Mark Morris, P.E.

#126, 1317-M, Summerville, SC 29483 843 209-5784, Fax (866)-213-4614

The truss drawing(s) listed below have been prepared by **Atlantic Building Components** under my direct supervision based on the parameters provided by the truss designers.

AST #: 49394 JOB: 24-4823-F01 JOB NAME: LOT 0.0038 HONEYCUTT HILLS Wind Code: N/A Wind Speed: Vult= N/A Exposure Category: N/A Mean Roof Height (feet): N/A These truss designs comply with IRC 2015 as well as IRC 2018. *18 Truss Design(s)*

Trusses:

F101, F102, F103, F104, F105, F106, F107, F108, F109, F110, F111, F112, F113, F114, F115, F116, F117, F118

Warning !--- Verify design parameters and read notes before use.

Job	Truss	Truss Type	Qty	Ply	LOT 0.0038 HONEYCU	JTT HILLS 246 SHELBY MEA	ADOW LANE ANGIER, NC
24-4823-F01	F101	GABLE	2	1	I Job Reference (opti	onal)	# 49394
			Run: 8.430 s Feb	12 2021 Prin	t: 8.430 s Feb 12 2021 M	liTek Industries, Inc. Wed Jun	5 12:17:21 2024 Page 1
			ID.0DuvvOOM				0-1-8
							оЩо
							Scale = 1:22.4
3x4		3x4 =	=				
1 2	3 4	5 6	7		8 9	10	11 12
	•				•	•	
୍ଟ ₩1 ST1	ST1 S	ST1 ST1 W2 ST1	1 ST1		ST1 ST	1 ST1	ST1 BII 226
	•		B1				
			*****	\times			
24 23	22 2	1 20 19	18		17 16	15	14 13
3x4		3x4 =					
<u> </u>	<u>2-8-0</u> <u>4-0-0</u> 1-4-0 1-4-0	+ <u>5-4-0</u> + <u>6-8-0</u> + <u>1-4-0</u> +	8-0-0	<u>9-4-0</u> 1-4-0	<u> </u>	<u>12-0-0</u> 13-4- 1-4-0 1-4-	<u>-0 14-2-0 </u> 0 0-10-0
Plate Offsets (X,Y) [1:E	dge,0-1-8], [6:0-1-8,Edge],	[20:0-1-8,Edge], [24:Edge,0-1-8]					
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. i	n (loc)	l/defl L/d	PLATES GF	RIP
TCLL 40.0	Plate Grip DOL 1.00	TC 0.06 BC 0.01	Vert(LL) n/	a -	n/a 999 n/a 999	MT20 244	4/190
BCLL 0.0	Rep Stress Incr YES	WB 0.03	Horz(CT) -0.0	a - 0 13	n/a n/a		
BCDL 5.0	Code IRC2018/TPI2014	Matrix-SH				Weight: 59 lb	FT = 20%F, 11%E
LUMBER-			BRACING-				
TOP CHORD 2x4 SP No BOT CHORD 2x4 SP No	o.1(flat) o.1(flat)		TOP CHORD	Structu end ver	ral wood sheathing o rticals.	directly applied or 10-0-0) oc purlins, except
WEBS 2x4 SP No	p.3(flat)		BOT CHORD	Rigid c	eiling directly applied	d or 10-0-0 oc bracing.	
OTHERS 2x4 SP No	p.3(flat)						

REACTIONS. All bearings 14-2-0.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 24, 13, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES- (8-9)

1) All plates are 1.5x3 MT20 unless otherwise indicated.

2) Gable requires continuous bottom chord bearing.

3) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

4) Gable studs spaced at 1-4-0 oc.

5) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

7) CAUTION, Do not erect truss backwards.

8) Graphical web bracing representation does not depict the size, type or the orientation of the brace on the web. Symbol only indicates that the member must be braced.

9) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

LOAD CASE(S) Standard

Job	Truss	Truss Type		Qty	Ply	LOT 0.0038 HONEYCU	JTT HILLS 246 SHELBY	MEADOW LANE ANGIER, NO
24-4823-F01	F102	Floor		6	1	Job Reference (optio	onal)	# 49394
		I	F	Run: 8.430 s Feb 12 ID:oDuWOOI	2 2021 Print MhLxMOj2	: 8.430 s Feb 12 2021 M fwcp2aKqzMG6w-ioF	iTek Industries, Inc. Wed PI?ANzAsoU454qINpg	Jun 5 12:17:22 2024 Page 1 VuurlgCRdHzjg4dXfKz9Llh
1-3-0							· · · ·	<u> </u>
								Scale = 1:23.2
								1.5x3
₁ 3x8 =	3x4 =	3x4 =	1.5x3	3x4 =		3x4 =	4x4	4 = 1.5x3 =
		, I		3		, T		
		T	● B1		T			
K	14	13	12		11		10	S
3x4	3x8 =	3x4 =	3x8 =		3x4 =		4x4 =	6x6
1-6-0	4-0-0		<u>9-1-8</u> 5-1-8			<u>11-7-8</u> 2-6-0	13-11	<u>-2 14-2-</u> 2
Plate Offsets (X,Y)	[15:Edge,0-1-8], [16:0-1-8	3,0-0-8]	010			200	201	
LOADING (psf) TCLL 40.0 TCDL 10.0	SPACING- Plate Grip DOL Lumber DOL	2-0-0 CSI. 1.00 TC 1.00 BC	0.31 V 0.59 V	DEFL. in /ert(LL) -0.16 /ert(CT) -0.22	(loc) 12 11-12	l/defl L/d >999 480 >757 360	PLATES MT20	GRIP 244/190
BCLL 0.0 BCDL 5.0	Rep Stress Incr Code IRC2018/TP	YES WB I2014 Matri	0.58 H x-SH	lorz(CT) 0.04	9	n/a n/a	Weight: 71 lb	FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 S	P No.1(flat)		B T	RACING-	Structur	al wood sheathing o	directly applied or 6-0	0-0 oc purlins, except

TOP CHORD 2x4 SP No.1(flat) BOT CHORD 2x4 SP No.1(flat) WEBS 2x4 SP No.3(flat) TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.
 BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (Ib/size) 15=766/0-4-8 (min. 0-1-8), 9=760/0-7-14 (min. 0-1-8)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 1-15=-759/0, 1-2=-1026/0, 2-3=-2409/0, 3-4=-3018/0, 4-5=-3018/0, 5-6=-2739/0, 6-7=-1714/0

BOT CHORD 13-14=0/1931, 12-13=0/2851, 11-12=0/3028, 10-11=0/2416, 9-10=0/974

WEBS 1-14=0/1216, 2-14=-1104/0, 2-13=0/584, 3-13=-539/0, 5-11=-353/0, 6-11=0/394, 6-10=-857/0, 7-10=0/903,

7-9=-1212/0

NOTES- (4-5)

1) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

2) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

3) CAUTION, Do not erect truss backwards.

4) Graphical web bracing representation does not depict the size, type or the orientation of the brace on the web. Symbol only indicates that the member must be braced.

5) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

LOAD CASE(S) Standard

REACTIONS. (lb/size) 6=66/2-1-14 (min. 0-1-8), 4=31/2-1-14 (min. 0-1-8), 5=107/2-1-14 (min. 0-1-8)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES- (7-8)

1) Gable requires continuous bottom chord bearing.

2) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

3) Gable studs spaced at 1-4-0 oc.

- 4) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 6) CAUTION, Do not erect truss backwards.
- 7) Graphical web bracing representation does not depict the size, type or the orientation of the brace on the web. Symbol only indicates that the member must be braced.
- 8) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply LOT 0.0	038 HONEYCUTT HILLS 2	246 SHELBY MEADOW LANE ANGIER, NO
24-4823-F01	F104	Floor	3	1 Job Re	ference (optional)	# 49394
			Run: 8.430 s Feb ID:oDuWOOMhLx	12 2021 Print: 8.430 s I MOj2fwcp2aKqzMG	Feb 12 2021 MiTek Industrie i6w-A_ygCWNbw9wLhF	es, Inc. Wed Jun 5 12:17:23 2024 Page 1 f1J4K326R0k3adMmLsvkM5Bmz9Llg
1-3-0						<u>0-9-10</u> 0 ₁ 18
						Scale = 1:20.6
			1.5x3			1.5x3 =
1 ^{3x6} =	2	3	T1	5	6	7
	\sim					
			B1 loL			
	13	12	11	10)	9
	3x6 =		3x8 =			4x4 =

<u> </u>	4-0-0		<u>9-1-8</u> 5-1-8		11-7-8 2-6-0	<u>12-8-2</u> 1-0-10
Plate Offsets (X,Y)	[7:0-1-8,Edge], [14:Edge,0-1-8]					
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.30 BC 0.46 WB 0.51 Matrix-SH	DEFL. in (loc) Vert(LL) -0.10 11 2 Vert(CT) -0.14 11 2 Horz(CT) 0.03 8 3	l/defl L/d >999 480 >999 360 n/a n/a	PLATES MT20 Weight: 64 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 S BOT CHORD 2x4 S	P No.1(flat) P No.1(flat)		BRACING- TOP CHORD Structura end vert	al wood sheathing o icals.	directly applied or 6-	0-0 oc purlins, except

WEBS 2x4 SP No.3(flat)

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 14=683/0-4-8 (min. 0-1-8), 8=677/0-7-14 (min. 0-1-8)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 1-14=-676/0, 8-15=-676/0, 7-15=-675/0, 1-2=-897/0, 2-3=-2046/0, 3-4=-2415/0, 4-5=-2415/0, 5-6=-1896/0,

- 6-7=-635/0
- BOT CHORD 12-13=0/1685, 11-12=0/2370, 10-11=0/2303, 9-10=0/1454
- 1-13=0/1064, 2-13=-961/0, 2-12=0/441, 3-12=-396/0, 5-10=-497/0, 6-10=0/540, 6-9=-1000/0, 7-9=0/834 WEBS

NOTES-(5-6)

- 1) All plates are 3x4 MT20 unless otherwise indicated.
- 2) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 3) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 4) CAUTION, Do not erect truss backwards.
- 5) Graphical web bracing representation does not depict the size, type or the orientation of the brace on the web. Symbol only indicates that the member must be braced.
- 6) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	LOT 0.0038 HONEYCU	TT HILLS 246 SHELBY	MEADOW LANE ANGIER, NC
24-4823-F01	F105	Floor	1	1	Job Reference (optio	nal)	# 49394
			Run: 8.430 s Feb 12	2021 Print	: 8.430 s Feb 12 2021 Mi	Tek Industries, Inc. Wed	Jun 5 12:17:24 2024 Page 1
1-3-0				xiviOjz1wC	pzarqzinoow-iAwzo	0-4-12	0-4-14 0 ₁ 1 ₁ 8
							Scale = 1:23.0
		1.5x3				4x8 =	1.5x3 =
$1^{3x6} =$	2	3 4 _{T1}	5		6	7	8
			/	< /	$// \sim$		
		B1		T			
	45			10			
12 16	15	14 2v8 —		13		12	220 -
		3X0 —				4x4 —	3x8 —
1-6-0	4-0-0	9-1-8			11-7-8	12-1-1212-10-2	13-6-4 , 14-2-2 ,
1-6-0 Plate Offsets (X V) [8:0	2-6-0	5-1-8			2-6-0	0-6-4 0-8-6	0-8-2 0-7-14
	-1-0, Lugej, [17.Luge, 0-1-0]						
LOADING (psf) TCLL 40.0	SPACING- 2-0-0 Plate Grip DOI 1.00	CSI. TC 0.37	DEFL. in Vert(II) -0.06	(loc) 14-15	l/defl L/d >999 480	PLATES MT20	GRIP 244/190
TCDL 10.0	Lumber DOL 1.00	BC 0.32	Vert(CT) -0.08	14-15	>999 360		2
BCLL 0.0 BCDL 5.0	Rep Stress Incr YES Code IRC2018/TPI2014	WB 0.58 Matrix-SH	Horz(CT) 0.01	11	n/a n/a	Weight: 74 lb	FT = 20%F, 11%E
			PRACINC			0	
TOP CHORD 2x4 SP No.	.1(flat)		TOP CHORD	Structur	al wood sheathing d	irectly applied or 6-	0-0 oc purlins, except
BOT CHORD 2x4 SP No WEBS 2x4 SP No	.1(flat) 3(flat)		BOT CHORD	end vert	icals. iling directly applied	or 6-0-0 oc bracino	
			DOTOHORD	Trigid 00			
REACTIONS. (lb/size) Max Uplift	17=549/0-4-8 (min. 0-1-8), 9=-613(LC 1)	9=-613/2-1-14 (min. 0-1-8), 11=158	36/2-1-14 (min. 0-1	1-8), 10=	4/2-1-14 (min. 0-1-8	3)	
TOP CHORD 1-17=-542	np./Max. Ten All forces 2 2/0, 9-18=0/631, 8-18=0/62	50 (lb) or less except when shown. 9, 1-2=-687/0, 2-3=-1453/0, 3-4=-14	429/0, 4-5=-1429/0	, 5-6=-5 ⁻	15/0, 6-7=0/1087,		
7-8=0/418	B 1294 14 15-0/1597 12 14		42/0				
WEBS 7-11=-15	11/0, 1-16=0/815, 2-16=-72	28/0, 5-14=0/366, 5-13=-744/0, 6-13	=0/790, 6-12=-116	5/0, 7-12	2=0/756,		
7-10=0/12	221, 8-10=-791/0						
NOTES- (6-7)							
 All plates are 3x4 MT20 Provide mechanical col) unless otherwise indicate nnection (by others) of trus	d. s to bearing plate capable of withsta	nding 613 lb uplift	at ioint 9	1		
3) This truss is designed i	n accordance with the 2018	International Residential Code sec	tions R502.11.1 a	nd R802	10.2 and referenced	I	
4) Recommend 2x6 strong	gbacks, on edge, spaced a	t 10-0-0 oc and fastened to each tru	uss with 3-10d (0.1	31" X 3") nails. Strongbacks	to	
be attached to walls at	their outer ends or restraine	ed by other means.					
6) Graphical web bracing	representation does not de	pict the size, type or the orientation	of the brace on the	web. Sy	mbol only indicates	that	
the member must be br 7) Bearing symbols are or	aced.	s of a possible bearing condition. B	earing symbols are	not con	sidered in the struct	ural	
design of the truss to si	upport the loads indicated.	s of a possible bearing contaiton. D	caring symbols are	, 1101 0011			
LOAD CASE(S) Standard						WINNING CA	BOUND
						IT SPESS	A Nous
						in the	The state of the s
						SEAL	
						2814	
						11111	
						NOINE	ALS INT
						man K. N	10hrunn.

6/5/2024

Lab		T		T		Bha				
Job		Truss	Truss	Туре	Q	y Piy	LOT	0.0038 HONEYCU	TT HILLS 246 SHELBY	MEADOW LANE ANGIER, N
24-4823-F01		F106	Floor		3		1	Reference (optio	nal)	# 49394
					Run: 8.430 s	Feb 12 2021	Print: 8.430	s Feb 12 2021 Mi	Tek Industries, Inc. Wed	Jun 5 12:17:25 2024 Page 1
	120				ID.0Duw00	IVITILXIVIOJZIN	wepzakyzi			
	1-3-0									
										Scale = 1:24.7
										4x4 =
.4x6 =				1.5x3	_				_	1.5x3 =
1		2		3 4	5		6		/	8
			/ /			/ /		\searrow		
	\rightarrow		T		B1`	T.				
×	45		4.4	10		10		44		
	10	_	14	13		12		11		
	4X0	_		3X0 —						4x4 —
. 1-	-6-0	4-0-0		9-1-8			11-7-8	1	14-1-8	15-2-2
1- Dists Offs sta	-6-0	2-6-0		5-1-8			2-6-0		2-6-0	1-0-10
Plate Offsets	s (X,Y) ['	1:Edge,0-1-8], [8:0-1-8,	Edge], [16:Ed	1ge,0-1-8j						
LOADING (p	osf)	SPACING-	2-0-0	CSI.	DEFL.	in (loo	c) l/defl	L/d	PLATES	GRIP
TCLL 40	0.0	Plate Grip DOL	1.00 1.00	TC 0.39 BC 0.68	Vert(LL)	-0.21 12-1	3 >860 3 >623	480	MT20	244/190
BCLL C	0.0	Rep Stress Incr	YES	WB 0.63	Horz(CT)	0.05	9 n/a	n/a		
BCDL 5	5.0	Code IRC2018/T	PI2014	Matrix-SH					Weight: 76 lb	FT = 20%F, 11%E
LUMBER-					BRACING					

TOP CHORD 2x4 SP No.1(flat) BOT CHORD 2x4 SP No.1(flat) 2x4 SP No.3(flat) WFBS

TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (Ib/size) 16=821/0-4-8 (min. 0-1-8), 9=815/0-7-14 (min. 0-1-8)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 1-16=-813/0, 9-17=-814/0, 8-17=-812/0, 1-2=-1112/0, 2-3=-2651/0, 3-4=-3419/0, 4-5=-3419/0, 5-6=-3300/0, 6-7=-2437/0, 7-8=-778/0

BOT CHORD 14-15=0/2094, 13-14=0/3171, 12-13=0/3513, 11-12=0/3051, 10-11=0/1789

WEBS 1-15=0/1318, 2-15=-1200/0, 2-14=0/679, 3-14=-635/0, 3-13=0/299, 5-12=-261/0, 6-12=0/304, 6-11=-749/0, 7-11=0/791, 7-10=-1234/0. 8-10=0/1024

NOTES-(5-6)

1) All plates are 3x4 MT20 unless otherwise indicated.

2) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

3) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

4) CAUTION, Do not erect truss backwards.

5) Graphical web bracing representation does not depict the size, type or the orientation of the brace on the web. Symbol only indicates that the member must be braced.

6) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	LOT 0.0038 HONEYCUTT	HILLS 246 SHELBY MEADOW LANE ANGIER, NO
24-4823-F01	F107	Floor	1	1	Job Reference (ontional	# 49394
			Run: 8.430 s Feb 12 ID:oDuWOOMh	2021 Print: LxMOi2fwc	8.430 s Feb 12 2021 MiTek	Industries, Inc. Wed Jun 5 12:17:26 2024 Page 1 JUD4IwYiOb Cumfk3U0HcPZ5GJbiblo5z9Lld
1-3-0						<u>0-7-12</u> <u>1-1-14</u> 0 ₁ 1 ₆ 8
						Scale = 1:24.8
						State - 1.24.0
	274 —	2×4 — 1 5×2 II	3×4 —		3×4 —	2v6 — 1 5v2 II
1 ^{3x6} =	2	3 4 3 4	5 - 5		6	$7 8^{5x8} = 9$
			Bi to			
16	15	14	13		12	
3x4 4x	4 = 3x4	= 3x8 =	3x4	=	3x6 =	3x6 = 8x8
1.0.0	400	0.1.0			4 7 0	
1-0-0 1-6-0	2-6-0 2-6-0	9-1-0 5-1-8 01			2-6-0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
				(1)		
TCLL 40.0	Plate Grip DOL 1.00	TC 0.49	Vert(LL) -0.09	(IOC) I/ 14 >	999 480	MT20 244/190
TCDL 10.0 BCLL 0.0	Lumber DOL 1.00 Rep Stress Incr YES	BC 0.39 WB 0.62	Vert(CT) -0.13 Horz(CT) 0.02	14 > 11	•999 360 n/a n/a	
BCDL 5.0	Code IRC2018/TPI2014	Matrix-SH				Weight: 78 lb FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SP	No.1(flat)		BRACING- TOP CHORD	Structura	I wood sheathing dire	ctly applied or 6-0-0 oc purlins, except
BOT CHORD 2x4 SP WEBS 2x4 SP	No.1(flat) No.3(flat) *Except*		BOT CHORD	end verti Rigid cei	cals. ling directly applied or	10-0-0 oc bracing. Except:
W4: 2x4	SP No.2(flat)			6-0-0 oc	bracing: 11-12,10-11.	0 / 1
REACTIONS. (Ib/size) Max Up	17=618/0-4-8 (min. 0-1-8) lift10=-1132(LC 1)	10=-1132/1-7-14 (min. 0-1-8),	11=2149/1-7-14 (min.	0-1-8)		
FORCES (lb) - Max (Comp /Max Ten - All forces '	250 (lb) or less excent when sho	WD			
TOP CHORD 1-17=-	612/0, 1-2=-796/0, 2-3=-1760 -0/1401, 14, 15=-0/1002, 13, 14	0/0, 3-4=-1940/0, 4-5=-1940/0, 5	-6=-1234/0, 7-8=0/187	3		
WEBS 8-11=-	1286/0, 1-16=0/943, 2-16=-8	49/0, 2-15=0/328, 3-15=-284/0, 4	5-14=0/251, 5-13=-607	/0, 6-13=	0/654,	
6-12=-	1116/0, 7-12=0/1138, 7-11=-	1095/0, 8-10=0/2209				
NOTES- (6-7) 1) Provide mechanical	connection (by others) of trus	s to bearing plate capable of wit	thstanding 1132 lb upli	ft at joint 1	10.	
 This truss is designer standard ANSI/TPI 1 	ed in accordance with the 201	8 International Residential Code	e sections R502.11.1 a	nd R802.	10.2 and referenced	
 This truss has large at the bearings. Built 	uplift reaction(s) from gravity ding designer must provide fo	load case(s). Proper connectior r uplift reactions indicated.	is required to secure t	russ agai	nst upward movement	
4) Recommend 2x6 str	ongbacks, on edge, spaced a	t 10-0-0 oc and fastened to eac	ch truss with 3-10d (0.1	31" X 3")	nails. Strongbacks to	
5) CAUTION, Do not e	rect truss backwards.	point the size, type or the grients	tion of the brace on the	woh Su	mbal anly indicates the	at
the member must be	braced.			e web. Syl		a.
design of the truss to	o support the loads indicated.	is of a possible bearing conditio	n. Bearing symbols are	- NOL CONS	sidered in the structura	
LOAD CASE(S) Standa	ard				2	THE SET CAHOLAN
					IIIII	ART MARTIN
					min	SEAL
					E.	20147

SEAL 28147 6/5/2024

				-								
lob	Iruss	I russ Type		Qty	Ply	LOT 0.003	8 HONEYCUT	T HILLS 2	46 SHELBY	MEADOW	LANE ANG	ER, N
24-4823-F01	F108	Floor Supported Gable		1	1	Job Refe	rence (option	nal)		# 4	49394	
0-1-8			Run: 8.43 ID:oDu	0 s Feb 12 WOOMhL	2 2021 Prin LxMOj2fw	t: 8.430 s Fe cp2aKqzM	b 12 2021 MiT G6w-3ICB2เ	ek Industrie IQ6_OQn/	s, Inc. Wed \szoYwP?	I Jun 512: CyclGh2e	17:27 2024 Р elhjSqMKIKX	age (z9L
											Scale = 1	:37
1 2	3 4 5	3x8 FP= 3:	x4 =	12	13	14	15	16	17	18	3x4	
		ST 1 ST 1 W2 3 B1 C 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		ST1	ST1		ST1	ST1 B2g		STI STI		
38 37 3x4	36 35 34	33 32 31 3x4 =	30 29	28 2 3x8	27 26 3 FP=	25	24	23	22	21	20 3x4	
L			22-9-10									
Plate Offsets (X Y)	[10:0-1-8.Edge], [31:0-1-8.E	Edae]. [38:Edae.0-1-8]	22-9-10									
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2- Plate Grip DOL 1 Lumber DOL 1 Rep Stress Incr 1 Code IRC2018/TPI2	0-0 CSI. 1.00 TC 0.07 1.00 BC 0.01 'ES WB 0.03 014 Matrix-SH	DEFL. Vert(LL) Vert(CT) Horz(CT	in n/a) n/a) 0.00	(loc) - - 20	l/defl n/a S n/a S n/a	L/d 999 999 n/a	PLA MT2 Wei	TES 20 ght: 92 lb	GRIP 244/19 FT =) • 20%F, 11	— %E
LUMBER- TOP CHORD 2x4 SI BOT CHORD 2x4 SI WEBS 2x4 SI OTHERS 2x4 SI	⁻ No.1(flat) P No.1(flat) P No.3(flat) P No.3(flat)		BRACIN TOP CH BOT CH	G- ORD ORD	Structur end ver Rigid ce	ral wood s ticals. eiling direo	heathing di	rectly app or 10-0-0	olied or 6- oc bracin	0-0 oc p ng.	urlins, exce	∍pt

REACTIONS. All bearings 22-9-10.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 38, 20, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, 26, 25, 24, 23, 22, 21

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES- (8-9)

1) All plates are 1.5x3 MT20 unless otherwise indicated.

2) Gable requires continuous bottom chord bearing.

3) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

4) Gable studs spaced at 1-4-0 oc.

5) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

7) CAUTION, Do not erect truss backwards.

8) Graphical web bracing representation does not depict the size, type or the orientation of the brace on the web. Symbol only indicates that the member must be braced.

9) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	LOT 0.0038 HONEYCU	TT HILLS 246 SHELBY	MEADOW LANE ANGIER, NC
24-4823-F01	F109	Floor	13	1	Job Reference (ontio	nal)	# 49394
			Run: 8.430 s Feb 12 ID:oDuWOOMhLxM0	2021 Print: Dj2fwcp2a	8.430 s Feb 12 2021 Mi aKqzMG6w-?8KxTaSI	Tek Industries, Inc. Wec MW?gVPA6AfLRTHN	I Jun 5 12:17:29 2024 Page 1 Ih1IUf5mUMIHgpPPQz9Lla
0-1-8						C C	
∦ ⊢ 1-3-0			1-4-14			0-10-12	1-0-0 Scale = 1:38.0
1.5x3 =	1	.5x3 3x8 FP=	3x8 =			3x6 =	
	2 <u>11</u> 2 <u>11</u>	4 5 6 7	8		9 12	10 11	12 13
		B1 B1	W3	M		W4 B2 18	
26 25	24	23 22 3x8 =	21 20 3x6 =	19 3x6 ==	18 17 3x8 FP=	16 15 3x6 =	14 3x6 =
			0.10	0X0		exe	0,00
	13	3-1-14			19-3-10		23-2-2
Plate Offsets (X Y) [26 [·]	13 Edge 0-1-81	3-1-14	ł		6-1-12	ł	3-10-8
		29	DEEL in	(loc)	l/defl I/d		GPIP
TCLL 40.0	Plate Grip DOL 1.00	TC 0.36	Vert(LL) -0.06	23 >	>999 480	MT20	244/190
TCDL 10.0 BCLL 0.0	Lumber DOL 1.00 Rep Stress Incr NO	BC 0.33 WB 0.47	Vert(CT) -0.07 Horz(CT) 0.01	23 > 14	>999 360 n/a n/a		
BCDL 5.0	Code IRC2018/TPI2014	Matrix-SH				Weight: 117	b FT = 20%F, 11%E
LUMBER-	1(flat)		BRACING-	Structure	al wood sheathing d	irectly applied or 6-	0-0 oc purlins except
BOT CHORD 2x4 SP No	.1(flat)			end vert	icals.		
WEBS 2x4 SP NO			BOT CHORD	Rigia ce	ling directly applied	or 6-0-0 oc bracing].
REACTIONS. (Ib/size) Max Grav	26=364/0-7-14 (min. 0-1-8) 26=384(LC 3), 20=2029(LC), 20=2029/0-4-8 (min. 0-1-8), 14 ⊱1), 14=497(LC 4)	=435/0-4-8 (min. 0-1	-8)			
FORCES. (Ib) - Max. Co	mp./Max. Ten All forces 2	50 (lb) or less except when show	m.				
TOP CHORD 26-27=-3	81/0, 1-27=-380/0, 1-2=-49	5/0, 2-3=-1067/0, 3-4=-1118/0, 4- 10-11=-1556/0_11-12=-1077/0	-5=-1118/0, 5-6=-579/	237, 6-7	=-579/237,		
BOT CHORD 24-25=0/	921, 23-24=0/1189, 22-23=	-87/941, 21-22=-414/191, 20-21=	-1556/0, 19-20=-156	9/0, 18-1	9=-366/545,		
WEBS 8-20=-19	95/0, 1-25=0/562, 2-25=-52	20/0, 5-22=-481/0, 7-22=0/514, 7-	-21=-825/0, 8-21=0/95	53, 8-19=	0/992, 9-19=-927/0	,	
9-17=0/6	626, 10-17=-589/0, 10-16=0	/359, 11-15=-568/0, 12-15=0/562	2, 12-14=-781/0				
NOTES- (7-8) 1) Unbalanced floor live lo	oads have been considered	for this design.					
2) All plates are 3x4 MT2	0 unless otherwise indicate	d. 3 International Residential Code (sections P502 11 1 a	nd P802	10.2 and references	4	
standard ANSI/TPI 1.				iu 1.002.			
 Load case(s) 1, 2, 3, 4, use of this truss. 	, 5, 6 has/have been modifi	ed. Building designer must review	v loads to verify that the	ney are c	orrect for the intend	led	
 Recommend 2x6 stron be attached to walls at 	gbacks, on edge, spaced a their outer ends or restrain	t 10-0-0 oc and fastened to each ed by other means.	truss with 3-10d (0.1	31" X 3")	nails. Strongbacks	s to	
6) CAUTION, Do not erec	t truss backwards.	, nict the size, type or the orientati	on of the brace on the	web Su	mbol only indicates	that	
the member must be b	raced.			, web. 3y		unat	(iiiiittee)
 Bearing symbols are of design of the truss to s 	nly graphical representation upport the loads indicated.	s of a possible bearing condition	. Bearing symbols are	e not cons	sidered in the struct	ural MARTH LA	ROLINIU
LOAD CASE(S)						IIII POPESO	PNR S III
1) Dead + Floor Live (bala	anced): Lumber Increase=1	.00, Plate Increase=1.00				SEA	
Vert: 14-26=-7,	1-13=-67					2814	7] [
Concentrated Loads (lt Vert: 8=-800 1	9) 1=-350					THE STATE	A
2) Dead: Lumber Increase Uniform Loads (plf)	e=1.00, Plate Increase=1.00)				ARK	ORAL
Vert: 14-26=-7	1-13=-67					Min A. M	all the

6/5/2024

Job	Truss	Truss Type	Qty	Ply	LOT 0.0038 HONEYCUTT HILLS 246 SHELBY M	EADOW LANE ANGIER, NC
24-4823-F01	F109	Floor	13	1	Job Reference (optional)	# 49394

Run: 8.430 s Feb 12 2021 Print: 8.430 s Feb 12 2021 MiTek Industries, Inc. Wed Jun 5 12:17:29 2024 Page 2 ID:oDuWOOMhLxMOj2fwcp2aKqzMG6w-?8KxTaSMW?gVPA6AfLRTHNh1IUf5mUMIHgpPPQz9Lla

LOAD CASE(S) Concentrated Loads (lb) Vert: 8=-800 11=-350 3) 1st Dead + Floor Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 14-26=-7, 1-8=-67, 8-13=-13 Concentrated Loads (lb) Vert: 8=-800 11=-350 4) 2nd Dead + Floor Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 14-26=-7, 1-8=-13, 8-13=-67 Concentrated Loads (lb) Vert: 8=-218 11=-350 5) 3rd unbalanced Dead: Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 14-26=-7, 1-8=-67, 8-13=-13 Concentrated Loads (lb) Vert: 8=-800 11=-350 6) 4th unbalanced Dead: Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 14-26=-7, 1-8=-13, 8-13=-67 Concentrated Loads (lb) Vert: 8=-218 11=-350

> SEAL 28147 6/5/2024 Be installed and loaded

Job	Truss	Truss Type	Qty	Ply LOT 0.0	0038 HONEYCUTT HILL	S 246 SHELBY M	EADOW LANE ANGIER,	ΝС
24-4823-F01	F110	Floor	9 Run: 8.430 s Feb 12 2	1 Job Re 2021 Print: 8.430 s	eference (optional) Feb 12 2021 MiTek Ind	ustries, Inc. Wed Ju	# 49394	1
			ID.0DuvvOOmilexiii	Οjziwopzartqziv	190w-XXIAIIur Tuzuw	CITGZIIIITXIVIOIII	0-3-8	_11
1-3-0			1-4-14	1-0-4			0_4-0 Scale = 1:37	.6
$3x6 =$ $1 \qquad 2$	1.5 <u>T1 3 4</u>	x3 3x8 FP= 5 6 7	5x12 =	3x8 = 9 12	, 10 tot	11	4x8 = 12vd 3	Γ
	B1		W3 0	W	62			1-0-0
28 27	26 24 3x	5 24 22 8 = 3x8	3 22 21 FP= 4 3x6 =	20 19 4x10 =	18	17	$ \begin{array}{c} $	
Ļ	<u>13-</u> 13-1	<u>-14</u> -14	14-5-0 13 ₇ 3-6 0-1-8 1-1-10	15-8-2 + <u>15-6-10 ++</u> 1-1-10	22 6-	2-6-2 10-0	<u>23-2-2</u> 0-8-0	
Plate Offsets (X,Y) [14:	Edge,0-1-8], [28:Edge,0-1-8]	1-1-10	0-1-0				_
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING-1-4-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrNOCode IRC2018/TPI2014	CSI. TC 0.47 BC 0.41 WB 0.62 Matrix-SH	DEFL. in Vert(LL) -0.06 1 Vert(CT) -0.08 1 Horz(CT) 0.01	(loc) l/defl 17-18 >999 17-18 >999 14 n/a	L/d 480 360 n/a	PLATES MT20 Weight: 120 lb	GRIP 244/190 FT = 20%F, 11%E	-
LUMBER- TOP CHORD 2x4 SP No BOT CHORD 2x4 SP No WEBS 2x4 SP No W2: 2x4 SP	.1(flat) .1(flat) .3(flat) *Except* P No.2(flat)		BRACING- TOP CHORD	Structural wood end verticals. Rigid ceiling di	d sheathing directly rectly applied or 6-0	[,] applied or 6-0-(0-0 oc bracing.	0 oc purlins, except	
REACTIONS. (Ib/size) 2 Max Grav	28=330/0-3-14 (min. 0-1-8) 28=390(LC 3), 21=1928(LC	, 21=1928/0-4-8 (min. 0-1-8), 1 1), 14=1291(LC 4)	4=1229/0-4-8 (min. 0-1	1-8)				
FORCES. (lb) - Max. Cor TOP CHORD 1-28=-38 6-7=-600 80T CHORD BOT CHORD 26-27=0// 21-22=-2 16-17=0// WEBS 8-21=-18 1-27=0/5 8-22=0/1	np./Max. Ten All forces 2 6/0, 1-2=-496/0, 2-3=-1077/ /622, 7-8=0/1228, 8-9=-333 929, 25-26=-125/1200, 24-2 111/0, 20-21=-2123/0, 19-2 1430, 15-16=0/774, 14-15= 81/0, 10-17=-279/71, 11-17 88, 2-27=-528/3, 5-25=0/31 018, 8-20=0/2204, 9-20=-15	50 (lb) or less except when sho 41, 3-4=-1133/253, 4-5=-1133/2 /664, 9-10=-1885/22, 10-11=-16 (5=-419/959, 23-24=-854/214, 2 0=-171/1828, 18-19=-171/1828 0/774 41/305, 11-16=-566/0, 12-16= 4, 5-24=-547/0, 7-24=0/583, 7-2 964/0	wn. 253, 5-6=-600/622, 679/0, 11-12=-966/0 22-23=-854/214, , 17-18=0/1908, =0/416, 12-14=-1468/0, 22=-891/0,					
 NOTES- (6-7) 1) Unbalanced floor live lo 2) All plates are 3x4 MT20 3) This truss is designed is standard ANSI/TP11. 4) Recommend 2x6 strong be attached to walls at 5) CAUTION, Do not erece 6) Graphical web bracing the member must be bi 7) Bearing symbols are or design of the truss to s LOAD CASE(S) Standard 	bads have been considered 0 unless otherwise indicated in accordance with the 2018 gbacks, on edge, spaced at their outer ends or restraine t truss backwards. representation does not dej raced. nly graphical representation upport the loads indicated.	for this design. d. 9 International Residential Code 10-0-0 oc and fastened to eac ed by other means. Dict the size, type or the oriental s of a possible bearing condition	sections R502.11.1 an h truss with 3-10d (0.13 tion of the brace on the n. Bearing symbols are	d R802.10.2 a 31" X 3") nails. web. Symbol o not considered	nd referenced Strongbacks to only indicates that d in the structural	AND TH CAR		
1) Dead + Floor Live (bala Uniform Loads (plf) Vert: 14-28=-7, Concentrated Loads (lk Vert: 9=-935 12	anced): Lumber Increase=1. 1-13=-67)) 2=-870	00, Plate Increase=1.00			hustantitut	28147	A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.	

6/5/2024

Job	Truss	Truss Type	Qty	Ply	LOT 0.0038 HONEYCUTT HILLS 246 SHELBY M	EADOW LANE ANGIER, NC
24-4823-F01	F111	GABLE	1	1	Job Reference (optional)	# 49394

Run: 8.430 s Feb 12 2021 Print: 8.430 s Feb 12 2021 MiTek Industries, Inc. Wed Jun 5 12:17:32 2024 Page 1 ID:oDuWOOMhLxMOj2fwcp2aKqzMG6w-Qj?45bUFpw23GdrILT_Av?Jd9ilqzx_Bzd23?Iz9LIX

Scale = 1:13.0

	1	1-4-0	2-8	8-0	1	4-0-0		5-4-()	1	6-8-0	7-2-0
		1-4-0	1-4	4-0	1	1-4-0		1-4-()	1	1-4-0	0-6-0
Plate Of	fsets (X,Y)	[1:Edge,0-1-8], [4:0-1-8	3,Edge], [12:0	-1-8,Edge], [14:Edge,0-	1-8]						
LOADIN TCLL TCDL BCLL	G (psf) 40.0 10.0 0.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.00 1.00 YES	CSI. TC BC WB	0.06 0.01 0.03	DEFL. Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 8	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL	5.0	Code IRC2018/	FPI2014	Matri	ix-P	(-)					Weight: 33 II	FT = 20%F, 11%E
LUMBER TOP CH	R- ORD 2x4 SI	P No.1(flat) P No 1(flat)				BRACING- TOP CHOR	RD	Structu	iral woo	d sheathing	directly applied or 7	-2-0 oc purlins, except

WFBS 2x4 SP No.3(flat) 2x4 SP No.3(flat) OTHERS

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 7-2-0.

(lb) - Max Uplift All uplift 100 lb or less at joint(s) 8

Max Grav All reactions 250 lb or less at joint(s) 14, 8, 13, 12, 11, 10, 9

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-(8-9)

1) All plates are 1.5x3 MT20 unless otherwise indicated.

2) Gable requires continuous bottom chord bearing.

3) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

Gable studs spaced at 1-4-0 oc.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8.

6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced

standard ANSI/TPI 1. 7) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

8) Graphical web bracing representation does not depict the size, type or the orientation of the brace on the web. Symbol only indicates that the member must be braced.

9) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply L	OT 0.0038 HONEYCU	ITT HILLS 246 SHELE	BY MEADOW LANE ANGIER, NO
24-4823-F01	F112	Floor	5	1	oh Poforonoo (ontic	anal)	# 49394
			Run: 8.430 s Feb 12	2 2021 Print: 8	430 s Feb 12 2021 Mi	Tek Industries, Inc. We	ed Jun 5 12:17:32 2024 Page 1
1-3-0			ID.0Ddw001		1-5-8	43001 pw23001121_	
H					ŀ		
							Scale = 1:25.8
276 —		1.5x3				3x8 =	1.5x3 =
1 ^{3×0}	2	3 4 5 T1	1	6		7	8 T
2 W1					MA3.		WA 18 9
		B					
					, , , , , , , , , , , , , , , , , , ,		
16	15	14	13		12	₩ K	10
		3x8 =			3x6 =		
1-6-0	4-0-0	9-1-8		11-7-8	13-2-	-8 14-7-0	15-10-6
Plate Offsets (X V)	2-6-0 [8:0-1-8 Edge] [17:Edge 0-1-8	5-1-8	ł	2-6-0	1-7-0	0 1-4-8	1-3-6
				<i>(</i>) <i>(</i>) <i>(</i>)		DI 4750	
TCLL 40.0	Plate Grip DOL 1.00) CSI.) TC 0.30	Vert(LL) -0.05	(loc) l/c 14 >9	lefi L/d 199 480	MT20	GRIP 244/190
TCDL 10.0	Lumber DOL 1.00 Rep Stress Incr VES	BC 0.24	Vert(CT) -0.07	14 >9	99 360 n/a n/a		
BCDL 5.0	Code IRC2018/TPI2014	Matrix-SH	1012(01) 0.01		1/a 11/a	Weight: 81 I	b FT = 20%F, 11%E
LUMBER-			BRACING-				
TOP CHORD 2x4 SP BOT CHORD 2x4 SP	P No.1(flat) P No.1(flat)		TOP CHORD	Structural	wood sheathing d	lirectly applied or 6	6-0-0 oc purlins, except
WEBS 2x4 SF	P No.3(flat)		BOT CHORD	Rigid ceili	ng directly applied	l or 6-0-0 oc bracir	ng.
REACTIONS. (Ib/size	e) 17=395/0-4-8 (min. 0-1-8)	, 9=-348/0-7-14 (min. 0-1-8), 11=10	93/0-4-8 (min. 0-1	-8)			
Max U Max G	lplift9=-409(LC 3) Srav 17=396(LC 3) 11=1093(LC			,			
	12V17-000(EC 0), 11-1000(EC						
FORCES. (lb) - Max. TOP CHORD 1-17=	. Comp./Max. Ten All forces 2 =-391/0, 9-18=0/415, 8-18=0/4	250 (lb) or less except when shown. 14, 1-2=-505/0, 2-3=-1101/0, 3-4=-1	174/0, 4-5=-1174/0	0, 5-6=-657	/0, 6-7=0/369,		
7-8=()/549 3-0/045 14 15-0/1233 13 14		/0 10 11- 1100/0				
WEBS 7-11=	=-1062/0, 1-16=0/599, 2-16=-5	37/0, 5-13=-434/0, 6-13=0/467, 6-12	2=-791/0, 7-12=0/9	41, 7-10=0	/769, 8-10=-666/0	I	
NOTES- (7-8)							
1) Unbalanced floor liv	ve loads have been considered	d for this design.					
3) Provide mechanica	al connection (by others) of trus	s to bearing plate capable of withsta	anding 100 lb uplifi	t at joint(s) e	except (jt=lb) 9=40	09.	
 This truss is design standard ANSI/TPI 	ned in accordance with the 201 1.	8 International Residential Code see	ctions R502.11.1 a	and R802.10	0.2 and reference	d	
5) Recommend 2x6 s	trongbacks, on edge, spaced a	at 10-0-0 oc and fastened to each tr	uss with 3-10d (0.	131" X 3") n	ails. Strongbacks	s to	
6) CAUTION, Do not	erect truss backwards.	led by other means.					
 Graphical web brac the member must be 	cing representation does not de	epict the size, type or the orientation	of the brace on th	e web. Sym	bol only indicates	s that	
8) Bearing symbols a	re only graphical representation	ns of a possible bearing condition. B	earing symbols ar	e not consi	dered in the struct	tural	lite.
design of the truss	to support the loads indicated.					WHUNTH C.	ABO
LOAD CASE(S) Stand	dard					IN OFES	SID Nollin
						in lar	and the second s

Job	Truss	Truss Type	Qtv	Plv	LOT 0 0038 HONEYCU	TT HILLS 246 SHELBY	MEADOWLANE ANGIER NO
24-4823-F01	F113	Floor	1	, 1			# 10301
			Run: 8 430 s. Feb 12 :	2021 Print	Job Reference (optic	nal) Tek Industries, Inc., Wed	# 47374
			ID:oDuWOOMhLxM	Oj2fwcp2	2aKqzMG6w-uvZSJxV	/taEAwunQyuAWPSE	SkB52OilvLCHocYBz9LIW
0-1-8							
H ⊢ <u>1-3-0</u>					<u>⊢ 1-4-1</u>	4	1-0-6 0-1-8 Scale = 1:26.1
1.5x3 =		1.5x3				3x8 =	1.5x3 =
1	2	3 4	5 1	6		7	8
			B1		W3		
					&		
12 16	15	14	13		12	₩¥S	10
		3x8 =			4x4 =		
<u> </u>	4-0-0	9-1-8		<u>11-7-</u> 2-6-(8 13-1-) 1-6-	<u>-14 14-6-6</u> -6 1-4-8	15-9-12
Plate Offsets (X,Y) [8:0)-1-8,Edge], [17:Edge,0-1-8]	010		200	, 10		
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 DCDL 5.0	SPACING- 1-4-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES	CSI. TC 0.30 BC 0.24 WB 0.44	DEFL. in Vert(LL) -0.05 Vert(CT) -0.07 Horz(CT) 0.01	(loc) 14 14 11	l/defl L/d >999 480 >999 360 n/a n/a	PLATES MT20	GRIP 244/190
BCDL 5.0		Maurix-SH				weight. ou b	FI-20%F, 11%E
LUMBER- TOP CHORD 2x4 SP No BOT CHORD 2x4 SP No WEBS 2x4 SP No	o.1(flat) o.1(flat) o.3(flat)		BRACING- TOP CHORD BOT CHORD	Structura end vert Rigid ce	al wood sheathing d icals. iling directly applied	irectly applied or 6- or 6-0-0 oc bracing	0-0 oc purlins, except g.
REACTIONS. (Ib/size) Max Uplifi Max Grav	17=390/0-7-14 (min. 0-1-8) 9=-405(LC 3) 17=390(LC 3), 11=1087(LC	, 9=-344/0-7-14 (min. 0-1-8), 11 1)	=1087/0-4-8 (min. 0-1	-8)			
FORCES. (lb) - Max. Co TOP CHORD 17-18=-3 6-7=0/3	mp./Max. Ten All forces 2 387/0, 1-18=-386/0, 9-19=0/4 87_7-8=0/545	50 (lb) or less except when show 111, 8-19=0/410, 1-2=-504/0, 2-3	wn. 3=-1094/0, 3-4=-1163/0	0, 4-5=-1	1163/0, 5-6=-642/0,		
BOT CHORD 15-16=0, WEBS 7-11=-10	/939, 14-15=0/1225, 13-14=)57/0, 1-16=0/573, 2-16=-53	0/995, 12-13=0/262, 11-12=-118 1/0, 5-13=-437/0, 6-13=0/470, 6	32/0, 10-11=-1188/0 5-12=-791/0, 7-12=0/91	8, 7-10=	=0/762, 8-10=-660/0		
NOTES- (7-8) 1) Unbalanced floor live I 2) All plates are 3x4 MT2 3) Provide mechanical cc 4) This truss is designed standard ANSI/TPI 1. 5) Recommend 2x6 stror be attached to walls at 6) CAUTION, Do not ereing 7) Graphical web broging	oads have been considered 0 unless otherwise indicated onnection (by others) of truss in accordance with the 2018 ugbacks, on edge, spaced at their outer ends or restrained truss backwards.	for this design. 1. 5 to bearing plate capable of with 8 International Residential Code 10-0-0 oc and fastened to each ad by other means. high the size, type or the originated	nstanding 100 lb uplift a sections R502.11.1 an h truss with 3-10d (0.13	at joint(s ld R802. 31" X 3")) except (jt=lb) 9=4(10.2 and referenced) nails. Strongbacks	95. 1 s to	
 a) Bearing symbols are or design of the truss to s 	nly graphical representation support the loads indicated.	s of a possible bearing condition	n. Bearing symbols are	not con	sidered in the struct	ural	1111111
LOAD CASE(S) Standard	t					UNING TH LA	MOLINIU

	[J.Luge,0-1-0], [0.Luge,0-1-0]				
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.06 BC 0.02 WB 0.03 Matrix-R	DEFL. ii Vert(LL) n/a Vert(CT) n/a Horz(CT) 0.00	n (loc) l/defi L/d a - n/a 999 a - n/a 999 5 n/a n/a	PLATES GRIP MT20 244/190 Weight: 16 lb FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF	 No.1(flat) No.1(flat) No.3(flat) 		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing end verticals. Rigid ceiling directly applie	directly applied or 3-3-14 oc purlins, except

2x4 SP No.3(flat) 2x4 SP No.3(flat) WEBS OTHERS

REACTIONS. All bearings 3-3-14.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 8, 5, 7, 6

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-(7-8)

1) All plates are 1.5x3 MT20 unless otherwise indicated.

2) Gable requires continuous bottom chord bearing.

3) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

Gable studs spaced at 1-4-0 oc.

5) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

7) Graphical web bracing representation does not depict the size, type or the orientation of the brace on the web. Symbol only indicates that the member must be braced.

8) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	LOT 0.0038 HONEYCUTT HILLS 246 SHELE	BY MEADOW LANE ANGIER, N
24-4823-F01	F115	Floor	9	1	Job Reference (optional)	# 49394
		·	Run: 8.430 s Feb 12 ID:oDuWOOM	2021 Print: hLxMOj2f	: 8.430 s Feb 12 2021 MiTek Industries, Inc. Wo wcp2aKqzMG6w-qIhCjdX76rQe75aK0bY	ed Jun 5 12:17:35 2024 Page 1 tXex6VvjxAEGdgbHjc4z9LlU

0-1-8 0-7-4 0-1-8 Scale = 1:20.5 1-3-0 HH 1.5x3 = 1.5x3 || 1.5x3 =1 2 3 4 5 6 7 16 915 9 1-0-0 BL 陌 13 12 11 10 g 3x8 =

1-6-0 1-6-0	4-0-0		9-1-8 5-1-8		11-7-8 2-6-0	12-5-12
Plate Offsets (X, Y)	[7:0-1-8,Eage], [14:Eage,0-1-8]					
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 1-4-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.18 BC 0.30 WB 0.32 Matrix-SH	DEFL. in Vert(LL) -0.00 Vert(CT) -0.02 Horz(CT) 0.02	n (loc) l/defl L/d 6 11 >999 480 9 11 >999 360 2 8 n/a n/a	PLATES MT20 Weight: 63 II	GRIP 244/190 b FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF	⊃ No.1(flat) ⊃ No.1(flat) ⊃ No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing end verticals. Rigid ceiling directly applie	directly applied or 6 ed or 10-0-0 oc braci	i-0-0 oc purlins, except

REACTIONS. (lb/size) 14=444/0-7-14 (min. 0-1-8), 8=444/0-7-14 (min. 0-1-8)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 14-15=-441/0, 1-15=-440/0, 8-16=-445/0, 7-16=-444/0, 1-2=-588/0, 2-3=-1331/0, 3-4=-1556/0, 4-5=-1556/0,

- 5-6=-1189/0, 6-7=-334/0
- BOT CHORD 12-13=0/1100, 11-12=0/1539, 10-11=0/1473, 9-10=0/881
- WEBS 1-13=0/669, 2-13=-624/0, 2-12=0/283, 3-12=-253/0, 5-10=-347/0, 6-10=0/375, 6-9=-668/0, 7-9=0/499

NOTES- (4-5)

- 1) All plates are 3x4 MT20 unless otherwise indicated.
- 2) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 3) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 4) Graphical web bracing representation does not depict the size, type or the orientation of the brace on the web. Symbol only indicates that the member must be braced.
- 5) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	LOT 0.0038 HONEYCUTT HILLS 24	46 SHELBY MEADOW LANE ANGIER, NO
24-4823-F01	F116	Floor Supported Gable	1	1	Job Reference (optional)	# 49394
			Run: 8.430 s Feb 12 ID:oDuWOOI	2021 Print MhLxMOj2	: 8.430 s Feb 12 2021 MiTek Industrie: ?fwcp2aKqzMG6w-IUFaxzXIt9ZVI	s, Inc. Wed Jun 5 12:17:36 2024 Page 1 E9WaJ363rUI8J7fvI_nuF0H8Wz9LIT
0 _{[1} 8						0 ₁ 18
						Scale = 1:20.1
			3x4 =			
1 2	3	4 5	6	7	8	9 10 11
	•			•	•	- <mark>0 0</mark>
¢2 s⊤₁	ST1	ST1 ST1	W2 ST1	ST1	ST1	ST1 ST1 28
				Ц		
				\times	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
21 20	19	18 17	16	15	14	13 12
3x4		3x4 =	=			6x6

 			12-5-12 12-5-12		
Plate Offsets (X,Y)	[6:0-1-8,Edge], [12:Edge,0-1-8], [17:0)-1-8,Edge], [21:Edge,0-1	1-8], [23:0-1-8,0-0-8]		
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.06 BC 0.01 WB 0.03 Matrix-SH	DEFL. ir Vert(LL) n/a Vert(CT) n/a Horz(CT) 0.00	n (loc) l/defl L/d a - n/a 999 a - n/a 999) 12 n/a n/a	PLATES GRIP MT20 244/190 Weight: 53 lb FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SI BOT CHORD 2x4 SI WEBS 2x4 SI	P No.1(flat) P No.1(flat) P No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing end verticals. Rigid ceiling directly applie	directly applied or 6-0-0 oc purlins, except

OTHERS 2x4 SP No.3(flat)

REACTIONS. All bearings 12-5-12.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 21, 12, 20, 19, 18, 17, 16, 15, 14, 13

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-(7-8)

1) All plates are 1.5x3 MT20 unless otherwise indicated.

2) Gable requires continuous bottom chord bearing.

3) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

Gable studs spaced at 1-4-0 oc.

5) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to

be attached to walls at their outer ends or restrained by other means. 7) Graphical web bracing representation does not depict the size, type or the orientation of the brace on the web. Symbol only indicates that

the member must be braced.

8) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	LOT 0.0038 HONEYCUTT HILLS 246 SHELBY	' MEADO	W LANE ANGIER, NO
24-4823-F01	F117	Floor Supported Gable	2	1	Job Reference (optional)	#	49394
		Run: 8.43 ID:oI	0 s Feb 12 DuWOOMI	2021 Print: LxMOj2fv	8.430 s Feb 12 2021 MiTek Industries, Inc. Weo /cp2aKqzMG6w-IUFaxzXIt9ZVIE9WaJ363	I Jun 512 rUIBJ7m	2:17:36 2024 Page 1 1vI_nuF0H8Wz9LIT
0- <mark>1-</mark> 8							
							Scale = 1:23.3
		3x4 =					3x4
1 2	3 4	5 6 7		8	9 10	11	12
0	0		•	•	•		
25 9 BLT ST1	ST1 ST	1 ST1 W2 ST1 S	т1	ST1	ST1 ST1	ST1	W1 Ş
		B1	•	•		.	
			\times	$\sim \sim \sim \sim$		\times	
24 23	22 21	20 19 1	В	17	16 15	14	13
3x4		3x4 =					3x4

				11011			
Г				14-3-14			
Plate C	Offsets (X,Y)	[6:0-1-8,Edge], [13:Edge,0-1-8], [20:0	-1-8,Edge], [24:Edge,0-1	-8]			
LOADII TCLL TCDL BCLL BCDL	VG (psf) 40.0 10.0 0.0 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.06 BC 0.01 WB 0.03 Matrix-SH	DEFL. ir Vert(LL) n/a Vert(CT) n/a Horz(CT) 0.00	n (loc) I/defi L/d - n/a 999 - n/a 999 13 n/a n/a	PLATES GRIP MT20 244/190 Weight: 60 lb FT = 20%F, 11%	%E
LUMBE TOP CI BOT CI WEBS	ER- HORD 2x4 SF HORD 2x4 SF 2x4 SF	P No.1(flat) P No.1(flat) P No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing o end verticals. Rigid ceiling directly applied	directly applied or 6-0-0 oc purlins, exce d or 10-0-0 oc bracing.	pt

14-3-14

OTHERS 2x4 SP No.3(flat)

REACTIONS. All bearings 14-3-14.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 24, 13, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-(8-9)

1) All plates are 1.5x3 MT20 unless otherwise indicated.

2) Gable requires continuous bottom chord bearing.

3) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

Gable studs spaced at 1-4-0 oc.

5) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

7) CAUTION, Do not erect truss backwards.

8) Graphical web bracing representation does not depict the size, type or the orientation of the brace on the web. Symbol only indicates that the member must be braced.

9) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

LOAD CASE(S) Standard

Job	Truss	Truss Type		Qty	Ply	LOT 0.0038 HONEYCUTT HILL	S 246 SHELBY MEADOV	VLANE ANGIER, I	٩Ľ
24-4823-F01	F118	Floor		3	1	Job Reference (optional)	# .	49394	
			Run: 8.430 ID:oDuV	s Feb 12 VOOMhL	2 2021 Print: _xMOj2fwc	8.430 s Feb 12 2021 MiTek Indu 52aKqzMG6w-mgpz8JYNdT	ustries, Inc. Wed Jun 512 hMNOkj70aLc30RujNro	:17:37 2024 Page e7rw7vmqhyz9Ll	์ ร
0-1-8							1.2	6	
H	———————————————————————————————————————						<u> 1-2</u>	Scale = 1:23.	3
1.5x3 =			1.5x3						
1	2	3	4 5			6	7	8	
916				$\overline{\langle}$					Ş
			B1						Ļ
	, , , , , , , , , , , , , , , , , , ,				Ļ			ľ,	
15	14	13	12 3x8 =		11	10		3x6 =	
1-6-0	4-0-0		9-1-8		1	11-7-8	14-0-14	14-3-14	

1-6-0	2-6-0	5-1-8	2-6-0	2-5-6 0-3-0
Plate Offsets (X,Y)	- [15:Edge,0-1-8]			
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 1-4-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. DEF TC 0.19 Vert BC 0.40 Vert WB 0.38 Horz Matrix-SH Horz Horz	L. in (loc) l/defl L/d (LL) -0.11 12 >999 480 (CT) -0.15 11-12 >999 360 z(CT) 0.03 9 n/a n/a	PLATES GRIP MT20 244/190 Weight: 72 lb FT = 20%F. 11%E
LUMBER- TOP CHORD 2x4 S BOT CHORD 2x4 S	SP No.1(flat)	BRA TOF	CING- CHORD Structural wood sheathing	directly applied or 6-0-0 oc purlins, except

WEBS 2x4 SP No.3(flat) BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (Ib/size) 15=512/0-7-14 (min. 0-1-8), 9=516/0-4-8 (min. 0-1-8)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 15-16=-508/0, 1-16=-507/0, 1-2=-694/0, 2-3=-1629/0, 3-4=-2051/0, 4-5=-2051/0, 5-6=-1881/0, 6-7=-1213/0

BOT CHORD 13-14=0/1301, 12-13=0/1932, 11-12=0/2066, 10-11=0/1673, 9-10=0/727

WEBS 1-14=0/790, 2-14=-741/0, 2-13=0/400, 3-13=-370/0, 6-11=0/254, 6-10=-561/0, 7-10=0/593, 7-9=-872/0

NOTES-(5-6)

1) All plates are 3x4 MT20 unless otherwise indicated.

2) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

3) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

4) CAUTION, Do not erect truss backwards.

5) Graphical web bracing representation does not depict the size, type or the orientation of the brace on the web. Symbol only indicates that the member must be braced.

6) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

LOAD CASE(S) Standard

