Job	Truss	Truss Type	Qty	Ply	Lincoln A GRH-2nd Floor-Lincoln A GRH
24050001-B	CJ02	Diagonal Hip Girder	1	1	Job Reference (optional)

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri May 17 15:08:50 Page: 1 ID:JicBKEMC3uj5z5jlsq100?zFaMx-4ahTrgPOUV6JuUMMLXIaSwuGluvuT3ms37xgQezFa0x

3x5 =

2-5-10

Scale = 1:27.5

					1		1					
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018/TPI2014	CSI TC BC WB Matrix-MP	0.15 0.04 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 4-7 4-7 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0										weight: 10 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 2-5-10 oc purlins, e Rigid ceiling directly bracing. MiTek recommends required cross brac truss erection, in at	eathing directly applied of except end verticals. / applied or 10-0-0 oc s that Stabilizers and ing be installed during coordance with Stabilize	 8) Provide mec bearing plate 4. 9) One H2.5A s recommend UPLIFT at jt does not con 10) This truss is Internationa R802.10.2 a LOAD CASE(S) ar 	hanical connectii e capable of with: Simpson Strong- ad to connect tru- (s) 2. This conne- nsider lateral forc designed in acco Residential Cod nd referenced sta Standard	on (by oth standing ² Tie conne- ss to bear ction is fo ces. ordance w le sections andard AN	ctors ing walls due r uplift only a with the 2018 s R502.11.1 a NSI/TPI 1.	to joint e to nd					
	Installation guide.											
REACTIONS FORCES NOTES 1) Wind: AS(Vasd=103 II; Exp B; cantilever right expo 2) TCLL: AS: Plate DOL DOL=1.15 Cs=1.00; 3) Unbalancd design. 4) This truss load of 12 overhangs 5) This truss chord live 6) * This truss on the bot 3-06-00 tz chord and 7) Refer to g	(lb/size) 2=187/0-4 Mechanic Max Horiz 2=32 (LC Max Uplift 2=-70 (LC Max Grav 2=243 (LC (lb) - Max. Comp./M (lb) or less except w CE 7-16; Vult=130mph mph; TCDL=6.0psf; B Enclosed; MWFRS (e left and right exposed sed; Lumber DOL=1.6 (CE 7-16; Pr=20.0 psf (L 5); Is=1.0; Rough Cat I Ct=1.10 ed snow loads have b has been designed fc to snon-concurrent with has been designed fc load nonconcurrent w is has been designed fc load	 I-9, (min. 0-1-8), 4=73/ al, (min. 0-1-8) al, (min. 0-1-8) 11) b), 4=-11 (LC 12) c) 19), 4=90 (LC 19) ax. Ten All forces 250 then shown. ax. Ten All forces 250 then shown. ax. Ten All forces 250 then shown. the shown.<!--</td--><td>at. 5 e m</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td>	at. 5 e m									

Job	Truss	Truss Type	Qty	Ply	Lincoln A GRH-2nd Floor-Lincoln A GRH
24050001-B	CJ06	Diagonal Hip Girder	6	1	Job Reference (optional)

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri May 17 15:08:51 Page: 1 ID:TQ8pCEsl4Ob3bpKbYcv?GFzFaWd-YmFs20P0FoEAWdxYvEpp?7RPNICqCUj0HngDy4zFa0w

Scale = 1:41.6

Plate Offsets (X, Y): [2:0-3-8,Edge]

overhaps non-concurrent with other live loads. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5)

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	тс	0.26	Vert(LL)	-0.01	5-6	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.19	Vert(CT)	-0.01	5-6	>999	180		
TCDL	10.0	Rep Stress Incr	NO	WB	0.15	Horz(CT)	0.00	5	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 37 lb	FT = 20%
LUMBER TOP CHOF BOT CHOF WEDGE WEDGE BRACING TOP CHOF BOT CHOF	 RD 2x4 SP No.2 RD 2x4 SP No.2 2x4 SP No.3 Left: 2x4 SP No.3 RD Structural wood she 6-0-0 oc purlins, ei RD Rigid ceiling directive bracing. MiTek recommend required cross braitruss erection, in a 	eathing directly applied o xcept end verticals. y applied or 10-0-0 oc s that Stabilizers and cing be installed during ccordance with Stabilize	 6) * This truss on the botto 3-06-00 tall chord and a 7) Refer to gird 8) Provide mec bearing plate 5. 9) One H2.5A s recommend UPLIFT at jt does not cor 10) This truss is Internationa 	has been designed m chord in all areas by 2-00-00 wide wil ny other members. er(s) for truss to tru- hanical connection e capable of withsta Simpson Strong-Tie ed to connect truss (s) 2. This connecti- nsider lateral forces designed in accord Residential Code	for a liv where I fit betw (by oth anding 6 connec to bear on is for 5.	e load of 20. a rectangle veen the bot nections. ers) of truss 4 lb uplift at ctors uplift only a ith the 2018 FR502.11.1 i	.0psf tom to joint e to ind and					
REACTION	Installation guide. IS (lb/size) 2=375/0- Mechanic Max Horiz 2=136 (L Max Uplift 2=-57 (LC Max Grav. 2=438 (I	4-9, (min. 0-1-8), 5=303/ cal, (min. 0-1-8) C 11) C 12), 5=-64 (LC 12) C 19) 5=389 (LC 19)	R802.10.2 a 11) "NAILED" in (0.148"x3.25 12) In the LOAD of the truss a LOAD CASE(S)	nd referenced stan dicates 3-10d (0.14 5") toe-nails per ND CASE(S) section, are noted as front (I Standard	dard AN 8"x3") o S guidli loads a F) or ba	ISI/TPI 1. or 2-12d nes. oplied to the ck (B).	face					
FORCES	(lb) - Max. Comp./N	fax. Ten All forces 250	1) Dead + Sno	ow (balanced): Lum	ber Inc	rease=1.15,	Plate					
TOP CHOR BOT CHOR WEBS NOTES	(lb) or less except v 2D 2-10=-489/33, 3-10 2-6=-90/408, 6-12= 3-5=-465/101	when shown. =-401/44 -90/408, 5-12=-90/408	Uniform Lo Vert: 1-4 Concentrat Vert: 11=	.15 ads (lb/ft) =-60, 5-7=-20 ed Loads (lb) -41 (F=-21, B=-21)	, 12=-3 [.]	I (F=-16, B=	-16)					
 Wind: A Vasd=1 II; Exp I cantilev right ex TCLL: A Plate D DOL=1 Cs=1.0 Unbala 	SCE 7-16; Vult=130mp 03mph; TCDL=6.0psf; E B; Enclosed; MWFRS (e rer left and right exposed posed; Lumber DOL=1. SCE 7-16; Pr=20.0 psf OL=1.15); Pf=20.0 psf (.15); Is=1.0; Rough Cat 0; Ct=1.10 nced snow loads have b	h (3-second gust) 3CDL=6.0psf; h=25ft; Ca anvelope) exterior zone; d; end vertical left and 60 plate grip DOL=1.60 (roof LL: Lum DOL=1.15 Lum DOL=1.15 Plate B; Fully Exp.; Ce=0.9; ween considered for this	t.									
 This tru load of 	ss has been designed for 12.0 psf or 1.00 times fl	or greater of min roof live at roof load of 20.0 psf o	1									

Job	Tru	SS	Truss Type		Qty	Ply	Lincoln A G	RH-2nd	Floor	-Lincoln A GRH	
24050001-B	CJ	08	Diagonal Hip Girde	er	1	1	Job Refere	nce (on	tional)		
Carter Componer	nts, Sanford, NC, use	er		Run: 8.73 S Ap	or 25 2024 I	Print: 8.730 S Apr	r 25 2024 MiTe	k Industr	ies, Inc.	Fri May 17 15:08:5	i1 Page: 1
					ID:TQ	8pCEsl4Ob3bpKl	bYcv?GFzFaW	/d-YmFs2	20P0Fo	EAWdxYvEpp?7RM	lsl8dCS90HngDy4zFa0w
			, <u>-1-2-14</u> 1-2-14	<u>4-1-5</u> 4-1-5	1	<u>8-2-15</u> 4-1-10					
					3.54 ¹²	NAILED)				
				NA	AILED	NAILED)				
				NA	AILED		2x4 II				
		<u>م</u> الم		10 10 10 13	3x5 : 3 1 1 1 0	12 10 W2 B1 00 14	4 W3	5	2-11-6		
			3x5=	=	2x4 II		3x5 =				
			Special	NA		NAILED)				
Scale = 1:40.3				<u>4-1-5</u> 4-1-5		<u>8-2-15</u> 4-1-10					
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr *	2-0-0 1.15 1.15 NO IRC2018/TPI2014	CSI TC BC WB Matrix-MP	0.48 0.40 0.31	DEFL Vert(LL) -0 Vert(CT) -0 Horz(CT) 0	in (loc) 0.03 5-6 0.04 5-6 0.01 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 38 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood : 6-0-0 oc purlins, Rigid ceiling dire bracing. MiTek recomme required cross b truss erection, ir Installation guid	sheathing directly applie except end verticals. ctly applied or 10-0-0 or nds that Stabilizers and racing be installed durir n accordance with Stabi e.	 6) * This truss on the botto 3-06-00 tall chord and a 7) Refer to girc 8) Provide mea bearing plat 2 and 67 lb 9) This truss is Internationa R802.10.2 a 10) "NAILED" ir (0.148"x3.2i 11) In the LOAE 	has been designed m chord in all area by 2-00-00 wide w iny other members. der(s) for truss to tr chanical connection e capable of withst uplift at joint 5. designed in accor il Residential Code and referenced star dicates 3-10d (0.1. 5") toe-nails per NE D CASE(S) section,	d for a live is where a ill fit betwo uss conne n (by othe tanding 98 dance wit sections ndard ANS 48"x3") or DS guidlin , loads ap	load of 20.0ps rectangle een the bottom ections. rs) of truss to 3 lb uplift at joir h the 2018 R502.11.1 and SI/TPI 1. -2-12d es. plied to the fac	e				
REACTIONS ((lb/size) 2=464, Mecha Max Horiz 2=107 Max Uplift 2=-98 Max Grav 2=520	/0-8-6, (min. 0-1-8), 5=4 nical, (min. 0-1-8) (LC 11) (LC 8), 5=-67 (LC 12) (LC 19), 5=495 (LC 19)	39/ LOAD CASE(S) 1) Dead + Sn Increase=1 Uniform Lo	are noted as front (ow (balanced): Lur I.15 bads (lb/ft)	(F) or bac	к (В). ease=1.15, Pla	te				
FORCES TOP CHORD BOT CHORD	(lb) - Max. Comp (lb) or less excep 2-10=-863/77, 10 2-13=-98/790, 6-	./Max. Ten All forces 2 ot when shown.)-11=-823/81, 3-11=-785 13=-98/790, 6-14=-98/7	50 vert: 1-4 50 Concentrat /89 Vert: 12: 90, 14=-50 (ted Loads (lb) =-125 (F=-63, B=-6 (F=-25, B=-25)	63), 13=-5	(F=-3, B=-3),					
WEBS	5-14=-98/790 3-5=-839/129										
NOTES 1) Wind: ASC Vasd=103r II; Exp B; E cantilever I right expos 2) TCLL: ASC Plate DOL: DOL=1.15) Cs=1.00; C 3) Unbalance design. 4) This truss I load of 12. overhangs 5) This truss I	E 7-16; Vult=130r nph; TCDL=6.0ps inclosed; MWFRS left and right expos- sed; Lumber DOL= CE 7-16; Pr=20.0 ps 1.15); Pf=20.0 ps 1.15); Pf=2	nph (3-second gust) f; BCDL=6.0psf; h=25ft; (envelope) exterior zor sed ; end vertical left an 1.60 plate grip DOL=1. sf (roof LL: Lum DOL=1 f (Lum DOL=1.15 Plate at B; Fully Exp.; Ce=0.9 e been considered for th d for greater of min roof s flat roof load of 20.0 ps th other live loads. d for a 10.0 psf bottom t with any other live loa	Cat. le; d 50 .15 ; ; is live of on								

Job	Truss	Truss Type	Qty	Ply	Lincoln A GRH-2nd Floor-Lincoln A GRH
24050001-B	J01	Jack-Open	2	1	Job Reference (optional)

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri May 17 15:08:51 Page: 1 ID:aNNto2c71xy2abDYpi14vqzFaWy-YmFs20P0FoEAWdxYvEpp?7RSIIEQCW00HngDy4zFa0w

3x5 =

One H2.5A

1-9-15

Scale = 1:27.9												
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MP	0.07 0.03 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 4-7 4-7 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 7 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 Structural wood she 1-9-15 oc purlins. Rigid ceiling directly bracing. MiTek recommends required cross brac truss erection, in ac Installation guide.	eathing directly applied v applied or 10-0-0 oc s that Stabilizers and cing be installed during ccordance with Stabiliz	 7) Refer to gird 8) Provide mec bearing plate 3. 9) One H2.5A \$ recommend UPLIFT at jt does not cor 10) This truss is Internationa R802.10.2 a LOAD CASE(S) 	er(s) for truss to t chanical connectic e capable of withs Simpson Strong-T ed to connect trus (s) 2. This connec ssider lateral force designed in acco Residential Code nd referenced sta Standard	russ com on (by oth standing 2 Tie conne- ss to bear ction is fo es. rdance w e sections andard AN	nections. ers) of truss 22 lb uplift at ctors ing walls du r uplift only a ith the 2018 \$ R502.11.1 USI/TPI 1.	to t joint e to and and					
REACTIONS	(Ib/size) 2=138/0-3 Mechanic Max Horiz 2=39 (LC Max Uplift 2=-24 (LC Max Grav 2=186 (LC (LC 7)	3-8, (min. 0-1-8), 3=42/ al, (min. 0-1-8), 4=18/ al, (min. 0-1-8) 14) 2 10), 3=-22 (LC 14) 2 21), 3=58 (LC 21), 4=	-32									
 NOTES 1) Wind: ASt Vasd=103 II; Exp 8; and C-C E exposed ; members Lumber D 2) TCLL: AS Plate DOI DOL=1.15 Cs=1.00; 3) Unbalanc design. 4) This truss load of 12 overhang; 5) This truss chord live 6) * This trus 3-06-00 ta chord and 	(b) - wiax. Comp./Mi (b) or less except w CE 7-16; Vult=130mph Bmph; TCDL=6.0psf; B Enclosed; MWFRS (ei exterior(2E) zone; cani end vertical left and ri and forces & MWFRS OL=1.60 plate grip DC CE 7-16; Pr=20.0 psf (L =1.15); Pf=20.0 psf (L =1.15); Pf=20.0 psf (L =1.15); Pf=20.0 psf (L ct=1.10) ed snow loads have be thas been designed for load nonconcurrent with thas been designed for load nonconcurrent will any other members.	a. refit - All forces 250 then shown. (CDL=6.0psf; h=25ft; C nvelope) exterior zone tilever left and right ight exposed; C-C for for reactions shown; DL=1.60 (roof LL: Lum DOL=1.1 Jum DOL=1.15 Plate B; Fully Exp.; Ce=0.9; een considered for this or greater of min roof liv at roof load of 20.0 psf other live loads. for a 10.0 psf bottom ith any other live loads for a live load of 20.0psf where a rectangle fit between the bottom	y at. 5 5 on sf									

Job	Truss	Truss Type	Qty	Ply	Lincoln A GRH-2nd Floor-Lincoln A GRH
24050001-B	J02	Jack-Open	12	1	Job Reference (optional)

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri May 17 15:08:51 Page: 1 ID:aNNto2c71xy2abDYpi14vqzFaWy-YmFs20P0FoEAWdxYvEpp?7RRQID9CW00HngDy4zFa0w

3x8 II

Scale = 1:30.3

Plate Offsets	(X,	Y):	[2:0-3-8,Edge]
---------------	-----	-----	----------------

·												
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES RC2018/TPI2014	CSI TC BC WB Matrix-MP	0.13 0.11 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 -0.01 0.00	(loc) 4-7 4-7 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0										weight. 12 m	FT = 20%
LUMBER TOP CHORD BOT CHORD WEDGE BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD REACTIONS FORCES 1) Wind: ASC Vasd=103 II; Exp B; I and C-CE exposed ; members Lumber D 2) TCLL: ASC Plate DOL DOL=1.15 Cs=1.00; (3) Unbalance design. 4) This truss load of 12 overhangs 5) This truss chord live	2x4 SP No.2 2x4 SP No.2 Left: 2x4 SP No.3 Structural wood she 2-9-11 oc purlins. Rigid ceiling directly bracing. MiTek recommend- required cross brac truss erection, in ar Installation guide. (lb/size) 2=171/0-1 Mechanic Max Horiz 2=85 (LC Max Grav 2=255 (LC Max Grav 2=255 (LC (lb) - Max. Comp./M (lb) or less except w CE 7-16; Vult=130mpl mph; TCDL=6.0psf; E Enclosed; MWFRS (e Exterior(2E) zone; can end vertical left and r and forces & MWFRS (e Exterior(2E) zone; can end vertical left and r and forces & MWFRS (e Exterior(2E) zone; can end vertical left and r and forces & MWFRS (e Exterior(2E) zone; can end vertical left and r and forces & MWFRS (e Exterior(2E) zone; can end vertical left and r and forces & MWFRS (e Exterior(2E) zone; can end vertical left and r and forces & MWFRS OL=1.60 plate grip DC CE 7-16; Pr=20.0 psf (i 5); Is=1.0; Rough Cat Ct=1.10 ed snow loads have b has been designed fo load nonconcurrent with	eathing directly applied or y applied or 10-0-0 oc s that Stabilizers and cing be installed during ccordance with Stabilizer 3-8, (min. 0-1-8), 3=66/ cal, (min. 0-1-8), 4=35/ cal, (min. 0-1, (min. 0-1, (min. 0-1, (min. 0-	 6) * This truss I on the botton 3-06-00 tall I chord and at 7) Refer to gird 8) Provide mechanism (Second Second Seco	has been designe m chord in all are by 2-00-00 wide re(s) for truss to chanical connecti- e capable of with Simpson Strong- ed to connect tru (s) 2. This conner isider lateral forc- designed in accor Residential Cod nd referenced st Standard	ed for a liv eas where will fit betw rs. truss conr ton (by oth istanding 4 Tie connec ss to bear ordance w le sections candard AN	e load of 20. a rectangle veen the both nections. ers) of truss 3 lb uplift at tors ing walls due uplift only a ith the 2018 i R502.11.1 a ISI/TPI 1.	Opsf tom to joint e to nd and					

Job	Truss	Truss Type	Qty	Ply	Lincoln A GRH-2nd Floor-Lincoln A GRH
24050001-B	J03	Jack-Open	2	1	Job Reference (optional)

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri May 17 15:08:52 Page: 1 ID:aNNto2c71xy2abDYpi14vqzFaWy-1ypEGMQe06M17nWkSyK2XLzaahYExzF9WRQmUXzFa0v

Scale = 1:29.5

00010 1.20.0				I			I					
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MP	0.29 0.18 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.02 0.01	(loc) 4-7 4-7 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 13 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD REACTIONS FORCES NOTES 1) Wind: AS Vasd=100 II; Exp B;	 0.0 10.0 2x4 SP No.2 2x4 SP No.2 Structural wood she 3-9-15 oc purlins. Rigid ceiling directly bracing. MiTek recommends required cross brac truss erection, in ad Installation guide. (lb/size) 2=209/0-3 Mechanic Mechanic Max Horiz 2=69 (LC Max Uplift 2=-27 (LC Max Grav 2=299 (LC 4=70 (LC (lb) - Max. Comp./M (lb) or less except w CE 7-16; Vult=130mpf Enclosed; MWFRS (e 	eathing directly applied y applied or 10-0-0 oc s that Stabilizers and cing be installed during ccordance with Stabilizer 3-8, (min. 0-1-8), 3=98/ cal, (min. 0-1-8), 4=46/ cal, (min. 0-1-8), 5 cal, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10	7) Refer to gird 8) Provide mec bearing plate 3. 9) One H2.5A S recommend UPLIFT at jt does not con 10) This truss is International R802.10.2 a LOAD CASE(S)	er(s) for truss to chanical connect e capable of with Simpson Strong- ed to connect tru (s) 2. This conne- nsider lateral for designed in acc Residential Coo nd referenced s Standard	o truss con tion (by oth standing 4 -Tie conne uss to beal ection is fo ces. ordance w de section: tandard At	nections. ers) of truss 17 lb uplift al ctors ing walls du r uplift only a ith the 2018 s R502.11.1 ISI/TPI 1.	t joint le to and and				Weight: 13 lb	FT = 20%
 and C-C lexposed members Lumber E 2) TCLL: AS Plate DO DOL=1.1; CS=1.00; 3) Unbalance design. 4) This truss load of 12 overhang 5) This truss chord live 6) * This trus 6) a-06-00 techord and 	Exterior(2E) zone; can ; end vertical left and r and forces & MWFRS OOL=1.60 plate grip DO CE 7-16; Pr=20.0 psf L=1.15); Pf=20.0 psf (L=1.10; Rough Cat Ct=1.10 eved snow loads have b a has been designed fo 2.0 psf or 1.00 times fit s non-concurrent with s has been designed fo load nonconcurrent with s has been designed fo load nonconcurrent with s has been designed fo load nonconcurrent with a has been designed for load nonconcurrent with a has been designed for load nonconcurrent with a has been designed for load nonconcurrent with a has been designed for load nonconcurrent with a has been designed for	tilever left and right right exposed;C-C for S for reactions shown; OL=1.60 (roof LL: Lum DOL=1.1 Lum DOL=1.15 Plate B; Fully Exp.; Ce=0.9; ween considered for this or greater of min roof liv at roof load of 20.0 psf other live loads. or a 10.0 psf bottom vith any other live loads for a live load of 20.0ps s where a rectangle I fit between the bottom	5 on of									

Job	Truss	Truss Type	Qty	Ply	Lincoln A GRH-2nd Floor-Lincoln A GRH	
24050001-B	J04	Jack-Closed Girder	2	2	Job Reference (optional)	
Carter Components, Sanford, N	C, user	Run: 8.73 S Apr 2	5 2024 Print:	8.730 S Apr	25 2024 MiTek Industries, Inc. Fri May 17 15:08:52 Pa	age: 1

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri May 17 15:08:52

Page: 1 ID:xciBQatwrijwDzvn5KQEpTzFaWc-1ypEGMQe06M17nWkSyK2XLzXshLlxzF9WRQmUXzFa0v

LUS26

Scale = 1:37.4

Plate Offsets (X, Y): [1:Edge,0-1-5]

Lo TC Sn	ading LL (roof) ow (Pf)		(psf) 20.0 20.0	Spacing Plate Grip DOL Lumber DOL Bop Stross Incr		2-0-0 1.15 1.15	CSI TC BC	0.47 0.98	DEFL Vert(LL) Vert(CT)	in -0.06 -0.11	(loc) 3-6 3-6	l/defl >930 >535	L/d 240 180	PLATES MT20	GRIP 244/190
BC	ELL EDL		0.0* 10.0	Code	IRC20 ⁷	18/TPI2014	Matrix-MP	0.00	1012(01)	0.01	I	n/a	n/a	Weight: 50 lb	FT = 20%
FO TONC 1) 3)	DL MBER P CHORD T CHORD EBS ACING P CHORD T CHORD T CHORD T CHORD ACTIONS ACTIONS ACTIONS CASES P CHORD TES 2-ply truss Top chords follows: 2xi All loads all except if ne CASE(S) s provided to unless other Wind: ASC Vasd=1037 L: Exp R: E	2x4 SP No. 2x6 SP No. 2x4 SP No. Structural v 4-10-12 oc Rigid ceilin- bracing. (lb/size) 1 Max Horiz 1 Max Uplift 1 Max Grav 1 (lb) - Max. 0 (lb) or less 1-2=-427/1 ² to be connect ords connected 4 4 - 1 row at 0 (lb) or less 1-2=-427/1 ² to be connect connected 4 4 - 1 row at 0 d - 2 rows st re considere- oted as front section. Ply to o distribute as front section. Ply to o fastribute as front section. Ply to section as front section as front section. Ply to section as front section as front section. Ply to section as front section as front section as front section as front section as front section as front section as front section as front section as front section as front section as front section as front section as front section as front	10.0 2 2 3 vood she purlins, g directly =1416/0- =1075/ N =118 (LC =-134 (L =1511 (L Comp./M. except w 14, 2-3=- cted toge with 10d 0-9-0 oc. ed with 1 aggered d equally (F) or bab o ply con nly loads ted. =130mph 6.0psf; B VERS (ed)	athing directly applied o except end verticals. applied or 10-0-0 oc 	7) 8) 9) 10) 11) 12) 13) 14) LOA 1) t.	* This truss I on the botton 3-06-00 tall I chord and al Refer to gird Provide mect 3. One H2.5A S recommend. UPLIFT at jt does not cor This truss is International R802.10.2 a Use Simpso Truss) or eq connect trus bottom choru Use Simpso Truss) or eq connect trus bottom choru Use Simpso Data H Sim Fill all nail h D CASE(S) Dead + Sinc Increase=1 Uniform Lo Vert: 1-2: Concentrat Vert: 7=-	has been designer m chord in all are by 2-00-00 wide in the other member er(s) for truss to chanical connecti e capable of with Simpson Strong- de to connect tru (s) 1. This conne sider lateral force designed in accor Residential Cod nd referenced st uivalent at 0-11-5 s(es) T12 (1 ply 3 d. n Strong-Tie LUS uivalent at 0-11-2 (s(es) T12 (1 ply 3 d. n Strong-Tie HTI 2 Truss, Single P the left end to co root face of botto bles where hange Standard bw (balanced): Lu 15 ads (lb/ft) =-60, 3-4=-20 ed Loads (lb) 1020 (F), 8=-109	ed for a lin as where will fit betw 's. truss conion (by oth standing ' Tie conne ss to bear ction is fo res. ordance w le section: andard AN 326 (4-100 3 from the 2x4 SP) to J26 (20-11 ly Girder) nnect trus m chord. er is in con umber Inc	re load of 20 a rectangle veen the both nections. ers) of truss (39 lb uplift a ctors ing walls dui r uplift only a ith the 2018 s R502.11.1 USI/TPI 1. d Girder, 4-11 left end to o front face of Dd Girder, or equivaler s(es) T13 (1 ntact with lur rease=1.15,	.0psf tom to at joint e to and and 0d of t at ply nber. Plate				Weight: 50 lb	FT = 20%
4) 5)	cantilever I right expos TCLL: ASC Plate DOL: DOL=1.15 Cs=1.00; C Unbalance	eft and right sed; Lumber CE 7-16; Pr= =1.15); Pf=2(); Is=1.0; Roi Ct=1.10 d snow loads	exposed DOL=1.6 20.0 psf (L 0.0 psf (L ugh Cat I s have be	; end vertical left and 30 plate grip DOL=1.60 (roof LL: Lum DOL=1.15 (um DOL=1.15 Plate 3; Fully Exp.; Ce=0.9; een considered for this	5										
6)	design.	ign. I truss has been designed for a 10.0 nsf bottom													

6) chord live load nonconcurrent with any other live loads.

Job	Truss	Truss Type	Qty	Ply	Lincoln A GRH-2nd Floor-Lincoln A GRH	
24050001-B	J04A	Jack-Open	26	1	Job Reference (optional)	
Carter Components, Sanford, N	Run: 8.73 S Apr 2	5 2024 Print:	8.730 S Ap	r 25 2024 MiTek Industries, Inc. Fri May 17 15:08:52	Page: 1	

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri May 17 15:08:52 Page: 1 ID:LBOJ2bvp8d6V4ReMnS_xQ5zFaWZ-1ypEGMQe06M17nWkSyK2XLzWehUAxzF9WRQmUXzFa0v

Scale = 1:33.9

Plate Offsets (X, Y): [2:0-3-8,Edge]

				-								
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.55	Vert(LL)	-0.05	4-7	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.44	Vert(CT)	-0.09	4-7	>679	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.02	2	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 19 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEDGE BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 Left: 2x4 SP No.3 Structural wood she 4-10-12 oc purlins. Rigid ceiling directly bracing. MiTek recommend: required cross brac truss erection, in a Installation guide. (lb/size) 2=251/0-1 Mechanic	eathing directly applied of / applied or 10-0-0 oc s that Stabilizers and cordance with Stabilize 3-8, (min. 0-1-8), 3=124/ al, (min. 0-1-8), 4=64/	 6) * This truss on the botto 3-06-00 tall chord and a 7) Refer to gird 8) Provide mee bearing plat 3. 9) One H2.5A recommend UPLIFT at ji does not co 10) This truss is Internationa R802.10.2 a 	has been designed m chord in all areas by 2-00-00 wide wil y other members. ler(s) for truss to tru- chanical connection e capable of withsta Simpson Strong-Tie ed to connect truss (s) 2. This connection sider lateral forces designed in accorc I Residential Code s and referenced stan Standard	for a liv s where Il fit betv uss conre (by oth anding 7 e connec to bear on is for ance w sections dard AN	e load of 20. a rectangle veen the bott nections. ers) of truss '9 lb uplift at ctors ing walls due r uplift only a ith the 2018 s R502.11.1 a ISI/TPI 1.	.0psf tom to joint e to ind and					
	Mechanic Max Horiz 2=137 (LC Max Uplift 2=-4 (LC Max Grav 2=350 (LC 4=90 (LC	al, (min. 0-1-8) C 14) 14), 3=-79 (LC 14) C 21), 3=206 (LC 21), 7)										
FORCES	 (lb) - Max. Comp./M (lb) or less except w 	lax. Ten All forces 250 /hen shown.										
NOTES	.,											
 Wind: ASC Vasd=103 II; Exp B; and C-C E exposed; members Lumber D TCLL: AS Plate DOL DOL=1.15 Cs=1.00; Unbalance design. This truss load of 12 overhangs This truss chord live 	CE 7-16; Vult=130mpl imph; TCDL=6.0psf; E Enclosed; MWFRS (e Exterior(2E) zone; can end vertical left and r and forces & MWFRS OL=1.60 plate grip D0 CE 7-16; Pr=20.0 psf (=1.15); Pf=20.0 psf (5); Is=1.0; Rough Cat Ct=1.10 ed snow loads have b has been designed fo .0 psf or 1.00 times fla s non-concurrent with has been designed fo load nonconcurrent w	n (3-second gust) SCDL=6.0psf; h=25ft; Ca invelope) exterior zone tilever left and right ight exposed;C-C for 6 for reactions shown; DL=1.60 (roof LL: Lum DOL=1.15 Lum DOL=1.15 Plate B; Fully Exp.; Ce=0.9; een considered for this or greater of min roof live at roof load of 20.0 psf of other live loads. or a 10.0 psf bottom ith any other live loads.	at. 5 n									

Job	Truss	Truss Type	Qty	Ply	Lincoln A GRH-2nd Floor-Lincoln A GRH
24050001-B	PB04	Piggyback	1	1	Job Reference (optional)

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri May 17 15:08:53 Page: 1 ID:00mibgOaVVtF7wZ1i62oCRzFaKJ-1ypEGMQe06M17nWkSyK2XLzeehaSxzF9WRQmUXzFa0v

3x5 =

8 F

Scale = 1:29.7

Plate Offsets (X, Y): [3:0-2-8,Edge]

1-4-8

0-4-7

Loading TCLL (roof) Snow (Pf) TCDL BCLL	(psf) 20.0 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MP	0.03 0.04 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 10	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0										Weight: 11 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 Structural wood she 4-1-8 oc purlins. Rigid ceiling directly bracing. MiTek recommend required cross brac truss erection, in a Installation guide.	eathing directly applied o y applied or 10-0-0 oc s that Stabilizers and cing be installed during ccordance with Stabilize	 7) Gable requir 8) Gable studs 9) This truss has chord live location of the botton 3-06-00 tall chord and an an 11) One H2.5A secommend. and does no 12) This truss is 	res continuous b spaced at 4-0- as been designe ad nonconcurre has been design m chord in all ar by 2-00-00 wide by 2-00-00 wide by 2-00-00 wide simpson Strong ed to connect tr (s) 2 and 4. This t consider latera designed in acc	oottom choi o oc. ed for a 10. int with any ned for a liv reas where a will fit betw ers. I-Tie conne- uuss to bear s connectio al forces. cordance w	rd bearing. 0 psf bottom other live loa re load of 20.1 a rectangle ween the bott ctors ing walls due n is for uplift	ads. Opsf om to only					
	All bearings 2-7-4.	13) 6-28 (I C 13)	International R802.10.2 a	Residential Co nd referenced s	de sections standard AN	s R502.11.1 a NSI/TPI 1.	Ind					
(iii) - 1 1 1	Max Honz 2-20 (LC Max Uplift All uplift 1 2, 4, 6, 10 Max Grav All reaction	100 (lb) or less at joint(s) 0 ons 250 (lb) or less at joint	13) See Standar Detail for Co consult qual int LOAD CASE(S)	rd Industry Pigg onnection to bas ified building de Standard	yback Trus se truss as a signer.	s Connection applicable, or						
FORCES	(Ib) - Max. Comp./N	lax. Ten All forces 250)									
NOTES 1) Unbalanced design. 2) Wind: ASC Vasd=103n II; Exp B; E and C-C Ex exposed ; e members a Lumber DC 3) Truss desi only. For s see Standa or consult c 4) TCLL: ASC Plate DOL	(ib) or less except w d roof live loads have E 7-16; Vult=130mpl nph; TCDL=6.0psf; E inclosed; MWFRS (e kterior(2E) zone; can end vertical left and r ind forces & MWFRS 0L=1.60 plate grip Di gned for wind loads tuds exposed to win ard Industry Gable Ei qualified building des E 7-16; Pr=20.0 psf = 1 15): Pf=20.0 psf	when shown. the been considered for the h (3-second gust) SCDL=6.0psf; h=25ft; Ca invelope) exterior zone tilever left and right ight exposed;C-C for S for reactions shown; DL=1.60 in the plane of the truss d (normal to the face), nd Details as applicable igner as per ANSI/TPI 1 (roof LL: Lum DOL=1.15 Plate	nis at. 5									
DOL=1.15)	=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9;											

- 5) Unbalanced snow loads have been considered for this design.
- a) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

Job		Truss		Truss Ty	ре		Qty		Ply	Lincoln A C	GRH-2nd F	loor-Lincoln	A GRH	
24050001-B		T01		Piggyba	ack Base		1		1	Job Refere	ence (optio	nal)		
Carter Component	nts, Sanford, NO	C, user				Run: 8.73 \$	S Apr 25 2024	Print:	8.730 S A	pr 25 2024 MiT	ek Industries	, Inc. Fri May	17 15:08:5	3 Page: 1
	-0- - -	·10-8	<u>7-6-0</u> 7-6-0		<u>14-10-</u> 7-4-12	12 2	<u>19-0-4</u> 4-1-8		(FUOCINF)	26-5-0 7-4-12		<u>33-11</u> 7-6-(<u>-0</u>)	34-9-8
10-10-6	- <u>2</u> -6- <u>14</u> 1	2 ∑ 3x5≠		8 ¹² 3x5 <i>z</i> 3 W1 W1 16 2x4 ₁₁	24 W2 B1	5x6 5 4x8 = 4 4 15 27 28 3x10= 4x6=	= T3 T3 T3 T4 T4 T4 T4 T4 T3 T3 T3 T3 T3 T3 T3 T3 T3 T3	5×6= 6 13 29 5×6=	4x 4x 30 12 4x6= 5x6	8 * 7 25 7 25 9 5 9 5	3x5 x 26 8 W1 11 2x4 II	34		9 8 8 3x6=
Scale = 1:68.5		<u> </u>	7-6-0 7-6-0		12-3-0 4-9-0	<u>15-10-0</u> 3-7-0	<u>18-10-0</u> 3-0-0	2 ⁻	<u>1-8-0 </u> -10-0	26-5-0 4-9-0		<u>33-11-</u> 7-6-0	-0	\rightarrow
Plate Offsets ()	X, Y): [2:0-1-0),0-1-8],	[4:0-4-0,Edge], [5:0-3	3-0,0-2-3]], [6:0-3-0,0-2	2-3], [7:0-4-0,Eo	dge], [9:0-6-	0,0-0-7	7], [12:0-	0-12,0-2-0], [15:0-2-4,0-	·1-8]		
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL		(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	IRC20	2-0-0 1.15 1.15 YES 018/TPI2014	CSI TC BC WB Matrix-MSH	0.56 0.46 0.66	DEF Vert(Vert(Horz	L LL) CT) (CT)	in (loc) -0.21 15-16 -0.27 15-16 0.05 9	I/defl >999 2 >999 1 n/a	L/d PLATE 240 MT20 80 n/a Weigh	E S t: 231 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	M(Pf) 20.0 Eulhiber DOL 11.13 BC 0.44 Vert(C1) -0.27 13-13 2999 160 DL 10.0 Rep Stress Incr YES WB 0.66 Horz(CT) 0.05 9 n/a n/a DL 10.0 Code IRC2018/TPI2014 Matrix-MSH Horz(CT) 0.05 9 n/a n/a MBER Code IRC2018/TPI2014 Matrix-MSH Matrix-MSH Weight: 231 lb FT = 20% MBER Vad=103mph; TCDL=6.0psf; BCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-6-3, Interior (1) 2-6-3 to 11-6-1, Exterior(2R) 11-6-1 to 22-4-15, Interior (1) 2-6-3 Structural wood sheathing directly applied or 4-5-13 oc purlins, except 20-0 oc purlins (5-3-11 max); 5-6. TCHORD Rigid ceiling directly applied or 10-0-0 oc bracing. For reactions shown; Lumber DOL=1.60 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15) To 24-15 to 31-4-13, Exterior(2E) 31-4-13, Exterior(2E) 31-4-13, Exterior(2E) 31-6.0 TCLL: ASCE 7-16; Pr=20.0 psf (Lum DOL=1.15) TO 24-15 to 31-4-13, Exterior 22, 0-15, Cat. To 24-15 to 31-4-13, Exterior 20, psf (Lum DOL=1.15) To 24-15 to 31-4-13, Exterior 22, 0-15, Cat. To 24-15 to 31-4-13, Exterior 22, 0-15, Cat. To 24-15 to 31-4													
REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES	(lb/size) 2= 9= Max Horiz 2= Max Uplift 2= (lb) - Max. C (lb) or less e 2-3=-293/5 23-24=-2458 4-5=-2429/8 4-5=-2429/8 7-25=-2467/ 8-26=-2633/ 2-16=-109/2 15-27=0/166 13-14=0/166 13-14=0/166 3-16=-106/2 3-15=-709/3	=1509/0- =1509/0- =247 (LC =-24 (LC =1804 (L comp./M. except w 1, 3-23= 9/65, 4-2 7, 5-6=- 66, 25-2 42, 8-9= 390, 15- 33, 13-21 52, 5-15 39, 8-12	-3-8, (min. 0-1-8), -3-8, (min. 0-1-8) C 13) C 14), 9=-24 (LC 15) LC 51), 9=1804 (LC 5 ax. Ten All forces 2: then shown. 2624/43, 24=-2458/66, 1825/149, 6-7=-2438 26=-2467/64, 2993/50 -16=-57/2390, 8=0/1665, 14-28=0/10 9=0/1670, 29-30=0/11 2=0/2390, 9-11=0/233 5=0/1003, 6-12=0/101 2=-707/345	6) 3) 7) 50 8) 9) (87, 10) 559, 559, 10, 11) 0, 12)	load of 12.0 overhangs r 200.0lb AC i from left enc Provide ade This truss hi chord live lo * This truss on the botto 3-06-00 tall Chord and a One H2.5A recommend UPLIFT at jt and does no This truss is Internationa R802.10.2 a Graphical pu	psf or 1.00 tim por-concurrent unit load placed d, supported at quate drainage as been design ad nonconcurri has been desig m chord in all a by 2-00-00 wid ny other memb Simpson Strong ed to connect t (s) 9 and 2. Th to consider late designed in ac I Residential C und referenced urlin represent	es flat roof I with other li d on the bott two points, e to prevent leed for a 10. ent with any gned for a 10. ent with any gned for a liv areas where e will fit bett vers, with BC g-Tie conne- russ to bear is connectio ral forces. Cardance w ode sections standard AN ation does n	o ad of oad of ve load iom ch 5-0-0 a water 0 psf b other ve load a rect veen tl CDL = ctors ing wa n is fo vith the s R502 NSI/TP ot dep	20.0 psi ds. ord, 17-i apart. ponting. pottom live load of 20.0p angle he bottoi 10.0psf. alls due t r uplift or 2018 2.11.1 an 1.1. ict the si.	o nly d ze				
design.				LO	bottom chor AD CASE(S)	d. Standard		s iop a						

Job		Truss		Truss Ty	pe		Qty		Ply	Lincoln A G	RH-2nd F	-loor-Li	incoln A GRH	
24050001-B	3	T02		Hip			2		1	Job Refere	nce (optio	onal)		
Carter Componer	nts, Sanford, N	C, user				Run: 8.73	S Apr 25 2024	Print: 0 S9dN	8.730 S Ap eQfe4AST:	or 25 2024 MiTe 2CXK2Y504gzI	k Industries aWu-zLw_	s, Inc. F _h2SvYj	Fri May 17 15:08:54 jclN5g7aNMWdm3	4 Page: 1 3lmV96PjWS_lvtZPzFa0t
	-0	-10-8	7-6-0		14-10	-12	19-0-4	ļ		26-5-0			33-11-0	34-9-8
	0-	-10-8	7-6-0	1	7-4-1	12	4-1-8	1		7-4-12	1		7-6-0	0-10-8
4 - 6 - 6 - 0	0-1-13			8 ¹² 3x5- 24 3	25	3x8 ≠ 50 0-1= 13 4 12	к6= 26 Т тз	5×6 6	= 5 4: 72 4:	x6 \$ 7 27	^{3x5} 28 8			
10-10	_0-6- <u>14</u> 1	2	23	16	W2 B1	15 30 31	14 B3 5x6=	² 13 3	2 33 1	2	W1	B4	29	3x10॥ 9 1WP 1025-81
		3x6=		2x4 II		3x10= 4x6=	4x6:	= 5x6=	4x6= 3x1 =	0=	2x4 II	I		3x5=
Scale = 1:67.9		<u> </u>	7-6-0		12-3-0 4-9-0	15-10-0	18-10-	0	21-8-0	<u> </u>			33-11-0 7-6-0	ł
Plate Offsets ()	X Y)· [2·0-6-(0-0-71	[5:0-3-0 0-2-3] [6:0-3	3-0 0-2-3	4-9-0	ael [9:0-5-0 0-	-0-71 [9:0-2-	10 Edd	z=10=0	-2-0 0-1-81 [1	5.0-2-0.0)-1-81	7-0-0	I.
	λ, τ). [2.0-0-0	,,o-o-7],	[0.0-0-0,0-2-0], [0.0-0	-0,0-2-0	j, [7:0-0-0,Ed	gej, [0.0-0-0,0-	0-7], [0.0-2-	IO,Eug	, [12.0°	-2-0,0-1-0], [1	0.0-2-0,0	·····		
Loading TCLL (roof) Snow (Pf) TCDL BCLL		(psf) 20.0 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	IRC20	2-0-0 1.15 1.15 YES)18/TPI2014	CSI TC BC WB Matrix-MSH	0.95 0.47 0.66	DEFI Vert(Vert(Horz	L LL) -(CT) -((CT) (in (loc) 0.22 11-12 0.28 11-12 0.05 9	l/defl >999 >999 n/a	L/d 1 240 1 180 n/a	MT20	GRIP 244/190
BCDL		10.0											Weight: 232 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD	2x4 SP No.1 2x6 SP 2400 No.2 2x4 SP No.3 Right: 2x4 S Structural w except 2-0-0 oc pur Rigid ceiling bracing. MiTek recon required cro truss erecti Installation	*Excep DF 2.0E 3 *Excep P No.3 ood she lins (5-5 directly mmends oss brac oon, in ac guide.	ot* T3:2x6 SP No.2 *Except* B3,B2:2x6 S ot* W3:2x4 SP No.2 eathing directly applied 5-11 max.): 5-6. • applied or 10-0-0 oc s that Stabilizers and ding be installed during excordance with Stabili	2) SP 4, 3) 2 zer 5)	Wind: ASCE Vasd=103m II; Exp B; Er and C-C Ext to 10-1-3; E: 23-9-13 to 3 cantilever le right expose for reactions DOL=1.60 TCLL: ASCE Plate DOL= DOL=1.15); Cs=1.00; Ct Unbalanced design. This truss hi load of 12.0	7-16; Vult=13 ph; TCDL=6.0 hclosed; MWFf terior(2E) -0-1(xterior(2R) 10- 11-4-13, Exterior ft and right exp ed;C-C for men s shown; Lumb E 7-16; Pr=20.0 1.15); Pf=20.0 Is=1.0; Rough =1.10 snow loads ha as been design psf or 1.00 tim	Omph (3-sec psf; BCDL=6 RS (envelop)-8 to 2-6-3, 1-3 to 23-9- ro(2E) 31-4- oosed ; end ' hebers and fo er DOL=1.6 D psf (roof LI psf (Lum DC - Cat B; Fully ave been coi hed for great hes flat roof I	cond g .0psf; e) exter Interio 13, Interio 13 to 3 vertica rces & 0 plate .: Lum DL=1.1 · Exp.; nsidered er of moad of	ust) h=25ft; C rior zone r (1) 2-6-; erior (1) 4-9-8 zor l left and MWFRS grip DOL=1.1 5 Plate Ce=0.9; ed for this hin roof lin 20.0 psf	eat. 3 ne; 15 5 <i>v</i> e on				
REACTIONS	(lb/size) 2= 9= Max Horiz 2= Max Uplift 2= Max Grav 2=	=1509/0 =1509/0 =-245 (L =-42 (LC =1804 (L	-3-8, (min. 0-1-8), -3-8, (min. 0-1-8) C 12) C 12), 9=-41 (LC 15) LC 51), 9=1805 (LC 53)	6) 7) 3) 8)	overhangs r 200.0lb AC of from left end Provide ade	non-concurrent unit load place d, supported at quate drainage as been design	with other li d on the both two points, e to prevent and for a 10	ve load om ch 5-0-0 a water j 0 psf b	ds. ord, 17-0 apart. ponding.	-0				
FORCES	(lb) - Max. C	omp./M	ax. Ten All forces 28	50	chord live lo	ad nonconcurr	ent with any	other	live loads	S.				
TOP CHORD	2-23=-2879/ 3-24=-2522/ 4-25=-2366/ 5-26=-1750/ 6-7=-2327/5 27-28=-2414 8-29=-2704/	20, 3-23 10, 24-2 29, 4-5= 110, 6-2 5, 7-27= 4/23, 8-2 56, 9-20	sicovii. s=-2700/53, s=-2700/53, s=-2414/11, s=-2328/54, s=-1750/110, s=-2865/29, s=-2872/23	9) 10)	on the botto 3-06-00 tall chord and a 0 One H2.5A recommend UPLIFT at jt	nas been desig m chord in all a by 2-00-00 wid ny other memb Simpson Stron ed to connect f (s) 9 and 2. Th t consider late	gned for a liv areas where le will fit betv pers, with BC g-Tie conne truss to bear his connectio ral forces	e load a recta veen th CDL = ctors ing wa n is for	angle angle he bottom 10.0psf. alls due to r uplift on	sr n ly				
BOT CHORD	2-16=-109/2 15-30=0/162 13-14=0/164 12-33=0/162	300, 15 29, 30-3 19, 13-3 22, 11-12	-16=-82/2300, 1=0/1632, 14-31=0/16 2=0/1636, 32-33=0/16 2=0/2302, 9-11=0/230 = 601/245 5 45=0/230	11) 542, 526, 2 12)	This truss is Internationa R802.10.2 a Graphical pu	designed in a l Residential C and referenced urlin representa	ccordance w ode sections standard Al ation does n	ith the R502 ISI/TP ot depi	2018 2.11.1 and 1 1. ict the siz	e				
WEBS	3-16=-116/2 6-12=0/953,	ou, 3-15 8-12=-6)=-091/345, 5-15=0/98 898/349, 8-11=-109/20	64, 67	or the orient bottom chor	ation of the pu d.	rlin along the	e top a	nd/or					
NOTES 1) Unbalance design.	ed roof live loa	ids have	e been considered for	LO this	AD CASE(S)	Standard								

Job	Truss	Truss Type	Qty	Ply	Lincoln A GRH-2nd Floor-Lincoln A GRH	
24050001-B	Т03	Нір	2	1	Job Reference (optional)	
Carter Components, Sanford, N	C, user	Run: 8.73 S Apr 2	5 2024 Print	: 8.730 S Ap	r 25 2024 MiTek Industries, Inc. Fri May 17 15:08:54	Page:

r 25 2024 Print: 8.730 S Apr 25 2024 Mi lek Industries, Inc. Fri May 17 15:08:54 Page: 1 ID:tkIWGRhWN5r2vgFvjgfjiJzFaWr-zLw_h2SvYjcIN5g7aNMWdm3lcV97PktS_tvtZPzFa0t

Job	Truss	Truss Type	Qty	Ply	Lincoln A GRH-2nd Floor-Lincoln A GRH
24050001-B	Т04	Нір	2	1	Job Reference (optional)

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri May 17 15:08:55 Page: 1 ID:p6QGh7jmvi5m9zPHr5hBnkzFaWp-RXUMuOTXI1kb?FFJ84tl9zb0QvRa8CbbCOeR5szFa0s

Scale = 1:65.4

Plate Offsets (X, Y): [2:0-6-0,0-0-3],	[4:0-5-0,0-0-14], [7:0-5-0	0,0-0-	14], [9:0-6-0,0	0-0-3], [13:0-3-0,0	-1-8], [16	:0-2-0,0-2-0]						
Loading TCLL (roof) Snow (Pf) TCDL BCLL	(psf) 20.0 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	IRC20	2-0-0 1.15 1.15 YES 018/TPI2014	CSI TC BC WB Matrix-MSH	0.58 0.72 0.54	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.12 -0.25 0.07	(loc) 13-16 13-16 9	I/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0											Weight: 263 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 *Excep 2x6 SP No.2 2x4 SP No.3 Structural wood she 3-4-12 oc purlins, e: 2-0-0 oc purlins (4-1 Rigid ceiling directly bracing. MiTek recommends required cross brac	ot* T2:2x6 SP No.2 eathing directly applied or kcept 10-7 max.): 4-7. r applied or 10-0-0 oc that Stabilizers and ing be installed during	2)	Wind: ASCE Vasd=103m II; Exp B; Er and C-C Ext to 6-1-3, Ext to 18-2-11, E 27-9-13 to 3 cantilever lei right expose for reactions DOL=1.60 TCLL: ASCE Plate DOL =	7-16; Vult=130m b; TCDL=6.0psf; closed; MWFRS erior(2E) -0-10-8 erior(2R) 6-1-3 to ixterior(2R) 18-2- 1-4-13, Exterior(2 t and right expos d;C-C for membe shown; Lumber I 57-16; Pr=20.0 ps 15): Pf=20.0 ps	ph (3-sed BCDL=6 (envelop- to 2-6-3, 15-8-5, I 11 to 27- E) 31-4- ed; end rs and fo DOL=1.6	cond gust) .0psf; h=25ft; e) exterior zoi Interior (1) 2- nterior (1) 15 9-13, Interior 13 to 34-9-8 z vertical left ar vertical left ar vertical grip .: Lum DOL= DI =1 15 Plate	; Cat. ne 6-3 -8-5 (1) cone; nd RS					
	truss erection, in ac	ccordance with Stabilizer		DOL=1.15);	Is=1.0; Rough Ca	it B; Fully	Exp.; Ce=0.9	9;					
REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES	(lb/size) 2=1509/0 9=1509/0 Max Horiz 2=-182 (L Max Uplift 2=-53 (LC Max Grav 2=1683 (L (lb) - Max. Comp./M (lb) or less except w 2-25=-2790/32, 25-2 3-26=-2642/52, 3-27 4-27=-2321/59, 4-5= 5-28=-2290/79, 28-2 29-30=-2290/79, 28-2 29-30=-2290/79, 6-5 6-7=-2146/55, 7-33= 8-33=-2369/27, 8-34 34-35=-2722/32, 9-5 2-18=-76/2248, 17-1 16-17=0/1888, 16-3 15-37=0/2212, 14-1 38-39=0/2193, 13-3 11-12=0/2249, 9-11= 3-17=-534/170, 4-17 7-12=-193/266, 8-12 7-13=0/982, 5-16=-4	-3-8, (min. 0-2-0), -3-8, (min. 0-2-0) C 12) C 12) C 12) C 12) C 47), 9=1683 (LC 47) ax. Ten All forces 250 hen shown. 26=-2721/33, =-2371/27, =-2371/27, =-2371/27, =-2290/79, -31=-2290/79, -31=-2290/79, -2219/59, I=-2644/51, 35=-2792/31 I8=-64/2248, 6=0/2200, 36-37=0/2201 5=0/2219, 14-38=0/2204 9=0/2191, 12-13=0/1886 =0/2249 =-197/254, =-537/169, 4-16=0/1012 I85/189, 6-13=-464/194	4) 5) 6) 7) 8) 9) 10) , , 11) 12) 2, LO	Unbalanced design. This truss ha load of 12.0 overhangs n 200.0lb AC u from left end Provide ade This truss ha chord live lo. * This truss ha on the botton 3-06-00 tall II chord and ai One H2.5A S recommendu UPLIFT at jt and does no This truss is International R802.10.2 a Graphical pu or the orient bottom chorr AD CASE(S)	snow loads have snow loads have as been designed psf or 1.00 times on-concurrent wit init load placed o , supported at two quate drainage to sbeen designed ad nonconcurrent has been designed ad nonconcurrent has been designed n chord in all area by 2-00-00 wide v hy other members Simpson Strong-T ed to connect trus (s) 9 and 2. This of t consider lateral designed in acco Residential Code nd referenced sta rin representatio ation of the purlin J. Standard	been co for great flat roof I h other lin h the bott o points, prevent for a 10. with any d for a 110. with any d for a 110. with any d for a 110. s, with BC ie conne s to bear connectio forces. rodance w e sections. ndard AP n does n along the	nsidered for the er of min roof oad of 20.0 p ve loads. iom chord, 17 5-0-0 apart. water ponding 0 psf bottom other live load re load of 20.1 a rectangle ween the both CDL = 10.0psf ctors ing walls due n is for uplift of ith the 2018 s R502.11.1 a JSI/TPI 1. of depict the s e top and/or	his f live sf on 7-0-0 g. ads. 0psf om f. e to only and size					
 Unbalance design. 	ed roof live loads have	e been considered for this	S										

Job	Truss	Truss Type	Qty	Ply	Lincoln A GRH-2nd Floor-Lincoln A GRH
24050001-B	Т05	Нір	1	1	Job Reference (optional)

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri May 17 15:08:55 Page: 1 ID:IVY16pk1RKLUOHZgyWkfs9zFaWn-RXUMuOTXI1kb?FFJ84tl9zb?TvO98F7bCOeR5szFa0s

-0-10-8 34-9-8 <u>8-10-12</u> 4-4-12 4-6-0 14-3-4 19-7-12 <u>25-0-4</u> 5-4-8 29-5-0 33-11-0 † † 0-10-8 4-6-0 5-4-8 5-4-8 4-4-12 4-6-0 0-10-8 3x5= 3x5= 3x5= 4x8= 4x8= ~ ~_____7 0-1-13 26 5 27 <u>2</u>8 29 30 31 0-9-9 4 <u>6</u>32 8 0-1-18= \times \times Τ2 8¹² 2x4 % 2x4 3 6-10-6 6-4-4 6-4-4 C) 33 25 3435 2334 10 THW1 0-6-<u>14</u> HWA 11 B3 Ř ĕ 16 36 37 15 14 13 38 12 4x5= 3x8= 3x5= 3x8= 5x6= 5x6= 3x5= 8-9-0 16-11-8 25-2-0 33-11-0 8-9-0 8-2-8 8-9-0 8-2-8

Scale = 1:63.1

Plate Offsets (X, Y): [4:0-4-0,0-1-9], [8:0-4-0,0-1-9]

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC 0.64 BC 0.93 WB 0.38 Matrix-MSH	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.22 -0.36 0.11	(loc) 14-16 14-16 10	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 186 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEDGE BRACING TOP CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.2 *Excep 2x4 SP No.3 Left: 2x4 SP No.3 Right: 2x4 SP No.3 Structural wood she 3-6-9 oc purlins (3-4 Rigid ceiling directly bracing. 1 Row at midpt MiTek recommends required cross brac truss erection, in ac Installation guide.	athing directly applied o sept -14 max.): 4-8. applied or 2-2-0 oc 5-16, 6-12 that Stabilizers and ing be installed during scordance with Stabilizer	NOTES 1) Unbalanced design. 2) Wind: ASCE Vasd=103m II; Exp B; Er and C-C Ext to 4-1-3, Ext to 20-2-11, E 29-6-8 to 31 cantilever le right expose for reactions DOL=1.60 3) TCLL: ASCE Plate DOL= DOL=1.15); Cs=1.00; Ct 4) Unbalanced	roof live loads have beer 7-16; Vult=130mph (3-se ph; TCDL=6.0psf; BCDL= iclosed; MWFRS (envelop erior(2E) -0-10-8 to 2-6-3 erior(2R) 4-1-3 to 13-8-5, Exterior(2R) 20-2-11 to 29 4-13, Exterior(2E) 31-4-7 ft and right exposed ; end d;C-C for members and fi shown; Lumber DOL=1.0 E 7-16; Pr=20.0 psf (roof I 1.15); Pf=20.0 psf (Lum D Is=1.0; Rough Cat B; Ful =1.10 snow loads have been co	considered f cond gust) 3.0psf; h=25f e) exterior zco Interior (1) 2 Interior (1) 12 6-8, Interior (3 to 34-9-8 z vertical left a vrces & MWF i0 plate grip L: Lum DOL= OL=1.15 Plat y Exp.; Ce=0 onsidered for	for this ft; Cat. one -6-3 3-8-5 (1) one; and RS =1.15 te .9; this					
FORCES TOP CHORD BOT CHORD WEBS	10=1409/0 10=1409/0 Max Horiz 2=151 (LC Max Uplift 2=-157 (L: Max Grav 2=1553 (L (lb) - Max. Comp./M: (lb) or less except w 2-23=-2500/224, 23- 24-25=-2484/235, 3- 3-4=-2400/223, 4-26 5-26=-1989/225, 5-22 27-28=-2664/210, 32 6-31=-2664/210, 33 6-31=-2664/210, 6-3 7-32=-1988/225, 7-8 8-9=-2399/223, 9-33 33-34=-2483/235, 3- 10-35=-2499/224 2-16=-217/2025, 16- 36-37=-183/2526, 11 13-38=-148/2529, 12 10-12=-115/2025 3-16=-341/150, 4-16 9-12=-340/150, 5-16 6-14=-25/253, 6-12=	D-3-8, (min: 0-1-13) D-3-8, (min: 0-1-13) D-3-8, (min: 0-1-13) D-3-8, (min: 0-1-13) D-3-8, (min: 0-1-13) D-3-8, (min: 0-1-13) D-3-1-25-125 D-3-15-125-125 D-3-15-2457/247, D-3-15-2664/210, D-3-15-2664/	 design. This truss ha load of 12.0 overhangs n Provide ader This truss ha chord live lo. * This truss ling on the bottoon 3-06-00 tall ling chord and ai One H2.5A sing recommendation of the truss is international R802.10.2 a Graphical puor the orient bottom chore LOAD CASE(S) 	as been designed for great psf or 1.00 times flat roof ion-concurrent with other quate drainage to preven as been designed for a 10 ad nonconcurrent with an has been designed for a 10 m chord in all areas when by 2-00-00 wide will fit be ny other members, with B Simpson Strong-Tie conn- ed to connect truss to bea (s) 10 and 2. This connect t consider lateral forces. designed in accordance of I Residential Code section nd referenced standard A urlin representation does i ation of the purlin along th d. Standard	ter of min roc load of 20.0 j ive loads. water pondir .0 psf bottom / other live lo ve load of 20 e a rectangle ween the bot CDL = 10.0ps ctors ring walls du ion is for upli vith the 2018 s R502.11.1 NSI/TPI 1. lot depict the e top and/or	of live psf on ng. ads. opsf ttom sf. e to ift only and size					

Job	Truss	Truss Type	Qty	Ply	Lincoln A GRH-2nd Floor-Lincoln A GRH
24050001-B	Т06	Hip	1	1	Job Reference (optional)

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri May 17 15:08:56 Page: 1 ID:lufnXVmHzxbCdbj24xm7xazFaWI-vk2l5kT93LsScPqWhoO_iB85rJmGtf9IR2O_eIzFa0r

Scale = 1:62.8

Plate Offsets (X, Y): [3:0-4-0,0-1-9], [7:0-4-0,0-1-9]

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code IF	2-0-0 1.15 1.15 YES RC2018/TPI2014	CSI TC BC WB Matrix-MSH	0.92 0.81 0.52	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.18 -0.33 0.12	(loc) 10-11 11-14 8	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 172 lb	GRIP 244/190 FT = 20%
	10.0										Weight. 172 lb	11-2070
LUMBER TOP CHORD BOT CHORD WEBS WEDGE	2x4 SP No.1 *Excep 2x4 SP No.2 2x4 SP No.3 Left: 2x4 SP No.3 Right: 2x4 SP No.3	pt* T2:2x4 SP 2400F 2.0E	 Wind: ASCE Vasd=103m II; Exp B; Er and C-C Ex to 11-8-5, In 22-2-11 to 3 continuous 	E 7-16; Vult=130mp ph; TCDL=6.0psf; nclosed; MWFRS (terior(2E) -0-10-8 t terior (1) 11-8-5 to 1-4-13, Exterior(2I ff and right expose	ph (3-sec BCDL=6 envelope to 2-6-3, 22-2-11 E) 31-4-1	cond gust) 5.0psf; h=25ff e) exterior zc Exterior(2R) , Exterior(2R 3 to 34-9-8 z vortical loft a	t; Cat. one 2-6-3) zone;					
BRACING TOP CHORD	Structural wood she 2-2-0 oc purlins, ex	eathing directly applied or cept 2-0 may): 3-7	for reactions DOL=1.60	ed;C-C for member s shown; Lumber E	rs and fo OOL=1.6	rces & MWF 0 plate grip	RS					
BOT CHORD	Rigid ceiling directly	y applied or 10-0-0 oc	 TCLL: ASCI Plate DOL= 	E 7-16; Pr=20.0 ps 1.15); Pf=20.0 psf	f (roof Ll (Lum DC	L: Lum DOL= DL=1.15 Plat	=1.15 e					
WEBS	1 Row at midpt	5-14, 5-10	DOL=1.15); Cs=1.00; Ct	Is=1.0; Rough Ca =1.10	t B; Fully	Exp.; Ce=0	.9;					
	MiTek recommends required cross brac truss erection, in a Installation guide.	s that Stabilizers and cing be installed during ccordance with Stabilizer	 Unbalanced design. This truss h load of 12.0 	snow loads have as been designed psf or 1.00 times	been co for great flat roof l	nsidered for t er of min roo oad of 20.0 p	this of live osf on					
REACTIONS	(lb/size) 2=1409/0 8=1409/0 Max Horiz 2=-120 (L Max Uplift 2=-160 (L Max Grav 2=1448 (l	I-3-8, (min. 0-1-11), I-3-8, (min. 0-1-11) IC 12) IC 14), 8=-160 (LC 15) IC 21), 8=1448 (LC 22)	 overhangs r Provide ade This truss h chord live lo * This truss on the botto 	non-concurrent with quate drainage to as been designed ad nonconcurrent has been designed m chord in all area	h other li prevent for a 10. with any d for a liv as where	ve loads. water pondir 0 psf bottom other live load ve load of 20. a rectangle	ıg. ads. .0psf					
FORCES	(lb) - Max. Comp./M	lax. Ten All forces 250	3-06-00 tall	by 2-00-00 wide w	vill fit betw	veen the bot	tom					
TOP CHORD	2-23=-2211/190, 3-2 3-24=-2812/280, 4-2 4-25=-2812/279, 25 26-27=-2812/279, 5 5-28=-1774/240, 7-29 8-29=-2213/189	23=-2113/219, 24=-2814/279, -26=-2812/279, -27=-2812/279, 28=-1774/239, 9=-2115/218,	 cnord and a 9) One H2.5A recommend UPLIFT at jt and does no 10) This truss is Internationa R802 10 2 is 	Chord and any other members. One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 8 and 2. This connection is for uplift only and does not consider lateral forces.) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802 10.2 and referenced standard ANSI/TPL 1								
BOT CHORD	2-15=-188/1797, 14 13-14=-259/2818, 1 11-12=-259/2818, 1	-15=-191/1794, 2-13=-259/2818, 0-11=-259/2818,	11) Graphical p or the orient bottom chor	 Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 								
WEBS	0-10=-79/1799 3-15=0/260, 7-10=-2 3-14=-229/1252 5-2	29/826, 4-14=-581/188, 11=0/273	LOAD CASE(S) Standard									
NOTES	5 . 1 <i>220, 1202</i> , 0-											

1) Unbalanced roof live loads have been considered for this design.

Job	Truss	Truss Type	Qty	Ply	Lincoln A GRH-2nd Floor-Lincoln A GRH
24050001-B	Т07	Hip Girder	1	2	Job Reference (optional)

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri May 17 15:08:57 Page: 1 ID:eXJzW?_CUn_VPWgihQcaCazFaWS-vk2l5kT93LsScPqWhoO_iB88bJm4tdflR2O_elzFa0r

Scale = 1:61.6

Plate Offsets (X, Y): [3:0-3-12,0-2-0], [9:0-8-4,0-2-4], [12:0-3-8,0-4-8], [15:0-2-13,0-2-8]

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	IRC2018	2-0-0 1.15 1.15 NO 3/TPI2014	CSI TC BC WB Matrix-MSH	0.74 0.83 0.68	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.31 -0.48 0.10	(loc) 14-17 14-17 10	l/defl >999 >849 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 410 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	 RD 2x4 SP No.2 RD 2x6 SP No.2 2x4 SP No.3 RD Structural wood sheathing directly applied of 5-4-15 oc purlins, except 2-0-0 oc purlins (3-10-9 max.): 3-9. RD Rigid ceiling directly applied or 10-0-0 oc bracing. NS (lb/size) 2=3121/0-3-8. (min, 0-1-14). 			-ply truss to ails as follo op chords o c. tottom chor taggered a Veb connec Il loads are xcept if not	b be connected to ws: connected as follo ds connected as follo t 0-9-0 oc. ted as follows: 22 considered equa ed as front (F) or ction. Plut to pluc	ogether w ows: 2x4 follows: 2 k4 - 1 row ally applie back (B)	ith 10d (0.13 - 1 row at 0-9 x6 - 2 rows at 0-9-0 oc. d to all plies, face in the L	 14) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines. 15) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 423 lb down and 64 lb up at 4-10-12, and 423 lb down and 64 lb up at 28-11-8 on bottom chord. The design/selection of such connection device(s) is the responsibility of others. LOAD CASE(S) Standard 					
REACTIONS	bracing. (Ib/size) 2=3121/0 10=3119/ Max Horiz 2=91 (LC Max Uplift 2=-518 (L Max Gray, 2=3136	-3-8, (min. 0-1-14), 0-3-8, (min. 0-1-14) 11) .C 12), 10=-517 (LC 13) .C 19), 10=-3134 (I C 20)	2) 2) 3) 4) 4) V	rovided to o nless other Inbalanced esign. Vind: ASCE ′asd=103m	distribute only loa wise indicated. roof live loads ha 7-16; Vult=130m ph; TCDL=6.0psf	considered f considered f cond gust)	, or this t; Cat.	 Dead + Snow (balanced): Lumber Increase=1.15, I Increase=1.15 Uniform Loads (Ib/ft) Vert: 1-3=-60, 3-9=-60, 9-11=-60, 20-23=-20 Concentrated Loads (Ib) Vert: 7=-146 (B), 9=-146 (B), 19=-423 (B), 3=-14 					
FORCES TOP CHORD	(lb) - Max. Comp./M (lb) or less except w 2-3=-5026/825, 3-24 26-27=-6758/1103, 4-28=-6758/1103, 5-31=-6758/1103, 5-31=-6758/1103, 5-33=-7999/1298, 6-34=-7999/1298, 6-34=-7999/1298, 8-38=-4016/709, 38	lax. Ten All forces 250 /hen shown. 6=-6758/1103, 4-27=-6758/1103, 8-29=-6758/1103, 30-31=-6758/1103, -32=-7999/1298, 33-34=-7999/1298, 5-36=-7999/1298, 8-37=-7999/1298, -39=-4016/709,	5) T 5) T 5) C 6) U 6) U 7) T k	(; Exp B; Er antilever le ght expose CLL: ASCE late DOL=:)OL=1.15); cs=1.00; Ct Inbalanced esign. his truss ha bad of 12.0 verhangs n	closed; MWFRS ft and right expos d; Lumber DOL= 57-16; Pr=20.0 p 1.15); Pf=20.0 ps Is=1.0; Rough Ca =1.10 snow loads have as been designed psf or 1.00 times ion-concurrent wi	(envelop (envelop 1.60 plate sf (roof Ll f (Lum DC at B; Fully been co l for great flat roof I th other I	e) exterior zc vertical left a grip DOL=1 :: Lum DOL= DL=1.15 Plat Exp.; Ce=0. nsidered for er of min roc oad of 20.0 p ve loads.	, out one; nd .60 =1.15 e .9; this of live osf on		B), 12=- B), 28=- B), 34=- B), 40=- I4=-62 (I8=-62 (-423 (E -146 (E -146 (E -62 (B) B), 45 B), 49	9), 15=-62 (B), 2 3), 31=-146 (B), 5 3), 37=-146 (B), 5 3), 41=-62 (B), 42= -62 (B), 46=-62 =-62 (B)	5=-146 (B), 27=-146 32=-146 (B), 33=-146 38=-146 (B), 39=-146 =-62 (B), 43=-62 (B), (B), 47=-62 (B),
BOT CHORD	9-39=-4016/709, 9- 2-19=-687/4129, 19 40-41=-688/4113, 1 18-42=-1309/8040, 17-43=-1309/8040, 16-44=-1309/8040, 15-45=-1309/8040, 14-46=-1068/6779, 13-47=-1068/6779, 48-49=-1068/6779,	10=-5006/820 -40=-688/4113, 8-41=-688/4113, 42-43=-1309/8040, 17-44=-1309/8040, 16-45=-1309/8040, 14-15=-1309/8040, 46-47=-1068/6779, 13-48=-1068/6779, 12-49=-1068/6779,	8) F 9) T 10)* 3 c 11) C r L	orvide adequate drainage to prevent water ponding. his truss has been designed for a 10.0 psf bottom ord live load nonconcurrent with any other live loads. This truss has been designed for a live load of 20.0psf is the bottom chord in all areas where a rectangle -06-00 tall by 2-00-00 wide will fit between the bottom hord and any other members. ne H2.5A Simpson Strong-Tie connectors ecommended to connect truss to bearing walls due to PLIFT at jt(s) 2 and 10. This connection is for uplift only nd does not consider lateral forces.									
WEBS	10-12=-603/4114 3-19=0/456, 3-18=- 5-18=-1601/283, 5- 8-14=-267/1528, 8-	571/3276, 4-18=-760/272 17=0/330, 6-14=-640/251 13=0/354,	2, 12) T I, Ir I, F 13) C	 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 13) Graphical purlin representation does not depict the size 									
NOTES	8-12=-3387/592, 9-	12=-282/2321	o b	r the orient ottom chor	ation of the purlin d.	along the	e top and/or						

Job	Truss	Truss Type	Qty	Ply	Lincoln A GRH-2nd Floor-Lincoln A GRH
24050001-B	Т08	Roof Special	1	1	Job Reference (optional)

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri May 17 15:08:58 Page: 1 ID:eGnXyBnXUYrvtutRBMob0_zFaWj-r6AVWPVPby6AsizupCRSncDTR6PpLTH2uMt5iBzFa0p

-0-10-8 34-9-8 13-10-12 18-10-12 21-11-8 27-10-10 33-11-0 4-6-0 8-10-12 4-6-0 4-4-12 5-0-0 5-0-0 3-0-12 5-11-2 6-0-6 0-10-8 0-10-8 4x8 II 7 8-0-8 13 2<u>-0-</u>8 4x8= 3x5= 6x8= 25 _27 ⊠ 5 4 26 6 8¹² 28 5 0-1-18 \sim Þ 2x4 *µ* 9 29 2x4、 8 8-10-14 24 3 不 6-4-4 6-4-4 2⁷² 9 10 0-6-14 n N B3 R X 14 30 13 12 31 32 11 3x8= 4x6= 8x10= 3x5= 5x6= 5x6= <u>19-0-8</u> 10-3-8 26-4-4 7-3-12 33-11-0 8-9-0 7-6-12 8-9-0 Scale = 1:63.2 Plate Offsets (X, Y): [4:0-4-0,0-1-9], [6:0-2-11,Edge], [12:0-4-0,Edge]

							-						
Loading	(psf)	Spacing		2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL		1.15	тс	0.78	Vert(LL)	-0.38	12-14	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL		1.15	BC	0.94	Vert(CT)	-0.67	12-14	>605	180	1	
TCDL	10.0	Rep Stress Incr		YES	WB	0.93	Horz(CT)	0.08	9	n/a	n/a	1	
BCLL	0.0*	Code	IRC20	18/TPI2014	Matrix-MSH							1	
BCDL	10.0]										Weight: 194 lb	FT = 20%
			-										
LUMBER	0 4 0 D M 0 + E		1)	Unbalanced	roof live loads have	e been	considered to	or this					
TOP CHORD	2x4 SP No.2 *Exce	pt* 14:2x4 SP No.1	2)	Wind ASCE	7 16 \/ult-130mp	h (3 co)	cond quet)						
BOICHORD	2x4 SP No.1		2)	Vasd=103m	nh: TCDI =6 0nsf: F	RCDI = 6	0nd gust) 0nsf: h=25fl	t: Cat					
WEBS	2X4 SP NO.3			II: Exp B: En	iclosed: MWFRS (e	nvelon	e) exterior zo	ne					
WEDGE	IGE Left: 2x4 SP No.3 II, cxp B, Enclosed, WWFNS (Envelope) exterior 2016												
	Right: 2x4 SP No.3 and C+2 Extends(2E) +0 +0+0 to 2+0+5, intends(1) 2+0+3 to 5-6-1 Extends(2E) +0 +0+0 to 2+0+5, intends(1) 2+0+3												
BRACING				to 18-10-12,	Exterior(2R) 18-10)-12 to 2	25-4-3, Interio	or (1)					
TOP CHORD	Structural wood she	earning directly applied o	DI,	25-4-3 to 31	-4-13, Exterior(2E)	31-4-13	3 to 34-9-8 zo	one;					
	2 - 2 - 0 oc purins, ex	0epi 4.6 max): 4.6		cantilever le	ft and right exposed	d;end	vertical left a	nd					
	Rigid ceiling directly	4-0 max.). $4-0$.		right expose	d;C-C for members	and fo	rces & MWF	RS					
BOT ONORD	bracing Except	y applied of 10-0-0 00		for reactions	shown; Lumber D	OL=1.6	0 plate grip						
	2-2-0 oc bracing: 12	2-14		DOL=1.60									
WEBS	1 Row at midpt	6-12	3)	TCLL: ASCE	= 7-16; Pr=20.0 pst	(root Ll	L: Lum DOL=	=1.15					
	MiTek recommend	s that Stabilizers and		Plate DOL=	1.15); PI=20.0 psi (JL=1.15 Plat	e 0.					
	required cross brac	cing be installed during		DOL=1.15);	= 1.0; Rough Cat	D; Fully	Exp.; Ce=0.	.9,					
	truss erection, in a	ccordance with Stabilize	r 4)	Unhalanced	snow loads have h	een co	nsidered for t	this					
	Installation guide.		-,	design.									
			5)	This truss ha	as been designed fo	or great	er of min roo	f live					
REACTIONS	(lb/size) 2=1409/0)-3-8, (min. 0-1-13),	- /	load of 12.0	psf or 1.00 times fla	at roof l	oad of 20.0 p	osf on					
	9=1409/0	-3-8, (min. 0-1-14)		overhangs n	on-concurrent with	other li	ve loads.						
	Max Unlift 2= 192 (L	(-13)	6)	Provide ade	quate drainage to p	prevent	water pondin	ıg.					
	Max Opint $2=-165$ (L	LC [14], 9=-104 (LC [15])	7)	This truss ha	as been designed fo	or a 10.	0 psf bottom						
FORCES		LC 3), 9-1390 (LC 39)	•	chord live lo	ad nonconcurrent v	vith any	other live loa	ads.					
FURGES	(Ib) - Max. Comp./M	lax. Ten All forces 250	8)	* This truss I	has been designed	for a liv	e load of 20.	.0pst					
	$2_{2}21 = 2622/265$ 21	-22=-2605/267			n choru in all areas	s where	a reclarigie	tom					
	22-23=-2595/275 3	-23=-2513/288		chord and a	by 2-00-00 wide will	with BC	100 = 100	f					
	3-24=-2429/241, 4-2	24=-2377/264.	9)	One H2 54 9	Simpson Strong-Tie		ctors						
	4-25=-1993/259, 5-2	25=-1995/258.	3)	recommende	ed to connect truss	to bear	ing walls due	e to					
	5-26=-2535/255, 26	6-27=-2534/255,		UPLIFT at it	(s) 9 and 2. This co	nnectio	n is for uplift	only					
	6-27=-2533/255, 6-	7=-3069/351,		and does no	t consider lateral fo	orces.		,					
	7-28=-2438/304, 28	3-29=-2455/281,	10)	This truss is	designed in accord	dance w	rith the 2018						
	8-29=-2527/268, 8-9	9=-2594/226	,	International	Residential Code	sections	s R502.11.1 a	and					
BOT CHORD	2-14=-286/2099, 14	-30=-213/2409,		R802.10.2 a	nd referenced stan	dard AN	ISI/TPI 1.						
	13-30=-213/2409, 1	2-13=-213/2409,	11)	Graphical pu	Irlin representation	does n	ot depict the	size					
	12-31=-50/1632, 31	-32=-50/1632,		or the orient	ation of the purlin a	long the	e top and/or						
WERS	11-32=-50/1632, 9-2	11=-00/20/1		bottom chore	d.								
VVEDO	6-12=-101//275 7	430/1010, 12=_261/2432	LO	AD CASE(S)	Standard								
	7-11=-157/661 8-11	1=-408/227											
	5-14=-767/135 5-12	2=-104/268											
NOTES													

Job	Truss	Truss Type	Qty	Ply	Lincoln A GRH-2nd Floor-Lincoln A GRH
24050001-B	Т09	Roof Special	1	1	Job Reference (optional)

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri May 17 15:08:58

ID:afvINspo0A5d6C0qJmq36PzFaWh-r6AVWPVPby6AsizupCRSncDQ?6PsLTs2uMt5iBzFa0p

Page: 1

NOTES

Carter Components, Sanford, NC, user

1) Unbalanced roof live loads have been considered for this design.

Job	Truss	Truss Type	Qty	Ply	Lincoln A GRH-2nd Floor-Lincoln A GRH
24050001-B	T10	Roof Special Girder	1	2	Job Reference (optional)

BOT CHORD

FORCES

TOP CHORD

BOT CHORD

WEBS

NOTES

REACTIONS (lb/size)

bracing.

Max Horiz 2=182 (LC 11)

(lb) or less except when shown.

2-3=-4937/702. 3-27=-6447/899

27-28=-6447/899, 28-29=-6447/899,

4-29=-6447/899, 4-30=-6447/899,

5-30=-6447/899, 5-31=-4614/541,

6-31=-4548/552, 6-7=-3173/407,

7-8=-2313/307, 8-32=-2791/347,

32-33=-2910/316, 9-33=-2934/313,

9-34=-3078/277, 10-34=-3264/259

2-20=-607/3985, 20-35=-607/3965,

35-36=-607/3965, 19-36=-607/3965,

18-19=-768/6273, 17-18=-766/6277,

16-17=-766/6277, 15-16=-405/3819,

14-15=-405/3819, 13-14=-200/2552,

12-13=-166/2641, 10-12=-166/2641

5-19=-333/664, 5-16=-3861/552,

7-14=-346/2329. 7-13=-986/175.

8-13=-147/1224, 9-13=-407/199

6-16=-374/2917, 6-14=-2629/426,

3-20=0/492, 3-19=-335/3063, 4-19=-699/229,

Rigid ceiling directly applied or 10-0-0 oc

Max Uplift 2=-445 (LC 12), 10=-184 (LC 13)

Max Grav 2=3176 (LC 41), 10=2120 (LC 41)

(lb) - Max. Comp./Max. Ten. - All forces 250

2=3031/0-3-8, (min. 0-1-14),

10=1923/0-3-8, (min. 0-1-8)

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri May 17 15:08:59 Page: 1 ID:WJYUMM2iY?Uxu7zTwGqWNQzFaWO-JJktklW1MGE1TsY4NwyhKpmcEWpe4?4B70ceEdzFa0o

- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- Unbalanced roof live loads have been considered for this 3) desian.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) 4) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 5) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this 6) design.
- 7) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 10) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
- chord and any other members. 11) One H2.5A Simpson Strong-Tie connectors
- recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 10. This connection is for uplift only and does not consider lateral forces.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

17) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 423 lb

16) "NAILED" indicates 3-10d (0.148"x3") or 3-12d

(0.148"x3.25") toe-nails per NDS guidlines.

- down and 64 lb up at 4-10-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- LOAD CASE(S) Standard
- 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15
 - Uniform Loads (lb/ft)

Vert: 1-3=-60, 3-5=-60, 5-7=-60, 7-8=-60, 8-11=-60, 21-24=-20

- Concentrated Loads (Ib)
- Vert: 20=-423 (F), 19=-1151 (F), 3=-146 (F), 27=-146 (F), 29=-146 (F), 35=-62 (F), 36=-62 (F)

Job	Truss	Truss Type	Qty Ply	Lincoln A GRH-2nd Floor-Lincol	n A GRH
24050001-B	T11	Hip Girder	1 2	Job Reference (optional)	
Carter Components, Sanford, N	C, user	Run: 8.73 S Apr 2	25 2024 Print: 8.730 S A	Apr 25 2024 MiTek Industries, Inc. Fri May	/ 17 15:08:59 Page: 1
	0 10 8		ID: IngEn23z4cke/	/R/s1nj_SrzFawM-JJktkiw1MGE1IsY4r	NWYNKpmgKWmq4UoB7UceEdzFaUo
	4-10-12	9-6-11	14-4-5	19-0-4	23-11-0
	0-10-8 4-10-12	4-7-15	4-9-11	4-7-15	4-10-12 0-10-8
			NAILED		
			Special	NAILED NAILED NAILED	
		5x6= 2x4 II		3x8= 6x8=	
`_`	10	3×4	20 2122	5 23 24 6	
	812		ш12	T. "T	\sim
0-0-	1	W1 W2 W3	W2	W3 W2 W1	T
3-10					
	2				7
		13 12	<u>II</u>		B2 8
	_	2x4 II 4x8=	20 20	2x4 II 4x6= 6x8=	_
	3x5=		Special	NAILED NAILED Special	3x8=
			NAILED		
Scale = 1:46.5	4-9-0	9-6-11	14-4-5 4-9-11	<u> </u>	<u>23-11-0</u> 4-9-0
Plate Offsets (X, Y): [3:0-3-	12.0-2-0]. [6:0-5-12.0-2-0]. [7	7:0-8-0.0-1-3]. [9:0-3-8.0-4-4]	4-0-11	+	+-3-0
	(psf) Spacing	2-0-0 CSI	DEFL	in (loc) l/defl l/d PLAT	TES GRIP
TCLL (roof)	20.0 Plate Grip DOL	1.15 TC	0.65 Vert(LL)	-0.12 11-12 >999 240 MT20	244/190
TCDL	20.0Lumber DOL10.0Rep Stress Incr	NO WB	0.52 Horz(CT)	0.04 7 n/a n/a	
BCLL BCDL	0.0* Code 10.0	IRC2018/TPI2014 Matrix-MSH		Weig	ht: 281 lb FT = 20%
LUMBER TOP CHORD 2x4 SP No. BOT CHORD 2x6 SP No. BRACING TOP CHORD Structural v 6-0-0 oc pu 2-0-0 oc pu BOT CHORD Structural v 6-0-0 oc pu 2-0-0 oc pu BOT CHORD Rigid ceilin bracing. REACTIONS (lb/size) 2 Max Horiz 2 Max Uplif 2 Max Uplif 2 Max Grav 2 FORCES (lb) - Max. 0 (lb) or less TOP CHORD 2-3=-3027/ 4-20=-4507 21-22=-4507 5-23=-3026/ BOT CHORD 2-3=-3027/ 4-20=-4507 21-22=-671 11-26=-671 10-27=-671/ WEBS 3-12=-416/ 5-12=-570/ 6-9=-149/10 NOTES 1) 2-ply truss to be conner nails as follows: Top chords connect staggered at 0-9-0 oc. Web connected as foll 2) All loads are considere except if noted as foll	2 2 3 7 7 7 7 7 7 7 7 7 7 7 7 7	 3) Unbalanced root live loads have design. 4) Wind: ASCE 7-16; Vult=130mph Vasd=103mph; TCDL=6.0psf; BG II; Exp B; Enclosed; MWFRS (ercantilever left and right exposed; clumber DOL=1.6 5) TCLL: ASCE 7-16; Pr=20.0 psf (LODL=1.15); Is=1.0; Rough Cat BCs=1.00; Ct=1.10 6) Unbalanced snow loads have be design. 7) This truss has been designed for load of 12.0 psf or 1.00 times flat overhangs non-concurrent with concombination of the provide adequate drainage to provide sufficient to support cordown and 86 lb up at 11-8-8, an up at 18-11-8 on bottom chord. 	(3-second gust) CDL=6.0psf; h=25ft; velope) exterior zon; ; end vertical left and O plate grip DOL=1.6 coof LL: Lum DOL=1 um DOL=1.15 Plate ; Fully Exp.; Ce=0.9 en considered for th greater of min roof I roof load of 20.0 ps ther live loads. event water ponding a 10.0 psf bottom th any other live loads event water ponding a 10.0 psf bottom th any other live loads event water ponding a 10.0 psf bottom th any other live loads event water ponding a 10.0 psf bottom th any other live load fit between the botto connectors o bearing walls due the nection is for uplift o ces. ince with the 2018 actions R502.11.1 ar ard ANSI/TPI 1. oes not depict the si ong the top and/or "x3") or 3-12d guidlines. evice(s) shall be incentrated load(s) 32 top chord, and 799 ltd d 423 lb down and 6 The design/selection responsibility of other	Uniorm Loads (ID/II) Vert: 1-3=-60, 3-6=-60 Concentrated Loads (Ib) Vert: 6=-146 (F), 9=-4 e; (F), 23=-146 (F), 24=-6 d (F), 27=-62 (F), 28=-6 .15 ; is live if on . .ds. psf m to to nly nd ize 23 lb b 4 lb 10 of	0, 6-8=-60, 14-17=-20 23 (F), 20=-292 (F), 22=-146 146 (F), 25=-790 (F), 26=-62 32 (F)

Job	Truss	Truss Type	Qty	Ply	Lincoln A GRH-2nd Floor-Lincoln A GRH
24050001-B	T12	Нір	1	1	Job Reference (optional)

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri May 17 15:09:00 Page: 1 ID:2rTgaCqQnTDUkMb0sUMledzFaWg-oVIFx5Wg7ZMu507HwdTws1Jmfw9dpXDLMgMCn3zFa0n

		6-10-12 6-10-12		<u>11-11-8</u> 5-0-12	1	7-0-4 5-0-12		<u>23-11-0</u> 6-10-12	24-9-8	
5-6-6 5-0-4 5-0-4	= [∞] - - - - - - - - - - - - - - - - - - -	8 ¹² 17 17 HW1 4x5 II	5x8 0-1-73 W1 10 2x4 II	= <u>18 19</u> W2 <u>B1</u>	2x4∎ <u>3</u> 20 21 T2 W3 9 3x8=	W2 8 3x5=	5x8= 4 W1 7	13 2 B2	2 23 HW1 5 24 6 3x8 II	
							2,74 11			
		<u>. 6-9-0</u> 6-9-0		<u>11-11-8</u> 5-2-8	· · · · · ·	<u>17-2-0</u> 5-2-8	_	<u>23-11-0</u> 6-9-0		
Scale = 1:46.6		000	I	020	ļ	020	I	000	Ι	
Plate Offsets (X, Y): [2:0-4-0,0-1-9]	, [4:0-4-0,0-1-9], [5:0-3-8,E	Edge]							
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code IF	2-0-0 1.15 1.15 YES RC2018/TPI2014	CSI TC 0.99 BC 0.66 WB 0.26 Matrix-MSH	DEFL Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.09 7-13 -0.15 7-13 0.04 5	l/defl L >999 2- >999 1: n/a r	/d PLATES 40 MT20 80 Weight: 118 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD	2x4 SP No.2 *Exce 2x4 SP No.2 2x4 SP No.3 Left: 2x4 SP No.3 Right: 2x4 SP No.3 Structural wood she except 2-0-0 oc purlins (4- Rigid ceiling directly bracing. MiTek recommend required cross bra- truss erection, in a Installation guide.	 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BcDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-0 to 3-0-0, Exterior(2R) 3-0-0 to 11-1-11, Interior (1) 11-1-11 to 12-9-5, Exterior (2E) 21-9-8 to 24-9-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (um DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 4) Unbalanced snow loads have been considered for this design. 								
REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance design.	(Ib/size) 1=956/ M 5=1010/C Max Horiz 1=-115 (L Max Uplift 1=-97 (LC Max Grav 1=1040 ((Ib) - Max. Comp./N (Ib) or less except v 1-17=-1425/150, 2- 2-18=-1458/207, 18 3-19=-1460/207, 3- 20-21=-1460/207, 4 4-22=-1325/174, 22 5-23=-1422/143 1-10=-115/111, 9-1 8-9=-26/1105, 7-8=: 2-10=0/251, 4-7=0/ 2-9=-134/482, 4-9= ed roof live loads have	lechanical, (min. 0-1-8), -3-8, (min. 0-1-8) C 10) C 14), 5=-114 (LC 15) LC 41), 5=1110 (LC 41) Max. Ten All forces 250 when shown. 17=-1328/176, 9-19=-1460/207, 20=-1460/207, 2-21=-1458/207, 2-23=-1353/146, 10=-85/1107, -26/1105, 5-7=-24/1109 251, 3-9=-565/153, -136/485 e been considered for this	 overhangs n Provide aded This truss ha chord live loa * This truss ha chord live loa * This truss ha on the bottom 3-06-00 tall h chord and ar Refer to gird Provide mec bearing plate Provide mec bearing plate 11) One H2.5A S recommende UPLIFT at jt(does not cor 12) This truss is International R802.10.2 a 13) Graphical pu or the orienta bottom chorc LOAD CASE(S) 	per of the times har fool ion-concurrent with other quate drainage to preven as been designed for a 10 and nonconcurrent with an m chord in all areas wher by 2-00-00 wide will fit be ny other members. ler(s) for truss to truss co chanical connection (by of e capable of withstanding Simpson Strong-Tie conn ed to connect truss to bea (s) 5. This connection is f nsider lateral forces. designed in accordance I Residential Code section nd referenced standard A urlin representation does ation of the purlin along th d. Standard	ive loads. water ponding. 1.0 psf bottom y other live load ve load of 20.0 e a rectangle ween the botton nnections. hers) of truss to 97 lb uplift at jo ectors tring walls due t br uplift only and with the 2018 ns R502.11.1 an NSI/TPI 1. not depict the si- ne top and/or	Js. psf m o int d d ze				

Job		Truss		Truss Ty	/pe		Qt	/	Ply	Lincoln	A GRH-2n	d Floor	-Lincoln A GRH	
24050001-B		T13		Hip			1		1	Job Ref	erence (or	otional)		
Carter Component	nts, Sanford, NO	C, user				Run: 8	3.73 S Apr 25 202	4 Print:	8.730 S A	pr 25 2024 N	liTek Indust	tries, Inc	. Fri May 17 15:09:0	00 Page: 1
							ID:V	/112nYc	12YnLLLWA	ACQBtXBqz	-aWt-oVIFx	5Wg7ZN	/lu50/Hwd1ws1Jm	Iw5YpYgLMgMCn3zFa0n
			4-6-0 4-6-0)	8-10- 4-4-	. <u>12</u> 12	<u>. 15</u> 6-	-0-4 1-8		19 4-	9-5-0 4-12		<u>23-11-0</u> 4-6-0	24-9-8
							6-	1-8		ļ				0 10 0
										1				
	9 ç	2				4 20 ³	x8=	21		4x8=				
_					0-1= 12	-13=20		×1 						
				8							\sim	~ .		
				2	2x4 \$	W	2			W2		2x4 %		
-10-6	6-4-4 6-4-4		1:	9 //	\ll				5-9-4			×		
Ċ			18 17		WT						WI		23 24	
			1			\searrow								< 6
		0-6- <u>14</u>				BT			, e			B2	HW1	7
_	¥		4x5 u			10) 5-		9 3×5 -	8				
						0.0	5-		579-	3x5=				4x5 II
			l.	8-	9-0	l.	15	-2-0		l		23-11-0)	L
Scale = 1:54.1			ĺ	8-	9-0	1	6-	5-0		1		8-9-0		1
Plate Offsets ()	K, Y): [3:0-4-0),0-1-9],	[4:0-4-0,0-1-9]					-					i	
Loading TCLL (roof)		(psf) 20.0	Spacing Plate Grip DOL		2-0-0 1.15	CSI TC	1.00	DEF Vert	-L (LL) -	in (lo -0.39 10-	c) l/defl 16 >730	L/d 240	PLATES MT20	GRIP 244/190
Snow (Pf)		20.0	Lumber DOL Rep Stress Incr		1.15 YES	BC WB	0.92	Vert	(CT) -	-0.47 10- ⁻ 0.04	16 >607 6 n/a	180 n/a		
BCLL		0.0*	Code	IRC2	018/TPI2014	Matrix-M	SH		2(01)	0.01	0 1/4	n/a	Woight: 112 lb	ET - 20%
		10.0						<u> </u>					Weight. 112 lb	11-2070
LUMBER TOP CHORD	2x4 SP No.2	2		2)	Wind: ASCE Vasd=103m	7-16; Vult ph; TCDL=	≔130mph (3-se ⊧6.0psf; BCDL=	cond (6.0psf	gust) ; h=25ft; (Cat.				
BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.3	2			II; Exp B; En and C-C Ext	iclosed; M' erior(2E) (WFRS (envelop)-0-0 to 3-0-0, I	oe) ext nterior	erior zone (1) 3-0-0	e to				
WEDGE	Left: 2x4 SP Right: 2x4 S	No.3 P No.3			4-4-8, Exteri 21-9-8, Exte	or(2R) 4-4 rior(2E) 21	-8 to 19-6-8, In I-9-8 to 24-9-8	terior (zone; a	1) 19-6-8 cantilever	to left				
	Structural w	and aha	athing directly applies	lor	and right exp C for member	oosed ; en ers and for	d vertical left ar ces & MWFRS	nd right for rea	t exposed actions	l;C-				
TOP CHORD	4-3-9 oc pur	lins, exc	ept	3)	shown; Lum TCLL: ASCE	ber DOL= ⁻ E 7-16; Pr=	1.60 plate grip l 20.0 psf (roof L	DOL=1 .L: Lun	.60 n DOL=1.	15				
BOT CHORD	Rigid ceiling	directly	applied or 2-2-0 oc		Plate DOL=7 DOL=1.15);	1.15); Pf=2 Is=1.0; Ro	20.0 psf (Lum D ough Cat B; Full	OL=1. y Exp.	15 Plate ; Ce=0.9;					
	bracing. MiTek recor	nmends	that Stabilizers and	4)	Cs=1.00; Ct Unbalanced	=1.10 snow load	ls have been co	onsider	ed for this	s				
	required cro truss erection	oss braci on, in ac	ing be installed during cordance with Stabili	zer 5)	design. This truss ha	as been de	sianed for area	ter of	min roof li	ive				
	Installation	guide.		- /	load of 12.0	psf or 1.00) times flat roof rent with other	load o live loa	f 20.0 psf ads	on				
REACTIONS	(Ib/size) 1= 6=	=956/ Me =1010/0-	echanical, (min. 0-1-8 3-8, (min. 0-1-8)), 6) 7)	Provide ade	quate drai	nage to prevent	water	ponding.					
	Max Horiz 1= Max Uplift 1=	=-147 (L0 =-92 (LC	C 10) 14), 6=-109 (LC 15)	י , או	chord live lo	ad noncon	current with an	y other	live load	s. osf				
FORCES	Max Grav 1= (lb) - Max C	=1181 (L omp./M⊧	C 47), 6=1226 (LC 47 ax. Ten All forces 25	7) ⁽³⁾ 50	on the botto	m chord in	all areas where	e a rec	tangle	n				
	(lb) or less e	xcept wl	hen shown. 18=-1799/175		chord and a	ny other m	embers, with B	CDL =	10.0psf.					
	18-19=-1791	1/185, 2-	19=-1723/194,	9) 10) Provide med	chanical co	nnection (by ot	hers) o	of truss to					
	3-21=-1247/	195, 4-2	1=-1247/195,		1.			92 ID L	iplift at joi	Int				
	5-23=-1721/	189, 23-	24=-1798/170,	11	recommend	ed to conn	ect truss to bea	ectors iring w	alls due to	0				
BOT CHORD	0-24=-1850/	485, 9-1	0=-6/1189, 8-9=-6/11	89,	UPLIFT at jt	(s) 6. This nsider late	connection is for ral forces.	or uplif	t only and	1				
6-8=-/0/1481 12) WEBS 2-10=-403/186, 3-10=0/510, 4-8=0/508,) This truss is International	designed Residenti	in accordance al Code sectior	with the s R50	e 2018 2.11.1 an	d				
NOTES	5-8=-401/18	4		13	R802.10.2 a) Graphical pt	nd referen Irlin repres	ced standard A sentation does i	NSI/TI not dep	PI 1. pict the size	ze				
1) Unbalance design.	d roof live loa	ds have	been considered for	this	or the orient bottom chore	ation of the d.	e purlin along th	e top	and/or					
5				LO	AD CASE(S)	Standard	ł							

Job	Truss	Truss Type	Qty	Ply	Lincoln A GRH-2nd Floor-Lincoln A GRH
24050001-B	T14	Common	1	1	Job Reference (optional)

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri May 17 15:09:01

Page: 1 ID:_EaQ?urgJ5TCzgIO_vOmj2zFaWe-Ghre9RXIutVIjAiTUL_9PEr1xKX5Y1yUbK5IJVzFa0m

Plate Offsets (X,	, Y):	[2:0-3-8,Edge],	[4:0-3-8,Edge]

Carter Components, Sanford, NC, user

Loading	(psf)	Spacing	2-0-0	CSI	0.64		in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (root)	20.0	Plate Grip DOL	1.15		0.64	Vert(LL)	-0.06	6-12	>999	240	MT20	244/190
	20.0	Rep Stress Iper	1.15 VE9		0.52		-0.09	0-12	>999	100		
RCU	10.0	Codo		Motrix MSH	0.10		0.02	2	n/a	II/a		
BCDL	10.0	Code	IRC2016/1F12014								Weight: 49 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left: 2x4 SP No.3 Right: 2x4 SP No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. MiTek recommend: required cross brac truss erection, in a Installation guide.	eathing directly applied o / applied or 10-0-0 oc s that Stabilizers and cing be installed during ccordance with Stabilize	 3) TCLL: ASCE Plate DOL= DOL=1.15); Cs=1.00; Ct 4) Unbalanced design. 5) This truss ha load of 12.0 overhangs r 6) This truss ha chord live lo 7) * This truss on the botto 3-06-00 tall chord and a 8) One H2.5A 	E 7-16; Pr=20.0 psf (r 1.15); Pf=20.0 psf (L Is=1.0; Rough Cat B =1.10 snow loads have bee as been designed for psf or 1.00 times flat ion-concurrent with o as been designed for ad nonconcurrent with has been designed for m chord in all areas v by 2-00-00 wide will f ny other members. Simpson Strong-Tie c	oof Ll um DC ; Fully en cou great roof I ther li a 10. h any or a liv vhere it betw	: Lum DOL=)L=1.15 Plat Exp.; Ce=0. nsidered for t er of min roo oad of 20.0 p ve loads. 0 psf bottom other live lo re load of 20. a rectangle ween the bot ctors	=1.15 e .9; this of live osf on ads. .0psf tom					
REACTIONS	(lb/size) 2=516/0-3 4=516/0-3	3-8, (min. 0-1-8), 3-8, (min. 0-1-8)	recommend UPLIFT at jt	ed to connect truss to (s) 2 and 4. This conr	o bear nectio	ing walls due n is for uplift	e to only					
	Max Horiz 2=104 (Lo Max Uplift 2=-57 (Lo Max Grav 2=609 (Lo	C 13) C 14), 4=-57 (LC 15) C 21), 4=609 (LC 22)	9) This truss is Internationa R802 10 2 a	designed in accorda Residential Code se	nce w nce w ctions	ith the 2018 s R502.11.1 ;	and					
FORCES	(lb) - Max. Comp./M	lax. Ten All forces 250 (ben shown	LOAD CASE(S)	Standard								
TOP CHORD	2-13=-616/100, 13- 3-14=-510/132, 3-1 15-16=-518/112, 4-2	14=-518/112, 5=-510/132, 16=-616/100										
BOT CHORD	2-6=-55/399, 4-6=0/ 3-6=0/260	/399										
NOTES	0-0-0/200											
1) Unbalanc	ed roof live loads have	e been considered for th	is									
2) Wind: ASU Vasd=103 II; Exp B; and C-C E to 2-9-8, E 9-5-8, Ext and right C for men shown; Lu	CE 7-16; Vult=130mpl mph; TCDL=6.0psf; E Enclosed; MWFRS (e Exterior(2E) -0-10-8 to Exterior(2R) 2-9-8 to 8 terior(2E) 9-5-8 to 12-4 exposed; end vertical nbers and forces & M umber DOL=1.60 plate	n (3-second gust) CDL=6.0psf; h=25ft; Ca nvelope) exterior zone 2-1-8, Interior (1) 2-1-8 -9-8, Interior (1) 8-9-8 to 5-8 zone; cantilever left left and right exposed;(WFRS for reactions a grip DOL=1.60	at. D C-									

Job	Truss	Truss Type	Qty	Ply	Lincoln A GRH-2nd Floor-Lincoln A GRH	
24050001-B	T15	Common	2	1	Job Reference (optional)	
Carter Components, Sanford, No	C, user	Run: 8.73 S Apr 2	5 2024 Print:	8.730 S Ap	25 2024 MiTek Industries, Inc. Fri May 17 15:09:01	Page: 1

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri May 17 15:09:01

ID:_EaQ?urgJ5TCzgIO_vOmj2zFaWe-Ghre9RXIutVljAiTUL_9PEr0mKXcY1xUbK5IJVzFa0m

				5-9-8			11-7-0						
Scale = 1:39.9				1	5-9-8		1		5-9-	-8		1	
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	RC2018/TI	2-0-0 1.15 1.15 YES PI2014	CSI TC BC WB Matrix-MSH	0.65 0.55 0.10	DEFL Vert(L Vert(C Horz(0	in L) -0.07 CT) -0.09 CT) 0.02	(loc) 5-11 5-11 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 47 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left: 2x4 SP No.3 Right: 2x4 SP No.3 Structural wood she 5-10-10 oc purlins. Rigid ceiling directly bracing. MiTek recommends required cross brac truss erection, in ac Installation guide.	eathing directly applied or v applied or 10-0-0 oc s that Stabilizers and cing be installed during ccordance with Stabilizer	 4) Unba desig 5) This load over 6) This chor 7) * Thi on tt 3-06 chor 8) Refe 9) Prov bear 4. 10) One 	alanced gn. truss ha of 12.0 hangs n truss ha d live lo s truss l he botto -00 tall d and a r to gird ide med ing plate	snow loads have l as been designed i psf or 1.00 times f ion-concurrent with as been designed ad nonconcurrent has been designed m chord in all area by 2-00-00 wide w ny other members. ler(s) for truss to tr chanical connection e capable of withst Simpson Strong-Ti	been co for great lat roof I n other li for a 10. with any d for a li s where ill fit betw uss conn n (by oth anding 3	nsidered er of mi oad of 2 ve loads 0 psf bc other li o ther li e load c a recta ween the nections nections d b up ctors	d for this n roof live 20.0 psf on s. ttom ve loads. of 20.0psf ngle e bottom s. truss to lift at joint					
REACTIONS	(Ib/size) 2=518/0-3 Mechanic Max Horiz 2=100 (LC Max Uplift 2=-57 (LC Max Grav 2=610 (LC	3-8, (min. 0-1-8), 4=461/ (al, (min. 0-1-8) (2 13) (2 14), 4=-39 (LC 15) (2 21), 4=554 (LC 22)	10) One reco UPL does 11) This Inter	recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces. 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and									
FORCES	(lb) - Max. Comp./M	ax. Ten All forces 250	LOAD C	ASE(S)	Standard	idard Ar	NOI/TPT	1.					
TOP CHORD BOT CHORD WEBS	(ib) of ness except w 2-12=-619/103, 12- 3-13=-512/135, 3-14 14-15=-514/116, 4-1 2-5=-62/403, 4-5=-1 3-5=0/261	13=-521/115, 1=-512/134, 15=-620/103 4/403											
1) Unbalance	ed roof live loads have	e been considered for this	8										
 Wind: ASC Vasd=103 II; Exp B; and C-CE to 2-9-8, E to 11-7-0 : vertical lef forces & M DOL=1.60 TCLL: AS Plate DOL DOL=1.15 Cs=1.00; 	CE 7-16; Vult=130mph mph; TCDL=6.0psf; B Enclosed; MWFRS (e Exterior(2E) -0-10-8 to Exterior(2R) 2-9-8 to 8 cone; cantilever left ar t and right exposed;C MWFRS for reactions s 0 plate grip DOL=1.60 CE 7-16; Pr=20.0 psf L=1.15); Pf=20.0 psf (l 5); Is=1.0; Rough Cat I Ct=1.10	n (3-second gust) GDL=6.0psf; h=25ft; Cat nvelope) exterior zone 2-1-8, Interior (1) 2-1-8 -7-0, Exterior(2E) 8-7-0 nd right exposed ; end -C for members and shown; Lumber (roof LL: Lum DOL=1.15 Lum DOL=1.15 Plate B; Fully Exp.; Ce=0.9;											

Job	Truss	Truss Type	Qty	Ply	Lincoln A GRH-2nd Floor-Lincoln A GRH
24050001-B	T16	Common Supported Gable	1	1	Job Reference (optional)

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri May 17 15:09:01 Page: 1 ID:xciBQatwrijwDzvn5KQEpTzFaWc-Ghre9RXIutVljAiTUL_9PEr7HKdpY2XUbK5IJVzFa0m

			/			12-0-0)					
Scale = 1:30		/										
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MSH	0.23 0.15 0.06	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 10	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 48 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORE BOT CHORE OTHERS BRACING TOP CHORE BOT CHORE REACTIONS (Ib) -	 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 10-0-0 cc purlins. Rigid ceiling directly bracing. All bearings 12-0-0. Max Horiz 2=-35 (LC Max Uplift All uplift 2, 10, 11, Max Grav All reaction (s) 2, 11, (LC 22), 1 	eathing directly applied o y applied or 6-0-0 oc C 15), 15=-35 (LC 15) 100 (Ib) or less at joint(s) 12, 13, 14, 15 ons 250 (Ib) or less at joi 13, 14, 15 except 10=36 12=338 (LC 22)	 4) TCLL: ASCE Plate DOL=: DOL=1.15); Cs=1.00; Ct 5) Unbalanced design. 6) This truss ha load of 12.0 overhangs n 7) All plates are 8) Gable requir 9) Gable studs 10) This truss ha chord live lo 11) * This truss list on the bottoo 3-06-00 tall list 	5 57-16; Pr=20.0 psf (L 1.15); Pf=20.0 psf (L 1s=1.0; Rough Cat F =1.10 snow loads have be as been designed for psf or 1.00 times fla on-concurrent with e e 2x4 MT20 unless (e es continuous botto spaced at 2-0-0 oc. as been designed for ad nonconcurrent w has been designed in n chord in all areas by 2-00-00 wide will	(roof LL _um DC B; Fully een cor or greate at roof le other li other li other wi orn chor	:: Lum DOL= DL=1.15 Plate Exp.; Ce=0. asidered for t er of min roo bad of 20.0 p <i>re</i> loads. se indicated. d bearing. D psf bottom other live loa e load of 20. a rectangle veen the bott	1.15 e 9; his f live psf on ads. Opsf					
FORCES TOP CHORD BOT CHORD	(lb) - Max. Comp./M (lb) or less except w 2-3=-176/289, 3-22 4-22=-125/283, 4-5 6-23=-120/292, 7-8 2-14=-260/208, 13-	lax. Ten All forces 250 vhen shown. =-132/265, =-79/284, 5-6=-80/299, =-181/313 14=-260/208,	chord and an 12) Provide mec bearing plate (s) 2, 12, 13 13) This truss is International	ny other members. hanical connection capable of withsta , 14, 11, 10, 2. designed in accord Residential Code s	(by oth inding 1 ance w sections	ers) of truss 00 lb uplift a ith the 2018 R502.11.1 a	to t joint and					
WEBS NOTES 1) Unbalanc design. 2) Wind: AS Vasd=10: II; Exp B; and C-C to 3-0-0, 9-10-8, C left and ri	12-13=-260/208, 11 10-11=-260/208, 8- 5-12=-284/162 eed roof live loads have CE 7-16; Vult=130mpl 3mph; TCDL=6.0psf; E Enclosed; MWFRS (e Corner(3E) -0-10-8 to Corner(3E) 9-10-8 to 12 ght exposed ; end ver	-12=-260/208, 10=-260/208 e been considered for th h (3-second gust) 3CDL=6.0psf; h=25ft; Ca nvelope) exterior zone 2-0-0, Exterior(2N) 2-0-1 0-0, Exterior(2N) 2-0-0 2-10-8 zone; cantilever tical left and right	R802.10.2 a LOAD CASE(S) is at.	nd referenced stand Standard	dard AN	ISI/TPI 1.						

reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

Job	Truss	Truss Type	Qty	Ply	Lincoln A GRH-2nd Floor-Lincoln A GRH	
24050001-B	T17	Common	5	1	Job Reference (optional)	
Carter Components, Sanford, N	C, user	Run: 8.73 S Apr 2	5 2024 Print:	8.730 S Api	r 25 2024 MiTek Industries, Inc. Fri May 17 15:09:01 Pag	je: 1

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri May 17 15:09:01

Page: 1 ID:PpGZdwuYc0snq7Uzf1xTLgzFaWb-Ghre9RXIutVIjAiTUL_9PEr0bKYuY1zUbK5IJVzFa0m

3x5 =

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MSH	0.66 0.47 0.10	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.06 -0.09 0.01	(loc) 6-12 6-12 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 43 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 4-7-14 oc purlins. Rigid ceiling directly bracing. MiTek recommends required cross brac truss erection, in ac Installation guide.	eathing directly applied or applied or 10-0-0 oc s that Stabilizers and cing be installed during coordance with Stabilize	 5) This truss ha load of 12.0 overhangs n 6) This truss ha chord live lo 3-06-00 tall l chord and ai 8) One H2.5A s recommend, UPLIFT at jt and does no 9) This truss is luterrational 	as been designed for psf or 1.00 times fla on-concurrent with or is been designed for ad nonconcurrent with as been designed in n chord in all areas by 2-00-00 wide will ny other members. Simpson Strong-Tie ad to connect truss f s) 2 and 4. This cor t consider lateral for designed in accord.	r great t roof I other Ii r a 10. ith any for a liv where fit betw conne- to bear nnectio rces. ance w	er of min roo oad of 20.0 p ve loads. 0 psf bottom other live loa re load of 20. a rectangle veen the bott ctors ing walls due n is for uplift ith the 2018 s P502 11 1	f live sef on ads. .0psf tom e to only					
REACTIONS	(lb/size) 2=532/0-3 4=532/0-3 Max Horiz 2=-36 (LC Max Uplift 2=-89 (LC Max Grav 2=638 (LC	3-8, (min. 0-1-8), 3-8, (min. 0-1-8) 3 15) 3 10), 4=-89 (LC 11) 2 21), 4=638 (LC 22)	R802.10.2 a	Residential Code s nd referenced stand Standard	ard AN	8 R502.11.1 a ISI/TPI 1.	and					
FORCES TOP CHORD WEBS NOTES 1) Unbalance design. 2) Wind: ASC Vasd=103 II; Exp B; f and C-C b to 3-0-0, E 9-10-8, Ex left and rig exposed; C reactions a DOL=1.60 3) TCLL: ASC Plate DOL DOL=1.15 Cs=1.00; C 4) Unbalance design.	(lb) - Max. Comp./M (lb) or less except w 2-14=-858/364, 14-1 3-15=-809/378, 3-16 16-17=-813/367, 4-1 2-6=-260/756, 4-6=- 3-6=0/255 ed roof live loads have CE 7-16; Vult=130mph mph; TCDL=6.0psf; B Enclosed; MWFRS (e ixterior(2E) -0-10-8 to ixterior(2E) 3-0-0 to 9 terior(2E) 9-10-8 to 12 ht exposed ; end vert -C for members and 1 shown; Lumber DOL= CE 7-16; Pr=20.0 psf (L); Is=1.0; Rough Cat I Ct=1.10 ed snow loads have be	ax. Ten All forces 250 then shown. 15=-813/367, 5=-809/378, 17=-858/364 260/756 e been considered for th n (3-second gust) :CDL=6.0psf; h=25ft; Ca nvelope) exterior zone 2-1-8, Interior (1) 2-1-8 -0-0, Interior (1) 9-0-0 tc 2-10-8 zone; cantilever ical left and right forces & MWFRS for -1.60 plate grip (roof LL: Lum DOL=1.15 Plate B; Fully Exp.; Ce=0.9; een considered for this	is t.									

Job	Truss	Truss Type	Qty	Ply	Lincoln A GRH-2nd Floor-Lincoln A GRH
24050001-B	T18	Roof Special	1	1	Job Reference (optional)
Carter Components, Sanford, N	C, user	Run: 8.73 S Apr 2	5 2024 Print:	8.730 S Api	r 25 2024 MiTek Industries, Inc. Fri May 17 15:09:02 Page: 1

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri May 17 15:09:02 Page: 1

Special

ID:xciBQatwrijwDzvn5KQEpTzFaWc-kuP0MnYwfBdcKKHf22VOxSO9EjuSHVkdp_rlryzFa0I

5-11-0

3x5=

One H2.5A

Casle - 1.00 F

Scale = 1:33.5												
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MP	0.79 0.51 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.08 -0.15 0.02	(loc) 4-7 4-7 2	l/defl >868 >477 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 24 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left: 2x4 SP No.3 Structural wood she 5-11-0 oc purlins, e Rigid ceiling directly bracing. MiTek recommend: required cross brac truss erection, in a Installation guide.	eathing directly applied except end verticals. y applied or 10-0-0 oc s that Stabilizers and cing be installed during ccordance with Stabiliz	 7) Refer to gird 8) Provide mee bearing plat 4. 9) One H2.5A s recommend UPLIFT at jt does not coi 10) This truss is Internationa R802.10.2 a 11) Hanger(s) o provided sut down and 7: design/seled 	ler(s) for truss to t chanical connection e capable of withs Simpson Strong-T ed to connect trus (s) 2. This connect nsider lateral force designed in acco I Residential Code and referenced star r other connection fficient to support 5 lb up at 5-9-4 or tion of such connection	russ coni n (by oth tanding ' ie conne is to bear tion is fo es. rdance w e sections n device(s concentra n device(s concentra n bottom	nections. lers) of truss l21 lb uplift a ctors ing walls du r uplift only a with the 2018 s R502.11.1 ISI/TPI 1. s) shall be ated load(s) chord. The vvice(s) is the	e to e to and and 482 lb e					
REACTIONS FORCES NOTES 1) Wind: ASC	(Ib/size) 2=287/0- Mechanic Max Horiz 2=107 (L0 Max Uplift 2=-44 (L0 Max Grav 2=381 (L0 (Ib) - Max. Comp./M (Ib) or less except w CE 7-16; Vult=130mpl	3-8, (min. 0-1-8), 4=705 sal, (min. 0-1-8) C 13) C 14), 4=-121 (LC 14) C 21), 4=802 (LC 21) lax. Ten All forces 250 when shown. h (3-second gust) 2001 = 0 0-st b=25t. 0	 responsibilit 12) In the LOAD of the truss : LOAD CASE(S) 1) Dead + Smincrease=1 Uniform Lo Vert: 1-3 Concentrat Vert: 4=- 	y of others. 0 CASE(S) section are noted as front Standard ow (balanced): Lu .15 ads (lb/ft) =-60, 4-5=-20 ed Loads (lb) 482 (B)	n, loads a (F) or ba mber Inc	pplied to the ick (B). rease=1.15,	e face Plate					
 vasu-103 II; Exp B; I and C-C E exposed; members Lumber D 2) TCLL: ASC Plate DOL DOL=1.15 Cos=1.00; 3) Unbalance design. 4) This truss load of 12 overhange 5) This truss chord live 6) * This trus on the bot 3-06-00 ta chord and 	Enclosed; MWFRS (e Enclosed; MWFRS (e Exterior(2E) zone; can end vertical left and r and forces & MWFRS OL=1.60 plate grip D0 CE 7-16; Pr=20.0 psf (=1.15); Pf=20.0 psf (f i); Is=1.0; Rough Cat Ct=1.10 ed snow loads have b has been designed ff 0.0 psf or 1.00 times fit a non-concurrent with has been designed ff load nonconcurrent w s has been designed fo load nonconcurrent w s has been designed to chord in all areas any con-00 wide wil any other members.	novelope) exterior zone invelope) exterior zone titilever left and right ight exposed;C-C for s for reactions shown; DL=1.60 (roof LL: Lum DOL=1.1 Lum DOL=1.15 Plate B; Fully Exp.; Ce=0.9; een considered for this or greater of min roof liv at roof load of 20.0 psf other live loads. or a 10.0 psf bottom vith any other live loads for a live load of 20.0ps s where a rectangle I fit between the bottom	15 7 9 9 9 9 9 9 9 9 9 9									

Job	Truss	Truss Type	Qty	Ply	Lincoln A GRH-2nd Floor-Lincoln A GRH
24050001-B	T19	Monopitch	2	1	Job Reference (optional)

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri May 17 15:09:02 Page: 1 ID:_EaQ?urgJ5TCzgl0_vOmj2zFaWe-kuP0MnYwfBdcKKHf22VOxSOAujusHVkdp_rlryzFa0l

One H2.5A

Scale = 1:36.5

Loading TCLL (roof) Snow (Pf) TCDL BCLL	(psf) 20.0 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC 0.75 BC 0.44 WB 0.00 Matrix-MP 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.07 -0.13 0.02	(loc) 6-9 6-9 2	l/defl >932 >512 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0									Weight: 24 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left: 2x4 SP No.3 Structural wood she 5-11-0 oc purlins, e Rigid ceiling directly bracing. MiTek recommends required cross brac truss erection, in ad Installation quide.	eathing directly applied except end verticals. y applied or 10-0-0 oc s that Stabilizers and cing be installed during ccordance with Stabilize	 6) * This truss I on the botton 3-06-00 tall I chord and at 7) Refer to gird 8) Provide mec bearing plate 6. 9) One H2.5A S recommende UPLIFT at jt does not cor 10) This truss is International R802 10 2 a 	has been designed for a n chord in all areas whe by 2-00-00 wide will fit be hy other members. er(s) for truss to truss cot hanical connection (by co- e capable of withstanding Simpson Strong-Tie comr ed to connect truss to be s) 2. This connection is isider lateral forces. designed in accordance Residential Code section d referenced standard	ive load of 20 e a rectangle tween the bot nections. thers) of truss 49 lb uplift at ectors aring walls du or uplift only a with the 2018 rs R502.11.1 NS/(TPI 1	.0psf tom joint e to and					
REACTIONS	Installation guide. R802.10.2 and referenced standard ANSI/TPI 1. CTIONS 2=282/0-3-8, (min. 0-1-8), 6=244/ Mechanical, (min. 0-1-8) LOAD CASE(S) Standard Max Horiz 2=107 (LC 13) LOAD CASE(S) Standard Max Uplift 2=-42 (LC 14), 6=-49 (LC 14) Max Grav 2=373 (LC 21), 6=344 (LC 21) Ferenced standard ANSI/TPI 1.										
 FORCES TOP CHORD NOTES 1) Wind: ASC Vasd=103 II; Exp B; I; and C-C E to 2-11-0, left and rig exposed; C reactions 3 DOL=1.60 2) TCLL: ASC Plate DOL DOL=1.15 Cs=1.00; 3) Unbalance design. 4) This truss load of 12 overhangs 5) This truss chord live 	(lb) - Max. Comp./M (lb) or less except w 3-6=-255/116 CE 7-16; Vult=130mpf mph; TCDL=6.0psf; E Enclosed; MWFRS (e Exterior(2E) -0-10-8 to Exterior(2E) 2-11-0 to ght exposed ; end vert C-C for members and shown; Lumber DOL= 0 CE 7-16; Pr=20.0 psf (=1.15); Pf=20.0 psf (I c); Is=1.0; Rough Cat Ct = 1.10; Rough Cat Ct = 1.10; Is=1.0; Rough Cat Ct = 1.10; Is=1.0; Rough Cat Ct = 1.00; Rough Cat	lax. Ten All forces 250 when shown. BCDL=6.0psf; h=25ft; C: nvelope) exterior zone 9 2-1-8, Interior (1) 2-1-8 5 5-11-0 zone; cantilevention tical left and right forces & MWFRS for =1.60 plate grip (roof LL: Lum DOL=1.1 Lum DOL=1.15 Plate B; Fully Exp.; Ce=0.9; een considered for this for greater of min roof live at roof load of 20.0 psf of other live loads. or a 10.0 psf bottom with any other live loads) at. 3 r 5 5 on								

Job	Tru	ISS	Truss Type			Qty	Ply	Lincoln A G	RH-2nd Fl	oor-Lincoln A GRH	
24050001-B	T2	0	Hip Girder			1	2	Job Refere	nce (optior	nal)	
Carter Componer	nts, Sanford, NC, us	er			Run: 8.73 S Apr	25 2024 F	Print: 8.730 S	Apr 25 2024 MiTe	k Industries,	, Inc. Fri May 17 15:09:	:02 Page: 1
						ID	:tGMNP45rN	IX7D_usRjpGh4Tz	FaWJ-kuP0	MnYwfBdcKKHf22VO	<soeijw?hsndp_rlryzfa0l< td=""></soeijw?hsndp_rlryzfa0l<>
		-0-10-8 . .	4-10-12		9-11-0			14-11-5	ļ	19-10-1	20-8-9
		0-10-8	4-10-12	1	5-0-4		1	5-0-4	Ĩ	4-10-12	0-10-8
		0 10 0									0 10 0
				NAILEI) NAILED M	NAILED	NAILED	NAILED	NAILED		
				5x6	-	2	2x4 I		5x6=		
```	<u> </u>		12	3		920 1 D	4 21 22	2 23	5 		
			81		 \					\sim	
	9		T 1	W1	W2	v	v3	W2	W1	Th	
4-2-6	3-10	/									
`		2	·			\searrow					6
	0-6-14				LD B1	t				B2	7
				11	24	25 1	0 26	27 9	8		
		3x6=		2x4 II		3	3x8=	43	<6 =		3x6=
				Specia	NAILED N	NAILED	NAILED	NAILED	2x4 II		One H2.5A
		I		T			I.		Special		I
Scale = 1:44.1		f	<u>4-9-0</u> 4-9-0		<u>9-11-0</u> 5-2-0		[<u>15-1-1</u> 5-2-0		<u> </u>	
Plate Offsets ()	K, Y): [2:0-6-0,0-0)-11], [3:0-3-12,0-2-0], [5	:0-3-12,0-2-0], [6:0-6-0	0-0-11]		1				
Loading	(psf) Spacing		2-0-0	CSI		DEFL	in (loc)	l/defl l	_/d PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL		1.15	TC	0.51	/ert(LL)	-0.06 10	>999 2	40 MT20	244/190
TCDL	10.0) Rep Stress Incr		NO	WB	0.33	Horz(CT)	0.02 6	n/a r	n/a	
BCLL BCDL	0.0 10.0)* Code	IRC2018/TF	912014	Matrix-MSH					Weight: 226 lb	• FT = 20%
		1	3) Unba	lancod	roof live loads have	boon co	neidorod f	or this Un	form Load	s (lb/ft)	
TOP CHORD	2x4 SP No.2		desig	In.	7 46: \/ult=120mmk				/ert: 1-3=-(60, 3-5=-60, 5-7=-6	0, 12-15=-20
BOT CHORD WEBS	2x6 SP No.2 2x4 SP No.3		4) Vind Vasd	=103m	ph; TCDL=6.0psf; B	CDL=6.0	psf; h=25ft	t; Cat.	ncentrated /ert: 5=-14	Loads (ID) 6 (B), 11=-423 (B),	3=-146 (B), 8=-423
	Structural wood	sheathing directly appli	ll; Ex cantil	p B; En ever le	closed; MWFRS (e t and right exposed	nvelope) d ; end ve	exterior zo rtical left a	ne; (nd (B), 18=-14 B), 24=-62	6 (B), 20=-146 (B), 2 (B), 25=-62 (B), 26	21=-146 (B), 23=-146 5=-62 (B), 27=-62 (B)
	6-0-0 oc purlins,	except	5) TCLL	expose .: ASCE	d; Lumber DOL=1.6 7-16; Pr=20.0 psf	60 plate g (roof LL:	rip DOL=1 Lum DOL=	.60 :1.15			
BOT CHORD	Rigid ceiling dire	ectly applied or 10-0-0 o	Plate	DOL=' =1.15);	l.15); Pf=20.0 psf (l ls=1.0; Rough Cat l	Lum DOL B; Fully E	=1.15 Plate xp.; Ce=0.	e 9;			
REACTIONS (bracing.	32/0-3-8 (min 0-1-8)	Cs=1 6) Unba	.00; Ćt	=1.10 snow loads have b	een cons	idered for t	his			
	6=182	28/0-3-8, (min. 0-1-8)	desig	in. truce br	s boon designed fo	or greater	of min roo	flivo			
l N	Max Uplift 2=-30	9 (LC 12), 6=-308 (LC 1	3) load	of 12.0	psf or 1.00 times fla	at roof loa	id of 20.0 p	osf on			
FORCES	Max Grav 2=193 (lb) - Max. Comr	36 (LC 37), 6=1932 (LC 3 5./Max. Ten All forces 2	250 8) Provi	de ade	quate drainage to p	other live	ater pondin	g.			
TOP CHORD	(lb) or less except 2-3=-2838/472.	pt when shown. 3-18=-3111/516.	9) This chore	truss ha I live loa	as been designed fo ad nonconcurrent w	or a 10.0 j vith any o	pst bottom ther live loa	ads.			
	18-19=-3111/516	6, 19-20=-3111/516, 4-21=-3111/516	10) * This on th	s truss l e bottoi	nas been designed n chord in all areas	for a live where a	load of 20. rectangle	0psf			
	21-22=-3111/516	5, 22-23=-3111/516,	3-06- chord	00 tall I and a	by 2-00-00 wide will to other members.	l fit betwe	en the bott	tom			
BOT CHORD	2-11=-369/2283,	5-6=-2631/472 11-24=-370/2262,	11) One	H2.5A S	Simpson Strong-Tie	connecto	ors a walls due	a to			
	24-25=-370/2262	2, 10-25=-370/2262, 7, 26-27=-305/2257,	UPLI	FT at jt	(s) 2 and 6. This co	nnection	is for uplift	only			
	9-27=-305/2257, 6-8=-303/2278	, 8-9=-305/2257,	12) This	truss is	designed in accord	lance with	the 2018				
WEBS	3-11=-1/523, 3-1	0=-214/1034, 5-10=-215/1039_5-8=-2	Interr 1522 R802	1ational	Residential Code s nd referenced stand	sections F dard ANS	R502.11.1 a I/TPI 1.	and			
NOTES			13) Grap	hical pu e orient	Irlin representation ation of the purlin al	does not long the t	depict the op and/or	size			
nails as foll	lows:	together with 10d (0.131	botto	m chore	1. dicates 3-10d (0.14	8"x3") or	3-12d				
Top chords oc.	connected as fol	lows: 2x4 - 1 row at 0-9	·0 (0.14	8"x3.25	") toe-nails per ND	S guidline	es.				
Bottom cho staggered a	ords connected as at 0-9-0 oc.	s follows: 2x6 - 2 rows	provi	ded suf	ficient to support co	oncentrate	ed load(s)	423 lb			
Web conne	ected as follows: 2	2x4 - 1 row at 0-9-0 oc.	down lb up	and 64 at 14-	up at 4-10-12, a 10-9 on bottom cho	and 423 l rd. The c	b down an lesign/sele	a 64 ction			
except if no	oted as front (F) o	br back (B) face in the LC	DAD of su other	ch conr s.	ection device(s) is	the respo	onsibility of				
provided to	distribute only lo	ads noted as (F) or (B),		ASE(S)	Standard	her looro	250-1 15	Plate			
unless othe	erwise indicated.		Incre	ease=1	.15		use-1.10,				

Job		Truss	T	russ Ty	ре		Qty	1	Ply	Lincoln	A GRH-2r	d Floor	-Lincoln A GRH	
24050001-E	3	T21	F	lip			1		1	Job Re	ference (o	ptional)		
Carter Compone	ents, Sanford, N	C, user	•			Run: 8.7	3 S Apr 25 202	4 Print: 8	.730 S Ap	or 25 2024	MiTek Indus	tries, Inc.	Fri May 17 15:09:	03 Page: 1
			0 10 9					ID:PpG	Zawu Y Cu	isnq7 UZI IX	TLgzFavvb-	KUPUIVIIN		
			-0-10-8		6-10-12			12-11-5	5			19-10)-1	20-8-9
			0-10-8		6-10-12			6-0-9				6-10-	12	0-10-8
								6-0-9		L				
		~				4	×8=			4x8=				
_		- - -			0-1	_13_ 19		 	2	4	21			
		0			_12 8⊺						$\langle \rangle$			
u u				18	3 11	Υ ^ν			-5-4	WV I		AI	22 23	
L	<u>,</u> , , , , , , , , , , , , , , , , , ,	2							4				23	
			10 ²											5
		0-6-14	4 1 ¹⁶ HW	1			B1					В	HW11 2	246
_	<u> </u>					9			8	3 7				
			3x8 II			2)	(4 II		3	x5=				3x8 II
										2x4	II		On	e H2.5A
Scale = 1:48.4					6-9-0			13-1-1				19-1	0-1	
Plate Offsets (X Y): [2:0-3-	8 Edgel	[3·0-4-0 0-1-9] [4·0-4-	0 0-1-9	0-5-0	ı rel		0-4-1				0-0-	-0	
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(nof)	Cassing	o,o . o	200	<u></u>		DEEL		in (l	aa) I/daf	l /d		
TCLL (roof)		(psi) 20.0	Plate Grip DOL		1.15	TC	0.95	Vert(L	L) -	0.38 7-	12 >625	240	MT20	244/190
Snow (Pf) TCDL		20.0 10.0	Lumber DOL Rep Stress Incr		1.15 YES	BC WB	0.82 0.14	Vert(C	ст) - СТ)	0.43 7· 0.04	·12 >556 2 n/a	180 n/a		
BCLL		0.0*	Code	IRC20	18/TPI2014	Matrix-MSI	4	Ì	,				Weight: 82 lb	FT = 20%
		10.0											Weight. 02 lb	11-2070
LUMBER TOP CHORD	2x4 SP No.	1 *Excep	t* T2:2x4 SP No.2	2)	Wind: ASCE Vasd=103m	7-16; Vult=1 oh; TCDL=6.	130mph (3-se 0psf; BCDL=6	cond gu 6.0psf; ł	ist) n=25ft; C	Cat.				
BOT CHORD	2x4 SP No.2	2			II; Exp B; En and C-C Ext	closed; MW erior(2E) -0-	FRS (envelop 10-8 to 2-1-8,	e) exter Interior	ior zone (1) 2-1-	: 8				
WEDGE	Left: 2x4 SF	PNo.3			to 2-7-13, Ex	(terior(2R) 2 -8-9 Exterio	-7-13 to 17-2- r(2F) 17-8-9 to	3, Interi 20-8-9	or (1) 7 one					
BRACING	Right: 2x4 a	5P N0.5			cantilever le	ft and right e	xposed ; end	vertical	left and					
TOP CHORD	Structural w 2-10-13 oc	/ood she purlins. e	athing directly applied	or	for reactions	shown; Lun	ber DOL=1.6	0 plate	grip	,				
	2-0-0 oc pu	rlins (2-2	-0 max.): 3-4.	3)	DOL=1.60 TCLL: ASCE	7-16; Pr=20).0 psf (roof L	L: Lum	DOL=1.	15				
BOT CHOILD	bracing.	Junecuy		_	Plate DOL=1 DOL=1.15);	l.15); Pf=20. ls=1.0; Roug	0 psf (Lum D0 gh Cat B; Fully	OL=1.15 / Exp.; (5 Plate Ce=0.9;					
	MiTek reco required cr	mmends oss brac	that Stabilizers and ing be installed during	4)	Cs=1.00; Ct Unbalanced	=1.10 snow loads	have been co	nsidere	d for this	5				
	truss erecti Installation	ion, in ac quide.	cordance with Stabilize	er (design.	e haan dasi	aned for area	er of m	in roof li	VA				
REACTIONS	(lb/size) 2:	=846/0-3	-8. (min. 0-1-8).	0)	load of 12.0	psf or 1.00 t	imes flat roof	oad of 2	20.0 psf	on				
	, Max Horiz 2:	=846/0-3 =120 (LC	-8, (min. 0-1-8)	6)	Provide ade	quate draina	ge to prevent	water p	s. onding.					
	Max Uplift 2:	=-95 (LC	14), 5=-95 (LC 15)	7)	This truss ha	as been desi ad nonconcu	gned for a 10. Irrent with any	0 psf bo other l	ottom ive loads	s.				
FORCES	(lb) - Max. C	=1052 (L Comp./Ma	.C 47), 5=1052 (LC 47) ax. Ten All forces 250	8)	* This truss I on the botto	nas been de m chord in a	signed for a liv	/e load a recta	of 20.0p Ingle	sf				
	(lb) or less e	except w	hen shown. 18=-1323/123		3-06-00 tall I	by 2-00-00 w	vide will fit bet	ween th	e botton	n				
	18-19=-127	6/148, 3-	·19=-1179/151,	9)	One H2.5A	Simpson Stro	ong-Tie conne	ctors	u.upsi.					
	3-20=-1079/ 4-21=-1179/	/179, 4-2 /151, 21-	22=-1079/179, 22=-1276/148,		recommende UPLIFT at jt	ed to connec (s) 5 and 2.	t truss to bea This connectio	ring wal on is for	is due to uplift on	o ily				
BOT CHORD	22-23=-132 2-9=-80/104	3/123, 5- I5, 8-9=-	·23=-1409/119 15/1035, 7-8=-15/1035	, 10)	and does no This truss is	t consider la designed in	teral forces. accordance v	/ith the	2018					
WEBS	5-7=-14/104 3-9=0/347	15 4-7=0/34	7	,	International	Residential	Code section	s R502.	11.1 and	d				
NOTES	0.0-0/047,*			. 11)	Graphical pu	Irlin represei	ntation does n	ot depic	t the siz	ze				
 Unbalance design. 	ed roof live loa	ads have	been considered for the	nis	or the orient	ation of the p d.	ourlin along th	e top ar	nd/or					
5				LO	AD CASE(S)	Standard								

Job	Truss		Truss Type			Qty	Ply		Lincoln A G	RH-2nd	l Floor	Lincoln A GRH	
24050001-B	T22		Hip			1	1		Job Refere	nce (op	tional)		
Carter Componer	nts, Sanford, NC, user				Run: 8.73 S Apr	25 2024	1 Print: 8.730) S Apr	25 2024 MiTe	ek Industr	, ies, Inc.	Fri May 17 15:09:	03 Page: 1
		-0-10- 0-10-8	3 4-6-0 3		<u>8-10-12</u> 4-4-12	10 2	D:t?qxrFuBf 0-11-5	NJ_eS⊦ 1! 4-	13ADISiuuzFa <u>5-4-0</u> -4-12	aWa-C4z(<u>19-10</u> 4-6-	20-8-9 2-1 -0 0-10-8	Q17Bk0vYn2easNOzFa0k
						2	2-0-9						
	_	~				4x8=	4x8=						
	6-10-6 6 44 6 44 6 44	0-6-14 1	18 18 11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	8 ¹² 2x4\$ 3 T	0-1 -13 Wh B1	4 W2	20 5 12 1 10 0		Nut Vit	2x4 ¢ 6 B1		21 22 HW11 R	8
			378.			11 3x5=	10 9 3x5	5=				3×8	
							3x5=					One H2.5A	
Scale = 1:54.2				8-9-0 8-9-0		1	<u>1-1-1</u>		1	<u>9-10-1</u> 8-9-0			
Plate Offsets ()	K, Y): [2:0-3-8,Edge]	, [4:0-4-0,0-1-9], [5:0-4	4-0,0-1-9], [7:0-3	-8,Edge]									
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	IRC2018/TPI	2-0-0 CS 1.15 TC 1.15 BC YES WB 2014 Mat	trix-MSH	0.41 0.70 0.22	DEFL Vert(LL) Vert(CT) Horz(CT)	-0. -0.) 0.	in (loc) 15 11-14 26 11-14 03 7	l/defl >999 >930 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 102 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEDS WEDGE BRACING TOP CHORD BOT CHORD REACTIONS (2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left: 2x4 SP No.3 Right: 2x4 SP No.3 Structural wood shi 4-8-1 oc purlins (5- Rigid ceiling directi bracing. MiTek recommend required cross bra truss erection, in a Installation guide. (lb/size) 2=846/0- 7=846/0- 7=846/0- 7=846/0- Max Horiz 2=-151 (I Max Uplift 2=-89 (L0	eathing directly applie tcept 10-15 max.): 4-5. y applied or 10-0-0 oc is that Stabilizers and cing be installed durin tccordance with Stabil 3-8, (min. 0-1-8), 3-8, (min. 0-1-8), 2-7, 200 2 14), 7=-89 (LC 15)	2) Wind: Vasd= II; Exp and C to 4.4. to 17-f left an expos. reactic DOL= 3) TCLL: Plate I DOL= Cs=1.0 4) Unbala desigr 5) This tr load o overha 6) Provid 7) This tr	ASCE 7-16 103mph; T B; Encloss -C Exteriori 3-9, Exteriori 3-9, Exteriori d right export ed;C-C for ons shown; 1.60 ASCE 7-10 OOL=1.15) 1.15); Is=1. 00; Ct=1.10 anced snow uss has be f 12.0 psf of angs non-cr e adequate uss has be adequate	5; Vult=130mph CDL=6.0psf; B ad; MWFRS (et (2E) -0-10-8 to (2R) 4-4-8 to 19 (2E) 17-8-9 to bosed ; end verti- members and f Lumber DOL= 5; Pr=20.0 psf (L 0; Rough Cat E 0; and a signed for r 1.00 times flat concurrent with the endesigned to proconcurrent with the concurrent with the concurrent with the con	a (3-sec CDL=6 Nvelope 2-1-8, 5-5-9, I 20-8-5 ical left forces å 1.60 pl (roof LL 	cond gust) cond gust) cons; h=2 e) exterior Interior (1) nterior (1) 2 zone; car : and right & MWFRS ate grip :: Lum DO DL=1.15 Pl r Exp.; Ce= nsidered for er of min ro oad of 20.0 ve loads. water pono 0 psf botto other live	5ft; Caa zone 2-1-8 15-5-9 titlever for L=1.1t =0.9; or this oof live 0 psf o ding. m loads	it. 5 5				
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalanced design.	Ax Grav $=$ 1086 ((lb) - Max. Comp./N (lb) or less except v 2-18=-1527/136, 18 3-19=-1408/159, 3- 4-20=-972/162, 5-2 5-6=-1258/149, 6-2 21-22=-1491/140, 7 2-11=-127/1231, 10 7-9=-46/1231 3-11=-397/171, 4-1 6-9=-397/171 d roof live loads hav	LC 51), 7=1086 (LC 5 Aax. Ten All forces 2 vhen shown. 3-19=-1491/140, 4=-1258/149, 0=-972/162, 1=-1408/159, 7-22=-1527/136 0-11=0/914, 9-10=0/91 1=-4/421, 5-9=-4/421, e been considered for	3) 8) * This 50 on the 3-06-0 chord 9) One H recom UPLIF and dc 4, 10) This tr Interna R802. 11) Graph or the bottom LOAD CA	ive load nc truss has b bottom chi 0 tall by 2- and any otl 2.5A Simp: mended to 2 as not con uss is designational Res 10.2 and re- ical purlin r orientation a chord. SE(S) Sta	onconcurrent w een designed i ord in all areas 00-00 wide will her members, v son Strong-Tie connect truss i and 7. This cor sider lateral for gned in accord idential Code s ferenced stanc epresentation o of the purlin al ndard	in any for a liv where fit betw with BC connecto connectio rces. ance w sections dard AN does no ong the	other live re load of 2 a rectangl ween the b CDL = 10.0 ctors ing walls d n is for upl with the 201 s R502.11. vSI/TPI 1. ot depict th e top and/c	ioads. 20.0psi e ottom psf. lue to lift only 8 1 and ne size or	f				

Job		Truss		Truss Ty	vpe		Qty		Ply	Linco	ln A G	RH-2nd	I Floor	-Lincoln A	A GRH	
24050001-B		T23		Commo	on		1		1	Job R	eferer	nce (opt	tional)			
Carter Componer	nts, Sanford, N	C, user				Run: 8.73 S Ap	pr 25 202 ID:1	4 Print: _BOJ2b	8.730 S Ap vp8d6V4Re	r 25 202 eMnS x	4 MiTel Q5zFa\	k Industri NZ-C4z0	ies, Inc. DZ7ZYC	Fri May 1 QUITyUssc	7 15:09:0 m0dUfxP	3 Page: 1 m78c0udn2easNOzFa0k
			-0-10-8							_				,	20-8-9	
				<u>5-</u> 5-	<u>0-2</u> 0-2	<u> </u>		<u> </u>	<u>14-9-1</u> 4-10-1	4	+	1	<u>19-10-</u> 5-0-2	1		
			0-10-8				,	1v5 -							0-10-8	
								4								
		\top				2										
					8	16			\searrow	17	0.1					
					، 1	5					2x4 · 18 -	<i>.</i>				
	6- <u>9</u>	7-2-3			3	K	ľ	V2		X		2				
	7					WT			A	11		\backslash				
														\searrow		
		0-6	$3 \overline{14}$ 1 2	IW1			\searrow					D 4		HW1	6	,
		<u> </u>				B1		<u>ы</u> В				_B1		Ę		
			3x8	u			ŧ	5x8=						3:	x8 II	
			1											One	H2.5A	
Scale = 1:52.9					<u>9-1</u> 9-1	<u>1-0</u> 1-0		1			<u>19-10-</u> 9-11-(. <u>1</u>)			+	
Plate Offsets ()	(, Y): [2:0-3-	8,Edge],	[6:0-3-8,Edge], [8:0-	4-0,0-3-0]											
Loading		(psf)	Spacing		2-0-0	CSI		DEF	L	in	(loc)	l/defl	L/d	PLATE	s	GRIP
Snow (Pf)		20.0 20.0	Plate Grip DOL Lumber DOL		1.15 1.15	BC	0.49 0.83	Vert(Vert(LL) -0 (CT) -0).14).28	8-14 8-14	>999 >852	240 180	M120		244/190
TCDL BCLL		10.0 0.0*	Rep Stress Incr Code	IRC20	YES 18/TPI2014	WB Matrix-MSH	0.28	Horz	:(CT) (0.02	6	n/a	n/a			
BCDL		10.0												Weight	: 97 lb	FT = 20%
LUMBER	2x4 SP No 3	2		3)	TCLL: ASCE	7-16; Pr=20.0 ps 1.15); Pf=20.0 psf	f (roof L (Lum D0	L: Lum DL=1.1	DOL=1.1	15						
BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.2	- 2 3			DOL=1.15); Cs=1.00; Ct	ls=1.0; Rough Cat =1.10	t B; Fully	/ Exp.;	Ce=0.9;							
WEDGE	Left: 2x4 SF Right: 2x4 S	P No.3 P No.3		4)	Unbalanced design.	snow loads have	been co	nsider	ed for this	;						
	Structurel u	rood obc	athing directly applie	5) d or	This truss ha load of 12.0	as been designed psf or 1.00 times f	for great flat roof	ter of n oad of	nin roof liv 20.0 psf	/e on						
	4-11-11 oc p	ood sne ourlins.	complied or 10.0.0 oc	- 101 6)	overhangs n This truss ha	on-concurrent with as been designed	h other li for a 10.	ve loa 0 psf b	ds. oottom							
BOT CHORD	bracing.	j directiy		7)	chord live loa * This truss l	ad nonconcurrent has been designed	with any d for a liv	∕ other ∕e loac	live loads of 20.0ps	s. sf						
	Milek reco required cr	mmends oss brac	s that Stabilizers and cing be installed durin	g	on the botto 3-06-00 tall I	m chord in all area by 2-00-00 wide w	as where ill fit bet	a rect ween t	angle he bottom	ı						
	Installation	on, in ac guide.	ccordance with Stabil	zer 8)	chord and and One H2.5A	ny other members Simpson Strong-Ti	ie conne	ctors								
REACTIONS ((lb/size) 2:	=846/0-3 =846/0-3	3-8, (min. 0-1-8), 3-8 (min. 0-1-8)		UPLIFT at jt	ed to connect truss (s) 2 and 6. This c	s to bea onnectic	ring wa on is fo	alls due to r uplift onl	ly						
1	Vax Horiz 2 Vax Uplift 2	=169 (L0 =-85 (L0	C 13) C 14) 6=-85 (I C 15)	9)	and does no This truss is	designed in accor	orces. dance v	ith the	2018							
FORCES	Max Grav 2:	=894 (L0	C 21), 6=894 (LC 22)	50	R802.10.2 a	Residential Code nd referenced star	section ndard Al	s R502 NSI/TF	2.11.1 and 9 1.	1						
	(lb) or less e	xcept w	hen shown.	⁵⁰ LO	AD CASE(S)	Standard										
TOP CHORD	15-16=-872	40, 3-10 /115, 4-1 35, 17-1	16=-808/135, 18=-872/115													
	5-18=-884/1	01, 5-6=														
WEBS	4-8=-24/600), 5-8=-3	86/184, 3-8=-386/184	ł												
1) Unbalance	d roof live loa	ads have	e been considered for	this												
2) Wind: ASC	E 7-16; Vult=	130mpł	n (3-second gust)	Cot												
II; Exp B; E	npn; TCDL=t inclosed; MV	/FRS (e	nvelope) exterior zon	ບສເ. ອ ໑												
to 6-11-0, E	Exterior($2E$) -0	5-11-0 to	2-1-0, interior (1) 2-1 12-11-0, Interior (1)	-o												
cantilever l	eft and right	exposed	; end vertical left and	, 1 S												
for reaction	is shown; Lu	mber D(DL=1.60 plate grip	-												

Job	Truss	Truss Type	Qty	Ply	Lincoln A GRH-2nd Floor-Lincoln A GRH
24050001-B	T24	Monopitch	5	1	Job Reference (optional)

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri May 17 15:09:03 Page: 1 ID:gxxWyld?ueUzcUP_9RQYHezFaMb-C4zOZ7ZYQUITyUsscm0dUfxVJ7L_0y_n2easNOzFa0k

Scale = 1:30.7

Loading	(psf)	Spacing	2-0-0	CSI	0.07	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (FOOT) Snow (Pf)	20.0	Plate Grip DOL	1.15	IC BC	0.07	Vert(LL)	0.00	6-9 6-0	>999	240 180	MT20	244/190
TCDL	10.0	Rep Stress Incr	YES	WB	0.04	Horz(CT)	0.00	2	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP		()						
BCDL	10.0										Weight: 8 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 1-10-0 oc purlins, e Rigid ceiling directly bracing. MiTek recommends required cross brac truss erection, in ad Installation quide	athing directly applied of xcept end verticals. applied or 10-0-0 oc that Stabilizers and ing be installed during cordance with Stabilize	 8) Provide mec bearing plate 5. 9) One H2.5A S recommende UPLIFT at jti does not cor 10) This truss is International R802.10.2 a LOAD CASE(S) 	hanical connectic e capable of withs Simpson Strong-T ed to connect trus (s) 2. This connect sider lateral force designed in acco Residential Code nd referenced sta Standard	n (by oth tanding 1 ie connea s to bear tion is for es. rdance w e sections ndard AN	ers) of truss i 0 lb uplift at j ctors ing walls due uplift only au ith the 2018 s R502.11.1 a ISI/TPI 1.	to joint to nd					
REACTIONS (Installation guide. CTIONS (lb/size) 2=138/0-3-8, (min. 0-1-8), 5=61/ Mechanical, (min. 0-1-8) Max Horiz 2=34 (LC 13) Max Uplift 2=-48 (LC 10), 5=-10 (LC 14) Max Grav 2=181 (LC 21), 5=76 (LC 21)											
FORCES	(lb) - Max. Comp./M	ax. Ten All forces 250										
NOTES												
 Wind: ASC Vasd=103n II; Exp B; E and C-C E: exposed; e members a Lumber DO TCLL: ASC Plate DOL= DOL=1.15) Cs=1.00; C Unbalance design. This truss I load of 12. overhangs This truss I chord live I * This truss S on the bott 3-06-00 tal chord and Refer to gi 	E 7-16; Vult=130mph mph; TCDL=6.0psf; B inclosed; MWFRS (et xterior(2E) zone; can end vertical left and ri and forces & MWFRS DL=1.60 plate grip DC E 7-16; Pr=20.0 psf (L ;; Is=1.0; Rough Cat f Ct=1.10 d snow loads have be has been designed fo o psf or 1.00 times fla non-concurrent with has been designed fo oad nonconcurrent w s has been designed fo oad nonconcurrent	(3-second gust) CDL=6.0psf; h=25ff; Ca nvelope) exterior zone tilever left and right ght exposed;C-C for for reactions shown; DL=1.60 (roof LL: Lum DOL=1.15 um DOL=1.15 Plate 3; Fully Exp.; Ce=0.9; een considered for this r greater of min roof live t roof load of 20.0 psf o other live loads. r a 10.0 psf bottom ith any other live loads. for a live load of 20.0psf where a rectangle fit between the bottom ss connections.	it. 5 n									

Job	Truss	Truss Type	Qty	Ply	Lincoln A GRH-2nd Floor-Lincoln A GRH
24050001-B	T25	Roof Special	1	1	Job Reference (optional)

1-2-8

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri May 17 15:09:04 Page: 1 ID:FMFNKkb7bj6Ol0gPTJtrf0zFaMe-gGXmnTaABotKadR29TYs1tTg3XgWIPEwHIKPwqzFa0j

1-10-0

Scale = 1:27.5

				ļ		I						
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MP	0.07 0.02 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 4-7 4-7 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 8 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 1-10-0 oc purlins, e Rigid ceiling directly bracing. MiTek recommends required cross brac truss erection, in ac Installation guide.	eathing directly applied except end verticals. applied or 10-0-0 oc s that Stabilizers and sing be installed during ccordance with Stabilizer	 8) Provide mee bearing plat 9) One H2.5A : recommend UPLIFT at jt does not coi 10) This truss is Internationa R802.10.2 a LOAD CASE(S) 	chanical connecti e capable of with Simpson Strong- ed to connect tru (s) 2. This conne rsider lateral ford designed in acc Residential Coo nd referenced st Standard	ion (by oth standing f Tie conne iss to bear sction is fo zes. ordance w de section: tandard At	lers) of truss of buplift at jo ctors ing walls due r uplift only a ith the 2018 s R502.11.1 a ISI/TPI 1.	to pint 4. e to nd					
REACTIONS	(lb/size) 2=134/0-3 Mechanic Max Horiz 2=33 (LC Max Uplift 2=-48 (LC Max Grav 2=174 (LC (lb) - Max. Comp./M	3-8, (min. 0-1-8), 4=54/ al, (min. 0-1-8) 13) ≿ 10), 4=-9 (LC 14) C 21), 4=67 (LC 21) ax. Ten All forces 250)									
NOTES 1) Wind: ASC Vasd=103 II; Exp B; I and C-C E exposed; members Lumber D 2) TCLL: ASC Plate DOL DOL=1.15 Cs=1.00; I 3) Unbalance design. 4) This truss load of 12 overhangs 5) This truss chord live 6) * This trus on the bot 3-06-00 ta chord and 7) Refer to g	(ID) or less except w CE 7-16; Vult=130mph mph; TCDL=6.0psf; B Enclosed; MWFRS (e Exterior(2E) zone; can end vertical left and ri and forces & MWFRS OL=1.60 plate grip DC CE 7-16; Pr=20.0 psf (I c; I=1.15); Pf=20.0 psf (I c; I=1.10; Rough Cat I Ct=1.10 ed snow loads have be has been designed fc 10 psf or 1.00 times flat is non-concurrent with has been designed fc load nonconcurrent with has been designed for load nonconcurrent with has been designed for has been designed for load nonconcurrent with has been designed for has been designed for load nonconcurrent with has been designed for load nonconcurrent with has been d	nen snown. (3-second gust) CDL=6.0psf; h=25ft; C nvelope) exterior zone tilever left and right ight exposed;C-C for for reactions shown; DL=1.60 (roof LL: Lum DOL=1.1 Lum DOL=1.15 Plate B; Fully Exp.; Ce=0.9; een considered for this or greater of min roof live the roof load of 20.0 psf of other live loads. or a 10.0 psf bottom where a rectangle fit between the bottom ss connections	at. 5 on of									