

RE: 4052134 Bonnet B - Lot 13 - Fairground Farms

Site Information:

Customer: Project Name: 4052134 Lot/Block: Address: City:

Model: Subdivision: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2015/TPI2014 Wind Code: Roof Load: 40.0 psf Design Program: MiTek 20/20 8.6 Wind Speed: 120 mph Floor Load: N/A psf

This package includes 10 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date
1	165813877	A01	5/24/2024
2	l65813878	A02	5/24/2024
3	l65813879	A03	5/24/2024
4	l65813880	A04	5/24/2024
5	l65813881	A05	5/24/2024
6	l65813882	B01G	5/24/2024
7	l65813883	B02	5/24/2024
8	l65813884	B03	5/24/2024
9	l65813885	M01	5/24/2024
10	l65813886	M02	5/24/2024

The truss drawing(s) referenced above have been prepared by

Truss Engineering Co. under my direct supervision

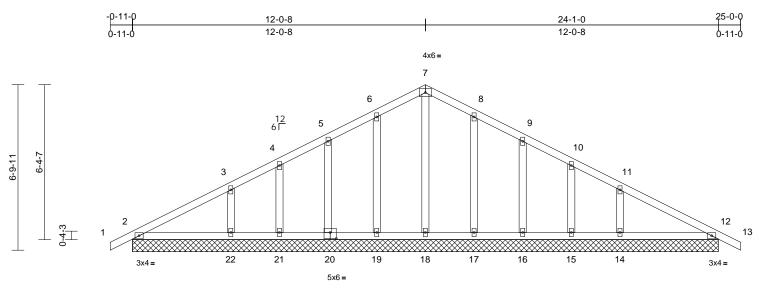
based on the parameters provided by Builders FirstSource (Albermarle,NC).

Truss Design Engineer's Name: Gilbert, Eric

My license renewal date for the state of North Carolina is December 31, 2024

North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.


1 of 1

Gilbert, Eric

May 24, 2024

Job	Truss	Truss Type	Qty	Ply	Bonnet B - Lot 13 - Fairground Farms	
4052134	A01	Common Supported Gable	1	1	Job Reference (optional)	165813877

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Fri May 24 08:12:37 ID:v2D8tW20?IBXcZpw7A8nfzzAcvr-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

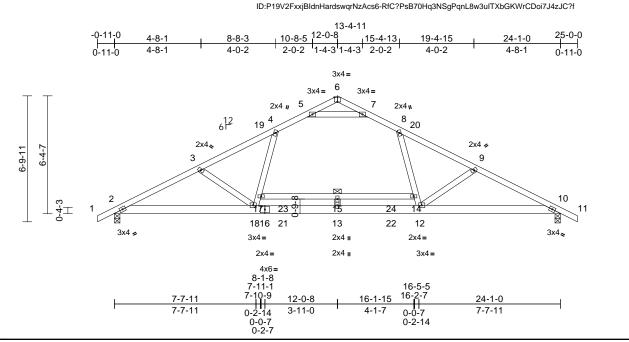
24-1-0

Scale = 1:47.4

Plate Offsets (X, Y): [20:0-3-0,0-3-0]

			-			-							
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.18	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	23.1/30.0	Lumber DOL	1.15		BC	0.12	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES		WB	0.10	Horz(CT)	0.00	12	n/a	n/a		
BCLL	0.0*	Code	IRC2015	5/TPI2014	Matrix-S								
BCDL	10.0											Weight: 127 lb	FT = 20%
BCDL LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	10.0 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 2=24-1-1 15=24-1-1 21=24-1 21=24-1-1 21=24-1-1 21=24-1-1 21=24-1-1 21=24-1-1 21=24-1-1 21=24-1-1 21=24-1-1 21=24-1-1 21=24-1-1 21=24-1-1 21=24-1-1 21=24-1-1 21=24-1-1 21=24-1-1 21=24-1-1 21=24-1-1 21=24-1 21=20 (L 21=20 (L) 21=22 (L)	Code athing directly applied applied or 10-0-0 oc 12=24-1-0, 14=24-1- 0, 16=24-1-0, 17=24-1 0, 19=24-1-0, 20=24-1 0, 12=24-1-0 C 13) 13), 12=-8 (LC 13), C 13), 15=-21 (LC 13) C 13), 17=-34 (LC 13) C 13), 17=-34 (LC 13) C 12), 20=-37 (LC 12) C 12), 22=-67 (LC 12) C 12), 12=217 (LC 1), C 20), 15=-101 (LC 1) C 20), 17=262 (LC 6) C 25), 19=259 (LC 5) C 19), 21=103 (LC 1) C 19) ppression/Maximum	NC 1) 2) or 3) 0, -0, -0, -0, 4)), 5)) 6) , , 7) , 8) 9) 10	DTES Unbalanced this design. Wind: ASCE Vasd=95mph II; Exp B; End cantilever left plate grip DC Truss desigr only. For stu see Standard or consult qu TCLL: ASCE DOL=1.15 Pl snow); Pf=23 Plate DOL=1.10 Unbalanced design. This truss ha load of 12.0 g overhangs no All plates are Gable require Gable require Gable require Gable studs :) This truss ha	roof live loads ha 7-10; Vult=120m ı; TCDL=6.0psf; i closed; MWFRS t and right expos	ph (3-sec BCDL=6. (envelope ed ; Lumt s in the p ind (norm End Deta ssigner as sf (roof liv Pg=30.0 p now: Lum ; Exp B; F been cor for great flat roof lo is otherwit tom chor oc. for a 10. with any d for a liv	considered for cond gust) Opsf; h=30ft; (e) exterior zon per DOL=1.60 lane of the tru al to the face) ils as applicat s per ANSI/TF e load: Lumbo sof (ground uber DOL=1.1: Partially Exp.; asidered for the er of min roof pad of 23.1 ps ve loads. se indicated. d bearing. D psf bottom other live loac e load of 20.0	Cat. ne;) sss), ole, PI 1. er 5 live sf on ds.	13) Prov bea 2, 3 uplii 17, uplii 14) Bev surf 15) This Inte R80 LOAD (vide me ring plat 6 lb upli ft at join 38 lb up ft at join eled plat ace with 5 truss is rrustiona 02.10.2 a CASE(S	te capa ft at jo t 21, 6 lift at j t 14 ar te or s s desigu al Resi and rei) Sta	cal connection (by able of withstand int 19, 37 lb uplift 7 lb uplift at joint oint 16, 21 lb upli 4 8 lb uplift at joint shim required to p chord at joint(s) gned in accordand dential Code sec ferenced standar indard	y others) of truss to ing 7 lb uplift at joint t at joint 20, 20 lb 22, 34 lb uplift at joint ift at joint 15, 67 lb int 12. crovide full bearing 2. ce with the 2015 tions R502.11.1 and d ANSI/TPI 1.
BOT CHORD	4-5=-47/92, 5-6=-52 7-8=-59/126, 8-9=-5 10-11=-59/34, 11-12 2-22=-4/87, 21-22=- 18-19=-4/87, 17-18=	/113, 6-7=-58/132, 3/90, 9-10=-38/52, 2=-83/53, 12-13=0/43 4/87, 19-21=-4/87, =-4/87, 16-17=-4/87,	12	3-06-00 tall b chord and an	y 1-00-00 wide v y other members are assumed to b	vill fit betv s, with BC	veen the botto DL = 10.0psf.					SEA 0363	• -
WEBS	4-21=-85/39, 3-22=-	4/87, 12-14=-4/87 199/58, 5-20=-166/63 248/106, 8-17=-199/5 5=-85/39, 11-14=-248/	7,								in the		

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)


Page: 1

Job	Truss	Truss Type	Qty	Ply	Bonnet B - Lot 13 - Fairground Farms	
4052134	A02	Common	6	1	Job Reference (optional)	165813878

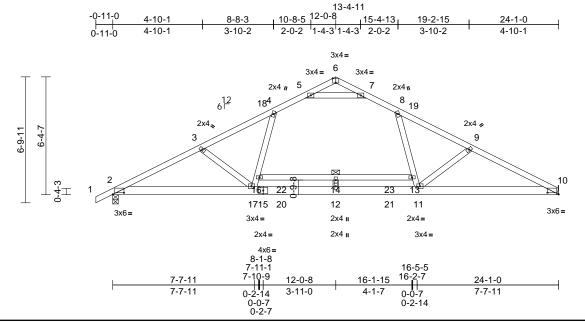
Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Fri May 24 08:12:38

Page: 1

Builders FirstSource (Albermarle), Albemarle, NC - 28001,

Scale = 1:62.2 Plate Offsets (X, Y): [6:0-2-0,Edge]

	, r). [0.0-2-0,Euge]	-				-	-						
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL LUMBER TOP CHORD BOT CHORD	(psf) 20.0 23.1/30.0 10.0 0.0* 10.0 2x4 SP 2400F 2.0E of SP SS 2x6 SP No.2 *Excep		3	DOL=1.15 P snow); Pf=23 Plate DOL=1	CSI TC BC WB Matrix-S 7-10; Pr=20.0 ps late DOL=1.15); l 3.1 psf (flat roof s .15); Category II;	Pg=30.0 now: Lun	osf (ground ber DOL=1.	15	(loc) 12-13 15 10	l/defl >999 >579 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 140 lb	GRIP 244/190 FT = 20%
WEBS BRACING TOP CHORD	2x4 SP No.3 Structural wood she 3-8-4 oc purlins.	athing directly applie	4 d or 5	design.	snow loads have as been designed								
	Rigid ceiling directly bracing. Except: 6-0-0 oc bracing: 14 (size) 2=0-3-8, 1 Max Horiz 2=-92 (LC	-17 10=0-3-8	6 7 8	overhangs n) All plates are) This truss ha chord live loa	psf or 2.00 times on-concurrent wit 2x4 MT20 unles as been designed ad nonconcurrent nas been designe	h other li s otherwi for a 10. with any	ve loads. se indicated. D psf bottom other live loa	ads.					
	Max Uplift 2=-20 (LC) -		n chord in all area			opsi					
FORCES	Max Grav 2=1207 (L (Ib) - Maximum Com Tension		+)	 3-06-00 tall by 1-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 9) All bearings are assumed to be SP No.2 crushing 									
TOP CHORD	1-2=0/51, 2-3=-2310 4-5=-1429/32, 5-6=0 7-8=-1429/32, 8-9=- 10-11=0/51	0/684, 6-7=0/684, 2020/0, 9-10=-2310/	0,	capacity of 5 0) Provide mec bearing plate 2 and 20 lb u	65 psi. hanical connectio capable of withs uplift at joint 10.	on (by oth standing 2	ers) of truss 20 lb uplift at						uu
BOT CHORD	2-18=-10/2025, 13-1 12-13=0/1603, 10-12 14-15=-96/0 5-7=-2272/0, 13-15=	2=0/2025, 15-17=-96	6/0,	Ínternational	designed in acco Residential Code nd referenced sta	e sections	R502.11.1	and			A	ORTH CA	ROVIN
	4-17=0/724, 8-14=0/ 3-18=-485/156, 9-12	/724, 12-14=0/618,	·, L	OAD CASE(S)	Stanuaru					4	U		12 Me
this design 2) Wind: ASC Vasd=95m II; Exp B; E	E 7-10; Vult=120mph ph; TCDL=6.0psf; BC Enclosed; MWFRS (en eft and right exposed	(3-second gust) DL=6.0psf; h=30ft; C ivelope) exterior zon	Cat. e;									SEA 0363 WGIN C A. C May	22



A MiTek Affil 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Bonnet B - Lot 13 - Fairground Farms	
4052134	A03	Common	1	1	Job Reference (optional)	165813879

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Fri May 24 08:12:38 ID:sUKJuvhly7DnLmiEEGzHsXzAcnH-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:62.2

Plate Offsets (X, Y): [2:0-7-4,0-1-1], [6:0-2-0,Edge], [10:0-7-4,0-1-1]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL	(psf) 20.0 23.1/30.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES	5/TPI2014	CSI TC BC WB Matrix-S	0.71 0.89 0.57	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.28 -0.49 0.05	(loc) 11-12 13-14 10	l/defl >999 >581 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0			0/11/2014	Matrix-0							Weight: 139 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASC Vasd=95m II; Exp B; E	2x4 SP 2400F 2.0E SP SS 2x6 SP No.2 *Excep 2x4 SP No.3 Structural wood she 3-7-7 oc purlins. Rigid ceiling directly bracing. Except: 6-0-0 oc bracing: 13 (size) 2=0-3-8, ' Max Horiz 2=99 (LC Max Grav 2=1212 (L (lb) - Maximum Com 1-2=0/51, 2-3=-2314 4-5=-1441/33, 5-6= (lb) - Maximum Com 1-2=0/51, 2-3=-2314 4-5=-1439/32, 8-9= 2-17=-11/2026, 12-1 10-11=0/2058, 14-11 5-7=-2277/0, 12-14= 4-16=0/741, 8-13=0, 3-17=-473/153, 9-11 d roof live loads have E 7-10; Vult=120mph ph; TCDL=6.0psf; BC inclosed; MWFRS (er eft and right exposed	t* 16-13:2x4 SP No.: athing directly applie applied or 10-0-0 oc -16 (0= Mechanical 16) 12), 10=-3 (LC 13) .C 4), 10=1149 (LC 4 pression/Maximum //0, 3-4=-2039/0, //676, 6-7=0/679, 2047/0, 9-10=-2339/ 7=0/1613, 11-12=0/ 5=-94/0, 13-14=-94/0 -215/0, 16-17=0/636 758, 11-13=0/652, =-507/158 been considered for (3-second gust) DL=6.0psf; h=30ft; C velope) exterior zon	2 d or 5 6 7 7 9 9 10 13 16 13, 12 16 13, 12 16 13, 12 16 13, 12 16 14 16 13, 12 16 14 16 14 16 14 16 14 16 16 16 16 17 17 16 17 17 17 17 17 17 17 17 17 17 17 17 17	DOL=1.15 P snow); Pf=2: Plate DOL=1 Ct=1.10) Unbalanced design.) This truss ha load of 12.0 overhangs n) All plates are) This truss ha chord live loa chord live loa 3-06-00 tall t chord and ar Bearings are capacity of 5 0) Refer to gird 1) Provide mec bearing plate 10 and 19 lb 2) This truss is International	er(s) for truss to t hanical connection capable of withs uplift at joint 2. designed in acco Residential Code and referenced sta	Pg=30.0 p now: Lurr Exp B; F been cor for great flat roof ld h other lin s otherwi for a 10.0 with any d for a liv as where vill fit betw s, with BC Joint 2 SI russ conr on (by oth tanding 3 rdance w	esf (ground ber DOL=1. 'artially Exp., asidered for t er of min roo bad of 23.1 p e loads. se indicated. 0 psf bottom other live loa e load of 20. a rectangle veen the bott DL = 10.0ps P No.2 crush mections. ers) of truss Ib uplift at jo the the 2015 R502.11.1 a	15 his f live sf on ads. Opsf om f. ing to pint				SEA 0363	ROUNT

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

G mmm May 24,2024

Job	Truss	Truss Type	Qty	Ply	Bonnet B - Lot 13 - Fairground Farms	
4052134	A04	Common	8	1	Job Reference (optional)	165813880

6-4-7 6-9-11

Scale = 1:47.1

Loading

TCDL

BCLL

BCDL

WEBS

LUMBER

TOP CHORD

TCLL (roof)

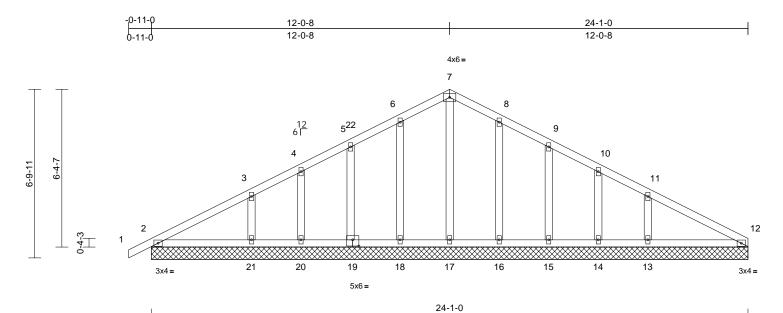
Snow (Pf/Pg)

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Fri May 24 08:12:38 Page: 1 ID:hAIRHa9rXPG69wmwafhgUzzAcmf-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f -0-11-0 6-3-7 12-0-8 17-9-9 24-1-0 5-9-1 5-9-1 6-3-7 6-3-7 4x6= 4 12 6 Г 9 10 2x4 💊 2x4 🏿 3 5 6 0-4-3 8 11 12 7 3x4 = 3x4 = 5x6= 3x4 = 8-2-7 15-10-9 24-1-0 8-2-7 7-8-1 8-2-7 Plate Offsets (X, Y): [8:0-3-0,0-3-0] Spacing 2-0-0 CSI DEFL in l/defl L/d PLATES GRIP (psf) (loc) 20.0 Plate Grip DOL 1.15 тс 0.64 Vert(LL) -0.15 7-8 >999 240 MT20 244/190 23.1/30.0 Lumber DOL 1.15 BC 0.75 Vert(CT) -0.30 6-7 >954 180 10.0 Rep Stress Incr WB 0.27 Horz(CT) YES 0.05 6 n/a n/a 0.0 IRC2015/TPI2014 Matrix-S Code Weight: 109 lb 10.0 FT = 20% 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 23.1 psf on 2x4 SP No 2 overhangs non-concurrent with other live loads.

- BOT CHORD 2x4 SP No 2 2x4 SP No.3
- BRACING TOP CHORD Structural wood sheathing directly applied or 3-2-15 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc
- bracing. **REACTIONS** (size) 2=0-3-8, 6= Mechanical Max Horiz 2=98 (LC 16) Max Uplift 2=-71 (LC 12), 6=-53 (LC 13) Max Grav 2=1101 (LC 1), 6=1027 (LC 1) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/44, 2-3=-1809/109, 3-4=-1588/123, 4-5=-1603/127, 5-6=-1809/113
- BOT CHORD 2-7=-119/1537. 6-7=-39/1560 WEBS 4-8=-61/622, 3-8=-420/174, 4-7=-64/651, 5-7=-445/180

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-10; Vult=120mph (3-second gust) 2) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber 3) DOL=1.15 Plate DOL=1.15); Pg=30.0 psf (ground snow); Pf=23.1 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.


- This truss has been designed for a 10.0 psf bottom 6) chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 7) on the bottom chord in all areas where a rectangle 3-06-00 tall by 1-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 8) Bearings are assumed to be: Joint 2 SP No.2 crushing capacity of 565 psi.
- 9) Refer to girder(s) for truss to truss connections.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 53 lb uplift at joint 6 and 71 lb uplift at joint 2.
- 11) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Bonnet B - Lot 13 - Fairground Farms	
4052134	A05	Common Supported Gable	1	1	Job Reference (optional)	165813881

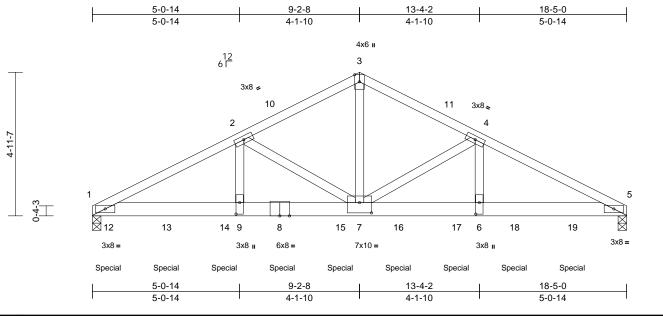
Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Fri May 24 08:12:38 ID:Wbe76RRH6U9rPS0LQ?b3wpzAcmI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:46.5

Plate Offsets (X, Y): [19:0-3-0,0-3-0]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 23.1/30.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-S	0.21 0.12 0.10	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	-	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 126 lb	GRIP 244/190 FT = 20%
	2x4 SP No.2 2x4 SP No.3 Structural wood shee 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 2=24-1-0, 14=24-1-C 20=24-1-C Max Horiz 2=98 (LC Max Uplift 2=-5 (LC 14=-19 (L 16=-34 (L 19=-37 (L 21=-67 (L Max Grav 2=219 (LC 13=357 (L 15=216 (L 17=222 (L	13), 13=-72 (LC 13), C 13), 15=-39 (LC 13) C 13), 18=-36 (LC 12) C 12), 20=-20 (LC 12) C 12), 20=-20 (LC 12) C 1), 12=148 (LC 1), LC 20), 14=94 (LC 1), C 20), 16=262 (LC 6) LC 25), 18=256 (LC 5) LC 19), 20=103 (LC 1)	this desi 2) Wind: A Vasd=9: I or II; Exp E cantilevu 3) Truss d only. Fo or consu -0, or co	CE 7-10; Vult=120n mph; TCDL=6.0psf; Enclosed; MWFRS r left and right expos DOL=1.60 signed for wind load studs exposed to w dard Industry Gable t qualified building d GCE 7-10; Pr=20.0 p 5 Plate DOL=1.15); f=23.1 psf (flat roof s L=1.15); Category II sed snow loads have s has been designed 2.0 psf or 2.00 times is non-concurrent wi are 2x4 MT20 unles quires continuous bo dds spaced at 2-0-0	aph (3-see BCDL=6. (envelopmed) ed; Lumi ed; Lumi sin the p ind (norm End Deta esigner a sf (roof lin Pg=30.0 now: Lum ; Exp B; F e been cool l for great flat roof I th other li ss otherwittom choo oc.	cond gust) Opsf; h=30ft; C a) exterior zon ber DOL=1.60 lane of the tru: al to the face) ils as applicat s per ANSI/TP re load: Lumbe bosf (ground ber DOL=1.1! Partially Exp.; nsidered for th er of min roof I boad of 23.1 ps ve loads. se indicated. rd bearing.	Cat. e; ss , ole, er 5 is live	bea 2, 3 upli 16, upli 14) Bev surl 15) This Inte	ring plat 6 lb upli ft at join 39 lb up ft at join veled plat ace with s truss is rnationa 02.10.2 a	te capa ft at jo t 20, 6 llift at j t 13. tte or s t t 13. tte or s s desig al Resi al Resi and ref) Sta	able of withstand int 18, 37 lb uplift 7 lb uplift at joint oint 15, 19 lb upl shim required to p chord at joint(s) ned in accordan dential Code sec ferenced standar	ce with the 2015 tions R502.11.1 and
FORCES	(lb) - Maximum Com Tension	pression/Maximum	chord liv	s has been designed load nonconcurren ss has been designe	t with any	other live load			4	20		12mg
TOP CHORD	1-2=0/43, 2-3=-116/ 4-5=-48/87, 5-6=-48 7-8=-59/121, 8-9=-5 10-11=-62/32, 11-12	/109, 6-7=-57/127, 3/85, 9-10=-38/50, 2=-75/56	on the b 3-06-00 chord ar	ottom chord in all are all by 1-00-00 wide d any other member logs are assumed to b	as where vill fit betv s, with BC	a rectangle veen the botto CDL = 10.0psf.	m				SEA 0363	• -
BOT CHORD	2-21=-5/79, 20-21=- 17-18=-5/80, 16-17= 14-15=-5/80, 13-14=	-5/80, 15-16=-5/80,		of 565 psi.							NGIN	FERIX
WEBS	7-17=-122/0, 6-18=- 4-20=-85/39, 3-21=-	195/58, 5-19=-157/63 248/106, 8-16=-199/5 =-79/36, 11-13=-262/	7,								A. C	BEIN

May 24,2024


Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

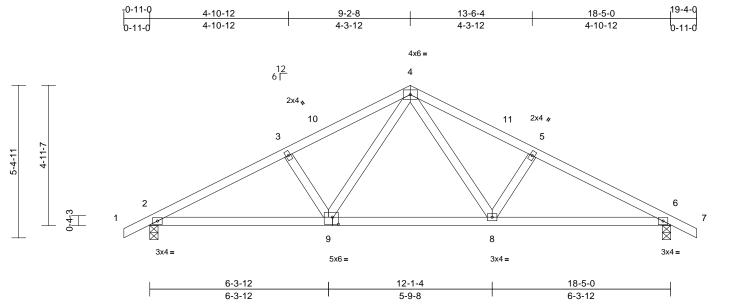
Job	Truss	Truss Type	Qty	Ply	Bonnet B - Lot 13 - Fairground Farms	
4052134	B01G	Common Girder	1	2	Job Reference (optional)	165813882

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Fri May 24 08:12:39 ID:9Au5CMoTHOpkOvkwdacsbxzAclr-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:39.7

Plate Offsets (X, Y): [6:0-4-12,0-1-8], [7:0-5-0,0-4-4], [9:0-4-12,0-1-8]

(1											
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.80	Vert(LL)	-0.12	6-7	>999	240	MT20	244/190
Snow (Pf/Pg)	23.1/30.0	Lumber DOL	1.15		BC	0.62	Vert(CT)	-0.22	6-7	>984	180		
TCDL	10.0	Rep Stress Incr	NO		WB	0.64	Horz(CT)	0.06	5	n/a	n/a		
BCLL	0.0*	Code	IRC20	15/TPI2014	Matrix-S								
BCDL	10.0					-						Weight: 200 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD	2x4 SP No.2 2x6 SP 2400F 2.0E	or 2x6 SP DSS	4	Vasd=95mp	7-10; Vult=120m h; TCDL=6.0psf; F closed; MWFRS	BCDL=6.	0psf; h=30ft;	Cat.	ÍIn	ead + Sr crease= niform L	1.15	,	r Increase=1.15, Plate
WEBS	2x4 SP No.3 *Excep	ot* 7-3:2x4 SP No.2			ft and right expose	ed ; Lum	ber DOL=1.60)		Vert: 1-	3=-66,	3-5=-66, 1-5=-20)
BRACING				plate grip D					С	oncentra		· · ·	
TOP CHORD	Structural wood she 3-2-15 oc purlins.	athing directly applie	ed or	DOL=1.15 F	E 7-10; Pr=20.0 ps Plate DOL=1.15); F	g=30.0	osf (ground			14=-10	07 (B),	(B), 12=-1098 (B 15=-1007 (B), 16	б=-1007 (В),
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 oc	;	Plate DOL=	3.1 psf (flat roof si 1.15); Category II;					17=-100	07 (B),	18=-1007 (B), 19	9=-1007 (B)
REACTIONS	(size) 1=0-3-8, 5 Max Horiz 1=-65 (LC		(snow loads have	been co	nsidered for th	his					
	Max Holiz 1=-03 (LC Max Uplift 1=-303 (L Max Grav 1=5732 (L	.C 12), 5=-312 (LC 1			as been designed ad nonconcurrent			ıds.					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	8	B) * This truss	has been designe m chord in all area	d for a liv	e load of 20.0						
TOP CHORD	1-2=-9016/555, 2-3= 3-4=-6171/410, 4-5=			3-06-00 tall	by 1-00-00 wide w	vill fit betv		om					
BOT CHORD	1-9=-510/8002, 7-9= 6-7=-450/7961, 5-6=	-510/8002,	9	 All bearings 	are assumed to b acity of 660 psi.		00F 2.0E or D	SS					
WEBS	2-9=-95/2522, 2-7=- 3-7=-304/5190, 4-7= 4-6=-100/2479	2993/256,		10) Provide med bearing plate	chanical connection chanical connection capable of withs 12 lb uplift at joint	tanding 3						, minin	unin.
NOTES					designed in acco		ith the 2015					IN TH UA	ROUL
1) 2-ply truss	to be connected toge	ther with 10d		International	Residential Code	e sections	s R502.11.1 a	and			15	(Anisiai	Dalain
(0.131"x3") nails as follows:				nd referenced sta					L	10		No.
Top chord	s connected as follows	s: 2x4 - 1 row at 0-9-	0 .		other connection							in the second	11: 2
OC.					ficient to support					2	8 - P		
	ords connected as foll	ows: 2x6 - 2 rows			11 lb up at 0-6-1 2, 1007 lb down ai			arco			:	SEA	L : =
	at 0-3-0 oc. ected as follows: 2x4 -	1 row at 0.0.0 oc			n and 65 lb up at			and		=		0363	22 : =
	re considered equally				3-6-12, 1007 lb dc			ana				. 0505	44 i E
	oted as front (F) or ba		AD	10-6-12, 100)7 lb down and 65	ilb up at	12-6-12, and	1			-	N	1 2
	section. Ply to ply conr				n and 65 lb up at						2.1	N. ENG	-cRik S
	o distribute only loads				5 lb up at 16-6-12						32	A, GIN	EFR
	erwise indicated.				tion of such conn	ection de	vice(s) is the				1	CA C	BEIN
	ed roof live loads have	been considered for		responsibilit								11, A. G	11L TIN
this desigr	۱.			OAD CASE(S)	Standard							minin	1111



May 24,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Bonnet B - Lot 13 - Fairground Farms		
4052134	B02	Common	8	1	Job Reference (optional)	165813883	

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Fri May 24 08:12:39 ID:a6CMgSsfZQvEyRTqn3BV9UzAckT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

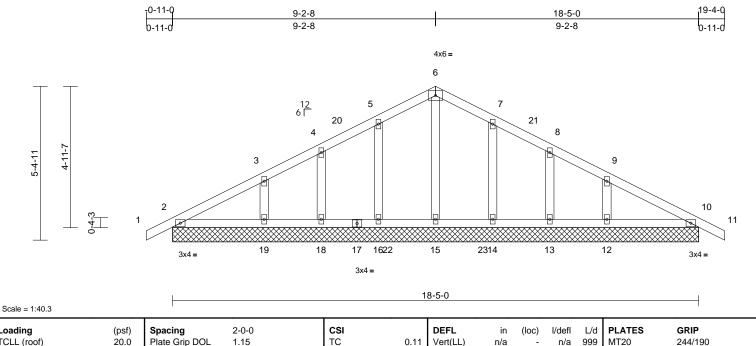
Scale = 1:40.7

Plate Offsets (X, Y): [9:0-2-8,0-3-0]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL LUMBER	(psf) 20.0 23.1/30.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-S	0.33 0.44 0.19	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.05 -0.11 0.03	(loc) 6-8 6-8 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 85 lb	GRIP 244/190 FT = 20%
TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 BRACING X4 SP No.3				load of 12.0 overhangs n This truss ha chord live lo. * This truss l on the bottoo 3-06-00 tall l chord and a	psf or 2.00 times on-concurrent with s been designed ad nonconcurrent has been designe n chord in all area by 1-00-00 wide v y other members	flat roof k th other liv I for a 10.0 t with any ed for a liv as where will fit betw s.	bad of 23.1 p ve loads.) psf bottom other live loa e load of 20. a rectangle veen the bott	osf on ads. Opsf					
REACTIONS (size) 2=0-3-8, 6=0-3-8 Max Horiz 2=72 (LC 16) Max Uplift 2=-58 (LC 12), 6=-58 (LC 13) Max Grav 2=852 (LC 1), 6=852 (LC 1)			8) 9)	capacity of 5 Provide med bearing plate	are assumed to b 65 psi. hanical connectio capable of withs uplift at joint 6.	on (by oth	ers) of truss						
FORCES	(lb) - Maximum Compression/Maximum Tension)) This truss is International	designed in acco Residential Code nd referenced sta	e sections	R502.11.1 a	and					
BOT CHORD 2-8=-80/1135, 6-8=-9/1135 WEBS 4-9=-46/464, 3-9=-310/131, 4-8=-46/464, 5-8=-310/131				.,									
 NOTES Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; Lumber DOL=1.60 plate grip DOL=1.60 TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=30.0 psf (ground 											- AN	OR DEESE SEA 0363	L

- DOL=1.15 Plate DOL=1.15); Pg=30.0 psf (ground snow); Pf=23.1 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.

annun Er G mmm May 24,2024

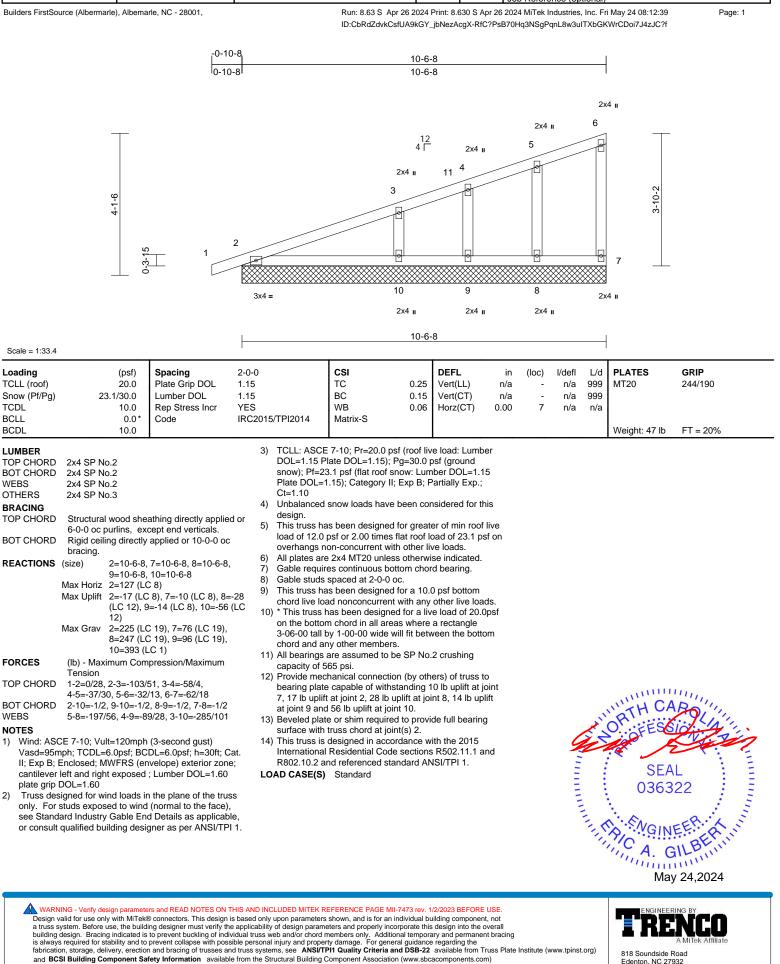

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Bonnet B - Lot 13 - Fairground Farms	
4052134	B03	Common Supported Gable	ble 1 1 _{Job}		Job Reference (optional)	l65813884

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Fri May 24 08:12:39 ID:kJmX414SSfyHPZy???_P44zAchc-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 23.1/30.0 10.0 0.0* 10.0	Plate Grip DOL1.Lumber DOL1.Rep Stress IncrY	-0-0 .15 .15 ES RC2015/7	TPI2014	CSI TC BC WB Matrix-S	0.11 0.07 0.06	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 10	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 89 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 Structural wood shee 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 2=18-5-0, 13=18-5-0 (13=18-5-0) Max Horiz 2=72 (LC Max Uplift 2=-7 (LC 12=-51 (LL 18=-29 (LL 18=-29 (LC 12=266 (L 14=235 (L	10=18-5-0, 12=18-5-0, 0, 14=18-5-0, 15=18-5-0, 12) 13), 10=-13 (LC 13), C 13), 13=-29 (LC 13), C 13), 16=-38 (LC 12), C 13), 16=-38 (LC 12), C 12), 19=-52 (LC 12), C 1), 10=191 (LC 1), C 1), 13=141 (LC 20), C 20), 15=215 (LC 25), C 19), 18=141 (LC 19),	- 3) - 4) 	Vasd=95mph II; Exp B; Enc cantilever left plate grip DO Truss design only. For stu see Standard or consult quu TCLL: ASCE DOL=1.15 Pli snow); Pf=23 Plate DOL=1 Ct=1.10 Unbalanced si design. This truss has load of 12.0 p overhangs nc All plates are Gable require Gable require	ed for wind loads ds exposed to wini Industry Gable Er alified building des 7-10; Pr=20.0 psf ate DOL=1.15; Pc .1 psf (flat roof snc .15); Category II; E snow loads have b s been designed for sof or 2.00 times flat on-concurrent with 2x4 MT20 unless is continuous bott spaced at 2-0-0 oc	CDL=6.(nvelope 1; Lumb in the pi d (norm nd Deta igner as (roof liv j=30.0 p w: Lum Exp B; F een cor or greate at roof k other liv other wi other wi other wi	Dpsf; h=30ft; exterior zo- ver DOL=1.61 ane of the tri- al to the face- ils as applica- is per ANSI/T e load: Lumb sf (ground- ber DOL=1.7 artially Exp.; isidered for t er of min rool- bad of 23.1 pre- loads. se indicated. d bearing.	ne;) uss), ble, PI 1. ver 15 his f live sf on					
FORCES	 (lb) - Maximum Compression/Maximum Tension ORD 1-2=0/43, 2-3=-89/59, 3-4=-56/62, 4-5=-41/82, 5-6=-56/102, 6-7=-56/96, 7-8=-41/58, 8-9=-51/32, 9-10=-66/38, 10-11=0/43 			 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 1-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 12) All bearings are assumed to be SP No.2 crushing capacity of 565 psi. 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 7 lb uplift at joint 2. 38 lb uplift at joint 16. 29 lb uplift at joint 18. 52 lb 									ROLIN
BOT CHORD													• -
NOTES1) Unbalanced roof live loads have been considered for this design.				 14) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard 									

May 24,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type		Ply	Bonnet B - Lot 13 - Fairground Farms			
4052134	M01	Monopitch Supported Gable	1	1	Job Reference (optional)	165813885		

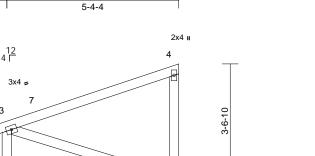
Job	Truss	Truss Type	Qty	Ply	Bonnet B - Lot 13 - Fairground Farms		
4052134	M02	Monopitch	6	1	Job Reference (optional)	165813886	

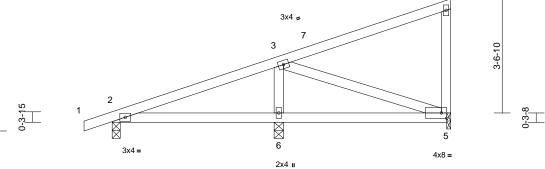
5-2-4

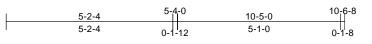
5-2-4

Builders FirstSource (Albermarle), Albemarle, NC - 28001,

4-1-6


-0-10-8


0-10-8


Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Fri May 24 08:12:39 ID:SDA0QOS13BnKXqWs1t0cZdzAceX-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

10-6-8

Page: 1

Scale = 1:35.9

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 23.1/30.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI2014	BC	0.45 0.24 0.09	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.02 -0.03 0.00	(loc) 5-6 5-6 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 48 lb	GRIP 244/190 FT = 20%
	6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 2=0-3-0, 5 Max Horiz 2=127 (L0	C 8), 5=-37 (LC 8), 6=- C 1), 5=230 (LC 19),	 chord live lo * This truss l on the bottoo 3-06-00 tall chord and an or 7) All bearings capacity of 5 8) Bearing at jo using ANSI/ designer sho 9) Provide med bearing platt 58 10) Provide med bearing platt 2, 58 lb uplif 	as been designed for as been designed for as been designed for n chord in all areas v y 1-00-00 wide will f ny other members. are assumed to be S i65 psi. wint(s) 5 considers pa TPI 1 angle to grain f build verify capacity of whanical connection (l e at joint(s) 5. whanical connection (l e capable of withstan t at joint 6 and 37 lb to designed in accorda	th any or a liv where it betw P No. rallel t ormula f beari by oth ding 3 uplift a	other live loa e load of 20.0 a rectangle veen the bottu 2 crushing o grain value a. Building ng surface. ers) of truss t ers) of truss t 2 lb uplift at j t joint 5.	Opsf om o o					
FORCES	(lb) - Maximum Corr Tension			Residential Code se nd referenced standa			ind					
TOP CHORD	1-2=0/29, 2-3=-94/3 4-5=-183/53		LOAD CASE(S)	Standard								
BOT CHORD WEBS	2-6=-31/34, 5-6=-31 3-6=-430/126, 3-5=-											
Vasd=95m II; Exp B; E cantilever I plate grip E 2) TCLL: ASC	nclosed; MWFRS (er eft and right exposed DOL=1.60	DL=6.0psf; h=30ft; Ca nvelope) exterior zone ; Lumber DOL=1.60 roof live load: Lumber							Contraction of the second seco	A.L.	OPTH CA	

- DOL=1.15 Plate DOL=1.15); Pg=30.0 psf (ground snow); Pf=23.1 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 23.1 psf on overhangs non-concurrent with other live loads.

annun SEAL 036322 G mmm May 24,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

