

RE: 24050019 23 Serenity - B329 B LH CP Trenco 818 Soundside Rd Edenton, NC 27932

Site Information:

Customer: David Weekley Homes	Project Name: 24050019
Lot/Block: 23	Model:
Address: 35 Welcome Ave	Subdivision: Serenity
City: Fuquay-Varina	State: NC

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2018/TPI2014 Wind Code: ASCE 7-16 Roof Load: 40.0 psf Design Program: MiTek 20/20 8.7 Wind Speed: 130 mph Floor Load: N/A psf

This package includes 44 individual, dated Truss Design Drawings and 0 Additional Drawings.

2 164576254 BSE 4/1/2024 22 164576274 C1 4/ 3 164576255 B 4/1/2024 23 164576275 A7GR 4/ 4 164576256 DSE 4/1/2024 24 164576276 A6 4/ 5 164576257 D 4/1/2024 25 164576277 A5 4/ 6 164576258 D1 4/1/2024 26 164576278 JGE 4/ 7 164576260 B2 4/1/2024 27 164576280 V11 4/ 9 164576261 B3 4/1/2024 29 164576281 V12 4/ 10 164576263 B5GR 4/1/2024 30 164576283 V14 4/ 11 164576265 HGE 4/1/2024 31 164576285 V2 4/ 12 164576265 HGE 4/1/2024 32 164576285 V2 4/ 13 164576266 H 4/1/2024 33 164576286 V3 4/	<pre>///2024 ///2024 ///2024 ///2024 ///2024 ///2024 ///2024 ///2024 ///2024 ///2024 ///2024 ///2024 ///2024 ///2024 ///2024 ///2024 ///2024 ///2024 ///2024</pre>
17 164576269 A4SE 4/1/2024 37 164576269 V6 4/ 18 164576270 A4 4/1/2024 38 164576290 PB1 4/ 19 164576271 A2 4/1/2024 39 164576291 FGE 4/ 20 164576272 A1 4/1/2024 40 164576292 F 4/	1/2024 1/1/2024 1/1/2024 1/1/2024

The truss drawing(s) referenced above have been prepared by

Truss Engineering Co. under my direct supervision

based on the parameters provided by Carter Components (Sanford, NC)).

Truss Design Engineer's Name: Tony Miller

My license renewal date for the state of North Carolina is December 31, 2024

North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Tony Miller

RE: 24050019 - 23 Serenity - B329 B LH CP

Trenco 818 Soundside Rd Edenton, NC 27932

Site Information:

Project Customer: David Weekley Homes Project Name: 24050019 Lot/Block: 23 Subdivision: Serenity Address: 35 Welcome Ave City, County: Fuquay-Varina State: NC

Seal#	Truss Name	Date
164576293	ISE	4/1/2024
164576294	I	4/1/2024
164576295	С	4/1/2024
164576296	KGR	4/1/2024
	Seal# 164576293 164576294 164576295 164576296	Seal# Truss Name I64576293 ISE I64576294 I I64576295 C I64576296 KGR

Job	Truss	Truss Type	Qty	Ply	23 Serenity - B329 B LH CP	
24050019	GGE	Common Supported Gable	1	1	Job Reference (optional)	164576253

Scale = 1:40.1															
Plate Offsets ((X, Y): [2:0	-2-8,0-0-3],	[10:0-2-8,0-2-11]												
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL		(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-MSH	0.08 0.03 0.07	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 10	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 78 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS SLIDER BRACING	2x4 SP N 2x4 SP N 2x4 SP N Left 2x4 S No.3 0-	lo.2 lo.2 lo.3 SP No.3 (-11-14)-11-14, Right 2x4 S	P [\]	BOT CHORD	2-18=-39/117, 1 15-16=-39/117, 1 13-14=-39/117, 1 0-12=-39/117 6-15=-106/0, 5-1 3-18=-113/116, 8 8-13=-186/119, 9	7-18=-39/1 14-15=-39, 12-13=-39, 16=-219/10 7-14=-219, 9-12=-113,	17, 16-17=-39 (117, (117, (117, 7, 4-17=-186/ (107, (116)	9/117, /119,	11) * Th on t 3-06 cho 12) N/A	his truss he botto 6-00 tall rd and a	has be m choi by 2-0 ny othe	een designed for rd in all areas wh 0-00 wide will fit er members.	a live load o here a rectar between the	f 20.0psf gle bottom
TOP CHORD BOT CHORD	Structura 6-0-0 oc Rigid ceil bracing.	I wood shea purlins. ling directly	athing directly applie applied or 10-0-0 oc	ed or I	 or NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) 						13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSUZ.11.1				
REACTIONS	Rigid ceiling directly applied or 10-0-0 oc bracing. this de 2 (size) 2=13-11-0, 10=13-11-0, 12=13-11-0, 13=13-11-0, 14=13-11-0, 15=13-11-0, 18=13-11-0, 17=13-11-0, 23=13-11-0 2) Wind: Vasd= 11; Exp and C Max Horiz 2=-123 (LC 12), 19=-123 (LC 12), 12=-68 (LC 15), 13=-60 (LC 15), 14=-60 (LC 15), 16=-61 (LC 14), 17=-59 (LC 14), 18=-77 (LC 14), 2 = 200 (LC 14), 18=-77 (LC 14), 2 =				Vasd=103rr II; Exp B; E and C-C Cd to 3-11-8, C 9-11-8 to 1 cantilever la right exposs for reaction DOL=1.60 3) Truss desi only. For s	asd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. ; Exp B; Enclosed; MWFRS (envelope) exterior zone nd C-C Corner(3E) -0-10-8 to 2-1-8, Exterior(2N) 2-1-8) 3-11-8, Corner(3R) 3-11-8 to 9-11-8, Exterior(2N) -11-8 to 11-9-8, Corner(3E) 11-9-8 to 14-9-8 zone; antilever left and right exposed ; end vertical left and ght exposed;C-C for members and forces & MWFRS or reactions shown; Lumber DOL=1.60 plate grip IOL=1.60 Fruss designed for wind loads in the plane of the truss nly. For studs exposed to wind (normal to the face),					LOAD CASE(S) Standard				
	Max Grav	19=-47 (L) 2=129 (LC 12=126 (L 14=259 (L 16=259 (L 18=136 (L 23=112 (L	C 10), 23=-13 (LC 1 26), 10=112 (LC 2 C 26), 13=227 (LC 2 C 26), 13=146 (LC 2 C 21), 17=227 (LC 2 C 21), 17=227 (LC 2 C 25), 19=129 (LC 2 C 22)	1) 2), 22), 33), 21), 26),	see Standa or consult of TCLL: ASC Plate DOL= DOL=1.15) Cs=1.00; C Unbalance	rd Industry Gable qualified building o E 7-16; Pr=20.0 p =1.15); Pf=20.0 ps ; Is=1.0; Rough C :t=1.10 d snow loads have	End Deta designer as osf (roof LL of (Lum DC at B; Fully e been cor	ils as applicat s per ANSI/TF :: Lum DOL=1 DL=1.15 Plate Exp.; Ce=0.9 psidered for th	ble, Pl 1. I.15); nis			1	SEA	RO	
FORCES TOP CHORD	23=112 (LC 22) (lb) - Maximum Compression/Maximum Tension D 1-2=0/29, 2-3=-71/76, 3-4=-93/76, 4-5=-82/79, 5-6=-91/152, 6-7=-91/152, 7-8=-75/79, 8-9=-61/34, 9-10=-70/58, 10-11=0/29				 design. This truss h load of 12.0 overhangs All plates a Gable requ Gable stud This truss h chord live h 	design. This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. All plates are 2x4 MT20 unless otherwise indicated. Gable requires continuous bottom chord bearing. Gable studs spaced at 2-0-0 oc. This truss has been designed for a 10.0 psf bottom chord live load oneconcurrent with any other live loads						94 EER.ER MILLER	in the second se		

April 1,2024

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	23 Serenity - B329 B LH CP	
24050019	BSE	Common Structural Gable	1	1	Job Reference (optional)	164576254

Run: 9.03 S 8.73 Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Fri Mar 29 10:41:40 ID:PsmVvbhMaAB85kbfL?kTkHzMCsP-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:60.9					10-5-12			0-1-12			0	-11-0			
Plate Offsets (X, Y): [2:0	-2-13,0-0-3]], [18:0-2-13,0-0-3]												
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL		(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20)18/TPI2014	CSI TC BC WB Matrix-MSH	0.49 0.41 0.11	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.07 -0.10 0.02	(loc) 20-36 20-36 18	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 154 It	GRIP 244/190	%
BEDL 10.0 LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 OTHERS 2x4 SP No.3 OTHERS 2x4 SP No.3 SLIDER Left 2x4 SP No.3 1-6-0, Right 2x4 SP No.3 1-6-0 BRACING TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. JOINTS 1 Brace at Jt(s): 11, 13 13 REACTIONS (size) 2=10-5-8, 18=0-5-8, 22=0-3-8, 27=10-5-8, 26=10-5-8, 27=10-5-8, 28=10-5-8, 34=0-5-8 Max Hagia 2.04 (I/C 10) 28.04 (I/C 10)				No.3 ed or c	BOT CHORD WEBS 1) Unbalance this design 2) Wind: ASC Vasd=103 II; Exp B; F and C-C E 1-11-8 to 8	2-27=-47/201, 26- 25-26=-47/201, 24 23-24=-47/201, 22 18-20=-125/532 10-11=-51/29, 8-9 6-25=-137/78, 5-2 12-13=-81/51, 14- ed roof live loads hav b. CE 7-16; Vult=130m; mph; TCDL=6.0psf; Enclosed; MWFRS (ixterior(2E) -0-10-8 t 3-11-8, Exterior(2R)	27=-47/2 -25=-47 -23=0/5 =-134/58 6=-146/7 15=-15/6 ve been bh (3-see BCDL=6 envelope o 1-11-8 8-11-8 tr	201, /201, /201, 32, 20-22=0/5 8, 7-24=-158/5 (8, 4-27=-135 5, 16-20=0/28 considered fo cond gust) 6.0psf; h=25ft; 9 exterior zor , Interior (1) 0 14-11-8, Inte	532, 99, /113, 7 r ; Cat. ne erior	10) * Th on t 3-00 cho 11) One recc UPI is fo 12) This Inte R80 13) Gra or ti bott	his truss che botto 6-00 tall rd and a e H2.5A commence LIFT at j or uplift or s truss is rnationa 02.10.2 a phical p he orien com choi	has be om choi by 2-0 iny oth Simpsi led to c oint 18 only an a desig and refu urlin re tation cr d.	en designed for rd in all areas w 0-00 wide will fi er members. on Strong-Tie c connect truss to . This connection d does not const d does not const dential Code se erenced standa presentation do of the purlin alor	r a live load there a recta t between the onnectors bearing wal on sider lateral the with the ctions R502. trid ANSI/TPI bes not depic ing the top an	of 20.0psf ingle le bottom Is due to forces. 2018 .11.1 and 1. ct the size nd/or
FORCES TOP CHORD	Max Horiz Max Uplift Max Grav (lb) - Max Tension 1-2=0/29 5-6=-215 8-10=-20 12-14=-2 16-18=-7 9-11=-58 13-15=-5	24=10-5-8 27=10-5-8 2=-27 (LC 2=-27 (LC 24=-123 (l 26=-51 (L 28=-27 (LC 22=447 (LC 22=447 (LC 22=447 (LC 22=447 (L 25=145 (L 27=168 (L 34=669 (L cimum Com , 2-4=-251/ ⁻ /68, 6-7=-19 0/112, 10-1 01/73, 14-1 0/172, 11-1 51/171, 15-	8, 25=10-5-8, 26=10 8, 28=10-5-8, 34=0-5 C 12), 28=-201 (LC 10), 18=-80 (LC 15 LC 14), 27=-112 (LC C 14), 27=-112 (LC C 14), 27=-112 (LC C 10), 34=-80 (LC 1 C 26), 18=669 (LC 1 C 25), 26=175 (LC C 25), 26=175 (LC C 25), 28=247 (LC 1 C 25), 28=247 (LC 1 B 200, 28=247 (LC 1) 112, 4-5=-224/82, 99/60, 7-8=-192/100 2=-185/113, 6=-220/57, 9=0/29, 9-23=-449/0 3=-596/200, 16=-542/168	h-5-8, 5-8 12) 5), 14), 14), 14), (5)), 1), 26), 0,	 (1) 14-11-4 zone; cant and right e MWFRS fc grip DOL= 3) Truss dess only. For s see Stand- or consult 4) TCLL: ASC Plate DOL DOL=1.15 Cs=1.00; (2) Cs=1.00; (2) Unbalance design. 6) This truss load of 12. overhangs 7) All plates a 8) Gable stuce 9) This truss chord live 	8 to 21-9-8, Exteriori illever left and right e xeposed;C-C for mer pr reactions shown; 1 1.60 signed for wind loads studs exposed to win ard Industry Gable E qualified building de CE 7-16; Pr=20.0 ps =1.15); Pf=20.0 psf); Is=1.0; Rough Cai Ct=1.10 ad snow loads have has been designed 0 psf or 1.00 times f a non-concurrent with are 2x4 MT20 unless Is spaced at 2-0-0 o has been designed load nonconcurrent	2E) 21-5 exposed nbers ar Lumber I a in the p nd (norm rnd Deta signer a f (roof LI (Lum DC a B; Fully been col for great lat roof I a other I is otherwic c. for a 10. with any	9-8 to 24-9-8 ; end vertical d forces & DOL=1.60 pla lane of the tru al to the face) ils as applicat s per ANSI/TF .: Lum DOL=' DL=1.15 Plate Exp.; Ce=0.9 nsidered for th er of min roof oad of 20.0 ps ve loads. se indicated. 0 psf bottom other live load	left ate Jss ble, Pl 1. 1.15 9; his live sf on ds.) Star	SEA 0235	ARO AL 594	A III A MARINA A III

April 1,2024

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	23 Serenity - B329 B LH CP	
24050019	В	Common	7	1	Job Reference (optional)	164576255

Run: 9.03 S 8.73 Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Fri Mar 29 10:41:39

Page: 1

Scale = 1:60.8 Plate Offsets (X, Y): [2:0-3-5,0-0-3], [8:0-3-5,0-0-3]

L oading TCLL (roof) Snow (Pf) TCDL 3CLL 3CDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-MSH	0.85 0.70 0.27	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.16 -0.23 -0.03	(loc) 10-12 10-12 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 126 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD 30T CHORD WEBS SLIDER BRACING TOP CHORD 30T CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left 2x4 SP No.3 1 1-6-0 Structural wood shea 2-2-0 oc purlins. Rigid ceiling directly bracing. (size) 2=0-5-8, 8 Max Horiz 8=201 (LC Max Uplift 2=-99 (LC Max Grav 2=1136 (L	I-6-0, Right 2x4 SP athing directly applie applied or 10-0-0 or 3=0-5-8 C 13) : 14), 8=-99 (LC 15) .C 25), 8=1136 (LC :	3) No.3 4) 5) ed or 2 6) 7) 26) 8)	TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced design. This truss ha load of 12.0 overhangs n This truss ha chord live loa * This truss fa on the bottor 3-06-00 tall b chord and ar One H2 55 AS	57-16; Pr=20.0 psf .15); Pf=20.0 psf ls=1.0; Rough Cat =1.10 snow loads have b s been designed f psf or 1.00 times fl on-concurrent with s been designed ad nonconcurrent v as been designed n chord in all areas by 2-00-00 wide wi y other members, Simpson Strong-Tic	f (roof LI Lum DC B; Fully been con or great at roof I other li or a 10. with any for a liv s where II fit betw with BC a conne	L: Lum DOL= DL=1.15 Plate Exp.; Ce=0.9 asidered for t er of min rool bad of 20.0 p ve loads. D psf bottom other live load e load of 20.1 a rectangle veen the bott CDL = 10.0ps ctors	1.15 e 9; his f live sof on ads. Opsf om f.						
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Maximum Com Tension 5-6=-1566/217, 6-8= 1-2=0/29, 2-4=-1647 2-12=-101/1296, 10- 8-10=-209/1296 5-12=-128/709, 4-12	pression/Maximum 1647/152, 8-9=0/29 //152, 4-5=-1566/217 -12=0/844, 2=-384/223,	9, 7 9) LC	recommende UPLIFT at jt(and does no This truss is International R802.10.2 at	ad to connect truss s) 2 and 8. This co t consider lateral for designed in accorror Residential Code nd referenced stan Standard	to bear onnectio orces. dance w sections dard At	ing walls due n is for uplift ith the 2018 \$ R502.11.1 a ISI/TPI 1.	e to only and						
NOTES I) Unbalance this design 2) Wind: ASC Vasd=103 II; Exp B; and C-C E to 8-11-8, 14-11-8 to cantilever right expo for reaction DOL 4 CC	5-10=-128/709, 6-10 ed roof live loads have D. DE 7-16; Vult=130mph imph; TCDL=6.0psf; B(Enclosed; MWFRS (en ixterior(2E) -0-10-8 to 2 Exterior(2E) 20-10-8 to 2 Exterior(2E) 2-0-10-8	=-384/223 been considered for (3-second gust) CDL=6.0psf; h=25ft; velope) exterior zon 2-1-8, Interior (1) 2-1 14-11-8, Interior (1) 1-9-8 to 24-9-8 zone ; end vertical left ann and forces & MWFR L=1.60 plate grip	Cat. le l-8 ə; d S									SEA 0235		Anna anna anna anna anna anna anna anna

Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 8-11-8, Exterior(2R) 8-11-8 to 14-11-8, Interior (1) 14-11-8 to 21-9-8, Exterior(2E) 21-9-8 to 24-9-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) 818 Soundside Road Edenton, NC 27932 and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Community Community

April 1,2024

Job	Truss	Truss Type	Qty	Ply	23 Serenity - B329 B LH CP	
24050019	DSE	Common Supported Gable	1	1	Job Reference (optional)	164576256

Run: 9.03 S 8.73 Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Fri Mar 29 10:41:41 ID:scQGvP9BX7kqzqHzzoTKtTzMCKE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:50.5

Plate Offsets (X, Y): [2:0-2-8,0-0-3], [14:0-2-13,0-0-3], [20:0-3-0,0-3-0]

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL		(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-MSH	0.08 0.04 0.14	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 14	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 124 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP N 2x4 SP N 2x4 SP N Left 2x4 S 1-6-0 Structura 6-0-0 oc Rigid ceil bracing. (size)	lo.2 lo.2 lo.3 SP No.3 1 l wood shea purlins. ing directly 2=19-11-0 16-19-11	-6-0, Right 2x4 SP № athing directly applie applied or 10-0-0 oc 0, 14=19-11-0, 0 17-19-11-0	T No.3 E d or V	OP CHORD	I-2=0/29, 2-4=-145/ 5-6=-105/90, 6-7=-9 3-9=-113/184, 9-10= 11-12=-73/40, 12-14 2-24=-55/128, 22-22 22-23=-55/128, 12-2 9-21=-55/128, 18-1 17-18=-55/128, 16-1 14-16=-55/128 3-20=-141/28, 7-21= 5-23=-143/85, 4-24= 10-18=-182/91, 11-1 12-16=-145/103	128, 4 2/125, 87/12 -=-55/1 22=-55/ 9=-55/ 7=-55/ 219/8 145/1 7=-14	5=-116/97, 7-8=-113/184 5, 10-11=-63/ 66, 14-15=0/2 28, 128,	, 61, 29 91, 9/84,	 Thi load ove Thi load ove All 8) Gal Gal Gal Gal Thi chc Thi chc Thi 3-0 Chc Thi 3-0 Thi 3-0	s truss h d of 12.0 rhangs r blates ar ble requi ble studs s truss h rd live lo bis truss he botto 6-00 tall rd and a	as bee psf or ion-co e 2x4 res col space ad nor has bee m cho by 2-0 ny oth	en designed for g 1.00 times flat r ncurrent with oth MT20 unless oth ntinuous bottom ed at 2-0-0 oc. en designed for a nconcurrent with een designed for rd in all areas wi 0-00 wide will fit er members.	reater of mir sof load of 2 er live loads erwise indic chord bearir 10.0 psf bo any other lin a live load c here a rectar between the	n roof live 0.0 psf on ; ated. 1g. ttom <i>ve</i> loads. of 20.0psf ngle e bottom
	Max Horiz Max Uplift	16=19-11: 20=19-11: 20=19-11: 22=19-11: 29=19-11: 29=19-11: 29=19-11: 29=19-11: 29=43 (LC 16=-86 (L 18=-62 (L) 21=-58 (L) 23=-50 (L) 25=-43 (L)	-0, 1/=19-11-0, -0, 19=19-11-0, -0, 23=19-11-0, -0, 25=19-11-0, -0, 25=19-11-0, -0 2 13), 25=170 (LC 13 -10), 14=-3 (LC 11), C 15), 17=-52 (LC 14), C 15), 19=-56 (LC 14) C 14), 22=-61 (LC 14) C 14), 24=-94 (LC 14) C 10), 29=-3 (LC 11)	N 1 2 3) 5), 5), 4), 4),	 IOTES Unbalanced this design. Wind: ASCE Vasd=103mg II; Exp B; En and C-C Cor 1-11-8 to 6-1 (2N) 12-11-8 zone; cantile and right exp MWFRS for I grip DOL=1.6 	roof live loads have 7-16; Vult=130mph ph; TCDL=6.0psf; Bi closed; MWFRS (er ner(3E) -0-10-8 to 1 1-8, Corner(3R) 6-1 to 17-9-8, Corner(3 ver left and right exp osed;C-C for memb reactions shown; Lu 50	been ((3-sec CDL=6 velope -11-8, 1-8 to 3E) 17- bosed bers an imber I	considered for ond gust) .0psf; h=25ft; s) exterior zon Exterior(2N) 12-11-8, Exte 9-8 to 20-9-8 c end vertical I d forces & DOL=1.60 plat	Cat. e rior eft	13) Bev sur 14) Thi Inte R8(reled pla face with s truss is rnationa 02.10.2 a	te or s truss desig I Resid and ref	him required to p chord at joint(s) ned in accordan dential Code sec erenced standar	provide full b 14, 29. ce with the 2 tions R502.1 d ANSI/TPI	earing 2018 11.1 and 1.
FORCES	Max Grav (Ib) - Max Tension	2=167 (LC 16=178 (L 18=222 (L 20=167 (L 22=222 (L 24=187 (L 29=146 (L	; 26), 14=146 (LC 22 C 26), 17=166 (LC 2 C 22), 19=259 (LC 2 C 28), 21=259 (LC 2 C 21), 23=165 (LC 2 C 21), 23=165 (LC 2 C 25), 25=167 (LC 2 C 22) pression/Maximum	2), 3 (26), 3 (22), 2 (21), 2 (25), 2 (26), 4 (5	 gin bote 11(1) Truss design only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); I Cs=1.00; Ct= Unbalanced design. 	dis exposed to wind dis exposed to wind dindustry Gable En alified building desi 7-16; Pr=20.0 psf (.15); Pf=20.0 psf (L s=1.0; Rough Cat E 1.10 snow loads have be	n the p (norm d Deta gner as roof LL um DC 3; Fully een cor	ane of the tru: al to the face) ils as applicab s per ANSI/TP :: Lum DOL=1 JL=1.15 Plate Exp.; Ce=0.9 asidered for th	ss , lle, ,l11. ,15 ; is		- Comment		SEA 0235	L 94 EEFR. LP	ANNUMATION AND AND AND AND AND AND AND AND AND AN

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and RCSI Building Component Safety Information available from the Structural Building Component Association (www.stearonponent.scom)

and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

April 1,2024

Job	Truss	Truss Type	Qty	Ply	23 Serenity - B329 B LH CP	
24050019	DSE	Common Supported Gable		1	Job Reference (optional)	164576256
Carter Components (Sanford, NC	C), Sanford, NC - 27332,	Run: 9.03 S 8.73 Mar	21 2024 Prir	nt: 8.730 S M	ar 21 2024 MiTek Industries, Inc. Fri Mar 29 10:41:41	Page: 2

LOAD CASE(S) Standard

Run: 9.03 S 8.73 Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Fri Mar 29 10:41:41 ID:scQGvP9BX7kqzqHzzoTKtTzMCKE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	23 Serenity - B329 B LH CP	
24050019	D	Common	9	1	Job Reference (optional)	164576257

Run: 9.03 S 8.73 Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Fri Mar 29 10:41:41 ID:hUF6be117ILO98xsq?mlx9zMCKP-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

L	9-11-8	19-11-0	
Г	9-11-8	9-11-8	7

Scale = 1:54.7 Plate Offsets (X, Y): [2:0-3-8,Edge], [8:0-3-13,Edge], [10:0-4-0,0-3-0]

		, 01,	. , , , , , , , , , , , , , , , , , , ,	,									-	
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL LUMBER TOP CHORD BOT CHORD WEBS SLIDER	2x4 SP No. 2x4 SP No. 2x4 SP No. Left 2x4 SP 1-6-0	(psf) 20.0 20.0 10.0 0.0* 10.0 20.0 10.0 20.0 10.0 2.2 .2 .3 3 No.3 1	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2011 3)	B/TPI2014 TCLL: ASCE Plate DOL=1 DOL=1.15); I Cs=1.00; Ct= Unbalanced design. This truss ha	CSI TC BC WB Matrix-MSH 7-16; Pr=20.0 psf .15); Pf=20.0 psf (is=1.0; Rough Cat =1.10 snow loads have b is been designed for	0.51 0.83 0.27 (roof LL Lum DC B; Fully been cor	DEFL Vert(LL) Vert(CT) Horz(CT) L: Lum DOL= DL=1.15 Plate Exp.; Ce=0. asidered for t	in -0.13 -0.27 0.02 :1.15 9; his f live	(loc) 10-17 10-17 8	l/defl >999 >875 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 101 lb	GRIP 244/190 FT = 20%
BRACING Structural wood sheathing directly applied or 10-0 oc Ioad of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. BOT CHORD Rigid ceiling directly applied or 10-0 oc 6) This truss has been designed for a 10.0 psf bottom														
Actions (size) 2=0-5-8, 8=0-5-8 row of the bottom row of the bottom row of the bottom row of the bottom Max Horiz 2=170 (LC 13) 3-06-00 tall by 2-00-00 wide will fit between the bottom row of the bottom row of the bottom Max Grav 2=897 (LC 21), 8=897 (LC 22) 8) One H2.5A Simpson Strong-Tie connectors Non-top-Tie connectors														
FORCES TOP CHORD BOT CHORD WEBS	Max Grav 2=897 (LC 21), 8=897 (LC 22) 8) Max Grav 2=897 (LC 21), 8=897 (LC 22) 8) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to DP CHORD 1-2=0/29, 2-4=-1006/147, 4-5=-875/137, 5-6=-875/137, 6-8=-1006/147, 8-9=0/29 9) DT CHORD 2-8=-193/897 9) DT CHORD 5-10=-29(593, 6-10=-366/183, 4-10=-366/183 4-10=-366/183													
NOTES 1) Unbalance this design 2) Wind: ASC Vasd=103 II; Exp B; f and C-C E to 6-11-8, 12-11-8 to cantilever right expos for reaction DOL=1.60	ed roof live loa n. CE 7-16; Vult- mmh; TCDL= Enclosed; MV Exterior(2E) -0 Exterior(2E) -0 Exterior(2E) -0 (2E) -0 Exterior(2E) -0 E	ads have =130mph 6.0psf; BC VFRS (en)-10-8 to 2 6-11-8 to rior(2E) 1 exposed nembers a imber DO	been considered for (3-second gust) CDL=6.0psf; h=25ft; (velope) exterior zone 2-1-8, Interior (1) 2-1 12-11-8, Interior (1) 7-9-8 to 20-9-8 zone ; end vertical left and and forces & MWFRS L=1.60 plate grip	LC Cat. 8 8	DAD CASE(S)	Standard					Winning		SEA 0235	RO 14 94 94 11 1,2024
WARN	NNG - Verify desi	gn paramete	rs and READ NOTES ON T	HIS AND IN	CLUDED MITEK RI	EFERENCE PAGE MII-7	'473 rev. 1	/2/2023 BEFORI	E USE.				ENGINEER	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	23 Serenity - B329 B LH CP	
24050019	D1	Common	2	1	Job Reference (optional)	164576258

Run; 9.03 S 8.73 Mar 21 2024 Print; 8.730 S Mar 21 2024 MiTek Industries, Inc. Fri Mar 29 10:41:41 ID:Z_zCtCt8BmiE58RMZm1ivPzMCKc-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

9-11-8	19-11-0
9-11-8	9-11-8

Scale = 1:54.7 Plate Offsets (X, Y): [2:0-3-13,Edge], [8:0-3-8,Edge], [9:0-4-0,0-3-0]

												-	
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2017	8/TPI2014	CSI TC BC WB Matrix-MSH	0.51 0.83 0.27	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.13 -0.28 0.02	(loc) 9-12 9-12 8	l/defl >999 >868 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 99 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left 2x4 SP No.3 1 1-6-0 Structural wood she 5-4-1 oc purlins. Rigid ceiling directly bracing. (size) 2=0-5-8, 8 Max Horiz 2=165 (LC Max Uplift 2=-85 (LC Max Grav 2=897 (LC	1-6-0, Right 2x4 SP athing directly applie applied or 10-0-0 or 3=0-5-8 C 13) C 14), 8=-67 (LC 15) C 21), 8=843 (LC 22	3) No.3 4) 5) ed or c 6) 7)	TCLL: ASCE Plate DOL=: DOL=1.15); Cs=1.00; Ct Unbalanced design. This truss ha load of 12.0 overhangs n This truss ha chord live lo * This truss on the botto 3-06-00 tall chord and a One H2.5A i	7-16; Pr=20.0 ps 1.15); Pf=20.0 ps Is=1.0; Rough Ca =1.10 snow loads have as been designed ps for 1.00 times f ion-concurrent with as been designed ad nonconcurrent has been designed m chord in all area by 2-00-00 wide w ny other members Simpson Strono-T	f (roof Ll (Lum DC t B; Fully been cor for great fat roof lin other lif for a 10. with any d for a liv is where ill fit betv	.: Lum DOL= DL=1.15 Plat Exp.; Ce=0. hsidered for the er of min roo bad of 20.0 p ve loads. 0 psf bottom other live low the live low a rectangle veen the bott ctors	=1.15 e .9; this of live osf on ads. .0psf tom					
FORCES TOP CHORD BOT CHORD	(Ib) - Maximum Com Tension 1-2=0/29, 2-4=-1007 5-6=-877/139, 6-8=- 2-8=-200/903	pression/Maximum 7/148, 4-5=-876/139 1010/149	, , 9)	recommend UPLIFT at jt and does no This truss is International	(s) 8 and 2. This c ot consider lateral f designed in accor I Residential Code	s to bear onnectio orces. dance w sections	ing walls due n is for uplift ith the 2018 s R502.11.1	e to only and					
NOTES NOTES 1) Unbalanc this desig 2) Wind: AS Vasd=102 II; Exp B; and C-C I to 6-11-8, 12-11-8 to zone; can and right MWFRS fi grip DOL	5-9=-31/595, 6-9=-3 ed roof live loads have n. CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; Bf Enclosed; MWFRS (er Exterior(2R) 6-11-8 to the Sterior(2R) 6-11-8 to the Sterior(2R) 6-11-8 to the Sterior(2R) 6-11-8 to the Sterior(2R) for the Sterior tilever left and right exp exposed;C-C for memb for reactions shown; Lu =1.60	been considered fo (3-second gust) CDL=6.0psf; h=25ft; ivelope) exterior zor 2-1-8, Interior (1) 2- 12-11-8, Interior (1) 16-11-0 to 19-11-0 bosed ; end vertical pers and forces & mber DOL=1.60 pla	Cat. Cat. 1-8 left te	R802.10.2 a	Standard	ndara An	ISI/TPL1.			· Kanture		SEA 0235	ROLIN 10 94 EER. ER.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

11111111111 April 1,2024

Job	Truss	Truss Type	Qty	Ply	23 Serenity - B329 B LH CP	
24050019	B1	Нір	1	1	Job Reference (optional)	164576259

Run: 9.03 S 8 73 Mar 21 2024 Print: 8 730 S Mar 21 2024 MiTek Industries. Inc. Fri Mar 29 10:41:39

Page: 1

ID:A4ZwKcHPRJy?7vzWsgkq2UzMCQX-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f -0-10-8 24-9-8 5-4-10 18-6-6 10-5-13 13-5-3 23-11-0 5-4-10 5-1-2 2-11-6 5-1-3 5-4-11 0-10-8 5x6 = 4x8= ÷⊤ -5 29 6 7-7-14 12 8 è 3x5 🍫 3x5 28 30 31 27 4 7 7-6-3 7-6-3 7-11-1 26 32 3x5 🍫 3x5. 25 33 24 34 8 8-0 10 15 14 13 12 11 2x4 II 3x5= 3x5= 3x8= 2x4 II 3x6 II 3x6 i 5-4-10 10-4-1 13-6-15 18-6-6 23-11-0 5-4-10 4-11-6 3-2-14 4-11-7 5-4-11 Scale = 1:55.7 Plate Offsets (X, Y): [2:0-3-9,0-0-3], [5:0-3-0,0-2-3], [6:0-4-0,0-1-9], [9:0-3-9,0-0-3] Spacing 2-0-0 CSI DEFL in (loc) l/defl L/d PLATES GRIP (psf) TCLL (roof) 20.0 Plate Grip DOL 1.15 тс 0.57 Vert(LL) -0.06 14-15 >999 240 MT20 244/190 Snow (Pf) 20.0 Lumber DOL 1.15 BC 0.56 Vert(CT) -0.12 14-15 >999 180 10.0 Rep Stress Incr WB Horz(CT) YES 0.34 0.05 9 n/a n/a 0.0 Code IRC2018/TPI2014 Matrix-MSH Weight: 146 lb 10.0 FT = 20% 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) LUMBER 2x4 SP No.2 Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. TOP CHORD II; Exp B; Enclosed; MWFRS (envelope) exterior zone BOT CHORD 2x4 SP No.2 and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 2x4 SP No.3 Left 2x4 SP No.3 -- 1-6-0, Right 2x4 SP No.3 to 6-2-14. Exterior(2R) 6-2-14 to 17-8-2. Interior (1) 17-8-2 to 21-9-8, Exterior(2E) 21-9-8 to 24-9-8 zone; -- 1-6-0 cantilever left and right exposed ; end vertical left and BRACING right exposed C-C for members and forces & MWERS TOP CHORD Structural wood sheathing directly applied or for reactions shown; Lumber DOL=1.60 plate grip 4-1-6 oc purlins, except DOL=1.60 2-0-0 oc purlins (5-9-6 max.): 5-6. 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 BOT CHORD Rigid ceiling directly applied or 10-0-0 oc Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate bracing. DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; REACTIONS 2=0-5-8, 9=0-5-8 (size) Cs=1.00; Ct=1.10 Max Horiz 2=176 (LC 13) 4) Unbalanced snow loads have been considered for this Max Uplift 2=-104 (LC 14), 9=-104 (LC 15) desian. Max Grav 2=1209 (LC 41), 9=1209 (LC 41) 5) This truss has been designed for greater of min roof live (Ib) - Maximum Compression/Maximum load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on Tension overhangs non-concurrent with other live loads. TOP CHORD 1-2=0/29, 2-4=-1647/136, 4-5=-1287/169, Provide adequate drainage to prevent water ponding. 6) 5-6=-957/181, 6-7=-1288/169, This truss has been designed for a 10.0 psf bottom 7) chord live load nonconcurrent with any other live loads.

7-9=-1646/137, 9-10=0/29 BOT CHORD 2-15=-171/1305, 14-15=-135/1305, 12-14=-10/954, 11-12=-16/1305, 9-11=-76/1305 WEBS 4-15=0/191, 4-14=-452/158, 5-14=-47/363, 5-12=-148/153, 6-12=-38/362, 7-12=-451/158, 7-11=0/190

NOTES

FORCES

Loading

TCDL

BCLL

BCDL

WEBS

SLIDER

1) Unbalanced roof live loads have been considered for this design.

3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 9) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 9. This connection is for uplift only

on the bottom chord in all areas where a rectangle

* This truss has been designed for a live load of 20.0psf

and does not consider lateral forces. 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

8)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	23 Serenity - B329 B LH CP	
24050019	B2	Roof Special	1	1	Job Reference (optional)	164576260

Scale = 1:58

Run: 9.03 S 8.73 Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries. Inc. Fri Mar 29 10:41:39 ID:TVbG3FBSnMPMdQCxlwaQaIzMCPM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

			-	-										
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.49	Vert(LL)	-0.11	12-22	>999	240	MT20	244/190	
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.61	Vert(CT)	-0.23	12-22	>999	180			
TCDL	10.0	Rep Stress Incr	YES		WB	0.67	Horz(CT)	0.04	10	n/a	n/a			
BCLL	0.0*	Code	IRC2018	3/TPI2014	Matrix-MSH									
BCDL	10.0											Weight: 146 lb	FT = 20%	6
LUMBER			2)	Wind: ASCE	7-16: Vult=130mp	h (3-seo	cond aust)		LOAD	CASE(S)	Sta	ndard		
TOP CHORD	2x4 SP No.2		,	Vasd=103m	oh; TCDL=6.0psf;	BCDL=6	.0psf; h=25ft	; Cat.		(-)				
BOT CHORD	2x4 SP No.2			II; Exp B; En	closed; MWFRS (e	envelope	e) exterior zoi	ne						
WEBS	2x4 SP No.3			and C-C Exte	erior(2E) -0-10-8 to	2-1-8,	Interior (1) 2-	1-8						
SLIDER	Left 2x4 SP No.3 1	I-6-0. Right 2x4 SP I	No.3	to 6-11-8, Ex	terior(2R) 6-11-8 t	o 9-11-8	8, Exterior(2E)						
	1-6-0	, ,		9-11-8 to 10-	11-3, Interior (1) 1	0-11-3 t	o 11-11-3, Ex	kterior						
BRACING				(2R) 11-11-3	to 17-11-3, Interio	or (1) 17	-11-3 to 21-9	-8,						
TOP CHORD	Structural wood shea	athing directly applie	ed or	Exterior(2E)	21-9-8 to 24-9-8 z	one; car	tilever left ar	nd						
	4-8-4 oc purlins, exc	ept		right expose	d; end vertical left	and righ	nt exposed;C	-C						
	2-0-0 oc purlins (5-3	-9 max.): 6-7.		for members	and forces & MW	FRS for	reactions sho	own;						
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 oc	>	Lumber DOL	.=1.60 plate grip D	OL=1.60)							
	bracing.		2)		7 40. Dr. 00.0 mai	(*****		4 45						
REACTIONS	(size) 2=0-5-8, 1	0=0-5-8	3)	IULL: ASUE	15); Pf=20.0 pst		LUM DOL=	1.15						
	Max Horiz 2=170 (LC	C 13)			.15), PI=20.0 pSI (lc=1.0: Rough Cot		Exp : Co_0 (;						
	Max Uplift 2=-88 (LC	14), 10=-120 (LC 1	5)	$C_{S}=1.00$ Ct-	-1 10, Kough Cat	B, Fully	Exp., Ce=0.3	9,						
	Max Grav 2=1031 (L	.C 21), 10=1093 (LC	(43) ₄)	Unbalanced	snow loads have h	een cor	sidered for t	his						
FORCES	(lb) - Maximum Com	pression/Maximum	''	design.				10						
	Tension		5)	This truss ha	is been desianed f	or areat	er of min roof	live						
TOP CHORD	1-2=0/29, 2-4=-1409	/146, 4-5=-1114/180), '	load of 12.0	psf or 1.00 times fl	at roof le	ad of 20.0 p	sf on						
	5-6=-1154/218, 6-7=	-975/182,		overhangs n	on-concurrent with	other liv	/e loads.							
	7-8=-1229/173, 8-10	=-1479/185, 10-11=	0/29 6)	Provide adeo	quate drainage to p	prevent	water ponding	g.					111.	
BOT CHORD	2-15=-152/1103, 14-	15=-111/1103,	7)	This truss ha	is been designed f	or a 10.0) psf bottom					What CA	D-"1	
	12-14=0/949, 10-12=	=-111/1166		chord live loa	ad nonconcurrent v	vith any	other live loa	ıds.				"aln un	70/ °	11,
WEBS	4-15=0/198, 4-14=-4	03/149, 5-14=-155/1	1031, 8)	* This truss h	nas been designed	for a liv	e load of 20.0	Opsf			S	an idea	Air A	21.
	6-14=-835/190, 6-12	=-176/110, 7-12=0/3	354,	on the bottor	n chord in all area	s where	a rectangle				N.S	220/	NY S	2 -
	8-12=-354/152			3-06-00 tall t	by 2-00-00 wide wi	Il fit betv	veen the bott	om				.0.	1	1
NOTES				chord and ar	ly other members.							×		1 2
1) Unbalance	ed roof live loads have	been considered for	. 9)	One H2.5A S	Simpson Strong-11	e conne	ctors	4.0			:	SEA		: =
this desigr	n.			LIDLIET of it/		lo bear	ing waits due	lU Fonly			:	0225	1	: =
				and does not	5) Z anu TU. This (t consider lateral fr		on is for upin	Unity		=		0235	94	; = = -
			10) This trues is	designed in accord	dance w	ith the 2018							
			10	International	Residential Code	sections	R502 11 1 2	nd			-	. A.	ai	3
				R802.10.2 a	nd referenced star	dard AN	ISI/TPI 1.				21	NGINE	E	とご
			11) Graphical pu	rlin representation	does no	ot depict the	size			11	UNA CONTRACTOR	1.14	1
				or the orienta	ation of the purlin a	long the	top and/or	-				IL R N	ML	N
				bottom chord	j	0						111111	mm	
													CONTRACTOR OF THE OWNER OF	

April 1,2024

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	23 Serenity - B329 B LH CP	
24050019	B3	Roof Special	1	1	Job Reference (optional)	164576261

TCDL

BCLL

Run; 9.03 S 8.73 Mar 21 2024 Print; 8.730 S Mar 21 2024 MiTek Industries, Inc. Fri Mar 29 10:41:40 ID:TJBYmhpRm1q7EGckE7?N93zMCOZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

BCDL	10.0							Weight: 137 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS SLIDER	2x4 SP No.2 *Except* 7-10:2x4 SP No.1 2x4 SP No.2 2x4 SP No.3 Left 2x4 SP No.3 1-6-0, Right 2x4 SP No.3 1-6-0	2)	Wind: ASCE Vasd=103mp II; Exp B; En and C-C Exte to 6-11-8, Ex 9-11-8 to 12-	7-16; Vult=130mph (3-sec oh; TCDL=6.0psf; BCDL=6 closed; MWFRS (envelope erior(2E) -0-10-8 to 2-1-8, tterior(2R) 6-11-8 to 9-11-8 5-3, Interior (1) 12-5-3 to 2	ond gust) .0psf; h=25ft; Cat. .) exterior zone Interior (1) 2-1-8 3, Exterior(2E) I3-5-3, Exterior	LOAD CASE(S)	Stand	lard		
BRACING TOP CHORD	Structural wood sheathing directly applied or 2-2-0 oc purlins, except 2-0-0 oc purlins (4-8-8 max.): 6-7.		(2R) 13-5-3 t Exterior(2E) right exposed for members	o 19-5-3, Interior (1) 19-5- 21-9-8 to 24-9-8 zone; car d ; end vertical left and righ and forces & MWFRS for =1 60 plate grin DOI =1 60	3 to 21-9-8, itilever left and it exposed;C-C reactions shown;					
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing. (size) 2=0-5-8, 9=0-5-8 Max Horiz 2=170 (LC 13) Max Uplift 2=-88 (LC 14), 9=-120 (LC 15) May Gray 2=1116 (LC 25) May Gray 2=116 (LC 51)	3)	TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct=	7-16; Pr=20.0 psf (roof LL .15); Pf=20.0 psf (Lum DC Is=1.0; Rough Cat B; Fully =1.10	, L: Lum DOL=1.15 JL=1.15 Plate Exp.; Ce=0.9;					
FORCES	(Ib) - Maximum Compression/Maximum	4)	Unbalanced design.	snow loads have been cor	isidered for this					
TOP CHORD	1-2=0/29, 2-4=-1675/151, 4-5=-1634/218, 5-6=-1741/249, 6-7=-1441/184, 7-9=-1639/162, 9-10=0/29	5) 6)	load of 12.0 overhangs n	psf or 1.00 times flat roof k on-concurrent with other liv	ad of 20.0 psf on /e loads.					
BOT CHORD	2-14=-156/1323, 12-14=0/977, 11-12=-9/1221, 9-11=-196/1228	7)	This truss ha	is been designed for a 10.0) psf bottom other live loads			"TH CA	80.14	
WEBS	4-14=-334/189, 5-14=-124/555, 5-12=-164/1160, 6-12=-1129/180, 7-12=-57/307, 7-11=0/266	8)	* This truss h on the bottor 3-06-00 tall b	nas been designed for a liv n chord in all areas where by 2-00-00 wide will fit betw	e load of 20.0psf a rectangle veen the bottom	3	i de	A FESSI	mile	2
NOTES 1) Unbalance this design	ed roof live loads have been considered for n.	9)	chord and ar One H2.5A S recommende UPLIFT at jt(and does no	by other members, with BC Simpson Strong-Tie conne- ed to connect truss to bear s) 2 and 9. This connection t consider lateral forces.	DL = 10.0psf. ctors ing walls due to n is for uplift only			SEAL 02359	4	ann an

- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

mann April 1,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	23 Serenity - B329 B LH CP	
24050019	B4	Roof Special	1	1	Job Reference (optional)	164576262

Scale = 1:54.7

Run: 9.03 S 8.73 Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Fri Mar 29 10:41:40 ID:MMyUAt3cpTU9GVinz1tl/UZMCOE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

L 7-1-5	13-9-7	18-0-15	23-11-0
7-1-5	6-8-1	4-3-8	5-10-1

Plate Offsets (X, Y): [2:0-3-9,0-0-3], [6:0-5-0,0-2-0], [7:0-3-0,0-2-3], [9:0-2-13,0-0-3]

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.60 0.52 0.37	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.07 -0.16 0.05	(loc) 12-14 12-14 9	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 134 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left 2x4 SP No.3 1-6-0 Structural wood she 3-11-11 oc purlins, 2-0-0 oc purlins (4 Rigid ceiling directly bracing. 1 Row at midpt (size) 2=0-5-8, Max Horiz 2=170 (L Max Uplift 2=-88 (LC Max Grav 2=1074 (1-6-0, Right 2x4 SP eathing directly applie except 4-5 max.): 6-7. / applied or 10-0-0 or 6-14 9=0-5-8 C 13) C 14), 9=-120 (LC 15 LC 44), 9=-1142 (LC -	2) No.3 ed or C 3) () () () () () () () () () () () () ()	Wind: ASCE Vasd=103mp II; Exp B; En and C-C Extr to 6-11-8, Ex 12-11-8 to 14 Interior (1) 20 24-9-8 zone; vertical left a forces & MW DOL=1.60 pl TCLL: ASCE Plate DOL=1 DOL=1.15); I Cs=1.00; Ct= Unbalanced design. This truss ha	7-16; Vult=130mp bh; TCDL=6.0psf; E closed; MWFRS (e erior(2E) -0-10-8 to tterior(2E) 6-11-8 td 4-11-3, Exterior(2R 0-11-3 to 21-9-8, E cantilever left and nd right exposed;C /FRS for reactions ate grip DOL=1.60 ; 7-16; Pr=20.0 psf .15); Pf=20.0 psf.15); Pf=20.0 psf.15); Pf=20.0 psf.15); Pf=20.0 psf.15); Pf=20.0 psf.15); Pf=20.0	h (3-sec 3CDL=6 nvelope 2-1-8, 5 12-11.) 14-11. xterior(2 right ex -C for n shown; (roof LL Lum DC B; Fully een cor or great	ond gust) .0psf; h=25ft b) exterior zo Interior (1) 2- .8, Interior (1) 3 to 20-11-3 2E) 21-9-8 to posed ; end nembers and Lumber .: Lum DOL= DL=1.15 Plate Exp.; Ce=0. Insidered for t er of min roo	t; Cat. ne -1-8) ; , , , , , , , , , , , , , , , , , ,						
FORCES	(lb) - Maximum Con Tension	npression/Maximum	-,	load of 12.0 overhangs n	psf or 1.00 times fla on-concurrent with	at roof lo other liv	oad of 20.0 p ve loads.	osf on						
TOP CHORD	1-2=0/29, 2-4=-143 5-6=-872/168, 6-7= 7-9=-1388/170, 9-10	4/170, 4-5=-1328/214 -1444/202, 0=0/45	4, 6) 7)	Provide adeo This truss ha chord live loa	quate drainage to p is been designed fo ad nonconcurrent w	revent or a 10.0 /ith anv	vater pondin) psf bottom other live loa	ıg. ads.					inin,	
BOT CHORD	2-14=-160/1141, 12 11-12=-33/1084, 9-	-14=-47/1418, 11=-133/1088	8)	* This truss h on the bottor	nas been designed n chord in all areas	for a liv where	e load of 20. a rectangle	0psf			S.	RTHUA	ROLI	
WEBS	4-14=-329/182, 5-1 6-14=-962/160, 6-1 7-11=0/173	4=-108/933, 2=-248/98, 7-12=-38/	/507, 9)	3-06-00 tall b chord and ar One H2.5A S	by 2-00-00 wide wil ny other members. Simpson Strong-Tie	l fit betv	veen the bott	tom		-	Ľ¥		miles.	ann a
NOTES 1) Unbalance this design	ed roof live loads have n.	been considered for	r 10	recommende UPLIFT at jt(and does not) This truss is International R802.10.2 at	ed to connect truss s) 2 and 9. This co t consider lateral for designed in accoro Residential Code s and referenced stan	to bear nnectio rces. lance w sections dard AN	ing walls due n is for uplift th the 2018 R502.11.1 a ISI/TPI 1.	e to only and		THE REAL PROPERTY OF		SEA 0235	L 94	

 Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

April 1,2024

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	23 Serenity - B329 B LH CP	
24050019	B5GR	Roof Special Girder	1	2	Job Reference (optional)	164576263

7-6-14

Scale = 1:54.7

Loading

TCLL (roof)

Snow (Pf)

TCDL

BCLL

BCDL

LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x6 SP No.2 WEBS 2x4 SP No.3 WEDGE Right: 2x4 SP No.3 BRACING TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except 2-0-0 oc purlins (6-0-0 max.): 5-6. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. **REACTIONS** (size) 2=0-5-8.7=0-5-8 Max Horiz 2=165 (LC 9) Max Uplift 2=-114 (LC 12), 7=-231 (LC 13) Max Grav 2=1271 (LC 40), 7=1936 (LC 39) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/29, 2-3=-1795/150, 3-4=-1509/209, 4-5=-1468/184, 5-6=-2120/319, 6-7=-2684/336 BOT CHORD 2-12=-175/1431, 11-12=-155/1431, 10-11=-161/2325, 8-10=-164/2327, 7-8=-200/2168 WFBS 3-12=0/145, 3-11=-379/166, 4-11=-115/1213, 5-11=-1521/260, 5-10=-54/89, 5-8=-275/260, 6-8=-81/1179 NOTES 1) 2-ply truss to be connected together with 10d

(0.131"x3") nails as follows: Top chords connected as follows: 2x4 - 1 row at 0-9-0 00 Bottom chords connected as follows: 2x6 - 2 rows

staggered at 0-9-0 oc. Web connected as follows: 2x4 - 1 row at 0-9-0 oc

2)	All loads are considered equally applied to all plies,
	except if noted as front (F) or back (B) face in the LOAD
	CASE(S) section. Ply to ply connections have been
	provided to distribute only loads noted as (F) or (B),
	unless otherwise indicated.

- 3) Unbalanced roof live loads have been considered for this design. 4)
 - Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 5) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 6) Unbalanced snow loads have been considered for this design.
- 7) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- Provide adequate drainage to prevent water ponding. 8) 9) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 11) LGT2 Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 7 and 2. This connection is for uplift only and does not consider lateral forces.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

- 13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 14) Use Simpson Strong-Tie HTU26-2 (20-10d Girder, 14-10d Truss, Single Ply Girder) or equivalent at 20-0-8 from the left end to connect truss(es) to front face of bottom chord.
- 15) Fill all nail holes where hanger is in contact with lumber. 16) LGT2 Hurricane ties must have two studs in line below

the truss. LOAD CASE(S) Standard

- Dead + Snow (balanced): Lumber Increase=1.15, Plate 1)
 - Increase=1.15 Uniform Loads (lb/ft)
 - Vert: 1-4=-60, 4-5=-60, 5-6=-60, 6-7=-60, 13-16=-20 Concentrated Loads (lb)
 - Vert: 19=-1056 (F)

818 Soundside Road

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overal bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	23 Serenity - B329 B LH CP	
24050019	D1A	Common	2	1	Job Reference (optional)	164576264

Run: 9.03 S 8.73 Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Fri Mar 29 10:41:41 ID:CsyuH_9hORxEgU9Gof?ehgzMCMp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

9-11-8	19-11-0
9-11-8	9-11-8

Scale = 1:54.7 Plate Offsets (X, Y): [2:0-3-13,Edge], [8:0-3-8,Edge], [9:0-4-0,0-3-0]

Loading (TCLL (roof) 2 Snow (Pf) 2 TCDL 2 BCLL BCDL 4	psf) Spacing 2- 20.0 Plate Grip DOL 1. 20.0 Lumber DOL 1. 10.0 Rep Stress Incr YI 0.0* Code IR	0-0 15 15 ES C2018	5/TPI2014	CSI TC BC WB Matrix-MSH	0.51 0.83 0.27	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.13 -0.28 0.02	(loc) 9-12 9-12 8	l/defl >999 >868 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 99 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 SLIDER Left 2x4 SP N 1-6-0	lo.3 1-6-0, Right 2x4 SP No.3	3)	TCLL: ASCE Plate DOL=1 DOL=1.15); I Cs=1.00; Ct= Unbalanced design.	7-16; Pr=20.0 psf (.15); Pf=20.0 psf (L s=1.0; Rough Cat E =1.10 snow loads have be	roof LL um DC 3; Fully een cor	:: Lum DOL= DL=1.15 Plate Exp.; Ce=0.9	1.15 9; nis					
BRACING TOP CHORD Structural woo 5-4-1 oc purli BOT CHORD Rigid ceiling o bracing.	od sheathing directly applied or ns. directly applied or 10-0-0 oc	5) 6)	This truss ha load of 12.0 p overhangs no This truss ha chord live loa	s been designed for osf or 1.00 times flat on-concurrent with o s been designed for ad nonconcurrent with	r greate t roof le other liv r a 10.0 th any	er of min roof bad of 20.0 p ve loads.) psf bottom other live loa	live sf on ds.					
REACTIONS (size) 2=(Max Horiz 2=' Max Uplift 2=- Max Grav 2=(0-5-8, 8= Mechanical 165 (LC 13) •85 (LC 14), 8=-67 (LC 15) 397 (LC 21), 8=843 (LC 22)	7)	* This truss h on the botton 3-06-00 tall b chord and an Refer to girde	as been designed f n chord in all areas by 2-00-00 wide will by other members. er(s) for truss to trus	or a liv where fit betv	e load of 20.0 a rectangle veen the botto nections.	Opsf om					
FORCES (lb) - Maximum Tension TOP CHORD 1-2=0/29. 2-4	m Compression/Maximum =-1007/148, 4-5=-876/139,	9)	Provide mecl bearing plate	hanical connection capable of withstar	(by oth nding 6	ers) of truss t 7 lb uplift at j	o oint					
5-6=-877/139 BOT CHORD 2-8=-200/903 WEBS 5-9=-31/595,	6-9=-370/184, 4-9=-366/183	10)	One H2.5A S recommende UPLIFT at jt(Simpson Strong-Tie ed to connect truss t s) 2. This connectio	conne o beari n is for	ctors ing walls due uplift only ar	to nd					lu.
NOTES			does not con	sider lateral forces.							N' CA	Dill
 Unbalanced roof live loads this design. Wind: ASCE 7-16; Vult=1: Vast=103mph; TCDL=6 (s have been considered for 30mph (3-second gust)	11)	This truss is International R802.10.2 ar	designed in accorda Residential Code so nd referenced stand Standard	ance w ections ard AN	ith the 2018 R502.11.1 a ISI/TPI 1.	ind			N. N.	ORTH CA	HOLIT

II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 6-11-8, Exterior(2R) 6-11-8 to 12-11-8, Interior (1) 12-11-8 to 16-11-0, Exterior(2E) 16-11-0 to 19-11-0 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	23 Serenity - B329 B LH CP	
24050019	HGE	Common Supported Gable	1	1	Job Reference (optional)	164576265

Run: 9.03 S 8.73 Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Fri Mar 29 10:41:42

Page: 1

Scale = 1:40.2

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCCL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018,	/TPI2014	CSI TC BC WB Matrix-MR	0.13 0.06 0.12	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 12	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 86 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood shee 6-0-0 oc purlins, exc Rigid ceiling directly bracing. (size) 12=14-5-8 15=14-5-8 (15=14-5-8 Max Horiz 20=-159 (I 14=-56 (LI 17=-59 (LI 19=-98 (LI 14=229 (LI 16=180 (L 18=229 (LI 20=159 (LI	athing directly applied cept end verticals. applied or 6-0-0 oc 3, 13=14-5-8, 14=14-5 3, 16=14-5-8, 17=14-5 4, 19=14-5-8, 20=14-5 LC 12) C 11), 13=-92 (LC 15 C 15), 15=-59 (LC 14 C 14), 20=-96 (LC 10 .C 25), 13=171 (LC 24 C 28), 17=259 (LC 22 .C 28), 17=259 (LC 24 .C 21), 19=182 (LC 24 .C 26)	$\begin{array}{c} 1) \\ 2) \\ 1 \text{ or } \\ 5-8, \\ 5-8, \\ 5-8, \\ 3) \\ 5-8, \\ 3) \\ 1, \\ 2), \\ 2), \\ 5), \\ 5), \\ 6) \end{array}$	Unbalanced r this design. Wind: ASCE Vasd=103mp II; Exp B; End and C-C Corr to 4-2-12, Co 10-2-12 to 12 cantilever left right exposed for reactions : DOL=1.60 Truss design only. For stu see Standard or consult qu TCL: ASCE Plate DOL=1 DOL=1.5); II: Cs=1.00; Ct= Unbalanced s design. This truss has load of 12.0 p	oof live loads have 7-16; Vult=130mph h; TCDL=6.0psf; B idosed; MWFRS (er ter(3E) -0-10-8 to 2 rner(3R) 4-2-12 to -4-0, Corner(3E) 1: and right exposed (C-C for members shown; Lumber DC ted for wind loads in ds exposed to winc Industry Gable En alified building desi 7-16; Pr=20.0 psf (L s=1.0; Rough Cat E 1.10 shown loads have be s been designed fo isf or 1.00 times fla	been of a (3-sec CDL=6 hvelope 2-1-8, E 10-2-12 2-4-0 to ; end v and for DL=1.60 n the pl d (norm d Detai gner as (roof LL .um DC 3; Fully een cor r greate t roof k	considered fo ond gust) .0psf; h=25ft;) exterior zor xterior(2N) 2: 2; Exterior(2N) 15-4-0 zone ertical left an ertical left an ces & MWFR plate grip ane of the tru al to the face) is as applicat a; per ANSI/TF : Lum DOL=' uL=1.15 Plate Exp.; Ce=0.9 isidered for th er of min roof pad of 20.0 ps	r (Cat. ne -1-8 I) ;; d (S uss), ble, PI 1. 1.15 ;; live sf on	 13) Provise bea 20, uplifi 15, 14) This Inte R80 LOAD C 	vide met ring plat 75 lb up ft at joint 56 lb up t truss is rnationa (2.10.2 a CASE(S)	chanicc e capa lift at jc 18, 99 desig desig I Resic I Resic nd refr Star	al connection (by able of withstandi joint 12, 59 lb uplif 8 lb uplift at joint joint 14 and 92 lb ned in accordand dential Code sec erenced standar indard	others) of tri ng 96 lb uplif ft at joint 17, 19, 59 lb uplif uplift at joint with the 20 ions R502.11 d ANSI/TPI 1	uss to t at joint 55 lb ft at joint 13. 018 1.1 and
FORCES TOP CHORD	(lb) - Maximum Com Tension 2-20=-124/107, 1-2= 3-4=-64/94, 4-5=-60/ 6-7=-96/241, 7-8=-60 9-10=-77/80, 10-11=	pression/Maximum 0/34, 2-3=-97/98, (172, 5-6=-96/241, 0/172, 8-9=-52/95, 0/34, 10-12=-112/91	7) 8) 9)	overhangs no All plates are Gable require Truss to be fu braced again	2x4 MT20 unless of scontinuous botto illy sheathed from of st lateral movemen	other liv otherwis m chor one fac it (i.e. d	ve loads. se indicated. d bearing. e or securely iagonal web).			-	and a	OPTH CA	ROLIN	111111
BOT CHORD	19-20=-78/90, 18-19 16-17=-78/90, 12-13 6-16=-192/16, 5-17= 4-18=-188/116, 3-19 7-15=-219/101, 8-14 9-13=-112/100	=-78/90, 17-18=-78/9 =-78/90, 14-15=-78/9 =-78/90 -219/101, =-123/89, =-188/115,	0, 11) 0, 12)	This truss has chord live loa * This truss h on the bottom 3-06-00 tall b chord and an	spaced at 2-0-0 oc. s been designed fo d nonconcurrent w as been designed f a chord in all areas y 2-00-00 wide will y other members.	r a 10.0 ith any for a liv where fit betw) psf bottom other live load e load of 20.0 a rectangle veen the botto	ds.)psf om		1111111		SEA 0235	L 94 E.E.R. E.P.	
NULES												11, R.	MIL	

NOTES

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org)

and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Annun Million

April 1,2024

Job	Truss	Truss Type	Qty	Ply	23 Serenity - B329 B LH CP	
24050019	н	Common	5	1	Job Reference (optional)	164576266

Run: 9.03 S 8.73 Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Fri Mar 29 10:41:42 ID:bfGOJ8MZD?XWYZ9mx9bVf?zMDGf-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

	7-2-12	1	14-5-8	
	7-2-12	I	7-2-12	
Scale = 1:45.3				
Plate Offsets (X, Y): [2:0-3-8,Edge], [4:0-3-8,Edge]				

	X, 1). [2.0-5-0,Euge],	[4.0-0-0,Luge]												
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-MSH	0.93 0.45 0.14	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.05 -0.10 0.01	(loc) 7-8 7-8 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 81 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASC Vasd=103 II; Exp B; I and C-C E to 4-2-12, 10-2-12 to cantilever right expos members i Lumber DOL DOL=1.15 Cs=1.00; (2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 *Excep Structural wood she 2-2-0 oc purlins, exi Rigid ceiling directly bracing. (size) 6=0-3-0, 8 Max Horiz 8=-159 (L Max Uplift 6=-65 (LC (lb) - Maximum Com Tension 1-2=0/34, 2-3=-666/, 4-5=0/34, 2-3=-666/, 7-8=-234/435, 6-7=- 3-7=-125/283, 2-7=- ed roof live loads have b. CE 7-16; Vult=130mph imph; TCDL=6.0psf; Bt Enclosed; MWFRS (er Exterior(2R) 4-2-12 to 12-4-0, Exterior(2R) 4-2-12 to 12-4-0, Exterior(2R) 4-2-12 to 12-4-0, Exterior(2R) 4-2-12 to 14-60 pite exposed sed; porch left and righ and forces & MWFRS OL=1.60 pite grip DO CE 7-16; Pr=20.0 psf (L =1.15); Pf=20.0 psf (L =); Is=1.0; Rough Cat E Cl=1.10	t* 8-2,6-4:2x4 SP No athing directly applie cept end verticals. applied or 10-0-0 oc 3=0-3-0 C 12) 2 (5), 8=-65 (LC 14) C 22), 8=705 (LC 21) pression/Maximum 278, 3-4=-666/278, 258, 4-6=-642/254 157/435 138/267, 4-7=-143/2 been considered for (3-second gust) CDL=6.0psf; h=25ft; hvelope) exterior zon 2-1-8, Interior (1) 2-1 10-2-12, Interior (1) 2-1 10-2-12, Interior (1) 2-4-0 to 15-4-0 zone; end vertical left and t exposed;C-C for for reactions shown; DL=1.60 roof LL: Lum DOL=1 um DOL=1.15 Plate 3; Fully Exp.; Ce=0.9	4) 5).2 dor 6) 7) 8) 9) 67 Cat. e -8 -8 -8 -8 -8 -15 ;	Unbalanced design. This truss ha load of 12.0 overhangs n This truss ha chord live loa * This truss ha on the bottor 3-06-00 tall t chord and ar One H2.5A S recommende UPLIFT at jtt and does no This truss is International R802.10.2 a	snow loads have I as been designed f psf or 1.00 times f on-concurrent with as been designed that nonconcurrent to has been designed on chord in all area by 2-00-00 wide win y other members. Simpson Strong-Ti ed to connect truss (s) 8 and 6. This co t consider lateral fi designed in accor Residential Code nd referenced star Standard	been cor for great lat roof lu n other li for a 10./ with any d for a liv s where ill fit betw e conne s to bear onnectio onnectio onnectio onnectio onnectio onnectio ance w sections ndard AN	nsidered for t er of min roo bad of 20.0 p ve loads. 0 psf bottom other live loa e load of 20. a rectangle veen the bot ctors ing walls due n is for uplift ith the 2018 \$ R502.11.1 USI/TPI 1.	this f live sof on ads. 0psf tom and		Withhere		SEA 0235	L 94 FER. FR. 11 1,2024	. Ammuniting
WARN	ING - Verify design paramete	ers and READ NOTES ON	THIS AND IN	CLUDED MITEK R	EFERENCE PAGE MII-	7473 rev. 1	/2/2023 BEFOR	E USE.				ENGINEER	ING BY	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	23 Serenity - B329 B LH CP	
24050019	EGR	Common Girder	1	2	Job Reference (optional)	164576267

Run: 9.03 S 8.73 Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Fri Mar 29 10:41:41 ID:Ws_ekb?PSj8j0DmtCOLcX6zMBu1-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:58.5

Plate Offsets (X, Y): [9:0-3-8,0-4-4], [10:0-5-0,0-4-8], [11:0-3-8,0-4-4]

Loading	(psf)	Spacing	2-0-0		CSI	0.29	DEFL	in 0.07	(loc)	l/defl	L/d	PLATES	GRIP	20
Spow (Df)	20.0		1.15			0.30	Vert(LL)	-0.07	10-11	>999	100	101120	244/13	0
	20.0	Ron Stross Incr	NO			0.75		-0.12	0-11	>999	n/o			
	10.0	Codo		9/TDI2014	Motrix MSH	0.70	11012(01)	0.02	0	n/a	n/a			
	10.0	Code	11(020	0/11/12/014	Induix-Inior I							Weight: 266 lb) FT - 2	20%
BODL	10.0											Weight. 200 lb		.070
LUMBER			3) Unbalanced	roof live loads have	been o	considered fo	or	15) LG	T2 Hurrio	cane ti	es must have tw	/o studs ir	n line below
TOP CHORD	2x4 SP No.2			this design.					the	truss.				
BOT CHORD	2x6 SP No.2		4) Wind: ASCE	7-16; Vult=130mpl	n (3-seo	cond gust)		16) Hai	nger(s) a	r othe	r connection dev	vice(s) sha	all be
WEBS	2x4 SP No.3 *Excep	t* 12-2,8-6:2x6 SP I	No.2	Vasd=103m	oh; TCDL=6.0psf; B	CDL=6	0.0psf; h=25ft;	; Cat.	pro	vided su	fficien	t to support cond	centrated	load(s) 657
BRACING				II; Exp B; En	closed; MWFRS (e	nvelope	e) exterior zor	ne;	lb c	lown and	1 104 I	b up at 18-4-4 c	on bottom	chord. The
TOP CHORD	Structural wood shea	athing directly applie	ed or	cantilever let	t and right exposed	; end \	/ertical left an	a	des	ign/sele	ction d	of such connection	on device((s) is the
	5-7-0 oc purlins, exe	cept end verticals.		ngni expose	a; Lumber DOL=1.6	o plate	grip DOL=1.	60	res	ponsibili		iners.		
BOT CHORD	 Rigid ceiling directly 	applied or 10-0-0 o	ю 5		7-16 Pr-20 0 pef	(roof L		1 15	LOAD	CASE(S) Sta	ndard		
	bracing.		5	Plate DOI =1	15): Pf=20.0 psf (I)I =1 15 Plate	1.15	1) De	ead + Sr	10W (D	alanced): Lumbe	er increase	e=1.15, Plate
REACTIONS	(size) 8=0-5-8, 1	2=0-5-8		DOI = 1.15	Is=1 0. Rough Cat I	B' Fully	Exp : Ce=0.9	, J.		crease=	1.15 20dc (l	h/ft)		
	Max Horiz 12=191 (L	.C 11)		Cs=1.00: Ct=	=1.10	2, 1 unj	_, 00 0ic	,	0	Vort 1		0/IL) 2.4-60.46-6	0 6 7 6	0 9 12 20
	Max Uplift 8=-688 (L	C 13), 12=-619 (LC	12) 6	Unbalanced	snow loads have b	een cor	nsidered for th	his	C	ven. 1-2	2=-00, ted Lo	2-4=-00, 4-0=-0	0, 0-7=-00	0, 0-12=-20
	Max Grav 8=4392 (L	-C 20), 12=3720 (LC	C 19)	design.					0	Vort 10	630	(B) 9628 (B)	8638 (1	B) 13-1038
FORCES	(lb) - Maximum Com	pression/Maximum	7) This truss ha	as been designed fo	r great	er of min roof	live		(B) 14=	-803 (B) 15=-801 (B)	16=-628	(B) 17=-628
	Tension		_	load of 12.0	psf or 1.00 times fla	t roof le	oad of 20.0 p	sf on		(B), 18=	-631 (B)		(2), 020
TOP CHORD	1-2=0/37, 2-3=-4819	/802, 3-4=-3792/66	i5,	overhangs n	on-concurrent with	other liv	ve loads.			(), -		. /		
	4-5=-3792/665, 5-6=	-4604/724, 6-7=0/3	57, 8) This truss ha	is been designed fo	r a 10.0	D psf bottom							
	2-12=-3049/012, 0-8	1-666/2040	•	chord live loa	ad nonconcurrent w	ith any	other live loa	ids.						
BOT CHORL	8-9112/556	1=-000/3940,	9) " I his truss r	has been designed	for a liv	e load of 20.0	Upst						
WEBS	4-10=-638/3766 5-1	0=-999/243		3-06-00 tall b	2-00-00 wide will	fit betv	a reclarigie	om						
	5-9=-115/918, 3-10=	-1185/329,		chord and ar	v other members.	in bett	veen ine bola	0111					111	
	3-11=-216/1060, 2-1	1=-520/3585,	1	0) LGT2 Simps	on Strona-Tie conn	ectors	recommende	d to				WITH U	ARO	11,
	6-9=-450/3290			connect trus	s to bearing walls d	ue to U	PLIFT at jt(s)	12			N	a state	SiA.	INT.
NOTES				and 8. This c	connection is for up	ift only	and does not	t			53	F	SIN.	la'r
1) 2-ply trus	s to be connected toget	ther with 10d		consider late	eral forces.						: ~	and the	- A	an -
(0.131"x3	B") nails as follows:		1	 This truss is 	designed in accord	ance w	ith the 2018					:X	N	1 3
Top chor	ds connected as follows	s: 2x4 - 1 row at 0-9	-0	International	Residential Code s	ections	R502.11.1 a	and				SE4	41	1 E
oc, 2x6 -	2 rows staggered at 0-9	9-0 oc.		R802.10.2 a	nd referenced stand	ard AN	NSI/TPI 1.			E		0000	-04	: E
Bottom c	hords connected as follo	ows: 2x6 - 2 rows	1	2) Use Simpsoi	n Strong-Tie LUS26) (4-100	Girder, 4-10	a				0235	94	1 E
staggere	d at 0-9-0 oc.			russ) or equ	uivalent at 4-0-12 fr		ieir end to			-		1		1 2
Web con	nected as follows: 2x4 -	1 row at 0-9-0 oc.		connect (fus	S(ES) IO DACK IACE C	ι ροποι	n chora.				-			

 All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated. 13) Use Simpson Strong-Tie LUS26 (4-10d Girder, 3-10d Truss, Single Ply Girder) or equivalent spaced at 2-0-0 oc max. starting at 6-0-12 from the left end to 18-0-12 to connect truss(es) to back face of bottom chord.

14) Fill all nail holes where hanger is in contact with lumber.

BENCO

April 1,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

A MiTek Affiliate 818 Soundside Road Edenton, NC 27932

mann

Job	Truss	Truss Type	Qty	Ply	23 Serenity - B329 B LH CP	
24050019	EGE	Common Supported Gable	1	1	Job Reference (optional)	164576268

Run: 9.03 S 8.73 Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Fri Mar 29 10:41:41 ID:_esNCUIUPIWo4zacA9qaZdzMD57-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

18-7-0

Scale = 1:50.8

Plate Offsets (X, Y): [7:0-2-8,Edge]

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-MSH	0.10 0.05 0.13	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 14	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 126 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3		W	EBS 6 4 9 1 1 0TES	-20=-160/19, 8-18 -22=-158/85, 3-23 -17=-215/115, 10- 1-15=-170/165, 3- 1-14=-203/94	=-160/0 =-180/1 16=-158 24=-20	, 5-21=-215/1 52, 3/85, 1/145,	115,	12) * Th on t 3-06 choi 13) N/A	is truss he botto S-00 tall rd and a	has be m cho by 2-0 ny oth	een designed for rd in all areas w 0-00 wide will fit er members.	a live load of 20.0p here a rectangle between the botton	√sf n
REACTIONS	Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 14=18-7-(21=18-7-(24=18-7-(Max Horiz 24=191 (L Max Uplift 14=-1 (LC 21=-72 (L 23=-126 (Max Grav 14=172 (L 18=-196 (L)	athing directly applied cept end verticals. applied or 10-0-0 oc 0, 15=18-7-0, 16=18- 0, 18=18-7-0, 20=18- 0, 18=18-7-0, 23=18- 0, 13) 11), 15=-120 (LC 15 C 15), 17=-75 (LC 15 C 14), 22=-53 (LC 14 LC 14), 24=-39 (LC 14 LC 22), 15=205 (LC 2 C 22), 27=257 (LC 2 C 22), 27=26 (LC 2	(1) (1) (2) (7-0, (7-0, (7-0, (5)), (5), (5), (1), (1), (2), (2), (2), (1))	Unbalanced i this design. Wind: ASCE Vasd=103mg II; Exp B; End and C-C Corr to 6-3-8, Corr 12-1-12 to 16 cantilever leff right exposed for reactions DOL=1.60 Truss design only. For stu see Standard or consult qu	oof live loads have 7-16; Vult=130mpt h; TCDL=6.0psf; B closed; MWFRS (er er(3E) -0-10-8 to 2 ner(3R) 6-3-8 to 12 -5-8, Corner(3E) 1 and right exposed (;C-C for members shown; Lumber DC led for wind loads i ds exposed to wind laffed building desi	been of (3-sec CDL=6 nvelope 2-1-8, E -1-12, I 6-5-8 to ; end v and for DL=1.60 In the pid d (norm id Deta igner as	considered fo .0psf; h=25ft; .0 exterior zor xterior(2N) 2: Exterior(2N) 2: Exterior(2N) 0: 19-5-8 zone vertical left an ces & MWFR 0 plate grip ane of the tr. al to the face is as applical s per ANS/TF	r ; Cat. he -1-8 ;; dd RS Jss), ble, PI 1.	14) This Inte R80 LOAD C	truss is rnationa 2.10.2 a CASE(S)	desig I Resid Ind ref Star	ned in accordan Jential Code sec erenced standar ndard	ce with the 2018 tions R502.11.1 and d ANSI/TPI 1.	d
FORCES TOP CHORD BOT CHORD	21=257 (L 23=217 (L (lb) - Maximum Com Tension 2-24=-137/124, 1-2= 3-4=-104/80, 4-5=-9 6-7=-70/125, 7-8=-7 9-10=-74/61, 10-11= 12-13=0/34, 12-14=- 23-24=-79/191, 20-2 21-22=-79/191, 20-2 18-20=-79/191, 17-1 16-17=-79/191, 15-1 14-15=-79/191	C 21), 22=195 (LC 2 C 25), 24=195 (LC 2 pression/Maximum 60/34, 2-3=-58/59, 0/70, 5-6=-81/137, 0/125, 8-9=-81/137, 10/125, 8-9=-81/137, 1-75/35, 11-12=-54/94 139/144 33=-79/191, 8=-79/191, 6=-79/191,	(1), 4) (6) (5) (6) (4, (7) (8) (9) (10) (11)	TCLL: ASCE Plate DOL=1 DOL=1.15); I Cs=1.00; Ct= Unbalanced design. This truss ha load of 12.0 p overhangs no All plates are Gable require Truss to be fu braced again 0) Gable studs si) This truss ha chord live loa	7-16; Pr=20.0 psf (L 15); Pf=20.0 psf (L s=1.0; Rough Cat E 1.10 snow loads have be s been designed for bosf or 1.00 times fla on-concurrent with 2x4 MT20 unless c es continuous botto ully sheathed from est tateral movement spaced at 2-0-0 oc. s been designed for d nonconcurrent with	(roof LL Lum DC 3; Fully een cor or greate troof lo other liv other liv othe	.: Lum DOL=: IL=1.15 Plate Exp.; Ce=0.9 asidered for th er of min roof pad of 20.0 ps ve loads. se indicated. d bearing. e or securely iagonal web) D psf bottom other live loa	1.15 9; nis live sf on			and the second s	SEA 0235	L 94 MILLER	- ANNIH TEL

April 1,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

4

Job	Truss	Truss Type	Qty	Ply	23 Serenity - B329 B LH CP	
24050019	A4SE	Piggyback Base Structural Gable	1	1	Job Reference (optional)	164576269

Run: 9.03 S 8.73 Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Fri Mar 29 10:41:36 ID:97jmf?YRCesUy9xFwEmOuVzMC0N-RtC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

818 Soundside Road

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	23 Serenity - B329 B LH CP	
24050019	A4	Piggyback Base	3	1	Job Reference (optional)	164576270

Run: 9.03 S 8.73 Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Fri Mar 29 10:41:36 ID:SHDhqqFqYTAFw4NPKQp_EkzMC?T-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

818 Soundside Road

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	23 Serenity - B329 B LH CP	
24050019	A2	Piggyback Base	2	1	Job Reference (optional)	164576271

Run: 9.03 S 8.73 Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Fri Mar 29 10:41:36 ID:xNT20ti5HLIEJWYTMdz761zMBzb-RfC?PsB70Hq3NSqPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

818 Soundside Road

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	23 Serenity - B329 B LH CP	
24050019	A1	Piggyback Base	1	1	Job Reference (optional)	164576272

Run: 9.03 S 8 73 Mar 21 2024 Print: 8 730 S Mar 21 2024 MiTek Industries. Inc. Fri Mar 29 10:41:36 ID:AN2tTm0PAKZYRWXSt4QE9WzMBzB-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

WEBS	2x4 SP No.3 *Except* 17-6,16-7,17-7:2x4 SP No.2	•
BRACING		
TOP CHORD	Structural wood sheathing directly applied or 2-2-0 oc purlins, except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 6-7.	
BOT CHORD	Rigid ceiling directly applied or 6-0-0 oc bracing.	3
WEBS WEBS	1 Row at midpt 6-17, 8-16, 5-17 2 Rows at 1/3 pts 7-16	
REACTIONS	(size) 11=0-5-8, 16=0-5-8, 20=0-5-8 Max Horiz 20=-178 (LC 15)	4
	Max Uplift 11=-115 (LC 15), 16=-166 (LC 15) 20=-137 (LC 14)	5
	Max Grav 11=707 (LC 39), 16=2835 (LC 47), 20=995 (LC 37)	6
FORCES	(lb) - Maximum Compression/Maximum Tension	7
TOP CHORD	1-2=0/27, 2-3=-640/174, 3-5=-1146/200, 5-6=-285/196, 6-7=-163/178, 7-8=0/819, 8-10=-298/121, 10-11=-998/167, 11-12=0/23 2-20=-499/173	8
BOT CHORD	19-20=-250/1110, 17-19=-107/709, 16-17=-710/281, 14-16=-54/189, 13-14=-46/817, 11-13=-46/817	9
WEBS	3-19=-327/205, 5-19=-26/739, 6-17=-386/64, 7-16=-2035/180, 8-14=0/649, 10-13=0/346, 3-20=-796/40, 7-17=-169/1505, 8-16=-1156/232, 10-14=-868/190,	1
NOTES	5-1/=-101//240	1

Unbalanced roof live loads have been considered for 1) this design.

to 13-5-3. Exterior(2R) 13-5-3 to 31-5-13. Interior (1) 31-5-13 to 42-6-0, Exterior(2E) 42-6-0 to 47-1-8 zone; cantilever left and right exposed ; end vertical left and right exposed C-C for members and forces & MWERS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this desian.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 20, 11, and 16. This connection is for uplift only and does not consider lateral forces.
- 0) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 1) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

818 Soundside Road

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	23 Serenity - B329 B LH CP	
24050019	A	Attic	2	1	Job Reference (optional)	164576273

Run: 9.03 S 8.73 Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Fri Mar 29 10:41:34 ID:ZPnjiVCN8PSJoBx1Aeirw9zMBNV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

818 Soundside Road

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Asociation (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	23 Serenity - B329 B LH CP	
24050019	A	Attic	2	1	Job Reference (optional)	164576273

Run: 9.03 S 8.73 Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Fri Mar 29 10:41:34 ID:ZPnjiVCN8PSJoBx1Aeirw9zMBNV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

 Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

16) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	23 Serenity - B329 B LH CP	
24050019	C1	Attic	3	1	Job Reference (optional)	164576274

Run: 9.03 S 8.73 Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Fri Mar 29 10:41:41 ID:dn7xJiax1KrXXAjJYqfRnIzMBFG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

1-2-4

Scale = 1:94.5				
Plate Offsets (X, Y):	[2:Edge,0-2-12],	[4:0-3-0,0-3-0],	[7:0-4-13,Edge],	[21:0-3-8,0-2-0]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.83	Vert(LL)	-0.41	16-18	>664	240	MT20	244/190	
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.84	Vert(CT)	-0.73	16-18	>370	180			
TCDL	10.0	Rep Stress Incr	YES		WB	0.87	Horz(CT)	0.04	8	n/a	n/a			
BCLL	0.0*	Code	IRC2018	3/TPI2014	Matrix-MSH		Attic	-0.15	10-15	>419	360			
BCDL	10.0											Weight: 215 lb	FT = 20%	
LUMBER			1)	Wind: ASCE	7-16; Vult=130mpl	n (3-seo	cond gust)	_	12) This	s truss is	desig	ned in accordanc	e with the 20	18
TOP CHORD	2x4 SP No.2			Vasd=103mp	oh; TCDL=6.0psf; E	SCDL=6	0.0psf; h=25ft;	Cat.	Inte	rnationa	I Resi	dential Code sect	ons R502.1	1.1 and
BOT CHORD	2x4 SP No.1 *Excep 17-8:2x4 SP No.2	ot* 15-10:2x4 SP No.3	3,	II; Exp B; End and C-C Exte	closed; MWFRS (e erior(2E) -0-10-8 to	nvelope 2-1-8,	e) exterior zon Interior (1) 2-1	e -8	13) Atti)2.10.2 a c room c	and ref hecke	erenced standard d for L/360 deflec	tion.	
WEBS	2x4 SP No.3 *Excep	ot* 5-16,6-9,21-8:2x4	SP	to 19-9-4, Ex	terior(2E) 19-9-4 to	22-9-4	zone; cantile	ver	LOAD	CASE(S)) Sta	ndard		
	2400F 2.0E, 20-21:2	2x4 SP No.2, 8-7:2x6	SP	left and right	exposed ; end vert	ical left	exposed;C-C	tor						
	No.2			members and	d forces & MWFRS	for rea	ctions shown;							
BRACING				Lumber DOL	=1.60 plate grip DC	JL=1.6	J							
TOP CHORD	Structural wood she	athing directly applie	d or	TOULARCE	7 16: Dr 20.0 pof	(reaf L		15						
	4-5-4 oc purlins, ex	cept end verticals.	2)	Plate DOI =1	15) Pf=20.0 psi		LUIII DOLE I	.15						
BOT CHORD	Rigid ceiling directly bracing.	applied or 6-0-0 oc		DOL=1.15); I	s=1.0; Rough Cat	B; Fully	Exp.; Ce=0.9	;						
WEBS	1 Row at midpt	4-16, 3-19, 5-21, 8-2	1	Cs=1.00; Ct=	1.10									
JOINTS	1 Brace at Jt(s): 21		3)	Unbalanced	snow loads have b	een cor	isidered for th	IS						
REACTIONS	(size) 8= Mecha	anical, 19=0-5-8	4)	This trues ha	s been designed fo	or areat	er of min roof	livo						
	Max Horiz 19=421 (I	_C 14)	4)	load of 12 0 r	s been designed it	n yreat	ad of 20.0 ps	fon						
	Max Uplift 8=-28 (LC	C 14), 19=-2 (LC 14)		overhands no	on-concurrent with	other li	ve loads							
	Max Grav 8=1740 (I	LC 5), 19=1168 (LC 5	5) 5)	This truss ha	s been designed fo	or a 10	0 psf bottom							
FORCES	(lb) - Maximum Corr	pression/Maximum	-,	chord live loa	ad nonconcurrent w	ith any	other live load	ds.						
	Tension		6)	* This truss h	as been designed	for a liv	e load of 20.0	psf						
TOP CHORD	1-2=0/27, 2-3=-463/	97, 3-5=-1601/0,	,	on the botton	n chord in all areas	where	a rectangle						11.	
	5-6=-154/950, 6-7=-	42/663, 2-19=-398/13	34,	3-06-00 tall b	y 2-00-00 wide will	fit betv	veen the botto	m				AD IN THE	Dille	
	7-8=-285/2782			chord and an	y other members,	with BC	DL = 10.0psf.					THUA	HOIL	
BOT CHORD	18-19=-326/1557, 1	6-18=-188/1248,	7)	Ceiling dead	load (5.0 psf) on m	nember	(s). 20-21; Wa	all			5	N-++= 58	in A.	1
	14-16=-110/1395, 1	2-14=0/883,		dead load (5.	.0psf) on member(s	s).15-20), 10-21				:0	OFF	ANIN-	12
	9-12=-115/11, 8-9=-	34/481, 13-15=-350/0), 8)	Bottom chord	l live load (40.0 pst) and a	dditional botto	m			3.7	1997 M J	let	
	11-13=-350/0, 10-11	1=-350/0		chord dead lo	oad (5.0 psf) applie	d only	to room. 13-15	5,			2			
WEB5	3-18=-109/191, 4-10	0=-47/007, 16 66/770 15 00 0/	750 0	11-13, 10-11								SEA		=
	5 20-0/762 0 10- 1	0/550 10 21-0/111	758, 9j	Refer to girde	er(s) for truss to tru	ss conr	nections.	_		=	:	0005	24	=
	6-21-640/181 20-2	20/550, 10-21=0/111	, 10) Provide meci	nanical connection	(by oth	ers) of truss to) Dint		=	:	0235	94 :	-
	3-19=-1302/0 14-15	5=-628/164					o io upint at jo	JIII		-				-
	13-14=-71/174 10-1	12=0/1108, 11-12=-4	57/5. 11) One H2 54 9	Simpson Strong-Tie	conne	ctors				-	·	ai	3
	5-21=-2256/178, 8-2	21=-4861/349,	, 11	recommende	d to connect truss	to bear	ing walls due	to			21	NGINI	ENA	8
	7-21=-3055/262	,		UPLIFT at it(s) 19. This connect	tion is f	or uplift only a	nd			11,	UNA	1. 1.	\$
NOTES				does not con	sider lateral forces			-				IN R I	MILLIN	
												- minin	mm	
													0.50	

April 1,2024

TRENCO A MITEK Affiliate

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	23 Serenity - B329 B LH CP	
24050019	A7GR	Flat Girder	1	1	Job Reference (optional)	164576275

Run: 9.03 S 8.73 Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Fri Mar 29 10:41:39 ID:MzC3fFp7GD?OvuFJV4QSxMzMCl5-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:75.5

Plate Offsets (X, Y): [7:0-3-8,0-2-0], [16:0-5-0,0-4-8], [17:0-2-12,0-3-8]

				-										
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018	J/TPI2014	CSI TC BC WB Matrix-MSH	0.98 0.58 0.90	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.11 -0.19 0.03	(loc) 19-21 19-21 13	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 299 lb	GRIP 244/190 FT = 20%	6
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.1 *Excep 2x6 SP No.2 2x4 SP No.3 *Excep SP No.2 2-0-0 oc purlins (4-0 end verticals. Rigid ceiling directly bracing. 1 Row at midpt (size) 13= Mech 23=0-5-8 Max Horiz 23=119 (L Max Uplift 13=-242 (23=-354 (Max Grav 13=1058)	t* 9-12:2x4 SP No.2 t* 22-1,16-7,13-11:2x -0 max.): 1-12, excep applied or 4-7-7 oc 6-17 ianical, 17=0-5-8, LC 9) LC 8), 17=-962 (LC 9) LC 8) (LC 1), 17=4129 (LC 1)	1) 4 2) 3) 4) 5)), 6)	Wind: ASCE Vasd=103mp II; Exp B; En cantilever lef right exposed TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced design. Provide adeo This truss ha chord live loa • This truss P on the bottor 3-06-00 tall b	7-16; Vult=130mpf bh; TCDL=6.0psf; E closed; MWFRS (e t and right exposed d; Lumber DOL=1.6 7-16; Pr=20.0 psf .15); Pf=20.0 psf (I Is=1.0; Rough Cat I =1.10 snow loads have be quate drainage to p is been designed fo ad nonconcurrent w has been designed n chord in all areas by 2-00-00 wide will	n (3-sec GCDL=6 nvelope 1; end v 30 plate (roof LL Lum DC 3; Fully een cor revent v for a 10. for a liv where fit betv	ond gust) .0psf; h=25ft; b) exterior zon- retrical left and grip DOL=1.6 .: Lum DOL=1 DL=1.15 Plate Exp.; Ce=0.9; isidered for th water ponding 0 psf bottom other live load e load of 20.00 a rectangle veen the botto	Cat. e; d .15 ; is ds. psf m	13) "NA (0.1 14) In ti of ti LOAD (1) De In Ur	AILED" in 148"x3.22 he LOAE he truss CASE(S) he truss CASE(S) he truss crease=' niform LC Vert: 1= 6=-106 25=-106 25=-106 33=-106 33=-106 33=-106 41=-106 41=-106 41=-106 45=-28 he	dicate 5") toe 0 CAS are no 0 Sta 1.15 0 ds (l 12=-60 ted Lo -40 (F (F), 18 5 (F), 2 5 (F), 3 5 (F), 3 5 (F), 4 6 (F), 4	s 3-10d (0.148"x -nails per NDS g E(S) section, loa ted as front (F) c ndard alanced): Lumbe b/ft) 0, 13-23=-20 ads (Ib)), 20=-28 (F), 3= =-28 (F), 16=-28 (6=-106 (F), 27=- 0=-106 (F), 31=- t4=-106 (F), 35=- 8=-106 (F), 43=- =-28 (F). 47=-28		=-28 (F),)6 (F), =-106 (F), =-106 (F), =-106 (F), =-106 (F), =-28 (F), 3 (F),
FORCES TOP CHORD	(b) - Maximum Com Tension 1-23=-1415/378, 1-2 2-3=-1811/438, 3-4= 4-6=-1865/443, 6-7= 8-10=-1110/291, 10- 11-12=-63/44, 12-13	2=-1811/438, 1865/443, 552/2286, 7-8=-81/2 -11=-110/291, =-220/98	7) 8) 09, <u>9)</u>	chord and ar Refer to girde Provide meci bearing plate 13. One H2.5A S recommende	y other members. er(s) for truss to tru hanical connection e capable of withsta Simpson Strong-Tie ed to connect truss s) 23. This connect	ss conr (by oth nding 2 conne to bear	nections. ers) of truss to 42 lb uplift at j ctors ng walls due t or uplift only at) joint to		49=-28 53=-28 57=-28 61=-28	(F), 50 (F), 54 (F), 58 (F)	=-28 (F), 51=-28 =-28 (F), 55=-28 =-28 (F), 55=-28 =-28 (F), 59=-28	(F), 52=-28 (F), 56=-28 (F), 60=-28	; (F), } (F), } (F),
BOT CHORD WEBS NOTES	22-23=-95/101, 21-2 19-21=-611/2380, 11 17-18=-93/243, 15-1 14-15=-299/1184, 12 1-22=-500/2128, 2-2 3-22=-688/180, 3-21 4-19=-575/261, 6-19 6-17=-3088/725, 7-1 7-16=-580/2558, 8-1 8-15=-312/1403, 10- 11-15=-90/23, 11-14	22=-611/2380, 8-19=-93/243, 7=-2286/553, 3-14=-299/1184 22=-621/284, =0/276, 3-19=-624/16)=-466/1963, 6-18=0/2 7=-2090/604, 6=-1381/445, 6=-1381/445, 15=-553/250, 1=0/308, 11-13=-1376/	10) 247, 11) 12) /319	does not con H10A Simps connect truss This connect lateral forces This truss is International R802.10.2 ai Graphical pu or the orienta bottom choro	si sciar lateral forces on Strong-Tie conn s to bearing walls d ion is for uplift only i. designed in accord Residential Code s nd referenced stand rlin representation ation of the purlin al d.	ectors ue to U and dc ance w sections dard AN does no ong the	recommended PLIFT at jt(s) es not conside ith the 2018 R502.11.1 ar ISI/TPI 1. ot depict the si top and/or	I to 17. er nd		THIMM		SEA 0235 ONY R.	L 94 EER.	

April 1,2024

Page: 1

TRENGINEERING BY A MITCH A HITIBIA

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

e (www.tpinst.org) 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	23 Serenity - B329 B LH CP	
24050019	A6	Нір	1	1	Job Reference (optional)	164576276

Run; 9.03 S 8.73 Mar 21 2024 Print; 8.730 S Mar 21 2024 MiTek Industries, Inc. Fri Mar 29 10:41:37 ID:aIU11ihHbkeL8g_Z2VekD8zMCBp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:78.9

Plate Offsets ((X, Y): [1:Edge,	0-3-8],	[3:0-3-0,0-2-0], [8:0-	3-0,0-2-0]	, [10:0-1-4,0-0-	·5]								
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	() 2 1 1	psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MSH	0.92 0.45 0.91	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.06 -0.14 0.02	(loc) 11-20 11-20 10	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 279 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 * 2x6 SP No.2 2x4 SP No.3 Structural wor 4-9-8 oc purli 2-0-0 oc purli Rigid ceiling of bracing. 1 Row at midq (size) 10- 18= Max Horiz 18- Max Uplift 10- 18= Max Grav 10- 18=	*Except od shea ns, exc ns (2-2- directly) = Mecha =-78 (LC =-135 (L =-135 (L =-135 (L =-135 (L =-135 (L	* 6-8:2x4 SP No.1 thing directly applie ept end verticals, ar 0 max.): 3-8. applied or 6-0-0 oc 7-14 anical, 14=0-5-8, C 15) C 15), 14=-258 (LC C 14), C 44), 14=2464 (LC C 42)	2) d or d 3) 10), 4) 39), 5) 6)	Wind: ASCE Vasd=103mp II; Exp B; En and C-C Extu to 14-10-8, Ir 30-0-13 to 4' cantilever lef right exposed for reactions DOL=1.60 TCLL: ASCE Plate DOL=1 DOL=1.15; I Cs=1.00; Ct= Unbalanced design. Provide aded This truss ha chord live loa	7-16; Vult=130mp bh; TCDL=6.0psf; E closed; MWFRS (e rior(2E) 0-1-12 to therior (1) 14-10-8 i-3-14, Exterior(2E t and right exposed j;C-C for members shown; Lumber D0 7-16; Pr=20.0 psf (15); Pf=20.0 psf(15); Pf=20.0 psf (15); Pf=20.0 psf (15); Pf=20.0 psf(15); P	h (3-sec 3CDL=6 envelope 4-9-4, E to 30-0-) 41-3-1 d; end v s; and fou OL=1.6((roof LL Lum DC B; Fully ween cor prevent v or a 10.0 vith any	ond gust) .0psf; h=25ft exterior(2R) 4 13, Exterior(2R) 4 13, Exterior(2R) 4 14 to 46-2-4 z vertical left ar ces & MWFF 0 plate grip .: Lum DOL= UL=1.15 Plate Exp.; Ce=0.1 asidered for t water pondin. 0 psf bottom	; Cat. ne I-9-4 2R) cone; nd RS 1.15 9; his g. g.					
TOP CHORD	(Ib) - Maximur Tension 1-2=-341/57, 2 4-5=-702/171, 8-9=-780/186.	m Comµ 2-3=-11 , 5-7=-7 , 9-10≕	Compression/Maximum 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3=-1102/214, 3-4=-977/219, -7=-72/1036, 7-8=-62/153, -7=-72/1026, 7-8=-72/1026, 7-7									WEH CA	BO	
BOT CHORD	17-18=-221/1 14-15=-357/1 11-12=-22/57	118, 15 33, 12- 9, 10-1	-17=-130/903, 14=-242/132, 1=-171/1095	9)	Provide mec bearing plate	hanical connection capable of withsta	(by oth anding 1	ers) of truss 17 lb uplift a	to t joint			Z	OFFERS	Stall.
WEBS NOTES 1) Unbalance this design	2-17=-298/12 4-15=-696/19 5-14=-1431/2 7-12=-3/564, i 9-11=-568/17 ed roof live loads n.	4, 3-17: 7, 5-15: 58, 7-14 8-12=-7 0, 2-18: s have l	=0/248, 4-17=-16/34 =-125/1269, 4=-1410/237, '35/85, 8-11=0/479, =-1065/197 peen considered for	^{18,} 10 11 12	One H2.5A S recommende UPLIFT at jt(only and doe) This truss is International R802.10.2 ar) Graphical pu or the orienta	Simpson Strong-Tie ed to connect truss s) 14 and 18. This s not consider late designed in accorc Residential Code s and referenced stan rlin representation ation of the purlin a	e connec to bear connec ral force lance w sections dard AN does no long the	ctors ng walls due tion is for upl s. th the 2018 R502.11.1 a ISI/TPI 1. ot depict the s top and/or	ift and size		CHILINA AND AND AND AND AND AND AND AND AND A		SEA 02359	64 ER. R.
				LC	bottom chord DAD CASE(S)	l. Standard	5	-					R. N	MILTIN

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

April 1,2024

Job	Truss	Truss Type	Qty	Ply	23 Serenity - B329 B LH CP	
24050019	A5	Нір	1	1	Job Reference (optional)	164576277

Run: 9.03 S 8.73 Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Fri Mar 29 10:41:37 ID:E9GQhRE8mtRqfkVPk9TW5qzMCB5-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:79

Plate Offsets (X, Y): [3:0-4	-0,0-2-8],	[5:0-4-0,0-3-4], [6:0	-4-0,0-2-8]	, [8:0-1-4,0-0-3	3], [17:Edge,0-6-8]									
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL		(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MSH	0.82 0.52 0.96	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.06 -0.11 0.02	(loc) 13-15 13-15 8	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 292 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No. 2x6 SP No. 2x4 SP No. Structural V 4-0-15 oc p 2-0-0 oc pr Rigid ceilin bracing, E 6-0-0 oc br 1 Row at m (size) 8 Max Horiz 7	.2 *Excep .2 .3 wood shea purlins, ea urlins (4-1 g directly Except: racing: 10- nidpt 8= Mecha 17=-100 (I	t* 3-5,5-6:2x4 SP No athing directly applie ccept end verticals, i 1-7 max.): 3-6. applied or 10-0-0 oc -12. 3-13, 4-12 nical, 12=0-5-8, 17= LC 15) C 15) 12=-188 (LC C 15) 12=-188 (LC	2) 2) 2) 2) 2) 2) 2) 2) 2) 2)	Wind: ASCE Vasd=103m II; Exp B; En and C-C Ext to 17-6-8, Inf 27-4-13 to 40 Exterior(2E) right expose for members Lumber DOL TCL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced	7-16; Vult=130mp bh; TCDL=6.0psf; I closed; MWFRS (e erior(2E) 0-1-12 to terior (1) 17-6-8 to 0-5-13, Interior (1) 41-6-12 to 46-2-4. d; end vertical left and forces & MW =1.60 plate grip D 7-16; Pr=20.0 psf (15); Pf=20.0 psf (15); Pf=20.0 psf (15) (10); Rough Cat =1.10 snow loads have b	h (3-sec BCDL=6 envelope 4-9-4, E 27-4-13 40-5-13 zone; cc and rigi FRS for OL=1.6((roof LI Lum DC B; Fully been con	cond gust) .0psf; h=25ft e) exterior zon ixterior(2R) 4 , Exterior(2R) 4 to 41-6-12, reactions sho) : Lum DOL= DL=1.15 Plate Exp.; Ce=0.9	; Cat. ne -9-4) and -C own; 1.15 9 ; his						
FORCES	Max Grav 8 (Ib) - Maxin Tension	17=-134 (l 8=821 (LC 17=1076 (num Com	LC 14) 2 44), 12=2591 (LC 4 LC 36) pression/Maximum	45), 5) 6) 7)	design. Provide adeo This truss ha chord live loa * This truss h	quate drainage to p as been designed f ad nonconcurrent v nas been designed	orevent or a 10.0 with any for a live	water ponding) psf bottom other live loa e load of 20.0	g. Ids. Opsf						
TOP CHORD BOT CHORD	1-2=-1541/ 3-4=-576/1 7-8=-1377/ 16-17=-119 13-15=-99/	(217, 2-3= 71, 4-6=-3 (218, 1-17 9/310, 15- (934, 12-1	-1144/217, 391/834, 6-7=-575/1 =-981/161 16=-207/1304, 3=-77/577,	65, 8) 9)	3-06-00 tall to chord and ar Refer to gird Provide mec bearing plate	by 2-00-00 wide wi ny other members, er(s) for truss to tru hanical connection capable of withsta	Il fit betw with BC uss conr (by oth anding 1	veen the both DL = 10.0ps nections. ers) of truss to 14 lb uplift at	om f. to t joint			A LEAST	NUTH CA	ROJI	11. 2. 1.
WEBS	10-12=-74, 8-9=-120/1 2-16=-51/1 3-13=-739/ 5-12=-1353 6-10=-275/ 1-16=-88/1	7/178, 9-1 154 13, 2-15= 77, 4-13= 3/271, 5-1 101, 7-10 014	u=-120/1154, -553/129, 3-15=0/5{ 0/731, 4-12=-1794/2 0=-127/1352, =-876/184, 7-9=0/26	10 224, 35, 11	 One H2.5A S recommende UPLIFT at jt(only and doe This truss is International P802 10 2 or 	Simpson Strong-Tid ed to connect truss (s) 17 and 12. This is not consider late designed in accord Residential Code of referenced stan	e conne to bear connec eral force dance w sections	ctors ing walls due tion is for upl es. ith the 2018 i R502.11.1 a	to ift and		CONTRACTOR OF		SEA 0235	L 94	Manunun I.
 Unbalance this design 	ed roof live lo n.	ads have	been considered for	- 12 LC) Graphical pu or the orienta bottom chore DAD CASE(S)	Irlin representation ation of the purlin a d. Standard	does no	ot depict the s top and/or	size			in the		SEL FR	in the second

April 1,2024

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	23 Serenity - B329 B LH CP	
24050019	JGE	Jack-Open Supported Gable	1	1	Job Reference (optional)	164576278

Run: 9.03 S 8.73 Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Fri Mar 29 10:41:43 ID:h1JzkGRc6CdZENXOp8NkJJzMCJt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

4-0-0

Scale = 1:36.6

exposed ; end vertical left and right exposed;C-C for

members and forces & MWFRS for reactions shown;

Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

Lumber DOL=1.60 plate grip DOL=1.60

2)

Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		20.0	Plate Grip DOL	1.15		TC	0.23	Vert(LL)	0.00	6-7	>999	240	MT20	244/190
Snow (Pf)		20.0	Lumber DOL	1.15		BC	0.03	Vert(CT)	0.00	6-7	>999	180		
TCDL		10.0	Rep Stress Incr	YES		WB	0.08	Horz(CT)	0.00	4	n/a	n/a		
BCLL		0.0*	Code	IRC2	018/TPI2014	Matrix-MP								
BCDL		10.0				-							Weight: 27 lb	FT = 20%
LUMBER					3) TCLL: ASCE	7-16; Pr=20.0 g	osf (roof Ll	.: Lum DOL=	1.15					
TOP CHORD	2x4 SP N	No.2			Plate DOL=1	.15); Pf=20.0 ps	sf (Lum DC	DL=1.15 Plat	е					
BOT CHORD	2x4 SP N	No.2			DOL=1.15);	ls=1.0; Rough C	at B; Fully	Exp.; Ce=0.	9;					
WEBS	2x4 SP N	Vo.3			Cs=1.00; Ct:	=1.10								
OTHERS	2x4 SP N	Vo.3			Unbalanced	snow loads have	e been coi	nsidered for t	this					
BRACING					design.									
TOP CHORD	Structura	al wood she	athing directly applie	d or	This truss has	is been designe	d for great	er of min roo	flive					
	4-0-0 oc	purlins, ex	cept end verticals.		load of 12.0	psf or 1.00 times	s flat roof l	oad of 20.0 p	osf on					
BOT CHORD	Rigid cei	iling directly	applied or 10-0-0 oc	;	overnangs n	on-concurrent w	hth other li	ve loads.						
	bracing.				b) I russ to be to broad again	ully sheathed fro	om one rac	ce or secure	y					
REACTIONS	(size)	4= Mecha	anical, 5=3-6-8, 6=3-6	6-8,	7) Coblo ctude	concord at 2.0.0		liagonal web).					
		7=0-3-0			 Gable studs This trues be 	spaceu al 2-0-0	d for a 10	0 pef bottom						
	Max Horiz	: 7=131 (L	C 13)		chord live lo	ad nonconcurrer	nt with any	other live lo:	she					
	Max Uplift	: 4=-31 (LC	C 11), 6=-90 (LC 14),		 9) * This truss I 	has been design	ed for a liv	e load of 20	0psf					
		7=-25 (LC	C 10)		on the bottor	n chord in all are	eas where	a rectangle	-1					
	Max Grav	4=78 (LC (LC 21), 7	21), 5=28 (LC 7), 6= 7=222 (LC 21)	234	3-06-00 tall I	by 2-00-00 wide	will fit bety	veen the bot	tom					
FORCES	(lb) - Ma	ximum Con	pression/Maximum		10) Refer to gird	er(s) for truss to	truss con	actions						
	Tension				11) Provide med	hanical connecti	ion (by oth	ers) of truss	to					
TOP CHORD	2-7=-208	3/248, 1-2=0	0/57, 2-3=-59/147,		bearing plate	capable of with	istanding 3	B1 lb uplift at	ioint					
	3-4=-74/	97, 4-5=0/0			4.			· · · · · · · · · · · · · · · · · · ·	,					
BOT CHORD	6-7=-44/	79, 5-6=-44	/79		12) One H2.5A \$	Simpson Strong-	Tie conne	ctors						
WEBS	3-6=-236	6/277, 3-7=-	275/213		recommende	ed to connect tru	iss to bear	ing walls due	e to					in the second se
NOTES					UPLIFT at jo	int 7. This conne	ection is fo	r uplift only					WH CA	Rollin
1) Wind: AS	CE 7-16; V	ult=130mph	(3-second gust)		and does no	t consider latera	l forces.						R	6 hill
Vasd=103	Smph; TCD	L=6.0psf; B	CDL=6.0psf; h=25ft;	Cat.	13) This truss is	designed in acc	ordance w	ith the 2018			/	Ys	UNFER	10 AVA
II; Exp B;	Enclosed; I	MWFRS (er	nvelope) exterior zon	е	International	Residential Coo	de sections	s R502.11.1	and		/	Sag	in the	MAN
and C-C (Corner(3E)	zone; canti	ever left and right		R802.10.2 a	nd referenced st	tandard Al	ISI/TPI 1.				-	2	κ.

- R802.10.2 and referenced standard ANSI/TPI 1. 14) Gap between inside of top chord bearing and first
 - diagonal or vertical web shall not exceed 0.500in. LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	23 Serenity - B329 B LH CP	
24050019	J	Jack-Open	22	1	Job Reference (optional)	164576279

Run: 9.03 S 8.73 Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Fri Mar 29 10:41:42 ID:PyvlqhZumGu8RvIJPEZ4jQzMCJj-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

4-0-0

Scale = 1:28.3

Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)		20.0	Plate Grip DOL	1.15		TC	0.35	Vert(LL)	0.02	4-5	>999	240	MT20	244/190	
Snow (Pf)		20.0	Lumber DOL	1.15		BC	0.22	Vert(CT)	-0.02	4-5	>999	180			
TCDL		10.0	Rep Stress Incr	YES		WB	0.00	Horz(CT)	-0.03	3	n/a	n/a			
BCLL		0.0*	Code	IRC201	8/TPI2014	Matrix-MR									
BCDL		10.0											Weight: 16 lb	FI = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No 2x4 SP No 2x4 SP No Structural 4-0-0 oc p Rigid ceili bracing. (size)	0.2 0.3 wood shea urlins, exi ng directly 3= Mecha 5-0-5-8	athing directly applie sept end verticals. applied or 10-0-0 oc nical, 4= Mechanica	6) 7) d or 8) 9) : 1, 10	 * This truss h on the bottor 3-06-00 tall b chord and ar Bearings are Refer to gird Provide mec bearing plate 3.)) This truss is International 	as been designed in chord in all areas by 2-00-00 wide wi y other members. assumed to be: , er(s) for truss to tr hanical connection capable of withst designed in accorr Residential Code	d for a liv s where ill fit betw Joint 5 L russ con h (by oth anding 7 dance w sections	e load of 20. a rectangle veen the bott Jser Defined nections. ers) of truss 8 lb uplift at ith the 2018 R502.11.1 a	Opsf com to joint and						
	Max Horiz Max Uplift Max Grav	5=0-5-8 5=102 (LC 3=-78 (LC 3=166 (LC (LC 21)	C 14) 14) C 21), 4=72 (LC 7), 5	L0 =345	R802.10.2 ar DAD CASE(S)	nd referenced star Standard	ndard AN	ISI/TPI 1.							
FORCES	(lb) - Maxi	mum Com	pression/Maximum												
TOP CHORD BOT CHORD	2-5=-317/ 4-5=0/0	95, 1-2=0/	57, 2-3=-119/71												
NOTES															
 Wind: ASI Vasd=102 II; Exp B; and C-C E exposed; members Lumber D TCLL: AS Plate DOI DOL=1.15 Cs=1.00; Unbalanc design. This truss load of 12 overhang; This truss chord live 	CE 7-16; Vul 3mph; TCDL= Enclosed; M Exterior(2E) ; end vertical and forces & VOL=1.60 pla CE 7-16; Pr= 25); Is=1.0; Rc Ct=1.10 ed snow load has been de .0 psf or 1.00 s non-concum has been de load noncor	t=130mph 66.0psf; B(WFRS (encone; cantil left and rig . MWFRS te grip DO 20.0 psf (Li 20.0 psf (Li 20.0 psf (and the second and the second the second te second te second the second te se	(3-second gust) CDL=6.0psf; h=25ft; velope) exterior zon lever left and right ght exposed;C-C for for reactions shown; L=1.60 roof LL: Lum DOL=1 um DOL=1.15 Plate ; Fully Exp.; Ce=0.9 en considered for th roof load of 20.0 ps ther live loads. a 10.0 psf bottom th any other live loads	Cat. e .15 ; is fon ds.									SEA 0235	ROLINE BA	ANNO DE

April 1,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

TRENCO A MiTek Affiliate 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	23 Serenity - B329 B LH CP	
24050019	V11	Valley	1	1	Job Reference (optional)	164576280

Run; 9.03 S 8.73 Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Fri Mar 29 10:41:44 ID:_I7EHwldzD88zBqL8B4OKKzMDB?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

10-2-8

Scale = 1:36.7

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MSH	0.29 0.10 0.09	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 45 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 1=10-2-8 7=10-2-8 Max Horiz 1=138 (L Max Uplift 1=-19 (L0 7=-118 (I Max Grav 1=120 (L 6=296 (L	eathing directly applie ccept end verticals. / applied or 10-0-0 oc , 5=10-2-8, 6=10-2-8 C 11) C 10), 5=-39 (LC 15), C 14) C 30), 5=182 (LC 21) C 30), 5=182 (LC 21) C 20), 7=401 (LC 20)	3) 4) 5 d or 5 5) 7) 8) 9)	Truss desig only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced design. Gable requir Gable studs This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b	ned for wind loac dis exposed to w d Industry Gable alified building d 57-16; Pr=20.0 ps Is=1.0; Rough Ci =1.10 snow loads have es continuous bo spaced at 4-0-0 as been designed ad nonconcurren as been designed n chord in all are by 2-00-00 wide	Is in the p ind (norm End Deta esigner as sf (roof LL f (Lum DC t Lum DC t been cor toon chor oc. 1 for a 10.0 t with any ad for a liv as where	lane of the tri al to the face ils as applica s per ANSI/T :: Lum DOL= DL=1.15 Plate Exp.; Ce=0.1 asidered for t d bearing. D psf bottom other live loa e load of 20. a rectangle veen the bott	uss), ble, PI 1. 1.15 9; his dds. Opsf om					
FORCES	(lb) - Maximum Con Tension	npression/Maximum	10) Provide mec	hanical connection	s. on (by oth	ers) of truss	i0					
TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance	1-2=-170/119, 2-3= 4-5=-158/100 1-7=-32/139, 6-7=-3 3-6=-235/47, 2-7=-3	-133/109, 3-4=-101/1 30/43, 5-6=-30/43 322/191 a been considered for	17, 11 	5, 19 lb uplifi) This truss is International R802.10.2 a	t at joint 1 and 11 designed in acco Residential Cod nd referenced sta Standard	8 lb uplift ordance w e sections andard AN	at joint 7. ith the 2018 R502.11.1 a	and				WITH CA	ROU

this design.

Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-6 to 3-1-10, Interior (1) 3-1-10 to 4-1-10, Exterior(2R) 4-1-10 to 7-1-10, Exterior(2E) 7-1-10 to 10-1-2 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Thuman . April 1,2024

SEAL

023594

The second second

Job	Truss	Truss Type	Qty	Ply	23 Serenity - B329 B LH CP	
24050019	V12	Valley	1	1	Job Reference (optional)	164576281

Run: 9.03 S 8.73 Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Fri Mar 29 10:41:44 ID:Hf3tlJq0JN09JGsh29i26pzMDAu-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

8-8-8

Scal	le =	1:30 2	>

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-MP	0.58 0.61 0.07	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 34 lb	GRIP 244/190 FT = 20 ^c
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood shee 6-0-0 oc purlins, exc Rigid ceiling directly bracing. (size) 1=8-8-8,4 Max Horiz 1=102 (LC Max Uplift 1=-26 (LC 5=-22 (LC Max Uplift 1=-26 (LC 5=-22 (LC Max Grav 1=236 (LC 5=-449 (LC (b) - Maximum Com Tension 1-2=-332/108, 2-3=-(1-5=-105/310, 4-5=-) 2-5=-262/29	athing directly applie cept end verticals. applied or 10-0-0 oc l=8-8-8, 5=8-8-8 (11) 14), 4=-40 (LC 15), 14) 2 20), 4=151 (LC 21) 2 20) pression/Maximum 66/96, 3-4=-149/99 19/27	4) 5) (d or 6) 7) 5 8) 9) 9) 10 11	TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct: Unbalanced design. Gable requir Gable studs This truss ha chord live loa * This truss h on the bottor 3-06-00 tall th chord and ar) Provide mec bearing plate 4, 26 lb upliff) This truss is International R802.10.2 a DAD CASE(S)	7-16; Pr=20.0 p 15); Pf=20.0 psi ls=1.0; Rough Ca 1.10; Rough Ca 1.10 snow loads have es continuous bo spaced at 4-0-0 is been designed n chord in all are by 2-00-00 wide v by other members hanical connection e capable of withs at joint 1 and 222 designed in acco Residential Coden nd referenced sta Standard	sf (roof LL f (Lum DC at B; Fully been cor bttom chor oc. I for a 10.1 t with any d for a liv as where will fit betv s. on (by oth standing 4 ! bupift a ordance w e sections andard AN	: Lum DOL= L=1.15 Plate Exp.; Ce=0.9 asidered for the d bearing. D psf bottom other live load e load of 20.0 a rectangle veen the botthe ers) of truss to 10 lb uplift at ji t i joint 5. ith the 2018 s R502.11.1 a JSI/TPI 1.	1.15 9; his dds. 0psf om to joint					
NOTES 1) Unbalance	ed roof live loads have	been considered for										WH CA	Pall

this design.
Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-6 to 3-0-6, Exterior(2R) 3-0-6 to 5-7-10, Exterior(2E) 5-7-10 to 8-7-2 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	23 Serenity - B329 B LH CP	
24050019	V13	Valley	1	1	Job Reference (optional)	164576282

Run: 9.03 S 8.73 Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Fri Mar 29 10:41:44 ID:a?_XDivPgWv9fLu1y7KhuHzMDAn-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

3x5 🍫

7-2-8

Loading TCLL (roof) Snow (Pf) TCDL BCLL	(psf) 20.0 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MP	0.29 0.36 0.04	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0											Weight: 27 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood shee 7-2-8 oc purlins, exc Rigid ceiling directly bracing. (size) 1=7-2-8,4 Max Horiz 1=66 (LC Max Uplift 1=-24 (LC (LC 14) Max Grav 1=195 (LC 5=351 (LC	athing directly applie cept end verticals. applied or 10-0-0 or 1=7-2-8, 5=7-2-8 11) 14), 4=-43 (LC 15), 2 20), 4=158 (LC 21 2 20)	4) 5) ed or 6) 7) c 8) 9) , 5=-8 9, 5=-8	TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced design. Gable requir Gable studs This truss ha chord live loa * This truss h on the bottor 3-06-00 tall h chord and ar chord and ar D) Provide mec bearing plate 4, 24 lb uplift	7-16; Pr=20.0 psf (15); Pf=20.0 psf (ls=1.0; Rough Cat =1.10 snow loads have to es continuous bott spaced at 4-0-0 or is been designed fad nonconcurrent has been designed n chord in all area by 2-00-00 wide wi y other members. hanical connectior e capable of withst at joint 1 and 8 lb	(roof LL Lum DC B; Fully been cor om chor c. or a 10.0 with any l for a liv s where Il fit betv h (by oth anding 4 uplift at	L: Lum DOL= DL=1.15 Plate Exp.; Ce=0.9 nsidered for the d bearing. 0 psf bottom other live loa e load of 20.0 a rectangle veen the botto ers) of truss t H3 Ib uplift at ji joint 5.	1.15); ds.)psf om o					
TOP CHORD BOT CHORD	Tension 1-2=-272/112, 2-3=-0 1-5=-98/224, 4-5=-6/	64/79, 3-4=-144/97 /9	1	I) This truss is International R802.10.2 a	designed in accord Residential Code nd referenced star	dance w sections idard AN	nth the 2018 s R502.11.1 a NSI/TPI 1.	nd					
WEBS	2-5=-200/38		L.		Glanuaru								
NOTES													11.
1) Unbalance this design	ed roof live loads have	been considered for	r								3	TH CA	RO

Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-6 to 3-0-6, Exterior(2R) 3-0-6 to 4-1-10, Exterior(2E) 4-1-10 to 7-1-2 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

homming Contraction of the SEAL 3594 11111111111 April 1,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	23 Serenity - B329 B LH CP	
24050019	V14	Valley	1	1	Job Reference (optional)	164576283

1-5-6

1-9-1

Run: 9.03 S 8.73 Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Fri Mar 29 10:41:44 ID:tLvAh6?o0gnA?QxNt5yKgmzMDAg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

5-2-8

2x4 🍫

2x4 💊

c. 4.04

Loading TCLL (rod) (rsd) Spacing Plate Sing POL Lumber DOL Lumber DOL Code 2-0-0 TC CSI TC 0.10 C VEFL Ver(TL) in (loc) Ideal Lumber DOL Lumber DOL Lumber DOL Code PLATES PLATES GRIP MTZ0 TCDL BCLL 0.00 Code 11.5 BC 0.12 Ver(TL) nia - mia ges MTZ0 244/130 BCLL 0.01 Code RECOTB/TPI2014 Matrix-MP Matrix-MP Weight: 17.1b FT = 20%. UMBER TOP CHORD 2x4 SP No.2 Code FT = 20%. Veright Annual Weight: 17.1b FT = 20%. 0T CHORD Structural wood sheathing directly applied or 502 CHORD Structural wood sheathing directly appli	Scale = 1:24													
LUMBER TOP CHORD 2X4 SP No.2 OTHERS 2x4 SP No.2 2x4 SP No.3 5) Unblanced anow loads have been considered for this design. CHORD BRACINO OTHERS 2x4 SP No.3 6) Shale requires continuous bottom chord bearing. Cable studies special 44-00.00 6) BTO CHORD Structural wood sheathing directly applied or Structural wood sheathing directly applied or BTO CHORD 152-28.05-28.45-52-	Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI20	CSI TC BC WB Matrix-MP	0.10 0.12 0.04	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 17 lb	GRIP 244/190 FT = 20%	
April 1,2024	LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASC Vasd=1037 II; Exp B; E and C-C E: exposed ; d members a Lumber DC 3) Truss desi only. For s see Standa or consult d 4) TCLL: ASC Plate DOL: DOL=1.15] Cs=1.00; C	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 5-2-8 oc purlins. Rigid ceiling directly bracing. (size) 1=5-2-8, 3 Max Horiz 1=-37 (LC Max Uplift 1=-5 (LC - (LC 14) Max Grav 1=90 (LC (LC 20) (Ib) - Maximum Com Tension 1-2=-88/121, 2-3=-8i 1-4=-105/84, 3-4=-10 2-4=-230/101 ed roof live loads have CE 7-16; Vult=130mph mph; TCDL=6.0psf; BK Enclosed; MWFRS (en cond forces & MWFRS DL=1.60 plate grip DO igned for wind loads in studs exposed to wind ard Industry Gable Enq qualified building desig (CE 7-16; Pr=20.0 psf (L =1.15); Pf=20.0 psf (L); Is=1.0; Rough Cat B Ct=1.10	athing directly applie applied or 6-0-0 oc 3=5-2-8, 4=5-2-8 : 10) 14), 3=-11 (LC 15), 4 20), 3=90 (LC 21), 4 20), 3=90 (LC 21), 4 apression/Maximum 8/121 05/84 been considered for (3-second gust) CDL=6.0psf; h=25ft; ivelope) exterior zon ilever left and right ght exposed;C-C for for reactions shown; u=1.60 the plane of the trus (normal to the face) d Details as applicab gner as per ANSI/TP roof LL: Lum DOL=1 applied to the start s; Fully Exp.; Ce=0.9;	5) Unbal desig 6) Gable 7) Gable 8) This t chord 9) * This on the 3-06-(chord 10) Provid bearir 11 lb H=317 11) This t Interm R802. LOAD CA	anced snow loads hat requires continuous I studs spaced at 4-0- fruss has been design the load nonconcurre truss has been design bottom chord in all a 00 tall by 2-00-00 widd and any other membra le mechanical connec g plate capable of wit uplift at joint 3 and 28 russ is designed in ac 10.2 and referenced s SE(S) Standard	ve been cor bottom chor 0 oc. ed for a 10.4 ent with any ned for a liv reas where e will fit betv ers. ttion (by oth thstanding 5 lb uplift at je cordance w vde sections standard AN	bidered for th d bearing. D psf bottom other live load e load of 20.0 a rectangle veen the botto ers) of truss tu i buplift at joi pint 4. ith the 2018 s F502.11.1 a ISI/TPI 1.	ds. Dpsf om nt 1, nd				SEA 0235 OWY R.	RO 4 94 FER. FR. FR. Multimum Millimum Millimum Millimum	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	23 Serenity - B329 B LH CP	
24050019	V1	Valley	1	1	Job Reference (optional)	164576284

6-0-11

Run: 9.03 S 8.73 Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Fri Mar 29 10:41:43

17

7

2x4 II

2x4 🛛

8

2x4 II

Page: 1

14-2-10

16

9

3x5 🛷

2x4 II

Scale = 1:45.2												'		
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL		(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	018/TPI2014	CSI TC BC WB Matrix-MSH	0.38 0.25 0.16	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 9	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 66 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP N 2x4 SP N 2x4 SP N 2x4 SP N Structura 6-0-0 oc Rigid ceil bracing.	0.2 0.2 0.3 0.3 I wood she purlins, exi ing directly	athing directly applie cept end verticals. applied or 6-0-0 oc	d or	 Truss desig only. For st see Standar or consult qr TCLL: ASCI Plate DOL= DOL=1.15); Cs=1.00; Ct Unbalanced design. Gable requir 	ned for wind load uds exposed to wi rd Industry Gable I ualified building de E 7-16; Pr=20.0 ps 1.15); Pf=20.0 ps Is=1.0; Rough Ca =1.10 I snow loads have res continuous bo	s in the p ind (norm End Deta esigner a: sf (roof Ll f (Lum DC at B; Fully been cor ttom chor	lane of the tru al to the face ils as applical s per ANSI/TF .: Lum DOL=: DL=1.15 Plate Exp.; Ce=0.9 nsidered for the d bearing.	uss), ble, ⊃I 1. 1.15 9); nis					
REACTIONS	(size) Max Horiz Max Uplift Max Grav	1=14-3-0, 8=14-3-0, 1=167 (LC 7=-11 (LC 7=-131 (L 1=196 (LC 7=501 (LC 9=564 (LC	6=14-3-0, 7=14-3-0, 9=14-3-0 211) 10), 6=-135 (LC 6), C 15), 9=-157 (LC 1- 25), 6=46 (LC 15), C 21), 8=412 (LC 24) C 5)	4) ,	 7) Gable studs 8) This truss has chord live lo 9) * This truss on the botto 3-06-00 tall chord and a 	spaced at 4-0-0 d as been designed ad nonconcurrent has been designe m chord in all area by 2-00-00 wide w ny other members	for a 10. for a 10. with any d for a liv as where vill fit betw s, with BC	D psf bottom other live loa e load of 20.0 a rectangle veen the botto DL = 10.0psf	ds. Dpsf om					
FORCES	(lb) - Max Tension 1-2=-299/	timum Com	npression/Maximum 129/148, 3-4=-118/14	47,	bearing plat 6, 11 lb uplif uplift at joint	chanical connections e capable of withs ft at joint 1, 157 lb t 7.	on (by oth standing 1 uplift at j	ers) of truss t 35 lb uplift at pint 9 and 13	o : joint 1 lb					
BOT CHORD	4-5=-44/1 1-9=-49/2 6-7=-38/5 3-8=-246/	15, 5-6=-5 262, 8-9=-3 50 /34, 2-9=-4	2/111 8/50, 7-8=-38/50, 29/192, 4-7=-419/17:	2	 Beveled plar surface with This truss is Internationa 	te or shim required truss chord at join designed in acco I Residential Code	d to provi nt(s) 1. ordance w e sections	de full bearing ith the 2018 R502.11.1 a	g Ind				WITH CA	ROUT
 Unbalanci this desig Wind: ASI Vasd=103 II; Exp B; and C-C E 6-1-0, Ext to 14-1-4 vertical Iei forces & M DOL=1.60 	ed roof live l n. CE 7-16; Vu Bmph; TCDL Enclosed; M Exterior(2E) erior(2R) 6- zone; cantile ft and right e MWFRS for D plate grip [loads have It=130mph =6.0psf; B(IWFRS (er 0-0-0 to 3-(1-0 to 11-1) ever left an exposed;C- reactions s DOL=1.60	been considered for (3-second gust) CDL=6.0psf; h=25ft; ivelope) exterior zono -0, Interior (1) 3-0-0 -4, Exterior(2E) 11-1 d right exposed; enc C for members and hown; Lumber	Cat. e to -4	LOAD CASE(S)	Standard		ω <i>ν</i> ιτι.			V. HILLINS		SEA 0235	L 94 EEER. ER. HALLING

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Annun Millin April 1,2024

Job	Truss	Truss Type	Qty	Ply	23 Serenity - B329 B LH CP	
24050019	V2	Valley	1	1	Job Reference (optional)	164576285

Run: 9.03 S 8.73 Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Fri Mar 29 10:41:43 ID:EaEUJdGbqRZ2eocc9jMUZPzMDAK-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

12-8-10

TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	TC BC WB Matrix-MSH	0.32 0.11 0.11	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 9	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 55 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 DTHERS 2x4 SP No.3 DTHERS 2x4 SP No.3 BRACING TOP CHORD Structural wood sl 6-0-0 oc purlins, of BOT CHORD Rigid ceiling direc bracing. REACTIONS (size) 1=12-9 Max Horiz 1=131 (Max Uplift 1=-17 (7=-139 Max Grav 1=127 (7=-488 (9=479 (FORCES (lb) - Maximum Co Tension TOP CHORD 1-2=-183/139, 2-3 4-5=-46/113, 5-6= BOT CHORD 1-2=-183/139, 2-3 4-5=-46/113, 5-6= BOT CHORD 1-9=-31/142, 8-9= 6-7=-31/36 WEBS 3-8=-252/20, 2-9= NOTES 1) Unbalanced roof live loads hat this design. 2) Wind: ASCE 7-16; Vult=130m, Vasd=103mph; TCDL=6.0psf; II; Exp B; Enclosed; MWFRS (and C-C Exterior(2E) 0-0-0 to 4-7-0, Exterior(2E) 4-7-0 to 9- 12-7-4 zone; cantilever left anv vertical left and right exposed; forces & MWFRS for reactions DOL=1.60 plate grip DOL=1.6	teathing directly applied except end verticals. ly applied or 6-0-0 oc 0, 6=12-9-0, 7=12-9-0, 0, 9=12-9-0 LC 11) (LC 15), 9=-127 (LC 21), (LC 15), 9=-127 (LC 14) LC 25), 6=53 (LC 15), LC 21), 8=332 (LC 21), LC 20) mpression/Maximum =-124/125, 3-4=-118/12 -55/110 -31/36, 7-8=-31/36, -390/167, 4-7=-418/175 re been considered for bh (3-second gust) BCDL=6.0psf; h=25ft; C envelope) exterior zone 3-0-0, Interior (1) 3-0-0 '-4, Exterior(2E) 9-7-4 t right exposed ; end C-C for members and shown; Lumber	 3) Truss desig only. For stu see Standar or consult qu 4) TCLL: ASCE Plate DOL=1.15); Cs=1.00; Ct- 5) Unbalanced design. 6) Gable requir 7) Gable studs 8) This truss ha chord live los 9) * This truss ha chord live los 9) * This truss ha chord live los 9) * This truss ha chord and ar 10) Provide mec bearing plate 6, 17 lb uplift uplift at joint 11) Beveled plat surface with 12) This truss is International R802.10.2 a LOAD CASE(S) 	ned for wind load: dis exposed to wi d Industry Gable I lalified building de 7-16; Pf=20.0 ps .15); Pf=20.0 ps .15); Pf=20.0 ps lss=1.0; Rough Ca =1.10 snow loads have es continuous bot spaced at 4-0-0 c is been designed ad nonconcurrent hanical connectio e capable of withs at joint 1, 127 lb 7. e or shim require truss chord at join designed in accoo Residential Code nd referenced sta Standard	s in the pl nd (norm: End Detai signer as f (roof LL (Lum DO t B; Fully been com tom chorric. for a 10.0 with any d for a 10.0 s where ill fit betw n (by oth tanding 1 uplift at jc to provid tt(s) 1. rdance wit s esctions ndard AN	ane of the tri al to the face ils as applica s per ANSI/TI : Lum DOL= 0L=1.15 Plate Exp.; Ce=0.9 isidered for th d bearing. 0 psf bottom other live loa e load of 20.1 a rectangle veen the both ers) of truss the 21 lb uplift al oint 9 and 13 de full bearin th the 2018 R502.11.1 a ISI/TPI 1.	uss), bble, PI 1. 1.15 e; ;; nis ds. Dpsf com co ;; joint 9 lb g und				SEA 0235	EEP. HAMMAN

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	23 Serenity - B329 B LH CP	
24050019	V3	Valley	1	1	Job Reference (optional)	164576286

Run: 9.03 S 8.73 Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Fri Mar 29 10:41:43 ID:eQR2VTV87a4C1t8SKwjANdzMDA0-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

1

Page: 1

11-2-10

Scale = 1:36.1	1	. I									
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing 2 Plate Grip DOL 2 Lumber DOL 2 Rep Stress Incr 2 Code 1	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC 0.32 BC 0.06 WB 0.09 Matrix-MSH	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 52 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	 2x4 SP No.2 2x6 SP No.2 2x4 SP No.3 Structural wood shee 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=11-3-0, 7=11-3-0, 7=11-3-0, Max Horiz 1=90 (LC Max Uplift 1=-14 (LC 6=-131 (L 9=-50 (LC 4)) (LC 21), 7 20), 9=64 	athing directly applied of applied or 10-0-0 oc 5=11-3-0, 6=11-3-0, 8=11-3-0, 9=11-3-0 11) 2 10), 5=-50 (LC 13), C 15), 8=-107 (LC 14), 2 3), 5=-64 (LC 15), 6=4 7=284 (LC 21), 8=452 (I (LC 15)	 Truss design only. For stu see Standarc or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); I CS=1.00; Ct= Unbalanced: design. Gable require Gable studs: This truss ha chord live loa * This truss ha on the bottom 3-06-00 tall b chord and an Provide medi 	ned for wind loads in the pl ids exposed to wind (norm d Industry Gable End Detai ialified building designer as 7-16; Pr=20.0 psf (roof LL .15); Pf=20.0 psf (Lum DC Is=1.0; Rough Cat B; Fully =1.10 snow loads have been cor es continuous bottom chor spaced at 4-0-0 oc. Is been designed for a 10.0 ad nonconcurrent with any has been designed for a liv. n chord in all areas where by 2-00-00 wide will fit betw by other members. hanical connection (by oth	ane of the trus al to the face), ils as applicables per ANSI/TPI .: Lum DOL=1. VL=1.15 Plate Exp.; Ce=0.9; asidered for thi d bearing. 0 psf bottom other live load e load of 20.0p a rectangle veen the bottor	ss le, l 1. .15 s s. 					
TOP CHORD	(ID) - Maximum Com Tension 1 -2=-96/81, 2-3=-18 4 5= 90/88	0/75, 3-4=-171/75,	bearing plate 5, 14 lb uplift at joint 6 and	e capable of withstanding 5 at joint 1, 107 lb uplift at jo l 50 lb uplift at joint 5.	0 lb uplift at jo bint 8, 131 lb u	int plift					
BOT CHORD WEBS NOTES	4-3=-30/86 1-8=-37/69, 7-8=-23, 5-6=-24/58 3-7=-196/39, 2-8=-4	/58, 6-7=-23/58, 57/201, 4-6=-466/205	11) Beveled plate surface with 12) This truss is o International R802.10.2 ar	e or shim required to provie truss chord at joint(s) 1. designed in accordance wi Residential Code sections nd referenced standard AN	de full bearing ith the 2018 R502.11.1 an ISI/TPI 1.	ıd			and a	NITH CA	ROLIN
 Unbalance this design 2) Wind: AS Vasd=10 II; Exp B; and C-C to 8-3-0, and right MWFRS grip DOL 	ced roof live loads have gn. SCE 7-16; Vult=130mph 3mph; TCDL=6.0psf; Bd Enclosed; MWFRS (er Exterior(2E) 0-0-0 to 3- Exterior(2E) 8-3-0 to 11 exposed ; C-C for memil for reactions shown; Lu =1.60	been considered for (3-second gust) CDL=6.0psf; h=25ft; Ca ivelope) exterior zone 0-0, Exterior(2R) 3-0-0 -3-0 zone; cantilever le bers and forces & imber DOL=1.60 plate	LOAD CASE(S)	Standard				THURSDAY.		SEA 0235	L 94

818 Soundside Road Edenton, NC 27932

11111111111 April 1,2024

Job	Truss	Truss Type	Qty	Ply	23 Serenity - B329 B LH CP	
24050019	V4	Valley	1	1	Job Reference (optional)	164576287

3-0-11

Scale = 1:29.2

 Run: 9.03 S 8.73 Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Fri Mar 29 10:41:43
 Page: 1

 ID:t9USOYco?LCwcFKBMJNHEWzMD9t-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f
 File

9-1-4

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(p 20 20 10 0 10	osf) 0.0 0.0 0.0 0.0 * 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2	018/TPI2014	CSI TC BC WB Matrix-MSH	0.37 0.36 0.13	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 32 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood 9-1-4 oc purlins Rigid ceiling dir bracing. (size) 1=9- Max Horiz 1=-6 Max Uplift 1=-6 Max Grav 1=11 4=-7	d shea s. rectly -2-0, 3 58 (LC 38 (LC 72 (LC 17 (LC 08 (LC	athing directly applied applied or 6-0-0 oc =9-2-0, 4=9-2-0 10) 21), 3=-38 (LC 20), 14) : 20), 3=117 (LC 21), : 20)	d or	 TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced design. Gable requir Gable studs This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar Provide mec bearing plate 	7-16; Pr=20.0 psf (15); Pf=20.0 psf (s=1.0; Rough Cat (1.10) snow loads have b es continuous bott spaced at 4-0-0 oc s been designed fud nonconcurrent v as been designed n chord in all areas y 2-00-00 wide will y other members. nanical connection capable of withst?	f (roof LL (Lum DC B; Fully been cor om chor c. or a 10. with any I for a liv s where II fit betw n (by oth anding 3	.: Lum DOL=1 DL=1.15 Plate Exp.; Ce=0.9 nsidered for th d bearing. D psf bottom other live load of 20.0 a rectangle veen the botto ers) of truss to 18 b uplift at it	.15 ; is ds. psf om o					
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design	(lb) - Maximum Tension 1-2=-106/357, 2 1-4=-258/141, 2 2-4=-580/211 ed roof live loads	2-3=-1 3-4=-2 have	pression/Maximum 106/357 258/141 been considered for		1, 38 lb uplift 11) Beveled platt surface with 12) This truss is International R802.10.2 ar LOAD CASE(S)	at joint 3 and 72 II e or shim required truss chord at joint designed in accorr Residential Code nd referenced stan Standard	to provi to provi t(s) 1, 3. dance w sections	it joint 4. de full bearing ith the 2018 \$ R502.11.1 a ISI/TPI 1.) nd					11107.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-0 to 3-0-0, Exterior(2R) 3-0-0 to 6-2-0, Exterior(2E) 6-2-0 to 9-2-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	23 Serenity - B329 B LH CP	
24050019	V5	Valley	1	1	Job Reference (optional)	164576288

2-0-11

Run: 9.03 S 8.73 Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Fri Mar 29 10:41:43 ID:AVP5sxiBMV5xyKNXGH?w1?zMD9m-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

6-1-4

Scale = 1:25.2

Loading TCLL (roof) Snow (Pf) TCDL		(psf) 20.0 20.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES		CSI TC BC WB	0.15 0.17 0.06	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCLL		0.0*	Code	IRC2018/	TPI2014	Matrix-MP								
BCDL		10.0		-									Weight: 21 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP Nc 2x4 SP Nc 2x4 SP Nc Structural 6-1-4 oc p Rigid ceilir bracing. (size) Max Horiz Max Uplift	0.2 0.3 wood shea urlins. ng directly 1=6-2-0, 3 1=-44 (LC 1=-3 (LC 1=-3 (LC	athing directly applied applied or 6-0-0 oc a=6-2-0, 4=6-2-0 10) 14), 3=-10 (LC 15), 4	5) 6) 7) 8) dor 9) 10) =-39	Unbalanced s design. Gable require Gable studs s This truss ha this truss ha on the bottom 3-06-00 tall b chord and an Provide mech bearing plate 10 lb uplift at	snow loads have b es continuous botto spaced at 4-0-0 oc s been designed fo d nonconcurrent w as been designed n chord in all areas y 2-00-00 wide will y other members. nanical connection capable of withsta joint 3 and 39 lb u	een cor om chor or a 10.0 vith any for a liv where l fit betv (by oth nding 3 plift at jo	asidered for the d bearing. D psf bottom other live load e load of 20.0 a rectangle veen the botto ers) of truss the buplift at joint 4.	nis ds. Dpsf om o int 1,					
	Max Grav	(LC 14) 1=97 (LC	20), 3=97 (LC 21), 4	=406 11)	Beveled plate surface with t	or shim required truss chord at joint	to provi (s) 1, 3.	de full bearing	g					
FORCES	(lb) - Maxii Tension	(LC 20) mum Com	pression/Maximum	12)	This truss is a International R802 10 2 ar	designed in accord Residential Code s	ance w sections	ith the 2018 R502.11.1 a	nd					
TOP CHORD BOT CHORD WEBS	1-2=-96/17 1-4=-149/1 2-4=-312/1	73, 2-3=-9 109, 3-4=- 137	6/173 149/109	LOA	AD CASE(S)	Standard								
NOTES														
 Unbalance this design Wind: ASG Vasd=103 II; Exp B; and C-C E exposed; members Lumber D Truss des only. For see Stand or consult TCLL: AS Plate DOL DOL=1.15 Cs=1.00; 	ed roof live lc n. CE 7-16; Vull Simph; TCDL= Enclosed; M Exterior(2E) z end vertical and forces & OL=1.60 plai signed for wir studs expose lard Industry qualified bui CE 7-16; Pr= ==1.15); Pf=2 5); Is=1.0; Ro Ct=1.10	ads have =130mph 66.0psf; B0 WFRS (en tone; canti left and rig MWFRS te grip DO te grip DO te grip DO d loads ir ed to wind Gable Enc Iding desig 20.0 psf (L 0.0 psf (L ugh Cat B	been considered for (3-second gust) CDL=6.0psf; h=25ft; velope) exterior zone lever left and right th exposed;C-C for for reactions shown; L=1.60 the plane of the trus (normal to the face), J Details as applicable gner as per ANSI/TPI coof LL: Lum DOL=1. Im DOL=1.15 Plate ; Fully Exp.; Ce=0.9;	Cat. 9 9 9 9 9 9 9 9 9 1 15							N. Contraction		SEA 0235	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

GINEERING

April 1,2024

Job	Truss	Truss Type	Qty	Ply	23 Serenity - B329 B LH CP	
24050019	V6	Valley	1	1	Job Reference (optional)	164576289

Run: 9.03 S 8.73 Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Fri Mar 29 10:41:43 ID:?fmN7_mxxLr4gFqgdY6KGGzMD9g-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2-8-1

1-1-7

Page: 1

3-1-4

1-6-10

1-6-10

2x4 🍫

2x4 👟

Scale = 1:24.1

Plate Offsets (X, Y): [2:0-2-8,Edge]

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL		(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MP	0.08 0.08 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 9 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD NOTES 1) Unbalance this design 2) Wind: ASC Vasd=103 II; Exp B; I and C-C E exposed ; members Lumber DD 3) Truss des only. For see Stand or consult 4) TCLL: ASC Plate DOL DOL=1.15 Cs=1.00; (5) Unbalance design. 6) Gable req	2x4 SP No.: 2x4 SP No.: 2x4 SP No.: Structural w 3-1-4 oc pu Rigid ceiling bracing. (size) 1 Max Horiz 1 Max Horiz 1 Max Uplift 1 Max Grav 1 (lb) - Maxim Tension 1-2=-213/77 1-3=-52/17C ed roof live loa n. CE 7-16; Vult= imph; TCDL=6 Enclosed; MW Exterior(2E) zo end vertical le OL=1.60 plate signed for wind studs exposed lard Industry G qualified build CE 7-16; Pr=22 =1.15); Pf=20 Ct=1.10 ed snow loads uires continuo	rood sheat rlins. g directly =3-2-0, 3 =-21 (LC =-12 (LC =-12 (LC =-143 (LC um Com 7, 2-3=-2 ⁻¹) ds have (FRS (en me; canti ff and rig WWFRS ff grip DO d loads in d to wind Sable Enc ling desig 0.0 psf (Lt gh Cat B have be us bottor	athing directly applied applied or 10-0-0 oc 12) 14), 3=-12 (LC 15) 20), 3=143 (LC 21) pression/Maximum 13/77 been considered for (3-second gust) CDL=6.0psf; h=25ft; (velope) exterior zonc lever left and right the typosed; C-C for for reactions shown; L=1.60 the plane of the trus (normal to the face), d Details as applicabl ner as per ANSI/TP) roof LL: Lum DOL=1. Jm DOL=1.15 Plate ; Fully Exp.; Ce=0.9; en considered for thi n chord bearing.	7) 8) 9) d or 11 12 12 12 12 12 12 12 12 12 12 12 12	 Gable studs : This truss ha chord live loa This truss h on the botton 3-06-00 tall b chord and ar Provide mecl bearing plate 1 and 12 lb u Beveled platt surface with This truss is International R802.10.2 ar 	spaced at 4-0-0 oc s been designed fu di nonconcurrent v as been designed n chord in all areas y 2-00-00 wide wil y other members. nanical connection capable of withsta plift at joint 3. e or shim required truss chord at joint designed in accorc Residential Code s nd referenced stan Standard	c. or a 10.0 vith any for a liv s where I fit betw (by oth- anding 1 to provid (s) 1, 3. Jance w sections dard AN	D psf bottom other live loa e load of 20.0 a rectangle veen the botto ers) of truss t 2 lb uplift at j de full bearing ith the 2018 R502.11.1 a ISI/TPI 1.	ds.)psf om oint g nd				SEA 0235	ROLL 94
													Ар	111 1,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	23 Serenity - B329 B LH CP	
24050019	PB1	Piggyback	9	1	Job Reference (optional)	164576290

Run: 9.03 S 8.73 Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Fri Mar 29 10:41:43 ID:ksn03tXTw0Suqz7L58mmLnzMDIQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:25.3

Plate Offsets (X, Y): [3:0-2-8,Edge]

	(X, 1). [0.0	z 0,Eugej												
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL		(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MP	0.06 0.04 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 9	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 13 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP N 2x4 SP N Structura 4-11-5 oc Rigid ceil bracing. (size) Max Horiz Max Uplift Max Grav	o.2 o.2 I wood shea purlins. ing directly 1=4-11-5, 5=4-11-5, 1=-17 (LC 1=-21 (LC (LC 15), 5 14), 9=-17 1=5 (LC 1 (LC 22), 5 21), 9=21	athing directly applie applied or 10-0-0 or 2=4-11-5, 4=4-11-5 6=4-11-5, 9=4-11-5 7), 2=-18 (LC 14), 4 i=-19 (LC 7), 6=-18 (7 (LC 15) 4), 2=228 (LC 21), 4 i=-1 (LC 14), 6=228 6 (LC 22)	4) ed or 5) c 6) 7) 5, 8) 4=-17 (LC 1(4=216 1((LC 1)	TCLL: ASCI Plate DOL= DOL=1.15); Cs=1.00; Ct Unbalanced design. Gable requi Gable studs This truss h chord live lo * This truss on the botto 3-06-00 tall chord and a D) Provide mee bearing plat 1 and 19 lb	E 7-16; Pr=20.0 p 1.15); Pf=20.0 ps Is=1.0; Rough Ci =1.10 snow loads have res continuous bo spaced at 4-0-0 as been designed and nonconcurren has been designed m chord in all are by 2-00-00 wide in ny other member chanical connectitie e capable of with: uplift at joint 5.	esf (roof LL f (Lum DC at B; Fully be been cor bottom chor oc. d for a 10. t with any ed for a liv ass where will fit betv s. on (by oth standing 2	:: Lum DOL= IL=1.15 Plate Exp.; Ce=0.9 asidered for the d bearing. D psf bottom other live load e load of 20.1 a rectangle veen the botth ers) of truss to 11 b uplift at j	1.15 9; his obsf om to joint					
TOP CHORD BOT CHORD NOTES 1) Unbalance this design 2) Wind: AS(Vasd=103 II; Exp B; and C-C E exposed ; members Lumber D 3) Truss des only. For see Stand or consult	(II) - Wida Tension 1-2=-17/3 4-5=0/34 2-4=-1/76 ed roof live I n. CE 7-16; Vu 3mph; TCDL Enclosed; M Enclosed; M Enclosed; M Exterior(2E) end vertica and forces a ioDL=1.60 plå signed for w studs expos bard Industry qualified bu	loads have loads have lt=130mph =6.0psf; Bt dWFRS (en zone; canti I left and rig & MWFRS ate grip DO ind loads ir sed to wind y Gable End ilding desig	2/60, 3-4=-102/60, been considered for (3-second gust) CDL=6.0psf; h=-25ft; ivelope) exterior zon lever left and right ght exposed;C-C for for reactions shown iL=1.60 n the plane of the tru (normal to the face) d Details as applicat gner as per ANSI/TF	12 r 1; Cat. Lu ne ; ; ss , , ole, 21.	 2) This truss is Internationa R802.10.2 a 3) See Standa Detail for Cc consult qual DAD CASE(S) 	designed in acco I Residential Cod Ind referenced st rd Industry Piggy Innection to base ified building des Standard	ordance w e sections andard Al back Trus truss as a igner.	ith the 2018 R502.11.1 a ISI/TPI 1. s Connection applicable, or	and				SEA 0235	L 94 MILLEUM

April 1,2024

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

RENCO

Job	Truss	Truss Type	Qty	Ply	23 Serenity - B329 B LH CP	
24050019	FGE	Common Supported Gable	1	1	Job Reference (optional)	164576291

Run: 9.03 S 8.73 Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Fri Mar 29 10:41:42 ID:qVUv8gQtzqhqC01RU7_rhkzMD2N-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:30.4

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL		(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20 ⁷	18/TPI2014	CSI TC BC WB Matrix-MSH	0.12 0.04 0.04	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 19	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 51 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP N 2x4 SP N 2x4 SP N Structura 6-0-0 oc ; Rigid ceil bracing. (size) Max Horiz Max Uplift Max Grav	o.2 o.2 o.3 I wood sheepurlins. ing directly 2=13-2-12 11=13-2-1 13=13-2-1 15=13-2-1 2=-31 (LC 2=-67 (LC 10=-32 (L 13=-36 (L 15=-67 (L 12=-67 (LC 10=247 (L 12=247 (L 14=247 (L 19=241 (L	athing directly applied applied or 10-0-0 oc 2, 8=13-2-12, 10=13- 12, 12=13-2-12, 12, 14=13-2-12, 12, 19=13-2-12 19), 15=-31 (LC 19) 10), 8=-71 (LC 11), C 10), 14=-33 (LC 12 C 10), 19=-71 (LC 11) C 21), 8=241 (LC 22) C 22), 11=211 (LC 21) C 21), 13=211 (LC 21) C 21), 15=241 (LC 22) C 22)	2 d or 2-12, 3 (1), 4 (1), 5 (2), 6 (2), 6 (2), 7	 Wind: ASCE Vasd=103mj II; Exp B; En and C-C Cor to 3-11-10, C 9-11-10 to 1' cantilever lef right exposed for reactions DOL=1.60 Truss design only. For stu see Standard or consult with the DOL=1 TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced design. This truss ha load of 12.0 overhangs n 	7-16; Vult=130m, b; TCDL=6.0psf; closed; MWFRS (ner(3E) -0-10-8 tc corner(3R) 3-11-1 1-9-12, Corner(3E t and right expose d;C-C for member shown; Lumber E hed for wind loads ids exposed to wii d Industry Gable E ialified building de i7-16; Pr=20.0 psf is=1.0; Rough Ca =1.10 snow loads have is been designed psf or 1.00 times i on-concurrent with	ph (3-sec BCDL=6 (envelope) 2-1-8, E 0 to 9-11 () 11-9-12 d; end V rs and for ODL=1.6(s in the p nd (norm End Deta signer a: (f (roof LL (Lum DC t B; Fully) been cor for great flat roof k h other lin s otherwi	cond gust) .0psf; h=25ft; e) exterior zor :xterior(2N) 2 -10, Exterior(2 to 14-9-12 z rertical left an rces & MWFF) plate grip lane of the tr. al to the face ils as applical is per ANSI/TF ul=1.15 Plate Exp.; Ce=0.5 asidered for th er of min roof bad of 20.0 ps ze loads. se indicated	; Cat. ne -1-8 2N) cone; dd RS Jss), ble, PI 1. 1.15 2); his live sf on	International Residential Code sections R502. R802.10.2 and referenced standard ANSI/TPI LOAD CASE(S) Standard				ce with the 2018 tions R502.11.1 and d ANSI/TPI 1.
FORCES	(lb) - Max Tension 1-2=0/24 4-5=-40/8 7-8=-59/2	(imum Com , 2-3=-59/4 33, 5-6=-40, 19 8-9=0/2	pression/Maximum 9, 3-4=-35/45, /83, 6-7=-35/45, 4	8 9 1	 Gable require Gable studs This truss hat chord live lost 	es continuous bot spaced at 2-0-0 o is been designed ad nonconcurrent	tom chor c. for a 10.0 with any	d bearing.) psf bottom other live loa	ds.		1	i a	OPTH CA	RO
BOT CHORD	2-14=-48 11-12=0/3	/70, 13-14= 38. 10-11=(: 0/38, 12-13=0/38, 0/38, 8-10=-48/70	1	on the bottor	n chord in all area	a lor a liv as where	e load of 20.0 a rectangle	JUDST				SFA	
WEBS	5-12=-10 3-14=-18 7-10=-18	4/68, 4-13= 6/105, 6-11 6/105	178/132, =-178/132,	1	chord and ar 2) N/A	by ∠-00-00 wide w ny other members		veen the dotto	חוט		11110		0235	94
NOTES												1		a! 3

1) Unbalanced roof live loads have been considered for this design.

 Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 8, 19. April 1,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	23 Serenity - B329 B LH CP	
24050019	F	Common	2	1	Job Reference (optional)	164576292

Run: 9.03 S 8.73 Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Fri Mar 29 10:41:42 Page: 1 ID:jpnH6guj0VTRIsxki5gIEIzMD1n-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3x5 =

Scale = 1:31.1

2-0-15

-4-0

2-3-2

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL		(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-MSH	0.82 0.74 0.11	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.11 -0.17 0.02	(loc) 5-8 5-8 4	l/defl >999 >954 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 45 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASC Vasd=103 II; Exp B; II and C-C E to 3-11-10 9-11-10 to cantilever	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural w 2-6-7 oc pur Rigid ceiling bracing. (size) 2- Max Horiz 2- Max Uplift 2- Max Grav 2- (lb) - Maxim Tension 1-2=0/16, 2- 2-5=-760/11 3-5=-130/28 ed roof live Ioa- n. CE 7-16; Vult= imph; TCDL=6 Enclosed; MW ixterior(2E) -0- , Exterior(2E) -0- 0, Exterior(2R)	a construction of the second shear lines. directly =0-3-8, 4 =36 (LC =-221 (L1 =716 (LC um Com 3=-1182 05, 4-5= 5 ds have 130mph .0psf; BC FRS (en 10-8 to 2 3-11-10 lor(2E) 1 xpost el	athing directly applied applied or 6-5-2 oc 14) C 10), 4=-176 (LC 11 2 1), 4=605 (LC 22) pression/Maximum /848, 3-4=-1188/846 -760/1105 been considered for (3-second gust) CDL=6.0psf; h=25ft; (velope) exterior zone 2-1-8, Interior (1) 2-1- to 9-11-10, Interior (1) 0-7-0 to 13-7-0 zone; end vertical left and t exposed C-C for	5) 6) d or 7) 8) 9) 9) LC Cat. 8))	This truss ha load of 12.0 p overhangs no This truss ha chord live loa * This truss h on the bottom 3-06-00 tall b chord and an One H2.5A S recommende UPLIFT at jt(and does not This truss is of International R802.10.2 ar DAD CASE(S)	s been designed fo osf or 1.00 times fla on-concurrent with is s been designed fo d nonconcurrent w as been designed in n chord in all areas y 2-00-00 wide will y other members. impson Strong-Tie d to connect truss i s) 4 and 2. This cor consider lateral fo designed in accord. Residential Code s and referenced stance Standard	or great ta roof lo other liv or a 10.4 vith any for a liv where l fit betw connectio rces. ance w sections dard AN	Ler of min roof oad of 20.0 ps ve loads. 0 psf bottom other live loa e load of 20.0 a rectangle veen the botto ctors ing walls due n is for uplift o ith the 2018 s R502.11.1 a JSI/TPI 1.	live sf on ds. Dpsf om to only		11		Weight. 45 ib	
 a) TCLL: AS(Plate DOL DOL=1.15 Cs=1.00; (4) Unbalance 	and forces & N OL=1.60 plate CE 7-16; Pr=20 .=1.15); Pf=20 ;); Is=1.0; Roug Ct=1.10 ed snow loads	/WFRS grip DO 0.0 psf (I .0 psf (Lu gh Cat B have be	for reactions shown; L=1.60 roof LL: Lum DOL=1. um DOL=1.15 Plate ; Fully Exp.; Ce=0.9; en considered for this	15							1111WAY			EER.ER

- З Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.

Community Community

April 1,2024

.-2-

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	23 Serenity - B329 B LH CP	
24050019	ISE	Monopitch Structural Gable	1	1	Job Reference (optional)	164576293

1-11-5

Run; 9.03 S 8.73 Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Fri Mar 29 10:41:42 Page: 1 ID:INPZ5e0g9muGd0LDY9HBQAzMCx9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3x5 =

Scale = 1:28.9

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.38	Vert(LL)	0.08	6-11	>859	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.44	Vert(CT)	-0.10	6-11	>653	180		
TCDL	10.0	Rep Stress Incr	YES		WB	0.02	Horz(CT)	0.00	2	n/a	n/a		
BCLL	0.0*	Code	IRC20	18/TPI2014	Matrix-MP								
BCDL	10.0											Weight: 21 lb	FT = 20%
LUMBER				4) Unbalanced	snow loads have b	een cor	nsidered for t	this					
TOP CHORD	2x4 SP No.2			design.									
BOT CHORD	2x4 SP No.2			5) This truss ha	as been designed fo	or great	er of min roo	f live					
WEBS	2x4 SP No.3			load of 12.0	psf or 1.00 times fla	at roof le	oad of 20.0 p	osf on					
OTHERS	2x4 SP No.3			overhangs n	on-concurrent with	other liv	ve loads.						
BRACING				6) Gable studs	spaced at 2-0-0 oc								
TOP CHORD	Structural wood sh	eathing directly applie	ed or	This truss has	as been designed for	or a 10.0	0 psf bottom						
	5-8-4 oc purlins	excent end verticals		chord live loa	ad nonconcurrent v	vith any	other live loa	ads.					
BOT CHORD	Rigid ceiling direct	ly applied or 10-0-0 or	с	8) * This truss I on the bottom	has been designed	for a liv	e load of 20.	.0psf					
	bracing.			3-06-00 tall	2 - 0 - 00 wide will	ll fit hoty	a rectangle	tom					
REACTIONS	(size) 2=0-3-0	, 5=0-1-8		chord and a	y other members		veen me bou						
	Max Horiz 2=58 (L	C 13)		9) Bearings are	assumed to be Jo	oint 5 SI	P No 3						
	Max Uplift 2=-123	(LC 10), 5=-76 (LC 10))	10) Bearing at ic	int(s) 5 considers r	harallel t	o grain value	2					
	Max Grav 2=397 (LC 21), 5=260 (LC 21)	using ANSI/	[PI 1 angle to grain	formula	a Building	0					
FORCES	(lb) - Maximum Co	mpression/Maximum		designer sho	ould verify capacity	of bear	ing surface.						
	Tension			11) Provide med	hanical connection	(by oth	ers) of truss	to					
TOP CHORD	1-2=0/18, 2-3=-10	1/118, 3-4=-25/40,		bearing plate	e at joint(s) 5.		,						
	4-5=-149/121	10/07		12) One H2.5A \$	Simpson Strong-Tie	e conne	ctors						
BOT CHORD	2-6=-118/127, 5-6	=-18/27		recommende	ed to connect truss	to bear	ing walls due	e to					
WEBS	3-6=-84/70			UPLIFT at jt	s) 5 and 2. This co	onnectio	n is for uplift	only					
NOTES				and does no	t consider lateral fo	orces.							
1) Wind: AS	CE 7-16; Vult=130m	h (3-second gust)		13) This truss is	designed in accord	dance w	ith the 2018						1111.
Vasd=10	3mph; TCDL=6.0psf;	BCDL=6.0psf; h=25ft;	Cat.	International	Residential Code	sections	8 R502.11.1 a	and				AN CA	Dille
II; Exp B;	Enclosed; MWFRS (envelope) exterior zor	ne	R802.10.2 a	nd referenced stan	dard An	NSI/TPI 1.					in TH UT	TO US
and C-C	Exterior(2E) -0-10-8 t	o 2-1-8, Interior (1) 2-	1-8	LOAD CASE(S)	Standard						5	an is co	in Ally
to 2-6-8,	Exterior(2E) 2-6-8 to	5-6-8 zone; cantilever	left									015	
and right	exposed ; end vertica	I left and right expose	ed;								X Ø	1. 2.	miller
porch left	and right exposed;C	C for members and											
forces & I	MWFRS for reactions	shown; Lumber										SEA	1 3 5
DOL=1.6	U plate grip DOL=1.6									= =		0005	
 Iruss de 	signed for wind loads	In the plane of the tru	ISS									0235	94 : Ξ
Unity. For	situus exposed to Wil	in (normal to the face)), blo									:	1 5
See Sland	t qualified building do	UIC, DI 1								1	N	A 1 8	
	C = 7.16 $Pr=20.0$ pc		1 15								2	X: SNOW	CENCAN
	I = 1.15). $Pf = 20.0 ps$	$1 \text{ µm } D\Omega = 1.15 \text{ Plate}$	1.15								1	OA	50.00
DOL=1 1	5): Is=1.0: Rough Cat	B: Fully Exp.: Ce=0.9):								1	INY P	MILLIN

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

Community Community

April 1,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	23 Serenity - B329 B LH CP	
24050019	I	Monopitch	5	1	Job Reference (optional)	164576294

Run: 9.03 S 8.73 Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Fri Mar 29 10:41:42 ID:nEFoOQTSTYeU8OA94u2Fj5zMD10-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

5-8-4

3x5 =

-0-10-8

Scale = 1:28.9

Loading (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0* BCDL 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MP	0.51 0.37 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.07 -0.09 0.00	(loc) 4-9 4-9 2	l/defl >967 >762 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 20 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.3 BRACING TOP CHORD Structural wood sh 5-8-4 oc purlins, e BOT CHORD Rigid ceiling directl bracing. REACTIONS (size) 2=0-3-0, Max Horiz 2=58 (LC Max Uplift 2=-123 (Max Grav 2=397 (L FORCES (lb) - Maximum Con Tension TOP CHORD 1-2=0/18, 2-3=-101 BOT CHORD 2-4=-118/127 NOTES 1) Wind: ASCE 7-16; Vult=130mp Vasd=103mph; TCDL=6.0psf; B I; Exp B; Enclosed; MWFRS (c and C-C Exterior(2E) 2-6-8 to 5 and right exposed; end vertica porch left and right exposed; C- forces & MWFRS for reactions DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-16; Pr=20.0 psf Plate DOL=1.15); Pf=20.0 psf (DOL=1.15); Is=1.0; Rough Cat Cs=1.00; Ct=.1.10 3) Unbalanced snow loads have b design. 4) This truss has been designed fr load of 12.0 psf or 1.00 times ff load of 12.0 psf or 1.00 times ff	eathing directly applied coept end verticals. y applied or 10-0-0 oc 4=0-1-8 3 (1) C 21), 4=-76 (LC 10) C 21), 4=260 (LC 21) mpression/Maximum /118, 3-4=-185/151 h (3-second gust) 3CDL=6.0psf; h=25ft; C nvelope) exterior zone 2-1-8, Interior (1) 2-1- 6-8 zone; cantilever le left and right exposed C for members and shown; Lumber (roof LL: Lum DOL=1. Lum DOL=1.15 Plate B; Fully Exp.; Ce=0.9; een considered for this or greater of min roof li at roof load of 20.0 psf other live loads. or a 10.0 psf bottom <i>i</i> th any other live loads	 6) * This truss I on the bottor 3-06-00 tall I chord and ar 7) Bearings are 30 using ANSI/designer sho 9) Provide mec bearing plate 10) One H2.5A \$ recommende UPLIFT at jtl and does no 11) This truss is International R802.10.2 a LOAD CASE(S) 	has been designed for n chord in all areas of by 2-00-00 wide will for y other members. assumed to be: Joir int(s) 4 considers par- I angle to grain for uld verify capacity of hanical connection (for at joint(s) 4. Simpson Strong-Tie of de to connect truss to s) 4 and 2. This cont t consider lateral for designed in accorda Residential Code send n referenced standar Standard	or a liviv where fit betw that 4 SF rrallel t formula f beari by other connector bearin ections and AN	e load of 20.0 a rectangle een the botto P No.3 . o grain value a. Building ng surface. ers) of truss to ctors ng walls due t n is for uplift o th the 2018 R502.11.1 ar SI/TPI 1.	psf m b to nnly nd				SEA 0235	BOL 94 FIL 1,2024	

- overhangs non-concurrent with other live loads. This truss has been designed for a 10.0 psf bottom 5)
- chord live load nonconcurrent with any other live loads.

April 1,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB Building Component Scietur Information**. Building from the Structure Building Component Advection (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	23 Serenity - B329 B LH CP	
24050019	С	Monopitch	1	1	Job Reference (optional)	164576295

Run; 9.03 S 8.73 Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Fri Mar 29 10:41:40 ID:BtC6klK9j1Q8nN87NoP6J5z2Qj3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Cool		1.70	
Sud	ie =	1.70	

Loading TCLL (roof) Snow (Pf) TCDL BCLL	(psf) 20.0 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MSH	0.80 0.80 0.43	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.14 -0.27 0.03	(loc) 14-17 14-17 11	l/defl >999 >914 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190	
3CDL	10.0											Weight: 163 lb	FT = 20%	
LUMBER TOP CHORD 30T CHORD WEBS 3RACING TOP CHORD 30T CHORD WEBS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 *Excep No.2 Structural wood shea 4-0-10 oc purlins, ex Rigid ceiling directly bracing, Except: 6-0-0 oc bracing: 10 1 Row at midpt	t* 7-10,6-11,6-10:2x4 athing directly applie xcept end verticals. applied or 10-0-0 oc -11. 7-10, 3-13, 5-11, 6-1	2) 4 SP 3) d or 4) 5) 6) 1 7)	TCLL: ASCE Plate DOL=1 DOL=1.15); I Cs=1.00; Ct= Unbalanced design. This truss ha load of 12.0 J overhangs n All plates are This truss ha chord live loa * This truss h	7-16; Pr=20.0 psf .15); Pf=20.0 psf (I s=1.0; Rough Cat .1.10 snow loads have b s been designed for portion for the standard standard standard s been designed for a nonconcurrent with a s been designed for a nonconcurrent with a seen designed for a nonconcurrent with a second standard standard standard the standard standard standard standard the standard	(roof LL Lum DC B; Fully een cor or great at roof k other liv otherwi or a 10.0 vith any for a liv	:: Lum DOL= IL=1.15 Plate Exp.; Ce=0.9 asidered for the or of min roof bad of 20.0 p re loads. se indicated. 0 psf bottom other live load e load of 20.0	1.15 e 9; his f live sf on ds. 0psf						
REACTIONS	(size) 2=0-5-8, 1 Max Horiz 2=422 (LC Max Uplift 2=-80 (LC 11=-258 (Max Grav 2=892 (LC 11=1346 (10= Mechanical, 11= C 13) C 14), 10=-257 (LC 3' LC 14) C 5), 10=50 (LC 10), (LC 5)	0-5-8 ^(*) 1), 8) 9)	on the bottor 3-06-00 tall to chord and ar Refer to gird Provide med bearing plate	n chord in all areas by 2-00-00 wide wil by other members, er(s) for truss to tru hanical connection capable of withsta	where I fit betw with BC ss conr (by oth unding 2	a rectangle veen the both DL = 10.0ps nections. ers) of truss to 57 lb uplift at	om f. to t ioint						
FORCES	(lb) - Maximum Com	pression/Maximum		10.				, joint						
TOP CHORD	Tension 1-2=0/23, 2-3=-1349 5-6=-188/219, 6-7=- 7-10=-29/41)/147, 3-5=-684/129, 132/149, 7-8=-12/0,	10) One H2.5A S recommende UPLIFT at jt(and does not	Simpson Strong-Tie ed to connect truss s) 2 and 11. This c consider lateral fo	conne to bear onnecti rces.	ctors ing walls due on is for uplif	to t only				mmm	900.	
BOT CHORD	2-14=-200/1420, 13- 11-13=-119/625, 10- 3-14=0/329, 3-13=-9	-14=-200/1420, -11=-165/194, 9-10=(004/203_5-13=-9/669)/O) This truss is International	designed in accord Residential Code s	lance w	th the 2018 R502.11.1 a	and			-	TH CA	RO	//
	5-11=-959/208, 6-11	=-486/58, 6-10=-26/2	, ²⁰³ 10		Standard	uard Ar	151/TPLT.				40		Nill	2
NOTES			20		Glandaru							:0	K	-
 Wind: ASC Vasd=103 II; Exp B; I and C-C E to 19-11-8 cantilever right expo- for reactio DOL=1.60 	CE 7-16; Vult=130mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (en Exterior(2E) -0-10-8 to 2 B, Exterior(2E) 19-11-8 left and right exposed sed;C-C for members a ns shown; Lumber DO)	(3-second gust) CDL=6.0psf; h=25ft; welope) exterior zond 2-1-8, Interior (1) 2-1 to 22-11-8 zone; ; end vertical left anc and forces & MWFRS L=1.60 plate grip	Cat. e -8 I S							THINK	A A A A A A A A A A A A A A A A A A A	SEA 0235	ER.ER.	NULLIUN DE

N

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Million Million

April 1,2024

Job	Truss	Truss Type	Qty	Ply	23 Serenity - B329 B LH CP	
24050019	KGR	Half Hip Girder	1	2	Job Reference (optional)	164576296

Run: 9.03 S 8.73 Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Fri Mar 29 10:41:43 ID:T3jI1iiM2Fv9ehg9GdEVZ1z17hh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

LUS26

LUS26

Scale = 1:38.6

Loading (psf) ICLL (roof) 20.0 Snow (Pf) 20.0 ICDL 10.0 3CLL 0.0* 3CDL 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018	3/TPI2014	CSI TC BC WB Matrix-MR	0.30 0.30 0.03	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.02 0.00	(loc) 5-6 5-6 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 49 lb	GRIP 244/190 FT = 20%	
JUMBER IOP CHORD 2x4 SP No.2 30T CHORD 2x6 SP No.2 WEBS 2x4 SP No.3 3RACING IOP CHORD Structural wood she 6-0-0 oc purlins, ex- 2-0-0 oc purlins (6- 30T CHORD Rigid ceiling directly bracing. REACTIONS (size) 4= Mech- Max Horiz 6=99 (LC Max Uplift 4=-141 (I Max Grav 4=1076 (FORCES (Ib) - Maximum Con Tension IOP CHORD 1-2=-154/32, 2-3=-8 1-6=-187/36 30T CHORD 5-6=-47/81, 4-5=-45 WEBS 2-5=-21/144 NOTES 1) 2-ply truss to be connected toge (0.131"x3") nails as follows: Top chords connected as follows: Top chords connected as follows: 2-ply truss to be connected as follows: Top chords connected as follows: 2-ply truss to be connected as follows: Top chords connected as follows: 2-ply truss to be connected as follows: Top chords connected as follows: 2x4 41 loads are considered equally except if noted as front (F) or ba CASE(S) section. Ply to ply con provided to distribute only loads unless otherwise indicated.	eathing directly applied cicept end verticals, an -0 max.: 2-3. (2 applied or 10-0-0 oc) anical, 6=0-5-8 (-9) (-2 g), 6=-94 (LC 12) LC 32), 6=901 (LC 33) apression/Maximum 34/31, 3-4=-177/36, (-67) (-47) (3) d or 4) 5) 6) 7) 8) 9) 10) 11) 12) 12) 12) 12) 12) 14) 14) 15] LO	Wind: ASCE Vasd=103mp II; Exp B; End cantilever left right exposed TCLL: ASCE Plate DOL=1 DOL=1.15); I Cs=1.00; Ct= Unbalanced : design. Provide adeo This truss ha on the bottom 3-06-00 tall b chord and an Refer to girdd Provide mech bearing plate 4. One H2.5A S recommende UPLIFT at jt(does not con This truss is of International R802.10.2 ar 0 Graphical pu or the orienta bottom chord Use Simpsor Truss, Single oc max. start connect truss	7-16; Vult=130mpl b; TCDL=6.0psf; E closed; MWFRS (e t and right exposed c; Lumber DOL=1.6 7-16; Pr=20.0 psf (15); Pf=20.0 psf (I s=1.0; Rough Cat I 1.10 snow loads have b uate drainage to p s been designed for d nonconcurrent w as been designed for a chord in all areas y 2-00-00 wide will y other members. er(s) for truss to tru nanical connection capable of withsta Gimpson Strong-Tie d to connect truss (s) 6. This connect it sider lateral forces designed in accord Residential Code s and referenced stand fin representation tion of the purlin al b Strong-Tie LUS26 (e) to back face of les where hanger i Standard	h (3-sec 3CDL=6 nveloped 1; end v 50 plate (roof LL Lum DC B; Fully een cor revent v or a 10.0 vith any for a live to here I fit betw iss conre- (by oth unding 1 e connee to bear on is for lance w sections dard AN does no long the 5 (4-10c iveleft e of bottor s in cor	ond gust) .0psf; h=25ft; b) exterior zor retrical left an grip DOL=1. .: Lum DOL= DL=1.15 Plate Exp.; Ce=0.5 isidered for the water ponding 0 psf bottom other live load e load of 20.0 a rectangle veen the bottot rections. ers) of truss t 41 lb uplift at ctors ng walls due uplift only ar ith the 2018 R502.11.1 a ISI/TPI 1. t depict the se top and/or I Girder, 3-10 spaced at 2-0 nd to 5-5-0 to n chord. tact with lum	c Cat. ne; d 60 1.15 ;; ds. jpsf om o joint to ds. joint to d size d j-0 ber.	1) De Inn Ur Co	ead + Sn crease= hiform Lc Vert: 1-2 nocentra Vert: 8=	ow (ba 1.15 pads (II 2=-60, led Lo. -824 (I	alanced): Lumber b/ft) 2-3=-60, 4-6=-20 ads (lb) B), 9=-828 (B) CA SEA 0235 OV GIN	Increase=1.15	i, Plate

April 1,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

