL=6.0psf; BC Enclosed; MWFRS (er ixterior (2) zone; cantil end vertical left and ri	been considered for (3-second gust) DL=6.0psf; h=30ft; Ca velope) exterior zone ever left and right ght exposed;C-C for	at.							4		ORTH CA	ROLIN
members a	and forces & MWFRS	for reactions shown:										:2	
Lumber D0	OL=1.60 plate grip DC	L=1.33								-		054	1 1 3
 Truss des only. For s see Stands or consult 	SEAL only. For studs exposed to wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.												
4) TCLL: ASC DOL=1.15 snow); Ps=	CE 7-10; Pr=20.0 psf (Plate DOL=1.00); Pf= =10.1 psf (roof snow: I	roof live load: Lumber 20.0 psf (flat roof Lumber DOL=1.15 Pla	te									A CNGIN	EEREALIN

TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof 4) snow); Ps=10.1 psf (roof snow: Lumber DOL=1.15 Plate DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.10; Unobstructed slippery surface

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

G١ 111111111

June 5,2024

Job	Truss	Truss Type	Qty	Ply	628 ELV C EP B2	
ELV C EP B2	V08	Valley	1	1	Job Reference (optional)	166014051

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue Jun 04 10:59:40 ID:h4v?PZm4MIKyVsP4Ta7hLuzIBSh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2x4 🍫

1-4-7

3-2-13

2x4 💊

Scale = 1:23.5

Plate Offsets (X, Y): [2:0-2-0,Edge]

								-					
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.00		TC	0.08	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Ps/Pf)	10.1/20.0	Lumber DOL	1.15		BC	0.07	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES		WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCLL	0.0*	Code	IRC201	5/TPI2014	Matrix-MP								
BCDL	10.0											Weight: 10 lb	FT = 20%
LUMBER			6)	Gable require	es continuous botto	om chor	d bearing.						
TOP CHORD	2x4 SP No.2		7)	Gable studs	spaced at 4-0-0 oc.		U						
BOT CHORD	2x4 SP No.2		8)	This truss ha	s been designed fo	or a 10.0	0 psf bottom						
BRACING chord live load nonconcurrent with any other live loads.													
TOP CHORD Structural wood sheathing directly applied or 9) * This truss has been designed for a live load of 20.0psf													
	3-2-13 oc purlins.			on the botton	h chord in all areas	where	a rectangle						
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.													
REACTIONS (size) 1=3-2-13, 3=3-2-13 10) All bearings are assumed to be SP No.2 crushing													
	Max Horiz 1=22 (LC 11) capacity of 565 psi.												
	Max Uplift 1=-2 (LC 1	14), 3=-2 (LC 15)	11) Provide meci	anical connection	(by oth Inding C	ers) of truss t	0 int 1					
	Max Grav 1=129 (LC	C 2), 3=129 (LC 2)		and 2 lb unlif	tatioint 3		ib upint at jo	IIIC I					
FORCES	(lb) - Maximum Com	pression/Maximum	12) This truss is	designed in accord	ance w	ith the 2015						
	Tension			International Residential Code sections R502.11.1 and									
TOP CHORD	1-2=-169/21, 2-3=-16	69/21		R802.10.2 and referenced standard ANSI/TPI 1.									
BOT CHORD	1-3=-10/126		LC	DAD CASE(S)	Standard								
NOTES													
1) Unbalance	ed roof live loads have	been considered for											
). E 7 10: \/ult_115mph	(2 accord quat)											
2) Wind. ASC Vasd=91m	2E 7-10, $Vuit=115mpn$	(3-second gust) DI =6 Opsf: h=30ft: C	Cat									and the	111
II: Exp B: E	Enclosed: MWFRS (en	velope) exterior zon	e									N''LL CA	DIL
and C-C E	xterior (2) zone; cantile	ever left and right	-								15	THUA	TO MA
exposed ;	end vertical left and rig	ght exposed;C-C for									SI	On ince	All all and
members a	and forces & MWFRS	for reactions shown;								6	Ì	10 1	Marin
Lumber DO	OL=1.60 plate grip DO	L=1.33											1. /.
3) Truss des	igned for wind loads in	the plane of the tru	SS							-	:	0.54	
Only. For s	studs exposed to wind	(normal to the face)	, 							=		SEA	L <u>:</u> E
or consult	and industry Gable End	ner as ner ANSI/TP	//e, // 1							1		0363	22 : 3
4) TCLL: AS(CE 7-10: Pr=20.0 psf (r	roof live load: Lumbe	ər							-			1 2
DOL=1.15	Plate DOL=1.00); Pf=	20.0 psf (flat roof	-										1.3
snow); Ps=	=10.1 psf (roof snow: L	umber DOL=1.15 P	late								21	N. ENO	ERIAS
DOL=1.00); Category II; Exp B; F	Fully Exp.; Ct=1.10;									1	S. GIN	EF R N
Unobstruc	ted slippery surface										1	CAO	II BEIN
5) Roof desig	n snow load has been	reduced to account	for									11, 7. 6	in in it.
slope.												201111	LT 122

Page: 1

st.org) 818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

