

RE: 4052124 Bonnet A - Lot 11 - Fairground Farms Trenco 818 Soundside Rd Edenton, NC 27932

Site Information:

Customer: Project Name: 4052124 Lot/Block: Address: City:

Model: Subdivision: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2015/TPI2014 Wind Code: Roof Load: 40.0 psf

Design Program: MiTek 20/20 8.6 Wind Speed: 120 mph Floor Load: N/A psf

This package includes 10 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date
1	165813877	A01	5/24/2024
2	165813878	A02	5/24/2024
3	165813879	A03	5/24/2024
4	165813880	A04	5/24/2024
5	l65813881	A05	5/24/2024
6	l65813882	B01G	5/24/2024
7	l65813883	B02	5/24/2024
8	l65813884	B03	5/24/2024
9	l65813885	M01	5/24/2024
10	165813886	M02	5/24/2024

The truss drawing(s) referenced above have been prepared by

Truss Engineering Co. under my direct supervision

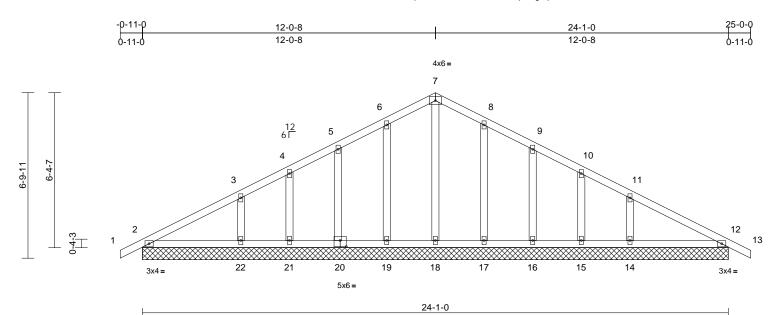
based on the parameters provided by Builders FirstSource (Albermarle,NC).

Truss Design Engineer's Name: Gilbert, Eric

My license renewal date for the state of North Carolina is December 31, 2024

North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.



Gilbert, Eric

Job	Truss	Truss Type	Qty	Ply	Bonnet A - Lot 11 - Fairground Farms	
4052124	A01	Common Supported Gable	1	1	Job Reference (optional)	165813877

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Fri May 24 08:12:37 ID:v2D8tW20?IBXcZpw7A8nfzzAcvr-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

12:37 Page: 1 C?f

Scale = 1:47.4

Plate Offsets (X, Y): [20:0-3-0,0-3-0]

Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		20.0	Plate Grip DOL	1.15		TC	0.18	Vert(LL)	n/a	(.00)	n/a	999	MT20	244/190
Snow (Pf/Pg)	23.1/		Lumber DOL	1.15		BC	0.12	Vert(CT)	n/a	-	n/a	999		
(0)				YES		WB		· · ·		12				
				IRC2015	5/TPI2014	Matrix-S		()						
BCDL		10.0	0000	1102010									Weight: 127 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wc 6-0-0 oc purl Rigid ceiling bracing. (size) 2= 15 18 21 Max Horiz 2= Max Uplift 2= Max Uplift 2= 14 16 19 21 Max Grav 2= 14 16 18 20 21 Max Grav 2= 14 16 18 20 21 Max Grav 2= 14 16 18 20 21 Max Grav 2= 16 18 20 21 Max Grav 2= 18 19 21 Max Grav 2= 18 19 21 Max Grav 2= 19 10 10 10 10 10 10 10 10 10 10 10 10 10	24-1-0, ins. directly 24-1-0; =24-1-0; =24-1-0; =24-1-0; =-77 (LC - =-77 (LC - =-36 (LL); =-36 (LL); =-36 (LL); =-314 (L); =219 (LC); =341 (L); =212 (L); =212 (L); =214 (L); =212 (L); =214 (L); =215 (L); =215 (L); =214 (L); =215 (L); =214 (L); =215 (L); =214 (L); =214 (L); =215 (L); =214 (L); =215 (L); =214 (L); =215 (L); =214 (L); =214 (L); =215 (L); =214 (L); =215 (L); =214 (L); =215 (L); =214 (L); =215 (L); =214 (L); =215 (L); =214 (L); =215 (L); =214 (L); =214 (L); =215 (L); =214 (L); =214 (L); =214 (L); =215 (L); =214 (L); =214 (L); =215 (L); =214 (L); =214 (L); =214 (L); =215 (L); =214 (L); =214 (L); =214 (L); =215 (L); =214 (L); =214 (L); =214 (L); =214 (L); =215 (L); =214 (13), 12=-8 (LC 13), C 13), 15=-21 (LC 13) C 13), 17=-34 (LC 13) C 12), 20=-37 (LC 12) C 12), 22=-67 (LC 12) C 12), 22=-67 (LC 12) C 12), 17=217 (LC 1), C 20), 15=101 (LC 1), C 20), 17=262 (LC 6) C 25), 19=259 (LC 5) C 19), 21=103 (LC 1) C 19) pression/Maximum 76, 3-4=-71/74, '113, 6-7=-58/132, 3/90, 9-10=-38/52, =-83/53, 12-13=0/43 4/87, 19-21=-4/87, -4/87, 16-17=-4/87,	NC 1) 2) or -0, -0, -0, -0, -0, -0, -0, -0,	this design. Wind: ASCE Vasd=95mpH II; Exp B; En cantilever lef plate grip DC Truss design only. For stu see Standard or consult qu TCLL: ASCE DOL=1.15 PI snow); Pf=22 Plate DOL=1 Ct=1.10 Unbalanced design. This truss ha load of 12.0 overhangs m All plates are Gable requirn Gable studs) This truss ha chord live loa) * This truss ha chord live loa) * This truss ha chord live loa) * This truss ha chord live loa	Matrix-S roof live loads haw 7-10; Vult=120m; ; TCDL=6.0psf; B closed; MWFRS (i and right expose bL=1.60 red for wind loads ds exposed to win I ndustry Gable E alified building de 7-10; Pr=20.0 ps ate DDL=1.15); P c.1 psf (flat roof sn .15); Category II; snow loads have I s been designed 1 bsf or 2.00 times f on-concurrent witt 2x4 MT20 unless as continuous bot spaced at 2-0-0 o s been designed 1 d nonconcurrent as been designed n chord in all area y 1-00-00 wide w y other members are assumed to be	bh (3-sec iCDL=6. envelope d ; Luml in the p nd (norm ind Deta signer a: f (roof liv g=30.0 p ow: Lum Exp B; F been cor for great lat roof liv to ther liv s other with to ther liv s other with a soft a 10.0 with any d for a liv s where ill fit betw	cond gust) Dpsf; h=30ft; C ane of the true al to the face) alane of the true al to the face) is as applicab s per ANSI/TP e load: Lumber sof (ground ber DOL=1.1! artially Exp.; artially Exp.; isidered for th er of min roof 1 and of 23.1 ps ve loads. se indicated. d bearing. D psf bottom other live loace e load of 20.0 a rectangle ween the botto DL = 10.0psf.	Cat. e; ss ble, ble, er 5 is live of on ds. psf om	bea 2, 3 uplit 17, uplit 14) Bev surf 15) This Inte R80 LOAD C	ring plat 6 lb upli ft at join 38 lb up ft at join eled pla ace witt s truss is rrationa j2.10.2 a CASE(S	te capa ft at jo t 21, 6 lift at jj t 14 ar te or s a design and rel) Sta	able of withstand int 19, 37 lb uplif 7 lb uplift at joint ioint 16, 21 lb upl d 8 lb uplift at jo shim required to chord at joint(5) ned in accordan dential Code sec ferenced standar	y others) of truss to ling 7 lb uplift at joint t at joint 20, 20 lb 22, 34 lb uplift at joint lift at joint 15, 67 lb int 12. provide full bearing 2. ce with the 2015 tions R502.11.1 and rd ANSI/TPI 1.
WEBS	7-18=-126/0,	6-19=-	-4/87, 12-14=-4/87 199/58, 5-20=-166/63									11	PIO GIN	E.E.P.
			248/106, 8-17=-199/5 =-85/39, 11-14=-248/										A. C.	IL DY IN
		,												1111
													Ma	y 24,2024

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Bonnet A - Lot 11 - Fairground Farms	
4052124	A02	Common	6	1	Job Reference (optional)	165813878

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Fri May 24 08:12:38

Page: 1

Builders FirstSource (Albermarle), Albemarle, NC - 28001,

I CLL (roof)		20.0	Plate Grip DOL	1.15			IC
Snow (Pf/Pg)	2	3.1/30.0	Lumber DOL	1.15			BC
TCDL		10.0	Rep Stress Incr	YES			WB
BCLL		0.0*	Code	IRC20)15	/TPI2014	Matrix-S
BCDL		10.0					
LUMBER					3)	TCLL: ASCE	7-10: Pr=2
TOP CHORD	2x4 SP 24 SP SS	400F 2.0E	or 2x4 SP DSS or 2		- /	DOL=1.15 Pl snow); Pf=23	late DOL=1
BOT CHORD WEBS	2x6 SP N 2x4 SP N		t* 17-14:2x4 SP No.	2		Plate DOL=1 Ct=1.10	.15); Categ
BRACING				4	4)	Unbalanced	snow loads
TOP CHORD	Structura	I wood shea	athing directly applie	ed or	-,	design.	
	3-8-4 oc				5)	This truss ha	
BOT CHORD	3	0 ,	applied or 10-0-0 or	0		load of 12.0 p overhangs no	
	bracing.			,	6)	All plates are	
	6-0-0 oc l	bracing: 14	-17		'		
REACTIONS	(size)	2=0-3-8, 1	0=0-3-8		7)	This truss ha	
	Max Horiz	2=-92 (LC	13)		2	chord live loa * This trues h	

Spacing

(psf)

2-0-0

Max Uplift 2=-20 (LC 12), 10=-20 (LC 13) Max Grav 2=1207 (LC 4), 10=1207 (LC 4) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/51, 2-3=-2310/0, 3-4=-2020/0, 4-5=-1429/32, 5-6=0/684, 6-7=0/684, 7-8=-1429/32, 8-9=-2020/0, 9-10=-2310/0, 10-11=0/51 BOT CHORD 2-18=-10/2025, 13-18=0/1603, 12-13=0/1603, 10-12=0/2025, 15-17=-96/0, 14-15 = -96/0WEBS 5-7=-2272/0, 13-15=-215/0, 17-18=0/618, 4-17=0/724, 8-14=0/724, 12-14=0/618, 3-18=-485/156, 9-12=-485/157

NOTES

Scale = 1:62.2

Loading

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-10; Vult=120mph (3-second gust) 2) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; Lumber DOL=1.60 plate grip DOL=1.60

Pr=20.0 psf (roof live load: Lumber DL=1.15); Pg=30.0 psf (ground (flat roof snow: Lumber DOL=1.15 ategory II; Exp B; Partially Exp.;

DEFL

Vert(LL)

Vert(CT)

Horz(CT)

0.71

0.89

0.57

in

-0.28

-0.49

0.05

(loc)

15 >579

10

12-13

l/defl

>999

n/a n/a

L/d

240

180

PLATES

Weight: 140 lb

MT20

GRIP

244/190

FT = 20%

CSI

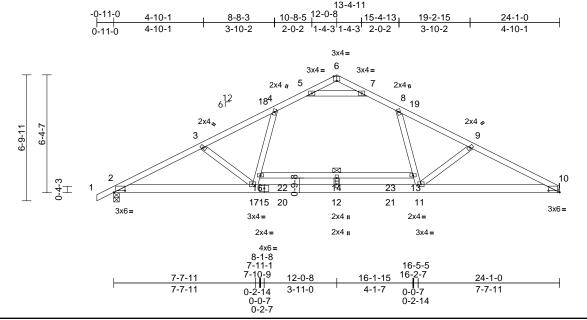
- oads have been considered for this
- designed for greater of min roof live 2.00 times flat roof load of 23.1 psf on current with other live loads. IT20 unless otherwise indicated.
- designed for a 10.0 psf bottom
- concurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 1-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. All bearings are assumed to be SP No.2 crushing
- capacity of 565 psi. 10) Provide mechanical connection (by others) of truss to

bearing plate capable of withstanding 20 lb uplift at joint 2 and 20 lb uplift at joint 10.

11) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard

VIIIIII WAARANTA SEAL 036322 G mmm May 24,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent bucking of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


818 Soundside Road

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Bonnet A - Lot 11 - Fairground Farms	
4052124	A03	Common	1	1	Job Reference (optional)	165813879

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Fri May 24 08:12:38 ID:sUKJuvhly7DnLmiEEGzHsXzAcnH-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:62.2

Plate Offsets (X, Y): [2:0-7-4,0-1-1], [6:0-2-0,Edge], [10:0-7-4,0-1-1]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 23.1/30.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-S	0.71 0.89 0.57	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.28 -0.49 0.05	(loc) 11-12 13-14 10	l/defl >999 >581 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 139 lb	GRIP 244/190 FT = 20%
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this desigr 2) Wind: ASC Vasd=95m II; Exp B; I	3-7-7 oc purlins. Rigid ceiling directly bracing. Except: 6-0-0 oc bracing: 13 (size) 2=0-3-8, ' Max Horiz 2=99 (LC Max Uplift 2=-19 (LC Max Grav 2=1212 (I (Ib) - Maximum Com Tension 1-2=0/51, 2-3=-2314 4-5=-1441/33, 5-6=(7-8=-1439/32, 8-9=- 2-17=-11/2026, 12-1 10-11=0/2058, 14-11 5-7=-2277/0, 12-14= 4-16=0/741, 8-13=0, 3-17=-473/153, 9-11 ed roof live loads have h. CE 7-10; Vult=120mph rDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed	t* 16-13:2x4 SP No.: athing directly applie applied or 10-0-0 oc -16 10= Mechanical 16) C 12), 10=-3 (LC 13) C 4), 10=1149 (LC 4 pression/Maximum 4/0, 3-4=-2039/0, 1/6-6, 6-7=0/679, 2047/0, 9-10=-2339/ 1/7=0/1613, 11-12=0/ 6=-94/0, 13-14=-94/0 =-215/0, 16-17=0/636 (758, 11-13=0/652, ==-507/158 been considered for (3-second gust) DL=6.0psf; h=30ft; C ivelope) exterior zon	2 d or 5 6 7 8 9 9 1613, 1 1613, 1 5, 1 1613, L	DOL=1.15 P snow); Pf=2: Plate DOL=1.10 Ct=1.10 Unbalanced design. Unbalanced design. This truss ha chord live loo This truss ha chord live loo This truss ha chord live loo 3-06-00 tall t chord and ar Bearings are capacity of 5 0) Refer to gird 1) Provide mec bearing plate bearing plate bear loo and 19 lb 2) This truss is International	er(s) for truss to t hanical connectic capable of withs uplift at joint 2. designed in acco Residential Code nd referenced sta	Pg=30.0 now: Lun Exp B; F been cou for great flat roof I h other II s otherwi for a 10. with any d for a Iiv as where vill fit betv s, with BC Joint 2 S russ com on (by oth tanding 3 rdance w	esf (ground ber DOL=1.: Partially Exp.; hsidered for t er of min rooi bad of 23.1 p ve loads. se indicated. D psf bottom other live load e load of 20. a rectangle veen the bott DL = 10.0ps No.2 crush hections. ers) of truss B lb uplift at jc ith the 2015 5 R502.11.1 a	15 ; this f live osf on ads. Opsf tom f. ing to bint				SEA 0363	• -

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

G mmm May 24,2024

Job	Truss	Truss Type	Qty Ply Bonnet A - Lot 11 - Fairground Farr		Bonnet A - Lot 11 - Fairground Farms	
4052124	A04	Common	8	1	Job Reference (optional)	l65813880

6-9-11

Loading

TCDL

BCLL

BCDL

WEBS

BRACING

FORCES

WEBS

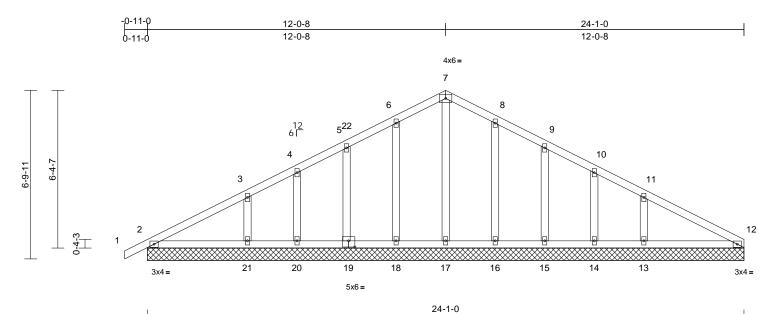
NOTES 1)

LUMBER

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Fri May 24 08:12:38 Page: 1 ID:hAIRHa9rXPG69wmwafhgUzzAcmf-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f -0-11-0 6-3-7 12-0-8 17-9-9 24-1-0 5-9-1 5-9-1 6-3-7 6-3-7 4x6= 4 12 6 Г 9 10 2x4 💊 2x4 🏿 3 5 6-4-7 6 0-4-3 8 11 12 7 3x4 = 3x4 = 5x6= 3x4 = 8-2-7 15-10-9 24-1-0 8-2-7 7-8-1 8-2-7 Scale = 1:47.1 Plate Offsets (X, Y): [8:0-3-0,0-3-0] Spacing 2-0-0 CSI DEFL in l/defl L/d PLATES GRIP (psf) (loc) TCLL (roof) 20.0 Plate Grip DOL 1.15 тс 0.64 Vert(LL) -0.15 7-8 >999 240 MT20 244/190 Snow (Pf/Pg) 23.1/30.0 Lumber DOL 1.15 BC 0.75 Vert(CT) -0.30 6-7 >954 180 10.0 Rep Stress Incr WB 0.27 Horz(CT) YES 0.05 6 n/a n/a 0.0 IRC2015/TPI2014 Matrix-S Code Weight: 109 lb 10.0 FT = 20% 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 23.1 psf on TOP CHORD 2x4 SP No 2 BOT CHORD 2x4 SP No 2 overhangs non-concurrent with other live loads. This truss has been designed for a 10.0 psf bottom 2x4 SP No.3 6) chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 7) TOP CHORD Structural wood sheathing directly applied or on the bottom chord in all areas where a rectangle 3-2-15 oc purlins. 3-06-00 tall by 1-00-00 wide will fit between the bottom BOT CHORD Rigid ceiling directly applied or 10-0-0 oc chord and any other members, with BCDL = 10.0psf. bracing. 8) Bearings are assumed to be: Joint 2 SP No.2 crushing **REACTIONS** (size) 2=0-3-8, 6= Mechanical capacity of 565 psi. Max Horiz 2=98 (LC 16) 9) Refer to girder(s) for truss to truss connections. Max Uplift 2=-71 (LC 12), 6=-53 (LC 13) 10) Provide mechanical connection (by others) of truss to Max Grav 2=1101 (LC 1), 6=1027 (LC 1) bearing plate capable of withstanding 53 lb uplift at joint (lb) - Maximum Compression/Maximum 6 and 71 lb uplift at joint 2. Tension 11) This truss is designed in accordance with the 2015 TOP CHORD 1-2=0/44, 2-3=-1809/109, 3-4=-1588/123, International Residential Code sections R502.11.1 and 4-5=-1603/127, 5-6=-1809/113 R802.10.2 and referenced standard ANSI/TPI 1. BOT CHORD 2-7=-119/1537. 6-7=-39/1560 LOAD CASE(S) Standard 4-8=-61/622, 3-8=-420/174, 4-7=-64/651, 5-7=-445/180 Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-10; Vult=120mph (3-second gust) 2) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber 3) DOL=1.15 Plate DOL=1.15); Pg=30.0 psf (ground snow); Pf=23.1 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


818 Soundside Road

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Bonnet A - Lot 11 - Fairground Farms	
4052124	A05	Common Supported Gable	1	1	Job Reference (optional)	165813881

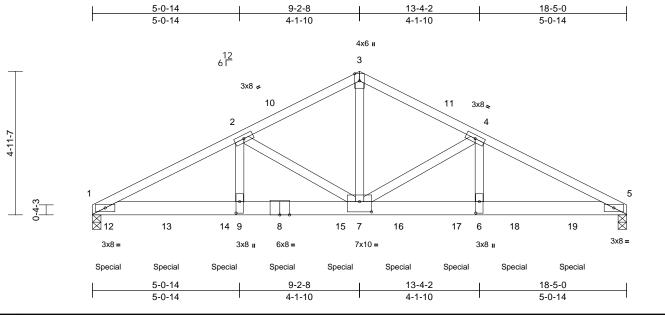
Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Fri May 24 08:12:38 ID:Wbe76RRH6U9rPS0LQ?b3wpzAcmI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:46.5

Plate Offsets (X, Y): [19:0-3-0,0-3-0]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 23.1/30.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI	2014	CSI TC BC WB Matrix-S	0.21 0.12 0.10	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 12	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 126 lb	GRIP 244/190 FT = 20%		
	2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 2=24-1-0 14=24-1- 17=24-1- 20=24-1 Max Horiz 2=98 (LC 14=-19 (L 16=-34 (l 19=-37 (l 21=-67 (l Max Grav 2=219 (L 13=357 (l 15=216 (l 17=222 (l)	13), 13=-72 (LC 13), _C 13), 15=-39 (LC 13), _C 13), 18=-36 (LC 12), _C 12), 20=-20 (LC 12), _C 12) C 1), 12=148 (LC 1), _LC 20), 14=94 (LC 1), _LC 20), 16=262 (LC 6), _LC 25), 18=256 (LC 5), _LC 19), 20=103 (LC 1), _LC 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,	this 2) Wir Vas d or II; E (a) Tri pla 3) Tri pla 3) Tri pla 3) Tri 0, see 1-0, or (a) 1-0, or (b) 1-0, or (c) 0, or (c) 1-0, or (c) 0, or (c) 1-0, or (c) 0,	 Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=30.0 psf (ground snow); Pf=23.1 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10 Unbalanced snow loads have been considered for this design. This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 23.1 psf on overhangs non-concurrent with other live loads. All plates are 2x4 MT20 unless otherwise indicated. Gable studs spaced at 2-0-0 oc. This truss has been designed for a 10.0 psf bottom 						 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 5 lb uplift at joint 2, 36 lb uplift at joint 18, 37 lb uplift at joint 19, 20 lb uplift at joint 20, 67 lb uplift at joint 21, 34 lb uplift at joint 16, 39 lb uplift at joint 15, 19 lb uplift at joint 14 and 72 uplift at joint 13. 14) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 2. 15) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard 					
FORCES TOP CHORD BOT CHORD	Tension 1-2=0/43, 2-3=-116 4-5=-48/87, 5-6=-48 7-8=-59/121, 8-9=-5 10-11=-62/32, 11-1 2-21=-5/79, 20-21= 17-18=-5/80, 16-17	8/109, 6-7=-57/127, 53/85, 9-10=-38/50, 2=-75/56	chc 11) * TI on 3-0 chc 12) All	ord live loa his truss h the bottom 6-00 tall b ord and an	d nonconcurrent as been designed in chord in all area y 1-00-00 wide w y other members are assumed to be	with any d for a liv is where ill fit betw , with BC	other live load e load of 20.0 a rectangle veen the botto CDL = 10.0psf)psf om		Contraction .		SEA 0363	• -		
WEBS	7-17=-122/0, 6-18= 4-20=-85/39, 3-21=	3780, 12-13=-3780 -195/58, 5-19=-157/63 -248/106, 8-16=-199/5 4=-79/36, 11-13=-262	57,												


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Bonnet A - Lot 11 - Fairground Farms	
4052124	B01G	Common Girder	1	2	Job Reference (optional)	165813882

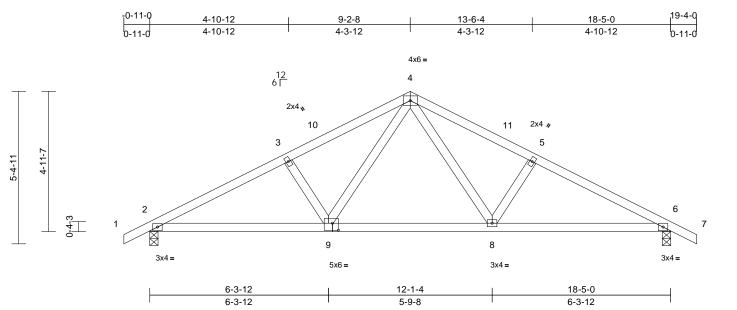
Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Fri May 24 08:12:39 ID:9Au5CMoTHOpkOvkwdacsbxzAclr-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:39.7

Plate Offsets (X, Y): [6:0-4-12,0-1-8], [7:0-5-0,0-4-4], [9:0-4-12,0-1-8]

·`			,											
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.80		-0.12	6-7	>999	240	MT20	244/190	
Snow (Pf/Pg)	23.1/30.0	Lumber DOL	1.15		BC	0.62	• • •	-0.22	6-7	>984	180			
TCDL	10.0	Rep Stress Incr	NO		WB	0.64	Horz(CT)	0.06	5	n/a	n/a			
BCLL	0.0*	Code	IRC20	15/TPI2014	Matrix-S		- (-)							
BCDL	10.0											Weight: 200 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x6 SP 2400F 2.0E 2x4 SP No.3 *Excep Structural wood she 3-2-15 oc purlins. Rigid ceiling directly bracing.	ot* 7-3:2x4 SP No.2 athing directly applie	ed or ⁵	Vasd=95mp II; Exp B; En cantilever le plate grip D0 TCLL: ASCE DOL=1.15 P snow); Pf=2: Plate DOL=	7-10; Vult=120m n; TCDL=6.0psf; I closed; MWFRS t and right exposed L=1.60 : 7-10; Pr=20.0 ps late DOL=1.15); F 3.1 psf (flat roof si .15); Category II;	GCDL=6. (envelope ed ; Lumb f (roof liv Pg=30.0 p now: Lum	Opsf; h=30ft; (e) exterior zor oer DOL=1.60 re load: Lumb osf (ground uber DOL=1.1	Cat. ne;) er	, Ui	crease= niform Lo Vert: 1-3 oncentra Vert: 8= 14=-100	1.15 bads (II 3=-66, ited Los -1007 07 (B),	o/ft) 3-5=-66, 1-5=-20), 13=-1007 (B), 5=-1007 (B),	
	0	C 36) .C 12), 5=-312 (LC 1	3) -	design.) This truss ha	snow loads have	for a 10.	0 psf bottom							
FORCES	(lb) - Maximum Com Tension	pression/Maximum	8	 chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 										
TOP CHORD	1-2=-9016/555, 2-3= 3-4=-6171/410, 4-5=			on the bottom chord in all areas where a rectangle 3-06-00 tall by 1-00-00 wide will fit between the bottom chord and any other members.										
BOT CHORD	1-9=-510/8002, 7-9= 6-7=-450/7961, 5-6=	-510/8002,	ę) All bearings	are assumed to b		00F 2.0E or D	SS						
WEBS	2-9=-95/2522, 2-7=- 3-7=-304/5190, 4-7= 4-6=-100/2479	2993/256,	1	 crushing capacity of 660 psi. 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 303 lb uplift at joint 1 and 312 lb uplift at joint 5. 									unin,	
NOTES			1		designed in acco		ith the 2015					TH UA	ROUL	
1) 2-ply truss	to be connected toge	ther with 10d			Residential Code			nd			1	Ch isias	Dolling	
) nails as follows:				nd referenced sta						10		No and	
Top chord	s connected as follows	s: 2x4 - 1 row at 0-9-	0 1		other connection							in the second	1	
oc.					ficient to support					1	< 1			
	ords connected as foll	ows: 2x6 - 2 rows			11 lb up at 0-6-1 1, 1007 lb down ai			ai c		=	:	SEA	L : =	
	at 0-3-0 oc. ected as follows: 2x4 -	1 row at 0-9-0 cc			n and 65 lb up at			and		=	•	0363	22 =	
	are considered equally			12) Hanger(s) of other connection device(s) shall be provided sufficient to support concentrated load(s) 1135 lb down and 11 lb up at 0-6-12, 1007 lb down and 65 lb up at 2-6-12, 1007 lb down and 65 lb up at 4-6-12, 1007 lb down and 65 lb up at 6-6-12, 1007 lb down and 65 lb up at 8-6-12, 1007 lb down and 65 lb up at 10-6-12, 1007 lb down and 65 lb up at 12-6-12, and 1007 lb down and 65 lb up at 14-6-12, and 1007 lb down and 65 lb up at 16-6-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.										
	oted as front (F) or ba		AD	10-6-12, 1007 lb down and 65 lb up at 12-6-12, and										
	section. Ply to ply conr				n and 65 lb up at						3.1	N. ENG	- CR. L S	
	o distribute only loads	noted as (F) or (B),			b up at 16-6-12			Э			31	S, GIN	EF. A.S	
	erwise indicated.				tion of such conn	ection de	vice(s) is the				1	CA C	BEIN	
	ed roof live loads have	been considered for		responsibility								11, A. G	IL IIII	
this desigr	٦.		L	OAD CASE(S)	Standard							10000		


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

May 24,2024

Job	Truss	Truss Type	Qty	Ply	Bonnet A - Lot 11 - Fairground Farms		
4052124	B02	Common	8	1	Job Reference (optional)	165813883	

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Fri May 24 08:12:39 ID:a6CMgSsfZQvEyRTqn3BV9UzAckT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:40.7

Plate Offsets (X, Y): [9:0-2-8,0-3-0]

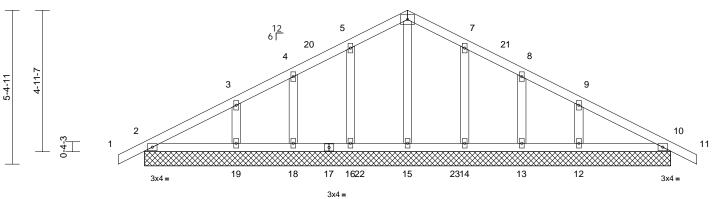
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 23.1/30.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-S	0.33 0.44 0.19	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.05 -0.11 0.03	(loc) 6-8 6-8 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 85 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 BRACING TOP CHORD Structural wood sheathing directly applied or 4-8-14 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (size) 2=0-3-8, 6=0-3-8 Max Horiz 2=72 (LC 16) Max Horiz 2=72 (LC 16) Max Unlift, 2=-58 (LC 12) 6=-58 (LC 13)				load of 12.0 overhangs in This truss ha chord live lo. * This truss l on the botto 3-06-00 tall chord and a All bearings capacity of 5	as been designed psf or 2.00 times con-concurrent wit as been designed ad nonconcurrent has been designe m chord in all area by 1-00-00 wide w ny other members are assumed to b65 psi. chanical connection	flat roof lo h other liv for a 10.0 with any d for a liv as where vill fit betv s. we SP No.	bad of 23.1 p ve loads. D psf bottom other live loa of e load of 20. a rectangle veen the bott 2 crushing	osf on ads. Opsf tom					
Max Uplift 2=-58 (LC 12), 6=-58 (LC 13) Max Grav 2=852 (LC 1), 6=852 (LC 1) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/44, 2-3=-1344/79, 3-4=-1180/93, 4-5=-1180/93, 5-6=-1344/79, 6-7=0/44 BOT CHORD 2-8=-80/1135, 6-8=-9/1135 WEBS 4-9=-46/464, 3-9=-310/131, 4-8=-46/464,			LC	2 and 58 lb ()) This truss is International	e capable of withs uplift at joint 6. designed in acco Residential Code nd referenced sta Standard	rdance w e sections	ith the 2015 R502.11.1 a						
 5-8=-310/131 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.415 DPL=0.00 parts (and the present second sec											r.	ORTH CA	• -

- TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=30.0 psf (ground snow); Pf=23.1 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.

SEAL 036322 MGINEER A. GILBER

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)



Job	Truss	Truss Type	Qty	Ply	Bonnet A - Lot 11 - Fairground Farms		
4052124	B03	Common Supported Gable	1	1	Job Reference (optional)	165813884	

-0-11-0 0-11-0

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Fri May 24 08:12:39 ID:kJmX414SSfyHPZy???_P44zAchc-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

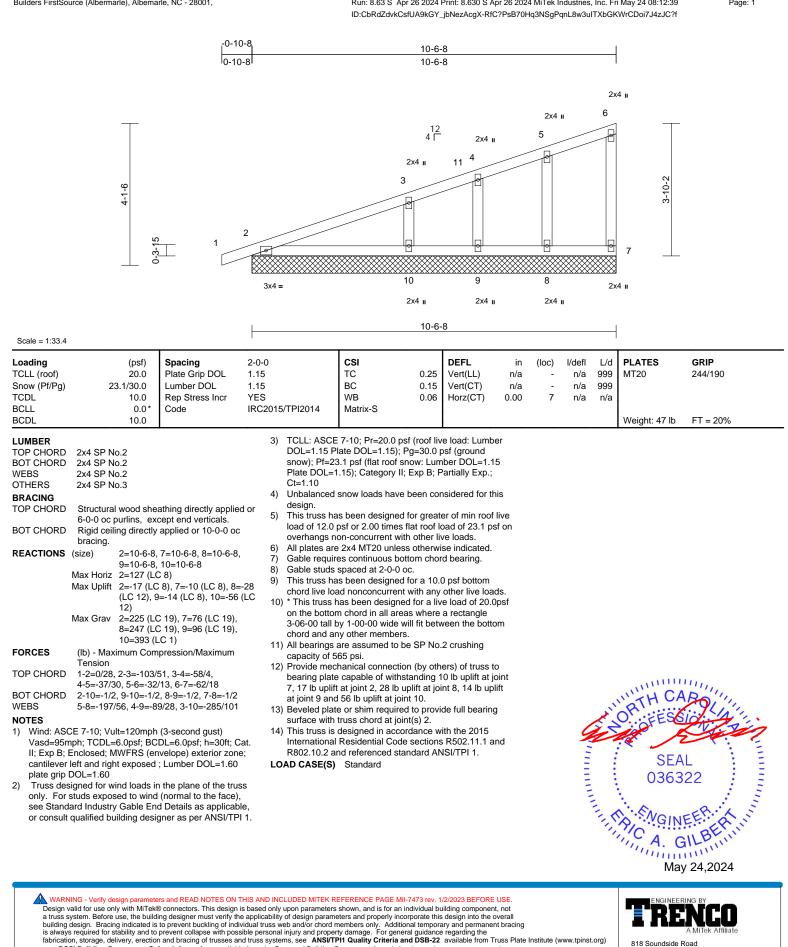
19-4-0 9-2-8 18-5-0 9-2-8 0-11-0 9-2-8 4x6 = 6 7 5 20 21 4 8 9 10 11

18-5-0

Scale = 1:40.3							000						
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL (roof)	20.0	Plate Grip DOL	2-0-0 1.15		TC	0.11	Vert(LL)	n/a	(100)	n/a	999	MT20	244/190
now (Pf/Pg)	23.1/30.0	Lumber DOL	1.15		BC	0.07	Vert(CT)	n/a	-	n/a	999		211/100
CDL	10.0	Rep Stress Incr	YES		WB	0.06	Horz(CT)	0.00	10	n/a	n/a		
CLL	0.0*	Code		5/TPI2014	Matrix-S								
CDL	10.0											Weight: 89 lb	FT = 20%
UMBER OP CHORD OT CHORD THERS BRACING OP CHORD ROT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 2=18-5-0 13=18-5- 16=18-5- Max Horiz 2=72 (LC Max Uplift 2=-7 (LC 12=-51 (L 14=-37 (L 18=-29 (L Max Grav 2=191 (L1 12=266 (I 19=266 (I	13), 10=-13 (LC 13), .C 13), 13=-29 (LC 1 .C 13), 16=-38 (LC 1 .C 12), 19=-52 (LC 1 C 1), 10=191 (LC 1), LC 1), 13=141 (LC 22) LC 20), 15=215 (LC 2 .LC 19), 18=141 (LC LC 1)	: 5-0, 5-0 3), 5) 2), 6) 2), 7) 25), 8) 9), 9) 9), 9)	Vasd=95mp II; Exp B; Er cantilever le plate grip D0 Truss desig only. For str see Standar or consult qr TCLL: ASCE DOL=1.15 F snow); Pf=2 Plate DOL= Ct=1.10 Unbalanced design. This truss ha load of 12.0 overhangs n Gable requir Gable studs	7-10; Vult=120 h; TCDL=6.0psi iclosed; MWFR; ft and right expc DL=1.60 ined for wind loa uds exposed to d Industry Gabil- aulified building 5 7-10; Pr=20.0 Pate DOL=1.15) 3.1 psf (flat roof 1.15); Category snow loads hav as been designe psf or 2.00 time ion-concurrent v e 2x4 MT20 unli- res continuous b spaced at 2-0-0 as been designe	f; BCDL=6. S (envelop) seed ; Luml ads in the p wind (norm e End Deta designer a psf (roof liv ; Pg=30.0) snow: Lun II; Exp B; F ve been con ed for great is flat roof I with other li ess otherwi bottom choi 0 oc.	Opsf; h=30ft; a) exterior zoro per DOL=1.6(lane of the tru- lal to the face ils as applica s per ANSI/Ti ve load: Lumb osf (ground aber DOL=1.1 Partially Exp.; nsidered for the er of min roof oad of 23.1 p ve loads. se indicated. d bearing.	ne; Juss), ble, PI 1. er 5 his flive sf on				wegnt. 69 ib	
ORCES	(lb) - Maximum Con Tension	npression/Maximum		chord live lo	ad nonconcurre has been desigr	nt with any	other live loa					UNTH CA	ROUL
TOP CHORD	1-2=0/43, 2-3=-89/5 4-5=-41/82, 5-6=-56 7-8=-41/58, 8-9=-51 10-11=0/43	/102, 6-7=-56/96,		on the botto 3-06-00 tall chord and a	m chord in all ar by 1-00-00 wide ny other membe	reas where will fit betw ers, with BC	a rectangle veen the botte CDL = 10.0ps	om		4	ALL I	ORIFESE	A NIL
BOT CHORD	2-19=-2/68, 18-19=- 15-16=-2/68, 14-15= 12-13=-2/68, 10-12=	=-2/68, 13-14=-2/68,		capacity of 5 Provide med	are assumed to 565 psi. chanical connec e capable of with	tion (by oth	ers) of truss t					SEA	
VEBS	,	.191/63, 4-18=-113/5 =-191/62, 8-13=-113/	,	2, 38 lb uplif uplift at joint	t at joint 16, 29 19, 37 lb uplift a	lb uplift at j at joint 14, :	oint 18, 52 ĺb 29 lb uplift at					0303	
NOTES 1) Unbalanced roof live loads have been considered for this design.				 12) All bearings are assumed to be SP No.2 crushing capacity of 565 psi. 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 7 lb uplift at joint 2, 38 lb uplift at joint 16, 29 lb uplift at joint 18, 52 lb uplift at joint 19, 37 lb uplift at joint 14, 29 lb uplift at joint 10. 14) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard 									
			LC	DAD CASE(S)	Standard							May	124 2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

May 24,2024

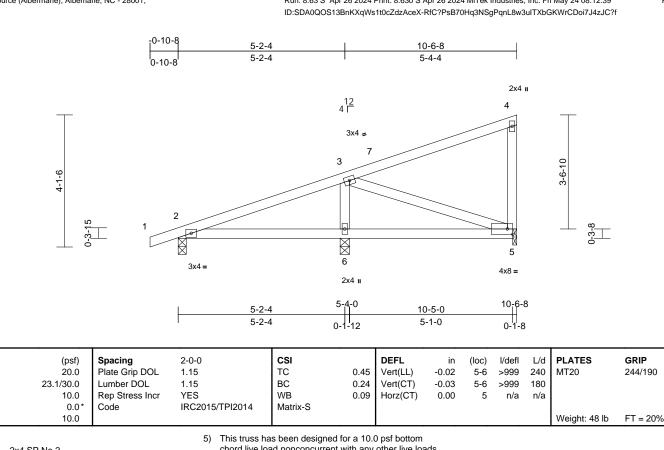

Job	Truss	Truss Type	Qty	Ply	Bonnet A - Lot 11 - Fairground Farms	
4052124	M01	Monopitch Supported Gable	1	1	Job Reference (optional)	165813885

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Fri May 24 08:12:39

Page: 1

818 Soundside Road

Edenton, NC 27932



and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Bonnet A - Lot 11 - Fairground Farms		
4052124	M02	Monopitch	6	1	Job Reference (optional)	165813886	

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Fri May 24 08:12:39

Page: 1

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SP No.3 WFBS OTHERS 2x4 SP No.2 BRACING TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing **REACTIONS** (size) 2=0-3-0, 5=0-1-8, 6=0-3-8 Max Horiz 2=127 (LC 8) Max Uplift 2=-32 (LC 8), 5=-37 (LC 8), 6=-58 (LC 12) 2=250 (LC 1), 5=230 (LC 19), Max Grav 6=557 (LC 19) FORCES (lb) - Maximum Compression/Maximum Tension 1-2=0/29, 2-3=-94/33, 3-4=-99/35, TOP CHORD 4-5=-183/53 BOT CHORD 2-6=-31/34. 5-6=-31/34 WFBS 3-6=-430/126. 3-5=-12/30 NOTES

Scale = 1:35.9 Loading

TCLL (roof)

TCDL

BCLL

BCDL

LUMBER

Snow (Pf/Pg)

- Wind: ASCE 7-10; Vult=120mph (3-second gust) 1) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=30.0 psf (ground snow); Pf=23.1 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- Unbalanced snow loads have been considered for this 3) desian.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 23.1 psf on overhangs non-concurrent with other live loads.

- chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 6) on the bottom chord in all areas where a rectangle 3-06-00 tall by 1-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SP No.2 crushing 7) capacity of 565 psi.
- Bearing at joint(s) 5 considers parallel to grain value 8) using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- Provide mechanical connection (by others) of truss to bearing plate at joint(s) 5.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 32 lb uplift at joint 2, 58 lb uplift at joint 6 and 37 lb uplift at joint 5.
- 11) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932

