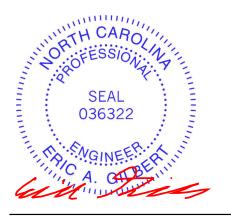


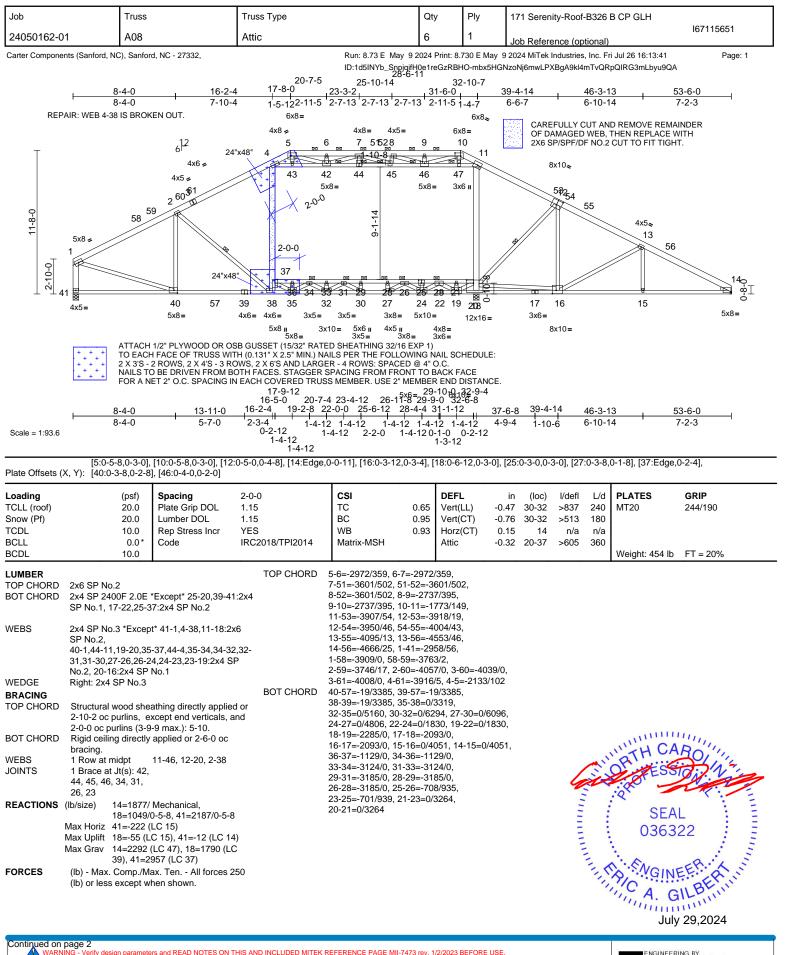
Trenco 818 Soundside Rd Edenton, NC 27932


Re: 24050162-01 171 Serenity-Roof-B326 B CP GLH

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Carter Components (Sanford, NC)).

Pages or sheets covered by this seal: I67115651 thru I67115651

My license renewal date for the state of North Carolina is December 31, 2024.


North Carolina COA: C-0844

July 29,2024

Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **AMSUTPI Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	171 Serenity-Roof-B326 B CP GLH	167115651
24050162-01	A08	Attic	6	1	Job Reference (optional)	

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 E May 9 2024 Print: 8.730 E May 9 2024 MiTek Industries, Inc. Fri Jul 26 16:13:41 ID:1d5INYb_SnpjqifH0e1reGzRBHO-mbx5HGNzoNj6mwLPXBgA9kl4mTvQRpQIRG3mLbyu9QA Page: 2

WEBS 2-40=-705/72 12-16=-260/99 13-16=-579/207, 37-38=-25/325, 4-37=0/1182. 18-20=-1401/164. 11-20=-47/1134, 1-40=0/3451, 4-43=-2073/25, 42-43=-1999/25, 42-44=-1585/1333, 44-45=-1586/1333, 45-46=-1785/1228. 46-47=-2450/26. 11-47=-2546/26, 5-43=0/353, 10-47=0/447, 19-20=0/2695, 35-37=0/1556, 19-21=-351/0, 24-25=-319/0. 27-28=-531/0. 12-20=-573/314, 2-38=-131/377, 16-20=0/5298, 5-42=-342/1280, 7-42=-875/122, 7-45=-283/59, 10-46=-314/1437, 8-46=-920/115, 34-35=-1298/0, 32-34=0/1056, 31-32=-307/177, 30-31=-355/27 26-27=0/1522, 24-26=-1401/0, 23-24=0/2101, 19-23=-2162/0

NOTES

- Unbalanced roof live loads have been considered for this design.
 Wind: ASCE 7-16; Vult=130mph (3-second gust)
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-2-12 to 5-6-14, Interior (1) 5-6-14 to 10-1-6, Exterior(2R) 10-1-6 to 39-0-10, Interior (1) 39-0-10 to 48-1-14, Exterior(2E) 48-1-14 to 53-6-0 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- 5) Provide adequate drainage to prevent water ponding.
- 6) All plates are 2x4 MT20 unless otherwise indicated.7) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Ceiling dead load (5.0 psf) on member(s). 4-43, 42-43, 42-44, 44-45, 45-46, 46-47, 11-47; Wall dead load (5.0psf) on member(s).4-37, 11-20
- Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 36-37, 34-36, 33-34, 31-33, 29-31, 28-29, 26-28, 25-26, 23-25, 21-23, 20-21
- 11) Refer to girder(s) for truss to truss connections.
- 12) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 41 and 18. This connection is for uplift only and does not consider lateral forces.
- Following joints to be plated by qualified designer: Joint (s) 12, not plated.
- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 16) Attic room checked for L/360 deflection.
- LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

