

Trenco 818 Soundside Rd Edenton, NC 27932

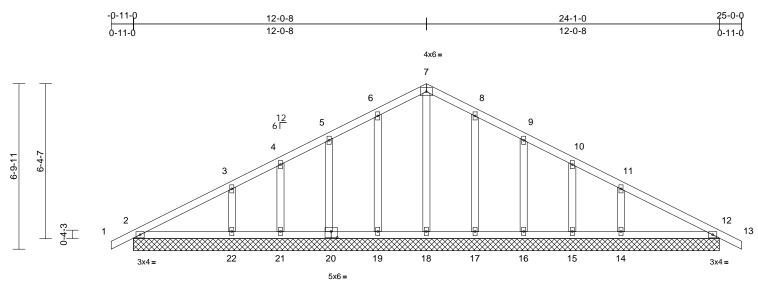
Re: 4052105 Bonnet A - Lot 1 - Fairground Farms

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Builders FirstSource (Albermarle,NC).

Pages or sheets covered by this seal: I65813877 thru I65813886

My license renewal date for the state of North Carolina is December 31, 2024.

North Carolina COA: C-0844


May 24,2024

Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	Bonnet A - Lot 1 - Fairground Farms	
4052105	A01	Common Supported Gable	1	1	Job Reference (optional)	165813877

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Fri May 24 08:12:37 ID:v2D8tW20?IBXcZpw7A8nfzzAcvr-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

24-1-0

Scale = 1:47.4

Plate Offsets (X, Y): [20:0-3-0,0-3-0]

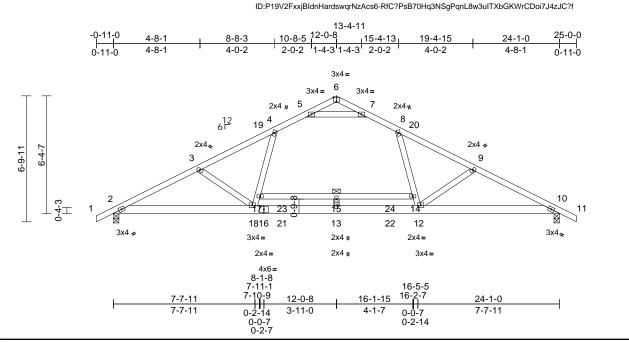
			-			-							
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.18	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	23.1/30.0	Lumber DOL	1.15		BC	0.12	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES		WB	0.10	Horz(CT)	0.00	12	n/a	n/a		
BCLL	0.0*	Code	IRC2015	5/TPI2014	Matrix-S								
BCDL	10.0											Weight: 127 lb	FT = 20%
BCDL LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	10.0 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 2=24-1-1 15=24-1-1 21=24-1 21=24-1-1 21=24-1-1 21=24-1-1 21=24-1-1 21=24-1-1 21=24-1-1 21=24-1-1 21=24-1-1 21=24-1-1 21=24-1-1 21=24-1-1 21=24-1-1 21=24-1-1 21=24-1-1 21=24-1-1 21=24-1-1 21=24-1 21=20 (L 21=20 (L) 21=20 (L 21=20 (L) 21=20 (L) 21=	Code athing directly applied applied or 10-0-0 oc 12=24-1-0, 14=24-1- 0, 16=24-1-0, 17=24-1 0, 19=24-1-0, 20=24-1 0, 12=24-1-0 C 13) 13), 12=-8 (LC 13), C 13), 15=-21 (LC 13) C 13), 17=-34 (LC 13) C 13), 17=-34 (LC 13) C 12), 20=-37 (LC 12) C 12), 22=-67 (LC 12) C 12), 12=217 (LC 1), C 20), 15=-101 (LC 1) C 20), 17=262 (LC 6) C 25), 19=259 (LC 5) C 19), 21=103 (LC 1) C 19) ppression/Maximum	NC 1) 2) or 3) 0, -0, -0, -0, 4)), 5)) 6) , , 7) , 8) 9) 10	DTES Unbalanced this design. Wind: ASCE Vasd=95mph II; Exp B; End cantilever left plate grip DC Truss desigr only. For stu see Standard or consult qu TCLL: ASCE DOL=1.15 Pl snow); Pf=23 Plate DOL=1.10 Unbalanced design. This truss ha load of 12.0 g overhangs no All plates are Gable require Gable require Gable require Gable studs = 0) This truss ha	roof live loads ha 7-10; Vult=120m ı; TCDL=6.0psf; i closed; MWFRS t and right expos	ph (3-sec BCDL=6. (envelope ed ; Lumt s in the p ind (norm End Deta ssigner as sf (roof liv Pg=30.0 p now: Lum ; Exp B; F been cor for great flat roof lo is otherwit tom chor oc. for a 10. with any d for a liv	considered for cond gust) Opsf; h=30ft; (e) exterior zon per DOL=1.60 lane of the tru al to the face) ils as applicat s per ANSI/TF e load: Lumbo sof (ground uber DOL=1.1: Partially Exp.; asidered for the er of min roof pad of 23.1 ps ve loads. se indicated. d bearing. D psf bottom other live loac e load of 20.0	Cat. ne;) sss), ole, PI 1. er 5 live sf on ds.	13) Prov bea 2, 3 uplii 17, uplii 14) Bev surf 15) This Inte R80 LOAD (vide me ring plat 6 lb upli ft at join 38 lb up ft at join eled plat ace with 5 truss is rrustiona 02.10.2 a CASE(S	te capa ft at jo t 21, 6 lift at j t 14 ar te or s s desigu al Resi and rei) Sta	cal connection (by able of withstand int 19, 37 lb uplift 7 lb uplift at joint oint 16, 21 lb upli 4 8 lb uplift at joint shim required to p chord at joint(s) gned in accordand dential Code sec ferenced standar indard	y others) of truss to ing 7 lb uplift at joint t at joint 20, 20 lb 22, 34 lb uplift at joint ift at joint 15, 67 lb int 12. crovide full bearing 2. ce with the 2015 tions R502.11.1 and d ANSI/TPI 1.
BOT CHORD	4-5=-47/92, 5-6=-52 7-8=-59/126, 8-9=-5 10-11=-59/34, 11-12 2-22=-4/87, 21-22=- 18-19=-4/87, 17-18=	/113, 6-7=-58/132, 3/90, 9-10=-38/52, 2=-83/53, 12-13=0/43 4/87, 19-21=-4/87, =-4/87, 16-17=-4/87,	12	3-06-00 tall b chord and an	y 1-00-00 wide v y other members are assumed to b	vill fit betv s, with BC	veen the botto DL = 10.0psf.					SEA 0363	• -
WEBS	4-21=-85/39, 3-22=-	4/87, 12-14=-4/87 199/58, 5-20=-166/63 248/106, 8-17=-199/5 5=-85/39, 11-14=-248/	7,										

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCEL Building Comparent Scietur Information**.

and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

A MiTek Aff 818 Soundside Road Edenton, NC 27932

INFEDING


Page: 1

Job	Truss	Truss Type	Qty	Ply	Bonnet A - Lot 1 - Fairground Farms	
4052105	A02	Common	6	1	Job Reference (optional)	165813878

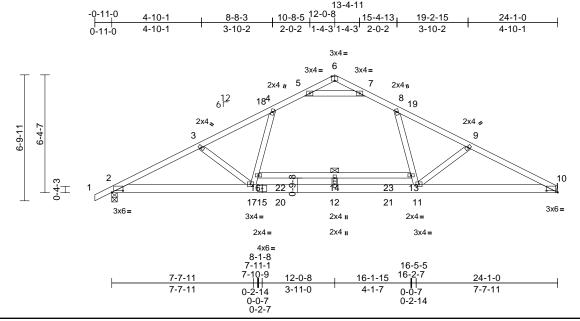
Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Fri May 24 08:12:38

Page: 1

Builders FirstSource (Albermarle), Albemarle, NC - 28001,

Scale = 1:62.2 Plate Offsets (X, Y): [6:0-2-0,Edge]

	X, Y): [6:0-2-0,Edge]											-		
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD BOT CHORD	(psf) 20.0 23.1/30.0 10.0 0.0* 10.0 2x4 SP 2400F 2.0E SP SS 2x6 SP No.2 *Excep 2x4 SP No.3 Structural wood she 3-8-4 oc purlins. Rigid ceiling directly bracing. Except: 6-0-0 oc bracing: 14 (size) 2=0-3-8, 7 Max Horiz 2=-92 (LC	ot* 17-14:2x4 SP No. athing directly applie applied or 10-0-0 or I-17 10=0-3-8	x4 2 ed or c	 DOL=1.15 P snow); Pf=2: Plate DOL=² Ct=1.10 Unbalanced design. This truss ha load of 12.0 overhangs n All plates are chord live load 	CSI TC BC WB Matrix-S 7-10; Pr=20.0 ps late DOL=1.15); F 3.1 psf (flat roof si 1.15); Category II; snow loads have as been designed psf or 2.00 times on-concurrent wit e 2x4 MT20 unles as been designed ad nonconcurrent	Pg=30.0 how: Lun Exp B; F been co for great flat roof I h other li s otherw for a 10. with any	osf (ground her DOL=1. ² artially Exp.; nsidered for t er of min roo oad of 23.1 p ve loads. ise indicated. 0 psf bottom other live loa	-0.49 0.05 ber 15 ; this f live ssf on ads.	(loc) 12-13 15 10	l/defl >999 >579 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 140 lb	GRIP 244/190 FT = 20%	
	Max Holiz 2=-92 (LC Max Uplift 2=-20 (LC Max Grav 2=1207 (L (Ib) - Maximum Com	C 12), 10=-20 (LC 13 LC 4), 10=1207 (LC	5)	on the bottor 3-06-00 tall I	nas been designe m chord in all area by 1-00-00 wide w	as where /ill fit betv	a rectangle veen the bott	tom						
TOP CHORD	(ib) - Maximum Com Tension 1-2=0/51, 2-3=-2310 4-5=-1429/32, 5-6=0 7-8=-1429/32, 8-9=- 10-11=0/51)/0, 3-4=-2020/0,)/684, 6-7=0/684,		 All bearings capacity of 5 Provide med bearing plate 	ny other members are assumed to b 65 psi. chanical connection capable of withs uplift at joint 10.	e SP No n (by oth	.2 crushing ers) of truss	to					11.5	
BOT CHORD	2-18=-10/2025, 13-1 12-13=0/1603, 10-1 14-15=-96/0 5-7=-2272/0, 13-15= 4-17=0/724, 8-14=0/	2=0/2025, 15-17=-96 =-215/0, 17-18=0/618 /724, 12-14=0/618,	6/0,	11) This truss is International	designed in acco Residential Code nd referenced sta	e sections	s R502.11.1 a	and		4	i	OR FESS	ROUT	
this design 2) Wind: ASC Vasd=95m II; Exp B; E	CE 7-10; Vult=120mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed	been considered for (3-second gust) :DL=6.0psf; h=30ft; 0 nvelope) exterior zon	Cat. ne;									SEA 0363 WGIN C A. C May		WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW


A MiTek Affili

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Bonnet A - Lot 1 - Fairground Farms	
4052105	A03	Common	1	1	Job Reference (optional)	165813879

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Fri May 24 08:12:38 ID:sUKJuvhly7DnLmiEEGzHsXzAcnH-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:62.2

Plate Offsets (X, Y): [2:0-7-4,0-1-1], [6:0-2-0,Edge], [10:0-7-4,0-1-1]

			-	-									
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 23.1/30.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-S	0.71 0.89 0.57	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.28 -0.49 0.05	(loc) 11-12 13-14 10	l/defl >999 >581 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 139 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	SP SS 2x6 SP No.2 *Excep 2x4 SP No.3 Structural wood she 3-7-7 oc purlins. Rigid ceiling directly bracing. Except: 6-0-0 oc bracing: 13 (size) 2=0-3-8, Max Horiz 2=99 (LC	athing directly applie applied or 10-0-0 oc -16 10= Mechanical 16)	2 4) d or 5) :	DOL=1.15 P snow); Pf=2: Plate DOL= Ct=1.10 Unbalanced design. This truss ha load of 12.0 overhangs n All plates are This truss ha chord live lo	57-10; Pr=20.0 ps late DOL=1.15); F 3.1 psf (flat roof sr 1.15); Category II; snow loads have as been designed psf or 2.00 times i on-concurrent witt a 2x4 MT20 unless as been designed ad nonconcurrent nas been designed	Pg=30.0 how: Lun Exp B; F been con for great flat roof I h other li s otherwi for a 10. with any	besf (ground aber DOL=1.1 Partially Exp.; histidered for t er of min rool bad of 23.1 p ve loads. se indicated. 0 psf bottom other live loa	15 his f live sf on ads.					
FORCES TOP CHORD BOT CHORD	Max Uplift 2=-19 (LC Max Grav 2=1212 (I (lb) - Maximum Com Tension 1-2=0/51, 2-3=-2314 4-5=-1441/33, 5-6=(7-8=-1439/32, 8-9=- 2-17=-11/2026, 12-1	LC 4), 10=1149 (LC 4 ppression/Maximum 4/0, 3-4=-2039/0, 0/676, 6-7=0/679, 2047/0, 9-10=-2339/	9) 10 0 11	3-06-00 tall I chord and an Bearings are capacity of 5 0) Refer to gird 1) Provide med	m chord in all area by 1-00-00 wide w by other members a assumed to be: . 65 psi. er(s) for truss to tri hanical connectio a capable of withs	rill fit betw , with BC Joint 2 S russ coni n (by oth	veen the bott DL = 10.0ps P No.2 crushinections. ers) of truss	f. ing to				Samu	
WEBS	10-11=0/2058, 14-10 5-7=-2277/0, 12-14= 4-16=0/741, 8-13=0, 3-17=-473/153, 9-11	6=-94/0, 13-14=-94/0 =-215/0, 16-17=0/636 (758, 11-13=0/652, 1=-507/158) 5, 12 L(10 and 19 lb 2) This truss is International	uplift at joint 2. designed in accor Residential Code nd referenced sta	rdance w	ith the 2015 8 R502.11.1 a			4	i	ORTH CA	ROLL
this design 2) Wind: ASC Vasd=95n II; Exp B; I	ed roof live loads have n. CE 7-10; Vult=120mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er Left and right exposed	(3-second gust) DL=6.0psf; h=30ft; C velope) exterior zon	Cat. e;									SEA 0363	• –

cantilever left and right exposed ; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

G mmm May 24,2024

Job	Truss	Truss Type	Qty	Ply	Bonnet A - Lot 1 - Fairground Farms	
4052105	A04	Common	8	1	Job Reference (optional)	165813880

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Fri May 24 08:12:38 Page: 1 ID:hAIRHa9rXPG69wmwafhgUzzAcmf-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f -0-11-0 0-11-0 6-3-7 12-0-8 17-9-9 24-1-0 5-9-1 5-9-1 6-3-7 6-3-7 4x6= 4 1<u>2</u> 6Γ 9 10 2x4 🎣 2x4 💊 3 5 6 0-4-3 rt I 2 8 12 7 11 3x4 = 3x4 = 5x6= 3x4 =

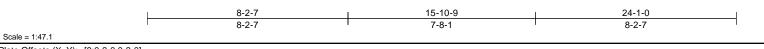


Plate Offsets (X, Y): [8:0-3-0,0-3-0]

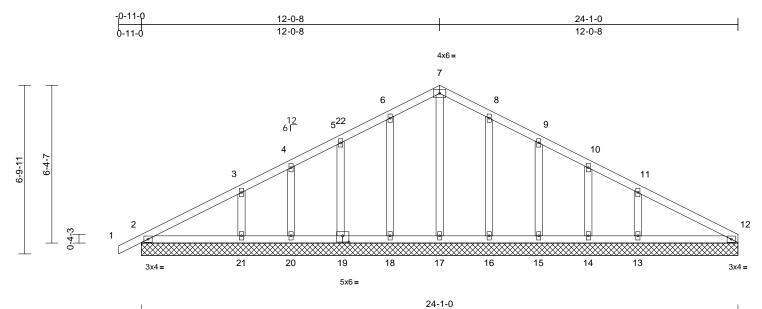
6-4-7

6-9-11

	(X, T). [0.0-3-0,0-3-0]	-											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL LUMBER TOP CHORD	(psf) 20.0 23.1/30.0 10.0 0.0* 10.0 2x4 SP No.2	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201		CSI TC BC WB Matrix-S s been designed to psf or 2.00 times for				(loc) 7-8 6-7 6	l/defl >999 >954 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 109 lb	GRIP 244/190 FT = 20%
BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.3 Structural wood she 3-2-15 oc purlins.		2	overhangs n This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar	on-concurrent with as been designed ad nonconcurrent has been designed in chord in all area by 1-00-00 wide w hy other members.	n other li for a 10. with any d for a liv s where ill fit betw , with BC	ve loads. O psf bottom other live loa e load of 20. a rectangle veen the bott CDL = 10.0ps	ads. Opsf tom if.					
REACTIONS FORCES TOP CHORD BOT CHORD WEBS	Max Horiz 2=98 (LC Max Uplift 2=-71 (LC Max Grav 2=1101 (L (Ib) - Maximum Com Tension 1-2=0/44, 2-3=-1809 4-5=-1603/127, 5-6=	: 12), 6=-53 (LC 13) LC 1), 6=1027 (LC 1) pression/Maximum 0/109, 3-4=-1588/123 1809/113 39/1560) 3, L (capacity of 5 Refer to gird Provide mec bearing plate 6 and 71 lb u) This truss is International	er(s) for truss to tr hanical connection e capable of withst uplift at joint 2. designed in accor Residential Code nd referenced star	uss conr n (by oth anding 5 dance w sections	nections. ers) of truss 3 lb uplift at ith the 2015 5 R502.11.1 a	to joint					
this design 2) Wind: ASC Vasd=95n II; Exp B; I cantilever plate grip 3) TCLL: ASC DOL=1.15 snow); Pf=	ed roof live loads have n. CE 7-10; Vult=120mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed DOL=1.60 CE 7-10; Pr=20.0 psf (i Plate DOL=1.15); Pg= =23.1 psf (flat roof snov .=1.15); Category II; Ex	(3-second gust) DL=6.0psf; h=30ft; C ivelope) exterior zon ; Lumber DOL=1.60 roof live load: Lumbe =30.0 psf (ground w: Lumber DOL=1.1!	Cat. e; er									SEA 0363	L 22

4) Unbalanced snow loads have been considered for this design.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


818 Soundside Road Edenton, NC 27932

Unuminity May 24,2024

Job	Truss	Truss Type	Qty	Ply	Bonnet A - Lot 1 - Fairground Farms	
4052105	A05	Common Supported Gable	1	1	Job Reference (optional)	165813881

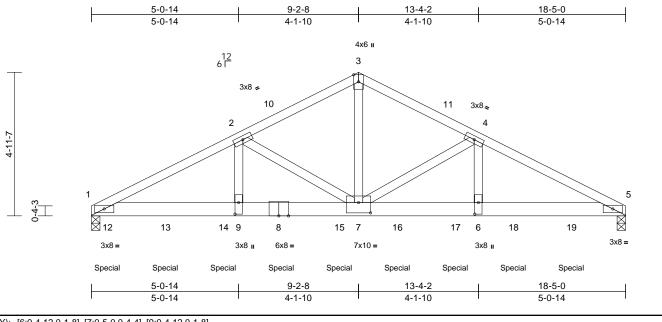
Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Fri May 24 08:12:38 ID:Wbe76RRH6U9rPS0LQ?b3wpzAcmI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:46.5

Plate Offsets	(X, Y):	[19:0-3-0,0-3-0]	
	(,, ,).	[15.0 5 0,0 5 0]	

Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.21	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	23.1/30.0	Lumber DOL	1.15		BC	0.12	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES		WB	0.10	Horz(CT)	0.00	12	n/a	n/a		
BCLL	0.0*	Code	IRC201	5/TPI2014	Matrix-S								
BCDL	10.0											Weight: 126 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD	6-0-0 oc purlins.	athing directly applied applied or 10-0 oc	1) 2)	this design. Wind: ASCE Vasd=95mph II; Exp B; End cantilever left plate grip DC Truss design	ned for wind loads	ph (3-sec 3CDL=6.0 envelope ed ; Lumb s in the p	cond gust) Opsf; h=30ft; (e) exterior zon per DOL=1.60 lane of the tru	Cat. ne; o	bea 2, 3 uplit 16, uplit 14) Bev suff 15) This	ring plat 6 lb upli ft at join 39 lb up ft at join reled pla face with s truss is	te capa ft at jo t 20, 6 blift at j t 13. tte or s n truss s desig	able of withstand int 18, 37 lb upliff 7 lb uplift at joint oint 15, 19 lb upli shim required to p chord at joint(s) uned in accordance	ce with the 2015
	(size) 2=24-1-0, 14=24-1-(17=24-1-(20=24-1-(20=24-1-(Max Horiz 2=98 (LC Max Uplift 2=-5 (LC 14=-19 (L 16=-34 (L 19=-37 (L 21=-67 (L Max Grav 2=219 (LC 13=357 (L 15=216 (L 17=222 (L	13), 13=-72 (LC 13), C 13), 15=-39 (LC 13 C 13), 18=-36 (LC 12 C 12), 20=-20 (LC 12 C 12) C 1), 12=148 (LC 1), LC 20), 14=94 (LC 1), LC 20), 16=262 (LC 6 C 25), 18=256 (LC 5 LC 19), 20=103 (LC 1)	1-0, 1-0, 4)), 5)), 5)), 6)), 7)), 8)), 9)	see Standard or consult qu TCLL: ASCE DOL=1.15 Pl snow); Pf=23 Plate DOL=1 Ct=1.10 Unbalanced : design. This truss ha load of 12.0 p overhangs no All plates are Gable require Gable studs :	ds exposed to wi d Industry Gable E alified building de 7-10; Pr=20.0 ps ate DOL=1.15); F b.1 psf (flat roof sr .15); Category II; snow loads have s been designed osf or 2.00 times 1 on-concurrent with 2x4 MT20 unless as continuous bot spaced at 2-0-0 o	End Deta signer as f (roof liv 2g=30.0 p low: Lum Exp B; F been cor for greate lat roof lo n other liv s otherwit tom chor c.	ils as applicat s per ANSI/TF e load: Lumbi- sof (ground liber DOL=1.1 Partially Exp.; ansidered for th er of min roof pad of 23.1 ps ve loads. se indicated. d bearing.	ble, PI 1. er 5 his live		2.10.2	and ref	ferenced standar	tions R502.11.1 and d ANSI/TPI 1.
FORCES	(lb) - Maximum Com Tension	'		chord live loa	s been designed ad nonconcurrent	with any	other live load			4	is	100	1230
TOP CHORD	1-2=0/43, 2-3=-116/ 4-5=-48/87, 5-6=-48 7-8=-59/121, 8-9=-5 10-11=-62/32, 11-12	/109, 6-7=-57/127, 3/85, 9-10=-38/50, 2=-75/56		on the botton 3-06-00 tall b chord and an	as been designed n chord in all area by 1-00-00 wide w by other members are assumed to be	is where ill fit betv , with BC	a rectangle veen the botto DL = 10.0psf.	om		11111		SEA 0363	• —
BOT CHORD	2-21=-5/79, 20-21=- 17-18=-5/80, 16-17= 14-15=-5/80, 13-14=	-5/80, 15-16=-5/80,	12	capacity of 5			2 510011119					NO. SNGIN	FERIX
WEBS	7-17=-122/0, 6-18=- 4-20=-85/39, 3-21=-	195/58, 5-19=-157/63 248/106, 8-16=-199/5 I=-79/36, 11-13=-262/	57,									201111	

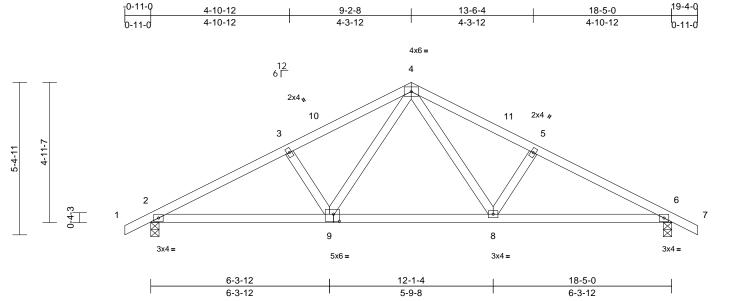

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Bonnet A - Lot 1 - Fairground Farms	
4052105	B01G	Common Girder	1	2	Job Reference (optional)	165813882

Scale = 1:39.7

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Fri May 24 08:12:39 ID:9Au5CMoTHOpkOvkwdacsbxzAcIr-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Plate Offsets (X, Y): [6:0-4-12,0-1-8	3], [7:0-5-0,0-4-4], [9:0)-4-12,0-1-8]							
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 23.1/30.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2015/TPI2014	CSI TC 0.80 BC 0.62 WB 0.64 Matrix-S	Vert(CT) -0	in (loc) 0.12 6-7 0.22 6-7 0.06 5	l/defl L/d >999 240 >984 180 n/a n/a	MT20	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	3-2-15 oc purlins. Rigid ceiling directly bracing. (size) 1=0-3-8, \$	ot* 7-3:2x4 SP No.2 athing directly applied applied or 10-0-0 oc 5=0-3-8	d or d or d or d or d or d or d or d or	E 7-10; Vult=120mph (3-sec oh; TCDL=6.0psf; BCDL=6.1 nclosed; MWFRS (envelope aft and right exposed ; Lumt OL=1.60 E 7-10; Pr=20.0 psf (roof liv Plate DOL=1.15); Pg=30.0 p 23.1 psf (flat roof snow: Lum 1.15); Category II; Exp B; F d snow loads have been cor	Opsf; h=30ft; Cat e) exterior zone; ber DOL=1.60 re load: Lumber osf (ground her DOL=1.15 Partially Exp.;	. În Ui Co	crease=1.15 niform Loads (Vert: 1-3=-66 oncentrated L Vert: 8=-1007 14=-1007 (B)	(lb/ft) , 3-5=-66, 1-5=-20), 13=-1007 (B), 6=-1007 (B),	
	Max Horiz 1=-65 (LC Max Uplift 1=-303 (L Max Grav 1=5732 (L (Ib) - Maximum Com Tension 1-2=-9016/555, 2-3= 3-4=-6171/410, 4-5= 1-9=-510/8002, 7-9= 6-7=-450/7961, 5-6= 2-9=-95/2522, 2-7=- 3-7=-304/5190, 4-7= 4-6=-100/2479	LC 12), 5=-312 (LC 13 LC 1), 5=4988 (LC 1) pression/Maximum =-6171/410, =-8970/560 =-510/8002, =-450/7961 2993/256,	 design. 7) This truss h chord live l\u00e9 8) * This truss on the botto 3-06-00 tall chord and a 9) All bearings crushing ca 10) Provide me bearing play 	 design. 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 1-00-00 wide will fit between the bottom chord and any other members. 						
 (0.131"x3" Top chord: oc. Bottom ch- staggered Web conn. 2) All loads a except if n CASE(S) s provided tu unless oth 	to be connected toge) nails as follows: s connected as follows ords connected as follows at 0-3-0 oc. re considered equally oted as follows: 2x4 - re considered equally oted as front (F) or ba section. Ply to ply com o distribute only loads erwise indicated. ed roof live loads have h.	s: 2x4 - 1 row at 0-9-0 ows: 2x6 - 2 rows - 1 row at 0-9-0 oc. applied to all plies, ck (B) face in the LO/ hections have been noted as (F) or (B),	AD 10-67.2 k AD 10-72 k AD 10-72 k AD 10-72 k AD 10-67.2 k AD 10-67.2 k AD 10-67.2 k AD 10-72 k	s designed in accordance w al Residential Code sections and referenced standard AN or other connection device(s ifficient to support concentra d 11 lb up at 0-6-12, 1007 ll 2, 1007 lb down and 65 lb u vn and 65 lb up at 6-6-12, 1 8-6-12, 1007 lb down and 6 07 lb down and 65 lb up at vn and 65 lb up at 14-6-12, 55 lb up at 16-6-12 on botto ction of such connection de ty of others.) Standard	8 R502.11.1 and ISI/TPI 1.) shall be ated load(s) 1135 b down and 65 lb up at 4-6-12, 1007 lb down and 55 lb up at 12-6-12, and and 1007 lb m chord. The	5	Contraction of the	SEA 0363	22 EERCH III	


May 24,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Bonnet A - Lot 1 - Fairground Farms		
4052105	B02	Common	8	1	Job Reference (optional)	165813883	

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Fri May 24 08:12:39 ID:a6CMgSsfZQvEyRTqn3BV9UzAckT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:40.7

Plate Offsets (X, Y): [9:0-2-8,0-3-0]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 23.1/30.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC207	5/TPI2014	CSI TC BC WB Matrix-S	0.33 0.44 0.19	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.05 -0.11 0.03	(loc) 6-8 6-8 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 85 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD	2x4 SP No.2 2x4 SP No.3 Structural wood she 4-8-14 oc purlins. Rigid ceiling directly bracing. (size) 2=0-3-8, 1 Max Horiz 2=72 (LC Max Uplift 2=-58 (LC Max Grav 2=852 (LC (lb) - Maximum Com Tension 1-2=0/44, 2-3=-1344	16) C 12), 6=-58 (LC 13) C 1), 6=852 (LC 1) npression/Maximum 4/79, 3-4=-1180/93,	8 9	load of 12.0 overhangs r Chord live lo * This truss on the botto 3-06-00 tall chord and a All bearings capacity of § Provide med bearing plat 2 and 58 lb 0) This truss is Internationa	as been designed psf or 2.00 times f ion-concurrent with as been designed ad nonconcurrent has been designed m chord in all area by 1-00-00 wide w ny other members are assumed to be 655 psi. chanical connection e capable of withst uplift at joint 6. designed in accor I Residential Code nd referenced stai	ilat roof I n other li for a 10. with any d for a liv is where ill fit betv e SP No n (by oth tanding f rdance w sections	bad of 23.1 p ve loads. 0 psf bottom other live loa re load of 20. a rectangle veen the bott 2 crushing ers) of truss 8 lb uplift at ith the 2015 s R502.11.1 a	osf on ads. .0psf tom to joint					
 this design Wind: AS0 Vasd=95n II; Exp B; cantilever plate grip TCLL: AS0 	5-8=-310/131 ed roof live loads have	9/1135 10/131, 4-8=-46/464 been considered for (3-second gust) DL=6.0psf; h=30ft; C tvelope) exterior zon ; Lumber DOL=1.60 (roof live load: Lumber	, Cat. e;	OAD CASE(S)	Standard						in the second seco	OR TH CA	L

- TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=30.0 psf (ground snow); Pf=23.1 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.

SEAL 036322 MGINEER May 24,2024

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty Ply		Bonnet A - Lot 1 - Fairground Farms	105040004	
4052105	B03	Common Supported Gable	1	1	Job Reference (optional)	l65813884	

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Fri May 24 08:12:39 ID:kJmX414SSfyHPZy???_P44zAchc-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

-11-0 19-4-0 9-2-8 18-5-0 9-2-8 9-2-8 0-11-0 4x6 = 6 7 12 6 Г 5 20 21 4 8 4-11-7 5-4-11 3 9 Þ 10 0-4-3 11 ¢ $\overline{\mathbf{X}}$ ∞ \times \sim 19 18 17 1622 15 2314 13 12 3x4 = 3x4 = 3x4 = 18-5-0 Scale = 1:40.3 Loading 2-0-0 CSI DEFL l/defl L/d PLATES GRIP (psf) Spacing in (loc) TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.11 Vert(LL) n/a 999 MT20 244/190 n/a Snow (Pf/Pg) 23 1/30 0 Lumber DOL 1 15 BC 0.07 Vert(CT) n/a n/a 999 TCDL 10.0 Rep Stress Incr YES WB 0.06 Horz(CT) 0.00 10 n/a n/a BCLL 0.0 Code IRC2015/TPI2014 Matrix-S BCDI 10.0 Weight: 89 lb FT = 20%

BCDL		10.0								
LUMBER TOP CHORD		• ?								
BOT CHORD										
OTHERS	2x4 SP N 2x4 SP N									
•••••	284 SP IN	ZAT OF INU.O								
BRACING	-									
TOP CHORD		Structural wood sheathing directly applied or 6-0-0 oc purlins.								
BOT CHORD	Riaid ceil	Rigid ceiling directly applied or 10-0-0 oc								
	bracing.	bracing.								
REACTIONS	(size)	2=18-5-0,	10=18-5-0, 12=18-5-0,							
		13=18-5-0	, 14=18-5-0, 15=18-5-0,							
		16=18-5-0	, 18=18-5-0, 19=18-5-0							
		2=72 (LC 12)								
	Max Uplift	2=-7 (LC 13), 10=-13 (LC 13),								
		12=-51 (L	C 13), 13=-29 (LC 13),							
			C 13), 16=-38 (LC 12),							
		18=-29 (L	C 12), 19=-52 (LC 12)							
	Max Grav	2=191 (LC	C 1), 10=191 (LC 1),							
		12=266 (L	.C 1), 13=141 (LC 20),							
		14=235 (L	.C 20), 15=215 (LC 25),							
		16=235 (L	.C 19), 18=141 (LC 19),							
		19=266 (L	.C 1)							
FORCES	(lb) - Max	imum Com	pression/Maximum							
	Tension									
TOP CHORD	1-2=0/43,	2-3=-89/59	9, 3-4=-56/62,							
	4-5=-41/8	2, 5-6=-56/	102, 6-7=-56/96,							
	7-8=-41/5	8, 8-9=-51/	32, 9-10=-66/38,							
	10-11=0/4	43								

BOT CHORD 2-19=-2/68, 18-19=-2/68, 16-18=-2/68, 15-16=-2/68, 14-15=-2/68, 13-14=-2/68, 12-13=-2/68, 10-12=-2/68 WEBS 6-15=-110/0, 5-16=-191/63, 4-18=-113/50, 3-19=-195/84, 7-14=-191/62, 8-13=-113/50, 9-12=-195/84

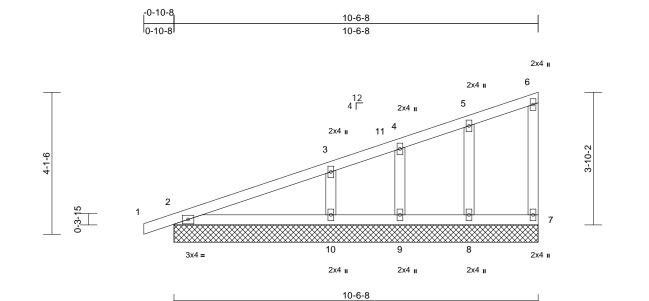
NOTES

Unbalanced roof live loads have been considered for 1) this design.

- Wind: ASCE 7-10; Vult=120mph (3-second gust) 2) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss
 - only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable. or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber 4) DOL=1.15 Plate DOL=1.15); Pg=30.0 psf (ground snow); Pf=23.1 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1 10
- 5) Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 23.1 psf on overhangs non-concurrent with other live loads All plates are 2x4 MT20 unless otherwise indicated.
- 8) Gable requires continuous bottom chord bearing.
- Gable studs spaced at 2-0-0 oc. 9)
- 10) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. 11) * This truss has been designed for a live load of 20.0psf
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 1-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 12) All bearings are assumed to be SP No.2 crushing
- capacity of 565 psi.
- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 7 lb uplift at joint 2, 38 lb uplift at joint 16, 29 lb uplift at joint 18, 52 lb uplift at joint 19, 37 lb uplift at joint 14, 29 lb uplift at joint 13, 51 lb uplift at joint 12 and 13 lb uplift at joint 10.
- 14) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

818 Soundside Road


Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Bonnet A - Lot 1 - Fairground Farms	
4052105	M01	Monopitch Supported Gable	1	1	Job Reference (optional)	165813885

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Fri May 24 08:12:39 ID:CbRdZdvkCsfUA9kGY_jbNezAcgX-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:33.4

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 23.1/30.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-S	0.25 0.15 0.06	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 7	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 47 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, exi Rigid ceiling directly bracing. (size) 2=10-6-8, 9=10-6-8, Max Horiz 2=127 (LC Max Uplift 2=-17 (LC (LC 12), 9 12) Max Grav 2=225 (LC	cept end verticals. applied or 10-0-0 oc 7=10-6-8, 8=10-6-8 10=10-6-8 2 8), 7=-10 (LC 8), 8= 9=-14 (LC 8), 10=-56 2 19), 7=76 (LC 19), 2 19), 9=96 (LC 19),	DOL=1.15 snow); Pf- Plate DOL Ct=1.10 4) Unbalance design. 5) This truss load of 12. overhangs 6) All plates a 7) Gable stud 8) Gable stud 9) This truss chord live (LC 10) * This trus on the bot 3-06-00 ta chord and	E 7-10; Pr=20.0 p Plate DOL=1.15); 23.1 psf (flat roof =1.15); Category I d snow loads hav has been designe 0 psf or 2.00 time: non-concurrent w tre 2x4 MT20 unle tires continuous b is spaced at 2-0-0 has been designe oad nonconcurrers has been designe om chord in all ard I by 1-00-00 wide any other membe s are assumed to	Pg=30.0 ; snow: Lum I; Exp B; F e been cor d for greats s flat roof le ith other li in sss otherwi ottom chor oc. d for a 10.0 th with any ed for a liv eas where will fit betv rs.	bef (ground ber DOL=1.1 Partially Exp.; hsidered for the er of min roof bad of 23.1 p by loads. se indicated. d bearing. D psf bottom other live loa e load of 20.0 a rectangle ween the bottom	5 his f live sf on ds. Dpsf					
ORCES	(lb) - Maximum Com Tension	•	capacity o			-	to					
Vasd=95n II; Exp B; cantilever plate grip 2) Truss des only. For see Stand	4-5=-37/30, 5-6=-32	 /13, 6-7=-62/18 2, 8-9=-1/2, 7-8=-1/2 9/28, 3-10=-285/101 (3-second gust) DL=6.0psf; h=30ft; C ivelope) exterior zon ; Lumber DOL=1.60 in the plane of the tru (normal to the face) d Details as application 	bearing pla 7, 17 lb up at joint 9 a 13) Beveled p surface wi 14) This truss Cat. Internation e; R802.10.2 LOAD CASE(ss , ple,	ate capable of with lift at joint 2, 28 lb nd 56 lb uplift at jc ate or shim requir h truss chord at jc s designed in acc al Residential Coo and referenced st	Istanding 1 uplift at joi pint 10. ed to provi pint(s) 2. ordance w de sections	0 lb uplift at j nt 8, 14 lb up de full bearin ith the 2015 5 R502.11.1 a	oint Ilift g		Con and a second		SEA 0363	• -

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone

818 Soundside Road Edenton, NC 27932

G mmm May 24,2024

and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

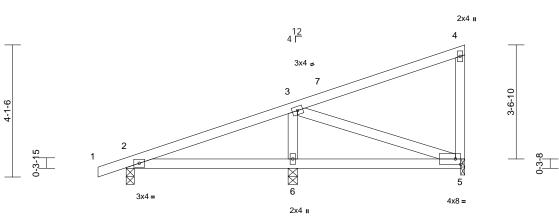
Job	Truss	Truss Type	Qty	Ply	Bonnet A - Lot 1 - Fairground Farms		
4052105	M02	Monopitch	6	1	Job Reference (optional)	165813886	

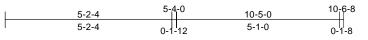
5-2-4

5-2-4

Builders FirstSource (Albermarle), Albemarle, NC - 28001,

-0-10-8


0-10-8


Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Fri May 24 08:12:39 ID:SDA0QOS13BnKXqWs1t0cZdzAceX-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

10-6-8

5-4-4

Page: 1

Scale = 1:35.9

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 23.1/30.0 10.0 0.0* 10.0	Plate Grip DOL 1 Lumber DOL 1 Rep Stress Incr Y	-0-0 .15 .15 /ES RC2015/TPI2014	CSI TC BC WB Matrix-S	0.45 0.24 0.09	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.02 -0.03 0.00	(loc) 5-6 5-6 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 48 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 2=0-3-0, 5 Max Horiz 2=127 (LC	5=0-1-8, 6=0-3-8 2 8) 2 8), 5=-37 (LC 8), 6=-58 2 1), 5=230 (LC 19),	 chord live loa * This truss H on the bottor 3-06-00 tall H chord and ar 7) All bearings capacity of 5 8) Bearing at jo using ANSI/ designer sho 9) Provide mect bearing plate 10) Provide mect bearing plate 2, 58 lb uplifi 	is been designed for ad nonconcurrent w has been designed in chord in all areas by 1-00-00 wide will by other members. are assumed to be 65 psi. int(s) 5 considers p ICPI 1 angle to grain uld verify capacity hanical connection at joint(s) 5. hanical connection capable of withstat at joint 6 and 37 lb designed in accore	vith any for a liv where I fit betv SP No. SP No. of beari (by oth (by oth anding 3 o uplift a	other live loz e load of 20. a rectangle ween the bott 2 crushing to grain value a. Building ng surface. ers) of truss i 2 lb uplift at j t joint 5.	Opsf om to to					
FORCES TOP CHORD	(lb) - Maximum Com Tension 1-2=0/29, 2-3=-94/33 4-5=-183/53			Residential Code s nd referenced stan Standard		and						
BOT CHORD	2-6=-31/34, 5-6=-31/	/34										
WEBS	3-6=-430/126, 3-5=-	12/30									CONTRACTOR	10.
Vasd=95n II; Exp B; I cantilever plate grip 2) TCLL: AS	Enclosed; MWFRS (en left and right exposed	DL=6.0psf; h=30ft; Cat. velope) exterior zone; ; Lumber DOL=1.60 roof live load: Lumber							6	and a start	ATH CA	

- DOL=1.15 Plate DOL=1.15); Pg=30.0 psf (ground snow); Pf=23.1 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 23.1 psf on overhangs non-concurrent with other live loads.

annun an CHILDRAN MARK G mmm May 24,2024

036322

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

