

RE: 24-3339-A RVF-LOT #2 ROOF

City:

Trenco 818 Soundside Rd Edenton, NC 27932

Site Information: Customer: Project Name: 24-3339-A Lot/Block: Address:

Model: Subdivision: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2018/TPI2014 Wind Code: ASCE 7-16 Roof Load: 40.0 psf

Design Program: MiTek 20/20 8.7 Wind Speed: 130 mph Floor Load: N/A psf

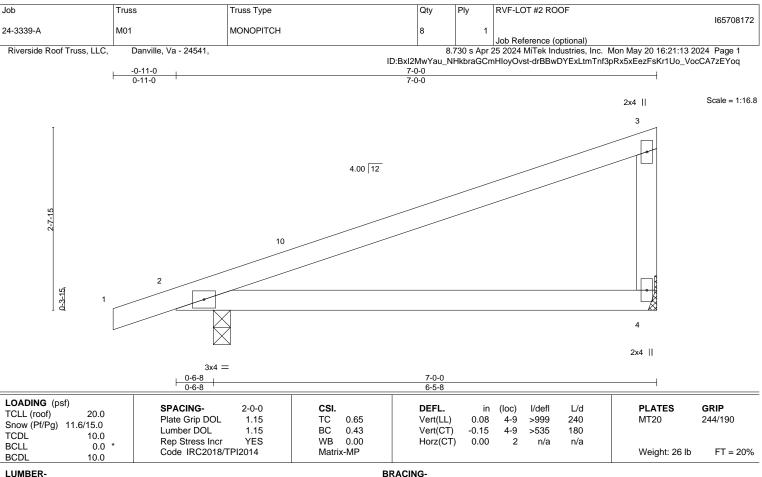
This package includes 23 individual, dated Truss Design Drawings and 0 Additional Drawings.

No. 1	Seal# I65708172	Truss Name M01	Date 5/22/2024	No. 21	Seal# I65708192	Truss Name V04	Date 5/22/2024
2	165708172	M01GE	5/22/2024	21	165708192	V04 V05	5/22/2024
2	165708173	M01GE M02	5/22/2024	22	165708194	V05 V06	5/22/2024
4	165708175	PB01	5/22/2024	25	1037 00 1 34	000	5/22/2024
5	165708176	T01	5/22/2024				
6	165708177	T01GE	5/22/2024				
7	165708178	T02	5/22/2024				
8	165708179	T02 T02G	5/22/2024				
о 9	165708180	T02G	5/22/2024				
-	165708181		5/22/2024				
10		T03					
11	165708182	T03A	5/22/2024				
12	165708183	T03AGE	5/22/2024				
13	165708184	T03GE	5/22/2024				
14	165708185	T04	5/22/2024				
15	165708186	T04A	5/22/2024				
16	165708187	T05	5/22/2024				
17	165708188	T05GE	5/22/2024				
18	165708189	V01	5/22/2024				
19	165708190	V02	5/22/2024				
20	165708191	V03	5/22/2024				

The truss drawing(s) referenced above have been prepared by Truss Engineering Co. under my direct supervision

based on the parameters provided by Riverside Roof Truss.

Truss Design Engineer's Name: Gilbert, Eric


My license renewal date for the state of North Carolina is December 31, 2024

North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

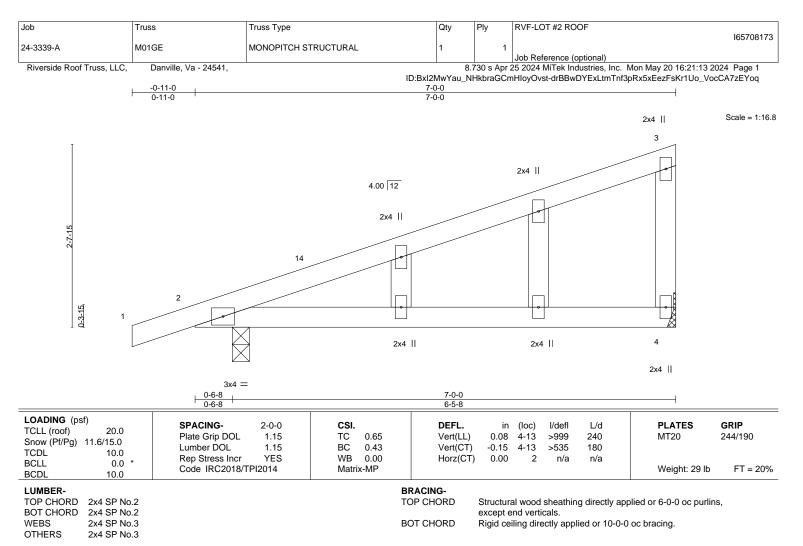
Gilbert, Eric

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3

TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

4=Mechanical, 2=0-3-0 REACTIONS. (size) Max Horz 2=85(LC 15) Max Uplift 4=-13(LC 16), 2=-49(LC 16) Max Grav 4=254(LC 21), 2=361(LC 2)


FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

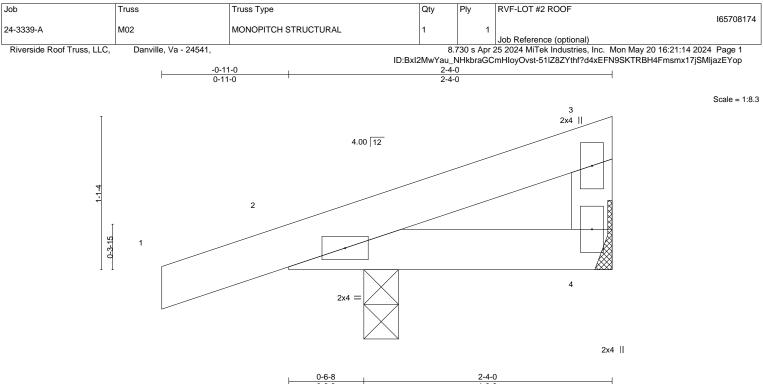
- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -0-11-0 to 2-1-0, Interior(1) 2-1-0 to 6-10-4 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 6) will fit between the bottom chord and any other members.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 2.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent bucking of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

REACTIONS. (size) 4=Mechanical, 2=0-3-0

Max Horz 2=85(LC 15) Max Uplift 4=-13(LC 16), 2=-49(LC 16)

Max Grav 4=254(LC 21), 2=361(LC 2)


FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -0-11-0 to 2-1-0, Interior(1) 2-1-0 to 6-10-4 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Refer to girder(s) for truss to truss connections.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 2.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

	0-6-8	1-9-8	
LOADING (psf) SPACING- 2-0-0 TCLL (roof) 20.0 Plate Grip DOL 1.15 Snow (Pf/Pg) 11.6/15.0 Lumber DOL 1.15 TCDL 10.0 Rep Stress Incr YES BCDL 10.0 Code IRC2018/TPI2014 10.0	CSI. TC 0.07 BC 0.06 WB 0.00 Matrix-MP	DEFL. in (loc) l/defl L/d Vert(LL) -0.00 5 >999 240 Vert(CT) -0.00 5 >999 180 Horz(CT) 0.00 4 n/a n/a	PLATES GRIP MT20 244/190 Weight: 9 lb FT = 20%

LUMBER-

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2WEBS2x4 SP No.3

BRACING-TOP CHORD

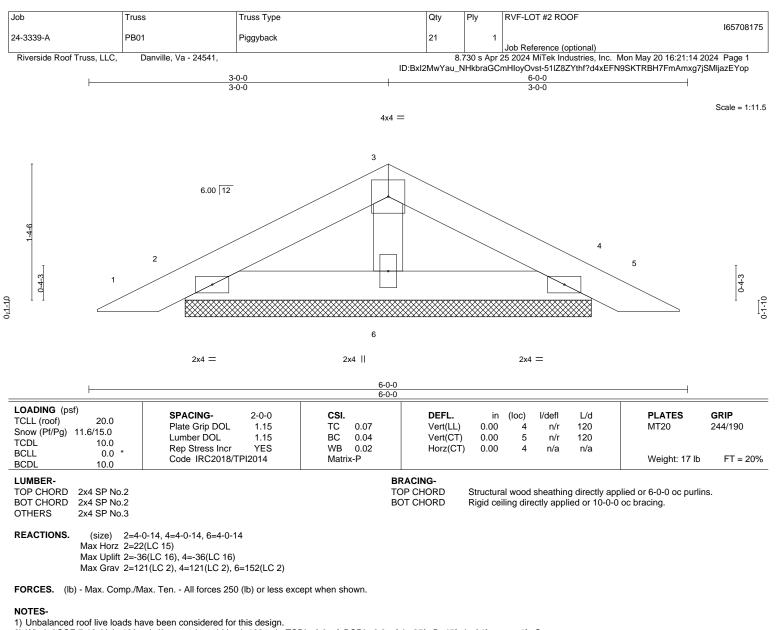
BOT CHORD

Structural wood sheathing directly applied or 2-4-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 4=Mechanical, 2=0-3-0 Max Horz 2=31(LC 15) Max Uplift 4=-1(LC 13), 2=-53(LC 16) Max Grav 4=33(LC 7), 2=205(LC 2)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

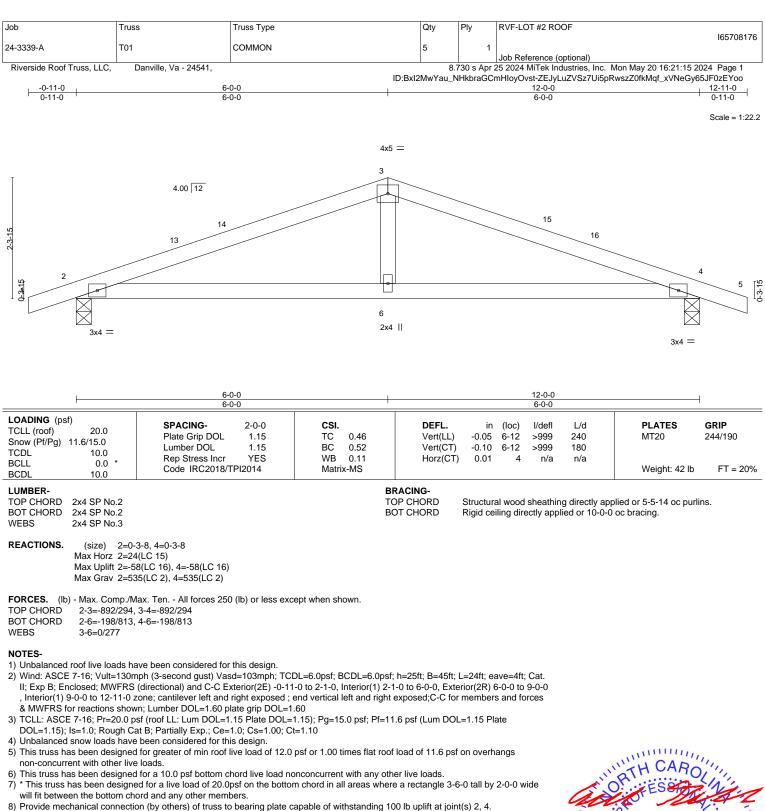
NOTES-


- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.

5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.

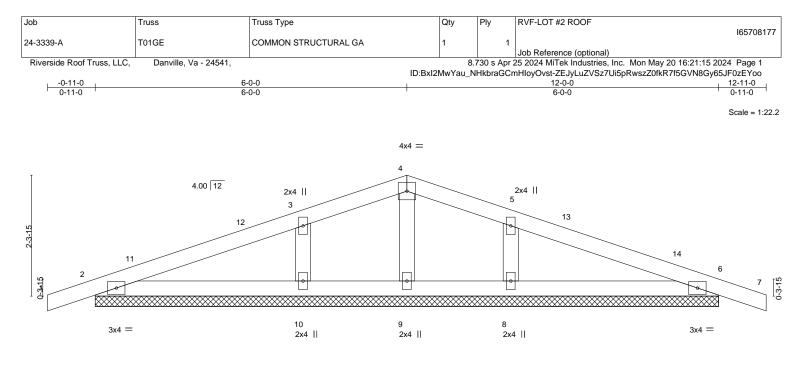
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Refer to girder(s) for truss to truss connections.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 2.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)


2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 6) Gable requires continuous bottom chord bearing.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)


A MiTek Affili 818 Soundside Road

9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TP11.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

		<u> </u>						ł
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 11.6/15.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.18 BC 0.12 WB 0.07 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) 0.00 7 0.01 7 0.00 6	l/defl n/r n/r n/a	L/d 120 120 n/a	PLATES MT20 Weight: 46 lb	GRIP 244/190 FT = 20%
LUMBER-		BE	ACING-					

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2OTHERS2x4 SP No.3

REACTIONS. All bearings 12-0-0. (lb) - Max Horz 2=24(LC 15)

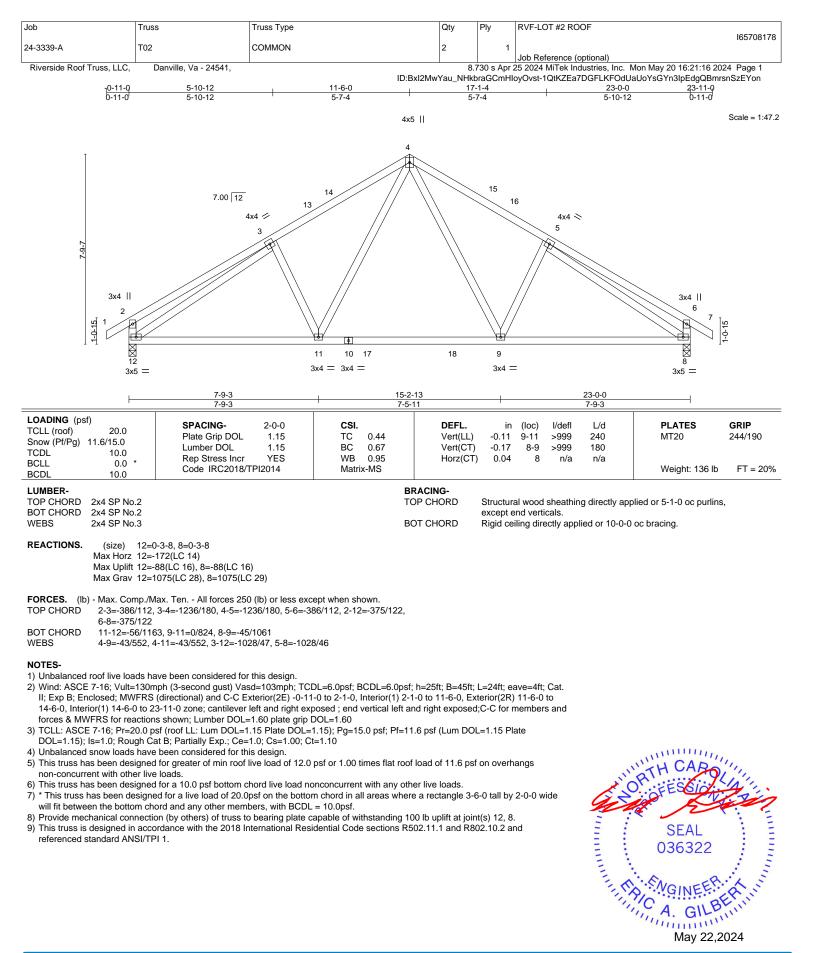
Max Uplift All uplift 100 lb or less at joint(s) 2, 6, 10, 8

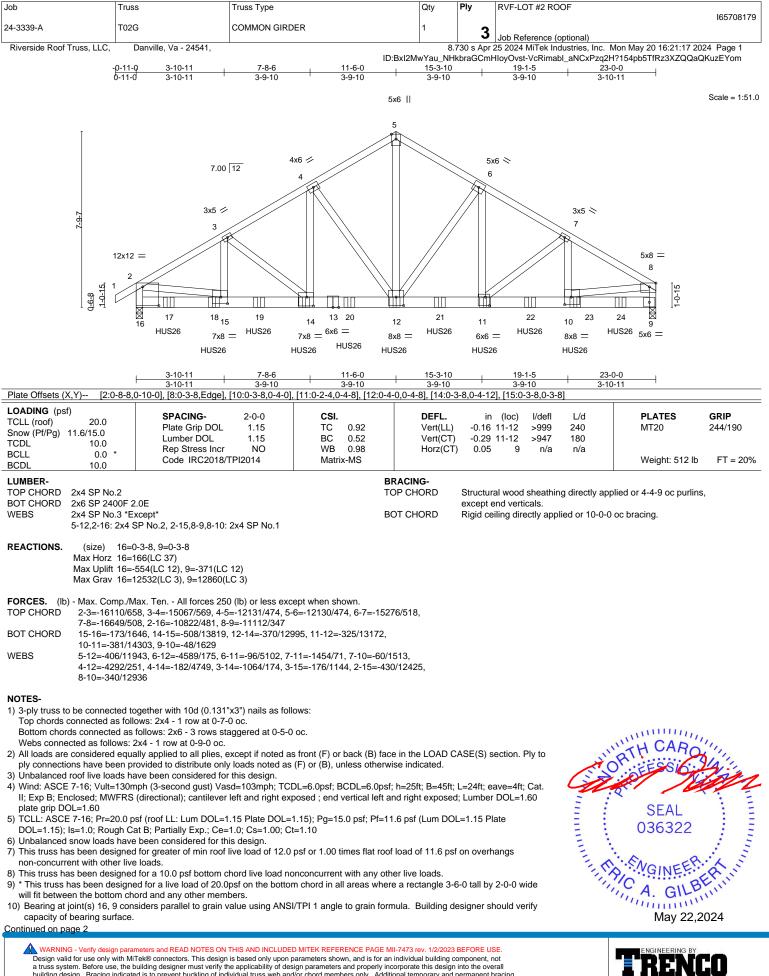
Max Grav All reactions 250 lb or less at joint(s) 2, 6, 9 except 10=338(LC 21), 8=338(LC 22)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.


- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Corner(3E) -0-11-0 to 2-1-0, Exterior(2N) 2-1-0 to 6-0-0, Corner(3R) 6-0-0 to 9-0-0, Exterior(2N) 9-0-0 to 12-11-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 7) Gable requires continuous bottom chord bearing.
- 8) Gable studs spaced at 2-0-0 oc.
- 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6, 10, 8.
- 12) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 6.
- 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

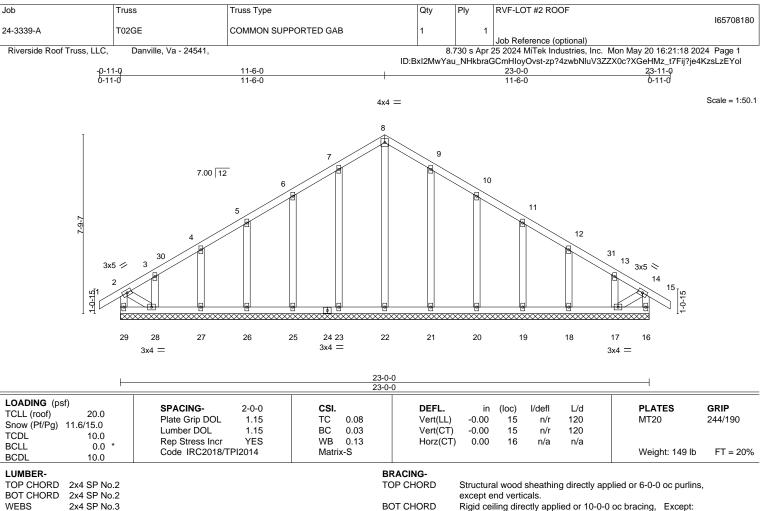
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

TRENCO

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS//TPI Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

[Job	Truss	Truss Type	Qty	Ply	RVF-LOT #2 ROOF
						165708179
	24-3339-A	T02G	COMMON GIRDER	1	2	
					<u>່</u> ວ	Job Reference (optional)
	Riverside Roof Truss, LLC,	Danville, Va - 24541,		8.	730 s Apr 2	25 2024 MiTek Industries, Inc. Mon May 20 16:21:17 2024 Page 2
ID:Bxl2MwYau NHkbraGCmHloyOvst-VcRimabl aNCxPzq2H?154bb5TfRz3XZQQaQKuz						

NOTES-


- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 16=554, 9=371.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 13) Use Simpson Strong-Tie HUS26 (14-10d Girder, 6-10d Truss, Single Ply Girder) or equivalent spaced at 2-0-0 oc max. starting at 1-5-4 from the left end to 5-5-4 to connect truss(es) to front face of bottom chord.
- 14) Use Simpson Strong-Tie HUS26 (14-10d Girder, 6-10d Truss) or equivalent spaced at 2-0-0 oc max. starting at 7-5-4 from the left end to 21-5-4 to connect truss(es) to front face of bottom chord.
- 15) Fill all nail holes where hanger is in contact with lumber.

LOAD CASE(S) Standard

- 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15
- Uniform Loads (plf)
- Vert: 1-2=-43, 2-5=-43, 5-8=-43, 9-16=-20 Concentrated Loads (lb)
 - Vert: 12=-1818(F) 11=-1818(F) 14=-1818(F) 17=-1703(F) 18=-1703(F) 19=-1703(F) 20=-1818(F) 21=-1818(F) 22=-1818(F) 23=-1818(F) 24=-1818(F) 24=-1818(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Rigid ceiling directly applied or 10-0-0 oc bracing, Except: 6-0-0 oc bracing: 28-29,16-17.

REACTIONS. All bearings 23-0-0.

2x4 SP No.3

Max Uplift All uplift 100 lb or less at joint(s) 29, 23, 25, 26, 27, 28, 21, 20, 19, 18, 17

Max Grav All reactions 250 lb or less at joint(s) 29, 16, 22, 23, 25, 26, 27, 28, 21, 20, 19, 18, 17

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

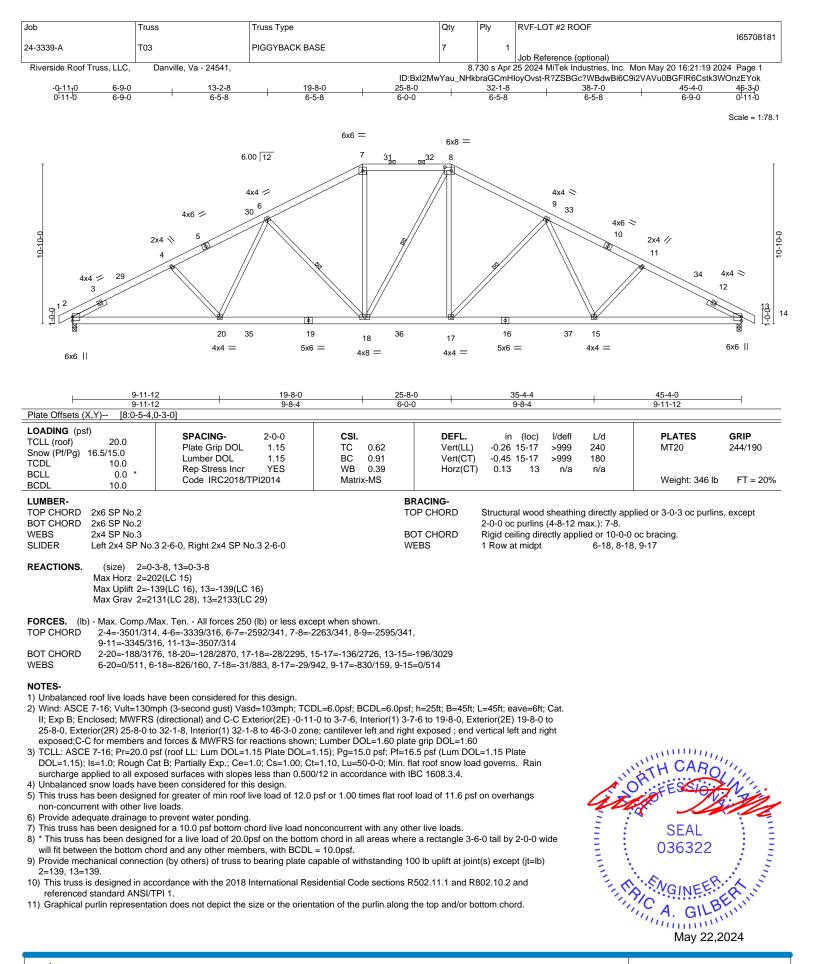
NOTES-

OTHERS

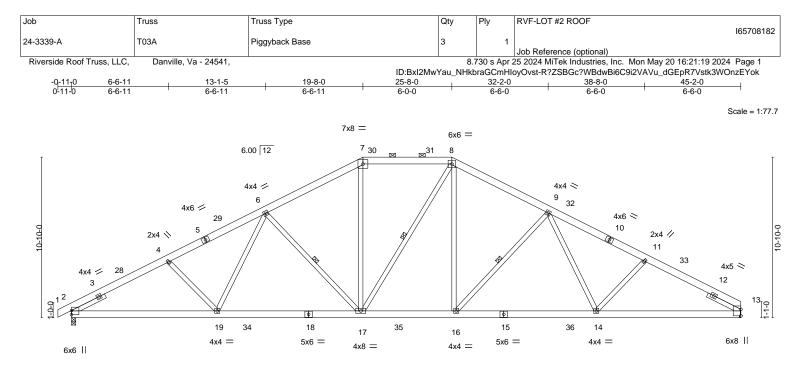
1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Corner(3E) -0-11-0 to 2-1-0, Exterior(2N) 2-1-0 to 11-6-0, Corner(3R) 11-6-0 to 14-6-0, Exterior(2N) 14-6-0 to 23-11-0 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 7) All plates are 2x4 MT20 unless otherwise indicated.
- 8) Gable requires continuous bottom chord bearing.
- 9) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 10) Gable studs spaced at 2-0-0 oc.
- 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 29, 23, 25, 26, 27, 28, 21, 20, 19, 18, 17.
- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)



818 Soundside Road

⁽lb) - Max Horz 29=-172(LC 14)

TRENCO AMITEK Affiliate

	9-10-0 19-8-0 9-10-0 9-10-0		<u>35-5-0</u> 9-9-0	45-2-0 9-9-0	
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 16.5/15.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014 1000000000000000000000000000000000000	CSI. DEF TC 0.72 Vert BC 0.97 Vert WB 0.37 Horz Matrix-MS	LL) -0.26 14-16 >999 CT) -0.44 14-16 >999	L/d PLATES 240 MT20 180 n/a Weight: 342 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x6 SP No BOT CHORD 2x6 SP No WEBS 2x4 SP No SLIDER Left 2x4 SF	.2	BRACING- TOP CHORD BOT CHORD WEBS	2-0-0 oc purlins (4-8-14 m	y directly applied or 2-8-1 oc purlins ax.): 7-8. ed or 10-0-0 oc bracing, Except: 6-17. 8-17. 9-16	s, except
REACTIONS (size)	2-0-3-8 13-Mechanical	WEBG	i non at mapt	0 11,0 11,0 10	

REACTIONS. (size) 2=0-3-8, 13=Mechanical Max Horz 2=199(LC 15) Max Uplift 2=-138(LC 16), 13=-109(LC 16) Max Grav 2=2129(LC 28), 13=2082(LC 29)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. 2-4=-3498/314, 4-6=-3340/316, 6-7=-2614/344, 7-8=-2257/344, 8-9=-2613/342, TOP CHORD

9-11=-3292/319, 11-13=-3438/318

BOT CHORD 2-19=-218/3168, 17-19=-158/2869, 16-17=-41/2278, 14-16=-148/2708, 13-14=-207/2957

WEBS 6-19=0/495, 6-17=-816/162, 7-17=-31/886, 8-16=-29/947, 9-16=-797/159, 9-14=0/450

NOTES

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=45ft; eave=6ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -0-11-0 to 3-7-3, Interior(1) 3-7-3 to 19-8-0, Exterior(2E) 19-8-0 to 25-8-0, Exterior(2R) 25-8-0 to 32-2-0, Interior(1) 32-2-0 to 45-2-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=16.5 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.

4) Unbalanced snow loads have been considered for this design.

5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.

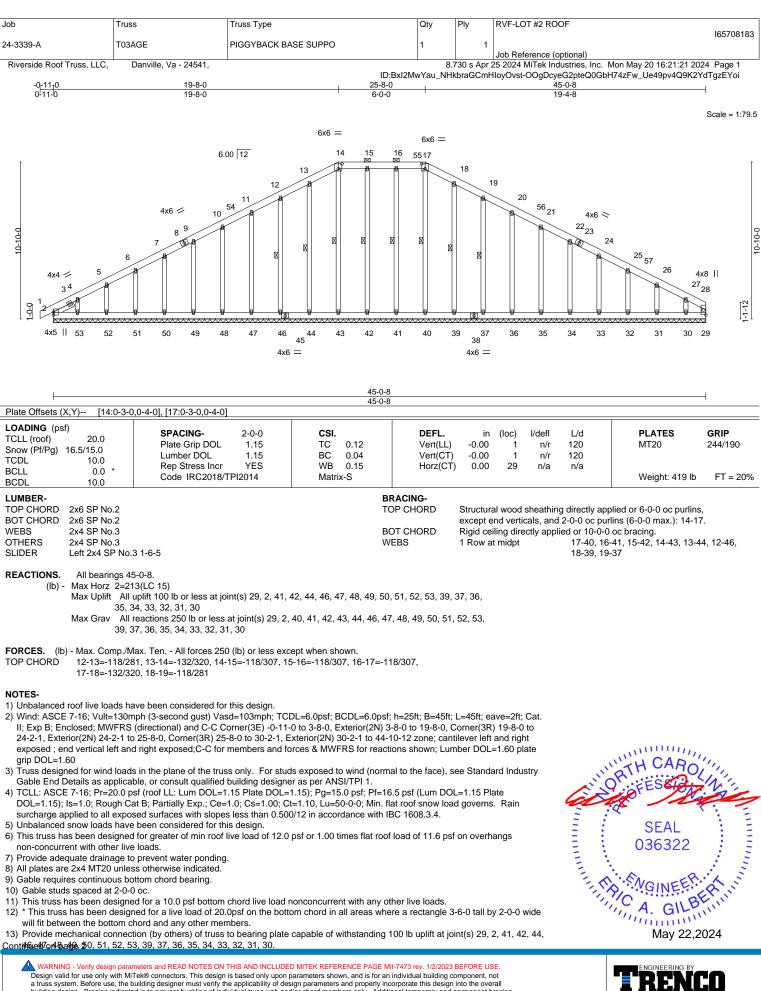
6) Provide adequate drainage to prevent water ponding.

This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7)

8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

9) Refer to girder(s) for truss to truss connections

10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=138, 13=109.

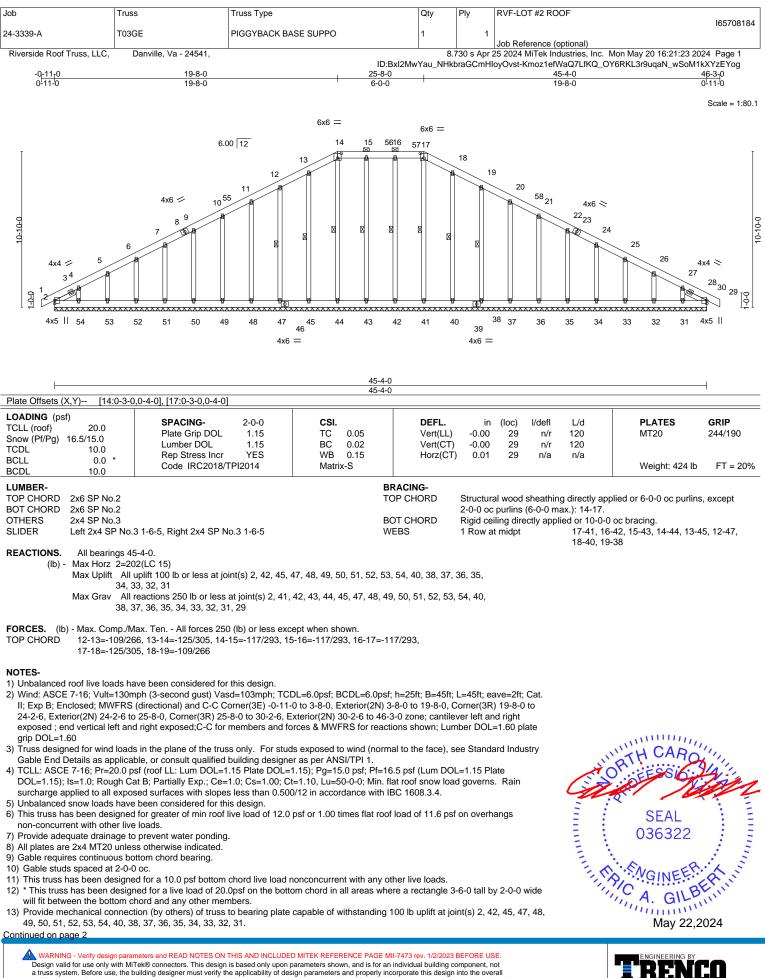

11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

billiding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS//TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	RVF-LOT #2 ROOF		
04 0000 A	T00405				165708183		
24-3339-A	T03AGE	PIGGYBACK BASE SUPPO	1	1			
					Job Reference (optional)		
Riverside Roof Truss, LLC,	Danville, Va - 24541,		8.	730 s Apr 2	25 2024 MiTek Industries, Inc. Mon May 20 16:21:22 2024 Page 2		
		ID:Bxl2MwYau NHkbraGCmHloyOvst-saEbplfup6?U2ArnrqbCo7WfOUV2eXqlZilB?6zEYol					


NOTES-

14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

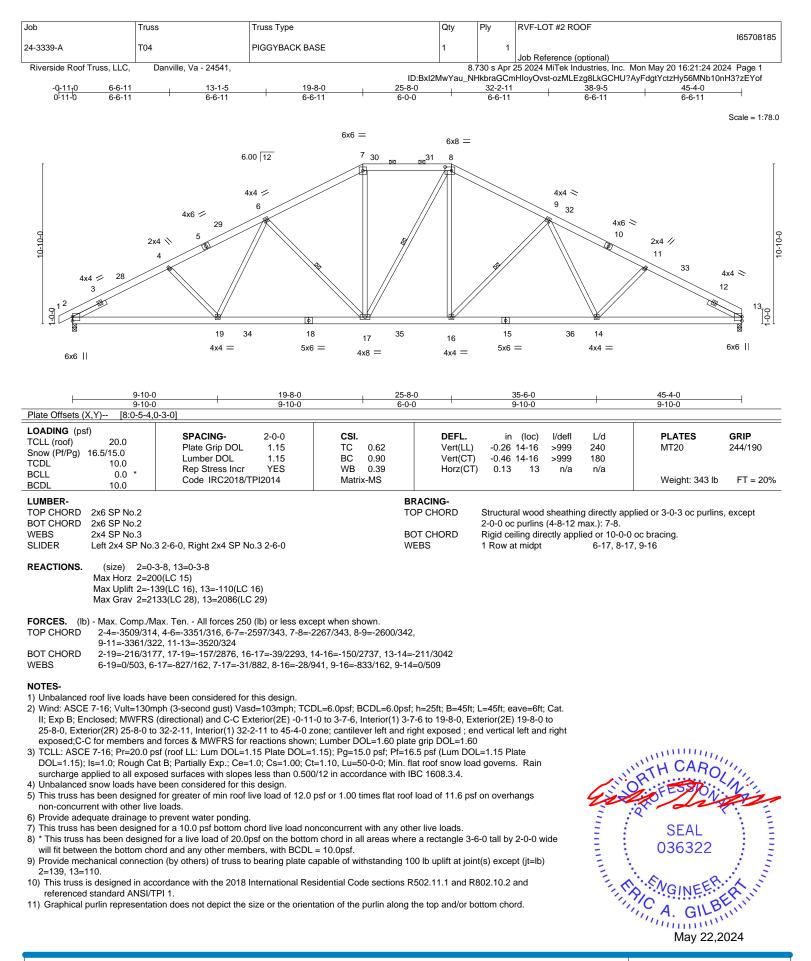
15) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

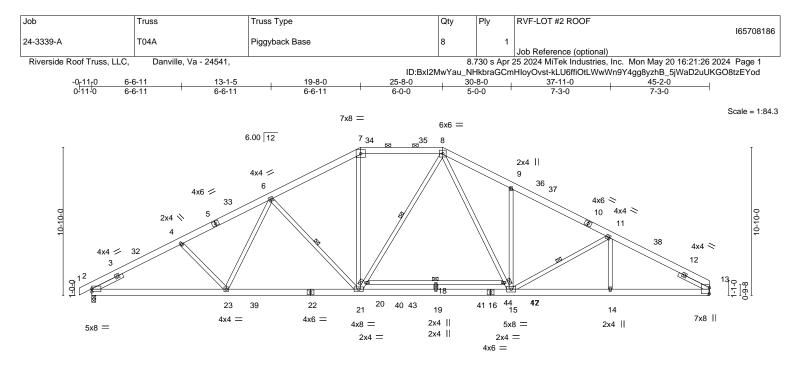
818 Soundside Road Edenton, NC 27932

bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

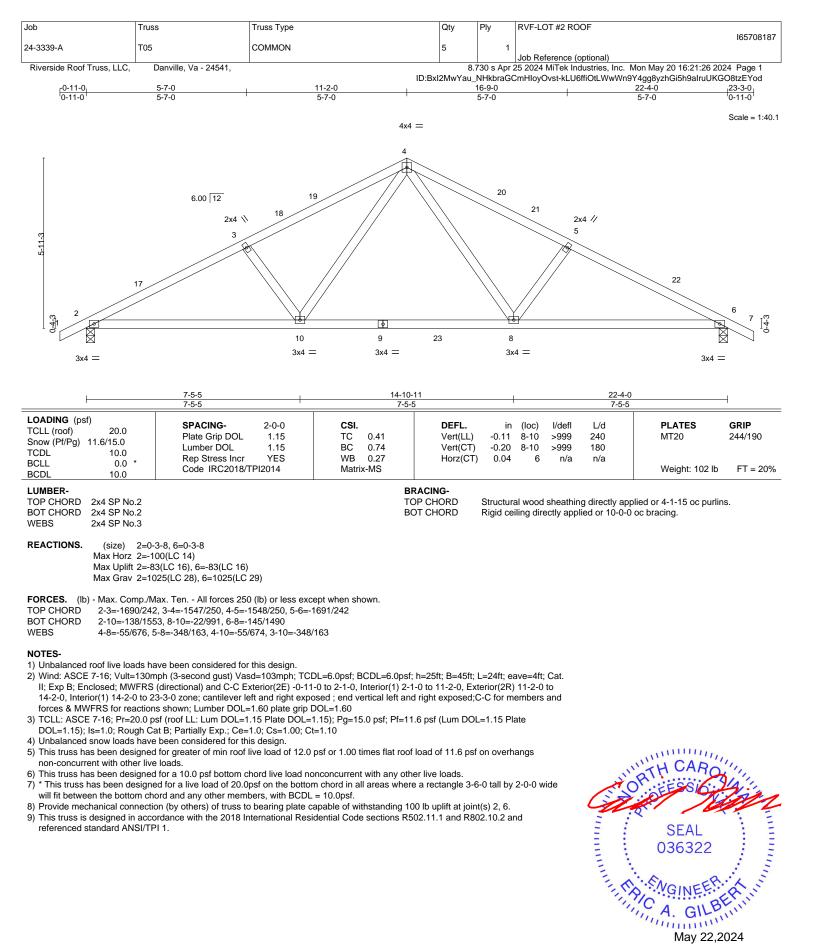
[Job	Truss	Truss Type	Qty	Ply	RVF-LOT #2 ROOF
	04 0000 4	TOOOF				I65708184
	24-3339-A	T03GE	PIGGYBACK BASE SUPPO	1	1	lah Deference (entional)
_ L						Job Reference (optional)
	Riverside Roof Truss, LLC,	Danville, Va - 24541,		8.	730 s Apr 2	25 2024 MiTek Industries, Inc. Mon May 20 16:21:24 2024 Page 2
			ID:BxI2M	wYau_NH	kbraGCmł	HoyOvst-ozMLEzg8LkGCHU?AyFdgtYc0vHAp6QAb10nH3?zEYof


NOTES-

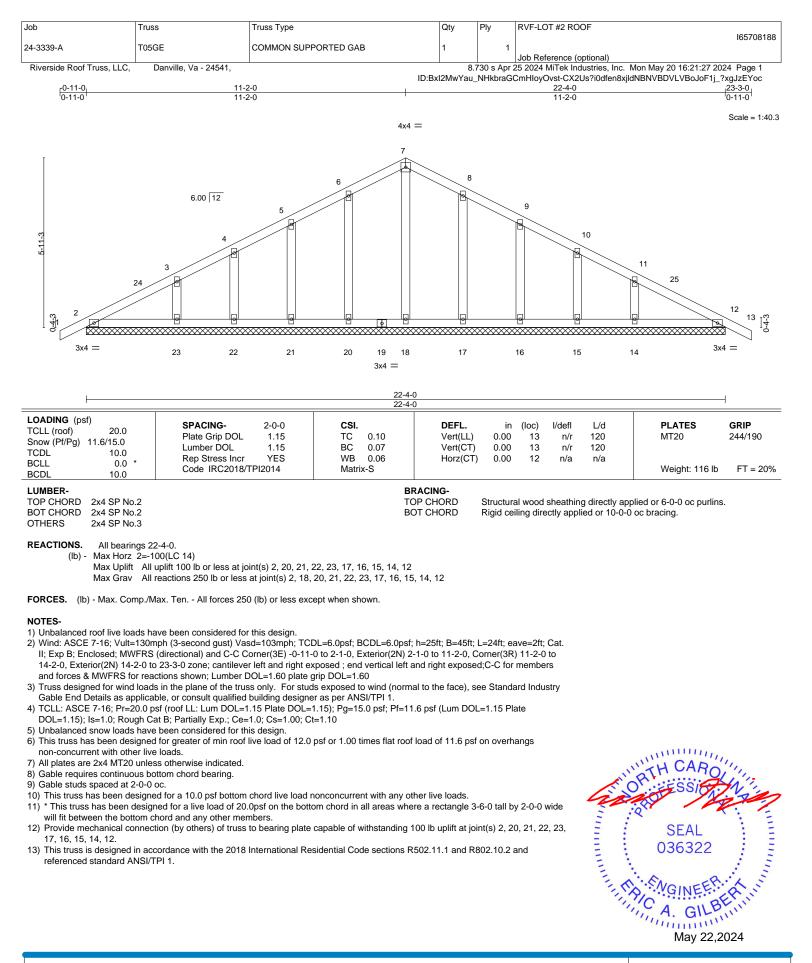
14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


15) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

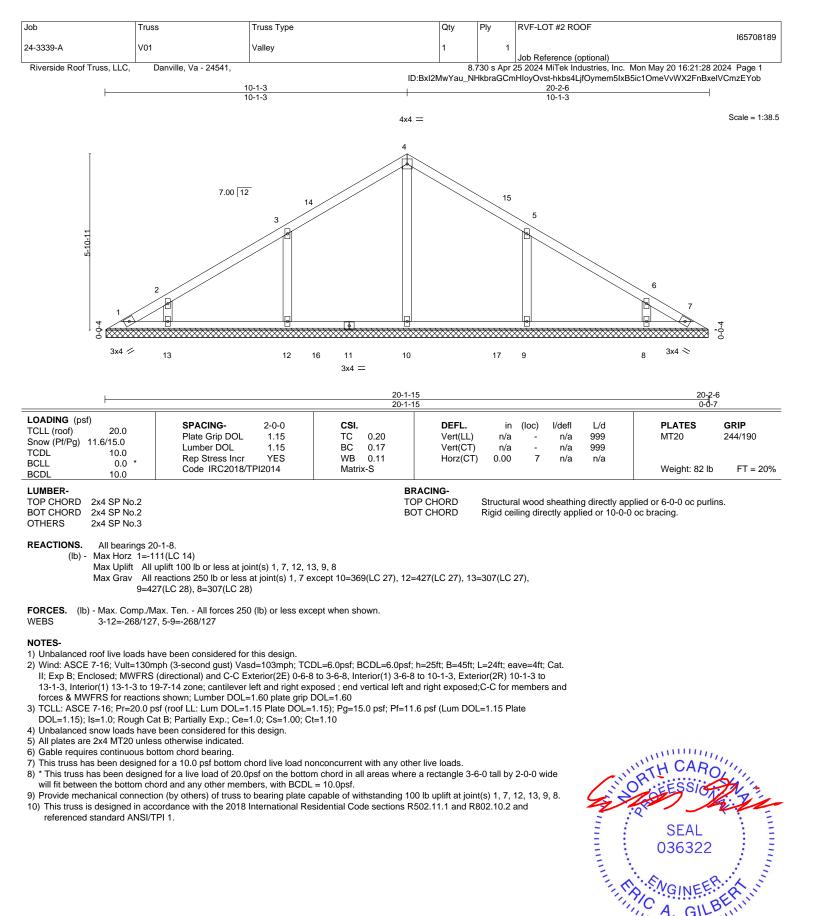
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

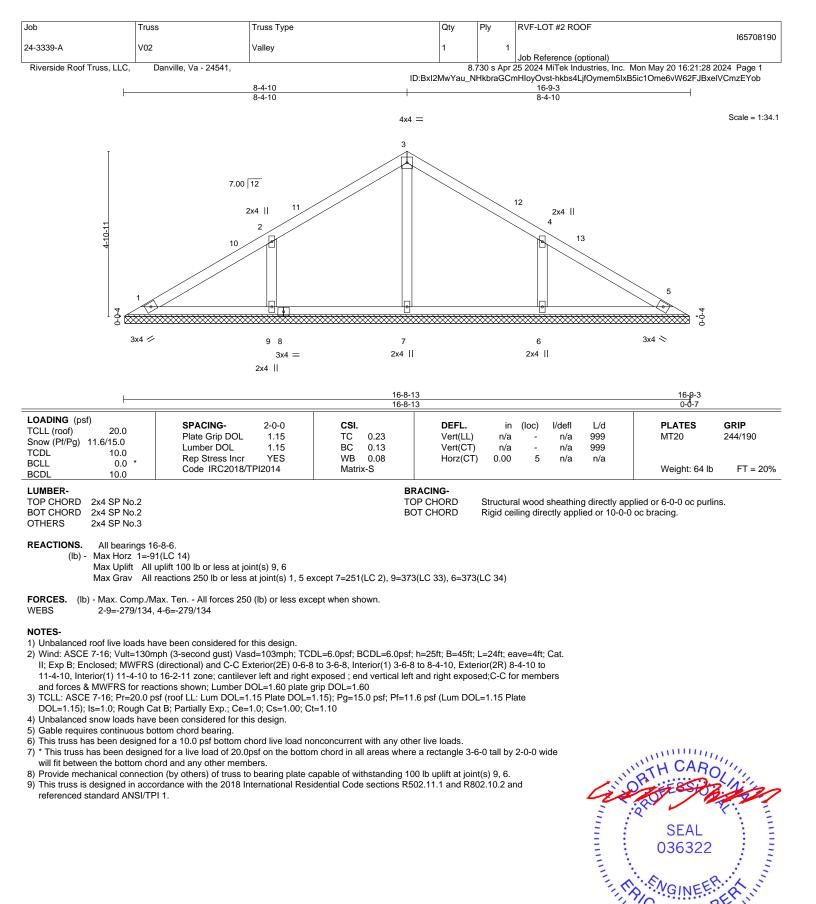


818 Soundside Road

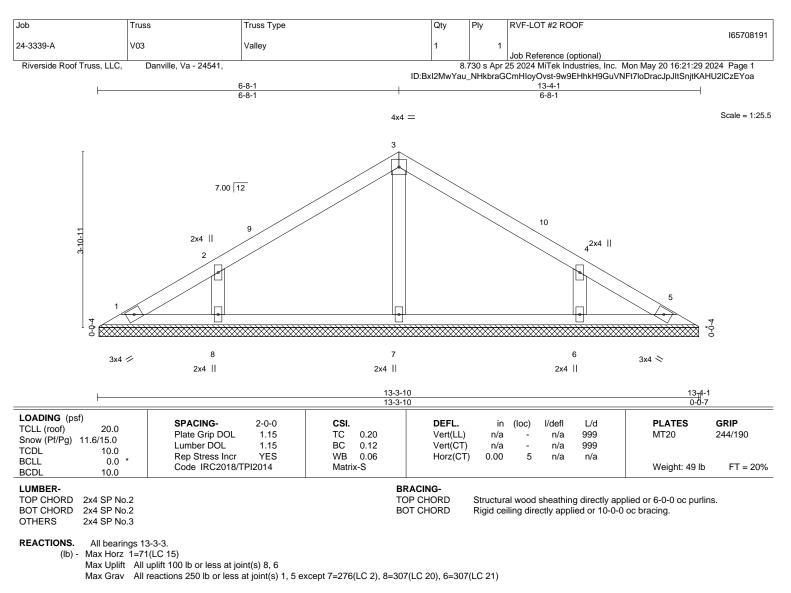


Definition Spacing- 2-0-0 CSI. DEFL. in (loc) l/defl L/d PLATES GR TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.72 Vert(LL) -0.33 18 >999 240 MT20 244 Snow (Pf/Pg) 16.5/15.0 Lumber DOL 1.15 BC 0.58 Vert(CT) -0.58 18-20 >939 180 RCU 0.0 * Rep Stress Incr YES WB 0.64 Horz(CT) 0.11 13 n/a n/a			10-0	19-8-0		25-2		30-8			37-11-0		45-2-0	
LOADING (ps) TOLL (pr07) TOLL (pr07) TOL (pr07) TOCL (pr07) TOP CHORD 2x6 SP No.2 EXC (pr07) TOP CHORD 2x6 SP No.3 TOP CHORD 2x6 SP No.3 TOP CHORD 2x6 SP No.3 TOP CHORD 2x6 SP No.3 SUDER SPACING- TOP CHORD 2x6 SP No.3 STRUCTURE TOP CHORD 2x6 SP No.3 SUDER PLATES Rep Stress Incr (pr07) TOP CHORD 2x6 SP No.3 SUDER PLATES Rep Stress Incr (pr07) Structural wood sheathing directly applied or 2-70 oc purlins, exc 6-00 oc bracing: 17-20 SUDER Left 2x4 SP No.3 2-60, Right 2x4 SP No.3 2-60, WEBS Structural wood sheathing directly applied or 2-70 oc purlins, exc 6-00 oc bracing: 17-20 SUDER Left 2x4 SP No.3 2-60, Right 2x4 SP No.3 2-60, WEBS Rep Structural wood sheathing directly applied or 2-70 oc purlins, exc 6-00 oc bracing: 17-20 SUDER Left 2x4 SP No.3 2-60, Right 2x4 SP No.3 2-60, WEBS Rep Structural wood sheathing directly applied or 10-00 oc bracing. Except: 6-20 oc bracing: 17-20 SUDER Left 2x4 SP No.3 2-60, Right 2x4 SP No.3 2-60, WEBS Rep Structural wood sheathing directly applied or 10-00 oc bracing. Except: 6-20 oc bracing: 17-20 SUDER Left 2x4 SP No.3 2-120-3048, 21-23-40424	Plate Offsets (X			9-10-0		5-6-	0 0-6-0	5-0-	-0 '		7-3-0		7-3-0	
CTCLL (root) 20.0 SPACING- Som (PIP(p) CSL DEFL in (loc) PLATES PLATES CAL Som (PIP(p) 16.5115.0 Lumber DOL 1.15 TC 0.72 Vert(L) -0.58 18.989.240 MT20 244 TOD 10.0 Rep Stress Indr FES WB 0.64 Horz(CT) 0.51 13 nå nå BCDL 10.0 Code IRC2010/TPL2014 Matrix-MS ERACING- TOP CHORD 24.95 No.2 Vert(L) -0.33 Na Weight: 357 lb F UMBER TOP CHORD 24.58 PA.0.2 Structural wood sheathing directly applied or 2.7-0 oc purlins, exc 2-00 oc purlins (4-4.27 axux); 7.8. -00.00 -00.00 child or 10-0-0 oc bracing. Except: -00.00														
BLUL DOL 0.0 Code IRC2018/TPI2014 Matrix-MS Weight: 357 lb F LUMBER- TOP CHORD 2x6 5P 2400F 2.0E "Except" Structural wood sheathing directly applied or 2-7-0 oc purlins, exc 2-0-0 oc purlins (4-42 max,): 7-8. Structural wood sheathing directly applied or 2-7-0 oc purlins, exc 2-0-0 oc purlins (4-42 max,): 7-8. BOT CHORD 2x6 5P No.3 BOT CHORD BOT CHORD Structural wood sheathing directly applied or 10-0-0 oc bracing. Except: 6-0-0 oc bracing: 17-20 WEBS 2x4 5P No.3 2-6-0. Right 2x4 SP No.3 2-6-0. WEBS 1 Row at midpt 6-21, 8-20, 11-15 REACINOS: (size) 2-0-3-8, 13-Mochanical Max Uppit 2-e368/3271, 463694/210, 57-3-3060/250, 8-9=-3659/274, 9-11=-3592/165, 11-13400(CL C16) Max Grav 2-232112/24.6-3694/216, 57-3-3060/250, 8-9=-3659/274, 9-11=-3592/165, 11-133321/180 Net Size 2-23-129/486, 21-23-64/3230, 19-21=0/2597, 15-19=0/2597, 14-15=-80/3313, 13-14=-80/3313. OT CHORD 2-23-129/486, 21-23-64/3230, 19-21=0/2597, 15-19=0/2597, 14-15=-80/310, 13-14=-80/3313. 13-14=-80/3313, 13-14=-80/3313. UNDs and cord five loads have been considered for this design. 1 1 10-15 VIES 0.23-6-0, Exterior(2B) 25-8-0 to 32-0-10, Interior(1) 32-0-10 to 45-20 zone; cantilever left and right exposed: CC for members and forces 8.WWFRS for reactions shown: Lumber DOL=-1.60, psf. Hartis trave show load governs. Rain surcharage applied to a 10-0.90 for 10.0 the 160 (0, 11.1); Pg=150 psf. P	TCLL (roof) Snow (Pf/Pg)	20.0 16.5/15.0	Plate Grip DOL Lumber DOL	1.15 1.15	TC BC	0.58	Ver Ver	t(LL) t(CT)	-0.33 -0.58	18 18-20	>999 >939	240 180		GRIP 244/190
TOP CHORD 2x6 SP No.2 TOP CHORD Structural wood sheathing directly applied or 2-7-0 oc purlins, exc DOT CHORD 2x6 SP 2400F 2.0 E* Except* BOT CHORD Ford a purline (4-2* max); 7-8. WEBS Left 2x4 SP No.3 BOT CHORD Rigid celling directly applied or 10-0-0 oc bracing. Except: Max Horz 2=199(LC 15) Max Horz 2=199(LC 15) 6-0.40 oc bracing; 17-20 Max Horz 2=199(LC 15) Max Horz 2=199(LC 15) 6-21, 8-20, 11-15 PROESS. (b) Nax Comp. Max. Tan - All torses 250 (b) or less except when shown. 6-21, 8-20, 11-15 TOP CHORD 2-43-8853/212, 4-6-3694/213, 6-7=3069/215, 7-8=-2660/230, 8-8=-3659/274, 8-11-15=-392/214, 8-21, 12-3-84/230, 19-21=0/2597, 15-19=0/2597, 14-15=-80/3313, 13-14==-003313 13-14=-003313 WEBS 6-23-0-309, 6-21=748/78, 7-21=0/1086, 8-20=-123/319, 8-17=-59/1484, 15-17=93/1398, 9-15=-556/185, 11-15=-292/141, 18-19=-303/0 13-14=-003313 WEBS 6-23-0-309, 6-21=748/78, 7-21=0/1086, 8-20=-123/319, 8-17=-59/1484, 15-17=-93/1398, 9-15=-556/185, 11-15=-292/141, 18-19=-303/0 14-04 NOTES- 1 Unbalance trool live loads have been considered for this design. 15/11-15 2) Wind: ASCE 7-16; Vul=130mph (3-second guat) Vad=103mph; TCDL=6.0psf; B=25ft; B=45ft; L=45ft; L=45ft; Cat. 11; Exp B: Enclosed; MWFRS for reactions show; Lumber DDL=1.6.10; Bet arg UDL=1.6.10; Bet arg UDL=1.6.10; Bet arg UDL=1.6.10; Bet arg UDL=1.6.10							Hor	z(CT)	0.11	13	n/a	n/a	Weight: 357 lb	FT = 20%
TOP CHORD 2x6 SP No.2 TOP CHORD Structural wood sheathing directly applied or 2-7-0 oc purlins, exc DOT CHORD 2x6 SP 2400F 2.0 E* "Except" BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. Except: 17-20: 2x4 SP No.3 Ext SP No.3 BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. Except: 6-0 oc purlins, directly applied or 10-0-0 oc bracing. Except: 6-0 oc bracing: 17-20 SLIDER Left 2x4 SP No.3 Ext SP No.2 Sector WES 1 Row at midpt 6-21, 8-20, 11-15 REACTIONS. (size) 2-0-3-8, 13-Mechanical Max Horz 2-199(LC 16) Max Horz 2-199(LC 16) Max Horz 2-199(LC 16) Max Horz 2-109(LC 16) Max Horz 2-109(LC 16) Max Horz 2-208(LC 29) FORCES. (b) or less except when shown. TOP CHORD 2-4= 3853/212, 4-6= 3694/213, 6-7= 3069/215, 7-8= 2660/230, 8-3= 3659/274, 9-11-15 9-11=-3392/160, 511-13=-382/1780 BOT CHORD 6-23-0-300, 62-12-748/178, 7-21=0/1086, 8-20=-123/319, 8-17=-59/1484, 15-17=-93/3396, 9-15=-556/165, 11-15=-239/141, 18-19=-303/0 NOTES- 1 1 Unbalanced rod live loads have been considered for this design. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <							BRACING-							
BOT CHORD 2x6 SP 2400F 2.0E "Except" 17-20: 2x4 SP No.3 2-6-0, Right 2x4 SP No.3 2-6-0 WEBS BOT CHORD SLIDER Left 2x4 SP No.3 2-6-0, Right 2x4 SP No.3 2-6-0 WEBS 1 Row at midpt 6-21, 8-20, 11-15 REACTIONS. (size) 2-0-3-8, 13-Mechanical Max Horz 2-199(LC 15) Max Grav 2-232(LC 26), 13=-2308(LC 29) FORCES. (b) - Max. Comp./Max. Ten All forces 250 (b) or less except when shown. TOP CHORD 2-4-3805/212, 4-6-3069/2116, 7-6-2069/230, 8-3-3659/274, 911-3659/216, 11-13-3208(LC 29) FORCES. (b) - Max. Comp./Max. Ten All forces 250 (b) or less except when shown. TOP CHORD 2-3-3805/212, 4-6-3069/2116, 7-6-2069/230, 8-3-3659/274, 911-3659/214, 4-3302313 WEBS 6-23-0/390, 6-21-748/178, 7-21-0/1086, 8-20-123/319, 8-17-59/1484, 15-17-93/1398, 9-15=-556/185, 11-15=-288/141, 18-19=-303/0 NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vul-1 30mph (3-second 10) 45-2-2 0are; canliber left and right exposed; - or de varical left and right exposed-C-C for members and forces & MWFRS (directional) and C-C Exterior(2E) -0-11-0 to 3-7-3, Interior(1) 3-7-3 to 19-8-0. Exterior(2E) 19-8-0 to 25-8-0. Exterior(2R) 25-8-0 pt (rood L: Lum DOL-1.15, Pg-15.0 pt; P-16.5 pt fL -15 fP 16-5 pt (Lum DOL-1.15) Pd 150 DL -1.16) 3) TOLL: ASCE 7-16; FVul-1 300/10 AS-2-2 000; call-1.00, ta-5-0-0, min, flat roof snow load governs. Rain surcharge applied to all exposed surbaces with slope less than 0.300/12 in accordance with BC 1606.3.4. 4) Unbalanced for this design. 5) This truss has been designed for a surfaces with BCD L=10, Dpsf. 6) Provide adequate drianage to prevent water ponding. 7) This truss has been designed for a live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with there loads. 6) Provide adequate drianage to prevent water ponding. 7) This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between chonsidered for thin cagin. 6) Provide mec		2x6 SP No.2)	Structur	al wood	l sheathir	ng directly a	applied or 2-7-0 oc purlin:	s, except
WEBS 244 SP No.3 6-0-0 oc bräcing: 17-20 SLIDER Left 2x4 SP No.3 2-6-0, Right 2x4 SP No.3 2-6-0 WEBS 1 Row at midpt 6-21, 8-20, 11-15 REACTIONS. (size) 2-0-3-8, 13=Mechanical Max Horz, 2=199(LC 15) Max Upit 2=430(LC 16), 13=-40(LC 16) Max Grav 2=2320(LC 2e) 6-21, 8-20, 11-15 FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-4=-3853212, 4-6=-3694/213, 6-7=-3069/215, 7-8=-2660/230, 8-9=-3659/274, 9-11=-3592/1656, 11-13=-3282/1400 6-23-0130, 12-12-01086, 8-20=-123/319, 8-17=-59/1484, 15-17=-93/1398, 9-15=-556/185, 11-15=-298/141, 18-19=-303/0 NOTES- 1) Unbalanced roof live loads have been considered for this design. 1 2) Wind: ASCE 7-16; Wull=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; b=254:0, Exterior(2R) 25-8-0, Exterior(2R) 25-8-0, Exterior(2R) 25-8-0, Exterior(2R) 25-8-0, 10, Interior(1) 32-0-10 to 45-2-0 zone; cantillever left and right exposed; end vertical left and right exposed; C-C for members and for reactions how; Lumber DOL=-1.60 plate gitp DOL=-1.60 13 TCLL: ASCE 7-16; Wull=130.0 RG (med LL: Lum DOL=-1.15 Plate DOL=-1.15; Pl=16.5 psf (Lum DOL=-1.15 Plate DOL=-1.15); Is=-1.0; Rough Cat B; Partially Exp.; C==1.0; C==-1.0; C==-1.0	BOT CHORD	2x6 SP 2400F 2	.0E *Except*											· •
SLIDER Left 2x4 SP No.3 2-6-0, Right 2x4 SP No.3 2-6-0 WEBS 1 Row at midpt 6-21, 8-20, 11-15 REACTIONS. (size) 2-0-3-8, 13-Mechanical Max Horit Z=189(LC 16) Max Cupit Z=83(LC 16), 13=-40(LC 16) 6-21, 8-20, 11-15 REACTIONS. (size) 2-0-3-8, 13-Mechanical Max Upit Z=83(LC 16), 13=-40(LC 16) 6-21, 8-20, 11-15 FORCESS. (b) -Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. 6-21, 8-20, 11-15 FORCESS. (b) -Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. 6-21, 8-20, 12-15 FORCESS. (b) -Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. 6-23-0.439, 0-23-549, 21-46-3069/215, 7-8-3-2660/230, 9-9-3659/274, 9-11-3552 SIDC CHORD. 6-23-0.4390, 6-21-7-48/H78, 7-21-0/1086, 8-20-1-23/319, 8-1759/1484, 15-17=-93/1398, 9-15=-556/185, 11-15=-298/141, 18-19=-303/0 8-17-59/1484, 15-17=-93/1398, 9-15=-556/185, 11-15=-298/141, 18-19=-303/0 NOTES- 1) Uhalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vull=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25f; B=45f; L=45f; eave=6f; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -01-10 to 3-7-3, Interior(1) 3-7-3 [Herbo CDL=1.5 Plate DDL=1.5 Plate D		17-20: 2x4 SP N	lo.2				BOT CHORE)	Rigid ce	iling dir	ectly app	lied or 10-0	0-0 oc bracing. Except:	
 REACTIONS. (size) 2=0-3-8, 13-Mechanical Max Horz 2=199(LC 15) Max Upit 2=-83(LC 16), 13=-40(LC 16) Max Grav 2=232(LC 28), 13=-2308(LC 29) FORCES. (b) - Max. Comp./Max. Ten All forces 250 (b) or less except when shown. TOP CHORD 2=43853/212, 4-63894/213, 6-73069/215, 7-82660/230, 8-93659/274, 9-11=-3582/165, 11-13=-324/180 BOT CHORD 2=23a129/3465, 21-2354/3230, 19-21=0/2597, 15-19=0/2597, 14-15=-80/3313, 13-14-=80/3313 WEBS 6-23=0/390, 6-21=-748/178, 7-21=0/1086, 8-20=-123/319, 8-17=-59/1484, 15-17=-93/1398, 9-15=-566/165, 11-15=-298/141, 10-19=-303/0 NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Viut=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=45ft; eave=6ft; Cat. II; Exp B:Enclosed; MWFRS (directional) and C-C Exterior(2E) -0-11-0 to 3-7-3, Interior(1) 3-7-3 to 19-8-0, Exterior(2E) 19-8-0 to 25-8-0, Exterior(2R) 25-8-0 to 32-0-10, Interior(1) 32-0-10 to 45-20 zone; cantilever left and right exposed; c-C for members and forces 8, MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.15 Plate DOL=1.15), Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Ce=1.00; Ce=1.100; Lines flat roof load of 11.6 psf on overhangs non-concurrent with other live loads. 4) Unbalanced snow loads have been considered for this design. 5) This truss has been designed for a 10.0 psf bottom chord live load on concourrent with any other live loads. 6) Provide adequate drainage to prevent water ponding. 7) This truss has been designed for a 10.0 psf bottom chord ine load on an areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0 psf. 9) Refer to girder(s) for truss to tuss connections. 10) Provide mechanical connection. 10) Provide mechanical connection. 10) Provide mechanical connection by of truss to bearing plate capable														
Max Horiz 2-199(LC 15) Max Upilt 2-83(LC 16), 13=-40(LC 16) Max Grav 2-2321(LC 28), 13=2308(LC 29) FORCES. (b) - Max. Comp./Max. Ten All forces 250 (b) or less except when shown. TOP CHORD 2-4=-3653/212, 4-6=-3694/213, 6-7=-3099/215, 7-8=-2660/230, 8-9=-3659/274, 9-11=-3592/165, 11-13=-382/180 BOT CHORD 2-23=-129/3465, 21-2354/3200, 19-21=0/2597, 15-19=0/2597, 14-15=-80/3313, 13-14=-80/3313 WEES 6-23=0/390, 6-21=-748/178, 7-21=0/1086, 8-20=-123/319, 8-17=-59/1484, 15-17=-93/1398, 9-15=-556/185, 11-15=-298/141, 18-19=-303/0 NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vullt-130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; b=25f; b=45ft; L=45ft; eave=6ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -0-11-0 to 3-7-3, Interior(1) 3-7-3 to 19-8-0. Exterior(2E) 19-8-0 to 25-90. Exterior(2R) 25-8-0 to 32-0-10, Interior(1) 32-0-0 ce; cartilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) TOLL: ASCE 7-16; Vullt=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=45ft; eave=6ft; Cat. II; Exp B; Enclosed; MWFRS (for reaction shown; Lumber DOL=1.60 plate grip DOL=1.60 3) TOLL: ASCE 7-16; Vullt=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; b=25ft; B=45ft; L=45ft; b=45ft; L=45ft; eave=6ft; Cat. II; Exp B; Enclosed; MWFRS (for Cat: L; Tartion 10, L=1.15; D=15, D; D=15, D; D=15, D; D=1.50; D] =0.00; Min. flat root show load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4. 4) Unbalanced show been considered for this design. 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load 3.4. 4) Unbalanced show been considered for this design. 6) This truss has been designed for a 10.0 psf bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will if the butom chord a	SLIDER	Left 2x4 SP No.3	3 2-6-0, Right 2x4 SP	No.3 2-6-0			WEBS		1 Row a	t midpt		6-21, 8	-20, 11-15	
 TOP CHORD 2-4a-3853/212, 4-6a-3694/213, 6-7a-3069/215, 7-8a-2660/230, 8-9a-3659/274, 9-11a-3592/165, 11-13a-3821/180 BOT CHORD 2-23a-129/3485, 21-23a-54/3230, 19-21=0/2597, 15-19=0/2597, 14-15a-80/3313, 13-14a-80/3313 WEBS 6-23a-0/390, 6-21a-748/178, 7-21=0/1086, 8-20a-123/319, 8-17a-59/1484, 15-17a-93/1398, 9-15a-556/185, 11-15a-298/141, 18-19a-303/0 NOTES- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasi=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=45ft; eave=6ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -0-11-0 to 3-7-3, Interior(1) 3-7-3 to 19-8-0, Exterior(2E) 19-8-0 to 25-8-0, Exterior(2R) 25-8-0 to 32-0-10, Interior(1) 32-0-10 to 45-20 zone; cantilieve left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 paf; bejf (Lum DOL=1.15) Plate DOL=1.60; reactions and forces & MWFRS for reactions shown; Lumber DOL=1.60 paf; bejf (Lum DOL=1.15) Plate DOL=1.15; Partially Exp: Ce=1.0; Cs=-1.00; CC=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4. Uhalanced snow loads have been considered for this design. This truss has been designed for a live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads. This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 13. This truss is designed in a accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPT 1. 	REACTIONS.	Max Horz 2=19 Max Uplift 2=-8	99(LC 15) 3(LC 16), 13=-40(LC 1											
 NOTES- Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=45ft; eave=6ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -0-11-0 to 3-7-3, Interior(1) 3-7-3 to 19-8-0, Exterior(2E) 19-8-0 to 25-8-0, Exterior(2R) 25-8-0 to 32-0-10, Interior(1) 32-0-10 to 45-2-0 zone; cantilever left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=16.5 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4. Unbalanced snow loads have been considered for this design. This truss has been designed for a 10.0 psf bottom chord live load on nonconcurrent with any other live loads. Provide adequate drainage to prevent water ponding. Refer to girder(s) for truss to truss connections. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 13. This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 	BOT CHORD	9-11=-3592/16 2-23=-129/348 13-14=-80/331 6-23=0/390, 6-	55, 11-13=-3821/180 35, 21-23=-54/3230, 19 13 -21=-748/178, 7-21=0/	-21=0/2597, 15-1 1086, 8-20=-123/	19=0/2597, 1 319, 8-17=-5	4-15=-80/3								
12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. May 22,2024	 Unbalanced Wind: ASCE II; Exp B; Enn 25-8-0, Extel exposed;C-C TCLL: ASCE DOL=1.15); I surcharge ap Unbalanced This truss ha non-concurre Provide adee This truss ha will fit betwee Refer to gird Provide me This truss is 	7-16; Vult=130m closed; MWFRS ior(2R) 25-8-0 tc f or members an 7-16; PT=20.0 p s=1.0; Rough Ca plied to all expos snow loads have s been designed at with other live juate drainage tc s been designed ias been designed ias been designed ias been designed chanical connect a designed in acc	high (3-second gust) Va (directional) and C-C I (directional) and C-C I (directional) and C-C I (directional) and C-C I (directional) and forces & MWFRS fo (sight for a for the considered of LL: Lum DOL= at B; Partially Exp.; Ce sed surfaces with slope been considered for t I for greater of min roo (b) loads. (b) prevent water pondin I for a 10.0 psf bottom and for a live load of 20. ord and any other men truss connections. tion (b) others) of truss cordance with the 2018	sd=103mph; TCI xterior(2E) -0-11 -0-10 to 45-2-0 z r reactions shown 1.15 Plate DOL= =1.0; Cs=1.00; Cf as less than 0.500 nis design. live load of 12.0 g. chord live load nc psf on the bottor abers, with BCDL ; to bearing plate	-0 to 3-7-3, I cone; cantilev tr, Lumber DC 1.15); Pg=15 t=1.10, Lu=5 0/12 in accor psf or 1.00 ti onconcurrent m chord in al = 10.0psf. capable of w	Interior(1); ver left and DL=1.60 pl 5.0 psf; Pf= 0-0-0; Min dance with imes flat ro with any o I areas wh	3-7-3 to 19-8- d right expose late grip DOL- :16.5 psf (Lun, 18at roof sno h IBC 1608.3. boof load of 11 other live load ere a rectang g 100 lb uplift	-0, Exte ed ; enc =1.60 n DOL: w load 4. .6 psf o ls. gle 3-6- t at joir	erior(2E) d vertical =1.15 Pl governs on overh -0 tall by nt(s) 2, 1	19-8-0 l left and ate s. Rain angs 2-0-0 v 3.	to d right	Contraction of the second	SEAL 036322	A MANAGEMENT
•				size or the orien	tation of the	purlin alon	ig the top and	l/or bot	ttom cho	rd.				
			·										,	





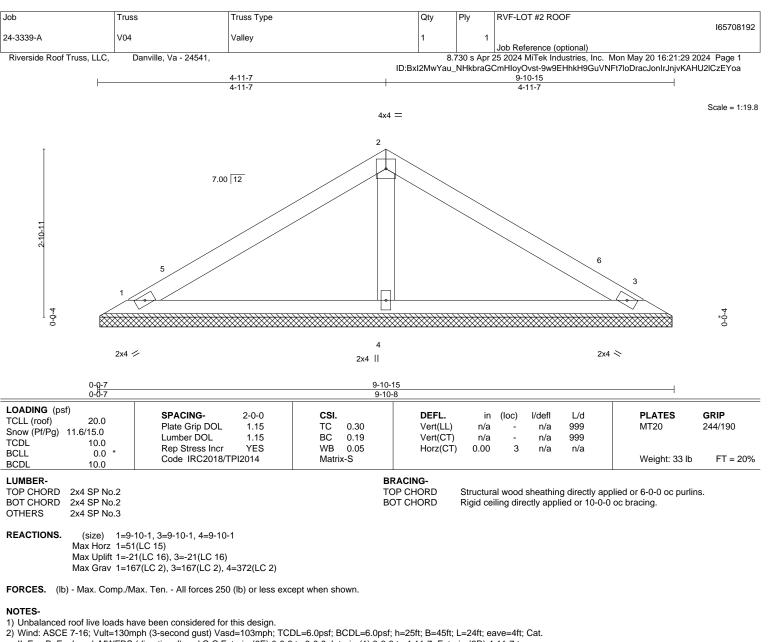
RENC


TRENGINEERING BY AMITEK Affiliate

May 22,2024

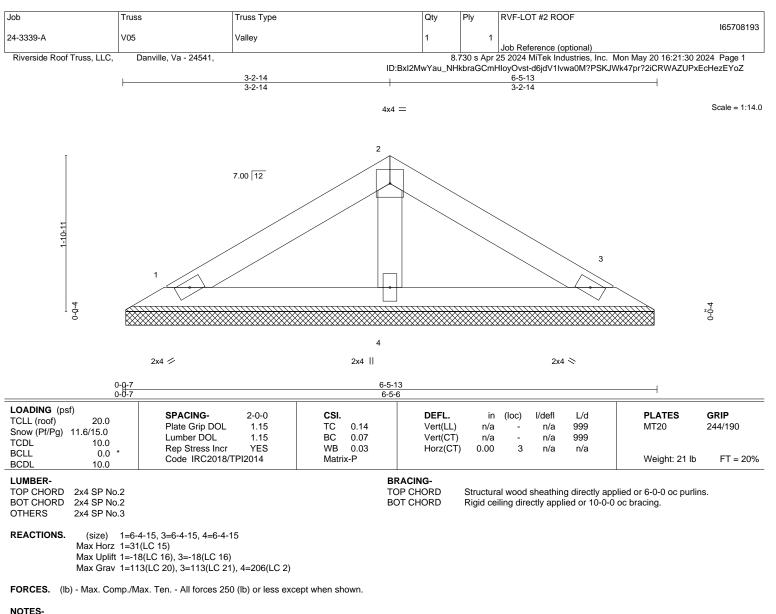
May 22,2024

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.


NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-6-8 to 3-6-8, Interior(1) 3-6-8 to 6-8-1, Exterior(2R) 6-8-1 to 9-8-1, Interior(1) 9-8-1 to 12-9-9 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 6.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)



- II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-6-8 to 3-6-8, Interior(1) 3-6-8 to 4-11-7, Exterior(2R) 4-11-7 to 7-11-7, Interior(1) 7-11-7 to 9-4-7 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

818 Soundside Road

- NOTES-
- 1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate
- DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

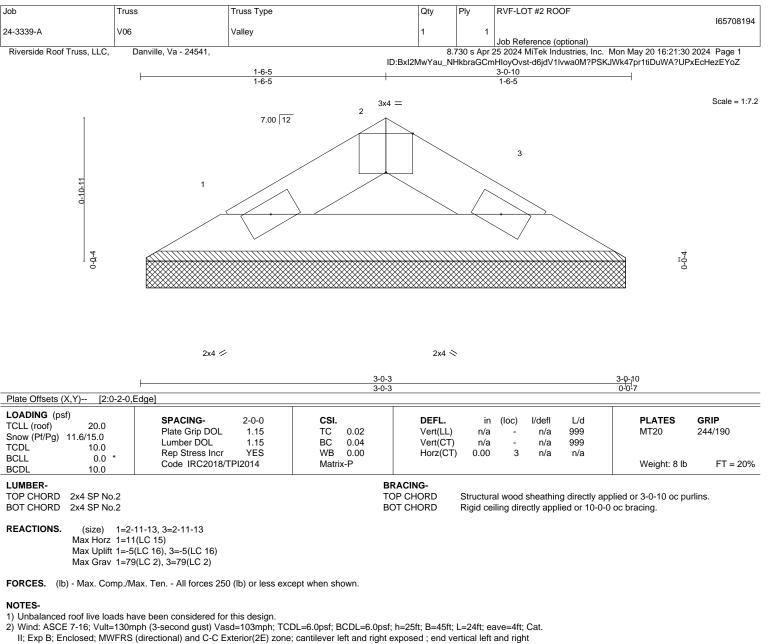
4) Unbalanced snow loads have been considered for this design.

5) Gable requires continuous bottom chord bearing.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.


9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

818 Soundside Road

- exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall a fuss system. Derive use, the building designer index very the applications of design had very the applications of design index very the applications of design index very the application of the applicat and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

