

RE: 4052127

Dogwood B - Lot 12 - Fairground Farms

Site Information:

Customer: Project Name: 4052127 Lot/Block: Address: City:

Model: Subdivision: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2015/TPI2014 Wind Code: Roof Load: 40.0 psf Design Program: MiTek 20/20 8.6 Wind Speed: 130 mph Floor Load: N/A psf

This package includes 16 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date
1	164395354	A01	3/21/2024
-			•/= ·/= •= ·
2	164395355	A02	3/21/2024
3	164395356	A03	3/21/2024
4	164395357	A04	3/21/2024
5	164395358	B01G	3/21/2024
6	164395359	B02	3/21/2024
7	164395360	B03	3/21/2024
8	164395361	B04	3/21/2024
9	164395362	C01G	3/21/2024
10	164395363	C02	3/21/2024
11	164395364	C03	3/21/2024
12	164395365	M01	3/21/2024
13	164395366	M02	3/21/2024
14	164395367	M03	3/21/2024
15	164395368	M04	3/21/2024
16	164395369	M05	3/21/2024

The truss drawing(s) referenced above have been prepared by

Truss Engineering Co. under my direct supervision

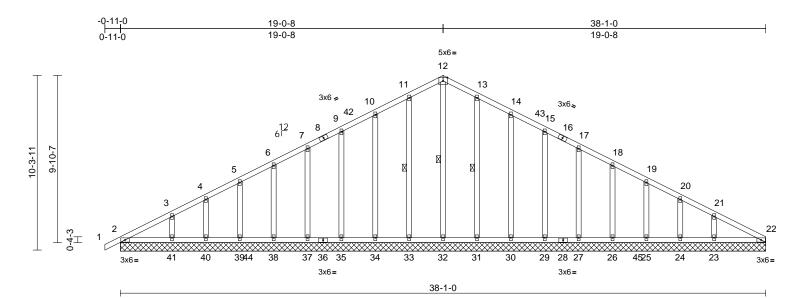
based on the parameters provided by Builders FirstSource (Albermarle,NC).

Truss Design Engineer's Name: Gilbert, Eric

My license renewal date for the state of North Carolina is December 31, 2024

North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.



Gilbert, Eric

Trenco 818 Soundside Rd Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Dogwood B - Lot 12 - Fairground Farms	
4052127	A01	Common Supported Gable	2	1	Job Reference (optional)	164395354

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Thu Mar 21 10:47:56 ID:qt7n_1dAH22SYOUL4v9chYzCwFL-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:68

Scale = 1:68													
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 23.1/30.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-S	0.11 0.07 0.22		in n/a n/a 0.01	(loc) - - 22	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 250 lb	GRIP 244/190 FT = 20% of live load: Lumber	
	6-0-0 oc purlins. Rigid ceiling directly bracing. 1 Row at midpt (size) 2-38-1-0 24=38-1- 27=38-1- 31=38-1- 34=38-1- 34=38-1- 41=38-1- Max Horiz 2=173 (L Max Uplift 2=-16 (LC 24=-39 (I 26=-48 (I 31=-42 (I 31=-42 (I 34=-51 (I 37=-49 (I 39=-50 (I 41=-71 (I	C 12) C 13), 23=-78 (LC 13) LC 13), 25=-51 (LC 13) LC 13), 27=-49 (LC 13) LC 13), 30=-53 (LC 13) LC 13), 33=-45 (LC 12) LC 12), 35=-48 (LC 12) LC 12), 38=-48 (LC 12) LC 12), 40=-42 (LC 12)	d or BOT CHORD -0, 1-0, 1-0, 1-0, 1-0, 1-0, 1-0, 1-0, webs , , , , , , , , , , , , ,	4-5=-111/96, 5-6= 7-9=-57/166, 9-10 11-12=-65/236, 1 13-14=-59/189, 1 15-17=-43/101, 1 19-20=-57/32, 20 2-41=-12/149, 30 37-38=-12/149, 33 37-38=-12/149, 33 30-31=-12/149, 33 30-31=-12/149, 22 25-26=-12/149, 22 25-26=-12/149, 22 23-24=-12/149, 22 24-23=-19/108 ed roof live loads ha b CE 7-10; Vult=130m	86/117,)=-48/190 2-13=-65, 4-15=-50, 7-18=-44, -21=-85/2 -41=-12/1 8-39=-12, 5-37=-12, 3-34=-12, 9-30=-12, 6-27=-12, 4-25=-12, 2-23=-12, -33=-217, -35=-145, 39=-137/7 3-31=-21, 5-29=-15, 8-26=-13, 0-24=-10; we been of the second s	6-7=-67/141,), 10-11=-58/21 /229, /144, 174, 18-19=-44, 20, 21-22=-144, 149, /149, /149, /149, /149, /149, /149, /149, /149, /149, /149, /149, /22, 7-37=-133, 75, 4-40=-114/6 9/66, 0/72, 2/72, 9/61, considered for cond gust)	16, /50, /45 /73, 64,	DO sno Plai Ct= 5) Unt dess 6) This load ove 7) All (8) Gat 9) Gat 9) Gat 9) Gat 9) Gat 9) Gat 9) Gat 10) This cho 11) * Th on 1 3-00 cho 12) All 1	L=1.15 F w); Pf=2 te DOL= 1.10 aalanceo ign. s truss h d of 12.0 rhangs n ble requi ble studs s truss h rd live lo is truss h rd live lo is truss h rd live lo is truss h co 12.0 rhangs n ble requi ble studs co 12.0 rhangs n co 12.0 rhangs n ble requi ble studs co 12.0 rhangs n co 12.0 rhang	Plate E 23.1 ps :1.15); d snow has bee 0 ps for on-cco re 2x4 irres co s space irres co s s space irres co s s space irres co s s space irres co s s pace irres co s s are a s irres co s s s pace irres co s s s pace irres co s s s s s s s s s s s s s s s s s s s	DL=1.15); Pg=3 f (flat roof snow: Category II; Exp loads have beer en designed for g 2.00 times flat nocurrent with oth MT20 unless oth ntinuous bottom ed at 2-0-0 oc. an designed for a noconcurrent with een designed for a mode wild will fit er members, wit ssumed to be SF i.	0.0 psf (ground Lumber DOL=1.15 B; Partially Exp.; In considered for this reater of min roof li oof load of 23.1 psf ier live loads. ierwise indicated. chord bearing. 10.0 psf bottom any other live loads a live load of 20.0p here a rectangle between the bottorn h BCDL = 10.0psf. No.2 crushing	5 live f on ds. psf m
FORCES	23=269 (25=181 (27=209 (30=262 (32=264 (34=259 (37=209 (39=179 (41=252 (LC 1), 24=138 (LC 20 LC 1), 26=210 (LC 6), LC 4), 29=223 (LC 6), LC 6), 31=274 (LC 6), LC 25), 33=273 (LC 5), LC 5), 35=219 (LC 5), LC 4), 38=210 (LC 5), LC 1), 40=144 (LC 19), Vasd=103 Cat. II; Ext DOL=1.60), 3) Truss des only. For see Stand	mph; TCDL=6.0psf; b B; Enclosed; MWI ilever left and right plate grip DOL=1.6 igned for wind load studs exposed to wi ard Industry Gable qualified building de	FRS (env exposed 60 s in the p ind (norm End Deta	elope) exterior ; Lumber lane of the trus al to the face), ils as applicabl	ss le,			A A A A A A A A A A A A A A A A A A A	SEA 0363	EER.R. ILBERTITION 121,2024	WILLING .

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, recetion and bracing of trusses and truss systems, see **ANSI/TPI Quility Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

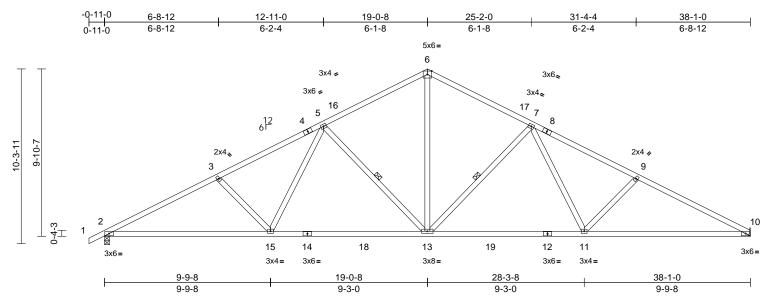
TRENCO A MiTek Affiliate

Job	Truss	Truss Type	Qty	Ply	Dogwood B - Lot 12 - Fairground Farms	
4052127	A01	Common Supported Gable	2	1	Job Reference (optional)	164395354

13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 16 lb uplift at joint 2, 45 lb uplift at joint 33, 51 lb uplift at joint 34, 48 lb uplift at joint 35, 49 lb uplift at joint 37, 48 lb uplift at joint 38, 50 lb uplift at joint 39, 42 lb uplift at joint 40, 71 lb uplift at joint 41, 42 lb uplift at joint 41, 53 lb uplift at joint 30, 48 lb uplift at joint 29, 49 lb uplift at joint 27, 48 lb uplift at joint 26, 51 lb uplift at joint 25, 39 lb uplift at joint 24 and 78 lb uplift at joint 23.

14) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard


Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Thu Mar 21 10:47:56 ID:qt7n_1dAH22SYOUL4v9chYzCwFL-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Dogwood B - Lot 12 - Fairground Farms	
4052127	A02	Common	10	1	Job Reference (optional)	164395355

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Thu Mar 21 10:47:57 ID:HIAK1tqfdMFB70WL8t4pv1zCwO7-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:67.9

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 23.1/30.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/	/TPI2014	CSI TC BC WB Matrix-S	0.98 0.84 0.52	Vert(CT)		(loc) 13-15 10-11 10	l/defl >999 >877 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 195 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2.0E or 2x4 SP DS 2x4 SP No.1 2x4 SP No.3 Structural wood she Rigid ceiling directly bracing. 1 Row at midpt	tion 2x4 SP SS athing directly applie applied or 9-10-6 oc 5-13, 7-13 10= Mechanical C 12) C 12), 10=-178 (LC	F 5) 6) d. 7) 8) 13) 9)	design. This truss ha load of 12.0 overhangs n This truss ha chord live loa * This truss l on the bottor 3-06-00 tall l chord and an Bearings are capacity of 5 Refer to gird	snow loads have as been designed psf or 2.00 times i on-concurrent witi as been designed ad nonconcurrent has been designed n chord in all area by 1-00-00 wide w hy other members assumed to be: 65 psi. er(s) for truss to ti hanical connectio	for great flat roof I h other li for a 10. with any d for a liv as where ill fit betv , with BC Joint 2 S russ coni	er of min roo oad of 23.1 p ve loads. 0 psf bottom other live loa ve load of 20. a rectangle ween the bott CDL = 10.0ps P No.1 crush nections.	of live osf on ads. .0psf tom sf. ning					
FORCES	(lb) - Maximum Com Tension 1-2=0/44, 2-3=-3052 5-6=-1932/269, 6-7=	2/349, 3-5=-2766/321	,	bearing plate joint 2 and 1 This truss is	e capable of withs 78 lb uplift at joint designed in acco	tanding 2 10. rdance w	201 Ib uplift a rith the 2015	it					
BOT CHORD	7-9=-2788/326, 9-10)=-3084/358 -15=-222/2151,	LO		Residential Code nd referenced sta Standard			and					
WEBS	6-13=-115/1267, 3-1 5-15=-45/558, 5-13= 7-13=-855/253, 7-11		5/229									OP. FESS	Rout
 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; Lumber DOL=1.60 plate grip DOL=1.60 										4.0000		SEA 0363	• -

TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber 3) DOL=1.15 Plate DOL=1.15); Pg=30.0 psf (ground snow); Pf=23.1 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Dogwood B - Lot 12 - Fairground Farms	
4052127	A03	Common	3	1	Job Reference (optional)	164395356

Builders FirstSource (Albermarle), Albemarle, NC - 28001,

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Thu Mar 21 10:47:57 ID:HIAK1tqfdMFB70WL8t4pv1zCwO7-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1 28-1-8 33-4-2 38-1-0 -5-2-10 6-11-15 4-8-14

		<u>-8-15 9-11-8</u> -8-15 5-2-9			<u>19-0-8 21-1-9</u> 2-1-1 2-1-1	28-1-8 6-11-15		-4-2 2-10	<u>38-1-0</u> 4-8-14
Scale = 1:69.3	[№] ¹ ² ¹ ² ³ ⁴ x6=	2x4 3 22 4x6= 6-11-4 6-11-4	5-0-4 2	$\begin{array}{c} & & 6 \\ 23 & & & 19 \\ \hline & & 19 \\ \hline & & 19 \\ 31 \\ 20 \\ 27 \\ \hline & 4x6= \\ 15^{2}h^{4}\bar{7} \\ 15 \\ -9 \\ -11 \\ -15 \\ -9 \\ -9 \\ -11 \\ -10 \\ -2 \\ -11 \\ 0 \\ -2 \\ -11 \\ -2 \\ -11 \\ -2 \\ -11 \\ -2 \\ -11 \\ -2 \\ -11 \\ -2 \\ -11 \\ -2 \\ -11 \\ -2 \\ -11 \\ -2 \\ -11 \\ -2 \\ -11 \\ -2 \\ -11 \\ -2 \\ -11 \\ -2 \\ -11 \\ -2 \\ -11 \\ -2 \\ -2$	16 2x4 II 2x4 II 2x4 II 0-8 <u>22-11-1</u>	24 $3x6_{x}$ 9 32 17 10^{-0} 28 15 14 25 2x4=5x8= 4x6= $23\cdot3\cdot5$ $5^{23}\cdot0^{-7}26\cdot1\cdot8$	3x4 10 9 30 <u>31-1-12</u> 5-0-4	2x4 ¢ 11 13 4x6= 38-1 6-11	
Plate Offsets ()	X, Y): [2:0-1-4,0-0-9]	, [7:0-3-0,Edge], [11:0-0-0		-					
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 23.1/30.0 10.0 0.0* 10.0	Spacing2-0Plate Grip DOL1.1Lumber DOL1.1Rep Stress IncrYECodeIR	5 5	CSI TC BC WB Matrix-S	0.66 Vert(LL) 0.43 Vert(CT) 0.80 Horz(CT)	in (loc) l/d -0.38 13-15 >99 -0.50 13-15 >9 0.08 12 r	99 240 M 01 180 /a n/a	1T20 24	RIP 4/190
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance	SP SS 2x6 SP 2400F 2.0E 19-17:2x4 SP No.2 2x4 SP No.3 *Excep No.2 Structural wood she 3-2-4 oc purlins. Rigid ceiling directly bracing. Except: 6-0-0 oc bracing: 17 (size) 2=0-3-8, Max Horiz 2=175 (LI Max Grav 2=1756 (LI Max Grav 2=1786 (II (Ib) - Maximum Com Tension 1-2=0/51, 2-3=-3437 4-6=-2708/161, 6-7- 8-10=-2711/159, 10 11-12=-3490/277 2-22=-338/3018, 20 16-20=0/2114, 15-1 13-15=-47/2719, 12 18-19=-8/7, 17-18=- 19-20=-2/829, 6-19= 15-17=-3/837, 6-8=- 4-20=-752/292, 10-1 4-22=-66/443, 10-13 3-22=-265/142, 11-1 16-18=-240/0	12= Mechanical C 16) LC 12), 12=-130 (LC 13) LC 1), 12=1715 (LC 4) npression/Maximum 7/265, 3-4=-3257/247, =-78/110, 7-8=-78/117, +-11=-3297/256, -222=-202/2703, 6=0/2114, -13=-195/3079, -8/7 =0/897, 8-17=0/905, -2180/263, 15=-778/294, 3=-73/481, 13=-304/153,	 Vasd=103m Cat. II; Exp zone; cantile DOL=1.60 p TCLL: ASCE DOL=1.15 F snow); Pf=2 Plate DOL=: Ct=1.10 Unbalanced design. This truss ha load of 12.0 overhangs n This truss ha chord live lo * This truss i on the botto 3-06-00 tall chord and a Bearings are DSS crushir Refer to girc Provide med bearing plat joint 2 and 1 This truss is International 	E 7-10; Vult=130mp; TCDL=6.0psf; B; Enclosed; MWF ever left and right e plate grip DOL=1.60 E 7-10; Pr=20.0 psi Plate DOL=1.15); P 3.1 psf (flat roof sn 1.15); Category II; I snow loads have f as been designed f psf or 2.00 times fi pon-concurrent with as been designed f ad nonconcurrent vith as been designed f has been designed m chord in all area by 1-00-00 wide wi hy other members, e assumed to be: J ng capacity of 660 j Jer(s) for truss to tri chanical connection e capable of withst 30 lb uplift at joint d esigned in accord I Residential Code and referenced star) Standard	BCDL=6.0psf; h=3 RS (envelope) exter xposed ; Lumber) f (roof live load: Lun g=30.0 psf (ground ow: Lumber DOL= Exp B; Partially Exp been considered for for greater of min ro lat roof load of 23.1 or a 10.0 psf botton with any other live loads. for a 10.0 psf botton with any other live load f for a live load of 2 s where a rectangle ill fit between the b with BCDL = 10.0 joint 2 SP 2400F 2. psi. uss connections. In (by others) of trus anding 152 lb uplift 12. dance with the 201 sections R502.11.	mber 1.15 0.; r this pof live psf on n oads. 0.0psf e ottom osf. 0E or s to at		SEAL 036322	P.K.
this design	1.							March 21	,2024

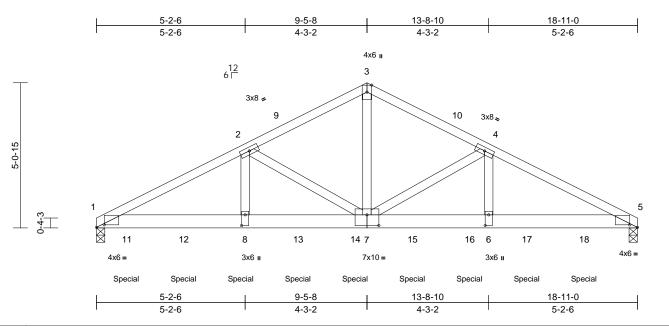
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Dogwood B - Lot 12 - Fairground Farms	
4052127	A04	Common	3	1	Job Reference (optional)	164395357

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Thu Mar 21 10:47:58 ID:SWZSPiKZvFxP508woO7bPNzCw9H-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

I 10:47:58 Page: 1 Doi7J4zJC?f

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	39-0-0 0-11-0
$ \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 2 \\ 3 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2$	
$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c} & & & & & & & & & & & & & & & & & & &$	
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}{c} \end{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\$	
$ \begin{array}{c} & & & & & & & & & & & & & & & & & & &$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	12
4xb = 4x6 = 5x8 = 4x6 = 2x4 II $2x4 = 5x8 = 4x6 = 4x6 = 2x4$ II	4x6=
15 ² 14∓ 2×4 ∥ 4×6= 15-0-9 <u>23-3-5</u>	
6-11-4 11-11-8 14-9-11 19-0-8 22-11-15 ²³⁻⁰⁻⁷ 26-1-8 31-1-12 38-1-0 6-11-4 5-0-4 2-10-3 3-11-7 3-11-7 0-7 2-10-3 5-0-4 6-11-4	
Scale = 1:69.5 $0-2-14$ $0-2-14$ $0-2-14$ $0-2-14$	
ate Offsets (X, Y): [7:0-3-0,Edge], [11:0-0-0,0-0-0]	
pading (psf) Spacing 2-0-0 CSI DEFL in (loc) 1/defl L/d PLATES GRIP	
CLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.65 Vert(LL) -0.37 21-23 >999 240 MT20 244/190 now (Pf/Pg) 23.1/30.0 Lumber DOL 1.15 BC 0.43 Vert(CT) -0.49 21-23 >921 180	
CDL 10.0 Rep Stress Incr YES WB 0.79 Horz(CT) 0.08 12 n/a n/a	
CLL 0.0* Code IRC2015/TPI2014 Matrix-S CDL 10.0 Weight: 244 lb FT = 209	%
UMBER 2) Wind: ASCE 7-10; Vult=130mph (3-second gust)	
OP CHORD 2x4 SP 2400F 2.0E or 2x4 SP DSS or 2x4 Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior	
OT CHORD 2x6 SP 2400F 2.0E or 2x6 SP DSS *Except* zone; cantilever left and right exposed ; Lumber	
20-18:2x4 SP No.2 DOL=1.60 plate grip DOL=1.60 /EBS 2x4 SP No.3 *Except* 21-4,16-10:2x4 SP 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber	
No.2 DOL=1.15 Plate DOL=1.15); Pg=30.0 psf (ground RACING snow); Pf=23.1 psf (flat roof snow: Lumber DOL=1.15)	
OP CHORD Structural wood sheathing directly applied or Plate DOL=1.15); Category II; Exp B; Partially Exp.;	
OT CHORD Rigid ceiling directly applied or 10-0-0 cc 4) Unbalanced snow loads have been considered for this	
bracing. Except: design. 6-0-0 cc bracing: 18-20 5) This truss has been designed for greater of min roof live	
EACTIONS (size) 2=0-3-8, 12=0-3-8 load of 12.0 psf or 2.00 times flat roof load of 23.1 psf on overhangs non-concurrent with other live loads.	
Max Holiz $2=167$ (LC 16) Max Lipit $2=-151$ (LC 12) 12=-151 (LC 13) (C	
Max Grav 2=1781 (LC 1), 12=1781 (LC 1) 7) * This truss has been designed for a live loads of 20.0psf	
ORCES (lb) - Maximum Compression/Maximum on the bottom chord in all areas where a rectangle Tension 3-06-00 tall by 1-00-00 wide will fit between the bottom	
OP CHORD 1-2=0/51, 2-3=-3428/264, 3-4=-3248/247, chord and any other members, with BCDL = 10.0psf.	
8-10=-2696/159, 10-11=-3248/248, crushing capacity of 660 psi.	,
11-12=-3428/265, 12-13=0/51 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 151 lb uplift at	14
17-21=0/2104, 16-17=0/2104, joint 2 and 151 lb uplift at joint 12.	R.
19-20=-8/7. 18-19=-8/7 International Residential Code sections P502 11 1 and	
ZEBS 20-21=-2/827, 6-20=0/895, 8-18=0/895, 16-18=-1/827, 6-8=-2170/261, R802.10.2 and referenced standard ANSI/TPI 1. SEAL LOAD CASE(S) Standard	
4-21=-760/292, 4-23=-66/445, 3-23=-265/142, 10-16=-760/292, 036322	: E
3-23=-205/142, 10-16=-700/292, 10-14=-67/445, 11-14=-265/142,	1 3
/EBS 20-21=-2/827, 6-20=0/895, 8-18=0/895, 16-18=-1/827, 6-8=-2170/261, 4-21=-760/292, 4-23=-66/445, 3-23=-265/142, 10-16=-760/292, 10-14=-67/445, 11-14=-265/142, 17-19=-240/0 SEAL OTES Unbalanced roof live loads have been considered for this design. Standard	43
Unbalanced roof live loads have been considered for	THE
this design.	
March 21,202	



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Dogwood B - Lot 12 - Fairground Farms	
4052127	B01G	Common Girder	1	3	Job Reference (optional)	164395358

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Thu Mar 21 10:47:58 ID:IF_?P4Q8uImFP3xY7Te09yzCw07-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:40.3

Plate Offsets (X, Y): [1:0-3-4,0-1-1], [5:0-3-4,0-1-1], [6:0-4-8,0-1-8], [7:0-5-0,0-4-8], [8:0-4-8,0-1-8]

	, , , , , [, .									
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 23.1/30.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC201	5/TPI2014	CSI TC BC WB Matrix-S	0.87 0.63 0.67	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.13 -0.24 0.06	(loc) 7-8 7-8 5	l/defl >999 >940 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 308 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x6 SP 2400F 2.0E 2x4 SP No.3 *Excep Structural wood she 4-8-13 oc purlins. Rigid ceiling directly bracing. (size) 1=0-3-8, 5 Max Horiz 1=-78 (LC Max Uplift 1=-979 (L	t* 7-3:2x4 SP No.2 athing directly applie applied or 10-0-0 oc 5=0-3-8 : 17) C 12), 5=-910 (LC 1:	c 6) 3) 7)	Vasd=103mj Cat. II; Exp E zone; cantile DOL=1.60 pl TCLL: ASCE DOL=1.15 P snow); Pf=22 Plate DOL=1 Ct=1.10 Unbalanced design.	7-10; Vult=130m b; TCDL=6.0psf; 3; Enclosed; MWF ver left and right (ate grip DOL=1.6 ; 7-10; Pr=20.0 ps late DOL=1.15); F 3.1 psf (flat roof sr .15); Category II; snow loads have as been designed	BCDL=6 RS (env exposed 0 if (roof liv Pg=30.0 now: Lun Exp B; F been co	6.0psf; h=30ft; elope) exteric ; Lumber besf (ground hber DOL=1.1 ?artially Exp.; hsidered for th	or er 5	In Ui Co	crease= niform Lo Vert: 1-3 oncentra Vert: 8= 13=-16	1.15 oads (l 3=-66, ated Lo 1611 11 (F),	b/ft) 3-5=-66, 1-5=-20 ads (lb) (F), 11=-1612 (F)	, 12=-1611 (F), =-1611 (F), 16=-1611
FORCES	Max Grav 1=8351 (L (Ib) - Maximum Com				ad nonconcurrent								
TOP CHORD	(ib) - Maximum Com Tension 1-2=-14046/1639, 2- 3-4=-9622/1153, 4-5	·3=-9623/1153,	8)	on the bottor 3-06-00 tall b	has been designe n chord in all area by 1-00-00 wide w hy other members	as where vill fit betw	a rectangle	•					
BOT CHORD	1-8=-1484/12493, 6- 5-6=-1401/12442	8=-1484/12493,	9)		are assumed to b acity of 660 psi.	e SP 240	0F 2.0E or D	SS					
WEBS	2-8=-413/4075, 2-7= 3-7=-946/8250, 4-7= 4-6=-408/4023		10) Provide mec bearing plate	hanical connection capable of withs 10 lb uplift at joint	tanding §							
Top chord follows: 2) Bottom chord follows: 2) Web chorn follows: 2) 2) All loads a except if n CASE(S) provided t unless oth	to be connected toget is connected with 10d (44 - 1 row at 0-9-0 oc. ords connected with 10d (6 - 3 rows staggered a ds connected with 10d (4 - 1 row at 0-9-0 oc. rre considered equally loted as front (F) or bas section. Ply to ply comr o distribute only loads ervixe indicated. ed roof live loads have h.	12 as IAD	International R802.10.2 a 2) Hanger(s) or provided suf Ib down and Ib up at 3-0- 1611 Ib down and 190 Ib u 11-0-12, 161 1611 Ib down down and 19		e sections ndard Al device(s concentra 12, 1611 and 190 c 7-0-12, lb down 0 lb up a c 15-0-12 2 on bott	R502.11.1 a ISI/TPI 1. Shall be ated load(s) 1 Ib down and Ib up at 5-0- 1611 Ib down and 190 Ib u t 13-0-12, an 2, and 1611 Ib om chord. Th	612 190 12, n p at d		(W. CHILLIN, C.		(IIIIIII)		

March 21,2024

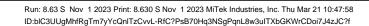
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Dogwood B - Lot 12 - Fairground Farms	
4052127	B02	Common	1	1	Job Reference (optional)	164395359

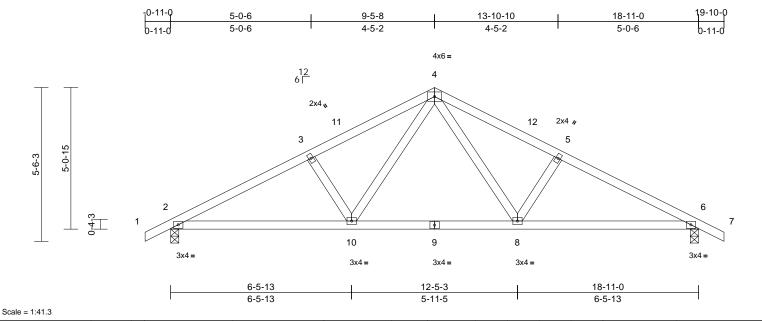
Run: 8.63 S. Nov. 1.2023 Print: 8.630 S.Nov. 1.2023 MiTek Industries. Inc. Thu Mar 21.10:47:58 Builders FirstSource (Albermarle), Albemarle, NC - 28001, Page: 1 ID:51n8ua_6zRTAqf9IY_RklfzCvyp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 5-0-6 9-5-8 13-10-10 18-11-0 5-0-6 4-5-2 4-5-2 5-0-6 4x6 = 3 12 6 Г a 10 2x4, 2x4 🎣 2 4 5-0-15 5 -4-3 • 8 7 6 3x4 = 3x4 = 3x4 = 3x4 = 3x4 = 6-5-13 12-5-3 18-11-0 5-11-5 6-5-13 6-5-13 Scale = 1:37.9 Loading Spacing 2-0-0 CSI DEFL l/defl L/d PLATES GRIP (psf) in (loc) TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.36 Vert(LL) -0.05 5-6 >999 240 MT20 244/190 Snow (Pf/Pg) 23 1/30 0 Lumber DOL BC Vert(CT) 1 15 0.48 -0.125-6 >999 180 TCDL 10.0 Rep Stress Incr YES WB 0.20 Horz(CT) 0.03 5 n/a n/a BCLL 0.0 Code IRC2015/TPI2014 Matrix-S BCDL 10.0 Weight: 84 lb FT = 20%LUMBER * This truss has been designed for a live load of 20.0psf 6) on the bottom chord in all areas where a rectangle TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 3-06-00 tall by 1-00-00 wide will fit between the bottom 2x4 SP No.3 chord and any other members. WFBS 7) All bearings are assumed to be SP No.2 crushing BRACING capacity of 565 psi. TOP CHORD Structural wood sheathing directly applied or Provide mechanical connection (by others) of truss to 8) 4-6-6 oc purlins. bearing plate capable of withstanding 87 lb uplift at joint BOT CHORD Rigid ceiling directly applied or 10-0-0 oc 1 and 87 lb uplift at joint 5. bracing. This truss is designed in accordance with the 2015 9) **REACTIONS** (size) 1=0-3-8, 5=0-3-8 International Residential Code sections R502.11.1 and Max Horiz 1=-80 (LC 13) R802.10.2 and referenced standard ANSI/TPI 1. Max Uplift 1=-87 (LC 12), 5=-87 (LC 13) LOAD CASE(S) Standard Max Grav 1=803 (LC 1), 5=803 (LC 1) FORCES (Ib) - Maximum Compression/Maximum Tension 1-2=-1385/161, 2-3=-1231/173, TOP CHORD 3-4=-1231/173, 4-5=-1385/161 BOT CHORD 1-8=-167/1187, 6-8=-32/791, 5-6=-87/1187 WEBS 3-8=-85/483, 3-6=-85/483, 2-8=-322/173, 4-6=-322/173 NOTES Unbalanced roof live loads have been considered for 1) this design. Wind: ASCE 7-10; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; \cap Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; Lumber DOL=1.60 plate grip DOL=1.60 or and a second second TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber 3) SEAL DOL=1.15 Plate DOL=1.15); Pg=30.0 psf (ground 036322 snow); Pf=23.1 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.;

Ct=1.10 Unbalanced snow loads have been considered for this 4) design.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


111111111 G mmm March 21,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent bucking of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Edenton, NC 27932

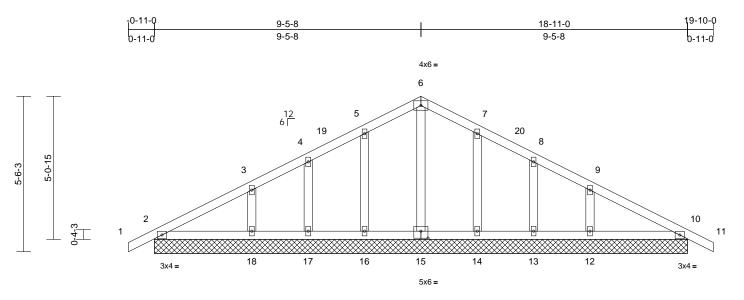
Job	Truss	Truss Type	Qty	Ply	Dogwood B - Lot 12 - Fairground Farms	
4052127	B03	Common	1	1	Job Reference (optional)	164395360

Page: 1

Scale = 1:41.3	3												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 23.1/30.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-S	0.35 0.46 0.20	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.05 -0.12 0.03	(loc) 6-8 6-8 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 87 lb	GRIP 244/190 FT = 20%
LUMBER 6) This truss has been designed for a 10.0 psf bottom TOP CHORD 2x4 SP No.2 6) This truss has been designed for a 10.0 psf bottom BOT CHORD 2x4 SP No.2 7) * This truss has been designed for a live load of 20.0psf WEBS 2x4 SP No.3 7) * This truss has been designed for a live load of 20.0psf BRACING 6) This truss has been designed for a live load of 20.0psf TOP CHORD Structural wood sheathing directly applied or 4.7-11 oc purlins. 7) * This truss has been designed for a live load of 20.0psf BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. 8 BOT CHORD Structural wood sheathing directly applied or 10-0-0 oc bracing. 9 REACTIONS (size) 2=0-3.8, 6=0-3.8 Max Horiz 2=-87 (LC 13) Max Horiz 2=-87 (LC 13) Max Grav 2=873 (LC 1), 6=-873 (LC 1) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 110 lb uplift at joint 2 and 110 lb uplift at joint 6. TOP CHORD 1-2=0/44, 2-3=-1384/156, 3-4=-1215/167, 4-5=-1215/168, 5-6=-1384/156, 6-7=0/44 10 BOT CHORD 2-10=-153/1169, 8-10=-23/784, 6-8=-67/1169 Standard WEBS 4-10=-81/479, 4-8=-81/479, 3-10=-32/1/167,													
NOTES	and an of the standard stands		_										
 this desig Wind: AS Vasd=103 Cat. II; Ex zone; can DOL=1.6(3) TCLL: AS DOL=1.1(snow); Pfr Plate DOI Ct=1.10 4) Unbalance design. 5) This truss 	red roof live loads have in. CE 7-10; Vult=130mph 3mph; TCDL=6.0psf; Bi xp B; Enclosed; MWFR tillever left and right exp 0 plate grip DOL=1.60 SCE 7-10; Pr=20.0 psf (5 Plate DOL=1.15); Pg: =23.1 psf (flat roof snov L=1.15); Category II; E: ted snow loads have be is has been designed for 2.0 psf or 2.00 times flat	(3-second gust) CDL=6.0psf; h=30ft; S (envelope) exterio posed ; Lumber roof live load: Lumb =30.0 psf (ground w: Lumber DOL=1.1 xp B; Partially Exp.; een considered for th r greater of min roof	; or 5 his live							A strategy and		SEA 0363	• -

- 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=30.0 psf (ground snow); Pf=23.1 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live 5) load of 12.0 psf or 2.00 times flat roof load of 23.1 psf on overhangs non-concurrent with other live loads.

March 21,2024


GI

minin

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Dogwood B - Lot 12 - Fairground Farms	
4052127	B04	Common Supported Gable	1	1	Job Reference (optional)	164395361

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Thu Mar 21 10:47:58 ID:YDRXAQWHC9GksWTPfJgCaEzCvuF-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

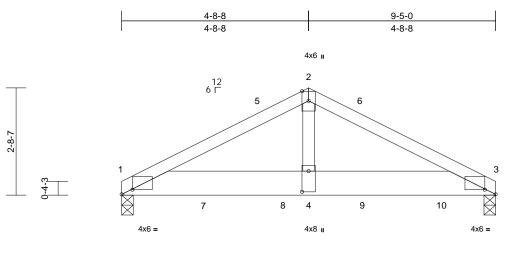
18-11-0

Scale = 1:40.9

Plate Offsets (X, Y): [15:0-3-0,0-3-0]

-			-		-				-			1	
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0		1.15		TC	0.13	Vert(LL)	n/a	(.00)	n/a	999	MT20	244/190
Snow (Pf/Pg)	23.1/30.0		1.15		BC	0.08	Vert(CT)	n/a	-	n/a	999	1	210,000
TCDL	10.0		YES		WB	0.06	Horz(CT)	0.00	10	n/a	n/a		
BCLL	0.0*					0.00	11012(01)	0.00	10	n/a	11/a		
		Code	IRC201	5/TPI2014	Matrix-S								FT 000/
BCDL	10.0											Weight: 92 lb	FT = 20%
LUMBER TOP CHORD	2x4 SP No.2		,	this design.	roof live loads hav 7-10; Vult=130mp				Inte	rnationa	l Resi	ned in accordanc dential Code sec ferenced standar	tions R502.11.1 and
BOT CHORD	2x4 SP No.2		2)		h; TCDL=6.0psf;								JANSI/TETT.
OTHERS	2x4 SP No.3				B; Enclosed; MWF			r	LOAD	ASE(S) Sta	ndard	
BRACING					ver left and right e								
TOP CHORD	6-0-0 oc purlins.	athing directly applied	or 3)	DOL=1.60 pl	ate grip DOL=1.60	ว							
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 oc	3)	only. For stu	ds exposed to wir	nd (norm	al to the face)	,					
	(size) 2=18-11-C 12=18-11 14=18-11 16=18-11 18=18-11 Max Horiz 2=-87 (LC Max Uplift 2=-17 (LC 12=-79 (L 14=-53 (L 17=-37 (L 17=-37 (L 12=288 (L 14=239 (L 16=239 (L 18=238 (L 18=238 (L)	, 5) , 6) , 7) , 8)), 9)	8) Gable requires continuous bottom chord bearing.									ROUT	
FORCES	(lb) - Maximum Com	pression/Maximum	10		s been designed f			le			12.	O'. FESS	I ANY I
TOP CHORD	Tension 1-2=0/43, 2-3=-99/60 4-5=-41/99, 5-6=-57, 7-8=-41/70, 8-9=-53, 10-11=0/43	/123, 6-7=-57/116,) * This truss h on the botton 3-06-00 tall b chord and an	has been designed in chord in all area by 1-00-00 wide wi by other members, are assumed to be	d for a liv s where ill fit betv , with BC	e load of 20.0 a rectangle veen the botto :DL = 10.0psf.	psf m		4		SEA 0363	• –
BOT CHORD	2-18=-3/81, 17-18=- 14-16=-3/81, 13-14=			capacity of 5			0	D				0303	
WEBS	,	195/79, 4-17=-108/58, =-195/78, 8-13=-108/5		bearing plate 2, 24 lb uplift uplift at joint	capable of withst at joint 10, 54 lb u 17, 80 lb uplift at jo ft at joint 13 and 7	anding 1 uplift at jo oint 18, s	7 lb uplift at jo pint 16, 37 lb 53 lb uplift at jo	pint				SEA 0363	EERER
NOTES				. , ee ie upi								111111	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


818 Soundside Road Edenton, NC 27932

March 21,2024

Job	Truss	Truss Type	Qty	Ply	Dogwood B - Lot 12 - Fairground Farms	
4052127	C01G	Common Girder	1	2	Job Reference (optional)	164395362

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Thu Mar 21 10:47:58 ID:aGLwiccE9VOZyjTQ5NI?Q?zCvqG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:29

Plate Offsets (X, Y): [1:0-3-4,0-1-7], [3:0-3-4,0-1-7], [4:0-6-4,0-2-0]

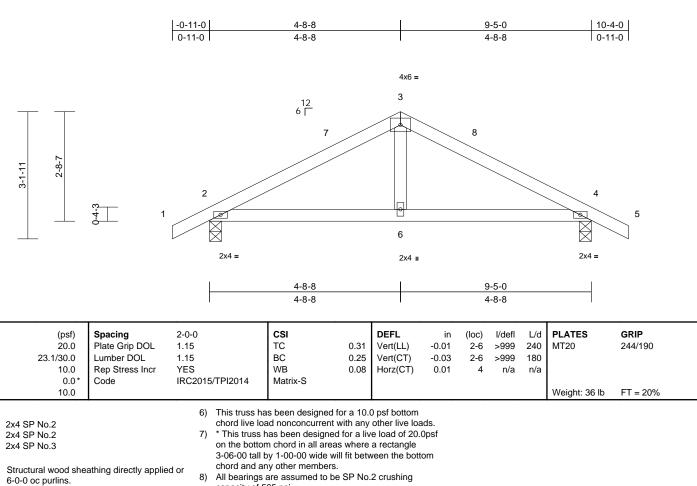
	X, 1). [1.0-3- 4 ,0-1-7],	, [3.0-3-4,0-1-7], [4.0-0	J-4,0-2-0j													
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 23.1/30.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2015/TI	PI2014	CSI TC BC WB Matrix-S	0.38 0.40 0.91	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.04 -0.08 0.01	(loc) 3-4 3-4 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 95 lb	GRIP 244/190 FT = 20%			
	5-0-6 oc purlins. Rigid ceiling directly bracing.	athing directly applied applied or 10-0-0 oc 3=0-3-8 16) .C 12), 3=-359 (LC 13	V C Z D I or 5) T S S P C C 6) U d d) 7) T	 Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=30.0 psf (ground snow); Pf=23.1 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10 Unbalanced snow loads have been considered for this design. This truss has been designed for a 10.0 psf bottom 							Concentrated Loads (lb) Vert: 7=-1611 (F), 8=-1693 (F), 9=-1693 (F), 10=-1693 (F)					
 (0.131"x3") Top chords oc. Bottom cho staggered Web connet All loads au except if no CASE(S) s provided to 	(lb) - Maximum Com Tension 1-2=-5407/499, 2-3= 1-4=-414/4812, 3-4= 2-4=-335/4386 to be connected toge) nails as follows: s connected as follows: ords connected as follows: ords connected as foll at 0-7-0 oc. ected as follows: 2x4 - re considered equally oted as front (F) or ba section. Ply to ply com o distribute only loads	=-5405/499 =-414/4812 ther with 10d s: 2x4 - 1 row at 0-9-0 ows: 2x8 - 4 rows - 1 row at 0-9-0 oc. applied to all plies, ck (B) face in the LOA rections have been	O 3 3 9) A 10) P b jc 11) T I 12) H 12) H 12) H 12 12 6	 chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 1-00-00 wide will fit between the bottom chord and any other members. 								SEA 0363	• –			
	erwise indicated. d roof live loads have 1.	been considered for	d LOAE 1)	device(s) is the responsibility of others. LOAD CASE(S) Standard								EER. KINN				

- D distribute only loads noted as (F) or (B), unless otherwise indicated. 3) Unbalanced roof live loads have been considered for
 - LOAD CASE(S) Standard this design. 1)

818 Soundside Road Edenton, NC 27932

G minin

March 21,2024


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Increase=1.15 Uniform Loads (lb/ft)

Vert: 1-2=-66, 2-3=-66, 1-3=-20

Job	Truss	Truss Type	Qty	Ply	Dogwood B - Lot 12 - Fairground Farms	
4052127	C02	Common	1	1	Job Reference (optional)	164395363

Run: 8.63 S. Nov. 1.2023 Print: 8.630 S.Nov. 1.2023 MiTek Industries. Inc. Thu Mar 21.10:47:58 ID:V?YIUZVtZMMDApTbGpGpreynDku-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

- All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 66 lb uplift at joint 2 and 66 lb uplift at joint 4.
- 10) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard

Max Grav 2=464 (LC 1), 4=464 (LC 1) FORCES (Ib) - Maximum Compression/Maximum Tension 1-2=0/44, 2-3=-538/55, 3-4=-538/55, TOP CHORD 4-5=0/44BOT CHORD 2-6=-5/415, 4-6=-5/415 WEBS 3-6=0/218

Max Horiz 2=-47 (LC 13)

bracing.

Rigid ceiling directly applied or 10-0-0 oc

2=0-3-8, 4=0-3-8

Max Uplift 2=-66 (LC 12), 4=-66 (LC 13)

NOTES

Scale = 1:28.4 Loading

TCLL (roof)

TCDL

BCLL

BCDL

WFBS

LUMBER

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

REACTIONS (size)

BRACING

Snow (Pf/Pg)

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=30.0 psf (ground snow); Pf=23.1 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- 4) Unbalanced snow loads have been considered for this desian.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 23.1 psf on overhangs non-concurrent with other live loads.

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent bucking of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

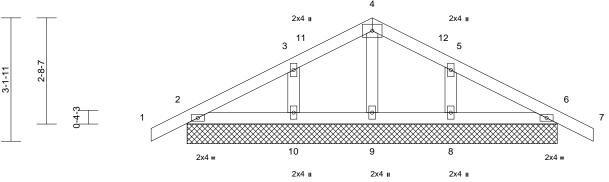
Job	Truss	Truss Type	Qty	Ply	Dogwood B - Lot 12 - Fairground Farms	
4052127	C03	Common Supported Gable	1	1	Job Reference (optional)	164395364

4-8-8

4-8-8

1<u>2</u> 6 [

-0-11-0


0-11-0

Builders FirstSource (Albermarle), Albemarle, NC - 28001,

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Thu Mar 21 10:47:58 ID:tdGaA?hdVfHZInVm?LNeCUzCvq9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

9-5-0 10-4-0 4-8-8 0-11-0 4x6 = 4

9-5-0

Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		20.0	Plate Grip DOL	1.15		TC	0.11	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	2	3.1/30.0	Lumber DOL	1.15		BC	0.05	Vert(CT)	n/a	-	n/a	999		
TCDL		10.0	Rep Stress Incr	YES		WB	0.04	Horz(CT)	0.00	6	n/a	n/a		
BCLL		0.0*	Code	IRC20	15/TPI2014	Matrix-S								
BCDL		10.0											Weight: 40 lb	FT = 20%
LUMBER				4) TCLL: ASCE	7-10; Pr=20.0) psf (roof liv	e load: Lum	ber					
TOP CHORD	2x4 SP N	o.2			DOL=1.15 P	late DOL=1.15	5); Pg=30.0 p	osf (ground						
BOT CHORD	2x4 SP N	0.2			snow); Pf=23	3.1 psf (flat roo	f snow: Lum	nber DOL=1.	15					
OTHERS	2x4 SP N	0.3			Plate DOL=1	.15); Category	/ II; Exp B; F	Partially Exp.;						
BRACING					Ct=1.10									
TOP CHORD	Structura	l wood shea	athing directly applie	ed or 5) Unbalanced	snow loads ha	ive been cor	nsidered for t	his					
	6-0-0 oc i		5		design.									
BOT CHORD	Rigid ceil	ing directly	applied or 10-0-0 o	_с 6		is been design								
	bracing.	• •				psf or 2.00 tim			sf on					
REACTIONS	(size)	2=9-5-0, 6	6=9-5-0, 8=9-5-0,	-		on-concurrent								
	. ,	9=9-5-0, 1	0=9-5-0	/		es continuous		rd bearing.						
	Max Horiz	2=-47 (LC	17)	8		spaced at 2-0-								
	Max Uplift	2=-28 (LC	12), 6=-37 (LC 13)	ຸ ອ		as been design ad nonconcurr			ada					
	-	8=-65 (LC	13), 10=-65 (LC 12	2) 1	0) * This truss I									
	Max Grav	2=173 (LC	C 1), 6=173 (LC 1), 8	3=242 '		n chord in all a			opsi					
			=120 (LC 1), 10=24	2 (LC		by 1-00-00 wid			om					
		19)				ny other memb			.0111					
FORCES	(lb) - Max	imum Com	pression/Maximum	1	1) All bearings			2 crushina						
	Tension				capacity of 5									
TOP CHORD			9, 3-4=-50/64,	1	2) Provide med		ction (by oth	ers) of truss	to					
			/34, 6-7=0/43		bearing plate	e capable of wi	thstanding 2	28 lb uplift at	joint					
BOT CHORD		,	4, 8-9=0/44, 6-8=0/-	44	2, 37 lb uplif	t at joint 6, 65 l	b uplift at joi	int 10 and 65	lb					17.5
WEBS	4-9=-92/0), 3-10=-183	3/95, 5-8=-183/94		uplift at joint	8.								1111
NOTES				1	Beveled plat	e or shim requ	ired to provi	de full bearin	g				TH CA	ROUL
1) Unhalance	d roof live l	oads have	been considered fo	r	surface with	truss chord at	ioint(s) 2 6					1	Q	~ / / /

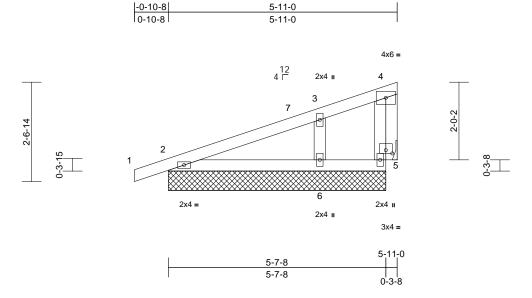
Unbalanced roof live loads have been considered for 1) this design.

- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

surface with truss chord at joint(s) 2, 6.

14) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Dogwood B - Lot 12 - Fairground Farms	
4052127	M01	Monopitch Supported Gable	1	1	Job Reference (optional)	164395365

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Thu Mar 21 10:47:59 ID:1ZARwv53FHCj3gTTjGjiRRzCvXZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

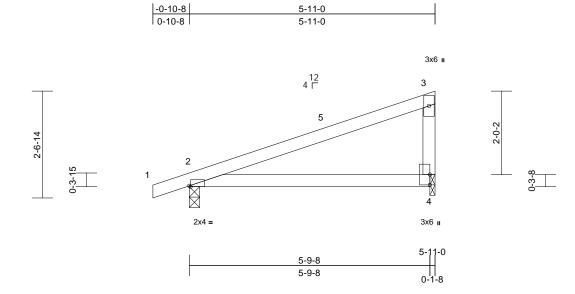
Scale = 1:29.8

Plate Offsets (X, Y): [5:0-2-0,0-1-0]

	(, .). [0.0 = 0,0 . 0]					-							
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL LUMBER TOP CHORD BOT CHORD		Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	4	design.	CSI TC BC WB Matrix-P snow loads have				(loc) 2-6 2-6 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 26 lb	GRIP 244/190 FT = 20%
WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 *Excep Structural wood she 5-11-0 oc purlins, e Rigid ceiling directly bracing. (size) 2=5-7-8, § Max Horiz 2=87 (LC Max Uplift 2=-46 (LC (LC 12) Max Grav 2=204 (LC	load of 12.0 overhangs n) Gable studs) This truss ha chord live loo) * This truss l on the bottor 3-06-00 tall l chord and ai) Bearings are capacity of 5 0) Provide mec	psf or 2.00 times on-concurrent wi spaced at 2-0-0 is been designed ad nonconcurrent has been designed n chord in all are by 1-00-00 wide v y other members assumed to be:	flat roof le th other li oc. I for a 10. t with any ed for a liv as where will fit betw s. , Joint 6 s on (by oth	bad of 23.1 p ve loads. 0 psf bottom other live load e load of 20. a rectangle veen the bot SP No.2 crus ers) of truss	ads. .0psf tom shing to							
FORCES TOP CHORD BOT CHORD WEBS	,		4/4	5, 46 lb uplif 1) This truss is International	t at joint 2 and 72 designed in acco Residential Code nd referenced sta	lb uplift a brdance w e sections	it joint 6. ith the 2015 R502.11.1					Samu	1117.
Vasd=103 Cat. II; Ex zone; can DOL=1.60 2) Truss der only. For see Stand or consult 3) TCLL: AS DOL=1.15 snow); Pfi	CE 7-10; Vult=130mph 3mph; TCDL=6.0psf; B' top B; Enclosed; MWFR tillever left and right exp 0 plate grip DOL=1.60 signed for wind loads ir studs exposed to wind ard Industry Gable En t qualified building desi i; CE 7-10; Pr=20.0 psf (5 Plate DOL=1.15); Pg= =23.1 psf (flat roof snor L=1.15); Category II; E;	CDL=6.0psf; h=30ft; S (envelope) exterio posed ; Lumber h the plane of the tru (normal to the face) d Details as applicat gner as per ANSI/TF roof live load: Lumber =30.0 psf (ground w: Lumber DOL=1.1	ss , ole, ol 1. er									SEA 0363	EER H

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

minin March 21,2024


Job	Truss	Truss Type	Qty	Ply	Dogwood B - Lot 12 - Fairground Farms	
4052127	M02	Monopitch	4	1	Job Reference (optional)	164395366

5-11-0

Builders FirstSource (Albermarle), Albemarle, NC - 28001,

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Thu Mar 21 10:47:59 ID:H5o7WQpi7jmCGu3?Esoms4zCvWd-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

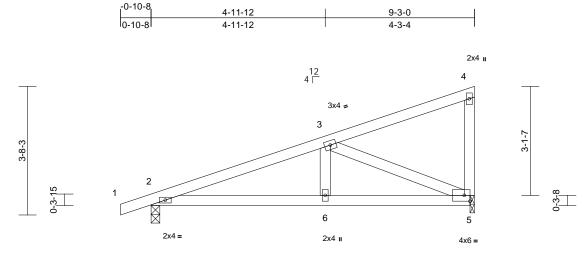
Scale = 1:27.7

Plate Offsets (X, Y): [2:0-0-6,Edge]

Loading (psf) Spacing 2-0-0 CSI DEFL in (loc) TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.48 Vert(LL) -0.02 2-4 Snow (Pf/Pg) 23.1/30.0 Lumber DOL 1.15 BC 0.27 Vert(CT) -0.05 2-4 TCDL 10.0 Rep Stress Incr YES WB 0.00 Horz(CT) 0.00 4 BCDL 10.0 IRC2015/TPI2014 Matrix-R Vertice Ver	I/defi L/d PLATES GRIP >999 240 MT20 244/190 >999 180 n/a n/a Weight: 22 lb FT = 20%
 LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 BACING CTHERS 2x4 SP No.3 CTHERS 2x4 SP No.3 CTHERS 2x4 SP No.2 BRACING BRACING Structural wood sheathing directly applied or 5-11-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (size) 2=0-3-0, 4=0-1-8 Max Horiz 2=89 (LC 8) Max Uplift 2=-72 (LC 8), 4=-52 (LC 12) Max Grav 2=321 (LC 19), 4=259 (LC 19) Max Grav 2=321 (LC 19), 4=259 (LC 19) Max Grav 2=321 (LC 19), 4=259 (LC 19) FORCES (b) - Maximum Compression/Maximum Tension FORCES (b) - Maximum Compression/Maximum Tension NOTES (b) - Maximum Compression/Maximum Tension (c) - T12=-0/29, 2-3=-217/5, 3-4=-172/76 BOT CHORD 1-2=-0/29, c-3=-217/5, 3-4=-172/76 BOT CHORD 2-4=-31/150 NOTES (b) - Miximum Compression/Maximum Tension (c) - T12=-0.0psf; BCDL=6.0psf; BC	SEAL 036322

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


818 Soundside Road Edenton, NC 27932

mmm March 21,2024

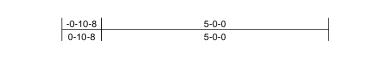
Job	Truss	Truss Type	Qty	Ply	Dogwood B - Lot 12 - Fairground Farms		
4052127	M03	Monopitch	3	1	Job Reference (optional)	164395367	

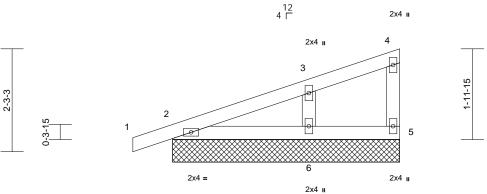
Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Thu Mar 21 10:47:59 ID:1MWqzsn972qK1MfjxQq6kqy6nIO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:33

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 23.1/30.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-S	0.31 0.29 0.28	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.02 -0.04 0.01	(loc) 2-6 2-6 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 42 lb	GRIP 244/190 FT = 20%
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Wind: ASC Vasd=103 Cat. II; Exp zone; cant DOL=1.60 2) TCLL: ASC DOL=1.15 snow); Pf= Plate DOL Ct=1.10 3) Unbalance design. 4) This truss load of 12. overhangs 5) This truss	bracing.	applied or 10-0-0 oc 5=0-1-8 C 8) S 8), 5=-85 (LC 12) C 19), 5=438 (LC 19) pression/Maximum 59, 3-4=-81/28, 134/656 //209 (3-second gust) CDL=6.0psf; h=30ft; S (envelope) exterior posed ; Lumber roof live load: Lumber and interpole (ground w: Lumber DOL=1.15 kp B; Partially Exp.; then considered for thi r greater of min roof lit troof load of 23.1 psf ther live loads. r a 10.0 psf bottom	r s s s y on the bott 3-06-00 tal chord and 7) All bearing capacity of 8) Bearing at using ANS designer sl 9) Provide me bearing pla 10) Provide me bearing pla 10) Provide me bearing pla 2 and 85 lb 11) This truss i Internation R802.10.2 LOAD CASE(S) s	joint(s) 5 considers /TPI 1 angle to grai nould verify capacity ichanical connection te at joint(s) 5. ichanical connection te capable of withst uplift at joint 5. s designed in accor al Residential Code and referenced star	s where ill fit betv e SP No. parallel f n formuli y of beari n (by oth anding 8 dance w sections	a rectangle veen the both 2 crushing o grain value a. Building ng surface. ers) of truss f ers) of truss f i7 lb uplift at j ith the 2015 c R502.11.1 a	to ioint				SEA 0363	EER HRUU

March 21,2024


818 Soundside Road Edenton, NC 27932


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Dogwood B - Lot 12 - Fairground Farms	
4052127	M04	Monopitch Supported Gable	3	1	Job Reference (optional)	164395368

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Thu Mar 21 10:47:59 ID:7m0x92Z5gTM??mvd11N?ZyzCvT4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

5-0-0

Scale = 1:25.4

Scale = 1:25.4												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL LUMBER	(psf) 20.0 23.1/30.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code		s truss has beer	n designed for grea			(loc) - -	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 20 lb	GRIP 244/190 FT = 20%
TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 5-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 2=5-0-0, § Max Horiz 2=77 (LC Max Uplift 2=-44 (LC (LC 12) Max Grav 2=174 (LC (LC 19)	cept end verticals. applied or 10-0-0 or 5=5-0-0, 6=5-0-0 8) \$ 8), 5=-12 (LC 8), 6	(loa ove 6) Ga 7) Ga 8) Thi ed or 9) * Ti c 3-0 chc 10) All cap =-55 11) Prc be 6=268 5, 2	d of 12.0 psf or 3 rhangs non-cor ole requires con ole studs space s truss has beer rd live load non his truss has beer the bottom chor 6-00 tall by 1-00 rd and any othe bearings are as acity of 565 psi vide mechanica ring plate capal 4 lb uplift at joir	2.00 times flat roof current with other I tinuous bottom cho d at 2-0-0 oc. o designed for a 10 concurrent with any en designed for a li d in all areas where l-00 wide will fit bet r members. sumed to be SP No I connection (by oth ole of withstanding at 2 and 55 lb uplift	oad of 23.1 psf ve loads. rd bearing. 0 psf bottom r other live load ve load of 20.0p a rectangle ween the bottor .2 crushing mers) of truss to 12 lb uplift at jo at joint 6.	f on s. osf m					
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Maximum Com Tension 1-2=0/28, 2-3=-54/3 2-6=0/0, 5-6=0/0 3-6=-204/93		Inte R8	rnational Resid	ed in accordance v ential Code section prenced standard A dard	s R502.11.1 an	ıd					
Vasd=103n Cat. II; Exp zone; cantit DOL=1.60 2) Truss desi only. For s see Standa or consult c 3) TCLL: ASC DOL=1.15 snow); Pf=: Plate DOL= Ct=1.10	E 7-10; Vult=130mph nph; TCDL=6.0psf; B B; Enclosed; MWFR lever left and right exp plate grip DOL=1.60 gned for wind loads in tuds exposed to wind ird Industry Gable En qualified building desi E 7-10; Pr=20.0 psf (Plate DOL=1.15); Pg: 23.1 psf (flat roof sno =1.15); Category II; E: d snow loads have be	CDL=6.0psf; h=30ft; S (envelope) exterior posed ; Lumber In the plane of the tru- (normal to the face d Details as applical gner as per ANSI/TF roof live load: Lumb =30.0 psf (ground w: Lumber DOL=1.1 xp B; Partially Exp.;	or Iss Dile, PI 1. er 5						A CHINE	A A A A A A A A A A A A A A A A A A A	SEA 0363	L 22 EER.

March 21,2024

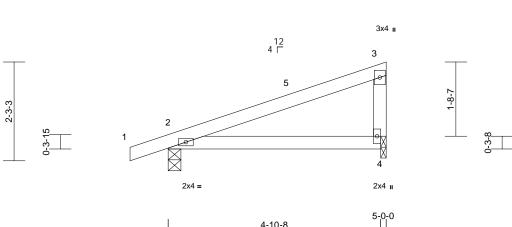
A MITEK Affiliate

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Dogwood B - Lot 12 - Fairground Farms	
4052127	M05	Monopitch	8	1	Job Reference (optional)	164395369

5-0-0

5-0-0


-0-10-8

0-10-8

Builders FirstSource (Albermarle), Albemarle, NC - 28001,

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Thu Mar 21 10:47:59 ID:nLGvFyvHrN0tzEdCDdOpE3zCvSd-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:26.4

Loading (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 23.1/30.0 TCDL 10.0 BCLL 0.0* BCDL 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES IRC2015/TPI2014	CSI TC 0.31 BC 0.18 WB 0.00 Matrix-R	DEFL in Vert(LL) -0.01 Vert(CT) -0.03 Horz(CT) 0.00	(loc) 2-4 2-4 4	>999 >999	L/d PLATES 240 MT20 180 n/a Weight: 19 lb	GRIP 244/190 FT = 20%
BOT CHORD 5-0-0 oc purlins. Rigid ceiling direct bracing. REACTIONS (size) 2=0-3-8 Max Horiz 2=77 (L Max Uplift 2=-68 (l Max Grav 2=282 (l	C 8), 4=-43 (LC 12) LC 19), 4=210 (LC 19) mpression/Maximum I/3, 3-4=-140/63 h (3-second gust) BCDL=6.0psf; h=30ft; RS (envelope) exterior xposed ; Lumber) (roof live load: Lumber g=30.0 psf (ground ow: Lumber DOL=1.15 Exp B; Partially Exp.; been considered for this or greater of min roof live at roof load of 23.1 psf co other live loads. or a 10.0 psf bottom	on the bottor 3-06-00 tall b chord and ar 7) All bearings: capacity of 5 8) Bearing at jo using ANSI/1 designer sho 9) Provide mec bearing plate 10) Provide mec bearing plate 2 and 43 lb u 11) This truss is International R802.10.2 ar LOAD CASE(S) e	bint(s) 4 considers parallel f TPI 1 angle to grain formul bould verify capacity of bear chanical connection (by oth e at joint(s) 4. chanical connection (by oth e capable of withstanding 6 uplift at joint 4. designed in accordance w Residential Code sections nd referenced standard AN	a rectangle ween the bottom .2 crushing to grain value a. Building ing surface. iers) of truss to ers) of truss to s8 lb uplift at joint with the 2015 s R502.11.1 and		Winning.	SEA 0363	L

- This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 23.1 psf on 4) overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

G mmm March 21,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

