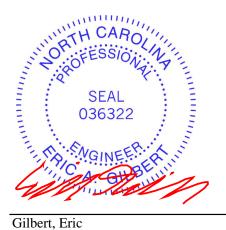


Trenco 818 Soundside Rd Edenton, NC 27932


Re: 24050081-01 139 Serenity-Roof-B327 B CP GLH

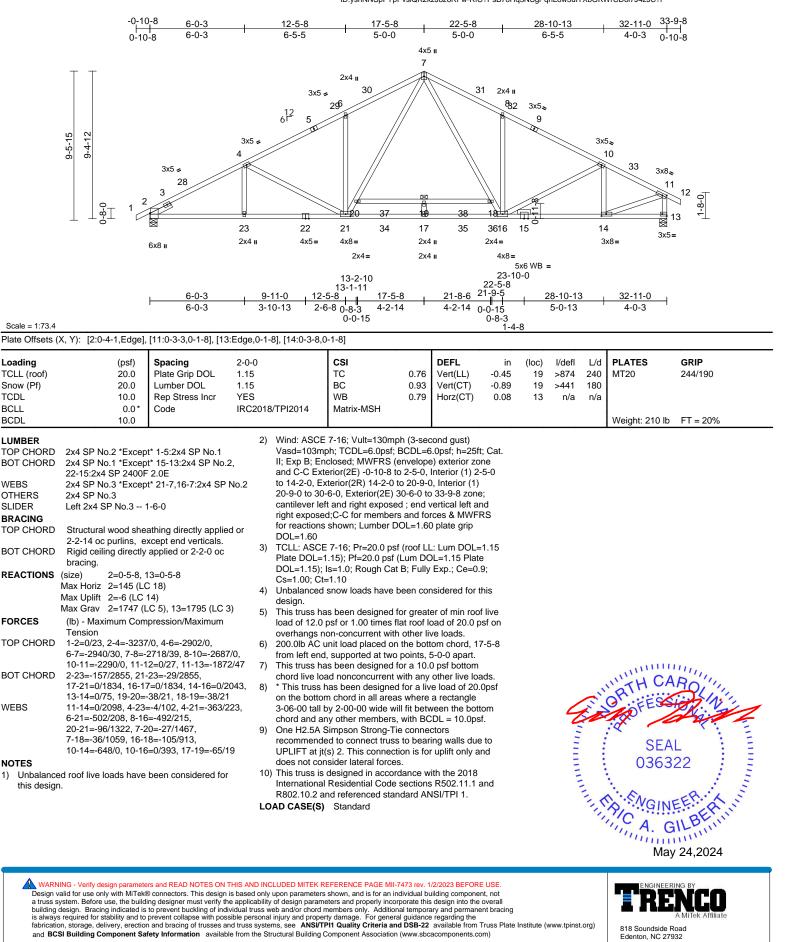
The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Carter Components (Sanford, NC)).

Pages or sheets covered by this seal: I65807390 thru I65807417

My license renewal date for the state of North Carolina is December 31, 2024.

North Carolina COA: C-0844

May 24,2024


IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	139 Serenity-Roof-B327 B CP GLH	
24050081-01	A	Common	5	1	Job Reference (optional)	165807390

1)

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Thu May 23 19:49:17 ID:ysriNNSpFYpPvsIQK2kzJ8z6RFw-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Job	Truss	Truss Type	Qty	Ply	139 Serenity-Roof-B327 B CP GLH	
24050081-01	A1	Common	1	1	Job Reference (optional)	165807391

Loading

TCDL

BCLL

BCDL

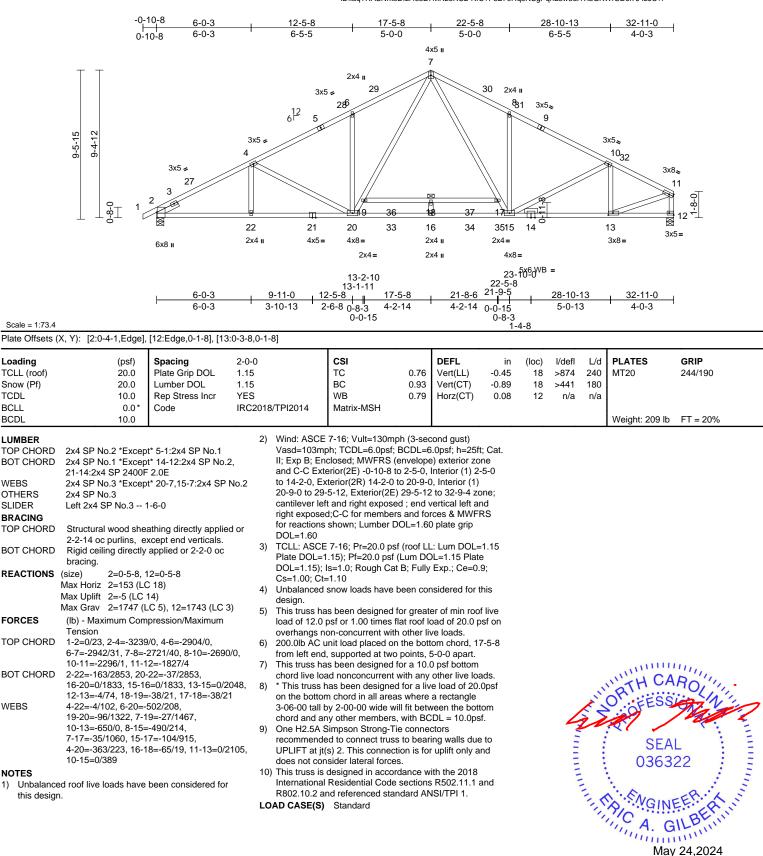
LUMBER

WEBS

OTHERS

SLIDER

FORCES


WEBS

NOTES

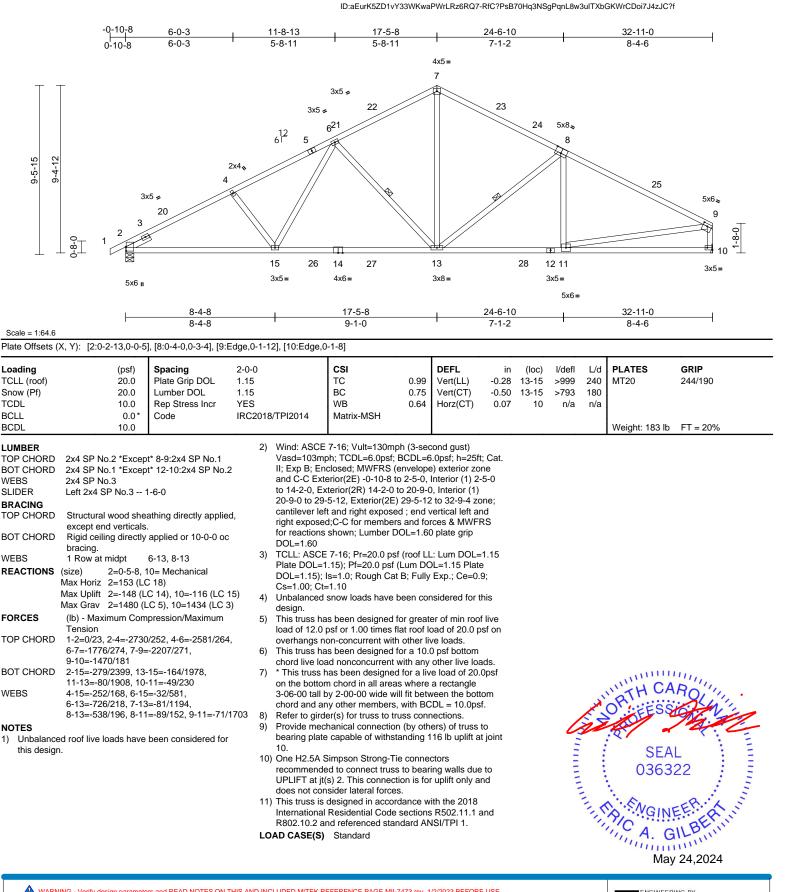
1)

Run: 8,73 S Apr 25 2024 Print: 8,730 S Apr 25 2024 MiTek Industries, Inc. Thu May 23 19:49:18 ID:iaqTRASNrk3Dfzi4s8B7MRz6RC2-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932

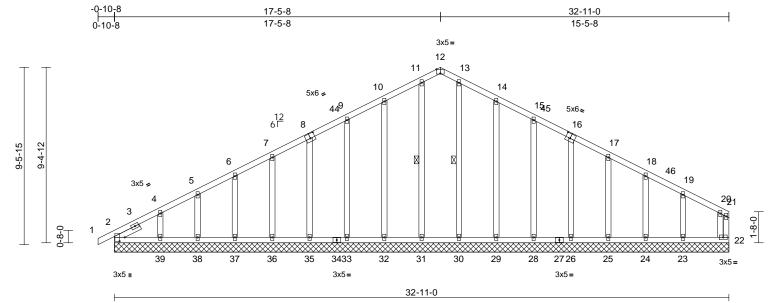

Job	Truss	Truss Type	Qty	Ply	139 Serenity-Roof-B327 B CP GLH	
24050081-01	A2	Common	6	1	Job Reference (optional)	165807392

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Thu May 23 19:49:18

9:49:18 Page: 1

818 Soundside Road

Edenton, NC 27932



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	139 Serenity-Roof-B327 B CP GLH	
24050081-01	A2GE	Common Supported Gable	1	1	Job Reference (optional)	165807393

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Thu May 23 19:49:19 ID:c9VqEHTKX3tTR4AsVHRVNAz6RSp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:61.7

Plate Offsets (X, Y): [2:0-2-8,0-3-5], [8:0-3-0,0-3-0], [12:0-2-8,Edge], [16:0-3-0,0-3-0]

	λ, τ). [2.0 2	- 0,0 0 0],	[0.0 0 0,0 0 0], [12.0	0 2 0,Eug	5], [10.0 0 0,	0 0 0]										
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL		(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matri	x-MSH	0.18 0.07 0.22	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00		c) l/defl - n/a - n/a 22 n/a	L/d 999 999 n/a	PLATES MT20 Weight: 225 lb	GRIP 244/190 FT = 20%	þ
	6-0-0 oc pu Rigid ceilin bracing. 1 Row at n (size) Max Horiz Max Uplift	.2 .3 .3 P No.3 1 wood she urlins, exi og directly nidpt 2=32-11-(23=32-11 25=32-11 30=32-11 30=32-11 37=32-11 37=32-11 37=32-11 2=+53 (LC 2=+37 (LC 24=-26 (L 24=-26 (L 29=-72 (L 33=-41 (L 33=-42 (L 33=-42 (L	athing directly applie cept end verticals. applied or 10-0-0 oc 11-31, 13-30 0, 22=32-11-0, -0, 24=32-11-0, -0, 24=32-11-0, -0, 31=32-11-0, -0, 33=32-11-0, -0, 33=32-11-0, -0, 36=32-11-0, -0, 40=32-11-0, -0, 40=32-11-0, -0, 40=32-11-0, -0, 40=32-11-0, -0, 40=32-11-0, -18), 40=153 (LC 14) C 18), 25=-47 (LC 14) C 15), 22=-64 (LC 14) C 14), 35=-44 (LC 14) C 14), 35=-44 (LC 14) C 14), 35=-77 (LC 14)	; FC TC BC 3) 5), 5), 5), W 4), 4), 4), 4),	DRCES DP CHORD DT CHORD EBS	(lb) - M Tensioi 1-2=0/2 5-6=-10 9-10=-{ 13-14= 13-14= 13-14= 2-39=- 36-37= 32-33= 25-26= 22-23= 11-31= 8-35=- 5-38=- 14-29= 16-26= 18-24= 20-22=	23=175 25=16' 28=207 30=204 32=233 35=16(37=16' 37=16' 37=16' 39=19(aximum C 199/14, 6-7 55/268, 10 99/284, 11 109/330, 69/225, 1 99/284, 12 109/330, 69/225, 1 99/87, 38-3 19/87, 38-3 19/87, 24 19/87, 24 20/117, 12/2(24, 11)	 (LC 37) (LC 37) (LC 37) (LC 22) (LC 22) (LC 22) (LC 22) (LC 24) (LC 24) (LC 26) (LC 36) <	7, 7-9=-89/22 7/300, 7/284, 5/268, 1/134, 1/4, 20-21=-25 7, 37-38=-19/ 17, 33-35=-11 17, 30-31=-15 17, 26-28=-15 17, 23-24=-15 16, 13-30=-1 26, 6-37=-128 16, 13-30=-1 26, 7/2, 7/79, 4/179,	 1), 37), 22), 21), 	 4) T 5) U 	/asd=103n I; Exp B; E and C-C Cœ 20-5-8 to 20 cantilever le ight exposs or reaction DOL=1.60 Truss desir only. For s see Standa or consult c CCLL: ASC Plate DOL= DOL=1.15) Cs=1.00; C Jnbalancec	nph; TC ncloses Corner()-5-12, eff and ed;C-C s show gned fc tuds ex rd Indu ualifier E 7-16 (1.15); s=1.(15); s=1.10 d snow	The case of the ca	DL=6.0pst; h lelope) exteri i-8, Exterior 5-8, Exterior 5-12 to 32-9- end vertical I d forces & N =1.60 plate of hormal to the Details as a er as per AN of LL: Lum I n DOL=1.15 Fully Exp.; C	=25ft; Cat. ior zone 2N) 2-5-8 or(2N) 4 zone; left and MWFRS grip the truss a face), oplicable, NSI/TPI 1. DOL=1.15 Plate ce=0.9;
				1)	Unbalance this desigr		e loads ha	ve been	considered fo	Dr				A. C	EENER	in the second

NOTES

G mmm May 24,2024

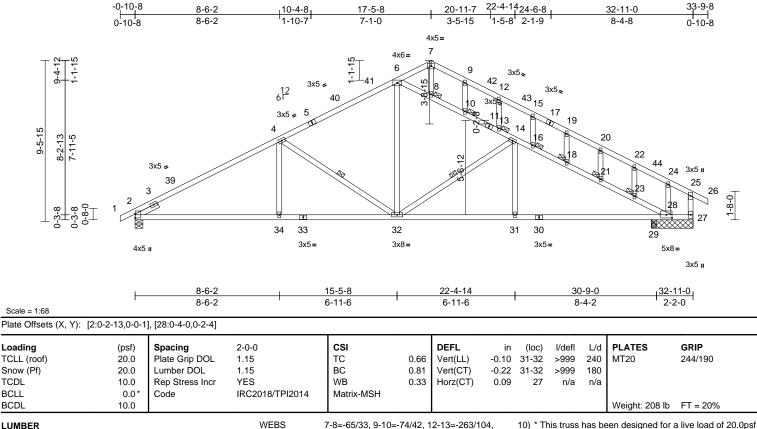
Continued on page 2 WARNING

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MTek connectors. This design is based only upon parameters and property incorporate this design is based only upon parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	139 Serenity-Roof-B327 B CP GLH	
24050081-01	A2GE	Common Supported Gable	1	1	Job Reference (optional)	165807393

- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- All plates are 2x4 MT20 unless otherwise indicated. 7)
- 8) Gable requires continuous bottom chord bearing.
- 9) Gable studs spaced at 2-0-0 oc.
- 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 37 lb uplift at joint 2, 64 lb uplift at joint 32, 41 lb uplift at joint 33, 44 lb uplift at joint 35, 42 lb uplift at joint 36, 47 lb uplift at joint 37, 30 lb uplift at joint 38, 92 lb uplift at joint 39, 72 lb uplift at joint 29, 40 lb uplift at joint 28, 44 lb uplift at joint 26, 47 Ib uplift at joint 25, 26 lb uplift at joint 24, 105 lb uplift at joint 23 and 37 lb uplift at joint 2.
- 13) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 2, 40.
- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

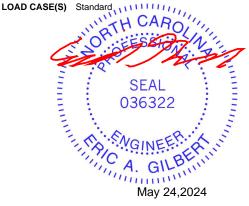
LOAD CASE(S) Standard


Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Thu May 23 19:49:19 ID:c9VqEHTKX3tTR4AsVHRVNAz6RSp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	139 Serenity-Roof-B327 B CP GLH	
24050081-01	ASE	Common	1	1	Job Reference (optional)	165807394

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Thu May 23 19:49:19 ID:Z?RrRUUawrsjRX0WcdE8aMz6RDJ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1



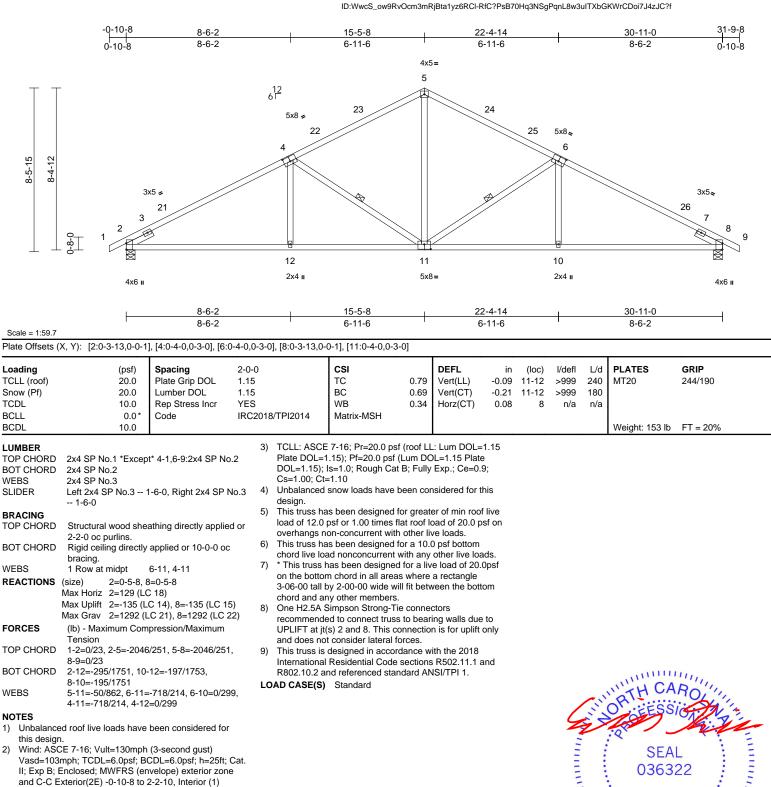
LUMBER 2x4 SP No.2 15-16=-220/100, 18-19=-41/21, TOP CHORD 2x4 SP No.2 20-21=-55/34, 22-23=-177/51, BOT CHORD 24-28=-182/267, 6-32=-28/824, WEBS 2x4 SP No.3 OTHERS 2x4 SP No.3 SLIDER Left 2x4 SP No.3 -- 1-6-0 NOTES BRACING TOP CHORD Structural wood sheathing directly applied or 1) 3-0-1 oc purlins, except end verticals. this design BOT CHORD Rigid ceiling directly applied or 10-0-0 oc 2) bracing. WEBS 1 Row at midpt 14-32, 4-32 JOINTS 1 Brace at Jt(s): 8, 10, 13, 16, 18, 21, 23 **REACTIONS** (size) 2=0-5-8, 27=2-5-8, 28=2-5-8, 29=0-3-8 Max Horiz 2=145 (LC 18) DOL=1.60 2=-140 (LC 14), 28=-548 (LC 15) Max Uplift 3) 2=1313 (LC 21), 27=321 (LC 22), Max Grav 28=678 (LC 1), 29=673 (LC 7) FORCES (lb) - Maximum Compression/Maximum Tension 4) TOP CHORD 1-2=0/23, 2-4=-2076/218, 4-6=-1497/235, 6-7=-218/162, 7-9=-204/154, 9-12=-265/124, 12-15=-222/79, 15-19=-177/36, 19-20=-212/18, 20-22=-247/0, 22-24=-223/9, 5) 24-25=-229/52, 25-26=0/27, 25-27=-229/61, design. 6-8=-1309/186, 8-10=-1308/171, 6) 10-13=-1321/179, 13-14=-1386/196, 14-16=-1741/176, 16-18=-1824/209, 18-21=-1842/215, 21-23=-1867/226, 7) 23-28=-1955/246 8) BOT CHORD 2-34=-312/1772, 32-34=-215/1772, 9) 31-32=-35/1719. 29-31=-35/1719. 28-29=-35/1719. 27-28=0/173

14-32=-702/143, 4-32=-649/208, 4-34=0/299, 14-31=0/296

- Unbalanced roof live loads have been considered for
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-5-0, Interior (1) 2-5-0 to 14-2-0, Exterior(2R) 14-2-0 to 20-9-0, Interior (1) 20-9-0 to 30-6-0, Exterior(2E) 30-6-0 to 33-9-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- All plates are 2x4 MT20 unless otherwise indicated
- Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 11) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to
- UPLIFT at jt(s) 2 and 28. This connection is for uplift only and does not consider lateral forces.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 14) 2 X 4 notch at 20000 o.c. is allowed along the stacked top chord. No notches allowed in overhang and 1008 from left end and 1008 from right end or 12" along rake from scarf, whichever is larger. Minimum 1.5x4 tie plates required at 2-0-0 o.c. maximum between the stacking chords. For edge-wise notching, provide at least one tie plate between each notch.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	139 Serenity-Roof-B327 B CP GLH	
24050081-01	В	Common	3	1	Job Reference (optional)	165807395

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Thu May 23 19:49:19

Page: 1

2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-2-10. Interior (1) 2-2-10 to 12-4-6, Exterior(2R) 12-4-6 to 18-6-10, Interior (1) 18-6-10 to 28-8-6. Exterior(2E) 28-8-6 to 31-9-8 zone: cantilever left and right exposed : end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

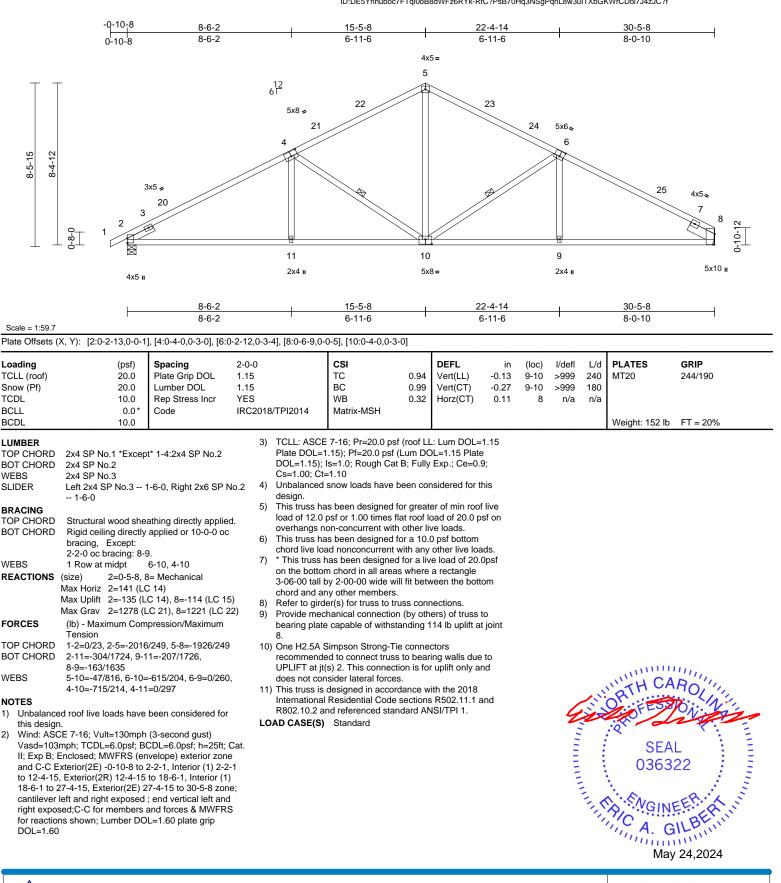
Edenton, NC 27932

036322

GI

mmm

May 24,2024


Job	Truss	Truss Type	Qty	Ply	139 Serenity-Roof-B327 B CP GLH	
24050081-01	B1	Common	6	1	Job Reference (optional)	165807396

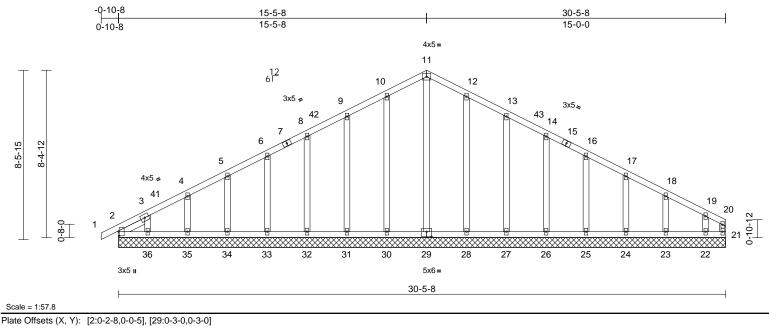
1)

2)

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Thu May 23 19:49:19 ID:DE5Yhhuboc7FTqi0oB8dWFz6RYk-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



818 Soundside Road

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	139 Serenity-Roof-B327 B CP GLH	
24050081-01	B1GE	Common Supported Gable	1	1	Job Reference (optional)	165807397

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Thu May 23 19:49:19 ID:kEyumvGz1eadDrk1IGCRPHz6RZY-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Loading (psf) Spacing 2-0-0 CSI DEFL in (loc) l/defl L/d PLATES GRIP	
TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.08 Vert(LL) n/a - n/a 999 MT20 244/190 Snow (Pf) 20.0 Lumber DOL 1.15 BC 0.07 Vert(LL) n/a - n/a 999 MT20 244/190 TCDL 10.0 Rep Stress Incr YES WB 0.21 Horz(CT) 0.00 21 n/a n/a BCLL 0.0* Code IRC2018/TPI2014 Matrix-MSH Horz(CT) 0.00 21 n/a n/a PT = 20%	
LUMBER FORCES (b): Maximum Compression/Maximum 3) Tuss designed for wind loads in the plane of t	e face), oplicable, VSI/TPI 1. ODL=1.15 Plate Ce=0.9; d for this n roof live t0.0 psf on s. rated. ng. ttom ve loads. of 20.0psf ngle e bottom

May 24,2024

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, recetion and bracing of trusses and truss systems, see **ANSI/TP1 Quility Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	139 Serenity-Roof-B327 B CP GLH	
24050081-01	B1GE	Common Supported Gable	1	1	Job Reference (optional)	165807397
			-			_

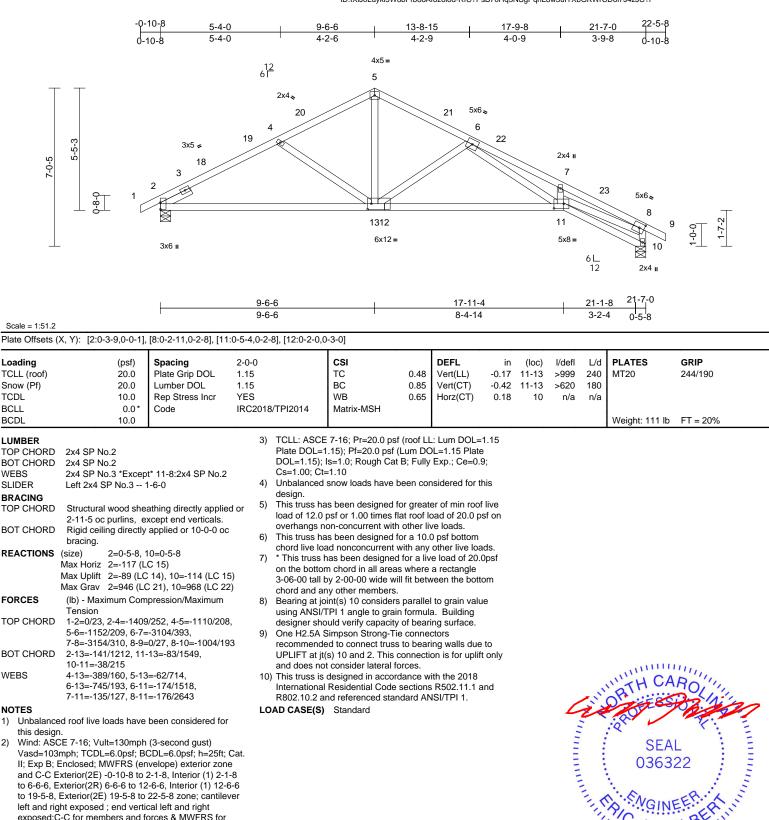
12) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 21, 2, 30, 31, 32, 33, 34, 35, 36, 28, 27, 26, 25, 24, 23, and 22. This connection is for uplift only and does not consider lateral forces.

13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Thu May 23 19:49:19 ID:kEyumvGz1eadDrk1IGCRPHz6RZY-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication for the trust Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	139 Serenity-Roof-B327 B CP GLH				
24050081-01	с	Roof Special	4	1	Job Reference (optional)	165807398			

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Thu May 23 19:49:20 ID:IXiJ0Luyki5W8bFrb88Afoz6iod-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

to 6-6-6, Exterior(2R) 6-6-6 to 12-6-6, Interior (1) 12-6-6 to 19-5-8, Exterior(2E) 19-5-8 to 22-5-8 zone; cantilever left and right exposed ; end vertical left and right exposed:C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

Edenton, NC 27932

G

mmm

May 24,2024

Job	Truss	Truss Type	Qty	Ply	139 Serenity-Roof-B327 B CP GLH	
24050081-01	CGE	Roof Special Supported Gable	1	1	Job Reference (optional)	165807399

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Thu May 23 19:49:20 ID:IXiJ0Luyki5W8bFrb88Afoz6iod-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

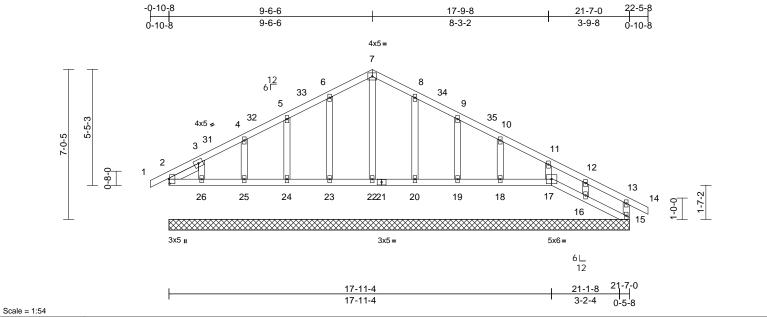


Plate Offsets (X, Y): [2:0-2-8,0-0-5]

Plate Offsets (X, Y): [2:0-2	2-8,0-0-5]													
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL		(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	018/TPI2014	CSI TC BC WB Matrix-MSH	0.10 0.04 0.07	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 15	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 112 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS SLIDER BRACING TOP CHORD BOT CHORD	6-0-0 oc pu Rigid ceilin bracing.	.2 .3 P No.3 1 wood shea urlins, exa ng directly	athing directly applie cept end verticals. applied or 6-0-0 oc	ed or	this design.	2-26=-8/63, 25-26 23-24=-8/63, 22-23 19-20=-8/63, 18-13 16-17=-24/84, 15- 7-22=-143/21, 6-23 4-25=-139/69, 3-22 9-19=-185/66, 10- 12-16=-115/82, 11 d roof live loads hav E 7-16; Vult=130mp	3=-8/63, 9=-8/63, 16=-21/8 3=-206/7 6=-107/6 18=-146 -17=-13 re been	20-22=-8/63, 17-18=-8/63, 30 '4, 5-24=-187, 58, 8-20=-206, 778, 8/64 considered fo	/68, /74,	cho 11) * Th on t 3-0 cho 12) Pro bea 17, at jo 51 l	rd live lo nis truss the botto 6-00 tall ord and a vide me tring plat 19 lb up point 23, 4 lb uplift a	bad nor has be om cho by 2-0 iny oth chanica te capa lift at jo 14 lb up at joint	een designed for rd in all areas wh 0-00 wide will fit l er members. al connection (by ble of withstandii biht 15, 72 lb uplit blift at joint 24, 44 26, 43 lb uplift at	any other live loads. a live load of 20.0psf	
REACTIONS (size) 2=21-7-0, 15=21-7-0, 16=21-7-0, 17=21-7-0, 18=21-7-0, 19=21-7-0, 20=21-7-0, 22=21-7-0, 22=21-7-0, 22=21-7-0, 24=21-7-0, 25=21-7-0, 26=21-7-0, 24=21-7-0, 25=21-7-0, 26=21-7-0, 24=21-7-0, 25=21-7-0, 26=21-7-0, 24=21-7-0, 25=21-7-0, 26=2				-7-0, -7-0, -7-0 5), 15), 15), 14), 14), 14), 12),	 Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 21-8 to 6-6-6, Exterior(2R) 6-6-6 to 12-6-6, Interior (1) 12-6-6 to 19-5-8, Exterior(2E) 19-5-8 to 22-5-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, 						 Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 17, 2, 22, 23, 24, 26, 20, 19, 18, 16. This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 a R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard 				
FORCES TOP CHORD	(lb) - Maxin Tension 1-2=0/23, 2 4-5=-65/15 7-8=-90/22	18=195 (L 20=247 (L 23=246 (L 25=179 (L num Com 2-3=-38/52 59, 5-6=-7 24, 8-9=-7 /101, 11-1	C 22), 19=222 (LC C 22), 22=183 (LC C 21), 24=227 (LC C 21), 26=135 (LC pression/Maximum 2, 3-4=-73/136, 1/184, 6-7=-90/224, 1/180, 9-10=-61/142 2=-18/55, 12-13=-3	22), 28), 21), 36) 2, 9/42,	 or consult of Plate DOL= DOL=1.15) Cs=1.00; C Unbalancer design. This truss h load of 12.0 overhangs All plates ai Gable requi 	ualified building de: E 7-16; Pr=20.0 pst =1.15); Pf=20.0 pst (; Is=1.0; Rough Cat	signer a f (roof LI (Lum DC B; Fully been col for great lat roof I a other li other li other wi om chol	s per ANSI/TF :: Lum DOL=' DL=1.15 Plate Exp.; Ce=0.9 insidered for the pad of 20.0 ps ve loads. se indicated.	PI 1. 1.15); his live		M. minner	No.	SEA 0363	L 22 L BERRINI	

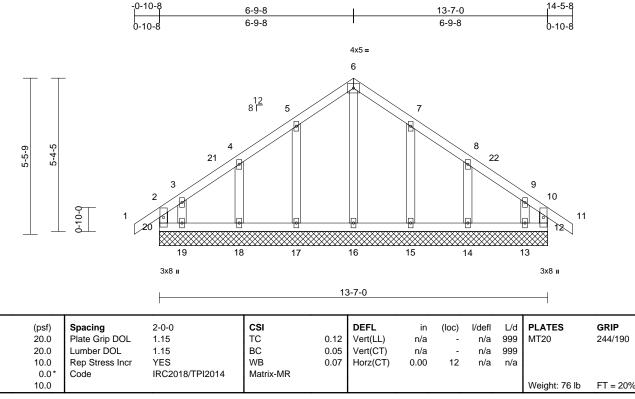
May 24,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	139 Serenity-Roof-B327 B CP GLH	
24050081-01	DGE	Common Supported Gable	1	1	Job Reference (optional)	165807400

Scale = 1:40.3

TCLL (roof)


Snow (Pf)

TCDL

BCLL

BCDL

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Thu May 23 19:49:20 ID:mUH0bgkx?JHgiBKEi6sHglz6RWM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

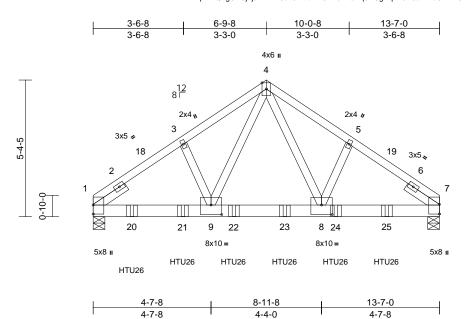
LUMBER		
TOP CHORD	2x4 SP N	0.2
BOT CHORD	2x4 SP N	0.2
WEBS	2x4 SP N	0.3
OTHERS	2x4 SP N	0.3
BRACING		
TOP CHORD		I wood sheathing directly applied or purlins, except end verticals.
BOT CHORD		ing directly applied or 6-0-0 oc
REACTIONS	(size)	12=13-7-0, 13=13-7-0, 14=13-7-0, 15=13-7-0, 16=13-7-0, 17=13-7-0, 18=13-7-0, 19=13-7-0, 20=13-7-0
	Max Horiz	
	Max Uplift	14=-58 (LC 15), 15=-60 (LC 15), 17=-60 (LC 14), 18=-58 (LC 14),
		19=-104 (LC 14), 20=-96 (LC 10)
	Max Grav	12=123 (LC 25), 13=133 (LC 26), 14=228 (LC 22), 15=259 (LC 22), 16=165 (LC 28), 17=259 (LC 21), 18=228 (LC 21), 19=154 (LC 12),
		20=153 (LC 26)
FORCES	(lb) - Max Tension	imum Compression/Maximum
TOP CHORD		0/66, 1-2=0/34, 2-3=-104/96,
		76, 4-5=-61/119, 5-6=-82/191,
		91, 7-8=-56/119, 8-9=-50/55,
	9-10=-72/	/61, 10-11=0/34, 10-12=-102/54
BOT CHORD	19-20=-62	2/110, 18-19=-62/110,
		2/110, 16-17=-62/110,
		2/110, 14-15=-62/110,
		2/110, 12-13=-62/110
WEBS		7/4, 5-17=-220/106, 4-18=-187/122,
		0/86, 7-15=-220/106,
	8-14=-18	7/121, 9-13=-103/94
NOTES		

- Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-10-8 to 2-1-8, Exterior(2N) 2-1-8 to 3-9-8, Corner(3R) 3-9-8 to 9-9-8, Exterior(2N) 9-9-8 to 11-5-8, Corner(3E) 11-5-8 to 14-5-8 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 7) All plates are 2x4 MT20 unless otherwise indicated.
- 8) Gable requires continuous bottom chord bearing.
- Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
 Gable studs spaced at 2-0-0 oc.
- 11) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 96 lb uplift at joint 20, 59 lb uplift at joint 12, 60 lb uplift at joint 17, 58 lb uplift at joint 18, 104 lb uplift at joint 19, 60 lb uplift at joint 15, 58 lb uplift at joint 14 and 93 lb uplift at joint 13.
- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)



Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	139 Serenity-Roof-B327 B CP GLH	
24050081-01	DGR	Common Girder	1	2	Job Reference (optional)	165807401

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Thu May 23 19:49:20 ID:qvIXtQKgSNSj4jaf4vEm9dz6RVb-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

0	-		I	4-7-8	I	4-4-0	I		4-7-8		I		
Scale = 1:45.2		[0:0 5 0 0 4 0]											
Plate Offsets	(X, Y): [8:0-5-0,0-4-8],	[9:0-5-0,0-4-8]	_			-							-
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.41	Vert(LL)	-0.06	8-9	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.85	Vert(CT)	-0.12	8-9	>999	180		
TCDL	10.0	Rep Stress Incr	NO		WB	0.62	Horz(CT)	0.02	7	n/a	n/a		
BCLL	0.0*	Code	IRC2018	/TPI2014	Matrix-MSH								
BCDL	10.0											Weight: 168 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER	2x6 SP No.2 2x4 SP No.3	1-6-0, Right 2x4 SP N	4)	this design. Wind: ASCE Vasd=103mp II; Exp B; En cantilever lef	roof live loads h 7-16; Vult=130r oh; TCDL=6.0ps closed; MWFRS t and right expo- d; Lumber DOL=	nph (3-sec f; BCDL=6 (envelope sed ; end v	cond gust) .0psf; h=25ft e) exterior zo rertical left ar	; Cat. ne; nd	C		=-120 ⁻	()	B), 22=-1201 (B), 5=-1201 (B)
BRACING TOP CHORD	 Structural wood sheat 5-0-6 oc purlins. 	athing directly applied	or 5)	TCLL: ASCE	7-16; Pr=20.0 p	osf (roof LL	.: Lum DOL=	1.15					
BOT CHORD		applied or 10-0-0 oc			.15); Pf=20.0 ps s=1.0; Rough C								
REACTIONS	 (size) 1=0-5-8, 7 Max Horiz 1=-106 (L Max Uplift 1=-439 (L Max Grav 1=4369 (L 	C 35) C 12), 7=-408 (LC 13)) 7)	Unbalanced design. This truss ha	snow loads have s been designed ad nonconcurrer	d for a 10.() psf bottom						
FORCES	(lb) - Maximum Com Tension	pression/Maximum	8)	* This truss h	has been design n chord in all are	ed for a liv	e load of 20.						
TOP CHORD				3-06-00 tall b	by 2-00-00 wide	will fit betw	•	om					
BOT CHORD			9)	One H2.5A S	Simpson Strong-	Tie conne		to					1977 -
WEBS	4-8=-345/2906, 5-8= 4-9=-356/3013, 3-9=			UPLIFT at jt(s) 1 and 7. This to consider latera	connection						TH CA	ROUL
NOTES			10)	This truss is	designed in acc	ordance w					15	A .::	De la la
(0.131"x3	ss to be connected toget 3") nails as follows: ds connected as follows		11)	R802.10.2 a Use Simpsor	Residential Coo nd referenced st Strong-Tie HT	andard AN U26 (20-10	ISI/TPI 1.)d Girder,			4	Ż	2 POPLO	a state
staggeree Web con	hords connected as follo d at 0-9-0 oc. nected as follows: 2x4 -	1 row at 0-9-0 oc.	40)	spaced at 2- end to 11-6-4 chord.	2 Truss, Single F 0-0 oc max. star 4 to connect trus	ting at 1-6- s(es) to ba	4 from the le ack face of be	eft ottom				SEA 0363	
except if	are considered equally noted as front (F) or bac section. Ply to ply conn	ck (B) face in the LOA	,	AD CASE(S)	les where hang Standard ow (balanced): L							S. S.N.GIN	EERIA
	to distribute only loads		()	Increase=1							11	CAC	BELIN

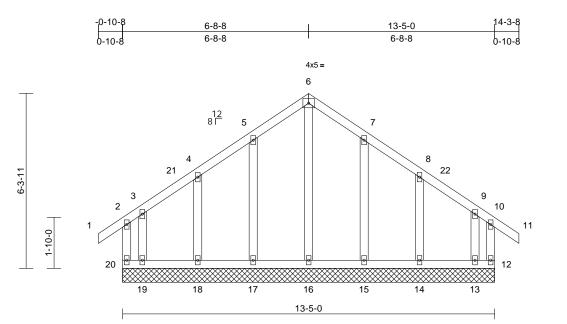
All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD 2) CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

Dead + Snow (balanced): Lumber Increase=1.15, Plate 1) Increase=1.15 Uniform Loads (lb/ft)

Vert: 1-4=-60, 4-7=-60, 10-14=-20

May 24,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



G mmm

Job	Truss	Truss Type	Qty	Ply	139 Serenity-Roof-B327 B CP GLH	
24050081-01	EGE	Common Supported Gable	1	1	Job Reference (optional)	165807402

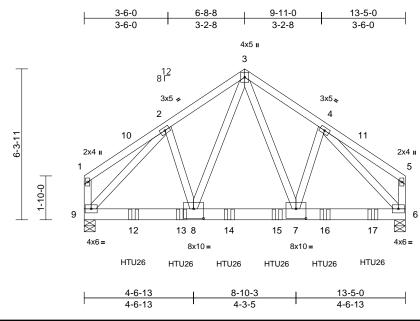
Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Thu May 23 19:49:20 ID:1SfXIVJYql6Slw6AgLBDoDz6RT1-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:41.5

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.20	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.11	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES		WB	0.15	Horz(CT)	0.00	12	n/a	n/a		
BCLL BCDL	0.0*	Code	IRC201	B/TPI2014	Matrix-MR							Waisht 00 lb	FT 200/
BCDL	10.0		-			-						Weight: 88 lb	FT = 20%
LUMBER			1)		roof live loads ha	ave been	considered fo	r					others) of truss to
TOP CHORD	2x4 SP No.2			this design.	7 40 14 400	1 (0							ing 245 lb uplift at joint
BOT CHORD	2x4 SP No.2		2)		7-16; Vult=130m oh; TCDL=6.0psf			Cat					lift at joint 17, 60 lb t 19, 58 lb uplift at
WEBS	2x4 SP No.3				closed; MWFRS								210 lb uplift at joint
OTHERS	2x4 SP No.3				ner(3E) -0-10-8 1				13.	10,00		it at joint 14 and 2	
BRACING		مناممه بالتحميل ممالح			ner(3R) 3-8-8 to					s truss is	s desid	ned in accordan	ce with the 2018
TOP CHORD	6-0-0 oc purlins, ex	eathing directly applied acept end verticals.	or		er(3E) 11-3-8 to				Ínte	rnationa	al Resi	, dential Code sec	tions R502.11.1 and
BOT CHORD	Rigid ceiling directly bracing.	applied or 6-0-0 oc			osed ; end vertions and forces &			ea;C-	LOAD			ferenced standar Indard	a ANSI/TPL1.
REACTIONS	0	0, 13=13-5-0, 14=13-5	-0,	shown; Lumb	per DOL=1.60 pla	ate grip D	OL=1.60				,		
		0, 16=13-5-0, 17=13-5		Truss desig	ned for wind load	ls in the n	lane of the tru	199					
		0, 19=13-5-0, 20=13-5	-0 0)		ids exposed to w								
	Max Horiz 20=174 (I				Industry Gable								
	Max Uplift 12=-227 (alified building d								
		C 15), 15=-58 (LC 15 C 14), 18=-60 (LC 14			7-16; Pr=20.0 p								
		(LC 11), 20=-245 (LC			.15); Pf=20.0 ps								
	Max Grav 12=242 (I				s=1.0; Rough Ca	at B; Fully	' Exp.; Ce=0.9	9;					
		LC 22), 15=260 (LC 22	2	Cs=1.00; Ct=	=1.10 snow loads have			. i.e.					
	16=178 (I	LC 28), 17=260 (LC 2	1), ³⁾	design.	Show loads have	been cor		115					
	18=226 (I	LC 21), 19=307 (LC 12	2)		s been designed	l for areat	er of min roof	live					
	20=262 (I	,	0)		osf or 1.00 times							minin	11111
FORCES	(lb) - Maximum Corr	npression/Maximum			on-concurrent wi							ORTH CA	Roll
	Tension		7)	All plates are	2x4 MT20 unles	ss otherwi	ise indicated.				S	R	All's
TOP CHORD	,	=0/34, 2-3=-124/129,	8)		es continuous bo						1.	O' FESS	Si Vin
	3-4=-67/119, 4-5=-6 6-7=-95/272, 7-8=-6		9)		ully sheathed fro					4	27		
	,	11=0/34, 10-12=-155/1	21		ist lateral movem		liagonal web).	•		1		.2.	
BOT CHORD	,	9=-92/87, 17-18=-92/8	_ 10		spaced at 2-0-0		0			-		SEA	1 : =
Bot onone	,	6=-92/87, 14-15=-92/8	· · · · ·		s been designed ad nonconcurren			مام					· : :
	13-14=-92/87, 12-13		,		as been designe					=		0363	22 :
WEBS	6-16=-222/12, 5-17=		12		n chord in all are			,pai				1	1 E -
	4-18=-185/123, 3-19				y 2-00-00 wide v			om			-	1. A	01.3
	7-15=-220/103, 8-14	4=-185/123,			y other member						2.3	S. SNGIN	L 22 EER.K
	9-13=-134/112										11	710	EN N
NOTES													ILDUN
												111111	11111
												Mo	101 0001

NOTES


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

May 24,2024

Job	Truss	Truss Type	Qty	Ply	139 Serenity-Roof-B327 B CP GLH	
24050081-01	EGR	Common Girder	1	2	Job Reference (optional)	165807403

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Thu May 23 19:49:20 ID:QCiWCkeHS2khFeTgPxQLfPz6R9E-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Plate Offsets (X, Y): [7:0-5-0,0-4-12], [8:0-5-0,0-4-12]

Scale = 1:48.1

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.76		-0.04	6-7	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.40	Vert(CT)	-0.07	6-7	>999	180		2
TCDL	10.0	Rep Stress Incr	NO		WB	0.60	· · ·	0.01	6	/a	n/a		
BCLL	0.0*	Code		18/TPI2014	Matrix-MSH	0.00		0.01	0	1,4	1,70		
BCDL	10.0		11(020	10/11/2014								Weight: 202 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x6 SP 2400F 2.0E 2x4 SP No.3 Structural wood she 5-10-7 oc purlins, e Rigid ceiling directly bracing.	xcept end verticals. applied or 10-0-0 or 9=0-5-8 C 11) .C 13), 9=-403 (LC 1 .C 6), 9=4535 (LC 5	ed or g c 2) 7	 Vasd=103m II; Exp B; En cantilever lei right expose TCLL: ASCE Plate DOL=² DOL=1.15); Cs=1.00; Ct: Unbalanced design. This truss ha chord live loo 	snow loads have as been designed ad nonconcurrent	BCDL=6 (envelope ed; end v .60 plate sf (roof LI (Lum DC t B; Fully been cor for a 10. with any	6.0psf; h=25ft e) exterior zon vertical left ar grip DOL=1. .: Lum DOL= DL=1.15 Plate Exp.; Ce=0.1 nsidered for th D psf bottom other live loa	ne; nd 60 1.15 9; his nds.				0	B), 14=-1290 (B),
FURCES	(ID) - Maximum Corr Tension	pression/iviaximum	8		nas been designe m chord in all area			Opsf					
TOP CHORD	,		/473,	3-06-00 tall I	oy 2-00-00 wide w	vill fit betw		om					
	4-5=-461/87, 1-9=-3				ny other members								
BOT CHORD	8-9=-313/3289, 7-8= 6-7=-289/3324	=-232/2762,	ç		Simpson Strong-T			4.0					
WEBS	3-7=-283/2528, 4-7=	141/1175			ed to connect trus (s) 9 and 6. This c								
WEbb	3-8=-273/2423, 2-8=				t consider lateral f			Ully					CT C
	2-9=-4533/377, 4-6=				designed in accor		ith the 2018						in the second se
NOTES	,				Residential Code			and				"TH CA	ROUL
	s to be connected toge	ther with 10d			nd referenced sta						A	1.200	Dall's
	") nails as follows:				n Strong-Tie HTU					1	12	FESS	The
Top chore	ds connected as follows	s: 2x4 - 1 row at 0-9-	-0		2 Truss, Single Pl					4	n	:04	
OC.					0-0 oc max. starti			left			1	and the second second	
	nords connected as foll	ows: 2x6 - 2 rows			12 to connect trus	s(es) to l	Dack face of			=		SEA	L : E
	d at 0-7-0 oc.	1 row at 0.0.0 as		bottom chore 2) Fill all pail be	a. bles where hangei	r is in cor	tact with lum	her		=	:	0363	• –
	nected as follows: 2x4 - are considered equally			OAD CASE(S)	•	13 11 001						0303	
	noted as front (F) or ba				ow (balanced): Lu	mber Inc	rease=1.15	Plate				Ν.	1 3
	section. Ply to ply conr			Increase=1			10000-1110,1				2.	N.En.	Rick
	to distribute only loads			Uniform Lo							25	A C A GIN	EFICAN
	herwise indicated.				=-60, 3-5=-60, 6-9	9=-20					11	10	BEN
3) Unbalanc	ed roof live loads have	been considered for	r		ed Loads (lb)								ILUIN
this desig	n.				. /							Thunn .	1111.
												Max	. 04 0004

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

May 24,2024

Job	Truss	uss Truss Type Qty Ply 139 Serenity-		139 Serenity-Roof-B327 B CP GLH			
24050081-01	F	Common	5	1	Job Reference (optional)	165807404	

6-3-12

6-3-12

Carter Components (Sanford, NC), Sanford, NC - 27332,

2-7-4

0-9-(

(psf)

20.0

20.0

10.0

10.0

0.0

2-8-7

Scale = 1:31.7 Loading

TCLL (roof)

Snow (Pf)

LUMBER

TCDL

BCLL

BCDL

-0-10-8

0-10-8

Run: 8,73 S Apr 25 2024 Print: 8,730 S Apr 25 2024 MiTek Industries, Inc. Thu May 23 19:49:21 ID:VNhUx16Vbr5kqTu5I_uT9rz6RTH-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4x5 =

12-7-8

6-3-12

16

PLATES

Weight: 45 lb

MT20

3 12 4 Г 14 15 13 2 6 2x4 u 3x5 = 6-3-12 12-7-8 6-3-12 6-3-12 Spacing 2-0-0 CSI DEFL l/defl L/d in (loc) Plate Grip DOL 1.15 TC 0.75 Vert(LL) -0.07 6-12 >999 240 Lumber DOL 1 15 BC 0.53 Vert(CT) -0.11 6-12 >999 180 Rep Stress Incr YES WB 0.10 Horz(CT) 0.01 Δ n/a n/a Code IRC2018/TPI2014 Matrix-MSH

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SP No.3 WFBS BRACING TOP CHORD Structural wood sheathing directly applied or 3-9-3 oc purlins. BOT CHORD Rigid ceiling directly applied or 8-0-7 oc bracing. **REACTIONS** (size) 2=0-3-0, 4=0-3-0 Max Horiz 2=-38 (LC 15) Max Uplift 2=-203 (LC 10), 4=-203 (LC 11) Max Grav 2=651 (LC 21), 4=651 (LC 22) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/17. 2-3=-913/650. 3-4=-913/650. 4-5=0/17BOT CHORD 2-6=-517/782, 4-6=-517/782 WEBS 3-6=-122/271

NOTES

1) Unbalanced roof live loads have been considered for this design

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 3-3-12, Exterior(2R) 3-3-12 to 9-3-12, Interior (1) 9-3-12 to 10-6-0, Exterior(2E) 10-6-0 to 13-6-0 zone; cantilever left and right exposed ; end vertical left and right exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15): Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

Unbalanced snow loads have been considered for this 4) desian.

5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. This truss has been designed for a 10.0 psf bottom 6)

chord live load nonconcurrent with any other live loads. 7)

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

8) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 4. This connection is for uplift only and does not consider lateral forces.

9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard

0 VIIIIII III IIIIIIII SEAL 036322 G mmm May 24,2024

Page: 1

13-6-0

0-10-8

4

Ø

3x5 =

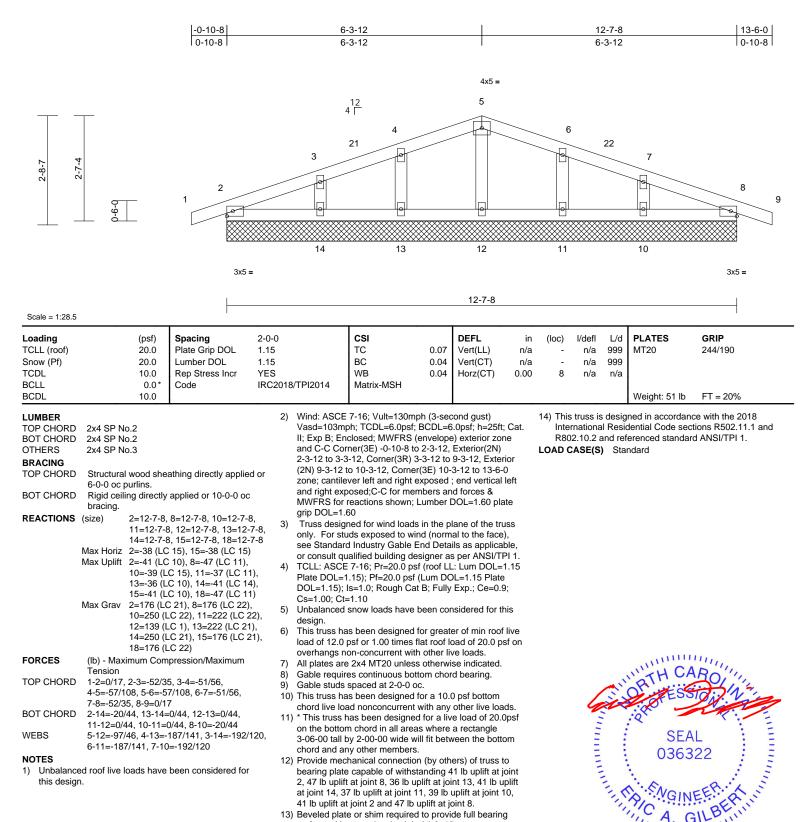
GRIP

244/190

FT = 20%

5

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	139 Serenity-Roof-B327 B CP GLH	
24050081-01	FGE	Common Supported Gable	1	1	Job Reference (optional)	165807405

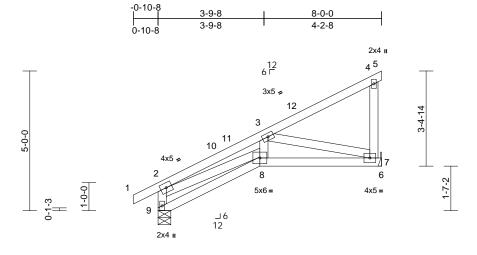
Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Thu May 23 19:49:21 ID:NtPZCayMfrSanTObUl9Q75z6RTU-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

surface with truss chord at joint(s) 2, 15.

minin

May 24,2024


building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	139 Serenity-Roof-B327 B CP GLH	
24050081-01	G	Monopitch	2	1	Job Reference (optional)	165807406

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Thu May 23 19:49:21 ID:2wnvx1AnUG3TGubNowWlwRz6gRC-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

rag 4

Scale =	1:41.3
---------	--------

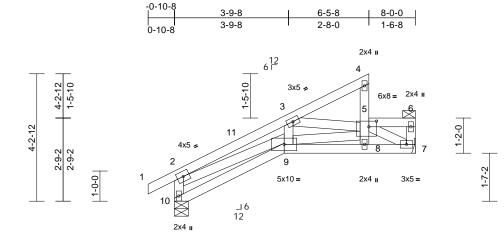
00010 = 114110													
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MP	0.34 0.30 0.38	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.03 -0.05 0.03	(loc) 8 7-8 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 45 lb	GRIP 244/190 FT = 20%
FORCES TOP CHORD BOT CHORD WEBS NOTES	Max Horiz 9=158 (LC Max Uplift 7=-81 (LC Max Grav 7=451 (LC (lb) - Maximum Com Tension 2-9=-393/223, 1-2=0 3-4=-96/77, 4-5=-12 8-9=-174/203, 7-8=- 2-8=-230/924, 3-8=-	xcept end verticals. applied or 10-0-0 o anical, 9=0-5-8 C 11) C 14), 9=-37 (LC 14) C 21), 9=428 (LC 21 apression/Maximum 0/27, 2-3=-1048/339 /0, 4-7=-188/63 331/857, 6-7=0/0 66/320, 3-7=-883/35	7) c 8) () 1(), 1' 98	chord live lo * This truss on the botto 3-06-00 tall chord and a Refer to girc Bearing at jc using ANSI/ designer sho Provide mec bearing platt 7. One H2.5A recommend UPLIFT at jt does not con 1) This truss is International	as been designed ad nonconcurrent has been designed m chord in all area by 2-00-00 wide w ny other memberss ler(s) for truss to the int(s) 9 considers TPI 1 angle to gra ould verify capacity chanical connection e capable of withs Simpson Strong-T ed to connect trus (s) 9. This connect nsider lateral force designed in accoil I Residential Code nd referenced sta Standard	with any d for a liv s where ill fit betv. uss conr parallel in formul y of bear n (by oth tanding & ie conne s to bear tion is for s. dance w	other live load e load of 20. a rectangle veen the bott nections. to grain value a. Building ing surface. ers) of truss 11 lb uplift at ctors ing walls due r uplift only a ith the 2018 \$ R502.11.1 a	ads. Opsf tom e to joint e to nd					
Vasd=103 II; Exp B; I and C-C E	CE 7-16; Vult=130mph mph; TCDL=6.0psf; B Enclosed; MWFRS (er Exterior(2E) -0-10-8 to Exterior(2E) 5-0-0 to 8-	CDL=6.0psf; h=25ft; nvelope) exterior zor 2-1-8, Interior (1) 2-	ne 1-8								A.	WITH CA	ROUT

 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

and right exposed ; end vertical left and right exposed;C-

- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	139 Serenity-Roof-B327 B CP GLH	
24050081-01	G1	Half Hip	7	1	Job Reference (optional)	165807407

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Thu May 23 19:49:21 ID:einn9QFMsQjQrPrP4TucSQz6gkT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

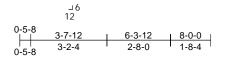
Page: 1

Scale = 1:38.3

Plate Offsets (X, Y): [5:0-3-0,0-2-4]

	(X, 1). [5.0-5-0,0-2-4]												
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC201	8/TPI2014	CSI TC BC WB Matrix-MP	0.31 0.26 0.43	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.03 -0.05 0.03	(loc) 9 9 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 48 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 Structural wood she 4-10-11 oc purlins, 2-0-0 oc purlins: 5-8 Rigid ceiling directly bracing. (size) 7= Mecha Max Horiz 10=153 (L Max Uplift 7=-114 (L	applied or 10-0-0 oc inical, 10=0-5-8 _C 14) C 14), 10=-21 (LC 14	5) d or 6) and 7) 8) 9) 1(design. This truss ha load of 12.0 overhangs n Provide aded This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar Refer to gird	snow loads have l s been designed f pof or 1.00 times f on-concurrent with quate drainage to a been designed a nonconcurrent has been designed n chord in all area by 2-00-00 wide wi yo other members. er(s) for truss to tr int(s) 10 considers	for great lat roof I n other li prevent for a 10. with any d for a liv s where ill fit betv uss coni s paralle	er of min rooi oad of 20.0 p ve loads. water pondin 0 psf bottom other live loa e load of 20. a rectangle veen the bott nections.	f live osf on g. ads. 0psf com	C	Vert: 1-: oncentra Vert: 4=	ted Lo	,	15, 9-10=-20, 7-9=-20
FORCES TOP CHORD BOT CHORD	Tension P CHORD 2-10=-515/260, 1-2=0/40, 2-3=-1307/455, 3-4=-93/15, 5-8=0/90, 4-5=-302/119, 5-6=-11/16, 6-7=-120/52			 using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 114 lb uplift at joint 7. 12) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to 									
WEBS NOTES 1) Unbalanc this desig 2) Wind: AS Vasd=103 II; Exp B; and C-C E left and ri exposed; reactions DOL=1.60 3) TCLE: AS Plate DOI	2-9=-332/1132, 3-9= 5-9=-173/251, 5-7=- ted roof live loads have n. CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; Bi Enclosed; MWFRS (er Exterior(2E) -0-10-8 to ght exposed ; end vertii C-C for members and fr shown; Lumber DOL= 0 CE 7-16; Pr=20.0 psf (L =1.15); Pf=20.0 psf (L =1.15); Is=1.0; Rough Cat E	73/305, 3-5=-1099/4 1097/397 been considered for (3-second gust) CDL=6.0psf; h=25ft; (ivelope) exterior zone 7-10-4 zone; cantilevœ cal left and right orces & MWFRS for 1.60 plate grip roof LL: Lum DOL=1. um DOL=1.15 Plate	195, 13 14 Cat. er 15	UPLIFT at jt(does not corn s) This truss is International R802.10.2 at bottom chord bottom chord bottom chord bottom chord bottom chord bottom and design/selec responsibility DAD CASE(S)	s) 10. This connect sider lateral forces designed in accor Residential Code nd referenced star rlin representation ation of the purlin at the connection other connection cicient to support of 73 lb up at 6-3-12 tion of such connect of others. Standard w (balanced): Lur 15	ction is f s. dance w sections ndard AN does n along the device(s concentra 2 on top ection de	or uplift only ith the 2018 s R502.11.1 a SI/TPI 1. ot depict the e top and/or s) shall be ated load(s) 2 chord. The vice(s) is the	and size 221			C	SEA 0363	EER. KIN




May 24,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	139 Serenity-Roof-B327 B CP GLH	
24050081-01	G1GE	Half Hip Supported Gable	1	1	Job Reference (optional)	165807408

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Thu May 23 19:49:21 ID:einn9QFMsQJQrPrP4TucSQz6gkT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

	TH CARO	
- - - -	SEAL 036322	ANNULLI I
	C A. GILB	ER Internet

Scale = 1:48.3

						-							
Loading TCLL (roof) Snow (Pf) TCDL BCLL	(psf) 20.0 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES	8/TPI2014	CSI TC BC WB Matrix-MR	0.35 0.31 0.06	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.02 -0.02 0.00	(loc) 11 11-12 10	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0	Code	160201	0/1112014	IVIAULIX-IVIIN							Weight: 38 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex 2-0-0 oc purlins (6-C Rigid ceiling directly bracing, Except: 6-0-0 oc bracing: 16 (size) 10= Mect 14=5-5-8, 17=5-5-8 Max Horiz 17=153 (I Max Uplift 10=-55 (L 14=-270 (16=-233 (Max Grav 10=322 (I 14=25 (LC 16=5 (LC (Ib) - Maximum Con Tension 2-17=-261/52, 1-2=(3-4=-166/27, 4-5=-1 6-7=-74/55, 8-11=-3 8-9=-171/120, 9-10= 16-17=-202/163, 13- 12-13=-41/128, 11-7	r applied or 10-0-0 oc 3-17. hanical, 13=5-5-8, 15=5-5-8, 16=5-5-8, LC 14) LC 11), 13=-101 (LC 1 (LC 38), 15=-48 (LC 1 (LC 14) LC 37), 13=722 (LC 3 C 14), 15=144 (LC 38 12), 17=405 (LC 48) hpression/Maximum D/40, 2-3=-130/33, 26/18, 5-6=-152/65, 147/201, 7-8=-342/185 =-226/137 -16=-50/151, 14=-41/128,	d 3) 4), 5) 4), 5) 8), 6)), 7) 8) 9) 5, 10 11	Vasd=103mj II; Exp B; En and C-C Cor to 3-312, Cc left and right exposed;C-C reactions shu DOL=1.60 Truss desig only. For stu see Standarr or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct Unbalanced design. This truss ha load of 12.0 overhangs n Provide ader All plates are Truss to be f braced agair 0) Gable studs 1) This truss ha chord live loa 2) * This truss ha	snow loads have as been designed psf or 1.00 times on-concurrent wii quate drainage to 2 2x4 MT20 unles ully sheathed froi st lateral movem spaced at 2-0-0 as been designed ad nonconcurrent nas been designed no chord in all are by 2-00-00 wide w	BCDL=€ (envelope o 2-0-0, E to 7-10-4 ertical left d forces i L=1.60 pl ls in the p ind (norm End Deta esigner a: sf (roof LL f (Lum DC at B; Fully been cor l for great flat roof lt th other li p prevent so otherwin m one fac ient (i.e. c oc. l for a liv as where will fit been	6.0psf; h=25ft; a) exterior zor Exterior(2N) 2: zone; cantilew and right & MWFRS for ate grip lane of the tru- ils as applical s per ANSI/TF .: Lum DOL=: L: Lum DOL=: L: Lum DOL=: texp.; Ce=0.9: hisidered for the er of min roof pad of 20.0 ps we loads. water ponding se indicated. 0 psf bottom other live loa te load of 20.0 ps we or securely tiagonal web) 0 psf bottom	ne -0-0 ver r Jss), ble, PI 1. 1.15 2; his five sf on g. ,	rec UP doe 16) This Inte R80 17) Gra or t bott 18) Har pro Ib d des res P COAD (1) De Inter Ur	ommenci LIFT at j ss not cc s truss is ernationa 02.10.2 at aphical p he orien tom choi nger(s) c vided su down and sign/sele ponsibili CASE(S ead + Sr crease= niform Le Vert: 1-1	ded to d t(s) 13 nsider s desig al Resid and ref urlin re- tation of rd. or othe fficient d 117 ll ction o ty of ot) Sta now (ba 1.15 coads (l 2=-60, .20, 12 tted Lo	on Strong-Tie cc connect truss to . This connection lateral forces. ned in accordan dential Code sec ierenced standa spresentation do of the purlin alon r connection dev to support conc of such connection hers. ndard alanced): Lumbe b/ft) 2-7=-60, 8-9=-1 -14=-20, 10-12=	onnectors bearing walls due to n is for uplift only and ice with the 2018 titons R502.11.1 and rd ANSI/TPI 1. es not depict the size ing the top and/or vice(s) shall be scentrated load(s) 236 on top chord. The on device(s) is the er Increase=1.15, Plate 15, 16-17=-20,
WEBS NOTES	5-13=-298/212, 4-15		13	 Refer to gird 	ny other members er(s) for truss to t	truss conr		0					
	d roof live loads have	been considered for	14	bearing plate	hanical connection capable of withs blift at joint 14, 23	standing 5	55 lb uplift at j	oint					

May 24,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

lb uplift at joint 15.

Job	Truss	Truss Type	Qty	Ply	139 Serenity-Roof-B327 B CP GLH	
24050081-01	н	Monopitch	6	1	Job Reference (optional)	165807409

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Thu May 23 19:49:21 ID:X_hcbChxDcqIloSveVUtaUz6RjJ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

3x5 =

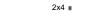
Scale = 1:30.9

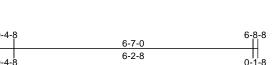
Scale = 1:30.9												
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MP	0.85 0.74 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.22 -0.32 0.01	(loc) 4-9 4-9 2	l/defl >405 >285 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 27 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.1 2x4 SP No.2 2x4 SP No.3 Structural wood she 4-10-14 oc purlins, Rigid ceiling directly bracing.	except end verticals. applied or 10-0-0 oc 4=0-1-8 13) C 10), 4=-109 (LC 1 C 21), 4=371 (LC 21)	on the be 3-06-00 chord an 7) Bearings ed or 8) Bearings using AN designer 9) Provide bearing p 10) One H2. recomme 0) UPLIFT) and does	ss has been design ttom chord in all are all by 2-00-00 wide d any other member are assumed to be: tt joint(s) 4 consider SI/TPI 1 angle to gr should verify capaci nechanical connecti late at joint(s) 4. 5A Simpson Strong- inded to connect tru tt jt(s) 2 and 4. This not consider lateral	eas where will fit betw 's. , Joint 4 S s parallel ain formul ity of bear on (by oth Tie conne ss to bear connectio forces.	a rectangle veen the bott SP No.3 . to grain value a. Building ing surface. ers) of truss ctors ing walls due n is for uplift	to e to					
TOP CHORD	Tension 1-2=0/13, 2-3=-118/		Internatio	s is designed in acco nal Residential Cod 2 and referenced sta	le sections	s R502.11.1 a	and					
BOT CHORD	2-4=-84/144	,		(S) Standard								
NOTES												
Vasd=103n II; Exp B; E and C-C Ex to 4-6-12, E left and righ exposed; p and forces DOL=1.60	E 7-16; Vult=130mph mph; TCDL=6.0psf; B Enclosed; MWFRS (er xterior(2E) -0-10-8 to Exterior(2E) 4-6-12 to ht exposed ; end verti orch left and right exp & MWFRS for reactio plate grip DOL=1.60 DE 7-16; Pr=20.0 psf (CDL=6.0psf; h=25ft; velope) exterior zon 2-1-8, Interior (1) 2-1 7-6-12 zone; cantile cal left and right vosed;C-C for memb ins shown; Lumber	ne 1-8 ever pers						4	ĽŇ	NITH CA	ROUNT
Plate DOL= DOL=1.15) Cs=1.00; C	=1.15); Pf=20.0 psf (L ; Is=1.0; Rough Cat E Ct=1.10	um DOL=1.15 Plate 3; Fully Exp.; Ce=0.9);								SEA 0363	• -
 Unbalance design. 	d snow loads have be	een considered for th	lis							0	¥.	1 E
4) This truss h load of 12.0	has been designed fo 0 psf or 1.00 times fla non-concurrent with o	t roof load of 20.0 ps							ŝ	in the second se	S.ENGIN	EEREATIN
	has been designed fo oad nonconcurrent w		ds.								A. C	ALL BUTT

May 24,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932


Job	Truss	Truss Type	Qty	Ply	139 Serenity-Roof-B327 B CP GLH	
24050081-01	H1	Monopitch	1	1	Job Reference (optional)	165807410


Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Thu May 23 19:49:21

Page: 1

ID:nv1ri_avzKYzZiWeAl69NZz6RTz-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f -0-10-8 6-8-8 0-10-8 6-8-8 2x4 II 12 3 Г 2x4 u 4 3 13 1-8-10 0 2-2-6 12 0 비 ဗို 5 Ŕ 6

3x5 =

2x4 II

Scale = 1:29.9

Loading (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0* BCDL 10.0	Plate Grip DOL1Lumber DOL1Rep Stress IncrY	2-0-0 .15 .15 /ES RC2018/TPI2014	CSI TC BC WB Matrix-MP	0.61 0.64 0.02	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.15 -0.21 0.00	(loc) 6-11 6-11 2	l/defl >521 >372 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 25 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.3 OTHERS 2x4 SP No.3 OTHERS 2x4 SP No.3 BRACING TOP CHORD Structural wood sheat 6-0-0 oc purlins, exc BOT CHORD Rigid ceiling directly bracing. REACTIONS (size) 2=0-3-0, 5 Max Horiz 2=68 (LC Max Uplift 2=-138 (LI Max Grav 2=450 (LC) FORCES (Ib) - Maximum Com Tension TOP CHORD 1-2=0/18, 2-3=-103/ 4-5=-174/132 BOT CHORD 2-6=-122/128, 5-6=-2 WEBS 3-6=-104/79 NOTES 1) Wind: ASCE 7-16; Vult=130mph Vasd=103mph; TCDL=6.0psf; BC II; Exp B; Enclosed; MWFRS (en and C-C Exterior(2E) 3-6-12 to left and right exposed ; end vertig	applied or 10-0-0 oc 5=0-1-8 13) C 10), 5=-92 (LC 10) C 1), 5=314 (LC 21) pression/Maximum 123, 3-4=-28/47, 21/32 (3-second gust) CDL=6.0psf; h=25ft; Cat velope) exterior zone 2-1-8, Interior (1) 2-1-8 6-6-12 zone; cantilever	 design. 5) This truss load of 12 overhang. 6) Gable stu chord live 8) * This truss chord live 8) * This truss on the boo 3-06-00 tz chord and 9) Bearings 10) Bearing a using ANS designer si 11) Provide m bearing p 12) One H2.5 recomme UPLIFT a and does 13) This truss Internatio R802.10.2 	ad snow loads have the has been designed for the source of	or great at roof I other li or a 10. vith any for a lis s where I fit bets Joint 5 s barallel of bear of bear (by other connection orces.	er of min rool oad of 20.0 p ve loads. 0 psf bottom other live loa re load of 20.1 a rectangle ween the bott SP No.3. to grain value a. Building ing surface. ing surface. ing walls due n is for uplift ith the 2018 s R502.11.1 a	f live ssf on ads. Opsf om to to e to only			and the second second	OR DEESS	ROUTIN

sed : end vertical lef exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss 2)

- only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15
- Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

GI minim

May 24,2024

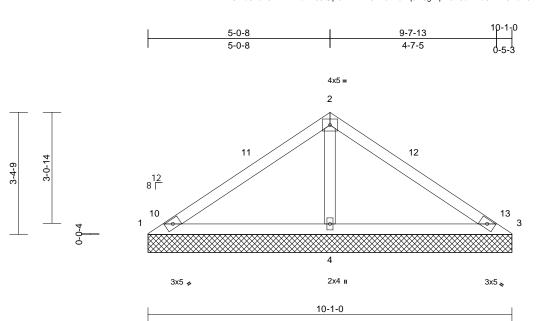
SEAL

036322

WITTER PARTY

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932


CHILDRON MAN

Job	Truss	Truss Type	Qty	Ply	139 Serenity-Roof-B327 B CP GLH	
24050081-01	V1	Valley	1	1	Job Reference (optional)	165807411

Scale = 1:31.9

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Thu May 23 19:49:21 ID:GrzoG?sLG?tXDXYehm59Qqz6RYm-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Loading TCLL (roof) Snow (Pf) TCDL	(psf) 20.0 20.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	CSI TC BC WB	0.50 0.47 0.22	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a -0.01	(loc) - - 9	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCLL BCDL	0.0* 10.0	Code	IRC2018/TPI2014	Matrix-MSH							Weight: 36 lb	FT = 20%
FORCES TOP CHORD BOT CHORD WEBS	10-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=10-1-0 9=10-1-0 Max Horiz 1=-75 (LC Max Uplift 1=-62 (L 4=-72 (LC Max Grav 1=156 (LI 4=1012 (I	C 10) C 21), 3=-1 (LC 15), C 15), 9=-1 (LC 15) C 20), 3=4 (LC 21), LC 21), 9=4 (LC 21) npression/Maximum -167/633	 Plate DOL= DOL=1.15); Cs=1.00; Ct Unbalanced design. Gable requi Gable studs This truss h chord live lo * This truss on the botto 3-06-00 tall chord and a Provide mer bearing plat 1, 1 lb uplift at joint 3. This truss is Internationa 	snow loads have be res continuous botto spaced at 4-0-0 oc. as been designed for ad nonconcurrent w has been designed in m chord in all areas by 2-00-00 wide will ny other members. hanical connection e capable of withsta at joint 3, 72 lb uplif designed in accord Residential Codes nd referenced stance	Lum DC B; Fully een cor om chor or a 10. vith any for a liv where l fit betw (by oth unding 1 t at join ance w sections	DL=1.15 Plate Exp.; Ce=0.9 Insidered for the rd bearing. 0 psf bottom other live loa re load of 20.0 a rectangle ween the bottwees) of truss to 162 lb uplift at t 4 and 1 lb u with the 2018 s R502.11.1 a	e 9; his dds. 0psf om t joint plift					
this desigr	ed roof live loads have n. CE 7-16: Vult=130mph										WHTH CA	ROUT

- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-6 to 3-0-6, Exterior(2R) 3-0-6 to 7-1-6, Exterior(2E) 7-1-6 to 10-1-6 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

G mm May 24,2024

SEAL

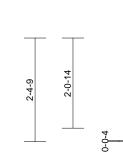
036322

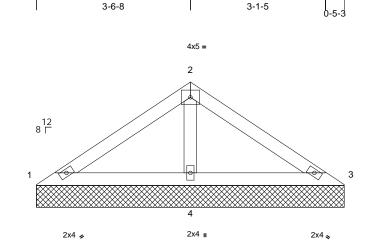
WWWWWWWW

Vanantan

Job	Truss	Truss Type	Qty	Ply	139 Serenity-Roof-B327 B CP GLH	
24050081-01	V2	Valley	1	1	Job Reference (optional)	165807412

3-6-8


Carter Components (Sanford, NC), Sanford, NC - 27332,


Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Thu May 23 19:49:22 ID:?Usr2Y2FtIY_pBJEDaKNjnz6RVy-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

6-7-13

Page: 1

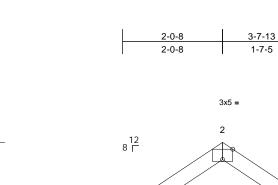
7-1-0

Scale = 1:26.5

30ale = 1.20.3													
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MP	0.23 0.24 0.07	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 24 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS NOTES	2x4 SP No.2 2x4 SP No.3 Structural wood she 7-1-0 oc purlins. Rigid ceiling directly bracing. (size) 1=7-1-0, 1 Max Horiz 1=-52 (LC Max Uplift 1=-8 (LC (LC 14) Max Grav 1=103 (LC 4=495 (LC (lb) - Maximum Com Tension 1-2=-98/224, 2-3=-9 1-4=-188/127, 3-4=- 2-4=-388/163	v applied or 6-0-0 oc 3=7-1-0, 4=7-1-0 C 10) 21), 3=-9 (LC 15), 4: C 20), 3=103 (LC 21) C 20) npression/Maximum 98/224 -188/127	 Plate DC DOL=1.1 CS=1.00; Unbaland design. Gable rei Gable stitication Gable stitication This trus chord live * This trus on the bc 3-06-00 f chord and Provide rise 9 lb upliff This trus Internation R802.10. LOAD CASE 	SCE 7-16; Pr=20.0 pt L=1.15); Pf=20.0 ps L=1.15); Pf=20.0 ps 5); Is=1.0; Rough Ca Ct=1.10 eed snow loads have quires continuous bo uds spaced at 4-0-0 ds has been designed load nonconcurrent ss has been designed load nonconcurrent ss has been designed load nonconcurrent shas been designed load nonconcurrent shas been designed load nonconcurrent shas been designed load nonconcurrent shas been designed late capable of withs at joint 3 and 51 lb u s is designed in acco nal Residential Code 2 and referenced sta (S) Standard	(Lum DC at B; Fully been cou ttom choi bc. for a 10. with any ed for a liv as where vill fit betv s. on (by oth standing & uplift at jo refance we e sections	DL=1.15 Plate r Exp.; Ce=0.9 r Exp.; Ce=0.9 rd bearing. 0 psf bottom other live loa re load of 20.1 a rectangle ween the bott ress) of truss t 3 lb uplift at jo int 4. ith the 2018 s R502.11.1 a	e 9; his dds. 0psf om to int 1,						
1) Unbalance	ed roof live loads have	been considered for	r								minin	11111	

this design. Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-6 to 3-0-6, Exterior(2R) 3-0-6 to 4-1-6, Exterior(2E) 4-1-6 to 7-1-6 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions

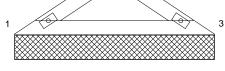
shown; Lumber DOL=1.60 plate grip DOL=1.60


Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. an managements WWWWWWWW SEAL 036322 G mm May 24,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	139 Serenity-Roof-B327 B CP GLH	
24050081-01	V3	Valley	1	1	Job Reference (optional)	165807413

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Thu May 23 19:49:22 ID:qeD6lc60S8J8Y6mOaqRnz2z6RVs-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1



2x4 🍫

1-0-14

0-0-4

1-4-9

4-1-0

2x4 💊

Scale = 1:23.5

Plate Offsets (X, Y): [2:0-2-8,Edge]

Snow (Pf) 20.0 Lumber DOL 1.15 BC 0.11 Vert(TL) n/a TCDL 10.0 Rep Stress Incr YES WB 0.00 Horiz(TL) 0.00 3 BCLL 0.0* Code IRC2018/TPI2014 Matrix-MP Horiz(TL) 0.00 3	- n/a 999 - n/a 999 3 n/a n/a	
 LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 TOP CHORD 2x4 SP No.2 TOP CHORD 2x4 SP No.2 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live load 0.0.psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord any other members. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live load 0.0.psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. Prokets (size) 1=4-1-0, 3=4-1-0 Max Horiz 1=-28 (LC 10). Max Grav 1=189 (LC 20), 3=189 (LC 21). Max Grav 1=189 (LC 20), 3=189 (LC 21). Max Grav 1=189 (LC 20), 3=189 (LC 21). Max Grav 1=189 (LC 20), 3=189 (LC 21). FORCES (b) - Maximum Compression/Maximum Tension Prokets (b) - Maximum Compression/Maximum Tension Or CHORD 1-2=-283/101, 2-3=-283/101 BOT CHORD 1-3=-71/225 Nottes 1) Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf, BCDL=6.0psf, h=25ft; Cat. II; Exp B; Enclosed; MWFRS (or reactions shown; Lumber DOL=1.60 pt eff pot L-1.60 Truss designed for wind loads in the plane of the truss only. For stude seposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. TCLL: ASCE 7-16; Pr=20.0 psf (not LL: LUM DOL=1.15 Plate DOL=1.10 Unbalanced snow loads have been considered for this design. Gable requires continuous bottom chord bearing. 	A CONTRACTOR OF	TH CAROUN

TRENGINEERING BY A MITER Affiliate

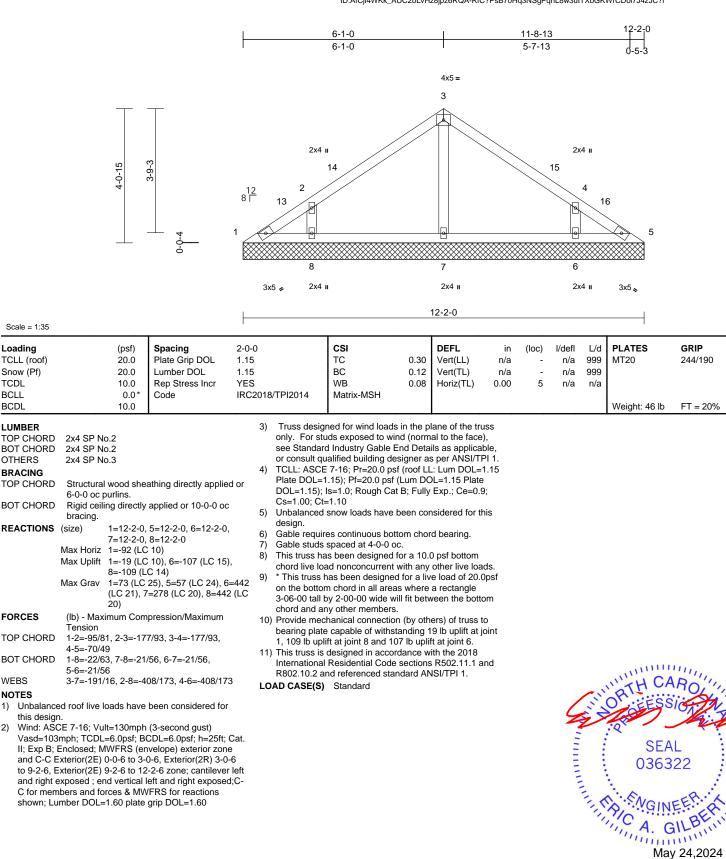
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	139 Serenity-Roof-B327 B CP GLH	
24050081-01	V11	Valley	1	1	Job Reference (optional)	165807414

TCDL

BCLL

BCDL


WEBS

NOTES 1)

2)

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Thu May 23 19:49:22 ID:AfCji4WKk_AUC2bLvHz8jpz6RQA-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932

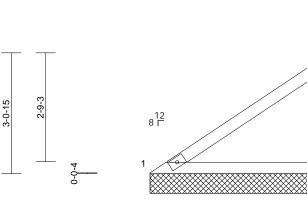
Job	Truss	Truss Type	Qty	Ply	139 Serenity-Roof-B327 B CP GLH	
24050081-01	V12	Valley	1	1	Job Reference (optional)	165807415

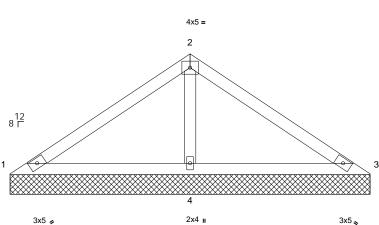
4-7-0

4-7-0

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Thu May 23 19:49:22 ID:esm5vPXyVIILqCAXS_UNG0z6RQ9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


8-8-13


4-1-13

Page: 1

9-2-0

9-2-0

Scale = 1:29.3

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	20.0 20.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.37 0.37 0.13	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 32 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shear 9-2-0 oc purlins. Rigid ceiling directly a bracing. (size) 1=9-2-0, 3= Max Horiz 1=-68 (LC Max Uplift 1=-35 (LC 4=-72 (LC Max Grav 1=120 (LC 4=701 (LC (lb) - Maximum Comp Tension 1-2=-109/349, 2-3=-11 1-4=-249/138, 3-4=-2 2-4=-571/208	applied or 6-0-0 oc =9-2-0, 4=9-2-0 10) 21), 3=-35 (LC 20), 14) 20), 3=120 (LC 21) 21) oression/Maximum 09/349	6) 7) 8) 9) , 1(Plate DOL=1 DOL=1.15); I Cs=1.00; Ct= Unbalanced design. Gable requirt Gable studs This truss ha chord live loa * This truss ha chord live loa * This truss ha chord and ar)) Provide mec bearing plate 1, 35 lb uplift) This truss is International	snow loads have es continuous bo spaced at 4-0-0 o s been designed ad nonconcurrent tas been designe n chord in all aree y 2-00-00 wide w y other members hanical connectio capable of withs at joint 3 and 72 designed in acco Residential Code nd referenced sta	(Lum DC t B; Fully been con tom choro c. for a 10. with any d for a 10. with any d for a liv as where vill fit betwo n (by oth tanding 3 lb uplift a rdance w e sections	DL=1.15 Plate Exp.; Ce=0.9 nsidered for the d bearing. 0 psf bottom other live loa re load of 20.1 a rectangle veen the both ers) of truss t 35 lb uplift at j it, joint 4. ith the 2018 \$ R502.11.1 a	e 9; his Opsf om to oint					
NOTES 1) Unbalance	ed roof live loads have b	been considered for										mu	

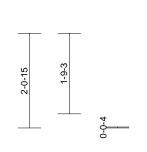
- this design. 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-6 to 3-0-6, Exterior(2R) 3-0-6 to 6-2-6, Exterior(2E) 6-2-6 to 9-2-6 zone; cantilever left and right exposed ; end vertical left and right exposed;C-
- C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss 3)
- only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

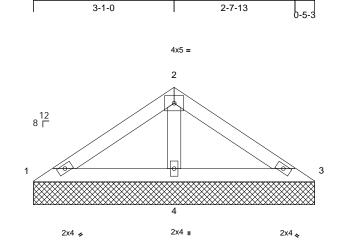
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	139 Serenity-Roof-B327 B CP GLH	
24050081-01	V13	Valley	1	1	Job Reference (optional)	165807416

3-1-0

Carter Components (Sanford, NC), Sanford, NC - 27332,


Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Thu May 23 19:49:22 ID:IKj2z0KoemxLayU_7484GEz6RNr-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f



5-8-13

6-2-0

6-2-0

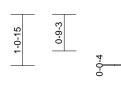
Scale = 1:25.3

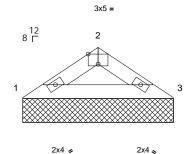
Scale = 1:25.3 Loading TCLL (roof) Snow (Pf)	(psf) 20.0 20.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15	CSI TC BC	0.15 0.17	DEFL Vert(LL) Vert(TL)	in n/a n/a	(loc) - -	l/defl n/a n/a	L/d 999 999	PLATES MT20	GRIP 244/190
TCDL BCLL	10.0	Rep Stress Incr	YES	WB	0.06	Horiz(TL)	0.00	4	n/a	n/a		
BCDL	0.0* 10.0	Code	IRC2018/TPI2014	Matrix-MP							Weight: 21 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-2-0 oc purlins. Rigid ceiling directly bracing.	applied or 6-0-0 oc 3=6-2-0, 4=6-2-0 11) 14), 3=-10 (LC 15), 4	4=-39 4=-32 4=-32 4 4 4 4 4 4 4 4 4 4 4 4 4	ed snow loads have uires continuous be ds spaced at 4-0-0 has been designe load nonconcurrer is has been design tom chord in all are all by 2-00-00 wide any other member techanical connecti ate capable of with t at joint 3 and 39 ll is designed in acc nal Residential Coc	ottom cho oc. d for a 10. tt with any ed for a liv eas where will fit betw rs. on (by oth standing 3 o uplift at j ordance w	d bearing. 0 psf bottom other live loa e load of 20.0 a rectangle veen the botto ers) of truss t 8 lb uplift at jo oint 4. ith the 2018	ds. Dpsf om o 1,					
FORCES	(LC 21) (Ib) - Maximum Corr		R802.10.2	2 and referenced st			nd					
	Tension		LOAD CASE	S) Standard								
TOP CHORD BOT CHORD	1-2=-96/170, 2-3=-9 1-4=-145/107, 3-4=-											
WEBS	2-4=-308/135											
NOTES												
	ed roof live loads have	been considered for	r									um.
this design											WHY C	AD
Vasd=103r II; Exp B; E and C-C E exposed ; o members a	CE 7-16; Vult=130mph mph; TCDL=6.0psf; B Enclosed; MWFRS (er xterior(2E) zone; cant end vertical left and rig and forces & MWFRS DL=1.60 plate grip DC	CDL=6.0psf; h=25ft; nvelope) exterior zor ilever left and right ght exposed;C-C for for reactions shown	ne						A set of	A.	OR FESS	
 Truss designed only. For see Standa 	igned for wind loads in studs exposed to wind ard Industry Gable En	n the plane of the tru (normal to the face) d Details as applicat), ble,						1111		0363	322
 TCLL: ASC Plate DOL: 	qualified building desi CE 7-16; Pr=20.0 psf (=1.15); Pf=20.0 psf (L); Is=1.0; Rough Cat E Ct=1.10	roof LL: Lum DOL=1 um DOL=1.15 Plate	1.15							THE STATE	SEA 0363	JEER AT 1111
											1	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	139 Serenity-Roof-B327 B CP GLH		
24050081-01	V14	Valley	1	1	Job Reference (optional)	l65807417	

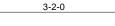
Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Thu May 23 19:49:22 ID:7U4JE3OZEciVIty7UKFUVUz6RNI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


2-8-13


1-1-13

3 - 2 - 0

Page: 1



1-7-0

1-7-0

2x4 💊

Scale = 1:24.2

Plate Offsets (X, Y): [2:0-2-8,Edge]

TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.08 Vert(LL) n/a - Snow (Pf) 20.0 Lumber DOL 1.15 BC 0.08 Vert(TL) n/a - TCDL 10.0 Rep Stress Incr YES WB 0.00 Horiz(TL) 0.00 3 BCLL 0.0* Code IRC2018/TPI2014 Matrix-MP Horiz(TL) 0.00 3	n/a 999 n/a 999 n/a n/a	MT20 244/190 Weight: 9 lb FT = 20%
 LUMBER TOP CHORD 2x4 SP No.2 BACING TOP CHORD 2x4 SP No.2 BRACING TOP CHORD Structural wood sheathing directly applied or 3-2-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (size) 1=3-2-0, 3=3-2-0 Max Horiz 1=21 (LC 11) Max Ugilit 1=-12 (LC 14), 3=-12 (LC 15) Max Grav 1=143 (LC 20), 3=143 (LC 21) FORCES (b) -Maximum Compression/Maximum Tension TOP CHORD 1:2=-20975, 2-3=-20975 BOT CHORD 1:3=-50/165 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd-103mph; TCDL=6.0ps; He2DL=0.60, h=-25K; Cat. II; Exp B; Enclosed: MWFRS for reactions shown; Lumber DDL=1.60 plate grip DDL=1.60 3) Truss designed for wind loads in the plane of the truss only. For stude sepsed to wind normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TP1 1. 4) TCLL: ASCE 7-16; Pr=200 psf (cond LL: um DDL=1.15) Plate DDL=1.10; PI=200 psf (cond LL: Lum DDL=1.15 Plate DDL=1.10; PI=200 psf (cond LL: Lum DDL=1.15; PI=200 psf (cond LL: Lum DDL=		SEAL 036322 MGINEEPLATINA May 24,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

