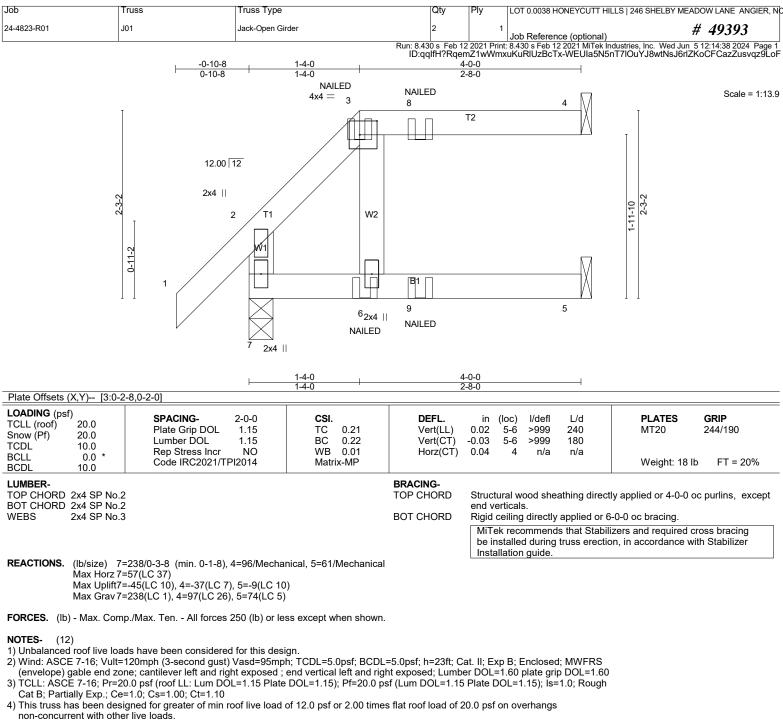
Mark Morris, P.E.

#126, 1317-M, Summerville, SC 29483 843 209-5784, Fax (866)-213-4614

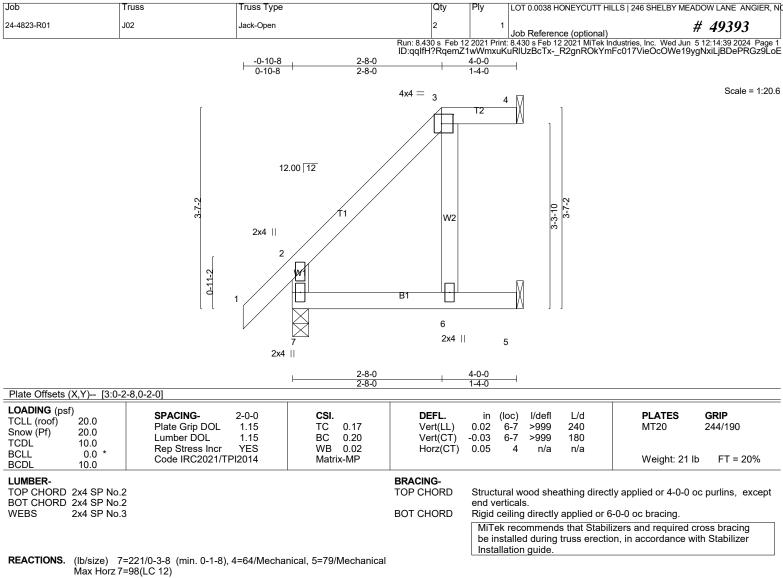
The truss drawing(s) listed below have been prepared by **Atlantic Building Components** under my direct supervision based on the parameters provided by the truss designers.


AST #: 49393 JOB: 24-4823-R01 JOB NAME: LOT 0.0038 HONEYCUTT HILLS Wind Code: ASCE7-16 Wind Speed: Vult= 120mph Exposure Category: B Mean Roof Height (feet): 23 These truss designs comply with IRC 2015 as well as IRC 2018. 52 Truss Design(s)

Trusses:

J01, J02, J04, J05, J06, J07, J09, P01, P02, R01, R02, R03, R05, R06, R07, R08, R09, R09A, R10, R11, R12, R13, R14, R14A, R14B, R14C, R15, R16, R17, R18, R19, R20, R21, R22, R23, R24, R25, R26, R27, R28, R29, R30, R31, V01, V02, V03, V04, V05, V06, V07, V08, V09

Warning !--- Verify design parameters and read notes before use.



- 5) Provide adequate drainage to prevent water ponding.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit
- between the bottom chord and any other members.
- 8) Refer to girder(s) for truss to truss connections.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 4, 5.
- 10) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines
- 11) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

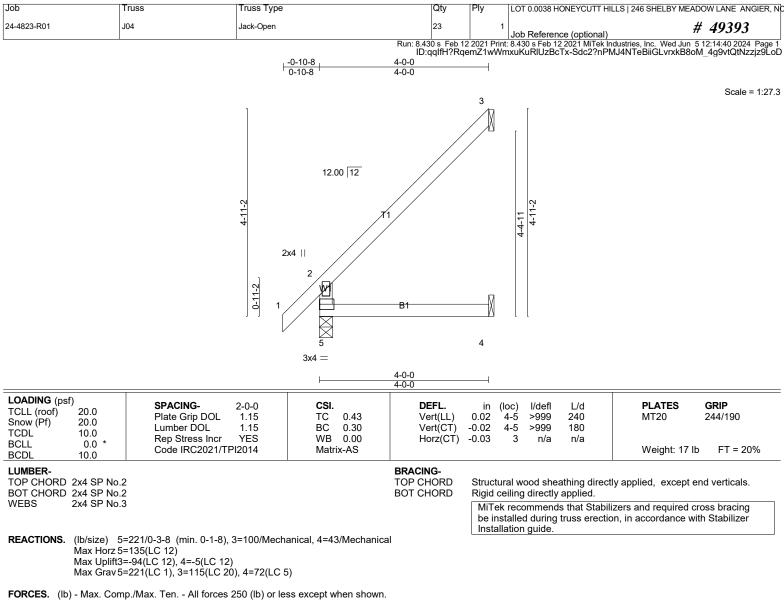
LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-2=-60, 2-3=-60, 3-4=-60, 5-7=-20 Concentrated Loads (lb) Vert: 6=-15(F) 9=-15(F)

SEAL 28147 South Standing Standi 6/5/2024

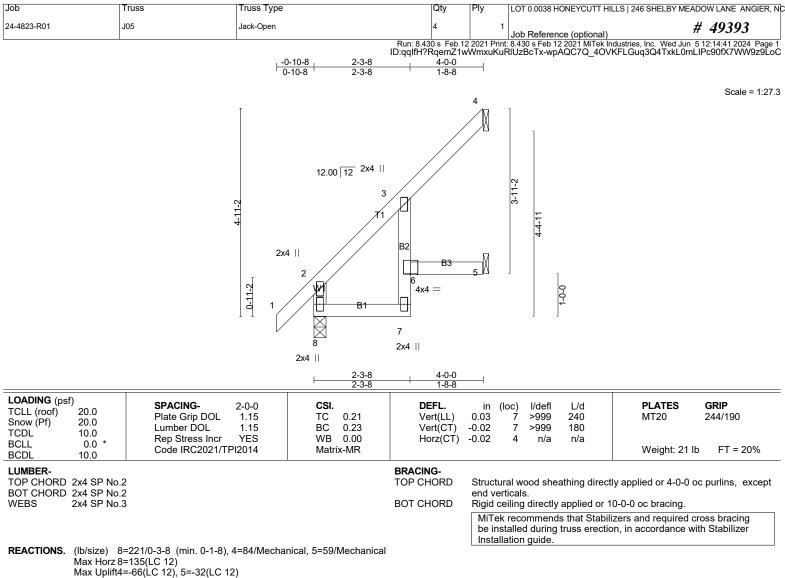
Max Uplift4=-15(LC 9), 5=-37(LC 12)

Max Grav 7=221(LC 1), 4=64(LC 1), 5=81(LC 20)


FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES- (10)

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 5) Provide adequate drainage to prevent water ponding.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit
- between the bottom chord and any other members.
- 8) Refer to girder(s) for truss to truss connections.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 5.


LOAD CASE(S) Standard

- **NOTES-** (9)
- Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5)* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 4.
- 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- LOAD CASE(S) Standard

Max Grav 8=221(LC 1), 4=95(LC 20), 5=69(LC 20)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES- (

- Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs

non-concurrent with other live loads.

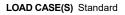
4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.

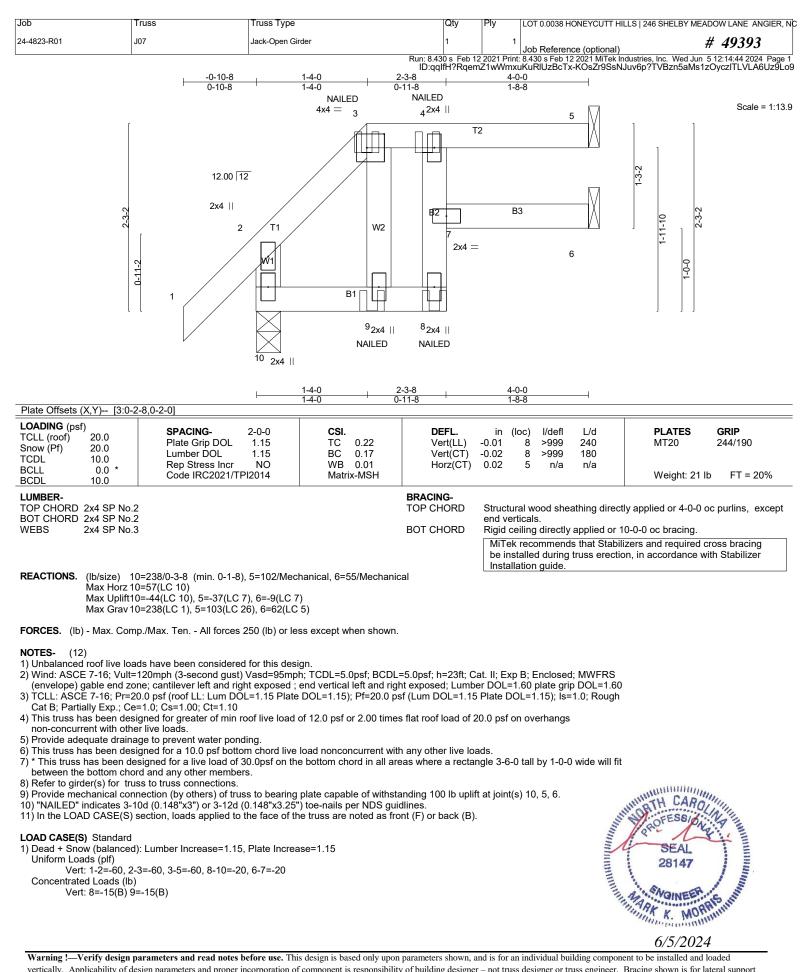
6) Refer to girder(s) for truss to truss connections.

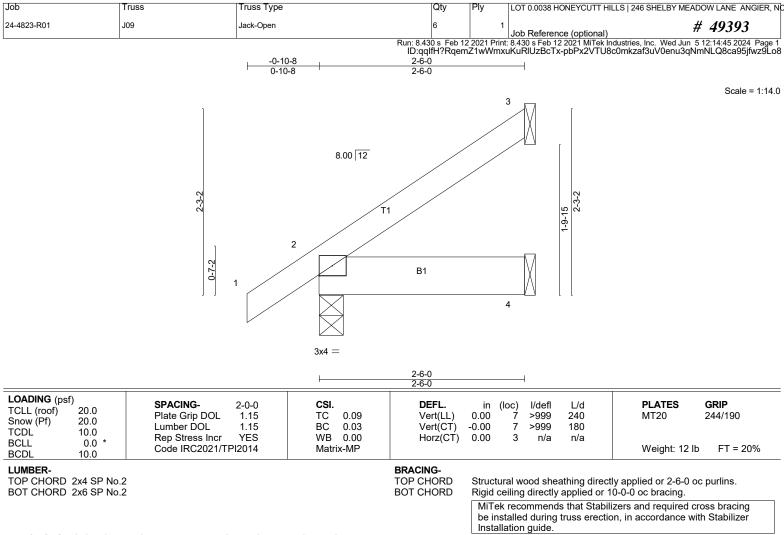
7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 5.

LOAD CASE(S) Standard


Max Uplift5=-19(LC 9), 6=-30(LC 12)

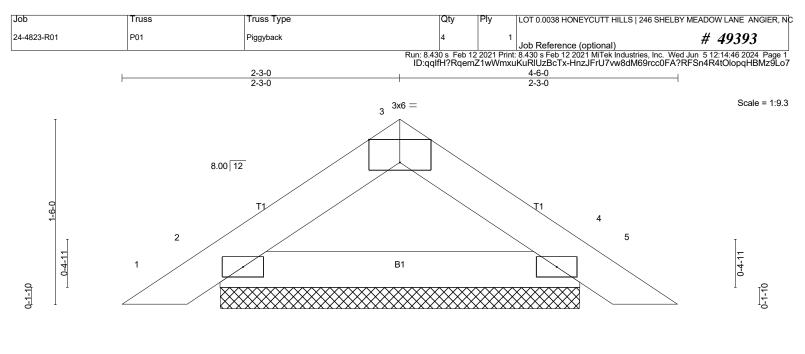
FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.


NOTES- (10)


- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 5) Provide adequate drainage to prevent water ponding.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit
- between the bottom chord and any other members.

8) Refer to girder(s) for truss to truss connections.
 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 6.

REACTIONS. (lb/size) 3=53/Mechanical, 2=159/0-3-8 (min. 0-1-8), 4=35/Mechanical Max Horz 2=65(LC 12) Max Uplift3=-30(LC 12), 2=-10(LC 12) Max Grav 3=55(LC 20), 2=159(LC 1), 4=50(LC 5)


FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

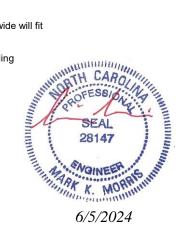
NOTES- (8)

- Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs
- non-concurrent with other live loads.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2.

LOAD CASE(S) Standard

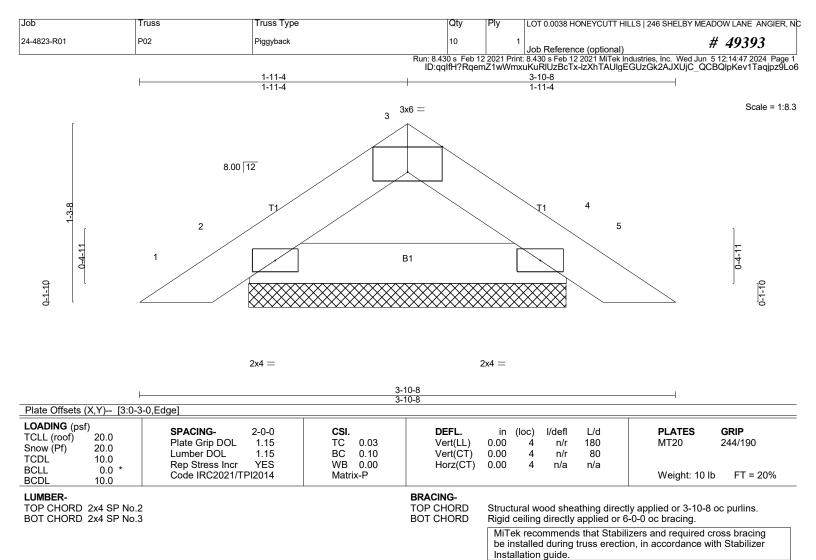
2x4 =

2x4 =


L			4-6-0		
Plate Offsets (X,Y) [3:0-3-0	,Edge]	2	4-6-0		·
LOADING (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2021/TPI2014	CSI. TC 0.03 BC 0.17 WB 0.00 Matrix-P	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) l/defl L/d 0.00 4 n/r 180 0.00 4 n/r 80 0.00 4 n/a n/a	PLATES GRIP MT20 244/190 Weight: 12 lb FT = 20%
LUMBER- TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.3			BRACING- TOP CHORD BOT CHORD	Structural wood sheathing direc Rigid ceiling directly applied or 7	10-0-0 oc bracing.
					lizers and required cross bracing on, in accordance with Stabilizer

REACTIONS. (lb/size) 2=148/2-11-0 (min. 0-1-8), 4=148/2-11-0 (min. 0-1-8) Max Horz 2=26(LC 11) Max Uplift2=-17(LC 12), 4=-17(LC 13)

NOTES- (10)


- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.
- See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

```
LOAD CASE(S) Standard
```


FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

¹⁾ Unbalanced roof live loads have been considered for this design.

REACTIONS. (lb/size) 2=123/2-3-8 (min. 0-1-8), 4=123/2-3-8 (min. 0-1-8) Max Horz 2=-22(LC 10) Max Uplift2=-16(LC 12), 4=-16(LC 13)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES- (10)

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

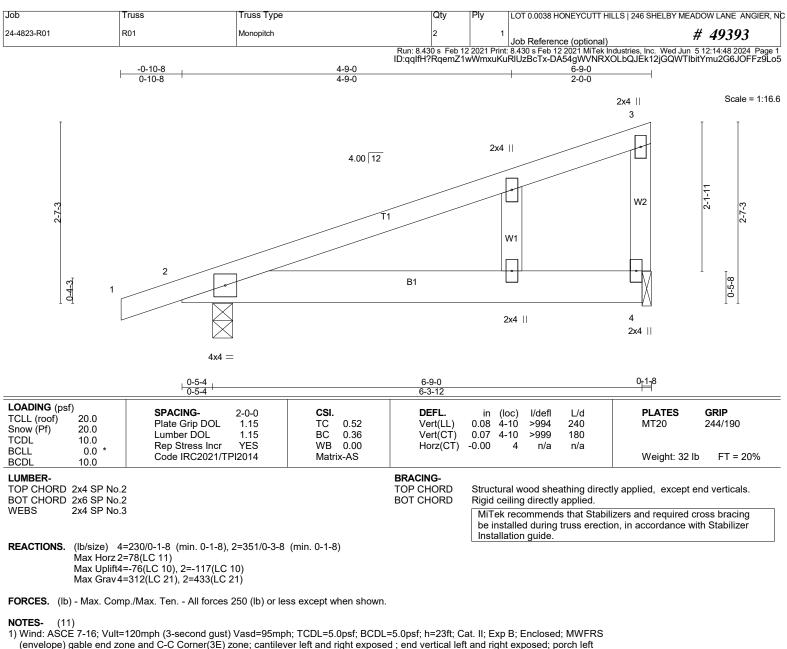
3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

5) Gable requires continuous bottom chord bearing.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.


8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.

 See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

```
LOAD CASE(S) Standard
```


¹⁾ Unbalanced roof live loads have been considered for this design.

exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

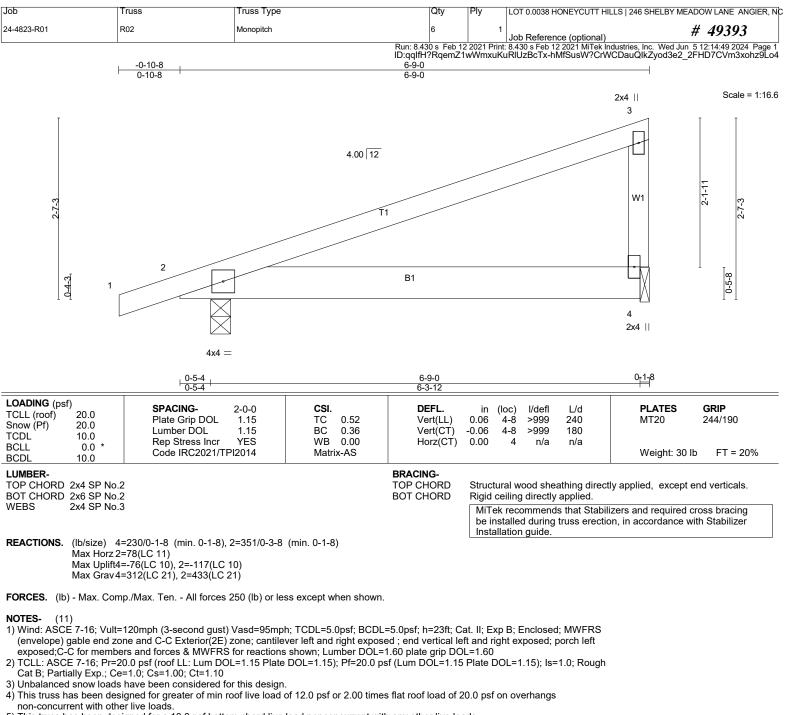
4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs

non-concurrent with other live loads.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.

7) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

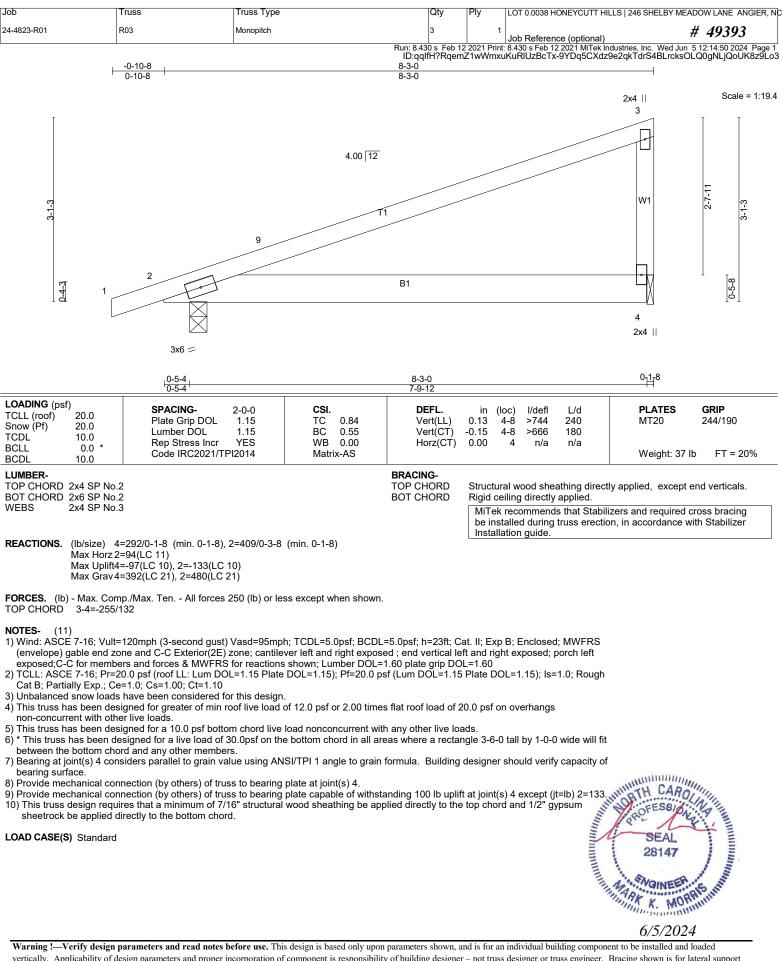

8) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.

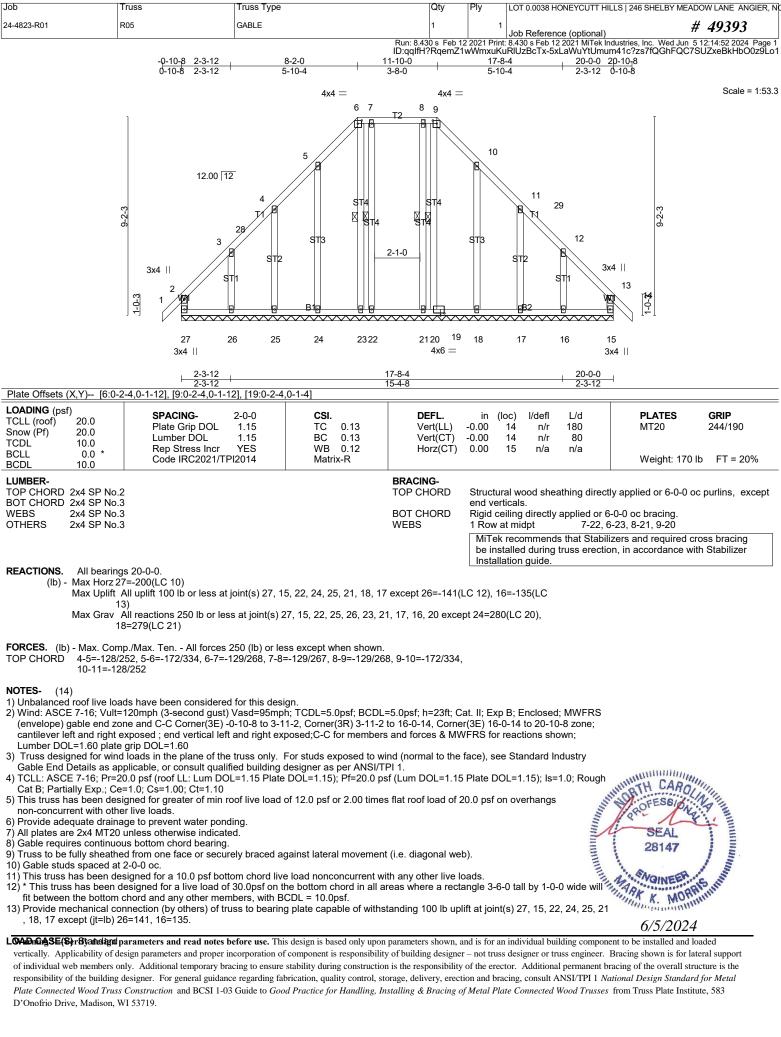
9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4 except (jt=lb) 2=117.

10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

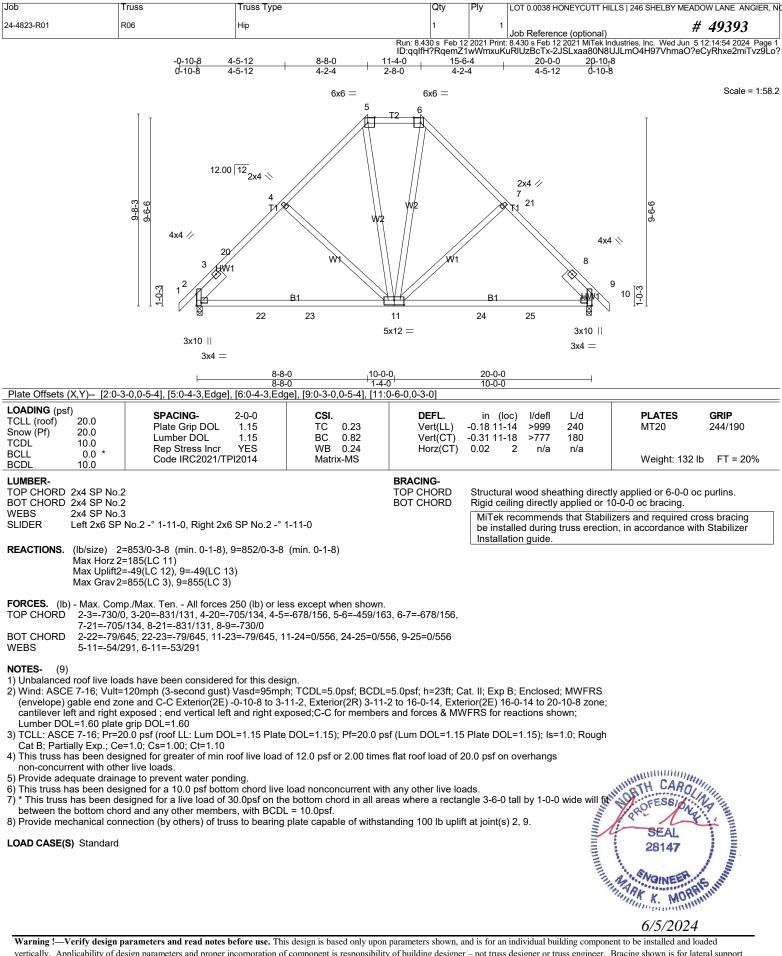
will fit ucity of 2=117 CAROUND SEAL 28147 SEAL 28147 CAROUND SEAL 2914 CAROUN

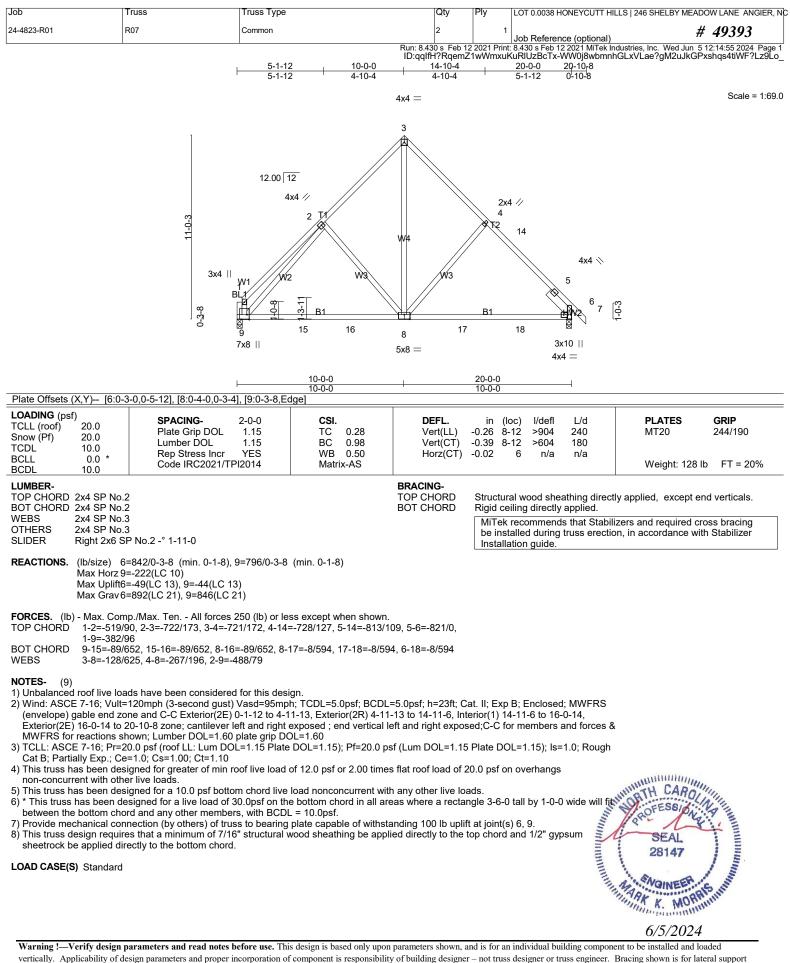
LOAD CASE(S) Standard

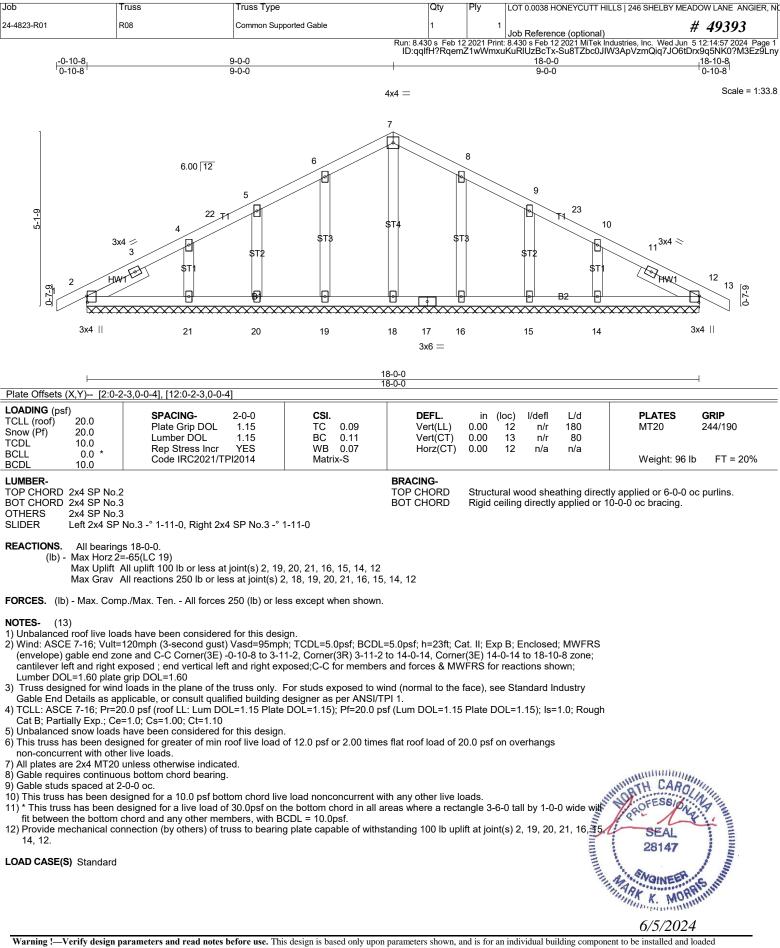


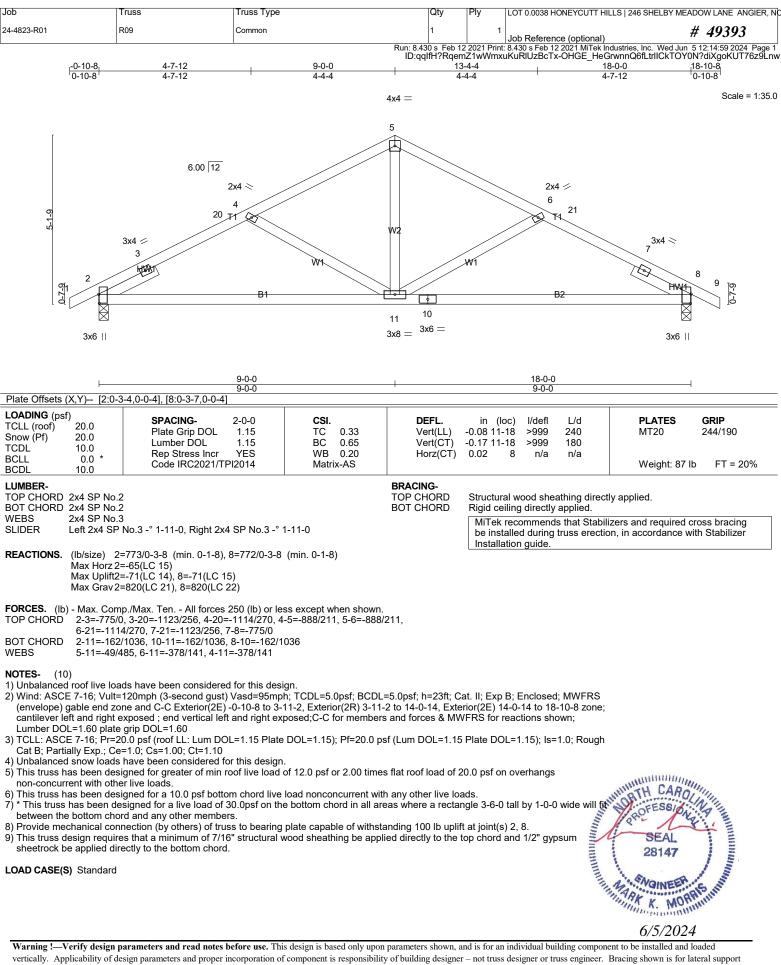

- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 7) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 8) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.

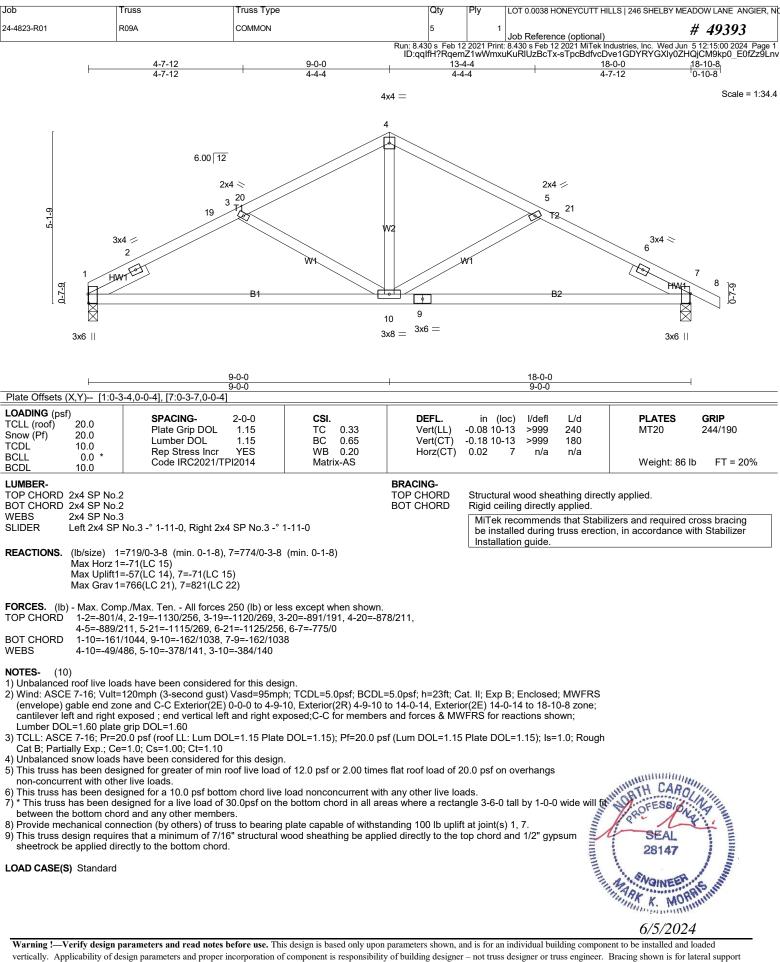
LOAD CASE(S) Standard


- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4 except (jt=lb) 2=117.
- 10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.


will fit acity of 2=117 CAROUND SEAL 28147 SEAL 28147 CAROUND SEAL 2914 CAROUND





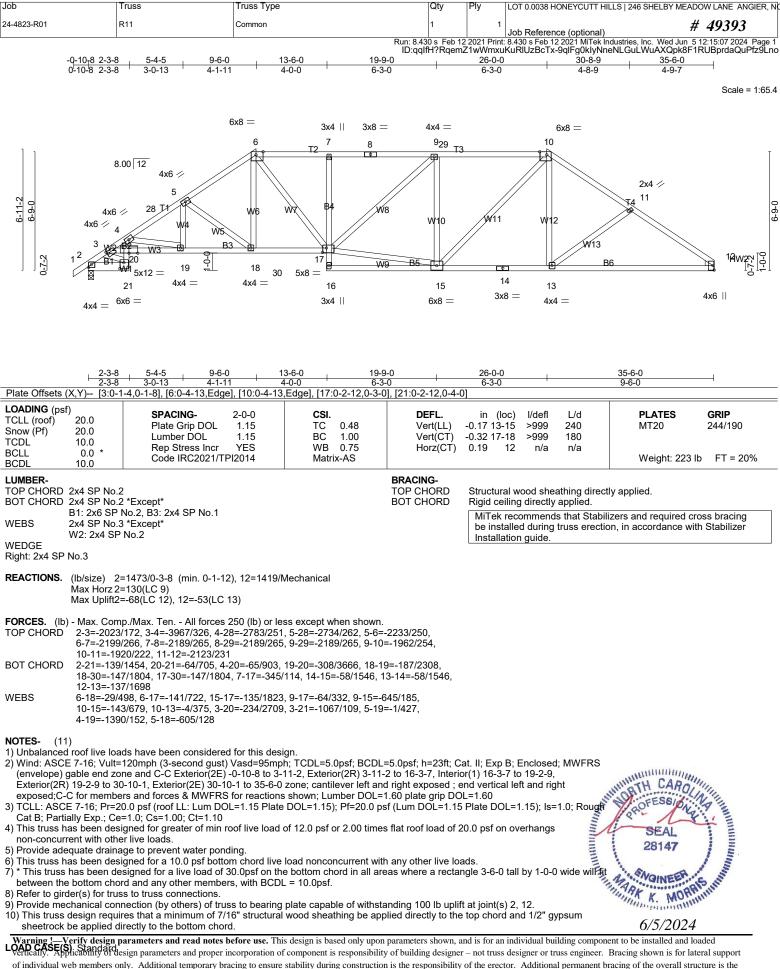

vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583

Job	Truss	Truss Type	Qty	Ply LOT 0.0038	HONEYCUTT HILL	S 246 SHELBY MEADO	W LANE ANGIER, NC
24-4823-R01	R10	Half Hip Girder	1	1			49393
			Run: 8.430 s_Feb 12	2 2021 Print: 8.430 s Feb	ence (optional) 12 2021 MiTek Indu	stries. Inc. Wed Jun 51	2:15:05 2024 Page 1
-Q <u>-10_r8 2-3-8 _</u>	6-6-0 <u>10-1-1</u> 2		20-6-14 2	5-6-0 3	30-5-2	<pre>{w816VE5siS?jLkRTc 35-6-0</pre>	0ILYAGxnLmz9Lnq
0-10-8 2-3-8	4-2-8 3-7-12	2 3-4-4 2-1-12	4-11-2 4	-11-2	4-11-2	5-0-14	
							Scale = 1:65.9
	6x10 =	NAILED NAILED NAILED NAILED	NAILED NAILE	ED NAILED NAILED	NAILED	NAILED NAILED	
	NAILED NAILED	2x4 4x4 = 5x8 =	NAILED 4x4 = 3x4	8 = 2x4	NAILED 4x4 =	4x4 =	
. 8.00 12	4 32	5 33 6 34 7 35	36 ⁸ 37 9	38 39 10 40	41 T3 11	42 43 12	
	NAILED 31						
NAILED	30 W1 W2	w1 w2 w3					
4-11-2		Wb	V06 W5	VVG Wb	VV6 W5	MAR MAD	
	<u>6</u> B2						īQ
	44 22 45					360	1-0-0
23	0.1	$4x8 = \frac{40}{\text{NAILED}} 19 \frac{47 \text{M}}{18}$	48 49 50 17	51 52 ₁₆ 53	15 54 14	55 56 ₁₃	
4x6 = 2x4		NAILED $3x6 \parallel 7x8 \equiv$	NAILED 4x6 =	4x0 —	x8 = 4x6 =		
4x6 =		0 6 _{x12} = NAILEE NAILED	NAILED NAILE	D NAILED NAILED	NAILED NAILED	NAILED NAILED	
2x4 NAIL							
<u>2-3-8</u> 2-3-8	<u>6-6-0</u> <u>10-1-12</u> 4-2-8 <u>3-7-12</u>				30-5-2 4-11-2	35-6-0 5-0-14	
)-2-4,0-2-0], [3:0-3-0,0-1-8]], [4:0-7-12,0-2-0], [18:0-3-8,0-4-	8]				
LOADING (psf) TCLL (roof) 20.0	SPACING-	2-0-0 CSI .	DEFL.	in (loc) I/def		PLATES	GRIP
Snow (Pf) 20.0 TCDL 10.0	Plate Grip DOL Lumber DOL	1.15 TC 0.67 1.15 BC 0.57	Vert(LL) Vert(CT)	0.10 23 >999 -0.17 23 >999		MT20	244/190
BCLL 0.0 *	Rep Stress Incr Code IRC2021/T	NO WB 0.75 PI2014 Matrix-MSH	Horz(CT)	0.07 18 n/a	n/a	Weight: 256 lb	FT = 20%
BCDL 10.0							
LUMBER- TOP CHORD 2x4 SP No	b.2 *Except*		BRACING- TOP CHORD	Structural wood sh	neathing directly	applied or 6-0-0 oc	purlins, except
T1: 2x6 SF BOT CHORD 2x6 SP No			BOT CHORD	end verticals. Rigid ceiling direct	ly applied or 6-0	-0 oc bracing	
B3,B4: 2x4	4 SP No.2			0 0	, ,,	ers and required cro	ss bracing
WEBS 2x4 SP No	0.3			be installed durin		, in accordance with	Stabilizer
		25/0-3-8 (min. 0-1-8), 18=2671/0	-3-8 (min. 0-3-2)				
	2=141(LC 9) t13=-438(LC 6), 2=-120(L0	C 10), 18=-1239(LC 7)					
Max Grav	13=815(LC 26), 2=525(LC	C 1), 18=2671(LC 1)					
		250 (lb) or less except when she					
		31=-407/164, 4-31=-351/169, 6-3 -38=-625/436, 9-39=-625/436, 1					
	625/436, 40-41=-625/436, 648/399, 12-13=-745/444	11-41=-625/436, 11-42=-648/39	9, 42-43=-648/399,				
BOT CHORD 3-44=-19	98/340, 22-44=-198/340, 2	2-45=-203/356, 21-45=-203/356					
		18-48=-1243/512, 48-49=-1243/ , 15-53=-352/642, 15-54=-352/64					
		21=-271/172, 6-21=-522/1167, 1 -17=-754/1613, 8-17=-985/551,					
	381/269, 11-14=-415/342,		0-10304/037,				
NOTES- (11)							
) Vasd=95mph; TCDL=5.0psf; B ght exposed ; end vertical left and			ed; MWFRS		
2) TCLL: ASCE 7-16; Pr=	=20.0 psf (roof LL: Lum DO	DL=1.15 Plate DOL=1.15); Pf=20			s=1.0; Rough	MUMILIUM CAR	
	Ce=1.0; Cs=1.00; Ct=1.10	roof live load of 12.0 psf or 2.00	times flat roof load of 2	0.0 psf on overhand	IS MAR	ORTH CAHOLIN	
non-concurrent with ot	her live loads.				inn,	SEAL	N. M.
5) This truss has been de	nage to prevent water pon esigned for a 10.0 psf botto	om chord live load nonconcurren	t with any other live loa	ids.		SEAL	
6) * This truss has been of between the bottom of	designed for a live load of oord and any other membe	30.0psf on the bottom chord in a	Ill areas where a rectan	gle 3-6-0 tall by 1-0)-0 wide will fit	28147	
7) Refer to girder(s) for tr	uss to truss connections.	as to bearing plate capable of w		-41-1-47		No. ad	In
AL Provide mechanical or	onnection (by others) of tru	iss to bearing plate capable of w	itnstanding 100 lb uplift	at joint(s) except (j	t=ID) 13=438	VOINEE	o un
2=120, 18=1239.							
2=120, 18=1239. 9) "NAILED" indicates 3-	10d (0.148"x3") or 3-12d ((0.148"x3.25") toe-nails per NDS			1	WINK K. MORM	inter.
2=120, 18=1239. 9) "NAILED" indicates 3-	10d (0.148"x3") or 3-12d (0 s) section, loads applied to	0.148"x3.25") toe-nails per NDS the face of the truss are noted a			- 3. - 3.	SEAL 28147	Inter

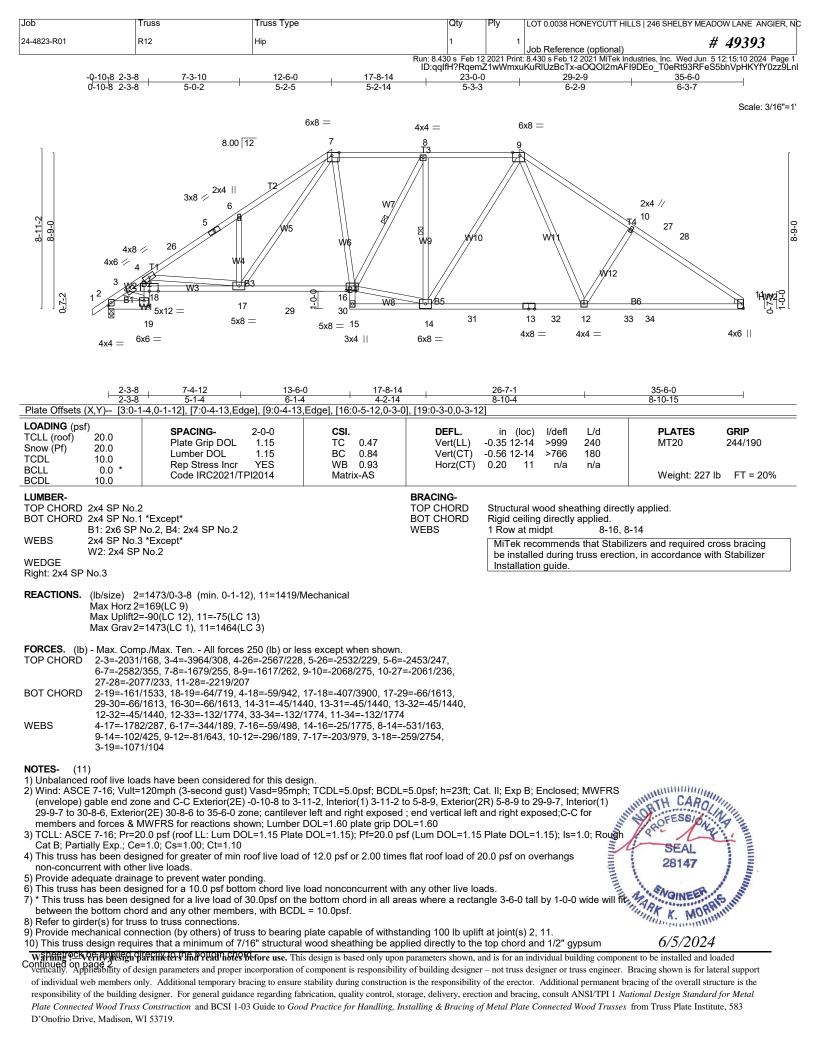
Job	Truss	Truss Type	Qty	Ply	LOT 0.0038 HONEYCUTT HILLS 246 SHELB	Y MEADOW LANE ANGIER, NC		
24-4823-R01	R10	Half Hip Girder	1	1	Job Reference (optional)	# 49393		
Pup: 8 430 s Ech 12 2021 Print: 8 430 s Ech 12 2021 MiTck Industries, Inc. Wed Jup 5 12:15:05 2024, Page 2								

Run: 8.430 s_Feb 12 2021 Print: 8.430 s Feb 12 2021 MiTek Industries, Inc._Wed Jun_5 12:15:05 2024_Page 2 ID:qqIfH?RqemZ1wWmxuKuRIUzBcTx-DRdVFKi1QmXw816VE5siS?jLkRTc0ILYAGxnLmz9Lnq

LOAD CASE(S) Standard


1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-3=-60, 3-4=-60, 4-12=-60, 23-24=-20, 20-27=-20, 13-19=-20


Concentrated Loads (lb)

Vert: 4=-24(F) 23=-36(F) 22=-39(F) 21=-39(F) 5=-24(F) 11=-40(F) 14=-23(F) 30=-43(F) 31=-5(F) 32=-24(F) 33=-24(F) 34=-40(F) 35=-40(F) 36=-40(F) 37=-40(F) 38=-40(F) 39=-40(F) 40=-40(F) 41=-40(F) 42=-40(F) 43=-40(F) 44=-63(F) 45=-39(F) 46=-39(F) 47=-23(F) 48=-23(F) 49=-23(F) 50=-23(F) 51=-23(F) 52=-23(F) 53=-23(F) 54=-23(F) 55=-23(F) 56=-23(F) 56=

Vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer of truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 *National Design Standard for Metal Plate Connected Wood Truss Construction* and BCSI 1-03 Guide to *Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses* from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 0.0038 HONEYCUTT HILLS 246 SHELBY MEADOW LANE ANGIER, NC
24-4823-R01	R12	Hip	1	1	Job Reference (optional) # 49393

Run: 8.430 s Feb 12 2021 Print: 8.430 s Feb 12 2021 MiTek Industries, Inc. Wed Jun 5 12:15:11 2024 Page 2 ID:qqlfH?RqemZ1wWmxuKuRIUzBcTx-2b_mVOno0cH4syZfaMy6hGzQOsRqQy3RYBO6YQz9Lnk

LOAD CASE(S) Standard

Job 24-4823-R01	Truss R13	Truss Type PIGGYBACK BASE	Q 1	1		246 SHELBY MEADOW LANE ANGIER, NO # 49393
	I		Run: 8.430 s ID:qqlf	Feb 12 2021 Print: 8.430 s H?RqemZ1wWmxuKuR	leference (optional) s Feb 12 2021 MiTek Indust IUzBcTxz6Ww3p2YD	ries, Inc. Wed Jun 512:15:13 2024 Page 1 Xo5Gj1in?amh3fZg4suuMk0VtCdIz9Lni
	-0-10-82-3-8 7-10-12 0-10-8 2-3-8 5-7-4	<u>15-6-0</u> 7-7-4	20-0-0 4-6-0	27-8-9 7-8-9	35	-6-0 9-7
		8.00 12	6x8 =	6x8 =		Scale = 1:72.7
10-11-2 10-9-0	4x6	3x8 = 72 5x8 = 6 5 5 W4 W5		Wto	3x8 ≈ 9 2x4 // 10 11 11	70-9-0
0-2-2		<u>Ha</u> a1	6 W7 GT B5		в6	
1 1 4	$ \begin{array}{c} \hline $	17 5x8 = 2x4		13 1 3x8 = 4x	2 29 30 4 =	4x6
	<u>2-3-8</u> 7-10-12 2-3-8 5-7-4	5-7-4	15-6-0	25-6-0 10-0-0	35-6-0 10-0-0	
LOADING (psf)	[3:0-1-4,0-1-12], [5:0-2-10,0- SPACING-	<u>1-12], [7:0-4-13,Edge], [8:</u> 2-0-0 CSI .	0-4-13,Edge], [16:0-2-4,		-4], [19:0-3-0,0-3-12] /defl L/d	PLATES GRIP
CLL (roof) 20.0 Snow (Pf) 20.0 CDL 10.0 SCLL 0.0 SCDL 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	1.15 TC 1.15 BC YES WB	0.87 Vert(1.00 Vert(LL) -0.44 12-14 >	971 240 624 180 n/a n/a	MT20 244/190 Weight: 227 lb FT = 20%
LUMBER- FOP CHORD 2x4 SP BOT CHORD 2x4 SP	PNo.1 *Except*		BRACING TOP CHO BOT CHO	RD Structural woo RD Rigid ceiling d		-
WEBS 2x4 SP W2: 2x WEDGE	6 SP No.2, B3,B4: 2x4 SP N P No.3 *Except* 44 SP No.2	0.2	WEBS		mends that Stabilizer during truss erection, i	s and required cross bracing n accordance with Stabilizer
Max H Max U	e) 2=1473/0-3-8 (min. 0-1- lorz 2=208(LC 9) plift2=-107(LC 12), 11=-92(l irav 2=1473(LC 1), 11=1530	.C 13)	0-1-13)			
FORCES. (lb) - Max. FOP CHORD 2-3=- 6-7=-	Comp./Max. Ten All force -2046/134, 3-4=-3991/369, 4 -1764/223, 7-8=-1296/228, 8 7=-2241/159	s 250 (lb) or less except w -26=-4297/469, 5-26=-426	51/491, 5-6=-1885/186,			
OT CHORD 2-19= 14-28	2241/135 209/1613, 18-19=-88/772, 3=0/1283, 13-28=0/1283, 12)=-76/1787			,		
10-1	=0/309, 5-16=-808/215, 14-1 2=-416/242, 3-18=-323/2774			146/935,		
	ve loads have been consider Vult=120mph (3-second gus nd zone and C-C Exterior(2E xterior(2E) 30-8-6 to 35-6-0. es & MWFRS for reactions s Pr=20.0 psf (roof LL: Lum D .; Ce=1.0; Cs=1.00; Ct=1.10 n designed for greater of mir h other live loads. drainage to prevent water po n designed for a 10.0 psf bol en designed for a 10.0 psf bol en designed for a live load o n chord and any other memb al connection (by others) of tr equires that a minimum of 7/		0psf; BCDL=5.0psf; h=2 r(1) 3-11-2 to 8-8-9, Ext ght exposed ; end vertica plate grip DOL=1.60); Pf=20.0 psf (Lum DOL pr 2.00 times flat roof loa	3ft; Cat. II; Exp B; End erior(2R) 8-8-9 to 26-5 al left and right expose =1.15 Plate DOL=1.1 d of 20.0 psf on overl	closed; MWFRS 3-7, Interior(1) ed;C-C for 5); Is=1.0; Rough nangs	SEAL
) Provide adequate of) This truss has been) * This truss has been between the bottom) Provide mechanica	drainage to prevent water po n designed for a 10.0 psf bol en designed for a live load o n chord and any other memb al connection (by others) of tr	nding. tom chord live load nonco f 30.0psf on the bottom ch ers, with BCDL = 10.0psf. uss to bearing plate capal	ncurrent with any other l lord in all areas where a ble of withstanding 100 l	ve loads. rectangle 3-6-0 tall by o uplift at joint(s) 11 e:	v 1-0-0 wide will fit xcept (jt=lb)	MOINEER S
	equires that a minimum of 7/ ed directly to the bottom cho		ning be applied directly t	o the top chord and 1/	2" gypsum	6/5/2024
Warning !—Verify de	esign parameters and read note dard of design parameters and prope	s before use. This design is ba	sed only upon parameters sh	own, and is for an individ	lual building component t	be installed and loaded
of individual web memb	bers only. Additional temporary ilding designer. For general guid	pracing to ensure stability during	ng construction is the respon	sibility of the erector. Ad	lditional permanent bracir	g of the overall structure is the

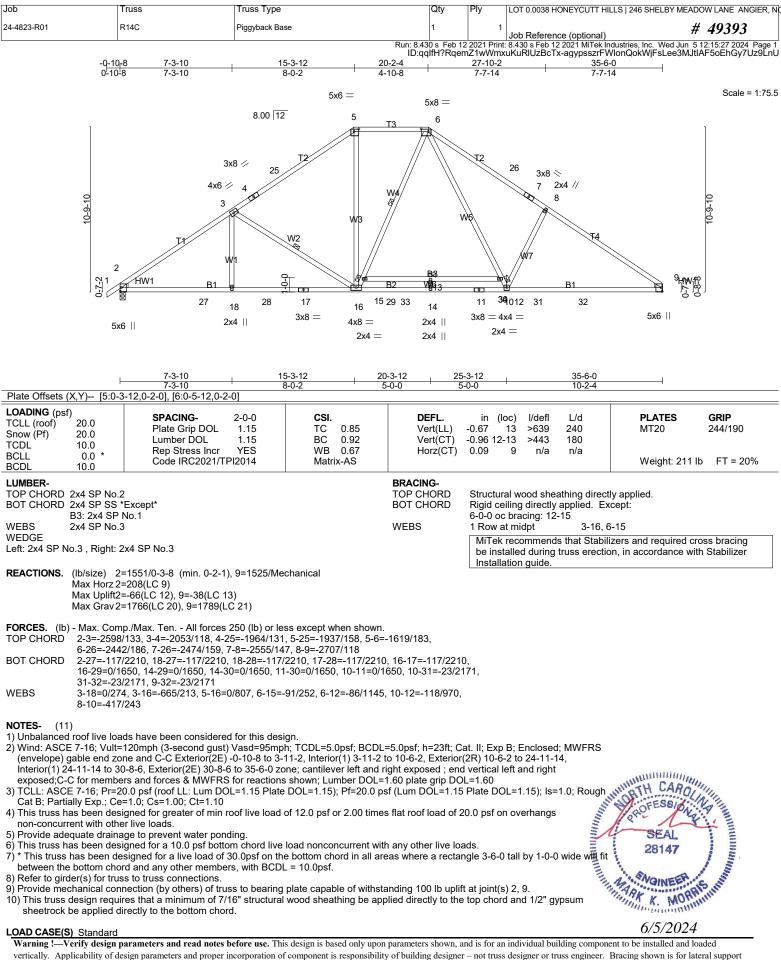
responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

ob 4-4823-R01	Trus R14	s	Truss Type PIGGYBACK BA	ASE	Qty 1	Ply LOT (0.0038 HONEYCUTT H	LLS 246 SHELBY ME	ADOW LANE ANGIER, N # 49393
					Run: 8.430 s Feb 1	Job F 2 2021 Print: 8.430	Reference (optional) s Feb 12 2021 MiTek Ir	dustries, Inc. Wed Jur	# 49393 5 12:15:17 2024 Page 1 cHSrqh_Jx7rQm3z9Lnd
	-0-10-82-3-			5-6-0	20-0-0	27-8-9		35-6-0	cHSrqh_Jx7rQm3z9Ln
	0-10-8 2-3	8 5-7-4		7-7-4	4-6-0	7-8-9		7-9-7	Scale = 1:72.2
				5x8 =	5x8 =				Scale - 1.72.2
l			8.00 12	7	8				T
			3x8 🖘	12		12	3x8 <>		
2		5x	8 6 5 19	//	wø	$\langle \rangle = \langle \rangle$	9 2x4 // 10		2
10-11-2				γγ6 ⊠ γγ8	2	Wia	A		10-11-2
	4x6 ∕∕∕ 3x4	1 26 т.		、 ∥ ∥			W11 7	27 4	
		4 XV3	_{W4} W5						
q	1 ²		B aj3		B5		// 		140012
0-7-2		18 5x10 =	17 2×4 U	5x8 =	28	13 12			14990-0-1-1-1 12-0
	4x4 =	19 6x6 =	2x4	15 14 3x4 6x8 =		3x8 = 4x4		4x6	1
	484 —								
	2-3-	8 7-10-12	13-6-	0 15-6-0	25-6-0		35-6-	0 .	
Plate Offsets (X,Y	2-3-	8 5-7-4	5-7-4		10-0-0	2], [18:0-4-5,0-3	10-0-	0	
OADING (psf) CLL (roof) 20	0.0	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	l/defl L/d	PLATES	GRIP
Snow (Pf) 20	0.0	Plate Grip DOL Lumber DOL	1.15 1.15	TC 0.87 BC 0.99	Vert(LL) Vert(CT)		>968 240 >621 180	MT20	244/190
BCLL	0.0 0.0 *	Rep Stress Incr Code IRC2021/7	YES	WB 0.84 Matrix-AS	Horz(CT)	0.24 11	n/a n/a	Weight: 22	8 lb FT = 20%
3CDL 10 -UMBER-	0.0				BRACING-				
OP CHORD 2x4 30T CHORD 2x4		vcont*			TOP CHORD BOT CHORD		od sheathing direct directly applied.	ly applied.	
B1:	2x6 SP No.	2, B5,B6: 2x4 SP N	o.1		WEBS	1 Row at mid	pt 7-14, 8		
W2	4 SP No.3 *E 2: 2x4 SP No					be installed	nmends that Stabil during truss erection		
VEDGE Right: 2x4 SP No.	3					Installation of	guide.		
Ma Ma	ax Horz 2=21 ax Uplift2=-10	73/0-3-8 (min. 0-1- 0(LC 9) 06(LC 12), 11=-92(L 73(LC 1), 11=1530(.C 13)	3-8 (min. 0-1-13)					
FOP CHORD 2 6	-3=-2042/13	3, 3-4=-4044/376, 4- 4, 7-8=-1283/229, 8-	-26=-4291/467,	except when shown 5-26=-4255/489, 5-6= 10=-2119/218, 10-25	=-1881/186,				
3OT CHORD 2 1	-19=-209/16	11, 18-19=-91/797, ⁻ , 13-28=0/1271, 12-		7, 16-17=-192/2177, 29=-77/1790, 29-30=					
VEBS 5	-17=0/309, 5			-116/1058, 7-14=-49 8, 5-18=-319/1927	93/152, 8-12=-150/9	957,			
IOTES- (10)) Unbalanced roo	of live loads	have been consider	ed for this desig	n.					
) Wind: ASCE 7- (envelope) gab 26-9-7 to 30-8-	16; Vult=120 le end zone 6, Exterior(21	0mph (3-second gus and C-C Exterior(2E E) 30-8-6 to 35-6-0	t) Vasd=95mph;) -0-10-8 to 3-11 zone; cantilever	TCDL=5.0psf; BCDI I-2, Interior(1) 3-11-2 left and right exposed OL=1.60 plate grip D OOL=1.15); Pf=20.0 p 12.0 psf or 2.00 time and nonconcurrent wi bottom chord in all al = 10.0psf. late capable of withs	L=5.0psf; h=23ft; C to 8-8-9, Exterior(2 d ; end vertical left	at. II; Exp B; Er 2R) 8-8-9 to 26- and right expos	nclosed; MWFRS 9-7, Interior(1) sed;C-C for	WHERTH CAR	uning.
) TCLL: ASCE 7-	orces & MW -16; Pr=20.0	psf (roof LL: Lum D	OL=1.15 Plate D	OL=1.60 plate grip D OL=1.15); Pf=20.0 p	OL=1.60 psf (Lum DOL=1.15	Plate DOL=1.	15); Is=1.0; Rough	ROFESSIO	No The State
Cat B; Partially) This truss has I	Exp.; Ce=1. been designe	0; Cs=1.00; Ct=1.10 ed for greater of min	roof live load of	12.0 psf or 2.00 time	es flat roof load of 2	20.0 psf on over	rhangs	SEAL	C.
non-concurrent Provide adequa (with other liv ate drainage	<i>v</i> e loads. to prevent water poi	nding.				IIIIM	28147	IWW.
i) This truss has I) * This truss has	been designe been desig	ed for a 10.0 psf bot ned for a live load of	tom chord live lo f 30.0psf on the	ad nonconcurrent wi bottom chord in all a	ith any other live loa reas where a rectar	ads. ngle 3-6-0 tall b	y 1-0-0 wide will fit	A SNOWERS	
between the bo) Provide mecha	ttom chord a nical connect	ind any other memb tion (by others) of tr	ers, with BCDL = uss to bearing p	= 10.0psf. late capable of withs	tanding 100 lb uplif	t at joint(s) 11 e	except (jt=lb)	AAK K MO	AAS
2=106.) This truss desid	an requires t	nat a minimum of 7/	16" structural wo	od sheathing be app	blied directly to the f	top chord and 1	/2" gypsum	Manna Mo	Anti-
,		y to the bottom chor		5	, .		071	6/5/202	24
		motors and used used	before use This	design is based only upo	n naramatara channe -	nd is for an indi-	dual building agone	ant to be installed	behealt

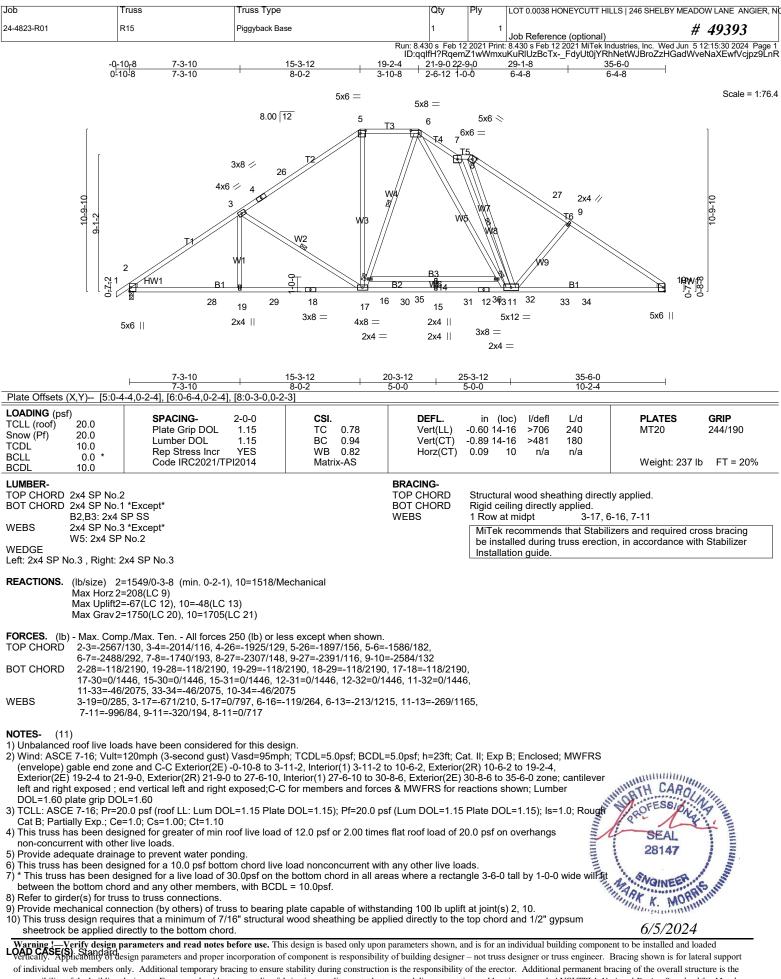
Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type		Qty	Ply	LOT 0.0038 HONEY	CUTT HILLS 24	6 SHELBY MEAD	DOW LANE ANGIER, NC
24-4823-R01	R14A	Piggyback Base		2	1	Job Reference (op	tional)	ŧ	# 49393
		I		Run: 8.430 s Feb 1: ID:qqlfH?RqemZ	2 2021 Print 1wWmxuKi	8.430 s Feb 12 2021	MiTek Industries	, Inc. Wed Jun 5 OcldDZArtwUT	12:15:20 2024 Page 1 12Cmd544NOz9Lnb
	-0 <u>-10-82-3-8</u> 0-10-8 2-3-8		15-6-0 7-7-4	20-0-0	27-8-9 7-8-9		<u>35-6-0</u> 7-9-7	36-4-8 0-10-8	3
			5x8 =						Scale = 1:73.4
		8.00 12	- 7	5x8 =					
I		0.00 12		8					Ţ
			т2		72				
		3x8 🖉				3x8 <>			
Ņ		5x8 6 5 1	//	wø		9 2x4	//		5
10-11-2		and the second s	W6⊠ W8		wia	A Contraction of the second se			10-11-2
, i i i i i i i i i i i i i i i i i i i	5x6 ∕∕ 3x4 3 [.]					W12	T1 32		Ì
	4	W3 W4 W5	× /	//					
N.	1 ² 3 23	b	21	/ B6				1	4.002-
0=Z=2			6x8 =	B5 W 16	 14	38 ₁₃₁₅ 35	37 36		
	24 6x6	2x4	20 19 3x4 = 7x8 =	17		= 4x4 =	00	5x6	
	4x4 =		2x4			2x4 =			
	2-3-8	7-10-12 13-6	-0 15-6-0	20-6-0	25-6-0		35-6-0		
Plate Offsets (X Y)-	2-3-8	<u></u>	4 2-0-0	5-0-0	5-0-0	-3-41 [23:0-4-2 0-	10-0-0	e 0-4-01	
LOADING (psf)	SPAC		CSI.	DEFL.	in (lo			PLATES	GRIP
TCLL (roof) 20. Snow (Pf) 20.	Plate	Grip DOL 1.15 er DOL 1.15	TC 0.80 BC 0.98	Vert(LL) Vert(CT)	-0.61	17 >702 240 17 >450 180		MT20	244/190
FCDL 10. BCLL 0.	n * Rep S	Stress Incr YES IRC2021/TPI2014	WB 0.87 Matrix-AS	Horz(CT)		11 n/a n/a		Weight: 243	lb FT = 20%
3CDL 10. -UMBER-	0 0000			PRACINC				Weight. 243	10 11 - 2070
TOP CHORD 2x4				BRACING- TOP CHORD		al wood sheathing		ied.	
BOT CHORD 2x4				BOT CHORD	5-10-0 o	iling directly appli c bracing: 15-18			
WEBS 2x4	SP No.3 *Except*	2x4 SP No.1, B5,B7: 2x4 S	P 55	WEBS	1 Row a MiTek	recommends that	7-19, 8-18 Stabilizers a	nd required c	ross bracing
VEDGE	2x4 SP No.2					alled during truss tion guide.	erection, in a	iccordance wi	th Stabilizer
Right: 2x4 SP No.3									
Max	Horz 2=-214(LC 10)		-8 (min. 0-2-2)						
	Uplift2=-68(LC 12), Grav 2=1623(LC 20)								
		- All forces 250 (lb) or less							
6-7	=-2092/144, 7-8=-15	91/251, 4-31=-4773/335, 5-3 552/166, 8-9=-2406/157, 9-1							
	32=-2649/57 4=-159/1789, 23-24:	=-65/867, 22-23=-116/2484	, 21-22=-116/2485,	20-21=-398/0,					
	33=0/1598, 17-33=0 36=0/2121, 11-36=0)/1598, 17-34=0/1598, 14-3)/2121	4=0/1598, 13-14=0/	1598, 13-35=0/212	1,				
		/212, 19-21=0/1864, 7-21=- 3=-426/249, 3-23=-240/3125			49,				
NOTES- (10)									
		n considered for this design econd gust) Vasd=95mph;	TODI FO (DODI	L=5.0psf: h=23ft: C	at. II: Exp	B: Enclosed: MW	FRS	TH CAROL	
(envelope) gable 26-9-7 to 31-6-14	end zone and C-C E	Exterior(2E) -0-10-8 to 3-11	-2, Interior(1) 3-11-2	to 8-8-9, Exterior(2	2R) 8-8-9 1 off and right	to 26-9-7, Interior(1) INNOR	TH CARO	In the
members and for	ces & MWFRS for re	actions shown; Lumber DO	DL=1.60 plate grip D OL=1.15): Pf=20.0 r	OL=1.60	Plate DO	= 1 + 15) $ = 1 + 0$	Courte Va	OFESSION	A HANN
Cat B; Partially E	xp.; Ce=1.0; Cs=1.0	0; Ct=1.10 ater of min roof live load of	12.0 psf or 2.00 time	es flat roof load of 2	0 0 psf or	overbands		SEAL	
non-concurrent w	vith other live loads.	t water pending	12.0 psi oi 2.00 time	55 Hat 1001 10au 01 2	.0.0 psi 0i	rovernangs	11111	28147	
b) This truss has be	en designed for a 10).0 psf bottom chord live load	ad nonconcurrent wi	th any other live loa	ads.	tall by 1.0.0 mid-	will fit As .	WOINEER	S
between the bott	om chord and any ot	her members, with BCDL =	10.0psf.	tonding 400 lb m lf	igie 3-0-0	taii by 1-0-0 Wide	WIII IN AR	F K. MORE	minin
 Provide mechani This truss design 	cal connection (by of requires that a mini	econd gust) Vasd=95mph; Exterior(2E) -0-10-8 to 3-11- 14 to 36-4-8 zone; cantileve eactions shown; Lumber DC LL: Lum DOL=1.15 Plate D 0; Ct=1.10 ater of min roof live load of t water ponding. 0.0 psf bottom chord live load live load of 30.0psf on the b ther members, with BCDL = thers) of truss to bearing pla mum of 7/16" structural woo ottom chord. d read notes before use. This d s and proper incorporation of co temporary bracing to ensure sta general guidance regarding fabric and BCSI 1-03 Guide to <i>Good I</i>	ate capable of withs od sheathing be app	blied directly to the t	t at joint(s top chord) 2, 11. and 1/2" gypsum		6/5/2024	
sneetrock be app Warning !	design parameters and	anom chord. I read notes before use. This d	esign is based only upo	n parameters shown. a	nd is for an	individual building of	component to b	e installed and lo	baded
-Vertically. Applicabl	indard lity of design parameter	s and proper incorporation of co	omponent is responsibili	ity of building designer	- not truss	designer or truss en	gineer. Bracing	shown is for la	teral support
responsibility of the	building designer. For g	eneral guidance regarding fabric	cation, quality control, s	storage, delivery, erect	ion and bra	cing, consult ANSI/1	PI 1 National	Design Standard	for Metal
Plate Connected Wor D'Onofrio Drive, Ma	od Truss Construction	and BCSI 1-03 Guide to Good I	Practice for Handling, 1	Installing & Bracing o	f Metal Pla	te Connected Wood	Trusses from T	russ Plate Instit	ute, 583

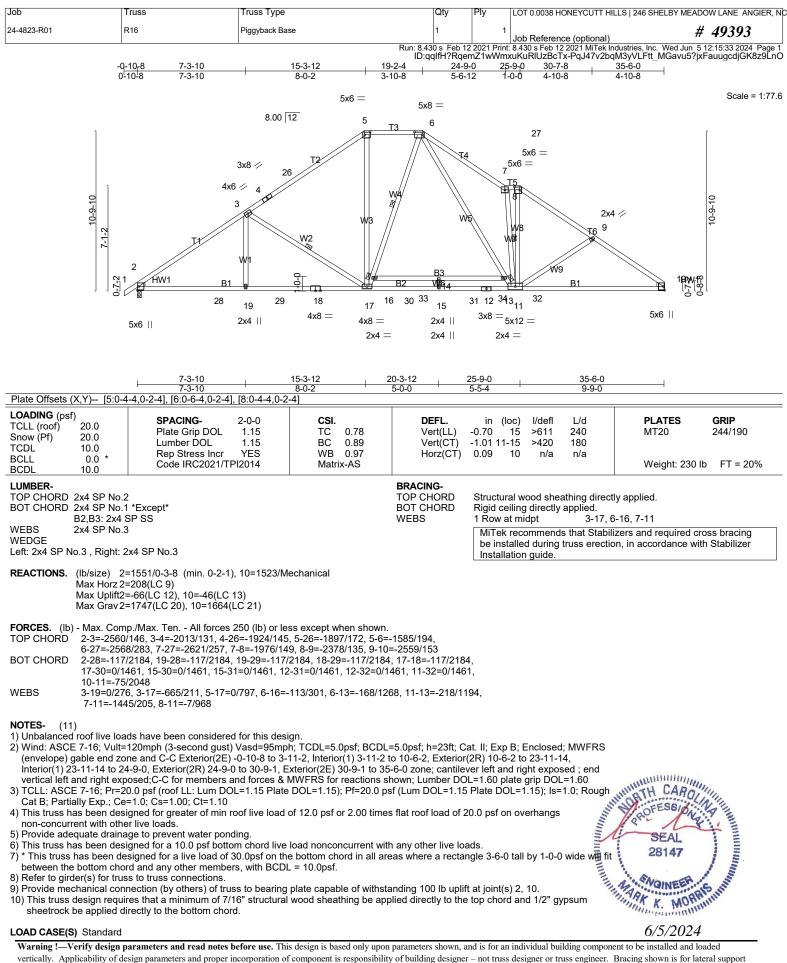
D'Onofrio Drive, Madison, WI 53719.

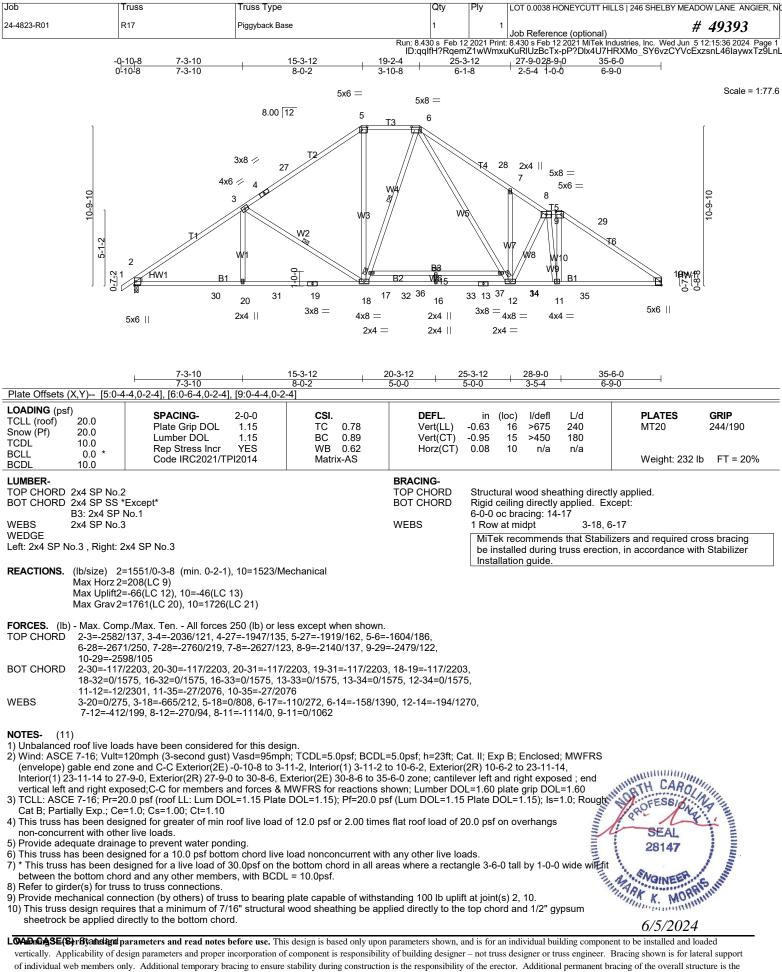

Job	Truss	Truss	Туре	Qty	Ply L	OT 0.0038 HONEYCUTT	HILLS 246 SHELBY MEADOW LANE ANGIER, NC
24-4823-R01	R14B	PIGG	BACK BASE	1 Dury 8 420 a Eab 4	1 0001 Drint 0	Job Reference (optional	# 49393
	-0-10-82-3-8	7-10-12	15-6-0	20-0-0	27-8-9	kuKuRIUzBcTx-95GhEq	Industries, Inc. Wed Jun 5 12:15:24 2024 Page 1 xyybwEvy39rbh9j00Zg5rczsCLYj2IWAz9LnX 35-6-0
	0-10-8 2-3-8	5-7-4	7-7-4 5x8 =	4-6-0	7-8-9	·	7-9-7 Scale = 1:73.8
			8.00 12 7	5x8 =			
	Ţ						Ī
		3x8 🕢	T2		12		
		5x8 🖉 6				3x8 <> 9 2x4 //	
	10-11-2	5	W6 🛛	W9/		10	10-11-2
	5x6 🕢		// W	в //	Wia		31 M
	3x4 4	30T1 W3 W4	W5			W12 \	
	N. 1 ²			B6 7 B5 W 15		р Ч – В7	
		(10 = 21)	6x8 =	8 ^{1732 36} 16	13 3	<u>1214</u> 34 35	
		6 =	3x4 = 7x8	B = 2x4	3x8 = 4	4x4 = <4 =	5x6
			2	2x4 = 2x4	25		
	2-3-8	7-10-12	<u>13-6-0</u> <u>5-7-4</u> <u>15-6-0</u> <u>2-0-0</u>	20-6-0 5-0-0	25-6-0 5-0-0	35-6	-0
Plate Offsets LOADING (ps	f)		-10,0-1-12], [7:0-5-8,0-1-1				
TCLL (roof) Snow (Pf)	20.0 SPA	CING- 2-0-0 e Grip DOL 1.15	CSI. TC 0.81	DEFL. Vert(LL)	in (loc -0.61 1	6 >699 240	PLATES GRIP MT20 244/190
TCDL BCLL	0.0 * Rep	ber DOL 1.15 Stress Incr YES e IRC2021/TPI2014	BC 0.98 WB 0.87 Matrix-AS	Vert(CT) Horz(CT)	-0.95 1 0.25 1		Weight: 242 lb FT = 20%
BCDL	10.0 0000			BRACING-			Wolght. 242 lb 1 1 = 2070
	2x4 SP No.2 *Except* T1: 2x4 SP No.1			TOP CHORD BOT CHORD	Rigid ceili	wood sheathing dire	
	2x4 SP No.2 *Except* B1: 2x6 SP No.2, B2,B3	3: 2x4 SP No.1, B5,I	37: 2x4 SP SS	WEBS	1 Row at		, 8-17
WEBS WEDGE	2x4 SP No.3 *Except* W2: 2x4 SP No.2				be instal	lled during truss erect	bilizers and required cross bracing tion, in accordance with Stabilizer
Right: 2x4 SP	No.3				Installati	ion guide.	
REACTIONS.	(lb/size) 2=1550/0-3-8 Max Horz 2=210(LC 11)	1526/0-3-8 (min. 0-2-1)				
	Max Uplift2=-68(LC 12) Max Grav2=1624(LC 2						
FORCES. (Ib) or less except when sho 3/344, 5-30=-4732/366, 5-				
	,		/163, 9-10=-2524/124, 10				
BOT CHORD	18-32=0/1593, 16-32=	0/1593, 16-33=0/15	25/2478, 20-21=-125/247 93, 13-33=0/1593, 12-13		23,		
WEBS		4/213, 18-20=0/185	9, 7-20=-104/1080, 7-18= =-426/249, 3-22=-252/311				
	5-22=-273/2054	∓10 - 1/1000, 10 - 12		, J-2J 1JUU/113,			
NOTES- (10 1) Unbalance)) d roof live loads have bee	en considered for th	s design.				and and a second s
2) Wind: ASC (envelope)	E 7-16; Vult=120mph (3- gable end zone and C-C	second gust) Vasd= Exterior(2E) -0-10-	s design. 95mph; TCDL=5.0psf; BC to 3-11-2, Interior(1) 3-1 tillever left and right expo mber DOL=1.60 plate gri Plate DOL=1.15); Pf=20 load of 12.0 psf or 2.00 t	CDL=5.0psf; h=23ft; C 1-2 to 8-8-9, Exterior(Cat. II; Exp B 2R) 8-8-9 to	; Enclosed; MWFRS 26-9-7, Interior(1)	TH CAROLINE
26-9-7 to 3 members a)-8-6, Exterior(2E) 30-8-6 nd forces & MWFRS for E 7 16: Br=20.0 pcf (roo	6 to 35-6-0 zone; ca reactions shown; Lu	ntilever left and right expo mber DOL=1.60 plate gri	psed ; end vertical left p DOL=1.60 0 pcf /l um DOL=1.16	and right ex	(posed;C-C for	and the the
Cat B; Part	ally Exp.; Ce=1.0; Cs=1. bas been designed for gr	.00; Ct=1.10	$P_{12} = D_{12} = 1.13$, $P_{12} = 20$	imes flat roof load of :	20.0 psf on i	overhands	28147
non-concur 5) Provide ade	rent with other live loads	.nt water ponding.				avoindingo	Non a l
6) This truss h 7) * This truss	as been designed for a has been designed for a	10.0 psf bottom cho a live load of 30.0ps	d live load nonconcurrent on the bottom chord in a	t with any other live lo Il areas where a recta	ads. ngle 3-6-0 ta	all by 1-0-0 wide will f	THE K MORALIN
between the 8) Provide me	e bottom chord and any o chanical connection (by	other members, with others) of truss to be	BCDL = 10.0psf. earing plate capable of wi	thstanding 100 lb upli	ft at joint(s)	2, 11.	SEAL 28147 6/5/2024 Denet to be installed and loaded A Bracing shown is for lateral support bracing of the overall structure is the National Design Standard for Metal es from Truss Plate Institute, 583
Continued on	e applied directly to the e applied directly to the bage 2.	no read fibres before u	se. This design is based only	upon parameters shown, a	and is for an in	nd i/2 gypsum ndividual building compo	onent to be installed and loaded
of individual v	plicability of design parameter veb members only. Addition	ers and proper incorpor al temporary bracing to	ation of component is respons ensure stability during constru-	ibility of building designe action is the responsibility	er – not truss d y of the erecto	lesigner or truss engineer r. Additional permanent	Bracing shown is for lateral support bracing of the overall structure is the
responsibility Plate Connect	of the building designer. For ed Wood Truss Construction	general guidance regar and BCSI 1-03 Guide	to Good Practice for Handlin	oi, storage, delivery, erecting, <i>Installing & Bracing o</i>	tion and braci of Metal Plate	ng, consult ANSI/TPI 1 Connected Wood Trusse	National Design Standard for Metal es from Truss Plate Institute, 583
D'Onotrio Dri	ve, Madison, WI 53719.						

Job	Truss	Truss Type	Qty	Ply	LOT 0.0038 HONEYCUTT HILLS 246 SH	ELBY MEADOW LANE ANGIER, NC	
24-4823-R01	R14B	PIGGYBACK BASE	1	1	Job Reference (optional)	# 49393	
Run 8 430 s Feb 12 2021 Print: 8 430 s Feb 12 2021 MiTek Industries Inc. Wed Jun 5 12:15:24 2024 Page 2							

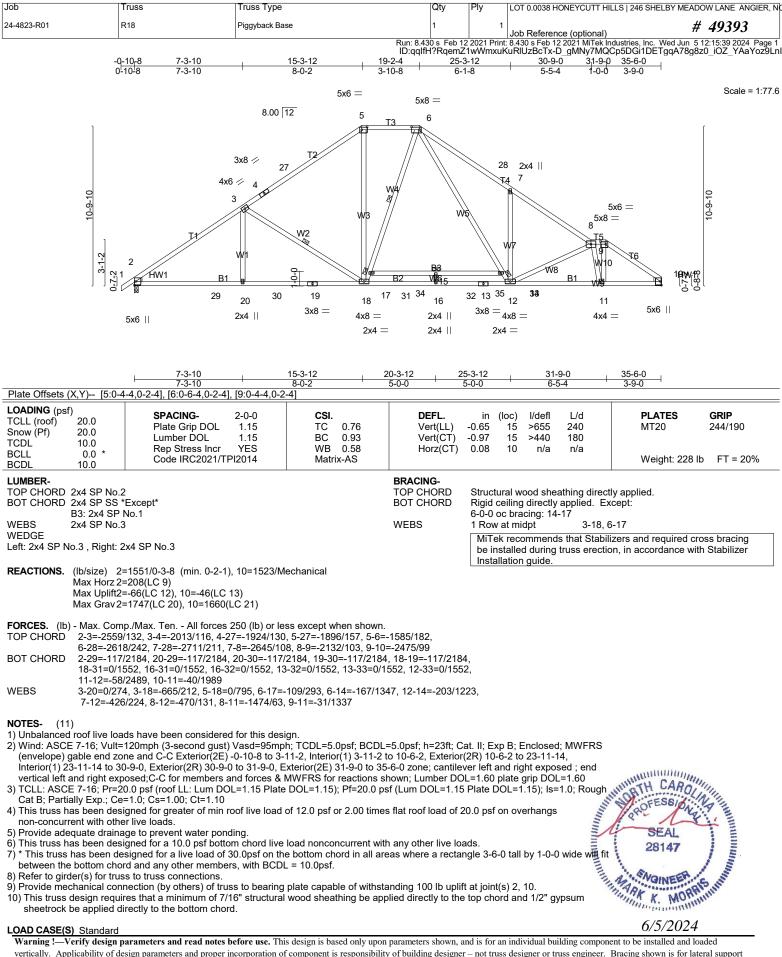

un: 8.430 s Feb 12 2021 Print: 8.430 s Feb 12 2021 MiTek Industries, Inc. Wed Jun 5 12:15:24 2024 Page 2 ID:qqIfH?RqemZ1wWmxuKuRIUzBcTx-95GhEqxyybwEvy39rbh9j00Zg5rczsCLYj2IWAz9LnX

LOAD CASE(S) Standard

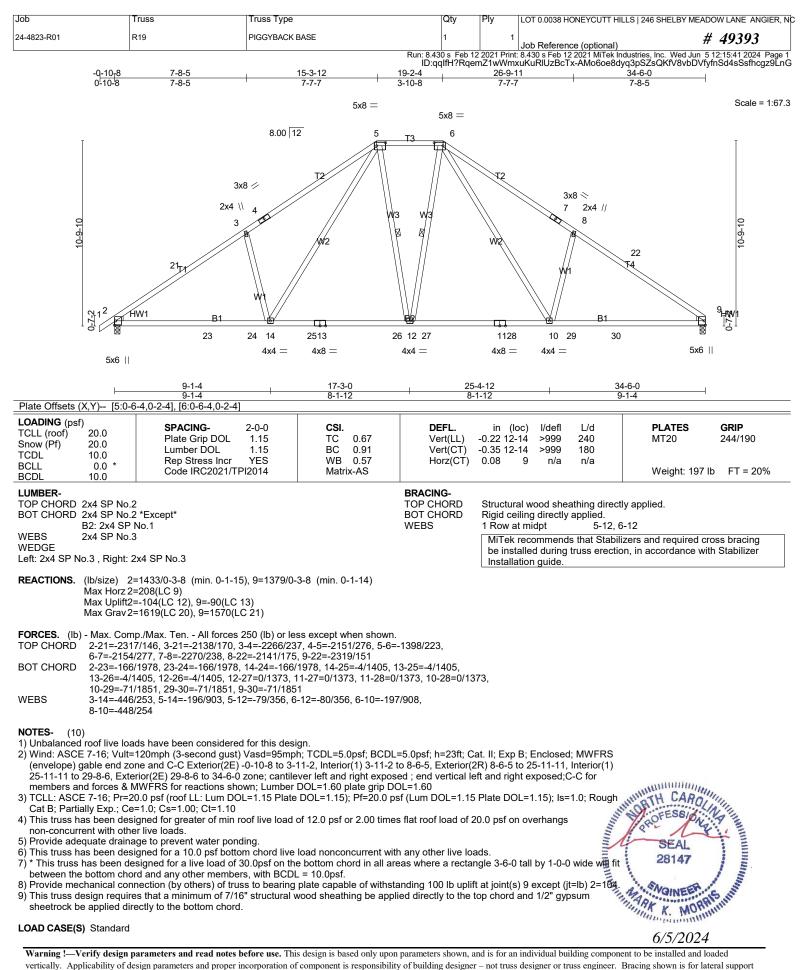


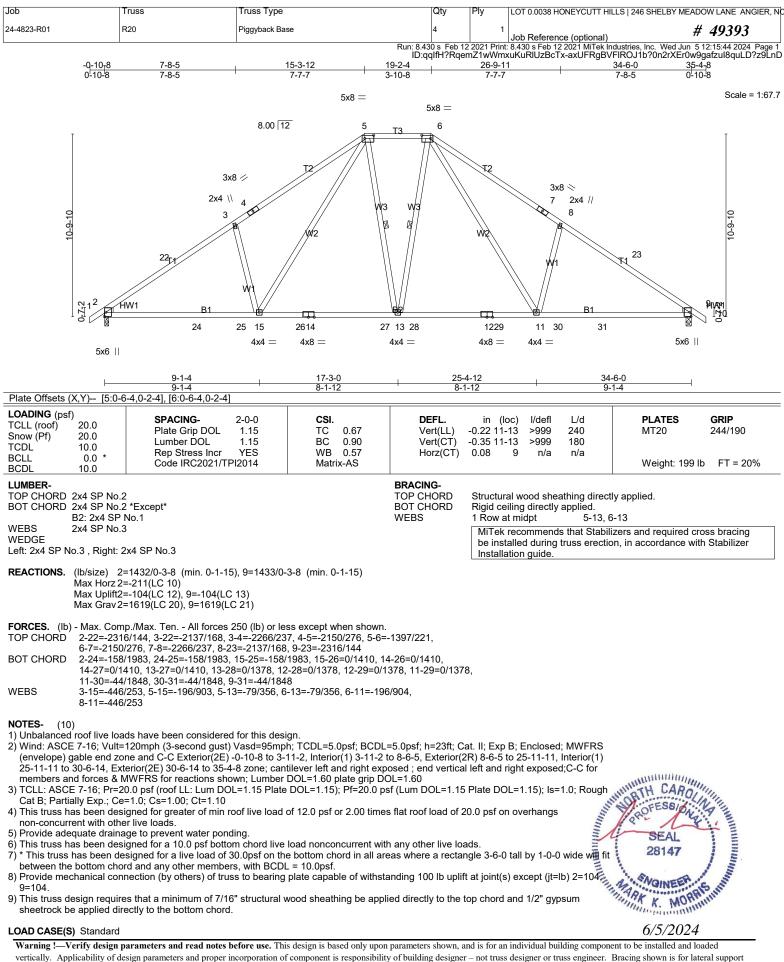


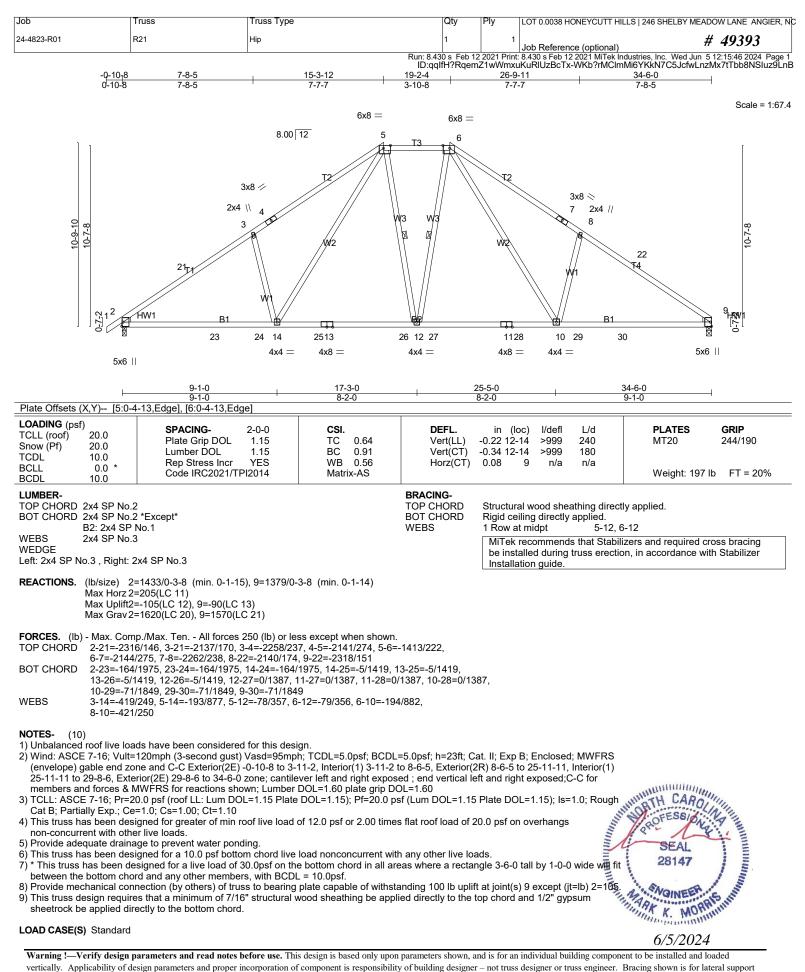
vertically. Applicability of design parameters and read notes before use. This design is based only upon parameters shown, and is to fair individual voluting component to be instanced and loaded of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 *National Design Standard for Metal Plate Connected Wood Truss Construction* and BCSI 1-03 Guide to *Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses* from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

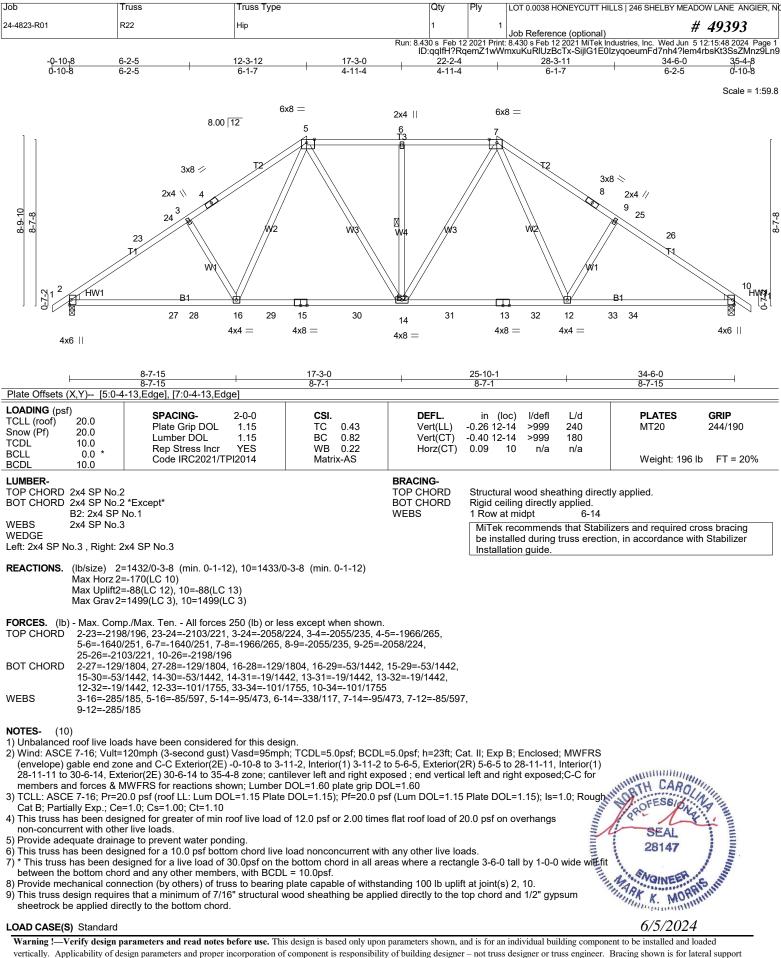


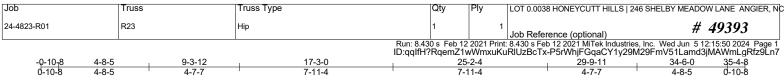
of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 *National Design Standard for Metal Plate Connected Wood Truss Construction* and BCSI 1-03 Guide to *Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses* from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

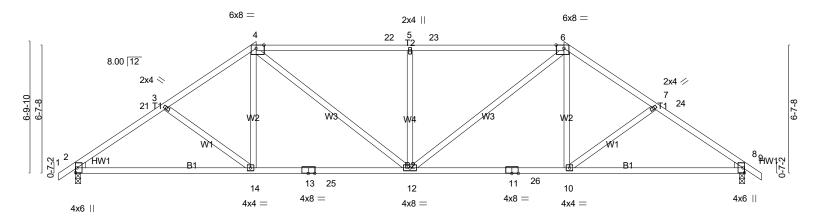


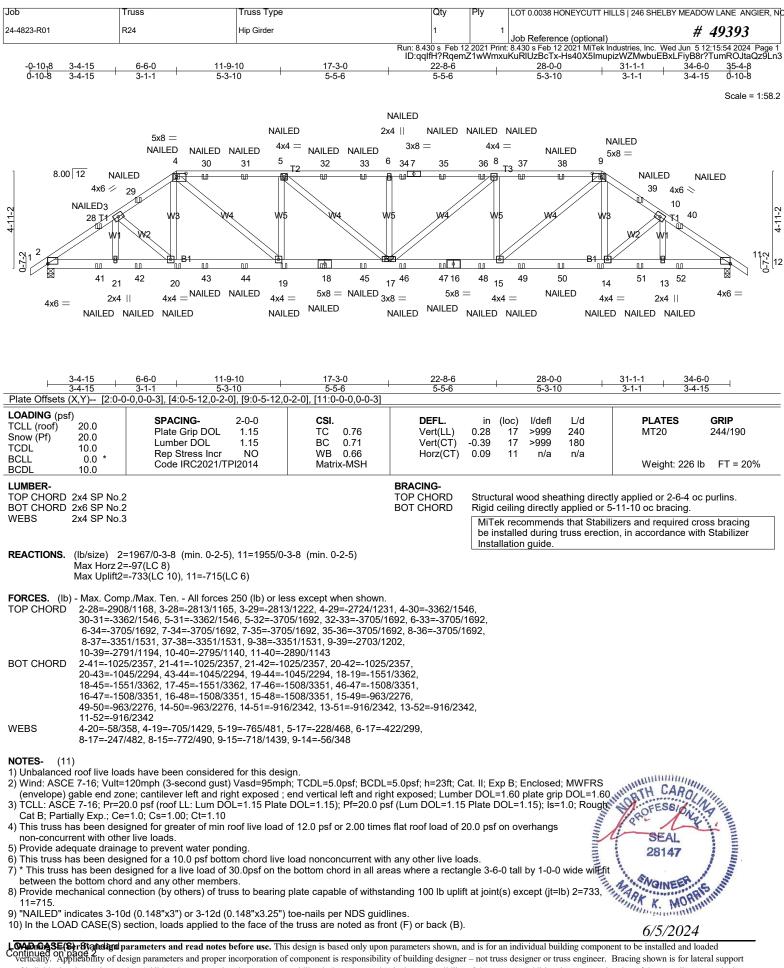



of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.




vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 *National Design Standard for Metal Plate Connected Wood Truss Construction* and BCSI 1-03 Guide to *Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses* from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.





Scale = 1:59.4

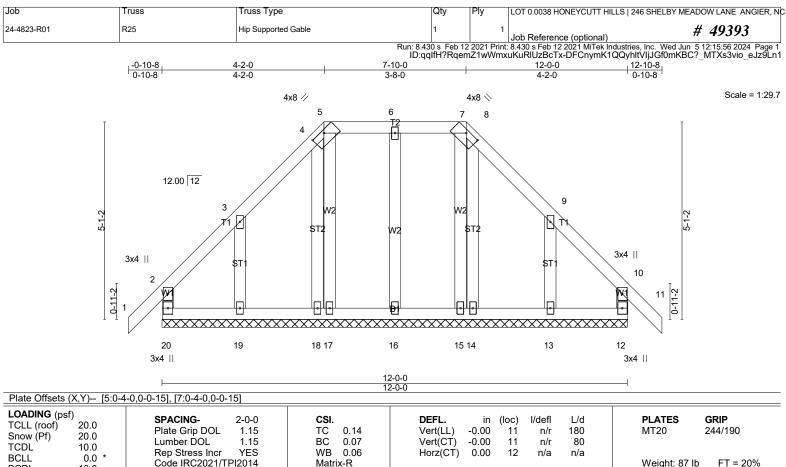
6/5/2024

	9-3-12	17-3-0 7-11-4		5-2-4 -11-4	34-6-0			
Plate Offsets (X,Y) [4:0-4	9-3-12 1-13,Edge], [6:0-4-13,Edge]	7-11-4	1	- -4	9-3-12			
LOADING (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2021/TPI2014	CSI. TC 0.67 BC 0.73 WB 0.44 Matrix-AS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) l/defl L/d -0.19 10-12 >999 240 -0.33 10-12 >999 180 0.09 8 n/a n/a	PLATES GRIP MT20 244/190 Weight: 186 lb FT = 20%			
LUMBER- TOP CHORD 2x4 SP No.: BOT CHORD 2x4 SP No.: WEBS 2x4 SP No.: WEDGE Left: 2x4 SP No.3 , Right:	2 3		BRACING- TOP CHORD BOT CHORD		rectly applied. abilizers and required cross bracing action, in accordance with Stabilizer			
Max Horz 2	REACTIONS. (Ib/size) 2=1432/0-3-8 (min. 0-1-11), 8=1432/0-3-8 (min. 0-1-11) Max Horz 2=-131(LC 10) Max Uplift2=-67(LC 12), 8=-67(LC 13)							

Verifically. Applied of the sign parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 *National Design Standard for Metal Plate Connected Wood Truss Construction* and BCSI 1-03 Guide to *Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses* from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 0.0038 HONEYCUTT HILLS 246 SHEL	BY MEADOW LANE ANGIER, NC
24-4823-R01	R24	Hip Girder	1	1	Job Reference (optional)	# 49393
		Run: 8	430 s Feb 13	2021 Print	8 430 s Feb 12 2021 MiTek Industries Inc. V	Ved Jun 5 12:15:54 2024 Page 2

ID:qqlfH?RqemZ1wWmxuKuRIUzBcTx-Hs40X5ImupizWZMwbuEBxLFiyB8r?TumROJtaQz9Ln3


LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-4=-60, 4-9=-60, 9-12=-60, 22-25=-20

Concentrated Loads (lb) Vert: 18=-23(B) 20=-23(B) 19=-23(B) 4=-40(B) 5=-40(B) 9=-40(B) 14=-23(B) 28=-37(B) 29=-10(B) 30=-40(B) 31=-40(B) 32=-40(B) 33=-40(B) 34=-40(B) 35=-40(B) 51=-59(B) 52=-42(B)

BCDL	10.0	0000	maante			110.g.m. 01 15 1 1 2070	
LUMBER-				BRACING-			
	2x4 SP No.2 2x4 SP No.3			TOP CHORD	Structural wood sheathing direct end verticals.	ly applied or 6-0-0 oc purlins, except	t
WEBS	2x4 SP No.3			BOT CHORD	Rigid ceiling directly applied or 6	-0-0 oc bracing.	
OTHERS	2x4 SP No.3					izers and required cross bracing on, in accordance with Stabilizer	

REACTIONS. All bearings 12-0-0.

(lb) - Max Horz 20=120(LC 11) Max Uplift All uplift 100 lb or less at joint(s) 20, 12, 17, 15, 16 except 19=-112(LC 12), 13=-109(LC 13) Max Grav All reactions 250 lb or less at joint(s) 20, 12, 18, 19, 14, 13, 17, 15, 16

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-(14)

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3E) -0-10-8 to 4-2-0, Corner(3R) 4-2-0 to 7-10-0, Corner(3E) 7-10-0 to 12-10-8 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry

Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

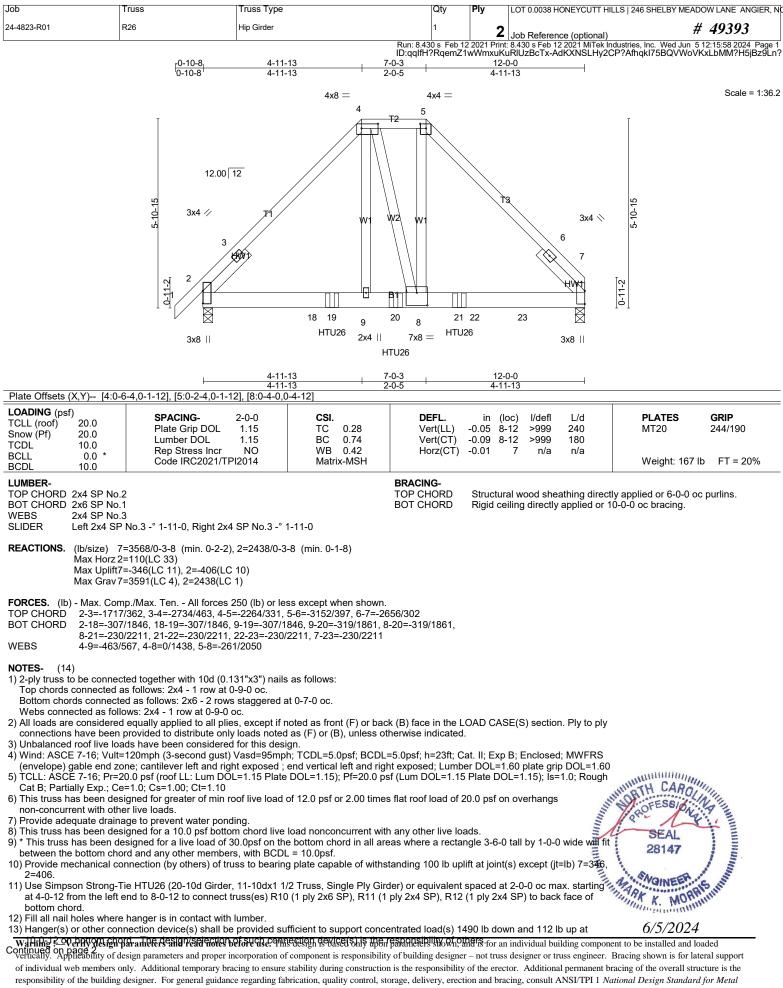
5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

6) Provide adequate drainage to prevent water ponding.

All plates are 2x4 MT20 unless otherwise indicated.

8) Gable requires continuous bottom chord bearing.

Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).


9) Truss to be tuny structure.
10) Gable studs spaced at 2-0-0 oc.
11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent where an ectangle 3-0-0 tan by 1.2) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-0-0 tan by 1.2) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-0-0 tan by 1.2) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-0-0 tan by 1.2) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-0-0 tan by 1.2) * This trust has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-0-0 tan by 1.2) * This trust has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-0-0 tan by 1.2) * This trust has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-0-0 tan by 1.2) * This trust has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-0-0 tan by 1.2) * This trust has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-0-0 tan by 1.2) * This trust has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-0-0 tan by 1.2) * This trust has been designed for a live load of 30.0psf on the bottom chord and any other members, with BCDL = 10.0psf.
13) Provide mechanical connection (by others) of trust to bearing plate capable of withstanding 100 lb uplift at joint(s) 20, 12, 17, 15, 16 except (jt=lb) 19=112, 13=109.

S/2024 Tot and Sc Warning !-- Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

AND COPES

NOINEE

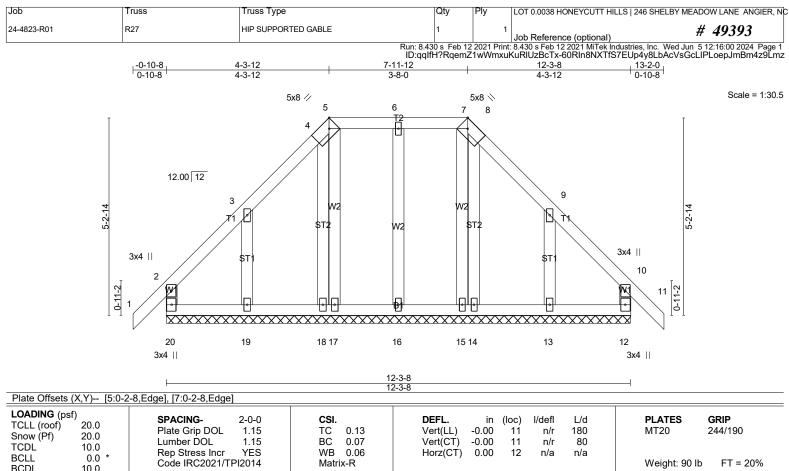
6/5/2024

D'Onofrio Drive Madison WI 53719

Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583

Job	Truss	Truss Type	Qty	Ply	LOT 0.0038 HONEYCUTT HILLS 246 SHE	LBY MEADOW LANE ANGIER, NC
24-4823-R01	R26	Hip Girder	1	2	Job Reference (optional)	# 49393
		Rup: 8.43	0 s Eeb 12	2021 Print	· 8 / 30 s Eeb 12 2021 MiTek Industries Inc. \	Ned Jun 5 12:15:50 2024 Page 2

Run: 8.430 s Feb 12 2021 Print: 8.430 s Feb 12 2021 MiTek Industries, Inc. Wed Jun 5 12:15:59 2024 Page 2 ID:qqlfH?RqemZ1wWmxuKuRIUzBcTx-equvaoMvjLKGcKEtORqMeOygGCrZgorVbf0eFez9Ln_


LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-4=-60, 4-5=-60, 5-7=-60, 10-14=-20

Concentrated Loads (lb) Vert: 19=-795(B) 20=-1399(B) 21=-1399(B) 23=-1399

REACTIONS. All bearings 12-3-8.

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-(14)

1) Unbalanced roof live loads have been considered for this design.

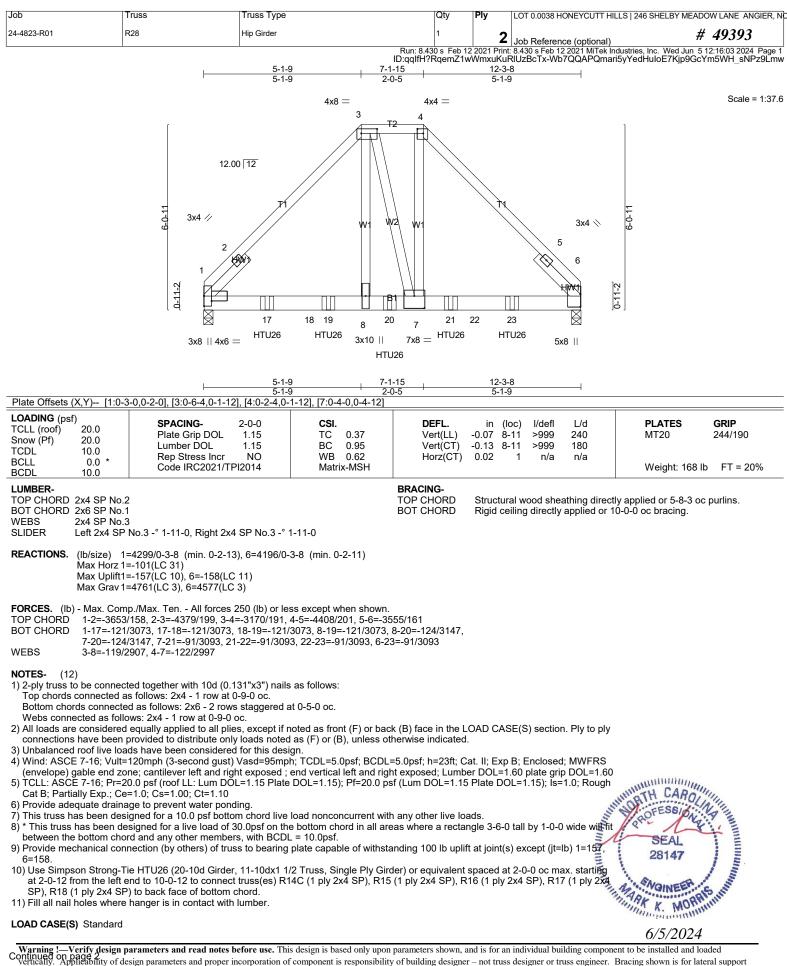
2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3E) -0-10-8 to 4-1-12, Corner(3R) 4-1-12 to 8-1-12, Corner(3E) 8-1-12 to 13-2-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry

Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

- 6) Provide adequate drainage to prevent water ponding.
- All plates are 2x4 MT20 unless otherwise indicated.


8) Gable requires continuous bottom chord bearing.

Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

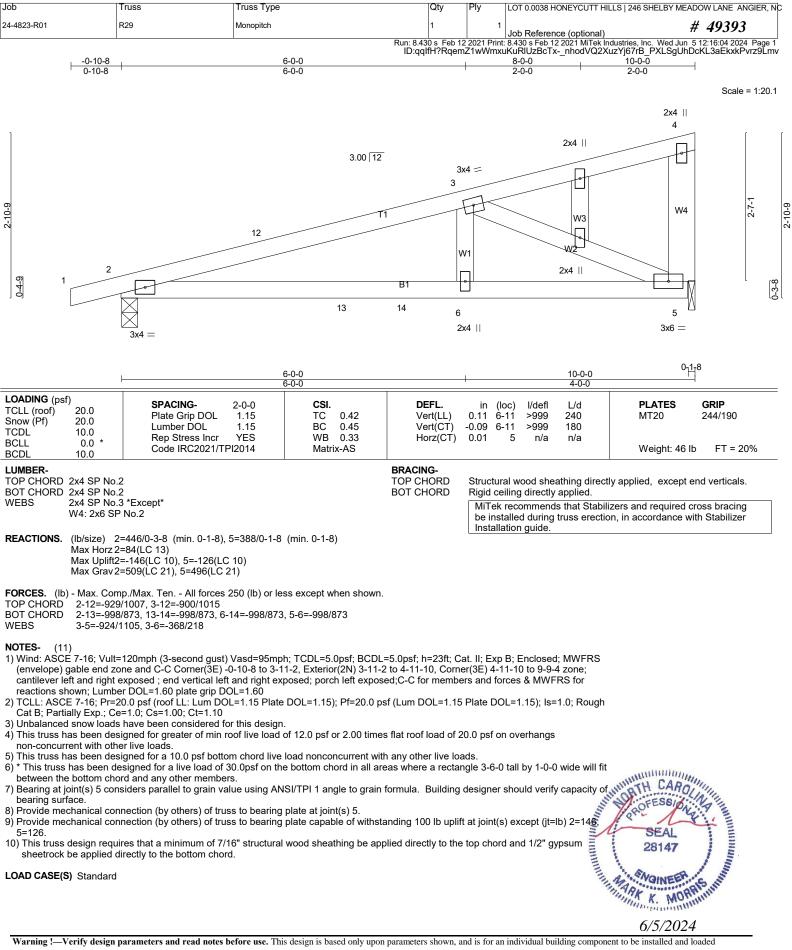
- 9) Truss to be tuing structure.
 10) Gable studs spaced at 2-0-0 oc.
 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with end.
 12) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-0-0 tail by a fit between the bottom chord and any other members, with BCDL = 10.0psf.
 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 20, 12, 17, 15, 18 except (jt=lb) 19=115, 13=113.

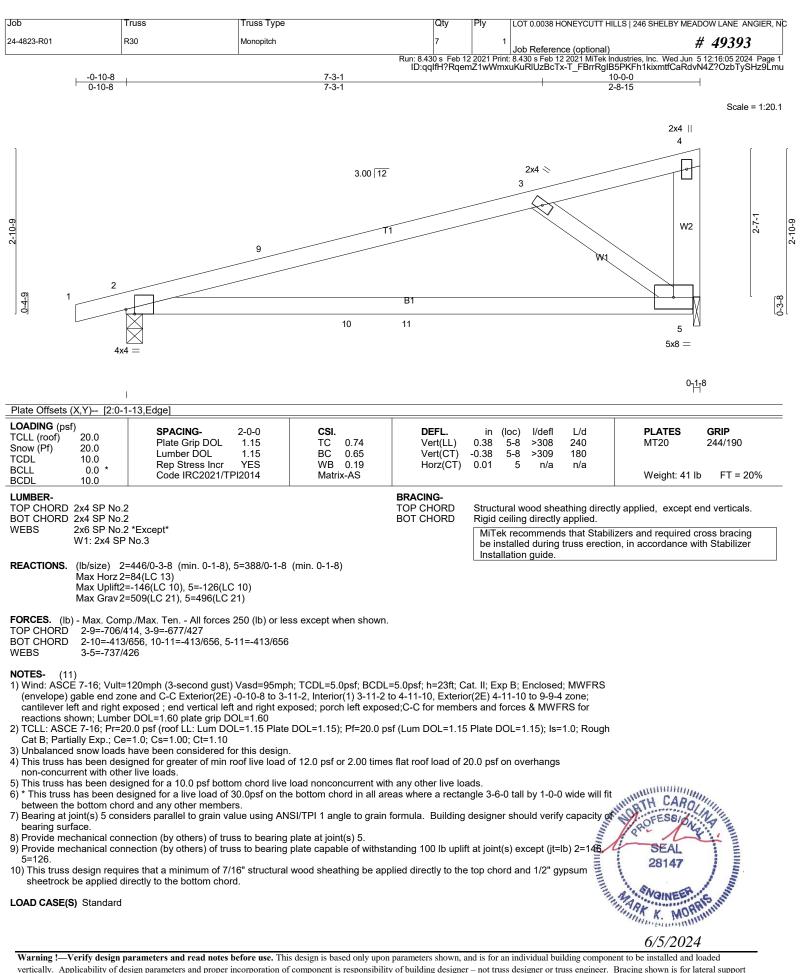
5/2024 NOINEE 6/5/2024

⁽lb) - Max Horz 20=123(LC 11) Max Uplift All uplift 100 lb or less at joint(s) 20, 12, 17, 15, 16 except 19=-115(LC 12), 13=-113(LC 13) Max Grav All reactions 250 lb or less at joint(s) 20, 12, 18, 19, 14, 13, 17, 15, 16

24-4823-R01 R28 Hip Girder 1	2	Job Reference (optional) # 49393

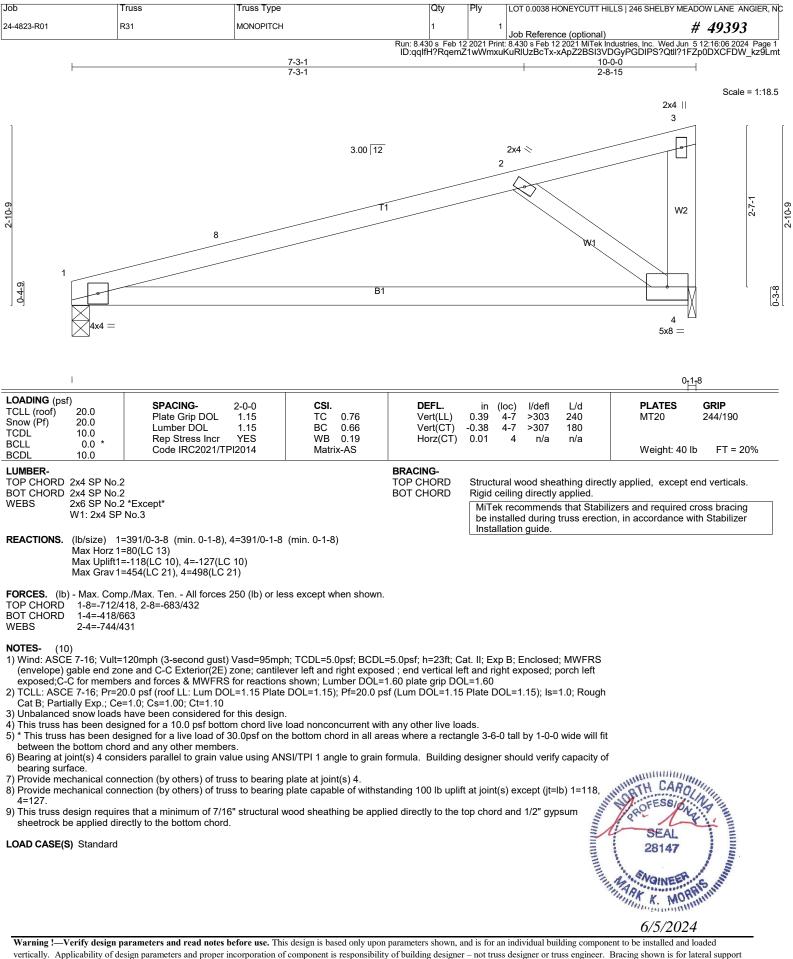
ID:qqlfH?RqemZ1wWmxuKuRIUzBcTx-Wb7QQAPQmari5yYedHuloE7Kjp9GcYm5WH_sNPz9Lmw

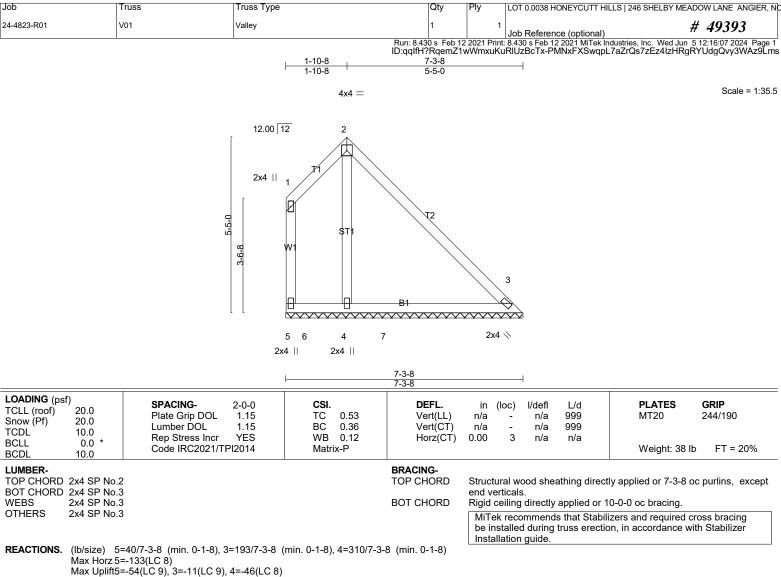

LOAD CASE(S) Standard


1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-3=-60, 3-4=-60, 4-6=-60, 9-13=-20 Concentrated Loads (Ib)

Vert: 17=-1505(B) 19=-1498(B) 20=-1503(B) 21=-1503(B) 23=-1503(B)


- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=146 5=126
- 10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.


LOAD CASE(S) Standard

Warning !-- Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

NOINEE

6/5/2024

Max Grav 5=79(LC 19), 3=210(LC 19), 4=449(LC 20)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES- (8

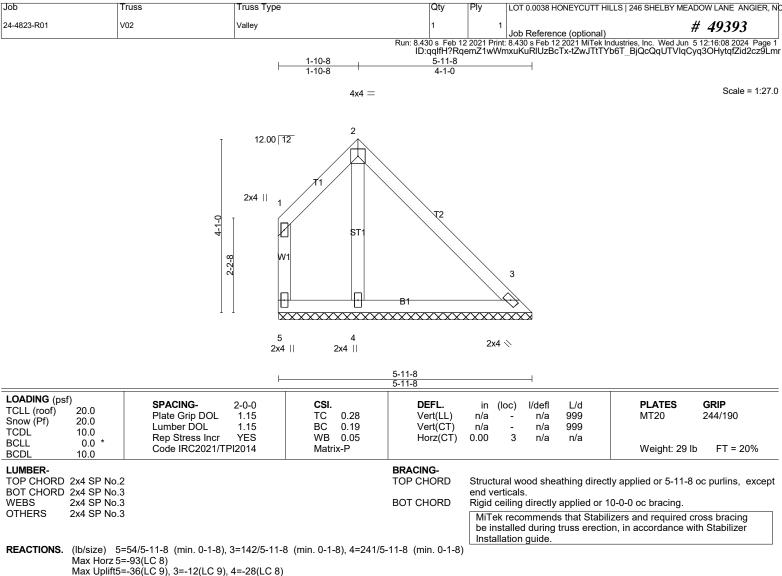
1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


6)* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit

between the bottom chord and any other members, with BCDL = 10.0psf.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 3, 4.

LOAD CASE(S) Standard

Max Grav 5=76(LC 19), 3=154(LC 23), 4=26(LC 20)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

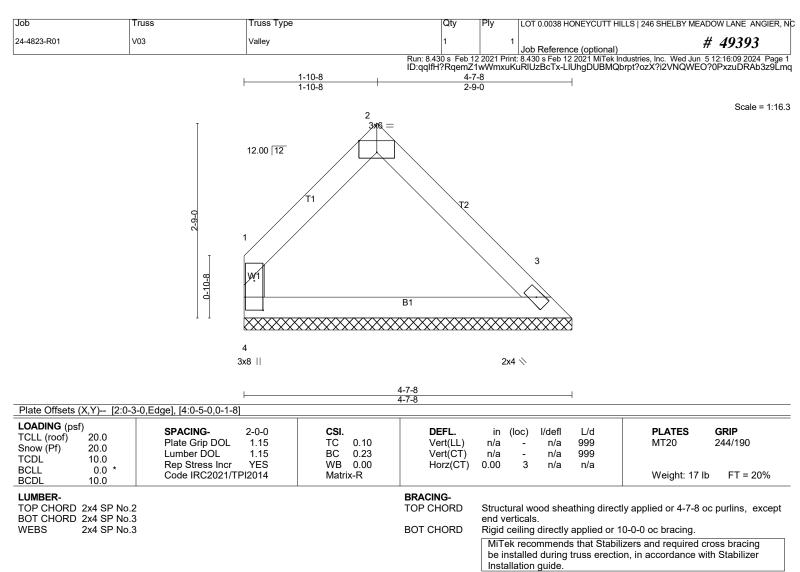
NOTES- (8

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough

Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) Gable requires continuous bottom chord bearing.


5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6)* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 3, 4.

LOAD CASE(S) Standard

REACTIONS. (lb/size) 4=165/4-7-8 (min. 0-1-8), 3=165/4-7-8 (min. 0-1-8) Max Horz 4=-54(LC 8) Max Uplift4=-13(LC 13), 3=-8(LC 13)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES- (8

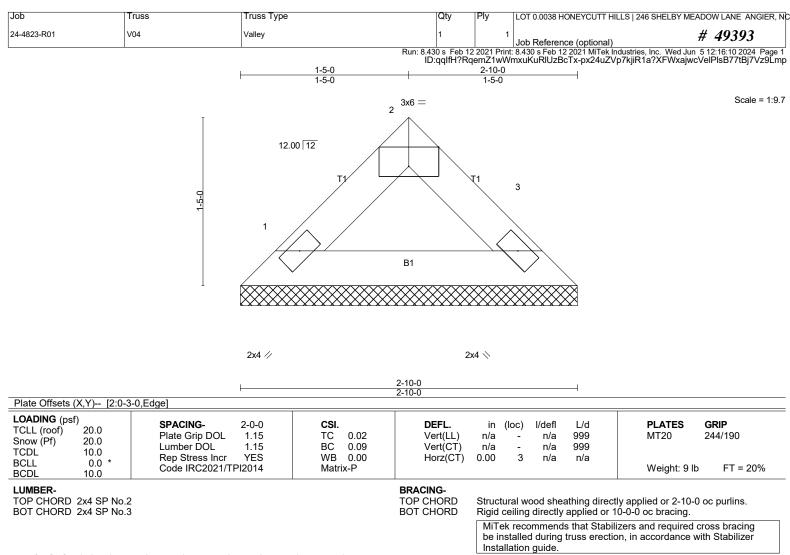
1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough

Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) Gable requires continuous bottom chord bearing.


5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 3.

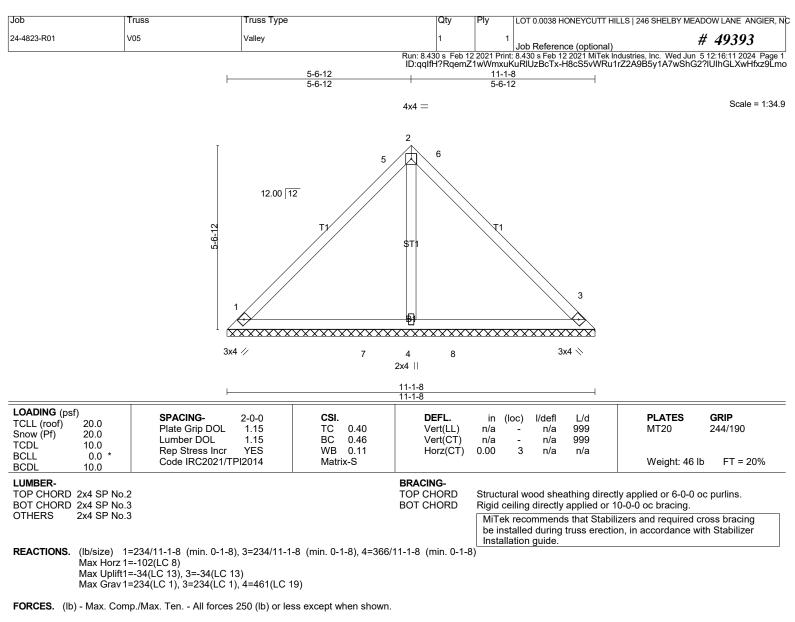
LOAD CASE(S) Standard

REACTIONS. (lb/size) 1=85/2-10-0 (min. 0-1-8), 3=85/2-10-0 (min. 0-1-8) Max Horz 1=-21(LC 8) Max Uplift1=-4(LC 13), 3=-4(LC 12)

NOTES- (8)

- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) Gable requires continuous bottom chord bearing.


- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

LOAD CASE(S) Standard

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

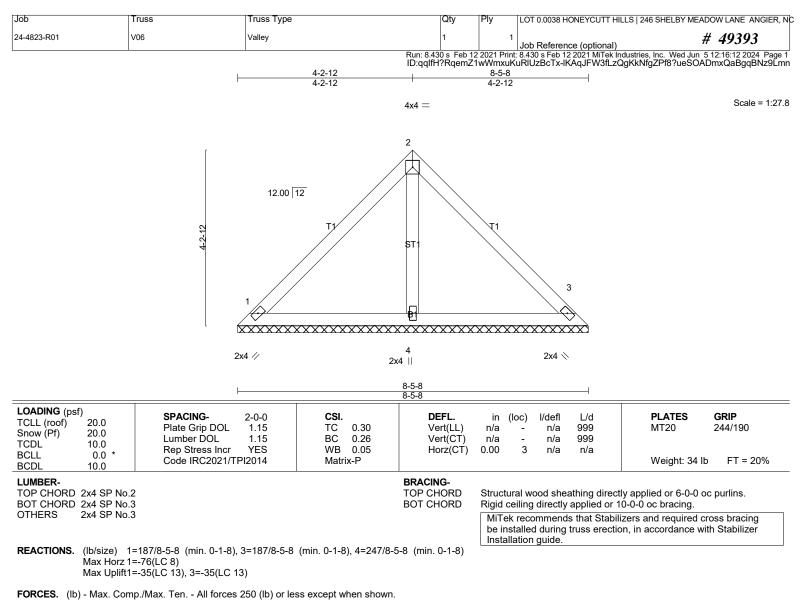
¹⁾ Unbalanced roof live loads have been considered for this design.

- NOTES-(8)
- 1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-4-4 to 5-1-13, Exterior(2R) 5-1-13 to 5-11-11, Exterior(2E) 5-11-11 to 10-9-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough

Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) Gable requires continuous bottom chord bearing.


5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

LOAD CASE(S) Standard

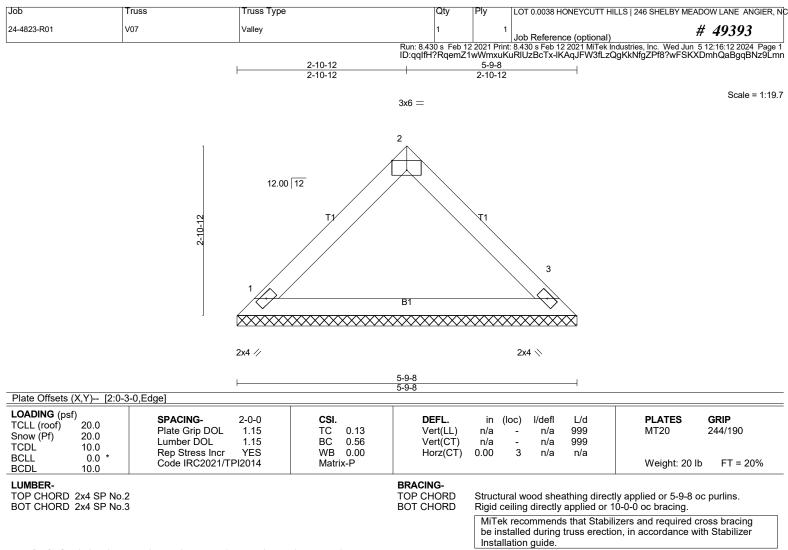
NOTES- (8)

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) Gable requires continuous bottom chord bearing.


5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6)* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

LOAD CASE(S) Standard

REACTIONS. (lb/size) 1=204/5-9-8 (min. 0-1-8), 3=204/5-9-8 (min. 0-1-8) Max Horz 1=-50(LC 8) Max Uplift1=-10(LC 12), 3=-10(LC 13)

NOTES- (8)

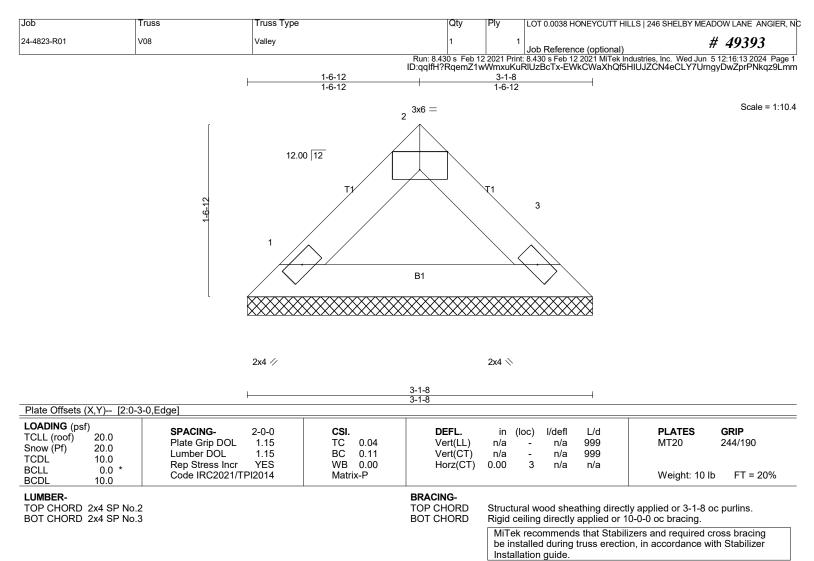
3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.


LOAD CASE(S) Standard

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

¹⁾ Unbalanced roof live loads have been considered for this design.

²⁾ Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

REACTIONS. (lb/size) 1=97/3-1-8 (min. 0-1-8), 3=97/3-1-8 (min. 0-1-8) Max Horz 1=24(LC 11) Max Uplift1=-5(LC 12), 3=-5(LC 13)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

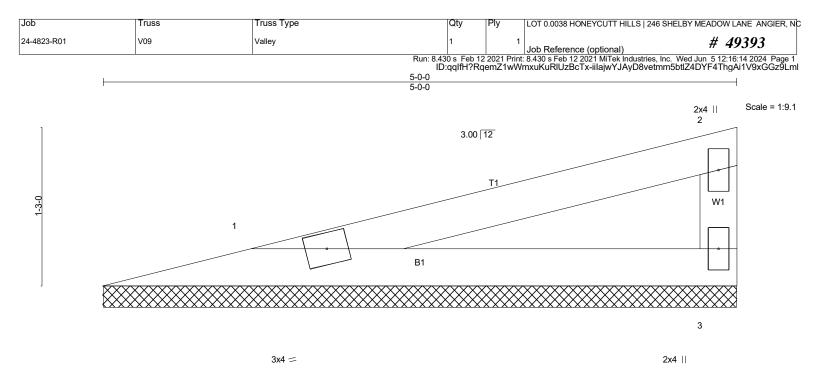
NOTES- (8)

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

LOAD CASE(S) Standard

¹⁾ Unbalanced roof live loads have been considered for this design.

LOADING (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2021/TPI2014	CSI. TC 0.33 BC 0.27 WB 0.00 Matrix-P	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) l/defl L/d n/a - n/a 999 n/a - n/a 999 0.00 3 n/a n/a	PLATES GRIP MT20 244/190 Weight: 14 lb FT = 20%
BCDL10.0LUMBER-TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.3WEBS2x4 SP No.3		IVIAU IX-P	BRACING- TOP CHORD BOT CHORD	Structural wood sheathing direc end verticals. Rigid ceiling directly applied or	tly applied or 5-0-0 oc purlins, except
					ilizers and required cross bracing ion, in accordance with Stabilizer

REACTIONS. (lb/size) 1=147/5-0-0 (min. 0-1-8), 3=147/5-0-0 (min. 0-1-8) Max Horz 1=29(LC 11) Max Uplift1=-18(LC 10), 3=-21(LC 14) Max Grav 1=184(LC 20), 3=184(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES- (

- Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.

4) Gable requires continuous bottom chord bearing.

- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6)* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit
- between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

LOAD CASE(S) Standard

