Mark Morris, P.E.

#126, 1317-M, Summerville, SC 29483 843 209-5784, Fax (866)-213-4614

The truss drawing(s) listed below have been prepared by **Atlantic Building Components** under my direct supervision based on the parameters provided by the truss designers.

AST #: 48050 JOB: 24-3417-F02 JOB NAME: LOT 0.0025 HONEYCUTT HILLS Wind Code: N/A Wind Speed: Vult= N/A Exposure Category: N/A Mean Roof Height (feet): N/A These truss designs comply with IRC 2015 as well as IRC 2018. 33 Truss Design(s)

Trusses:

F201, F202, F203, F204, F205, F206, F207, F208, F209, F210, F211, F212, F213, F214, F215, F216, F217, F218, F219, F220, F221, F222, F223, F224, F225, F226, F227, F228, F229, F230, F231, F232, F233

Warning !--- Verify design parameters and read notes before use.

This design is based only upon parameters shown, and is for an individual building component to be installed and loaded vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 *National Design Standard for Metal Plate Connected Wood Truss Construction* and BCSI 1-03 Guide to *Good Practice for*

500	11033	Truss Type	Qty	' 'y	LOT 0.0025 HON			COURT ANGIER, NO
24-3417-F02	F201	Floor Supported Gable	1	1	Job Reference	(optional)	#	48050
			Run: 8.430 s Feb 12 ID:XfGBr?_CJq	2021 Prin ttCkf9NO	t: 8.430 s Feb 12 20 QCWjycQDJ-lqn	21 MiTek Industrie ONBJ?pMNhgKd	s, Inc. Thu May 22 EZGwfh9F9EInS	21:34:51 2024 Page 1 SeqI5A_V7UqzKQn2
0-11-8								
								Scale = 1:25.4
1.5x3								
1.5x3 = 1.5x3	1.5x3 1.5x3	1.5x3 3x4 =	1.5x3 1.5x	3	1.5x3	1.5x3 1	l.5x3 1.5	5x3 3x4
1 2	3 4	5 6	7 8		9	10	11 1	2 13
] 🕘 🚽	•				•	•	•	
	ST1 ST1	ST1 ST1 W2	ST1 ST	1	ST1	ST1	ST1 S	T1 ₩1
						Ц	Ц	
				~~~~		vyvvvv		
26 25	24 23	22 21	20 19		18			5 14
3x4    1.5x3			3x4 = 1.5x	2 11	1.5x3			5 14 5x3    3x4
0,4    1.0,5	1.040    1.040		0.4 - 1.0	. <b>J</b> 11	1.0.0	1.070 []		JAU    JAH

Qtv

Plv

1			15-5-14		
			15-5-14		
Plate Offsets (X,Y)	[6:0-1-8,Edge], [20:0-1-8,Edge], [26:E	dge,0-1-8]			
<u>, , , , , , , , , , , , , , , , , </u>					
LOADING (psf)	<b>SPACING-</b> 2-0-0	CSI.	DEFL. ir	n (loc) l/defl L/c	PLATES GRIP
TCLL 40.0	Plate Grip DOL 1.00	TC 0.06	Vert(LL) n/a	a - n/a 999	9 MT20 244/190
TCDL 10.0	Lumber DOL 1.00	BC 0.01	Vert(CT) n/a	a - n/a 999	9
BCLL 0.0	Rep Stress Incr YES	WB 0.03	Horz(CT) 0.00	) 14 n/a n/a	a
BCDL 5.0	Code IRC2021/TPI2014	Matrix-SH	( )		Weight: 68 lb FT = 20%F, 11%E
LUMBER-			BRACING-		·
TOP CHORD 2x4 SF			TOP CHORD		athing directly applied or 6-0-0 oc purlins, except
BOT CHORD 2x4 SF				end verticals.	
	PNo.3(flat)		BOT CHORD	Rigid ceiling directly	applied or 10-0-0 oc bracing.
OTHERS 2x4 SF	PNo.3(flat)				

.....

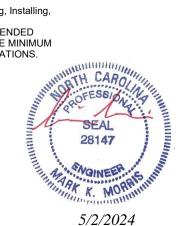
### REACTIONS. All bearings 15-5-14.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 26, 14, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15

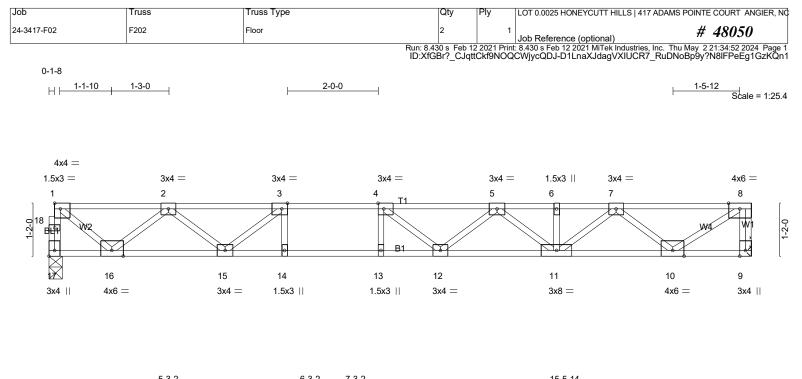
Truss Type

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES- (6-9)


Job

Truss


1) Gable requires continuous bottom chord bearing.

- 2) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 3) Gable studs spaced at 1-4-0 oc.
- 4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 5) CAUTION, Do not erect truss backwards.
- 6) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
- 7) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.
- Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.
   SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED
- 9) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

### LOAD CASE(S) Standard



LOT 0.0025 HONEYCUTT HILLS I 417 ADAMS POINTE COURT ANGIER NO



	5-3-2	<u></u>	<u> </u>	
Plate Offsets (X,Y)	[1:Edge,0-1-8], [3:0-1-8,Edge], [4:0-1		0-2-12	
LOADING (psf)           TCLL         40.0           TCDL         10.0           BCLL         0.0           BCDL         5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2021/TPI2014	<b>CSI.</b> TC 0.58 BC 0.75 WB 0.62 Matrix-SH	<b>DEFL.</b> in (loc) I/defl L/d Vert(LL) -0.23 12-13 >786 480 Vert(CT) -0.32 12-13 >578 360 Horz(CT) 0.04 9 n/a n/a	PLATES         GRIP           MT20         244/190           Weight: 78 lb         FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF			BRACING- TOP CHORD Structural wood sheathing d end verticals.	lirectly applied or 6-0-0 oc purlins, except

2x4 SP No.3(flat) WEBS

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 17=832/0-3-6 (min. 0-1-8), 9=838/Mechanical

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 17-18=-833/0, 1-18=-832/0, 8-9=-831/0, 1-2=-887/0, 2-3=-2249/0, 3-4=-2919/0, 4-5=-2976/0, 5-6=-2409/0, 6-7=-2409/0, 7-8=-1099/0

BOT CHORD 15-16=0/1717, 14-15=0/2919, 13-14=0/2919, 12-13=0/2919, 11-12=0/2880, 10-11=0/1926

3-14=-6/312, 4-13=-279/38, 3-15=-923/0, 2-15=0/692, 2-16=-1080/0, 1-16=0/1110, 4-12=-281/279, 5-12=0/285, WEBS

5-11=-601/0, 7-11=0/617, 7-10=-1077/0, 8-10=0/1310

NOTES-(5-8)

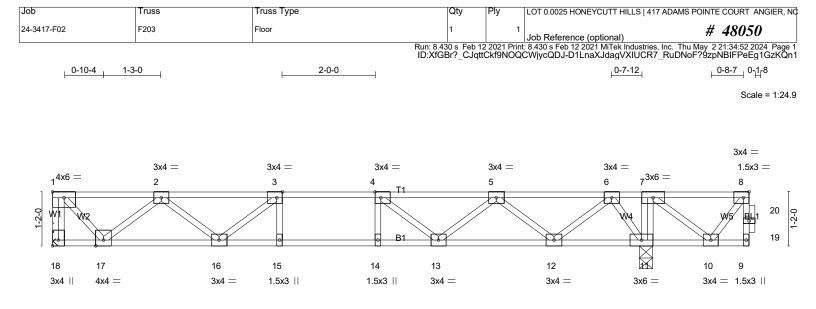
1) Unbalanced floor live loads have been considered for this design.

Refer to girder(s) for truss to truss connections.

3) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

4) CAUTION, Do not erect truss backwards.

5) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.


6) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

7) Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing,

 Web blacing shown is for lateral support of individual way individual way individual to be a second of the second s GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard





	4-11-12 4-11-12	<u>5-11-12</u> <u>6-11-12</u> <u>1-0-0</u> <u>1-0-0</u>		12-10-8 5-10-12	13-0-0 0-1-8	<u>15-2-7</u> 2-2-7
Plate Offsets (X,Y)	[1:Edge,0-1-8], [3:0-1-8,Edge], [4:0-1	-8,Edge], [8:0-1-8,Edge],	[18:Edge,0-1-8]			
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2021/TPI2014	<b>CSI.</b> TC 0.38 BC 0.70 WB 0.40 Matrix-SH	Vert(LL) -0.12	n (loc) l/defi L/d 2 13-14 >999 480 5 13-14 >966 360 3 11 n/a n/a	<b>PLATES</b> MT20 Weight: 79 I	<b>GRIP</b> 244/190 b FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF			BRACING- TOP CHORD BOT CHORD	Structural wood sheathing end verticals. Rigid ceiling directly appli 6-0-0 oc bracing: 11-12,10	ed or 10-0-0 oc braci	

REACTIONS. (lb/size) 18=681/Mechanical, 11=956/0-3-8 (min. 0-1-8) Max Grav 18=696(LC 3), 11=956(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 1-18=-696/0, 1-2=-571/0, 2-3=-1653/0, 3-4=-2075/0, 4-5=-1885/0, 5-6=-1059/0

BOT CHORD

16-17=0/1267, 15-16=0/2075, 14-15=0/2075, 13-14=0/2075, 12-13=0/1641, 11-12=-92/457 7-11=-285/0, 3-16=-614/0, 2-16=0/503, 2-17=-907/0, 1-17=0/833, 4-13=-457/0, 5-13=0/395, 5-12=-780/0, 6-12=0/807, WEBS 6-11 = -855/0

NOTES-(5-8)

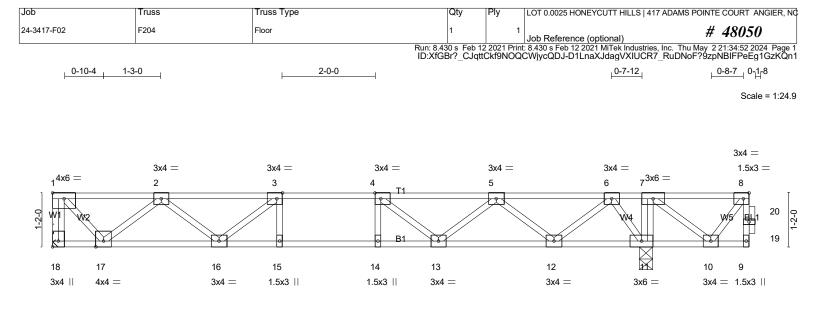
1) Unbalanced floor live loads have been considered for this design.

Refer to girder(s) for truss to truss connections.

3) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

4) CAUTION, Do not erect truss backwards.

5) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.


6) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

7) Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing,

 Web blacing shown is for lateral support of individual way individual way individual to be a second of the second s GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard





		0-11-12 0-11-12	12-10-0	10-0-0
	4-11-12	1-0-0 1-0-0	5-10-12	0-1-8 2-2-7
Plate Offsets (X,Y)	· [1:Edge,0-1-8], [3:0-1-8,Edge], [4:0-	1-8,Edge], [8:0-1-8,Edge],	[18:Edge,0-1-8]	
LOADING         (psf)           TCLL         40.0           TCDL         10.0           BCLL         0.0           BCDL         5.0	SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrYESCode IRC2021/TPI2014	<b>CSI.</b> TC 0.38 BC 0.70 WB 0.40 Matrix-SH	DEFL.         in         (loc)         l/defl         L/d           Vert(LL)         -0.12         13-14         >999         480           Vert(CT)         -0.16         13-14         >966         360           Horz(CT)         0.03         11         n/a         n/a	PLATES         GRIP           MT20         244/190           Weight: 79 lb         FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 S BOT CHORD 2x4 S WEBS 2x4 S			end verticals.	g directly applied or 6-0-0 oc purlins, except led or 10-0-0 oc bracing, Except: 0-11.

12-10-8

REACTIONS. (lb/size) 18=681/Mechanical, 11=956/0-3-8 (min. 0-1-8) Max Grav 18=696(LC 3), 11=956(LC 1)

4-11-12

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 1-18=-696/0, 1-2=-571/0, 2-3=-1653/0, 3-4=-2075/0, 4-5=-1885/0, 5-6=-1059/0

BOT CHORD

16-17=0/1267, 15-16=0/2075, 14-15=0/2075, 13-14=0/2075, 12-13=0/1641, 11-12=-92/457 7-11=-285/0, 3-16=-614/0, 2-16=0/503, 2-17=-907/0, 1-17=0/833, 4-13=-457/0, 5-13=0/395, 5-12=-780/0, 6-12=0/807, WEBS 6-11 = -855/0

5-11-12 6-11-12

NOTES-(5-8)

1) Unbalanced floor live loads have been considered for this design.

Refer to girder(s) for truss to truss connections.

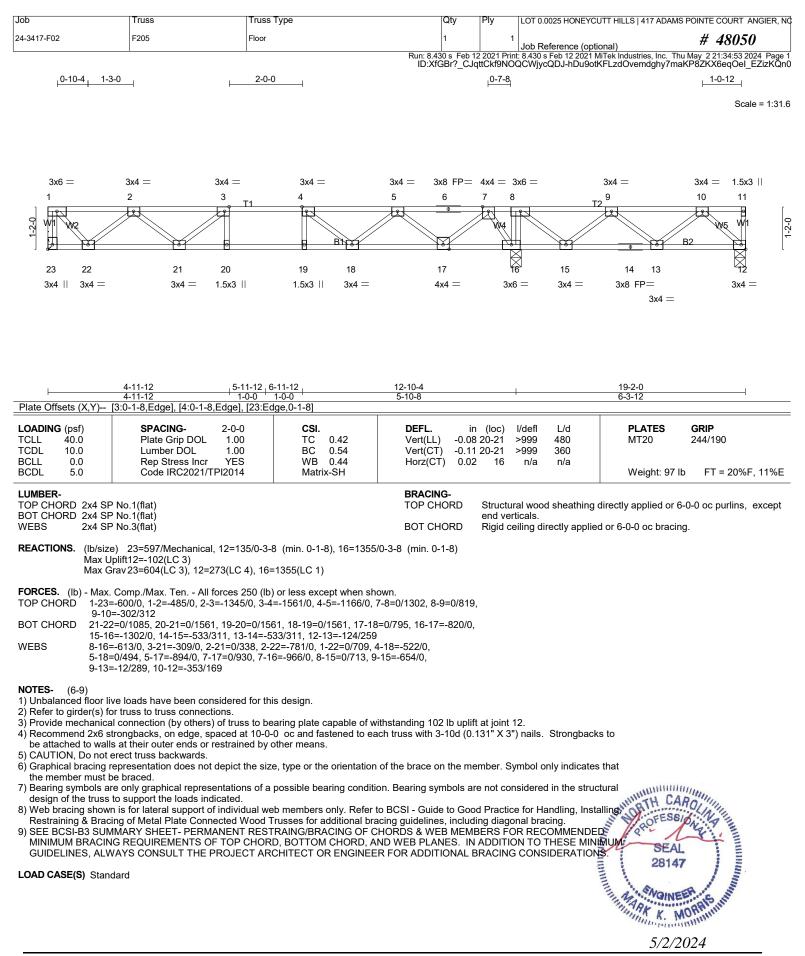
3) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

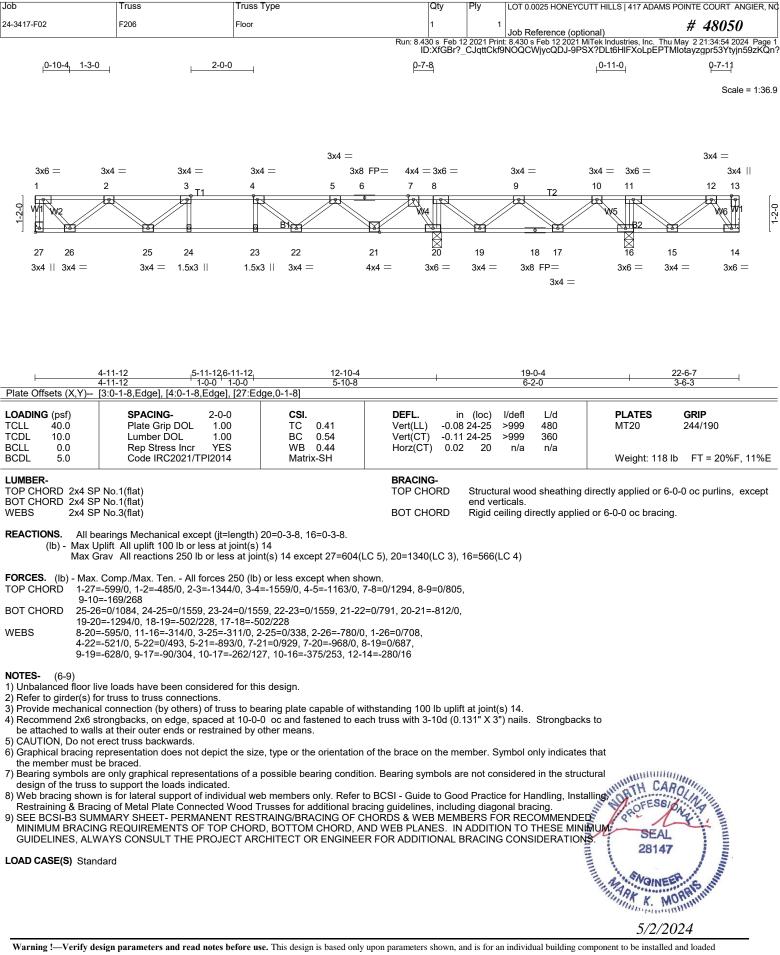
4) CAUTION, Do not erect truss backwards.

5) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.

6) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

7) Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing,


 Web blacing shown is for lateral support of individual way individual way individual to be a second of the second s GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

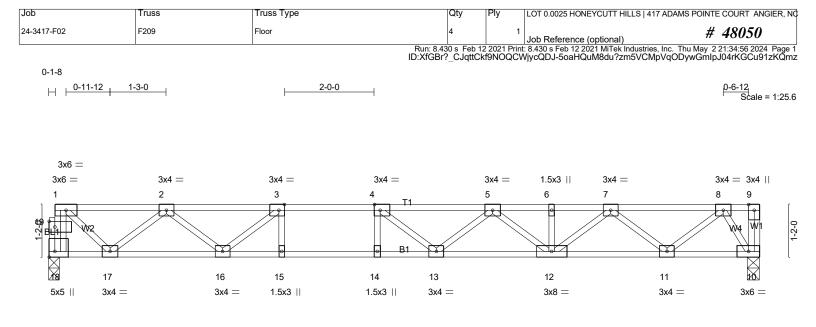

LOAD CASE(S) Standard



13-0-0

15-2-7






warning i—verity design parameters and read notes before use. Inis design is based only upon parameters shown, and is for an individual building component to be installed and loaded vertically. Applicability of design parameters and read notes before use. Inis design is based only upon parameters shown, and is for an individual building component to be installed and loaded vertically. Applicability of design parameters and read notes before use. Inis design is based only upon parameters shown, and is for an individual building component to be installed and loaded vertically. Applicability of design parameters and read notes before use. Inis design is based only upon parameters shown, and is for an individual building component to be installed and loaded of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Trusse from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

lob	Truss	Truss Type	Qty Ply	LOT 0.0025 HONEYCUTT HILLS	417 ADAMS POINTE COURT ANGIER, N
24-3417-F02	F207	Floor	1	Job Reference (optional)	# 48050
			Run: 8.430 s Feb 12 2021 Pri ID:XfGBr? CJqttCkf9NC	nt: 8.430 s Feb 12 2021 MiTek Indus	tries, Inc. Thu May 2 21:34:55 2024 Page xw0o6_br?Qk_M?SaXAh5cTKdbzKQn
0-10-4 1-3	3-0 2-0	)-0	<u>0-7-8</u>		Q <u>-5-</u> 3
					Scale = 1:36.
aue —	0v4 — 0v4 —	3x4 =		2014 — 1 EV2 II 2014 —	0.4 — 0.4 —
3x6 = 1	3x4 = 3x4 = 2 $3 =$	3x4 = 3x8   4 5 6	FP = 4x4 = 3x6 = 7 8	$3x4 = 1.5x3 \parallel 3x4 =$ 9 10 11	3x4 = 3x6 = $12  ext{W5}^{13}$
		BICT			
		M [J]			
27 26	25 24 3x4 = 1.5x3 ∐			18 17 3x8 FP=	16 15 14
3x4    3x4 =	3x4 = −1.5x3	1.5x3        3x4 —           4	x4 = 3x6 = 4x4 =	3x8 FP— 3x8 =	3x4 = 3x4    3x4 =
L		6-11-12 ₁ 12-10-4 1-0-0 5-10-8		<u>22-6-7</u> 9-8-3	I
Plate Offsets (X,Y)-	[3:0-1-8,Edge], [4:0-1-8,Edge				
OADING (psf)	SPACING- 2-0		DEFL. in (loc)		LATES GRIP
FCLL 40.0 FCDL 10.0	Plate Grip DOL 1. Lumber DOL 1.		Vert(LL) -0.08 24-25 Vert(CT) -0.11 24-25	>999 480 M >999 360	T20 244/190
BCLL 0.0 BCDL 5.0	Rep Stress Incr YE Code IRC2021/TPI20		Horz(CT) 0.02 14	n/a n/a W	/eight: 117 lb FT = 20%F, 11%E
LUMBER-			BRACING-		<b>.</b>
TOP CHORD 2x4			TOP CHORD Structu		pplied or 6-0-0 oc purlins, except
BOT CHORD 2x4 WEBS 2x4	SP No.3(flat)		end ver BOT CHORD Rigid c	eiling directly applied or 6-0-0	) oc bracing.
REACTIONS. (Ib/s	size) 27=585/Mechanical, 14=	373/Mechanical, 20=1493/0-3-8 (i	min. 0-1-8)		
Max	c Grav 27=607(LC 3), 14=455(L	C 4), 20=1493(LC 1)			
		s 250 (lb) or less except when sho 488/0, 2-3=-1355/0, 3-4=-1578/0, 4			
5-6	6=-148/295, 6-7=-148/295, 7-8=	0/1433, 8-9=-7/812, 9-10=-788/34			
BOT CHORD 25-		24=0/1578, 22-23=0/1578, 21-22=			
NEBS 8-2	20=-739/0, 3-25=-285/9, 2-25=0	17-18=-555/530, 16-17=-181/936, //344, 2-26=-785/0, 1-26=0/713, 4-	22=-571/0,		
	22=0/516, 5-21=-911/0, 7-21=0  -17=-336/0, 12-15=-583/17, 13	'948, 7-20=-961/0, 8-19=0/896, 9-1 -15=0/447	19=-826/0, 9-17=0/479,		
NOTES- (5-8)					
	r live loads have been consider	ed for this design.			
			h trucc with 2 10d (0 121" X 2	") nails Strongbacks to	
2) Refer to girder(s) 3) Recommend 2x6	) for truss to truss connections. S strongbacks, on edge, spaced		11 II USS WIII 3-100 (0.131 × 3	/ nulls. Oliongbuoks to	
2) Refer to girder(s) 3) Recommend 2x6 be attached to w	strongbacks, on edge, spaced alls at their outer ends or restra		11 truss with 3-10d (0.131 × 3		
<ul> <li>Pefer to girder(s)</li> <li>Recommend 2x6</li> <li>be attached to w</li> <li>CAUTION, Do no</li> <li>Graphical bracing</li> </ul>	b strongbacks, on edge, spaced alls at their outer ends or restra ot erect truss backwards. g representation does not depi		,	, 0	
<ol> <li>2) Refer to girder(s)</li> <li>3) Recommend 2x6</li> <li>be attached to w</li> <li>4) CAUTION, Do no</li> <li>5) Graphical bracing</li> <li>the member mus</li> <li>6) Bearing symbols</li> </ol>	b strongbacks, on edge, spaced alls at their outer ends or restra ot erect truss backwards. g representation does not depi st be braced. are only graphical representat	ined by other means. t the size, type or the orientation of ons of a possible bearing condition	of the brace on the member. S	ymbol only indicates that	
<ol> <li>2) Refer to girder(s)</li> <li>3) Recommend 2x6</li> <li>be attached to w</li> <li>4) CAUTION, Do no</li> <li>5) Graphical bracing</li> <li>the member mus</li> <li>6) Bearing symbols</li> </ol>	b strongbacks, on edge, spaced alls at their outer ends or restra ot erect truss backwards. g representation does not depi st be braced. are only graphical representat	ined by other means. t the size, type or the orientation of ons of a possible bearing condition	of the brace on the member. S	ymbol only indicates that nsidered in the structural e for Handling, Installing,	TH CARO
<ol> <li>2) Refer to girder(s)</li> <li>3) Recommend 2x6</li> <li>be attached to w</li> <li>4) CAUTION, Do no</li> <li>5) Graphical bracing</li> <li>the member mus</li> <li>6) Bearing symbols</li> </ol>	b strongbacks, on edge, spaced alls at their outer ends or restra ot erect truss backwards. g representation does not depi st be braced. are only graphical representat	ined by other means. t the size, type or the orientation of ons of a possible bearing condition	of the brace on the member. S	ymbol only indicates that nsidered in the structural e for Handling, Installing,	TH CAROLINI
<ol> <li>Refer to girder(s)</li> <li>Recommend 2x6 be attached to w</li> <li>CAUTION, Do no</li> <li>Graphical bracing the member musical bracing design of the trus</li> <li>Web bracing shore Restraining &amp; Br.</li> <li>SEE BCSI-B3 SI MINIMUM BRACC</li> </ol>	b strongbacks, on edge, spaced alls at their outer ends or restra of erect truss backwards. g representation does not depi- it be braced. are only graphical representat ss to support the loads indicate own is for lateral support of indi acing of Metal Plate Connected UMMARY SHEET- PERMANEI CING REQUIREMENTS OF TO	ined by other means. t the size, type or the orientation of ons of a possible bearing condition d. ridual web members only. Refer to I Wood Trusses for additional brac NT RESTRAING/BRACING OF CH P CHORD, BOTTOM CHORD, AN	of the brace on the member. S n. Bearing symbols are not co BCSI - Guide to Good Practio ing guidelines, including diago (ORDS & WEB MEMBERS FO D WEB PLANES. IN ADDITIO	ymbol only indicates that nsidered in the structural e for Handling, Installing,	TH CAROLINI
<ol> <li>Refer to girder(s)</li> <li>Recommend 2x6 be attached to w</li> <li>CAUTION, Do no</li> <li>Graphical bracing the member mus</li> <li>Bearing symbols design of the trus</li> <li>Web bracing sho Restraining &amp; Br.</li> <li>SEE BCSI-B3 SI MINIMUM BRAC GUIDELINES, AU</li> </ol>	b strongbacks, on edge, spaced alls at their outer ends or restra of erect truss backwards. g representation does not depi- st be braced. are only graphical representat ss to support the loads indicate own is for lateral support of indi acing of Metal Plate Connected JMMARY SHEET- PERMANEI ZING REQUIREMENTS OF TO LWAYS CONSULT THE PROJ	ined by other means. t the size, type or the orientation of ons of a possible bearing condition	of the brace on the member. S n. Bearing symbols are not co BCSI - Guide to Good Practio ing guidelines, including diago (ORDS & WEB MEMBERS FO D WEB PLANES. IN ADDITIO	ymbol only indicates that nsidered in the structural e for Handling, Installing,	SEAL
<ol> <li>Refer to girder(s)</li> <li>Recommend 2x6 be attached to w</li> <li>CAUTION, Do no</li> <li>Graphical bracing the member musical bracing design of the trus</li> <li>Web bracing shore Restraining &amp; Bracing &amp;</li></ol>	b strongbacks, on edge, spaced alls at their outer ends or restra of erect truss backwards. g representation does not depi- st be braced. are only graphical representat ss to support the loads indicate own is for lateral support of indi acing of Metal Plate Connected JMMARY SHEET- PERMANEI ZING REQUIREMENTS OF TO LWAYS CONSULT THE PROJ	ined by other means. t the size, type or the orientation of ons of a possible bearing condition d. ridual web members only. Refer to I Wood Trusses for additional brac NT RESTRAING/BRACING OF CH P CHORD, BOTTOM CHORD, AN	of the brace on the member. S n. Bearing symbols are not co BCSI - Guide to Good Practio ing guidelines, including diago (ORDS & WEB MEMBERS FO D WEB PLANES. IN ADDITIO	ymbol only indicates that nsidered in the structural e for Handling, Installing,	SEAL 28147
<ol> <li>Refer to girder(s)</li> <li>Recommend 2x6 be attached to w</li> <li>CAUTION, Do no</li> <li>Graphical bracing the member mus</li> <li>Bearing symbols design of the trus</li> <li>Web bracing sho Restraining &amp; Br.</li> <li>SEE BCSI-B3 SI MINIMUM BRAC GUIDELINES, Al</li> </ol>	b strongbacks, on edge, spaced alls at their outer ends or restra of erect truss backwards. g representation does not depi- st be braced. are only graphical representat ss to support the loads indicate own is for lateral support of indi acing of Metal Plate Connected JMMARY SHEET- PERMANEI ZING REQUIREMENTS OF TO LWAYS CONSULT THE PROJ	ined by other means. t the size, type or the orientation of ons of a possible bearing condition d. ridual web members only. Refer to I Wood Trusses for additional brac NT RESTRAING/BRACING OF CH P CHORD, BOTTOM CHORD, AN	of the brace on the member. S n. Bearing symbols are not co BCSI - Guide to Good Practio ing guidelines, including diago (ORDS & WEB MEMBERS FO D WEB PLANES. IN ADDITIO	ymbol only indicates that nsidered in the structural e for Handling, Installing,	SEAL 28147
<ol> <li>Refer to girder(s)</li> <li>Recommend 2x6 be attached to w</li> <li>CAUTION, Do no</li> <li>Graphical bracing the member muss</li> <li>Bearing symbols design of the trus</li> <li>Web bracing sho Restraining &amp; Br.</li> <li>SEE BCSI-B3 SI MINIMUM BRAC GUIDELINES, AU</li> </ol>	b strongbacks, on edge, spaced alls at their outer ends or restra of erect truss backwards. g representation does not depi- st be braced. are only graphical representat ss to support the loads indicate own is for lateral support of indi acing of Metal Plate Connected JMMARY SHEET- PERMANEI ZING REQUIREMENTS OF TO LWAYS CONSULT THE PROJ	ined by other means. t the size, type or the orientation of ons of a possible bearing condition d. ridual web members only. Refer to I Wood Trusses for additional brac NT RESTRAING/BRACING OF CH P CHORD, BOTTOM CHORD, AN	of the brace on the member. S n. Bearing symbols are not co BCSI - Guide to Good Practio ing guidelines, including diago (ORDS & WEB MEMBERS FO D WEB PLANES. IN ADDITIO	ymbol only indicates that nsidered in the structural e for Handling, Installing,	SEAL 28147
<ol> <li>Refer to girder(s)</li> <li>Recommend 2x6 be attached to w</li> <li>CAUTION, Do no</li> <li>Graphical bracing the member mus</li> <li>Bearing symbols design of the trus</li> <li>Web bracing sho Restraining &amp; Br.</li> <li>SEE BCSI-B3 SI MINIMUM BRAC GUIDELINES, Al</li> </ol>	b strongbacks, on edge, spaced alls at their outer ends or restra of erect truss backwards. g representation does not depi- st be braced. are only graphical representat ss to support the loads indicate own is for lateral support of indi acing of Metal Plate Connected JMMARY SHEET- PERMANEI ZING REQUIREMENTS OF TO LWAYS CONSULT THE PROJ	ined by other means. t the size, type or the orientation of ons of a possible bearing condition d. ridual web members only. Refer to I Wood Trusses for additional brac NT RESTRAING/BRACING OF CH P CHORD, BOTTOM CHORD, AN	of the brace on the member. S n. Bearing symbols are not co BCSI - Guide to Good Practio ing guidelines, including diago (ORDS & WEB MEMBERS FO D WEB PLANES. IN ADDITIO	ymbol only indicates that nsidered in the structural e for Handling, Installing,	SEAL 28147 5/2/2024

vertically. Applicability of design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be instanted and based of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 *National Design Standard for Metal Plate Connected Wood Truss Construction* and BCSI 1-03 Guide to *Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses* from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply LOT 0.0025 HC	NEYCUTT HILLS   417 AD	AMS POINTE COURT ANGIER, NO
24-3417-F02	F208	Floor	2	1		# 48050
			Run: 8.430 s Feb 12	Job Referenc 2021 Print: 8.430 s Feb 12 attCkf9NOOCWiycOD.L	2021 MiTek Industries, Inc	. Thu May 2 21:34:55 2024 Page 1 br?QloM?7aX9h5cTKdbzKQn
0-10-4 1-	3-0	2-0-0	<u>0-7-8</u> 0-11-12	_	2-0-0	
		'			·	Scale = 1:36.9
						- 1.00.
<u></u>	24 - 24 -	3x4 =		0×4 —	2:4 -	out — out —
3x6 = 1	3x4 = 3x4 = 2	4 5	3x8 FP = 4x4 = 3x6 = 6	3x4 = 9		3x4 = 3x6 = 11 12
		B1 B1	W4 W5		B2	
						<u> </u>
27 26 3x4    3x4 =	25   24 3x4 = 1.5x3	23 22    1.5x3    3x4 =	$\begin{array}{ccc} 21 & \overline{20} \\ 4x4 = & 3x6 = \end{array}$	19 18 17 3x8 FP= 3x4 =		15 14 13 5x3    3x4 = 3x4
				3x4 =		
	4-11-12 1	1-12 ₆ -11-12 -0-0 1-0-0 5-10-	.8	17-10-0 4-11-12	18-10-0/19-10-0/ 1-0-0 1-0-0	0 <u>22-6-7</u> 2-8-7
		Edge], [10:0-1-8,Edge], [11:0-1-8,E				
LOADING (psf) TCLL 40.0	SPACING- Plate Grip DOL	2-0-0 <b>CSI.</b> 1.00 TC 0.41	DEFL. in Vert(LL) -0.09	(loc) l/defl L/d 24-25 >999 480	PLATES MT20	<b>GRIP</b> 244/190
TCDL 10.0 BCLL 0.0	Lumber DOL Rep Stress Incr	1.00 BC 0.60 YES WB 0.45	Vert(CT) -0.11 Horz(CT) 0.02	24-25 >999 360		
BCDL 5.0	Code IRC2021/T		1012(01) 0.02	15 174 174	Weight:	114 lb FT = 20%F, 11%E
LUMBER-			BRACING-	o		
TOP CHORD 2x4 BOT CHORD 2x4	SP No.1(flat)		TOP CHORD	end verticals.	0 7 11	or 6-0-0 oc purlins, except
WEBS 2x4	SP No.3(flat)		BOT CHORD	Rigid ceiling directly a	applied or 6-0-0 oc bra	acing.
	size) 27=592/Mechanical, < Grav 27=628(LC 3), 13=4	13=382/Mechanical, 20=1478/0-3 39(LC 4), 20=1478(LC 1)	-8 (min. 0-1-8)			
		prces 250 (lb) or less except when	shown			
TOP CHORD 1-2	27=-625/0, 12-13=-428/0, 1	-2=-508/0, 2-3=-1425/0, 3-4=-1695 7-8=0/1383, 8-9=0/819, 9-10=-603	5/0, 4-5=-1353/0,			
11	-12=-382/0			4/0		
19	9-20=-1383/0, 18-19=-421/	, 23-24=0/1695, 22-23=0/1695, 21- 346, 17-18=-421/346, 16-17=-26/8		4/0,		
	-15=-26/816 20=-704/0, 3-25=-344/44, 2	2-25=0/381, 2-26=-814/0, 1-26=0/74	41, 4-22=-602/0,			
	22=0/521, 5-21=-913/0, 7-2 19=-844/0, 8-19=0/807, 11-	1=0/949, 7-20=-950/0, 10-17=-458 14=-554/62, 12-14=0/505	8/0, 9-17=0/449,			
NOTES- (5-8)						
1) Unbalanced floo	r live loads have been con ) for truss to truss connecti					
3) Recommend 2x6	ó strongbacks, on edge, sp	aced at 10-0-0 oc and fastened to	each truss with 3-10d (0.1	31" X 3") nails. Stron	gbacks to	
4) CAUTION, Do no	alls at their outer ends or r ot erect truss backwards.					
the member mus	st be braced.	depict the size, type or the orientati				
6) Bearing symbols	are only graphical represe	entations of a possible bearing con- cated. individual web members only. Ref- ected Wood Trusses for additional ANENT RESTRAING/BRACING OF	dition. Bearing symbols are	e not considered in the	structural	CAD ALL
7) Web bracing sho	own is for lateral support of	individual web members only. Ref	er to BCSI - Guide to Good	d Practice for Handling	, Installing	SALA
8) SEE BCSI-B3 S	UMMARY SHEET- PERM	ANENT RESTRAING/BRACING OF	F CHORDS & WEB MEMB	ERS FOR RECOMME	INDED	Na
MINIMUM BRAC	CING REQUIREMENTS OF	TOP CHORD, BOTTOM CHORD ROJECT ARCHITECT OR ENGIN	, AND WEB PLANES. IN /	ADDITION TO THESE	TIONS.	EAL
					28	147
	andard					1 5
LOAD CASE(S) St	andard				THE ASNO	INEER
	andard				28 ANO	MORRE
	andard				AN ARK K	AL 147 MORRIS



	5-2-12 5-2-12	<u>6-2-12</u> 7-2-12 1-0-0 1-0-0	<u>15-9-8</u> 8-6-12	
Plate Offsets (X,Y)	[3:0-1-8,Edge], [4:0-1-8,Edge], [18:E	dge,0-1-8], [19:0-1-8,0-1-8	3]	
<b>LOADING</b> (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING-1-4-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrYESCode IRC2021/TPI2014	<b>CSI.</b> TC 0.42 BC 0.83 WB 0.35 Matrix-SH	DEFL.         in (loc)         l/defl         L/d           Vert(LL)         -0.18         13-14         >999         480           Vert(CT)         -0.24         13-14         >765         360           Horz(CT)         0.03         10         n/a         n/a	PLATES         GRIP           MT20         244/190           Weight: 82 lb         FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 S BOT CHORD 2x4 S			BRACING- TOP CHORD Structural wood sheathing di end verticals.	rectly applied or 6-0-0 oc purlins, except

2x4 SP No.3(flat) WFBS

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 18=563/0-2-10 (min. 0-1-8), 10=568/0-3-8 (min. 0-1-8)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 18-19=-565/0, 1-19=-554/0, 1-2=-561/0, 2-3=-1506/0, 3-4=-1987/0, 4-5=-2058/0, 5-6=-1725/0, 6-7=-1725/0, 7-8=-902/0

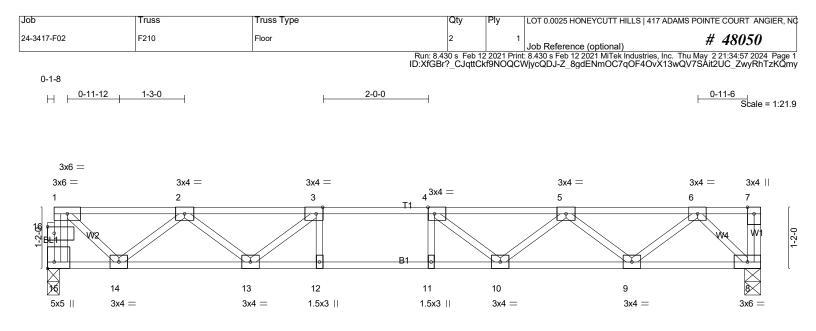
BOT CHORD 16-17=0/1126, 15-16=0/1987, 14-15=0/1987, 13-14=0/1987, 12-13=0/2018, 11-12=0/1398, 10-11=0/384

3-16=-650/0, 2-16=0/494, 2-17=-736/0, 1-17=0/725, 5-12=-374/0, 7-12=0/418, 7-11=-645/0, 8-11=0/674, 8-10=-697/0 WEBS

### NOTES-(5-8)

1) Unbalanced floor live loads have been considered for this design

Provide mechanical connection (by others) of truss to bearing plate at joint(s) 18.


3) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

- 4) CAUTION, Do not erect truss backwards.
- 5) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
- 6) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.
- 7) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.

8) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

## LOAD CASE(S) Standard





L	5-2-12	6-2-12	7-2-12	13-6-10		4
	5-2-12	1-0-0	1-0-0	6-3-14		
Plate Offsets (X,Y)	[3:0-1-8,Edge], [4:0-1-8,Edge], [15:Edge]	<u>dge,0-1-8], [16:0-1-8,0-1</u>	-8]			
LOADING (psf)	<b>SPACING-</b> 1-4-0	CSI.	DEFL.	in (loc) l/defl L/d	PLATES GRIP	
TCLL 40.0	Plate Grip DOL 1.00	TC 0.27	Vert(LL) -0.0	09 10-11 >999 480	MT20 244/190	
TCDL 10.0	Lumber DOL 1.00	BC 0.52	Vert(CT) -0.	12 10-11 >999 360		
BCLL 0.0	Rep Stress Incr YES	WB 0.29	Horz(CT) 0.0	)2 8 n/a n/a		
BCDL 5.0	Code IRC2021/TPI2014	Matrix-SH			Weight: 69 lb $FT = 20\%F$ ,	, 11%E
LUMBER-	•		BRACING-			
TOP CHORD 2x4 SF BOT CHORD 2x4 SF			TOP CHORD	Structural wood sheathing o end verticals.	lirectly applied or 6-0-0 oc purlins, e	except

WFBS 2x4 SP No.3(flat) BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 15=481/0-2-10 (min. 0-1-8), 8=485/0-3-8 (min. 0-1-8)

- - - -

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 15-16=-480/0, 1-16=-471/0, 1-2=-470/0, 2-3=-1215/0, 3-4=-1512/0, 4-5=-1403/0, 5-6=-873/0

BOT CHORD 13-14=0/948, 12-13=0/1512, 11-12=0/1512, 10-11=0/1512, 9-10=0/1252, 8-9=0/477

WEBS 3-13=-436/0, 2-13=0/347, 2-14=-622/0, 1-14=0/607, 4-10=-269/10, 5-9=-493/0, 6-9=0/516, 6-8=-665/0

NOTES-(5-8)

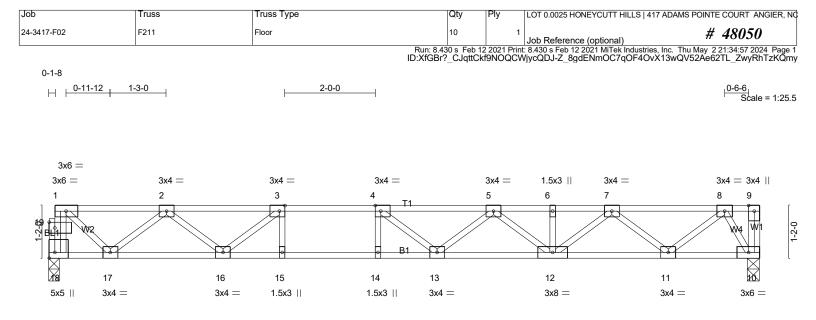
1) Unbalanced floor live loads have been considered for this design.

2) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 15.

3) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

4) CAUTION, Do not erect truss backwards

5) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.


6) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

7) Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing. 8) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED

MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard





	5-2-12 5-2-12	<u>6-2-12</u> 7-2-12 1-0-0 1-0-0	15-9-2 8-6-6	
Plate Offsets (X,Y)	[3:0-1-8,Edge], [4:0-1-8,Edge], [18:E	dge,0-1-8], [19:0-1-8,0-1-8	3]	
LOADING (psf)           TCLL         40.0           TCDL         10.0           BCLL         0.0           BCDL         5.0	SPACING-1-4-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrYESCode IRC2021/TPI2014	<b>CSI.</b> TC 0.42 BC 0.82 WB 0.34 Matrix-SH	DEFL.         in         (loc)         l/defl         L/d           Vert(LL)         -0.18         13-14         >999         480           Vert(CT)         -0.24         13-14         >770         360           Horz(CT)         0.03         10         n/a         n/a	PLATES         GRIP           MT20         244/190           Weight: 82 lb         FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SI BOT CHORD 2x4 SI			BRACING- TOP CHORD Structural wood sheathing dir end verticals.	rectly applied or 6-0-0 oc purlins, except

WFBS 2x4 SP No.3(flat) BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 18=562/0-2-10 (min. 0-1-8), 10=566/0-3-8 (min. 0-1-8)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 18-19=-564/0, 1-19=-553/0, 1-2=-560/0, 2-3=-1502/0, 3-4=-1980/0, 4-5=-2049/0, 5-6=-1713/0, 6-7=-1713/0, 7-8=-887/0

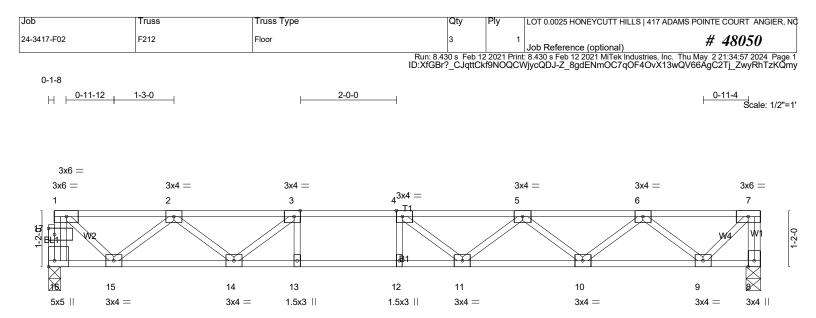
BOT CHORD 16-17=0/1124, 15-16=0/1980, 14-15=0/1980, 13-14=0/1980, 12-13=0/2007, 11-12=0/1384, 10-11=0/368

3-16=-647/0, 2-16=0/492, 2-17=-734/0, 1-17=0/723, 5-12=-375/0, 7-12=0/420, 7-11=-647/0, 8-11=0/676, 8-10=-690/0 WEBS

NOTES-(5-8)

1) Unbalanced floor live loads have been considered for this design

Provide mechanical connection (by others) of truss to bearing plate at joint(s) 18.


3) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

- 4) CAUTION, Do not erect truss backwards.
- 5) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
- 6) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.
- 7) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.

8) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

## LOAD CASE(S) Standard





	5-2-12 5-2-12	<u>6-2-12</u> 7-2-12 1-0-0 1-0-0	14-9-8 7-6-12	
Plate Offsets (X,Y)	[3:0-1-8,Edge], [4:0-1-8,Edge], [16:E	dge,0-1-8], [17:0-1-8,0-1-8]	T	
LOADING         (psf)           TCLL         40.0           TCDL         10.0           BCLL         0.0           BCDL         5.0	SPACING-1-4-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrYESCode IRC2021/TPI2014	TC 0.35 N BC 0.69 N	DEFL. in (loc) l/defl L/d Vert(LL) -0.14 11-12 >999 480 Vert(CT) -0.18 11-12 >941 360 Horz(CT) 0.03 8 n/a n/a	PLATES         GRIP           MT20         244/190           Weight: 75 lb         FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 S BOT CHORD 2x4 S		—	BRACING- IOP CHORD Structural wood sheathing d end verticals	irectly applied or 6-0-0 oc purlins, except

2x4 SP No.3(flat) WEBS

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 16=527/0-3-0 (min. 0-1-8), 8=531/0-3-8 (min. 0-1-8)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 16-17=-527/0, 1-17=-517/0, 7-8=-529/0, 1-2=-521/0, 2-3=-1376/0, 3-4=-1775/0, 4-5=-1765/0, 5-6=-1352/0, 6-7=-476/0

BOT CHORD 14-15=0/1047, 13-14=0/1775, 12-13=0/1775, 11-12=0/1775, 10-11=0/1675, 9-10=0/1017

3-14=-554/0, 2-14=0/428, 2-15=-685/0, 1-15=0/672, 5-10=-420/0, 6-10=0/436, 6-9=-704/0, 7-9=0/666 WEBS

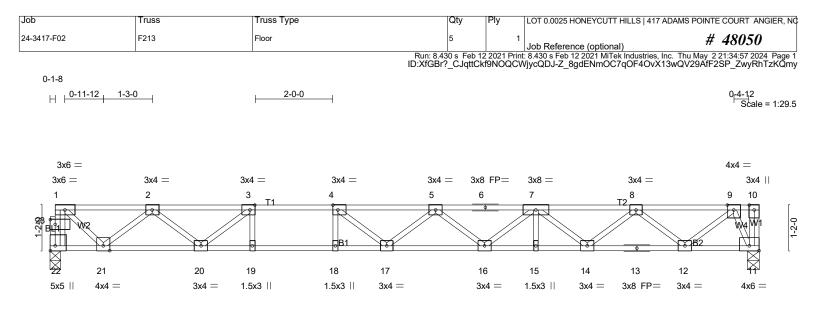
NOTES-(4-7)

1) Unbalanced floor live loads have been considered for this design.

2) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

3) CAUTION, Do not erect truss backwards

4) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.


5) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

6) Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing. 7) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED

MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard





<b> </b>	5-2-12 6-2 5-2-12 1-0	<u>-12   7-2-12  </u> 1-0 1-0-0	<u>18-1-8</u> 10-10-12	
Plate Offsets (X,Y)	[3:0-1-8,Edge], [4:0-1-8,Edge], [11:E	dge,0-1-8], [22:Edge,0-1	-8], [23:0-1-8,0-1-8]	
LOADING         (psf)           TCLL         40.0           TCDL         10.0           BCLL         0.0           BCDL         5.0	SPACING-1-4-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrYESCode IRC2021/TPI2014	<b>CSI.</b> TC 0.61 BC 0.75 WB 0.40 Matrix-SH	DEFL.         in (loc)         l/defi         L/d           Vert(LL)         -0.28         17-18         >758         480           Vert(CT)         -0.39         17-18         >551         360           Horz(CT)         0.04         11         n/a         n/a           Weight:         93 lb         FT = 20% F, 1	11%E
			BRACING-TOP CHORDStructural wood sheathing directly applied or 6-0-0 oc purlins, ex end verticals.BOT CHORDRigid ceiling directly applied or 10-0-0 oc bracing.	cept

REACTIONS. (lb/size) 22=649/0-3-0 (min. 0-1-8), 11=653/0-3-8 (min. 0-1-8)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 22-23=-653/0, 1-23=-641/0, 1-2=-657/0, 2-3=-1805/0, 3-4=-2480/0, 4-5=-2748/0, 5-6=-2622/0, 6-7=-2622/0, 7-8=-2008/0, 8-9=-980/0

BOT CHORD 20-21=0/1313, 19-20=0/2480, 18-19=0/2480, 17-18=0/2480, 16-17=0/2821, 15-16=0/2422, 14-15=0/2422, 13-14=0/1600, 12-13=0/1600 11-12=0/340

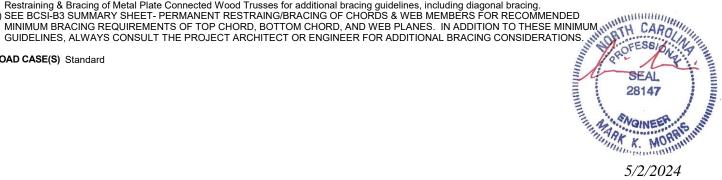
WEBS 3-19=0/320, 4-18=-299/0, 3-20=-883/0, 2-20=0/641, 2-21=-854/0, 1-21=0/849, 4-17=-63/456, 5-16=-260/0, 7-16=0/256, 7-14=-528/0, 8-14=0/532, 8-12=-807/0, 9-12=0/832, 9-11=-761/0

NOTES-(4-7)

1) Unbalanced floor live loads have been considered for this design.

2) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

CAUTION, Do not erect truss backwards.


4) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.

5) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

6) Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing

7)

## LOAD CASE(S) Standard



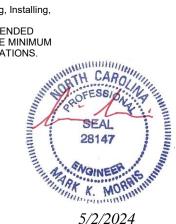
Job		Truss	In	uss Type		1	Jty	Ply	LOT 0.0025 F	IONEYCUTT HILL	S   417 ADAMS P	OINTE COURT A	NGIER, NC
24-3417-F02		F214	Flo	oor Supported Gable			I	1	Job Referer	nce (optional)		# 48050	
						Run: 8.430 ID:XfGE	s Feb 12 r?_CJqtt	2 2021 Prin Ckf9NOC	t: 8.430 s Feb ′ CWjycQDJ-1	12 2021 MiTek Ind I Bi2raOO9WFh0	ustries, Inc. Thu M )PfbTEYITe2MT	lay 2 21:34:58 20 aA5n?U7nah?E	24 Page 1 )wzKQmx
0 ₁ 1 ₇ 8													
												Scale	e = 1:25.1
3x4													
3x6 =	1.5x3	1.5x3	1.5x3	1.5x3	1.5x3	3x4 =	1.5x3	3	1.5x3	1.5x3	1.5x3	1.5x3    3x4	П
1	2	3	4	5	6	-7 -1	8		9	10	11	12 13	
]	•	•	•	•	•		•		•	•			
27 <del></del> 9 <del></del> -	ST1	ST1	ST1	ST1	ST1	ST1 W	2 ST1		ST1	ST1	ST1	ST1 W	1-2-0
		Ц					$\mathbf{\mathbf{A}}$						- <del>2</del>
		××××××××				B1 A		XXXX					l
26	25	24	23	22	21	20	19		18	17	16	15 14	J
5x5	1.5x3	1.5x3	1.5x3	1.5x3	1.5x3	1.5x3	3x4 =	=	1.5x3	1.5x3	1.5x3	1.5x3    3x4	П

1			15-5-10		
			15-5-10		
Plate Offsets (X,Y)	[1:Edge,0-1-8], [7:0-1-8,Edge], [19:0-	1-8.Edge]. [26:Edge.0-1-8	3]. [27:0-1-8.0-1-8]		
		· •,=	], [=		
LOADING (psf)	<b>SPACING-</b> 2-0-0	CSI.	DEFL. ii	n (loc) l/defl L/d	PLATES GRIP
TCLL 40.0	Plate Grip DOL 1.00	TC 0.06	Vert(LL) n/a	a – n/a 999	MT20 244/190
TCDL 10.0	Lumber DOL 1.00	BC 0.01	Vert(CT) n/a	a - n/a 999	
BCLL 0.0	Rep Stress Incr YES	WB 0.03	Horz(CT) 0.00	0 14 n/a n/a	
BCDL 5.0	Code IRC2021/TPI2014	Matrix-SH	(- )		Weight: 70 lb FT = 20%F, 11%E
LUMBER-			BRACING-		·
TOP CHORD 2x4 SI			TOP CHORD		g directly applied or 6-0-0 oc purlins, except
BOT CHORD 2x4 SI				end verticals.	
WEBS 2x4 SF	P No.3(flat)		BOT CHORD	Rigid ceiling directly appl	ied or 10-0-0 oc bracing.

OTHERS 2x4 SP No.3(flat)

REACTIONS. All bearings 15-5-10.

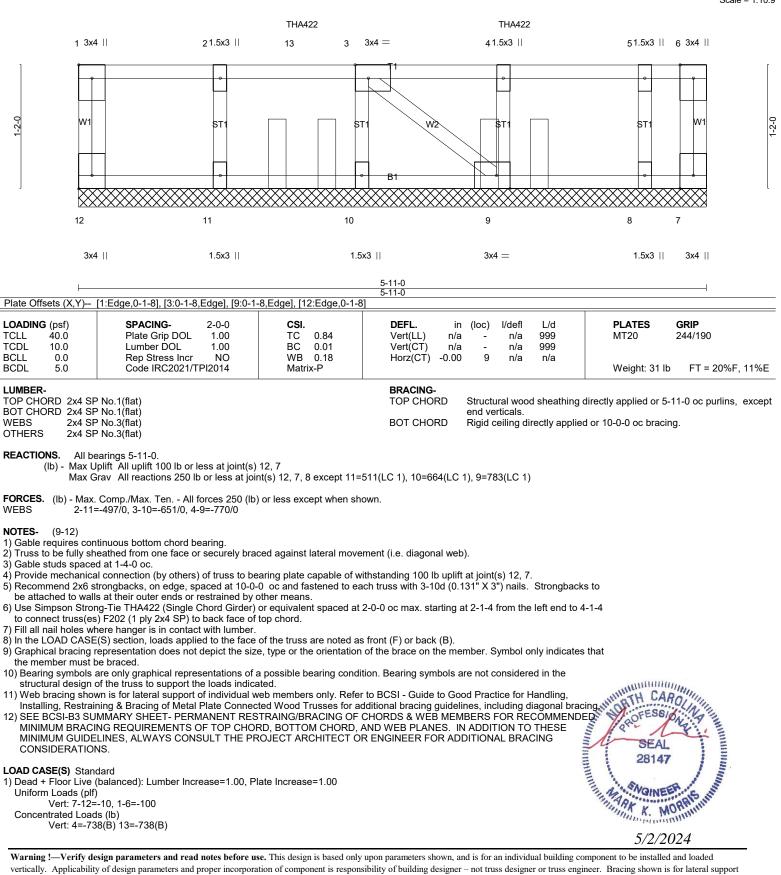
(lb) - Max Grav All reactions 250 lb or less at joint(s) 26, 14, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15


FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

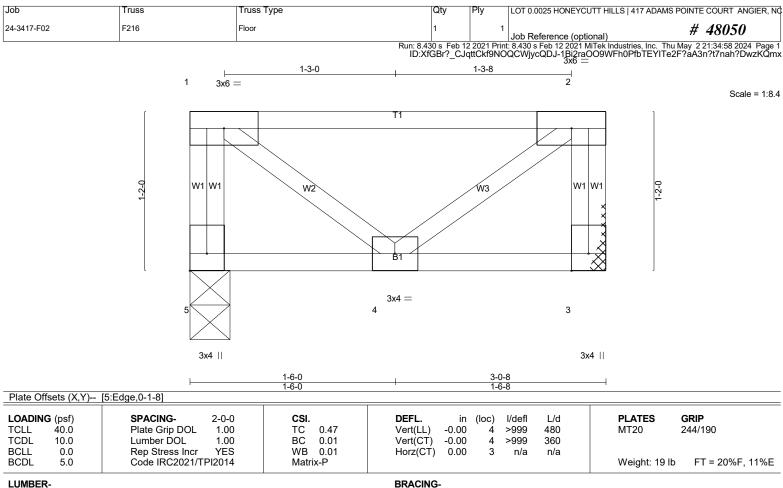
(6-9) NOTES-

1) Gable requires continuous bottom chord bearing.

- 2) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 3) Gable studs spaced at 1-4-0 oc.
- 4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 5) CAUTION, Do not erect truss backwards.
- 6) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
- 7) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.
- 8) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, 9) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED
- MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.


### LOAD CASE(S) Standard




Job	Truss	Truss Type	Qty	Ply	LOT 0.0025 HONEYCUTT HILLS   417 AD/	AMS POINTE COURT ANGIER, NC
24-3417-F02	F215	Floor Girder	1	1	Job Reference (optional)	# 48050
		Pue	9 420 a Eab 1	2 2021 Drin	t: 9 420 a Eab 12 2021 MiTak Industriaa Ina	Thu Mov. 2 21:24:59 2024 Dogo 1

Run: 8.430 s Feb 12 2021 Print: 8.430 s Feb 12 2021 MiTek Industries, Inc. Thu May 2 21:34:58 2024 Page 1 ID:XfGBr? CJqttCkf9NOQCWjycQDJ-1Bi2raOO9WFh0PfbTEYITe29KaA4nzE7nah?DwzKQmx

Scale = 1:10.9



vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 *National Design Standard for Metal Plate Connected Wood Truss Construction* and BCSI 1-03 Guide to *Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses* from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.



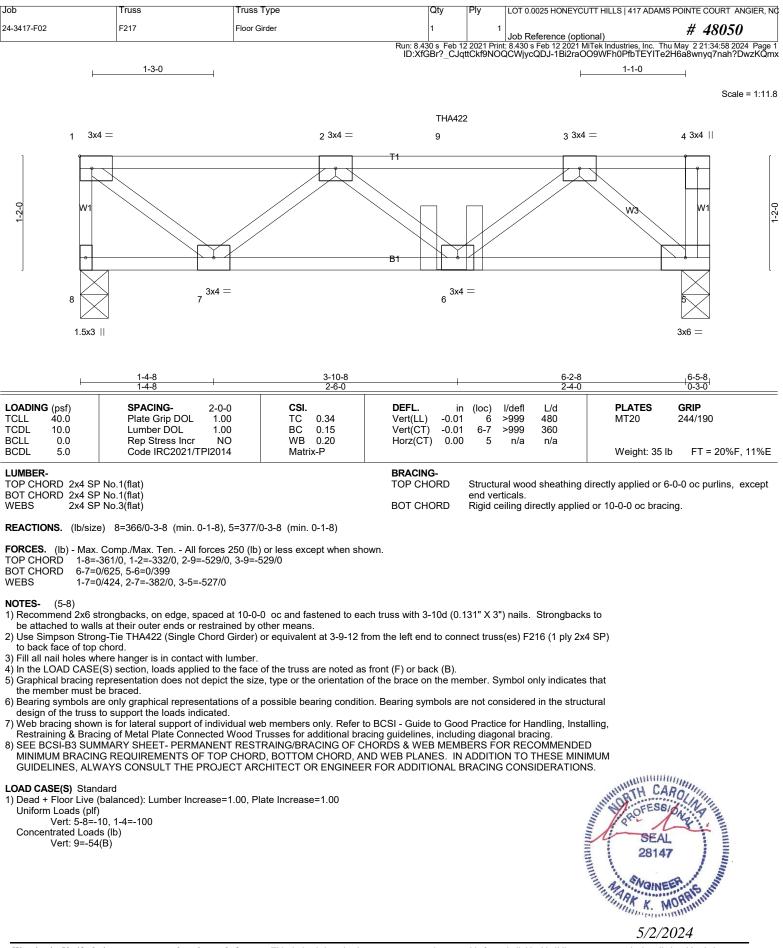
### LUMBER-

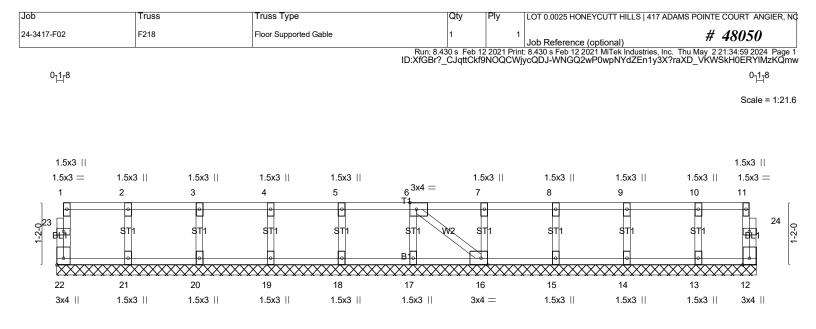
TOP CHORD 2x4 SP No.1(flat) BOT CHORD 2x4 SP No.1(flat) 2x4 SP No.3(flat) WEBS

TOP CHORD end verticals BOT CHORD

Structural wood sheathing directly applied or 3-0-8 oc purlins, except Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (Ib/size) 5=154/0-3-8 (min. 0-1-8), 3=154/Mechanical


FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.


NOTES-(3-6)

- 1) Refer to girder(s) for truss to truss connections.
- 2) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means
- 3) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
- 4) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.
- 5) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.
- 6) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard







			13-1-0		
I			13-1-0		I.
Plate Offsets (X,Y)	[6:0-1-8,Edge], [16:0-1-8,Edge], [22:E	Edge.0-1-8]			
LOADING (psf)	<b>SPACING-</b> 2-0-0	CSI.	DEFL. i	n (loc) l/defl L/d	PLATES GRIP
TCLL ÄO.Ó	Plate Grip DOL 1.00	TC 0.06	Vert(LL) n/	a`-´ n/a 999	MT20 244/190
TCDL 10.0	Lumber DOL 1.00	BC 0.01	Vert(CT) n/	a - n/a 999	
BCLL 0.0	Rep Stress Incr YES	WB 0.03	Horz(CT) 0.0		
BCDL 5.0	Code IRC2021/TPI2014	Matrix-SH	()	• • • • • • • • • • • • • • • • • • • •	Weight: 58 lb FT = 20%F, 11%E
LUMBER-	1		BRACING-		1
TOP CHORD 2x4 SI	P No.1(flat)		TOP CHORD	Structural wood sheathing	directly applied or 6-0-0 oc purlins, except
BOT CHORD 2x4 SI				end verticals.	,
WEBS 2x4 SP No.3(flat)			BOT CHORD	Rigid ceiling directly applie	d or 10-0-0 oc bracing.

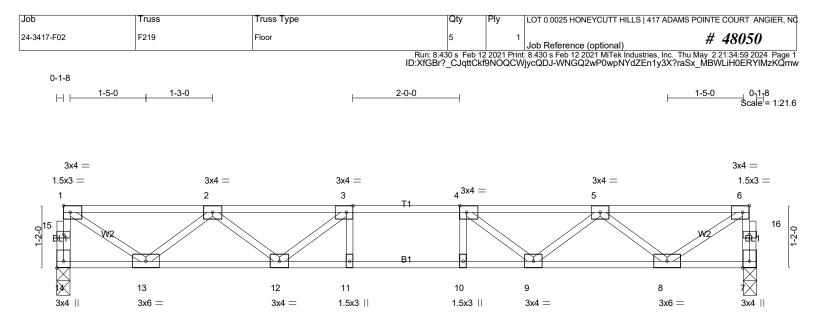
13-1-0

### OTHERS 2x4 SP No.3(flat)

**REACTIONS.** All bearings 13-1-0.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 22, 12, 21, 20, 19, 18, 17, 16, 15, 14, 13

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.


**NOTES-** (5-8)

1) Gable requires continuous bottom chord bearing.

- 2) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 3) Gable studs spaced at 1-4-0 oc.
- 4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 5) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
- 6) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.
- 7) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.
   8) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED
- 8) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

### LOAD CASE(S) Standard





	5-6-8	6-6-8	7-6-8		-1-0	
I	5-6-8	1-0-0	' 1-0-0 '	5-6	6-8	I
Plate Offsets (X,Y)	[3:0-1-8,Edge], [4:0-1-8,Edge], [6:0-1	-8,Edge], [14:Edge,0-1-8]				
LOADING (psf)           TCLL         40.0           TCDL         10.0           BCLL         0.0           BCDL         5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2021/TPI2014	<b>CSI.</b> TC 0.33 BC 0.59 WB 0.48 Matrix-SH	Vert(LL) -0.	in (loc) l/defl L/d 10 11-12 >999 480 13 11-12 >999 360 03 7 n/a n/a		<b>GRIP</b> 244/190 FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF			BRACING- TOP CHORD BOT CHORD	Structural wood sheathing d end verticals. Rigid ceiling directly applied		

769

660

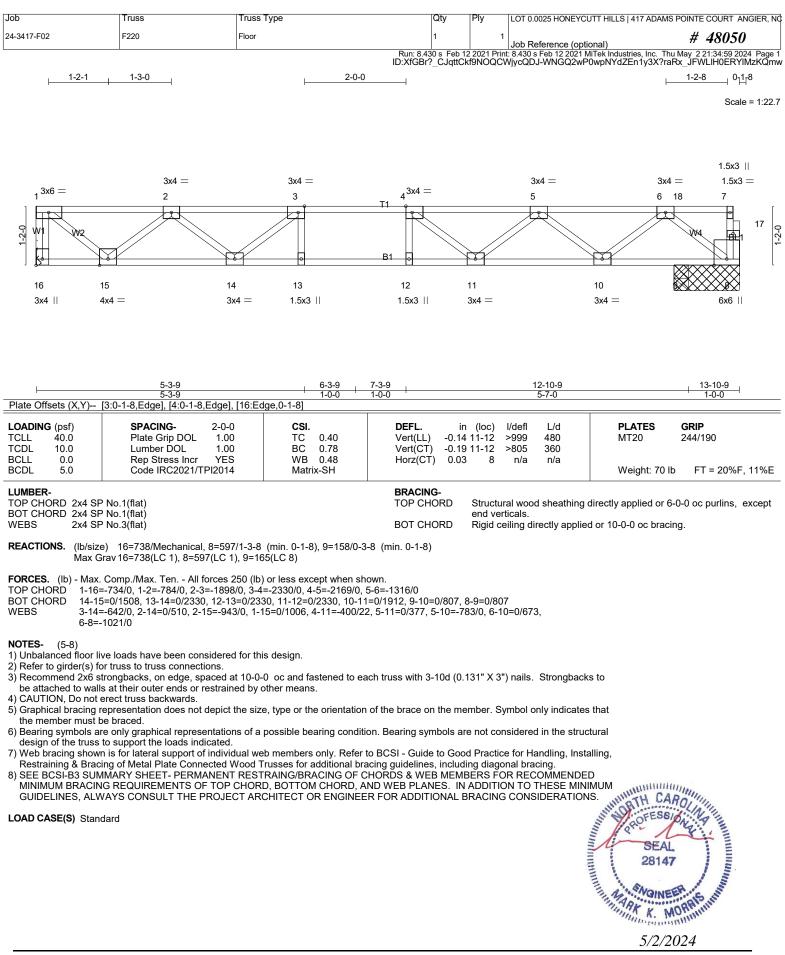
### REACTIONS. (lb/size) 14=700/0-3-0 (min. 0-1-8), 7=700/0-3-0 (min. 0-1-8)

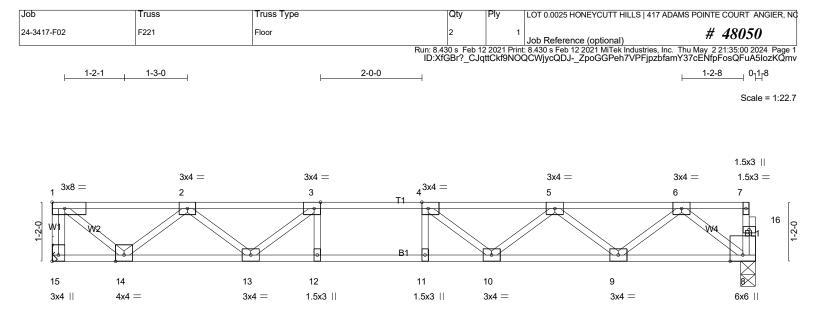
669

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 14-15=-694/0, 1-15=-692/0, 7-16=-694/0, 6-16=-692/0, 1-2=-869/0, 2-3=-1848/0, 3-4=-2143/0, 4-5=-1848/0,

- 5-6=-869/0 BOT CHORD 12-13=0/1542, 11-12=0/2143, 10-11=0/2143, 9-10=0/2143, 8-9=0/1542
- 3-12=-509/0, 2-12=0/428, 2-13=-876/0, 1-13=0/1012, 4-9=-509/0, 5-9=0/428, 5-8=-876/0, 6-8=0/1012 WEBS


NOTES-(3-6)


- 1) Unbalanced floor live loads have been considered for this design.
- 2) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 3) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
- 4) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.
- 5) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing. 6) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED
- MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard



12 1 0





	5-3-9	6-3-9	7-3-9 13-10-9 1-0-0 6-7-0	I
Plate Offsets (X,Y)	[3:0-1-8,Edge], [4:0-1-8,Edge], [15:Ed	lge,0-1-8]	· · · · · · · · · · · · · · · · · · ·	
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2021/TPI2014	<b>CSI.</b> TC 0.42 BC 0.82 WB 0.49 Matrix-SH	Vert(LL) -0.15 10-11 >999 480 Vert(CT) -0.20 10-11 >809 360 Horz(CT) 0.03 8 n/a n/a	PLATES         GRIP           MT20         244/190           Weight: 70 lb         FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF			end verticals.	applied or 6-0-0 oc purlins, except

WFBS 2x4 SP No.3(flat) BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 15=750/Mechanical, 8=743/0-3-8 (min. 0-1-8)

- - -

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-15=-746/0, 1-2=-798/0, 2-3=-1942/0, 3-4=-2401/0, 4-5=-2253/0, 5-6=-1477/0

BOT CHORD 13-14=0/1535, 12-13=0/2401, 11-12=0/2401, 10-11=0/2401, 9-10=0/2037, 8-9=0/889

WEBS 3-13=-678/0, 2-13=0/533, 2-14=-960/0, 1-14=0/1024, 4-10=-400/40, 5-10=0/358, 5-9=-729/0, 6-9=0/766, 6-8=-1125/0

(5-8) NOTES-

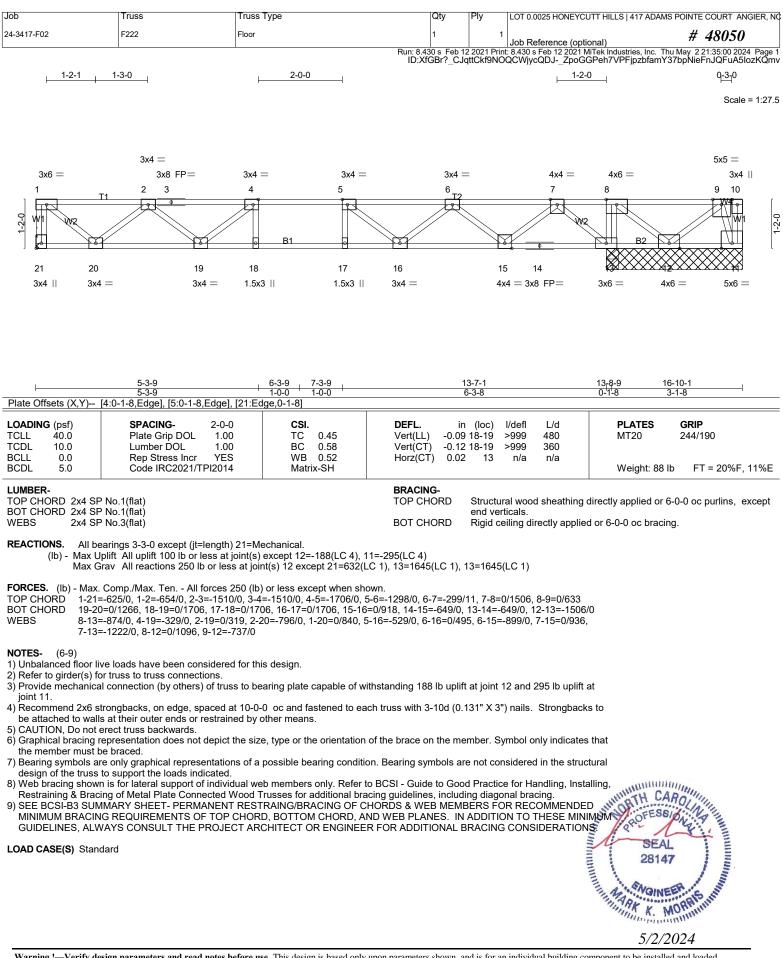
1) Unbalanced floor live loads have been considered for this design.

Refer to girder(s) for truss to truss connections.

3) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

4) CAUTION, Do not erect truss backwards

5) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.


6) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

7) Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing. 8) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED

MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

### LOAD CASE(S) Standard





Job	Truss	Truss Type	Qty P	y LOT 0.0025 HONEYC	JTT HILLS   417 ADAMS	POINTE COURT ANGIER, NC
24-3417-F02	F223	Floor	1	1 Job Reference (opti	onal)	# 48050
			Run: 8.430 s Feb 12 20 ID:XfGBr?_CJqttCkf	021 Print: 8.430 s Feb 12 2021 N 9NOQCWjycQDJZpoGGP	liTek Industries, Inc. Thu eh7VPFjpzbfamY37W	May 2 21:35:00 2024 Page 1 eNdxFmDQFuA5lozKQmv
0-11-8 1-3-0	<u>0 2-0-0 ρ-</u>	10-12 0-7-12	2-0-0			0 _[ 3 _] 8
						Scale = 1:40.0
		4x6 =				
3x6 =	3x4 = 3x4 = 2 3	3x6 = 3x8 FP = 4x4 = 456 7	3x4 = 3x4			4x4 = 5x6 =
			8 9	T2 10 11	12	
	B1 5			B2 B2		
☆ 30 29	28 27 26	25 24 23	22 21 20	19 18	17	₩ 16 15
3x4    3x4 =	1.5x3    1.5x3    3x4	= 3x6 = 3x8 FP=	4x4 = 1.5x3    1.5x3	3x4 = 3x8	= 4x4 =	3x4
		4x6 =				5x5 =
	4-8-8	6-11-12				
2-7-0	<u></u>	10-4    12-10-8 D-14    5-10-12	<mark>13-10-8</mark>  14-10-8  -0-0   1-0-0		24-5-0 9-6-8	I
Plate Offsets (X,Y)	0-1-8 [2:0-1-8,Edge], [3:0-1-8,Ed		e], [30:Edge,0-1-8]			
LOADING (psf) TCLL 40.0		-0-0 <b>CSI.</b> 1.00 TC 0.78	<b>DEFL.</b> in ( Vert(LL) -0.33 19		PLATES MT20	<b>GRIP</b> 244/190
TCDL 10.0 BCLL 0.0		1.00 BC 0.94 YES WB 0.59	Vert(CT) -0.45 19 Horz(CT) 0.05	-20 >464 360 15 n/a n/a		
BCDL 5.0	Code IRC2021/TPI2	014 Matrix-SH			Weight: 125 I	b FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SI				tructural wood sheathing	directly applied or 5-	1-10 oc purlins, except
	4 SP SS(flat)			nd verticals. igid ceiling directly applie	d or 2-2-0 oc bracing	
	P No.3(flat)	-8), 15=893/0-3-0 (min. 0-1-8), 2	25-1537/0.3.8 (min 0.1.8)			
Max I	Jplift30=-42(LC 4) Grav 30=332(LC 3), 15=902		20-100770-0-0 (mm. 0-1-0)			
		es 250 (lb) or less except when s	shown.			
TOP CHORD 1-30	=-335/24, 14-15=-901/0, 2-	3=-455/311, 3-4=-28/735, 4-5=0/ 265/0, 9-10=-3501/0, 10-11=-31	1102, 5-6=-872/0,			
BOT CHORD 28-2		5, 26-27=-311/455, 25-26=-1102				
17-1	8=0/2717, 16-17=0/1332	1-22=0/3265, 20-21=0/3265, 19-3	, ,			
4-26	=0/568, 8-22=-1146/0, 7-22	-473/0, 2-29=-279/306, 1-29=-99 =0/877, 7-24=-1186/0, 5-24=0/12	244, 5-25=-1305/0,			
	6=0/908	2-18=0/532, 12-17=-877/0, 13-17	/=0/926, 13-16=-1295/0,			
<b>NOTES-</b> (5-8)	live loads have been consid	ered for this design				
2) Provide mechanic	al connection (by others) of	truss to bearing plate capable of ed at 10-0-0 oc and fastened to			s to	
be attached to wal	lls at their outer ends or rest	rained by other means.		, -		10.
5) Graphical bracing the member must	representation does not de be braced.	bict the size, type or the orientation	on of the brace on the memb	per. Symbol only indicates	that WHERTH CAA	OLIANI
design of the truss	s to support the loads indica	ted.		ot considered in the struc	tural PROFESSI	N.Q. A IIII
<ol> <li>Web bracing show Restraining &amp; Brack</li> </ol>	vn is for lateral support of in cing of Metal Plate Connect	dividual web members only. Refe	r to BCSI - Guide to Good F pracing guidelines, including	ractice for Handling, Insta diagonal bracing.	Hing, SEAL	MUIII
MINIMUM BRACIN	NG REQUIREMENTS OF T	ENT RESTRAING/BRACING OF OP CHORD, BOTTOM CHORD,	AND WEB PLANES IN AF	RS FOR RECOMMENDE	D 28147	
		JECT ARCHITECT OR ENGINE	ER FUR ADDITIONAL BRA	CONSIDERATION	ANOINEE	A BELLINE
LOAD CASE(S) Star	lualu				Mining K. M	Descention
					5/2/20	24 24
Warning   Varify d	esian parameters and read no	es before use. This design is based or	ly upon parameters shown and	s for an individual building co	mponent to be installed	and loaded

$\begin{bmatrix} 2447.752 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1425 \\ 1$	Job	Truss	Truss Type	Qty Ply	LOT 0.0025 HONEYCUTT HI	ILLS   417 ADAMS POINTE COURT ANGIER, NC			
$DXGB r_LCLRECKCOCVW_dCDLS mVATCOGSRUGGOBASTEGGGO_D Call VM4 PXdmut and the second se$	24-3417-F02	F224	Floor		Job Reference (optional)	# 48050			
$\begin{array}{c} 1113 132 \\ 1113 132 \\ 1113 132 \\ 1113 132 \\ 1113 132 \\ 1113 132 \\ 1113 132 \\ 1113 132 \\ 1113 132 \\ 1113 132 \\ 1113 132 \\ 1113 132 \\ 1113 132 \\ 1113 132 \\ 1113 132 \\ 1113 132 \\ 1113 133 \\ 1113 132 \\ 1113 132 \\ 1113 133 \\ 1113 132 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 \\ 1113 133 1113 \\ 1113 133 1113 \\ 1113 1113 1113 1113 1113 1113 \\ 1113 1113 1113 1113 1113 1113 11113 111$				ID:XfGBr?_CJqttCkf9NOQ0	CWjycQDJ-SmNATcQGSRd	GtsO98N5?5GgfGnyQ_DdaUYwfqFzKQmu			
$\frac{1}{10^{-1}} = \frac{1}{10^{-1}} + \frac{1}{10^{-1}$	0-11-8 ₁ 1-3-0	⊣  <u>2-0-0</u>   0 <mark>-10-12</mark>	0-7-12	2-0-0		0 ₇ 4 ₇ 0 ₁ 0-9-0			
270         370         470         470         470         470         470         470         470         470         470         470         470         470         470         470         470         470         470         470         470         470         470         470         470         470         470         470         470         470         470         470         470         470         470         470         470         470         470         470         470         470         470         470         470         470         470         470         470         470         470         470         470         470         470         470         470         470         470         470         470         470         470         470         470         470         470         470         470         470         470         470         470         470         470         470         470         470         470         470         470         470         470         470         470         470         470         470         470         470         470         470         470         470         470         470         470 <td></td> <td>2 31 4 1 B1 6 30 29 28 2</td> <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td>8 9 23 22 21 1.5x3    1.5x3    4x4 =</td> <td>10 11 12 13 1 12 13 1 12 13 12 13 12 13 12 13 12 13 12 13 12 13 12 13 12 14 12 15 12 15</td> <td>4x4 = 4x8 = 3x4 = 13   14   15   13   14   15   134   15   134   15   19   18   17   16   4x4 = 4x4 = 3x4 = 100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100</td>		2 31 4 1 B1 6 30 29 28 2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8 9 23 22 21 1.5x3    1.5x3    4x4 =	10 11 12 13 1 12 13 1 12 13 12 13 12 13 12 13 12 13 12 13 12 13 12 13 12 14 12 15	4x4 = 4x8 = 3x4 = 13   14   15   13   14   15   134   15   134   15   19   18   17   16   4x4 = 4x4 = 3x4 = 100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100			
TCLL         40.0         Plate Grip DOL         1.00         TC 0.85         Vert(C1)         -0.33 21:22         >631 480         MT20         244/190           TCDL         10.0         Rep Stress Incr         NO         WB         0.58         Vert(C1)         -0.33 21:22         >485 380         Weight: 131 lb         FT = 20%F, 11%E           UMBER         Code IRC2021/TPI2014         Matrix-SH         BRACING-         TOP CHORD         Structural wood sheathing directly applied or 5-6-9 oc purlins, except end verticals.           BOT CHORD         2x4 SP No.1(flat)         Except*         BOT CHORD         Rigid ceiling directly applied or 6-0-0 oc bracing.           WEBS         2x4 SP No.3(flat)         BOT CHORD         Rigid ceiling directly applied or 6-0-0 oc bracing.           WEBS         2x4 SP No.3(flat)         BOT CHORD         Rigid ceiling directly applied or 6-0-0 oc bracing.           REACTIONS.         (Ib/size)         32=230/0-3-8 (min. 0-1-8), 17=1320/LC 3).         Rigid ceiling directly applied or 6-0-0 oc bracing.           FORCES.         (b) - Max. Comp./Max. Ten All forces 250 (b) or less except when shown.         TOP CHORD         1-32=-3850, 0.3-344=-3550, 0.3-344=-3550, 0.3-344=-3550, 0.3-344=-3550, 0.3-445, 520, 3-334=-3550, 0.3-244=-350, 0.2-3-260/3174, 22-230/3174, 21-22-30/3174, 21-22-30/3174, 21-22-30/3174, 21-22-30/3174, 21-22-30/3174, 21-22-30/3174, 21-22-30/3174, 21-22-30/3174, 21-22-30/3174, 21-22-30/3174, 21	2-7-0	<u>3-7-0</u> <u>4-7-0</u> <u>5-9-6</u> <u>6-10-4</u> <u>1-0-0</u> <u>1-0-0</u> <u>1-0-14</u> <u>1-0-14</u> <u>0-1-8</u> <u>0-1</u>	12-10-8 5-10-12 -8	' 1-0-0 ' 1-0-0 '	9-5-8	<u> </u>			
TOP CHORD 2x4 SP No.1(flat)       TOP CHORD 2x4 SP No.1(flat)       Structural wood sheathing directly applied or 5-6-9 oc purlins, except end verticals.         BOT CHORD 2x4 SP No.1(flat)       BOT CHORD       Structural wood sheathing directly applied or 6-0-0 oc bracing.         WEBS       2x4 SP No.3(flat)       BOT CHORD       Rigid celling directly applied or 6-0-0 oc bracing.         REACTIONS.       (bis/ze) 32=230/0-3-8 (min. 0-1-8), 17=1319/0-3-8 (min. 0-1-8), 27=1517/0-3-8 (min. 0-1-8) Max Upiff32=-40(LC 6), Max Grav 32=334(LC 5), 17=1320(LC 4), 27=1520(LC 3)       Max Grav 32=334(LC 5), 17=1320(LC 4), 27=1520(LC 3)         FORCES.       (b) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown.       TOP CHORD       1-32=-338/62, 16-33=-335(0, 33-34=-335(0, 2-3=-465/305, 3-4=-45/725, 4-5=0/1090, 5-6=-854/0, 6-7=-854/0, 7-8=-2250(3), 8-9=-3174/0, 9-10=-3376/0, 10-11=-2971/0, 11-12=-2971/0, 11-12=-2971/0, 12-3=-1181/0         BOT CHORD       30-31=-305/465, 29-30=-305/465, 22-29=-305/465, 22-29=-305/465, 22-29=-305/465, 22-29=-305/465, 22-29=-305/465, 22-29=-305/465, 22-29=-305/465, 22-29=-305/465, 22-29=-305/465, 22-29=-305/465, 22-29=-305/465, 22-29=-305/465, 22-29=-305/465, 22-29=-305/465, 22-29=-305/465, 22-29=-305/465, 22-29=-305/465, 22-29=-305/465, 22-29=-305/465, 22-29=-305/465, 22-29=-305/465, 22-29=-305/465, 22-29=-305/465, 22-29=-305/465, 22-29=-305/465, 22-29=-305/465, 22-29=-305/465, 22-29=-305/465, 22-29=-305/465, 22-29=-305/465, 22-29=-305/465, 22-29=-305/465, 22-29=-305/465, 22-29=-305/465, 22-29=-305/465, 22-29=-305/465, 22-29=-305/465, 22-29=-305/465, 22-29=-305/465, 22-29=-305/465, 22-29=-305/465, 22-29=-305/465, 22-29=-305/465, 22-29=-305/465, 22-29=-305/465, 22-29=-305/465, 22-29=-305/465,	TCLL ⁴ 0.0 TCDL 10.0 BCLL 0.0	Plate Grip DOL 1.0 Lumber DOL 1.0 Rep Stress Incr NO	0 TC 0.85 0 BC 0.99 0 WB 0.58	Vert(LL) -0.33 21-22 Vert(CT) -0.43 21-22	>631 480 >485 360	MT20 244/190			
Max Uplift32=-40(LC 6) Max Grav 32=334(LC 5), 17=1320(LC 4), 27=1520(LC 3) FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 1-32=-338/22, 16-33=-335/0, 33-34=-335/0, 15-34=-335/0, 2-3=-465/305, 3-4=-45/725, 4-5=0/1090, 5-6=-854/0, 6-7=-854/0, 7-8=-2355/0, 8-9=-3174/0, 9-10=-3376/0, 10-11=-2971/0, 11-12=-2971/0, 12-13=-1841/0 BOT CHORD 30-31=-305/465, 29-30=-305/465, 28-29=-305/465, 27-28=-1090/0, 26-27=-353/0, 25-26=0/1727, 24-25=0/1727, 23-24=0/3174, 22-23=0/3174, 20-21=0/3368, 19-20=0/2535, 18-19=0/1108, 17-18=-297/0, 16-17=-293/0 WEBS 8-23=0/384, 9-22=-353/6, 4-27=-473/0, 14-17=-1238/0, 2-31=-287/301, 1-31=-96/333, 3-28=-851/0, 4-28=-01/565, 8-24=-1101/0, 7-24=0/849, 7-26=-1165/0, 5-26=0/1221, 5-27=-1284/0, 9-21=-202/457, 10-20=-506/0, 12-20=0/556, 12-19=-904/0, 13-19=0/954, 13-18=-1305/0, 14-18=0/876, 14-16=0/439 NOTES- (6-9) 1) Unbalanced floor live loads have been considered for this design. 2) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 40 lb uplift at joint 32. 3) Load case(s) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 has/have been modified. Building designer must review loads to verify that they are correct for the intended use of this truss. 4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.	TOP CHORD 2x4 SF BOT CHORD 2x4 SF B2: 2x4	⁰ No.1(̀flat)́ *Except* 4 SP SS(flat)		TOP CHORD Structu end ver	erticals.				
TOP CHORD       1-32=-338/22, 16-33=-335/0, 33-34=-335/0, 15-34=-335/0, 2-3=-465/305, 3-4=-45/725, 4-5=0/1090, 5-6=-854/0, 6-7=-854/0, 7-8=-2355/0, 8-9=-3174/0, 9-10=-3376/0, 10-11=-2971/0, 11-2=-2971/0, 12-13=-1841/0         BOT CHORD       30-31=-305/465, 29-30=-305/465, 28-29=-305/465, 27-28=-1090/0, 26-27=-353/0, 25-26=0/1727, 24-25=0/1727, 23-24=0/3174, 22-23=0/3174, 20-21=0/3368, 19-20=0/2535, 18-19=0/1108, 17-18=-297/0, 16-17=-293/0         WEBS       8-23=0/384, 9-22=-353/6, 4-27=-473/0, 14-17=-1238/0, 2-31=-287/301, 1-31=-96/333, 3-28=-851/0, 4-28=0/565, 8-24=-1101/0, 7-24=0/849, 7-26=-1165/0, 5-26=0/1221, 5-27=-1284/0, 9-21=-202/457, 10-20=-505/0, 12-19=-904/0, 13-19=0/954, 13-18=-1305/0, 14-18=0/876, 14-16=0/439         NOTES-       (6-9)         1) Unbalanced floor live loads have been considered for this design.         2) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 40 lb uplift at joint 32.         3) Load case(s) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 has/have been modified. Building designer must review loads to verify that they are correct for the intended use of this truss.         4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.	Max U	plift32=-40(LC 6)		7=1517/0-3-8 (min. 0-1-8)					
<ol> <li>Unbalanced floor live loads have been considered for this design.</li> <li>Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 40 lb uplift at joint 32.</li> <li>Load case(s) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 has/have been modified. Building designer must review loads to verify that they are correct for the intended use of this truss.</li> <li>Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.</li> </ol>	TOP CHORD 1-32= 4-5=( 10-11 BOT CHORD 30-31 25-26 19-20 WEBS 8-23= 3-28= 5-27=	Max Grav 32=334(LC 5), 17=1320(LC 4), 27=1520(LC 3)         FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown.         TOP CHORD       1-32=-338/22, 16-33=-335/0, 33-34=-335/0, 15-34=-335/0, 2-3=-465/305, 3-4=-45/725,         4-5=0/1090, 5-6=-854/0, 6-7=-854/0, 7-8=-2355/0, 8-9=-3174/0, 9-10=-3376/0,         10-11=-2971/0, 11-12=-2971/0, 12-13=-1841/0         BOT CHORD       30-31=-305/465, 29-30=-305/465, 28-29=-305/465, 27-28=-1090/0, 26-27=-353/0,         25-26=0/1727, 24-25=0/1727, 23-24=0/3174, 22-23=0/3174, 21-22=0/3174, 20-21=0/3368,         19-20=0/2535, 18-19=0/1108, 17-18=-297/0, 16-17=-293/0         WEBS       8-23=0/384, 9-22=-353/6, 4-27=-473/0, 14-17=-1238/0, 2-31=-287/301, 1-31=-96/333,         3-28=-851/0, 4-28=0/565, 8-24=-1101/0, 7-24=0/849, 7-26=-1165/0, 5-26=0/1221,         5-27=-1284/0, 9-21=-202/457, 10-20=-506/0, 12-20=0/556, 12-19=-904/0, 13-19=0/954,							
5/2/2024	<ol> <li>Unbalanced floor lii</li> <li>Provide mechanica</li> <li>Load case(s) 1, 2, 3</li> <li>verify that they are</li> <li>Recommend 2x6 s</li> <li>be attached to wall</li> <li>CAUTION, Do not a</li> <li>Graphical bracing r</li> <li>the member must</li> <li>Bearing symbols ar</li> <li>design of the truss</li> <li>Web bracing shown Restraining &amp; Brac</li> <li>SEE BCSI-B3 SUM MINIMUM BRACIN</li> <li>GUIDELINES, ALW</li> </ol>	I connection (by others) of tru 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 1 correct for the intended use o trongbacks, on edge, spaced s at their outer ends or restrain erect truss backwards. epresentation does not depict be braced. Te only graphical representation to support the loads indicated in is for lateral support of indivi- ing of Metal Plate Connected IMARY SHEET- PERMANEN G REQUIREMENTS OF TOP /AYS CONSULT THE PROJE	ss to bearing plate capable of wi 3, 14, 15, 16, 17, 18 has/have b this truss. at 10-0-0 oc and fastened to ea hed by other means. the size, type or the orientation ins of a possible bearing condition. dual web members only. Refer t Wood Trusses for additional bra T RESTRAING/BRACING OF C CHORD, BOTTOM CHORD, AI	een modified. Building designe ch truss with 3-10d (0.131" X 3 of the brace on the member. S on. Bearing symbols are not co o BCSI - Guide to Good Practi icing guidelines, including diag HORDS & WEB MEMBERS F ND WEB PLANES. IN ADDITI	er must review loads to 3") nails. Strongbacks to	SEAL 28147			
	LUAD CASE(S) Stand	uaru				5/2/2024			

Job	Truss	Truss Type	Qty	Ply	LOT 0.0025 HONEYCUTT HILLS   417 ADAMS POINTE COURT ANGIER, NO
24-3417-F02	F224	Floor	2	1	Job Reference (optional) # 48050
		R	Run: 8.430 s Feb 12	2 2021 Prin	t: 8,430 s Feb 12 2021 MiTek Industries, Inc. Thu May 2 21:35:01 2024 Page 2

Run: 8.430 s Feb 12 2021 Print: 8.430 s Feb 12 2021 MiTek Industries, Inc. Thu May 2 21:35:01 2024 Page 2 ID:XfGBr?_CJqttCkf9NOQCWjycQDJ-SmNATcQGSRdGtsO98N5?5GgfGnyQ_DdaUYwfqFzKQmu

	-`
LOAD CASE(S) Standard 1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)	
Vert: 16-32=-10, 1-15=-100 Concentrated Loads (lb) Vert: 15=-300	
2) Dead: Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 16-32=-10, 1-15=-100	
Concentrated Loads (lb) Vert: 15=-300	
<ol> <li>1st Dead + Floor Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)</li> </ol>	
Vert: 16-32=-10, 1-14=-100, 14-15=-20 Concentrated Loads (lb) Vert: 15=-300	
<ol> <li>2nd Dead + Floor Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)</li> </ol>	
Vert: 16-32=-10, 1-4=-20, 4-15=-100 Concentrated Loads (lb) Vert: 15=-300	
5) 3rd Dead + Floor Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)	
Vert: 16-32=-10, 1-4=-100, 4-14=-20, 14-15=-100 Concentrated Loads (lb) Vert: 15=-300	
<ul> <li>6) 4th Dead + Floor Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)</li> </ul>	
Vert: 16-32=-10, 1-4=-20, 4-14=-100, 14-15=-20 Concentrated Loads (lb) Vert: 15=-300	
7) 5th unbalanced Dead: Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)	
Vert: 16-32=-10, 1-14=-100, 14-15=-20 Concentrated Loads (lb)	
Vert: 15=-300 8) 6th unbalanced Dead: Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)	
Vert: 16-32=-10, 1-4=-20, 4-15=-100 Concentrated Loads (lb)	
Vert: 15=-300 9) 7th unbalanced Dead: Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)	
Vert: 16-32=-10, 1-4=-100, 4-14=-20, 14-15=-100 Concentrated Loads (lb)	
Vert: 15=-300 10) 8th unbalanced Dead: Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)	
Vert: 16-32=-10, 1-4=-20, 4-14=-100, 14-15=-20 Concentrated Loads (lb)	
Vert: 15=-300 11) 1st chase Dead + Floor Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00	
Uniform Loads (plf) Vert: 16-32=-10, 1-3=-100, 3-4=-20, 4-14=-100, 14-15=-20 Concentrated Loads (lb)	
Vert: 15=-300 12) 2nd chase Dead + Floor Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00	
Uniform Loads (plf) Vert: 16-32=-10, 1-2=-20, 2-14=-100, 14-15=-20	
Concentrated Loads (lb) Vert: 15=-300 13) 3rd chase Dead + Floor Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00	
Uniform Loads (plf) Vert: 16-32=-10, 1-9=-100, 9-14=-20, 14-15=-100	
Concentrated Loads (lb) Vert: 15=-300 11 4th brace Deced + Elect Live (upbelanced): Lumber Increase=1.00, Elect Increase=1.00	
14) 4th chase Dead + Floor Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 16-32=-10, 1-4=-100, 4-8=-20, 8-14=-100, 14-15=-20	
Concentrated Loads (lb) Vert: 15=-300	
15) 5th chase Dead: Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 16-32=-10, 1-3=-100, 3-4=-20, 4-14=-100, 14-15=-20	
Concentrated Loads (lb) Vert: 15=-300	
16) 6th chase Dead: Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)	
Vert: 16-32=-10, 1-2=-20, 2-14=-100, 14-15=-20	



Job Tru	uss	Truss Type	Qty	Ply	LOT 0.0025 HONEYCUTT HILLS   417 ADAM	S POINTE COURT ANGIER, NC
24-3417-F02 F22	24 F	Floor	2	1	Job Reference (optional)	# 48050

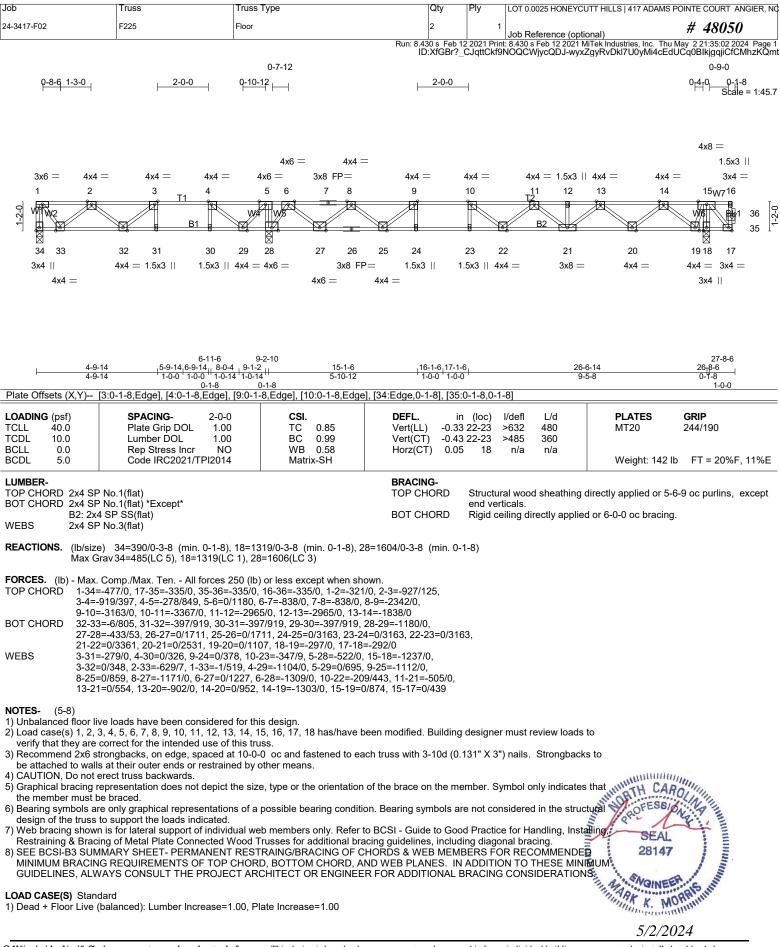
Run: 8.430 s Feb 12 2021 Print: 8.430 s Feb 12 2021 MiTek Industries, Inc. Thu May 2 21:35:01 2024 Page 3 ID:XfGBr?_CJqttCkf9NOQCWjycQDJ-SmNATcQGSRdGtsO98N5?5GgfGnyQ_DdaUYwfqFzKQmu

### LOAD CASE(S) Standard Concentrated Loads (lb)

Vert: 15=-300

17) 7th chase Dead: Lumber Increase=1.00, Plate Increase=1.00

Uniform Loads (plf)


- Vert: 16-32=-10, 1-9=-100, 9-14=-20, 14-15=-100 Concentrated Loads (lb)
- Vert: 15=-300
- 18) 8th chase Dead: Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)

Vert: 16⁻³2²=-10, 1-4=-100, 4-8=-20, 8-14=-100, 14-15=-20 Concentrated Loads (lb)

Vert: 15=-300



5/2/2024



Job	Truss	Truss Type	Qty	Ply	LOT 0.0025 HONEYCUTT HILLS   417 ADAMS POINTE COURT ANGIE	R, NC
24-3417-F02	F225	Floor	2	1	Job Reference (optional) # 48050	
		Duri	400 - E-1	0.0004 Duin	10 A D a Fah 42 0024 MiTak Industrian Ing. Thu May 2 24:25:02 2024 D	

Run: 8.430 s Feb 12 2021 Print: 8.430 s Feb 12 2021 Mi Lek Industries, Inc. Thu May 2 21:35:02 2024 Page 2 ID:XfGBr?_CJqttCkf9NOQCWjycQDJ-wyxZgyRvDkl7U0yMi4cEdUCq0BlkjgqjiCfCMhzKQmt

LOAD CASE(S) Standard	
Uniform Loads (plf) Vert: 17-34=-10, 1-16=-100	
Concentrated Loads (Ib)	
Vert: 16=-300 2) Dead: Lumber Increase=1.00, Plate Increase=1.00	
Uniform Loads (plf)	
Vert: 17-34=-10, 1-16=-100	
Concentrated Loads (lb) Vert: 16=-300	
3) 1st Dead + Floor Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00	
Uniform Loads (plf) Vert: 17-34=-10, 1-15=-100, 15-16=-20	
Concentrated Loads (lb)	
Vert: 16=-300 4) 2nd Dead + Floor Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00	
Uniform Loads (plf)	
Vert: 17-34=-10, 1-5=-20, 5-16=-100 Concentrated Loads (lb)	
Vert: 16=-300	
<ol> <li>3rd Dead + Floor Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)</li> </ol>	
Vert: 17-34=-10, 1-5=-100, 5-15=-20, 15-16=-100	
Concentrated Loads (lb) Vert: 16=-300	
6) 4th Dead + Floor Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00	
Uniform Loads (plf)	
Vert: 17-34=-10, 1-5=-20, 5-15=-100, 15-16=-20 Concentrated Loads (lb)	
Vert: 16=-300 ´	
<ol> <li>5th unbalanced Dead: Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)</li> </ol>	
Vert: 17-34=-10, 1-15=-100, 15-16=-20	
Concentrated Loads (lb) Vert: 16=-300	
8) 6th unbalanced Dead: Lumber Increase=1.00, Plate Increase=1.00	
Uniform Loads (plf) Vert: 17-34=-10, 1-5=-20, 5-16=-100	
Concentrated Loads (lb)	
Vert: 16=-300 9) 7th unbalanced Dead: Lumber Increase=1.00, Plate Increase=1.00	
Uniform Loads (plf)	
Vert: 17-34=-10, 1-5=-100, 5-15=-20, 15-16=-100 Concentrated Loads (lb)	
Vert: 16=-300	
<ol> <li>8th unbalanced Dead: Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)</li> </ol>	
Vert: 17-̈́34́=-10, 1-5=-20, 5-15=-100, 15-16=-20	
Concentrated Loads (lb) Vert: 16=-300	
11) 1st chase Dead + Floor Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00	
Uniform Loads (plf) Vert: 17-34=-10, 1-4=-100, 4-5=-20, 5-15=-100, 15-16=-20	
Concentrated Loads (lb)	
Vert: 16=-300 12) 2nd chase Dead + Floor Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00	
Uniform Loads (plf)	
Vert: 17-34=-10, 1-3=-20, 3-15=-100, 15-16=-20 Concentrated Loads (lb)	
Vert: 16=-300	
13) 3rd chase Dead + Floor Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00	
Uniform Loads (plf) Vert: 17-34=-10, 1-10=-100, 10-15=-20, 15-16=-100	
Concentrated Loads (lb)	
Vert: 16=-300 14) 4th chase Dead + Floor Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00	
Uniform Loads (plf)	
Vert: 17-34=-10, 1-5=-100, 5-9=-20, 9-15=-100, 15-16=-20 Concentrated Loads (lb)	
Vert: 16=-300	
<ol> <li>5th chase Dead: Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)</li> </ol>	
Vert: 17-34=-10, 1-4=-100, 4-5=-20, 5-15=-100, 15-16=-20	
Concentrated Loads (lb) Vert: 16=-300	
16) 6th chase Dead: Lumber Increase=1.00, Plate Increase=1.00	
Uniform Loads (plf) Vert: 17-34=-10, 1-3=-20, 3-15=-100, 15-16=-20	



Job	Truss	Truss Type	Qty	Ply	LOT 0.0025 HONEYCUTT HILLS   417 ADAM	IS POINTE COURT ANGIER, NO		
24-3417-F02	F225	Floor	2	1	Job Reference (optional)	# 48050		
Run: 8.430 s Feb 12 2021 Print: 8.430 s Feb 12 2021 MiTek Industries, Inc. Thu May 2 21:35:02 2024 Page 3								

.430 s Feb 12 2021 Print: 8.430 s Feb 12 2021 Mi Fek industries, Inc. Thu May 2 21:35:02 2024 Page 3 ID:XfGBr?_CJqttCkf9NOQCWjycQDJ-wyxZgyRvDkI7U0yMi4cEdUCq0BlkjgqjiCfCMhzKQmt

### LOAD CASE(S) Standard

Concentrated Loads (lb)

Vert: 16=-300

17) 7th chase Dead: Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)

Vert: 17-34=-10, 1-10=-100, 10-15=-20, 15-16=-100 Concentrated Loads (lb)

Vert: 16=-300

18) 8th chase Dead: Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)

Vert: 17-34=-10, 1-5=-100, 5-9=-20, 9-15=-100, 15-16=-20 Concentrated Loads (Ib)

Vert: 16=-300



5/2/2024

$\frac{1}{122} = \frac{1}{122} + \frac{1}$	Job	Truss	Truss Type	Qty Ply	LOT 0.0025 HONEYCUTT H	ILLS   417 ADAMS POINTE COURT ANGIER, NG
Part = 200 + 100 + 200 + 100 + 200 + 100 + 200 + 100 + 200 + 100 + 200 + 100 + 200 + 100 + 200 + 100 + 200 + 100 + 200 + 100 + 200 + 100 + 200 + 100 + 200 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100	24-3417-F02	F226	Floor	1		# 48050
$\begin{array}{c} 1114 130 \\ 120 \\ 1214 130 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 1$				Run: 8.430 s Feb 12 2021 Pr ID:XfGBr?_CJqttCl	rint: 8.430 s Feb 12 2021 MiTek I	ndustries, Inc. Thu May 2 21:35:02 2024 Page 1 vDkI7U0yMi4cEdUCq0BIgjgtjiCfCMhzKQmt
$\frac{466}{10} = \frac{464}{300} = \frac$	0 11 14 1 2	0 0 0 0 10 2	20.7.12	2.0.0		
30       44       44       40       30       FP       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44 <td< td=""><td><u><u><u></u><u></u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u></u></td><td></td><td><u>4</u>4<u>-7-1</u>2</td><td>2-0-0</td><td></td><td>$0_{-4-0} \frac{0.9-0}{5} \frac{1}{5}$ Scale = 1:42.0</td></td<>	<u><u><u></u><u></u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u></u>		<u>4</u> 4 <u>-7-1</u> 2	2-0-0		$0_{-4-0} \frac{0.9-0}{5} \frac{1}{5}$ Scale = 1:42.0
30       44       44       40       30       FP       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
30       44       44       40       30       FP       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
$ \begin{array}{c} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 34 & 15 & 34 & 15 & 34 & 15 & 34 & 15 & 34 & 15 & 34 & 15 & 34 & 15 & 34 & 15 & 34 & 15 & 34 & 15 & 34 & 15 & 34 & 15 & 34 & 15 & 34 & 15 & 34 & 15 & 34 & 15 & 34 & 15 & 34 & 15 & 15 & 11 & 12 & 12 & 14 & 15 & 14 & 15 & 14 & 15 & 14 & 15 & 14 & 15 & 14 & 15 & 14 & 15 & 14 & 15 & 14 & 15 & 14 & 15 & 14 & 15 & 14 & 15 & 14 & 15 & 14 & 15 & 14 & 15 & 14 & 15 & 14 & 15 & 14 & 15 & 14 & 15 & 14 & 15 & 14 & 15 & 14 & 15 & 14 & 15 & 14 & 15 & 14 & 15 & 14 & 15 & 14 & 15 & 14 & 15 & 14 & 15 & 14 & 15 & 14 & 15 & 14 & 15 & 14 & 15 & 14 & 15 & 14 & 15 & 14 & 15 & 14 & 15 & 14 & 15 & 14 & 15 & 14 & 15 & 14 & 15 & 14 & 14$						1.5x3
•••••••••••••••••••••••••••••						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						
32       31       30       20       28       27       26       25       24       23       22       21       20       19       19       1917       16         3x4    4x4 = 1.5x3          4x4 =       3x4            4x4 =       3x6          1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       16       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1		BI BI			B2	<u> 101 101 101 101 33 [</u>
$\frac{1}{276} + \frac{1}{126} + \frac{1}$	⊠ 32 31	30 29 28		23 22 21	20	
27.6         37.6         47.4         7.62         12.10-14         13.10-14         24.46         25.514           1.00         1.00-1         0.18         0.18         0.18         0.18         0.18         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00	3x4    4x4 =	1.5x3    1.5x3    4x4 =			= 3x8 =	
$\begin{array}{  c  c  c  c  c  c  c  c  c  c  c  c  c$			4x4			3x4
$\begin{array}{  c  c  c  c  c  c  c  c  c  c  c  c  c$						
$\begin{array}{  c  c  c  c  c  c  c  c  c  c  c  c  c$						
Image: Product 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 = 1:00 =	2-7-6				24-4-6	
LOADING (psf) TCUL 40.0         SPACING- Plate Grip DOL 10.0         CSI.         DEFL.         in (loc)         I/deft         L/d         PLATES         GRIP           TCUL 40.0         Lumber DOL 10.0         BC 0.99         Vert(CT) -0.43 21-22 ×485 360         MT20 244/190         Weight: 131 lb         FT = 20%F, 11%E           BCDL 5.0         Code IRC2021/TPI2014         Matrix-SH         Matrix-SH         Weight: 131 lb         FT = 20%F, 11%E           UMMBER         TOP CHORD 2x4 SP No.1(flat)         "Except"         BOT CHORD         Structural wood sheathing directly applied or 5-6-9 oc purlins, except end verticals.           BOT CHORD 2x4 SP No.1(flat)         "Except"         BOT CHORD         ReaCING-           B2 2x4 SP SS(I(at)         BOT CHORD         Rigid ceiling directly applied or 6-0-0 oc bracing.           WEBS         2x4 SP No.3(flat)         BOT CHORD         Rigid ceiling directly applied or 6-0-0 oc bracing.           FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown.         TOP CHORD 112-2-370(0, 15-34-335(0, 2-3-473306, 3-4-51726, 4-5-01/091, 15-42-357(0, 15-34-335(0, 2-3-47370, 0) -11-2-270/0176, 22-2-20/0176, 20-2-21-0/0376, 15-24-3370(0, 2-3-47370, 0) -11-2-270/0176, 22-2-20/0176, 20-2-21-0/0376, 12-20-0/0536, 19-20-20/0536, 18-39-0/1109, 17-18-297(0, 16-2-2-270/0176, 2-2-2-0/0176, 2-2-2-0/0176, 2-2-2-0/0176, 2-2-2-0/0176, 2-2-2-0/0176, 2-2-2-0/0176, 2-2-2-0/0176, 2-2-2-0/0176, 2-2-2-0/0176, 2-2-2-0/0176, 2-2-2-0/0176, 2-2-2-0/0176, 2-2-2-0/0176, 2-2-2-0/0	2-7-6	1-0-0 1-0-0 1-0-14 1-0-14 0-1-8 (	-1-8 5-10-12	1-0-0 1-0-0	9-5-8	0-1-8
TCLL         40.0         Plate Grip DOL         1.00         TC         0.85         Vert(C1)         -0.33         21-22         >631         480         MT20         244/190           BCLL         0.0         Rep Stress Incr         NO         WB         0.58         Hor2(CT)         0.043         21-22         >631         480         Weight:         131 Ib         FT = 20%F, 11%E           BCLL         0.0         Rep Stress Incr         NO         WB         0.58         Hor2(CT)         0.05         17         n/a         n/a           BCDL         5.0         Code IRC2021/TPI2014         Matrix-SH         BRACINC-         TOP CHORD         2x4 SP No 1(flat)         FT = 20%F, 11%E           BOT CHORD         2x4 SP No 3(flat)         Stretcural wood sheathing directly applied or 6-0-0 oc bracing.         end verticals.           WEBS         2x4 SP No.1(flat)         Table 233/0-3-8 (min. 0-1-8), 27=1518/0-3-8 (min. 0-1-8)         Rigid ceiling directly applied or 6-0-0 oc bracing.         Stretcural wood sheathing directly applied or 6-0-0 oc bracing.           WEBS         2x4 SP No.3(flat)         BOT CHORD         Max Upint22-33/0.50, 15.34-33-350, 15.34-33-350, 0.2-3-473/306, 3-4+-51/726, 4-56/70, 7-8-8770, 7-8-23500, 0.2-37770, 1-0-3360, 1-22-37/0.716, 2-23-00/3560, 1-23-377/0, 1-12-2-27/0.1176, 2-22-30/3716, 2-23-20/3716, 2-23-2-30/3716, 2-23-2-30/3716, 2-23-2-3						
BCLL         0.0 BCDL         Rep Stress Incr         NO Code IR22021/TPI2014         WB 0.58 Matrix-SH         Horz(CT)         0.05         17         n/a         Weight: 131 lb         FT = 20%F, 11%E           LUMBER- TOP CHORD 2x4 SP No.1(flat) BOT CHORD 2x4 SP No.1(flat) BOT CHORD 2x4 SP No.1(flat) EX 2x4 SP SG(flat)         TOP CHORD Structural wood sheathing directly applied or 5-6-9 oc purlins, except end verticals. BOT CHORD         BRACING- TOP CHORD           WEBS         2x4 SP SG(flat)         BOT CHORD         Structural wood sheathing directly applied or 6-0-0 oc bracing.           REACTIONS.         (Ibsize)         32:233/0-3-8 (min. 0-1-8), 17=1319/0-3-8 (min. 0-1-8), 27=1518/0-3-8 (min. 0-1-8) Max Upij1322-330(22, 16-33=-335/0, 15-34=-335/0, 2-3=-473/306, 3-4=-51/726, 4-5=0/1091, 5-6=-857/0, 0-7=-857/0, 7=-8-238/0, 8=0-9=-3176/0, 9-10=-3377/0, 10-11=-2972/0, 11-12=-2972/0, 12-13=-1841/0 BOT CHORD         Structural wood sheathing directly applied or 6-0-0 oc bracing.           BOT CHORD         1.32=-340/22, 16-33=-335/0, 3-34=-335/0, 2-3=-473/306, 3-4=-51/726, 4-5=0/1091, 5-6=-857/0, 0-7=-857/0, 7=-823/0, 2-3=-451/726, 2-4=-61/730, 24-2=-0/3176, 21-22=0/3176, 21-22=0/3176, 21-22=0/3176, 21-22=0/3369, 10-20=07250, 61+23-29-306/473, 29-20=-306/473, 29-20=-306/473, 29-20=-306/473, 29-20=-306/473, 29-20=-306/473, 29-20=-307/0, 12-13=-287/299, 1-31=-97/339, 3-28=-854/0, 4-28=0/1730, 24-2==0/0565, 12-28=-11000, 7-24=0/049, 7-26=-1165/0, 5-26=0/1221, 5-27=-1284/0, 9=21=-203/0545, 10-20=-07557/0, 12-20=-0/0557, 12-19==-904/0, 13-19=-0/954, 13-18=-1305/0, 14-18=-0/876, 14-16=0/439         NOTES         (6-9)         1         Unbalance donor live loads have been considere	TCLL 40.0	Plate Grip DOL 1.	00 TC 0.85	Vert(LL) -0.33 21-22	>631 480	
LUMBER- TOP CHORD 2x4 SP No.1(flat)       BRACING- TOP CHORD 2x4 SP No.1(flat)       TOP CHORD Structural wood sheathing directly applied or 5-6-9 oc purlins, except end verticals. B2 2x4 SP SS(flat)         BSE 2x4 SP SS(flat)       BOT CHORD Rigid celling directly applied or 6-0-0 oc bracing.         WEBS       2x4 SP No.3(flat)         REACTIONS.       (Ib/size) 32=233/0-3.8 (min. 0-1-8), 17=1319/0-3-8 (min. 0-1-8), 27=1518/0-3-8 (min. 0-1-8) Max Opint32=-39(LC 6) Max Grav 32=337(LC 5), 17=1320(LC 4), 27=1520(LC 3)         FORCES.       (Ib) - Max. Comp./Max. Ten All forces 250 (Ib) or less except when shown.         TOP CHORD       1-32=-340/22, 16-33=-335/0, 33-34=-335/0, 2-3=-473/306, 3-4=-51/726, 4-5=01(091, 5-6=-857/0, 6-7=-857/0, 6-9=-9377/0, 0-9=-3178/0, 9=-9178/0, 0-9=-3178/0, 0-9=-3178/0, 0-9=-3178/0, 0-9=-3178/0, 0-9=-3178/0, 0-9=-3178/0, 0-9=-3178/0, 0-9=-3178/0, 0-9=-3178/0, 0-9=-3178/0, 0-9=-3178/0, 0-22=-2053/0, 22-26=0/1730, 24-25=-01730, 23-24=0/3176, 22-23=0/3176, 21-22=0/3176, 21-22=0/3176, 21-22=0/3176, 21-22=0/3176, 20-21=0/3369, 1-22=-0/256, 18-19=-01109, 7-24=-297/0, 16-17=-293/0         WEBS       8-23-0/384, 9-22=-353/6, 4-27=-473/0, 14-17=-1238/0, 2-31=-287/299, 1-31=-97/339, 3-28=-854/0, 4-28=-0/666, 8-24=-1100/0, 7-24=-186/0, 5-26=-0/1221, 5-27=-1240/0, 9-21=-203/456, 10-20=-507/0, 12-20=-507/0, 12-20=-507/0, 12-20=-507/0, 12-20=-507/0, 12-20=-507/0, 13-19=-09/64, 13-18=-1305/0, 14-18=0/876, 14-16=0/439         NOTES       (6-9)       1)       1)       1)       10-00-00 cand fastened to ewe modified. Building designer must review loads to verify that they are correct for the intended use of this truss.       10-00-00-00 cand fastened to each trus	BCLL 0.0	Rep Stress Incr	VB 0.58			
TOP CHORD       2x4 SP No.1(flat)       TOP CHORD       Structural wood sheathing directly applied or 5-6-9 oc purlins, except end verticals.         BOT CHORD       2x4 SP No.1(flat)       Except*       BOT CHORD       Rigid ceiling directly applied or 6-0-0 oc bracing.         WEBS       2x4 SP No.3(flat)       BOT CHORD       Rigid ceiling directly applied or 6-0-0 oc bracing.         REACTIONS.       (bisize)       32=233/0-3-8 (min. 0-1-8), 17=1319/0-3-8 (min. 0-1-8), 27=1518/0-3-8 (min. 0-1-8) Max Grav32=337(LC 5), 17=1320(LC 4), 27=1520(LC 3)         FORCES.       (b)       -Max Comp./Max. Ten All forces 250 (lb) or less except when shown.         TOP CHORD       1-32=-340/22, 16-33=-335/0, 33-34=-335/0, 2-3=-473/306, 3-4=-51/726, 4-5=0/1091, 5-6=-857/0, 6-7=-857/0, 7-8=-238/0, 8-9=-3176/0, 9-10=-3377/0, 10-11=-2972/0, 11-12=-2972/0, 12-13=-18410         BOT CHORD       30-31=-306/473, 29-30=-306/473, 27-28=-1091/0, 26-27=-353/0, 2-2=10/369, 19-20=0/2536, 18-19=0/1730, 24-26=0/376, 2-23=0/376, 2-21=22/0/376, 2-21=10/369, 19-20=0/2536, 18-19=0/1730, 24-26=0/376, 2-23=0/376, 2-21=105/0, 5-26=0/1221, 5-27=-128/0, 9-21=-233/66, 1-22=-60/710, 12-22=0/3766, 5-26=-1165/0, 5-26=10/221, 5-27=-128/0, 9-21=-233/66, 10-20=-507/0, 12-20=0/575, 12-19=-904/0, 13-19=0/954, 13-18=-1305/0, 14-18=0/876, 14-16=0/439         NOTES       (6-9)       1) Uhalanced floor live loads have been considered for this design.       2) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 39 lb uplift at joint 32.       3) Load case(5) 1, 2, 3, 4, 5, 7, 8, 9, 0, 1, 1, 1, 2, 1, 4, 5, 1, 6, 7, 8, 9, 0, 1, 1, 1, 2			14 Matrix-SH			Weight: 131 Ib FT = 20%F, 11%E
B2: 2x4 SP SS(fat)       BOT CHORD       Rigid ceiling directly applied or 6-0-0 oc bracing.         WEBS       2x4 SP No.3(fat)       BOT CHORD       Rigid ceiling directly applied or 6-0-0 oc bracing.         REACTIONS.       (Ib/size)       32=233/0.3-8       (min. 0-1-8), 17=1319/0-3-8       (min. 0-1-8), 27=1518/0-3-8       (min. 0-1-8)         Max Upilf32=-39(LC 6)       Max Grav 32=337(LC 5), 17=1320(LC 4), 27=1520(LC 3)       FORCES.       (b) - Max. Comp./Max. Ten All forces 250 (b) or less except when shown.         TOP CHORD       1-32=-340/22, 16-33=-335/0, 33-34=-335/0, 2-3=-47306, 3-4=-51/726, 4-56-0/1091, 5-68=57/10, 67-8=5786/0, 8-9=-3176(0, 9-10=-3377/0, 10-11=-2972/0, 11-12=-2972/0, 12-13=-1841/0       BOT CHORD       30-31=-306/473, 29-30=-306/473, 27-28=-1091/0, 26-27=-353/0, 25-26=-01/730, 24-25-40/730, 74-27=-293/0       E-22-03/716, 22-23=0/3176, 22-23=0/3176, 22-23=0/3176, 22-23=0/3176, 22-21=0/3369, 19-20-0/2536, 18-19=0/1109, 17-18=-297/0, 16-17-2293/2       E-23=0/336, 4-27=-474-473/0, 14-17=-293/0         BOT CHORD       30-31=-306/473, 29-30=-306/473, 27-28=-1065/0, 5-26=0/1221, 5-27=-1284/0, 9-21=-203/456, 10-20=-507/0, 12-20=0/557, 12-19=-904/0, 13-19=0/954, 13-18=-1305/0, 14-18=0/839       E-28=-054/0, 4-28=0/566, 8-24=-1100/0, 7-24=0/849, 7-26=-1165/0, 5-26=0/1221, 5-27=-7=1284/0, 9-21=-203/456, 10-20=-507/0, 12-20=0/557, 12-19=-904/0, 13-19=0/954, 13-18=-1305/0, 14-18=0/876, 14-16=0/439         NOTES-       (6-9)       1) Unbalanced floor live loads have been considered for this design.       2) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 39	TOP CHORD 2x4 S			TOP CHORD Struct		tly applied or 5-6-9 oc purlins, except
<ul> <li>REACTIONS. (Ib/size) 32-233(J-3-8 (min. 0-1-8), 17=1319/0-3-8 (min. 0-1-8), 27=1518/0-3-8 (min. 0-1-8) Max Uplift32=-39(LC 6) Max Grav 32=337(LC 5), 17=1320(LC 4), 27=1520(LC 3)</li> <li>FORCES. (Ib) - Max. Comp./Max. Ten All forces 250 (Ib) or less except when shown.</li> <li>TOP CHORD 1-32=-340/22, 16-33=-335/0, 33-34=-335/0, 15-34=-335/0, 2-3=-473/306, 3-4=-51/726, 4-5=0/1091, 5-6=-857/0, 6-7=-857/0, 7-8=-2358/0, 8-9=-3176/0, 9-10=-3377/0, 10-11=-2972/0, 11-12=-2972/0, 12-13=-1841/0</li> <li>BOT CHORD 30-31=-306/473, 29-30=-306/473, 28-29=-306/473, 27-28=-1091/0, 26-27=-353/0, 25-26=0/1730, 24-25=0/1730, 23-24=0/3176, 22-23=0/3176, 21-22=0/3176, 20-21=0/3369, 19-20=0/2536, 18-19=0/1109, 17-18=-297/0, 16-17=-293/0</li> <li>WEBS 8-23=0/384, 9-22=-353/6, 4-27=-473/0, 14-17=-1238/0, 2-31=-287/299, 1-31=-97/339, 3-28=-854/0, 4-28=0/566, 8-24=-1100/0, 7-24=0/849, 7-26=-1165/0, 5-26=0/1221, 5-27=-1284/0, 9-21=-203/456, 10-20=-5077/0, 12-20=0/557, 12-19=-904/0, 13-19=0/954, 13-18=-1305/0, 14-18=0/876, 14-16=0/439</li> <li>NOTES- (6-9)</li> <li>1) Unbalanced floor live loads have been considered for this design.</li> <li>2) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 39 lb uplift at joint 32.</li> <li>3) Load case(s) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 has/have been modified. Building designer must review loads to verify that they are correct for the intended use of this truss.</li> <li>4) Recommed 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.</li> </ul>	B2: 2	4 SP SS(flat)				6-0-0 oc bracing.
Max Uplift32=-39(LC 6) Max Grav 32=337(LC 5), 17=1320(LC 4), 27=1520(LC 3) FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 1-32=-340/22, 16-33=-335/0, 33-34=-335/0, 15-34=-335/0, 2-3=-473/306, 3-4=-51/726, 4-5=0/1091, 5-6=-857/0, 6-7=-857/0, 7-8=-2358/0, 8-9=-3176/0, 9-10=-3377/0, 10-11=-2972/0, 11-12=-2972/0, 12-13=-1841/0 BOT CHORD 30-31=-306/473, 29-30=-306/473, 28-29=-306/473, 27-28=-1091/0, 26-27=-353/0, 25-26=0/1730, 24-25=0/1730, 24-25=0/1730, 23-24=0/3176, 21-22=0/3176, 20-21=0/3369, 19-20=0/2536, 18-19=0/1109, 17-18=-297/0, 16-17=-293/0 WEBS 8-23=0/384, 9-22=-353/6, 4-27=-473/0, 14-17=-1238/0, 2-21=-287/299, 1-31=-97/339, 3-28=-854/0, 4-28=0//568, 8-24=-1100/0, 7-24=0/849, 7-26=-1165/0, 5-26=0/1221, 5-27=-1284/0, 9-21=-203/456, 10-20=-507/0, 12-20=0/557, 12-19=-904/0, 13-19=0/954, 13-18=-1305/0, 14-18=0/876, 14-16=0/439 NOTES- (6-9) 1) Unbalanced floor live loads have been considered for this design. 2) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 39 lb uplift at joint 32. 3) Load case(s) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 has/have been modified. Building designer must review loads to verify that they are correct for the intended use of this truss. 4) Recommed 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.			R) $17 - 1310/0.3.8$ (min 0.1.8)	27-1518/0.3.8 (min 0.1.8)		
FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown.         TOP CHORD       1-32=-340/22, 16-33=-335/0, 33-34=-335/0, 15-34=-335/0, 2-3=-473/306, 3-4=-51/726, 4-5=0/1091, 5-6=-857/0, 6-7=-857/0, 7-8=-2358/0, 8-9=-3176/0, 9-10=-3377/0, 10-11=-2972/0, 11-12=-2972/0, 12-13=-1841/0         BOT CHORD       0-30-31=-306/473, 29-30=-306/473, 27-28=-1091/0, 26-27=-353/0, 25-26=0/1730, 24-25=0/1730, 23-24=0/3176, 22-23=0/3176, 21-22=0/3176, 20-21=0/3369, 19-20=0/2536, 18-19=0/1109, 17-18=-297/0, 16-17=-293/0         WEBS       8-23=-0/384, 9-22=-353/6, 4-27=-473/0, 14-17=-1238/0, 2-31=-287/299, 1-31=-97/339, 3-28=-854/0, 4-28=0/566, 8-24=-1100/0, 7-24=0/849, 7-26=-1165/0, 5-26=0/1221, 5-27=-1284/0, 9-21=-203/456, 10-20=-507/0, 12-20=0/557, 12-19=-904/0, 13-19=0/954, 13-18=-1305/0, 14-18=0/876, 14-16=0/439         NOTES-       (6-9)         1) Unbalanced floor live loads have been considered for this design. 2) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 39 lb uplift at joint 32.         3) Load case(s) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 has/have been modified. Building designer must review loads to verify that they are correct for the intended use of this truss.         4) Recommend 2x6 Strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.	Max	Uplift32=-39(LC 6)		27-1010/0-3-0 (11111. 0-1-0)		
<ul> <li>TOP CHORD 1-32=-340/22, 16-33=-335/0, 33-34=-335/0, 15-34=-335/0, 2-3=-473/306, 3-4=-51/726, 4-5=0/1091, 5-6=-857/0, 6-7=-857/0, 7-8=-2358/0, 8-9=-3176/0, 9-10=-3377/0, 10-11=-2972/0, 11-12=-2972/0, 12-13=-1841/0</li> <li>BOT CHORD 30-31=-306/473, 29-30=-306/473, 22-23=-0/3176, 21-22=0/3176, 20-21=0/3369, 25-26=0/1730, 24-25=0/1730, 23-24=0/3176, 21-22=0/3176, 20-21=0/3369, 19-20=0/2536, 18-19=0/1109, 17-18=-297/0, 16-17=-293/0</li> <li>WEBS 8-23=0/384, 9-22=-353/6, 4-27=-473/0, 14-17=-1238/0, 2-31=-287/299, 1-31=-97/339, 3-28=-854/0, 4-28=0/566, 8-24=-1100/0, 7-24=-0/849, 7-26=-1165/0, 5-26=0/1221, 5-27=-1284/0, 9-21=-203/456, 10-20=-507/0, 12-20=0/557, 12-19=-904/0, 13-19=0/954, 13-18=-1305/0, 14-18=0/876, 14-16=0/439</li> <li>NOTES- (6-9)</li> <li>1) Unbalanced floor live loads have been considered for this design.</li> <li>2) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 39 lb uplift at joint 32.</li> <li>3) Load case(s) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 has/have been modified. Building designer must review loads to verify that they are correct for the intended use of this truss.</li> <li>4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.</li> </ul>				hown		
<ul> <li>10-11=-2972/0, 11-12=-2972/0, 12-13=-1841/0</li> <li>BOT CHORD 30-31=-306/473, 29-30=-306/473, 28-29=-306/473, 27-28=-1091/0, 26-27=-353/0, 25-26=0/1730, 24-25=0/1730, 23-24=0/3176, 21-22=0/3176, 20-21=0/3369, 19-20=0/2536, 18-19=0/1109, 17-18=-297/0, 16-17=-293/0</li> <li>WEBS 8-23=0/384, 9-22=-353/6, 4-27=-473/0, 14-17=-1238/0, 2-31=-287/299, 1-31=-97/339, 3-28=-854/0, 4-28=0/566, 8-24=-1100/0, 7-24=0/849, 7-26=-1165/0, 5-26=0/1221, 5-27=-1284/0, 9-21=-203/456, 10-20=-507/0, 12-20=0/557, 12-19=-904/0, 13-19=0/954, 13-18=-1305/0, 14-18=0/876, 14-16=0/439</li> <li>NOTES- (6-9)</li> <li>1) Unbalanced floor live loads have been considered for this design.</li> <li>2) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 39 lb uplift at joint 32.</li> <li>3) Load case(s) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 has/have been modified. Building designer must review loads to verify that they are correct for the intended use of this truss.</li> <li>4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 c cand fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.</li> </ul>	TOP CHORD 1-32	2=-340/22, 16-33=-335/0, 33-3	34=-335/0, 15-34=-335/0, 2-3=-4	473/306, 3-4=-51/726,		
<ul> <li>25-26=0/1730, 24-25=0/1730, 23-24=0/3176, 22-23=0/3176, 21-22=0/3176, 20-21=0/3369, 19-20=0/2536, 18-19=0/1109, 17-18=-297/0, 16-17=-293/0</li> <li>WEBS</li> <li>8-23=0/384, 9-22=-353/6, 4-27=-473/0, 14-17=-1238/0, 2-31=-287/299, 1-31=-97/339, 3-28=-854/0, 4-28=0/566, 8-24=-1100/0, 7-24=0/849, 7-26=-1165/0, 5-26=0/1221, 5-27=-1284/0, 9-21=-203/456, 10-20=-507/0, 12-20=0/557, 12-19=-904/0, 13-19=0/954, 13-18=-1305/0, 14-18=0/876, 14-16=0/439</li> <li>NOTES- (6-9)</li> <li>1) Unbalanced floor live loads have been considered for this design.</li> <li>2) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 39 lb uplift at joint 32.</li> <li>3) Load case(s) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 has/have been modified. Building designer must review loads to verify that they are correct for the intended use of this truss.</li> <li>4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.</li> </ul>	10-1	1=-2972/0, 11-12=-2972/0, 1	2-13=-1841/0			
<ul> <li>WEBS 8-23=0/384, 9-22=-353/6, 4-27=-473/0, 14-17=-1238/0, 2-31=-287/299, 1-31=-97/339, 3-28=-854/0, 4-28=0/566, 8-24=-1100/0, 7-24=0/849, 7-26=-1165/0, 5-26=0/1221, 5-27=-1284/0, 9-21=-203/456, 10-20=-507/0, 12-20=0/557, 12-19=-904/0, 13-19=0/954, 13-18=-1305/0, 14-18=0/876, 14-16=0/439</li> <li>NOTES- (6-9)</li> <li>1) Unbalanced floor live loads have been considered for this design.</li> <li>2) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 39 lb uplift at joint 32.</li> <li>3) Load case(s) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 has/have been modified. Building designer must review loads to verify that they are correct for the intended use of this truss.</li> <li>4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.</li> </ul>	25-2	26=0/1730, 24-25=0/1730, 23	24=0/3176, 22-23=0/3176, 21-2			
<ul> <li>5-27=-1284/0, 9-21=-203/456, 10-20=-507/0, 12-20=0/557, 12-19=-904/0, 13-19=0/954, 13-18=-1305/0, 14-18=0/876, 14-16=0/439</li> <li>NOTES- (6-9) <ol> <li>Unbalanced floor live loads have been considered for this design.</li> <li>Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 39 lb uplift at joint 32.</li> <li>Load case(s) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 has/have been modified. Building designer must review loads to verify that they are correct for the intended use of this truss.</li> <li>Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.</li> </ol> </li> </ul>	WEBS 8-23	3=0/384, 9-22=-353/6, 4-27=-4	73/0, 14-17=-1238/0, 2-31=-28			
<ul> <li>NOTES- (6-9)</li> <li>1) Unbalanced floor live loads have been considered for this design.</li> <li>2) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 39 lb uplift at joint 32.</li> <li>3) Load case(s) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 has/have been modified. Building designer must review loads to verify that they are correct for the intended use of this truss.</li> <li>4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.</li> </ul>	5-27	/=-1284/0, 9-21=-203/456, 10	-20=-507/0, 12-20=0/557, 12-19			
<ol> <li>Unbalanced floor live loads have been considered for this design.</li> <li>Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 39 lb uplift at joint 32.</li> <li>Load case(s) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 has/have been modified. Building designer must review loads to verify that they are correct for the intended use of this truss.</li> <li>Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.</li> </ol>						
<ul> <li>3) Load case(s) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 has/have been modified. Building designer must review loads to verify that they are correct for the intended use of this truss.</li> <li>4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.</li> </ul>	1) Unbalanced floor			withstanding 39 lb uplift at ioint 3	32.	
4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.	3) Load case(s) 1, 2	3, 4, 5, 6, 7, 8, 9, 10, 11, 12,	13, 14, 15, 16, 17, 18 has/have	been modified. Building designe	er must review loads to	
<ul> <li>5) CAUTION, Do not erect truss backwards.</li> <li>6) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.</li> <li>7) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structurated design of the truss to support the loads indicated.</li> <li>8) Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining &amp; Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.</li> <li>9) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS &amp; WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.</li> <li>LOAD CASE(S) Standard</li> </ul>	<ol> <li>Recommend 2x6 be attached to wa</li> </ol>	strongbacks, on edge, space Ils at their outer ends or restra	l at 10-0-0 oc and fastened to e ined by other means.	each truss with 3-10d (0.131" X 3	3") nails. Strongbacks to	WINNING CARO
the member must be braced. 7) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural series of the truss to support the loads indicated. 8) Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing. 9) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS. LOAD CASE(S) Standard 5/2/2024	5) CAUTION, Do not 6) Graphical bracing	erect truss backwards. representation does not depi	ct the size, type or the orientatio	on of the brace on the member. S	Symbol only indicates that	OFESSIDA NUT
design of the truss to support the loads indicated. 8) Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing. 9) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS. LOAD CASE(S) Standard 5/2/2024	the member must 7) Bearing symbols	be braced. are only graphical representat	ions of a possible bearing condi	ition. Bearing symbols are not co	onsidered in the structural	are la
Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing. 9) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS. LOAD CASE(S) Standard 5/2/2024					ice for Handling, Installing	28147 E
MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM SALES ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.	Restraining & Bra	cing of Metal Plate Connected	Wood Trusses for additional b	racing guidelines, including diag	onal bracing.	
LOAD CASE(S) Standard 5/2/2024	MINIMUM BRACI	NG REQUIREMENTS OF TO	P CHORD, BOTTOM CHORD,	AND WEB PLANES. IN ADDIT	ION TO THESE MINIMON	AR ONEER OR SUNN
5/2/2024						Man K. MOUNT
Avianized by Varian December 201 and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded						5/2/2024

Job	Truss	Truss Type	Qty	Ply	LOT 0.0025 HONEYCUTT HILLS   417 ADAMS POINTE CO	URT ANGIER, NC
24-3417-F02	F226	Floor	1	1	Job Reference (optional) # 48	3050
			Run: 8.430 s Feb 12	2 2021 Prin	: 8.430 s Feb 12 2021 MiTek Industries, Inc. Thu May 2 21:3	5:03 2024 Page 2

Run: 8.430 s Feb 12 2021 Print: 8.430 s Feb 12 2021 MiTek Industries, Inc. Thu May 2 21:35:03 2024 Page 2 ID:XfGBr?_CJqttCkf9NOQCWjycQDJ-O8VxuHSX_2t_6AXYGo8TAhl?mbevS77txsPmu7zKQms

LOAD CASE(S) Standard 1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 16-32=-10, 1-15=-100 Concentrated Loads (lb) Vert: 15=-300 2) Dead: Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 16-32=-10, 1-15=-100 Concentrated Loads (lb) Vert: 15=-300 3) 1st Dead + Floor Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 16-32=-10, 1-14=-100, 14-15=-20 Concentrated Loads (lb) Vert: 15=-300 4) 2nd Dead + Floor Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 16-32=-10, 1-4=-20, 4-15=-100 Concentrated Loads (lb) Vert: 15=-300 5) 3rd Dead + Floor Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 16-32=-10, 1-4=-100, 4-14=-20, 14-15=-100 Concentrated Loads (lb) Vert: 15=-300 6) 4th Dead + Floor Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 16-32=-10, 1-4=-20, 4-14=-100, 14-15=-20 Concentrated Loads (lb) Vert: 15=-300 7) 5th unbalanced Dead: Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 16-32=-10, 1-14=-100, 14-15=-20 Concentrated Loads (lb) Vert: 15=-300 8) 6th unbalanced Dead: Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 16-32=-10. 1-4=-20. 4-15=-100 Concentrated Loads (lb) Vert: 15=-300 9) 7th unbalanced Dead: Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 16-32=-10, 1-4=-100, 4-14=-20, 14-15=-100 Concentrated Loads (lb) Vert: 15=-300 10) 8th unbalanced Dead: Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 16-32=-10, 1-4=-20, 4-14=-100, 14-15=-20 Concentrated Loads (lb) Vert: 15=-300 11) 1st chase Dead + Floor Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 16-32=-10, 1-3=-100, 3-4=-20, 4-14=-100, 14-15=-20 Concentrated Loads (Ib) Vert: 15=-300 12) 2nd chase Dead + Floor Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 16-32=-10, 1-2=-20, 2-14=-100, 14-15=-20 Concentrated Loads (lb) Vert: 15=-300 13) 3rd chase Dead + Floor Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 16-32=-10, 1-9=-100, 9-14=-20, 14-15=-100 Concentrated Loads (Ib) Vert: 15=-300 14) 4th chase Dead + Floor Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 16-32=-10, 1-4=-100, 4-8=-20, 8-14=-100, 14-15=-20 Concentrated Loads (lb) Vert: 15=-300 15) 5th chase Dead: Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 16-32=-10, 1-3=-100, 3-4=-20, 4-14=-100, 14-15=-20 Concentrated Loads (Ib) Vert: 15=-300 16) 6th chase Dead: Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 16-32=-10, 1-2=-20, 2-14=-100, 14-15=-20



Jo	b	Truss	Truss Type	Qty	Ply	LOT 0.0025 HONEYCUTT HILLS   417 ADAM	IS POINTE COURT ANGIER, NC
24-	-3417-F02	F226	Floor	1	1	Job Reference (optional)	# 48050
						Job Reference (optional)	

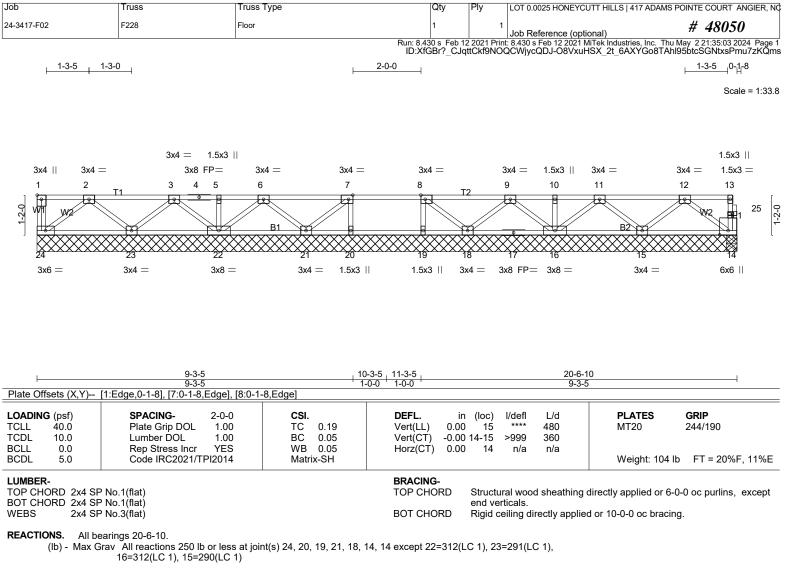
Run: 8.430 s Feb 12 2021 Print: 8.430 s Feb 12 2021 Mi Fek Industries, Inc. Thu May 2 21:35:03 2024 Page 3 ID:XfGBr?_CJqttCkf9NOQCWjycQDJ-O8VxuHSX_2t_6AXYGo8TAhl?mbevS77txsPmu7zKQms

## LOAD CASE(S) Standard Concentrated Loads (Ib) Vert: 15=-300

17) 7th chase Dead: Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)

- Vert: 16-32=-10, 1-9=-100, 9-14=-20, 14-15=-100
- Concentrated Loads (lb) Vert: 15=-300
- 18) 8th chase Dead: Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)

Vert: 16-32=-10, 1-4=-100, 4-8=-20, 8-14=-100, 14-15=-20 Concentrated Loads (lb)


Vert: 15=-300



5/2/2024

Job	Truss	Truss Type	Qty Ply LOT 0.0025	HONEYCUTT HILLS   417 ADAMS POINTE COURT ANGIER, NC
24-3417-F02	F227	Floor	1 1	# 48050
			Run: 8.430 s Feb 12 2021 Print: 8.430 s Feb	nce (optional) 7 40000 12 2021 MiTek Industries, Inc. Thu May 2 21:35:03 2024 Page 1 -O8VxuHSX 2t 6AXYGo8TAhl?TbeGS7PtxsPmu7zKQms
0-4-101-3-0		<u> 0-7-12</u>	2-0-0	<u> </u>
				Scale = 1:39.9
		4x6 = 4x4 =		
4x6 = 3x4	= 3x4 =	3x6 = 3x8 FP=	3x4 = 3x4 = 3x4	= 1.5x3    3x4 = 3x4 = 3x4
1 _{W2} 2	3 1		8 9 10	11 12 13 14
		WA CONTRACT		
	B1		B2	
28 27	26 25	24 23 22	21 20 19 18	17 16 15
3x4    4x4 =	3x4 = 4x4 =	3x6 = 4x6 = 3x8 FP =	= 1.5x3    1.5x3    3x4 = 4x4 =	3x8 = 3x4 = 7x8
			14-10-14	
	7-0-2 7-0-2	12-10-14 5-10-12	13-10-14 1-0-0 1-0-0	9-6-8
		e], [9:0-1-8,Edge], [15:0-1-8,Edge		
LOADING (psf) TCLL 40.0	Plate Grip DOL 1	00 <b>CSI.</b> 00 TC 0.87	Vert(LL) -0.31 18-19 >662 48	/d <b>PLATES GRIP</b> 30 MT20 244/190
TCDL 10.0 BCLL 0.0	Rep Stress Incr Y	00 BC 0.97 ES WB 0.63		60 /a
BCDL 5.0	Code IRC2021/TPI20	14 Matrix-SH		Weight: 126 lb FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SI				eathing directly applied or 2-2-0 oc purlins, except
	4 SP SS(flat)		end verticals. BOT CHORD Rigid ceiling direct	y applied or 2-2-0 oc bracing.
	P No.3(flat)			
Max L	Iplift28=-173(LC 4)	), 15=826/0-3-0 (min. 0-1-8), 24:	=1736/0-3-8 (min. 0-1-8)	
	Grav 28=283(LC 3), 15=832(L			
		s 250 (lb) or less except when sh 4=0/1349, 4-5=0/1872, 7-8=-1664		
		-12=-2781/0, 12-13=-1834/0 , 24-25=-1872/0, 23-24=-1120/0,	22-23=0/939,	
21-2		20=0/2646, 18-19=0/2646, 17-18		
		699/0, 4-25=0/879, 3-25=-809/0, 1=-1271/0, 7-21=0/956, 7-23=-12		
5-24		17=-412/0, 12-17=0/434, 12-16=-		
NOTES- (5-8)				
1) Unbalanced floor I	ve loads have been conside		vithstanding 173 lb uplift at joint 28.	
3) Recommend 2x6 s	trongbacks, on edge, space	d at 10-0-0 oc and fastened to ea	ach truss with 3-10d (0.131" X 3") nails. Stru	ongbacks to
4) CAUTION. Do not	s at their outer ends or restration erect truss backwards.	,		
5) Graphical bracing the member must	representation does not depi pe braced.	ct the size, type or the orientatior	n of the brace on the member. Symbol only i ion. Bearing symbols are not considered in t to BCSI - Guide to Good Practice for Handli	ndicates that
<ol> <li>Bearing symbols a design of the truss</li> </ol>	re only graphical representat to support the loads indicate	ions of a possible bearing condit d.	ion. Bearing symbols are not considered in t	ing, Installing, OPOFESSION, 19
			to BCSI - Guide to Good Practice for Handli acing guidelines, including diagonal bracing	ing, Installing,
8) SEE BCSI-B3 SUM	/IMARY SHEET- PERMANE	NT RESTRAING/BRACING OF (	CHORDS & WEB MEMBERS FOR RECOM	MENDED
GUIDELINES, ALV	VAYS CONSULT THE PRO	IECT ARCHITECT OR ENGINE	ER FOR ADDITIONAL BRACING CONSIDE	RATIONS
LOAD CASE(S) Star	dard			A MOINEER SIL
				Mana K. MOMMUM

5/2/2024



FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES- (4-7)

1) Unbalanced floor live loads have been considered for this design.

2) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

3) CAUTION, Do not erect truss backwards.

4) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.

5) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

6) Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.

7) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

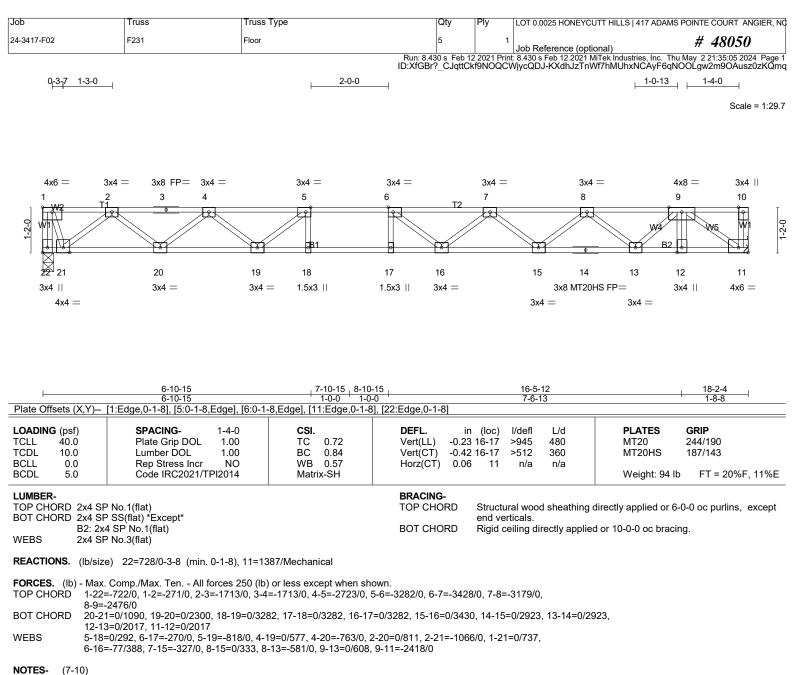
LOAD CASE(S) Standard



Job	Truss	Truss Type	Qty	Ply	LOT 0.0025 HONEYCUT	THILLS   417 ADAMS POINTE	COURT ANGIER, NO
24-3417-F02	F229	Floor	5	1	Job Reference (option	al) #	48050
			Run: 8.430 s Fe ID:XfGBr	b 12 2021 Prir ? CJqttCkf9	t: 8.430 s Feb 12 2021 MiTe	ek Industries, Inc. Thu May 22 IT9IM?qkK6kqVfjivID4?1LE	21:35:04 2024 Page 1 at0AW8JRZzKQm
1-3-5	1-3-0		2-0-0		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		-4-0
I			· ·			1 11	scale = 1:33.6
							Scale = 1:33.0
	3x4 =	1.5x3					
		FP= 3x4 =	3x4 = 3x4 =			x4 = 4x8 =	3x4
1 2	T1		7 8	T2			12 
-2-0 1-2-0						et water	₩5 ₩1 
		151				B2	
24							
	23 4x4 =	22    21    3x8 =    3x4 =    3x4	20 19 1.5x3    1.5x3	18 2v4 —	17 16	15 14 IS FP= 3x4 = 3x4	13 1xe —
3x6 =	4x4 —	3x8 = 3x4 =	1.5X3    1.5X3	3x4 =	3x8 MT20H 3x4 =	S FP= 3x4 = 3x4	4x6 =
					0.1 -		
	9-3-5		10-3-5 11-3-5		18-10-2	. 2	0-6-10
Plate Offsets (X Y)	9-3-5 [1·Edge 0-1-8] [7·0-1-8 F	Edge], [8:0-1-8,Edge], [13:Edge	1-0-0 1-0-0		7-6-13	1	1-8-8
				in (las)	1/1-1-51 1/1		
LOADING (psf) TCLL 40.0	SPACING- Plate Grip DOL	1-4-0         CSI.           1.00         TC         0.69	DEFL. Vert(LL) -0.	in (loc) 31 19-20	l/defl L/d >784 480	PLATES GRI MT20 244/	
TCDL 10.0 BCLL 0.0	Lumber DOL Rep Stress Incr	1.00 BC 0.78 NO WB 0.61	Vert(CT) -0. Horz(CT) 0.	54 19 08 13	>453 360 n/a n/a	MT20HS 187	/143
BCDL 5.0	Code IRC2021/TP		1012(01) 0.	00 10	11/4 11/4	Weight: 106 lb FT	[–] = 20%F, 11%E
LUMBER-			BRACING-		i		
TOP CHORD 2x4 BOT CHORD 2x4	SP No.1(flat) SP SS(flat) *Except*		TOP CHORD	Structur end ver		ectly applied or 5-10-8 o	c purlins, except
B2:	2x4 SP No.1(flat)		BOT CHORD		eiling directly applied o	or 10-0-0 oc bracing.	
WEBS 2x4	SP No.3(flat)						
REACTIONS. (Ib/s	size) 24=806/0-3-8 (min. 0	0-1-8), 13=1482/Mechanical					
		prces 250 (lb) or less except wh			0050/0		
	3=-1778/0, 3-4=-3070/0, 4-5 I-11=-2727/0	5=-3070/0, 5-6=-3070/0, 6-7=-3	3853/0, 7-8=-4203/0, 8-9=-4	134/0, 9-10	J=-3656/0,		
	-24=0/1035, 22-23=0/2499, -16=0/3291, 14-15=0/2159,	21-22=0/3552, 20-21=0/4203,	, 19-20=0/4203, 18-19=0/42	203, 17-18=	0/4008, 16-17=0/329	1,	
WEBS 7-2	21=-668/0, 6-21=0/490, 6-22	2=-616/0, 3-22=0/728, 3-23=-9		289/0, 8-18	=-309/233,		
9-1	18=-26/263, 9-17=-458/0, 10	0-17=0/475, 10-15=-734/0, 11-	15=0/753, 11-13=-2588/0				
NOTES- (7-10)	ur live leade heve heen eene	idered for this design					
2) All plates are M	or live loads have been cons T20 plates unless otherwise	indicated.					
	a) for truss to truss connection 2 3 4 5 6 has/have been 1	ons. modified. Building designer mu	ust review loads to verify the	at they are	correct for the intende	d	
use of this truss	•	5 5	,	,			
	o strongbacks, on edge, spa /alls at their outer ends or re	aced at 10-0-0 oc and fastened estrained by other means.	d to each truss with 3-10d (	0.131" X 3"	) halls. Strongbacks t	0	
	ot erect truss backwards.	lepict the size, type or the orier	atation of the brace on the r	member S	mbol only indicates th	pat	
the member mu	st be braced			-			
8) Bearing symbols design of the tru	s are only graphical represei iss to support the loads indic	ntations of a possible bearing o cated. individual web members only. cted Wood Trusses for additio ANENT RESTRAING/BRACIN	condition. Bearing symbols	are not cor	isidered in the structur	ral WHUNGH CAROUN	
9) Web bracing she	own is for lateral support of i	individual web members only.	Refer to BCSI - Guide to G	ood Practic	e for Handling, Installi	ng SEFSOID	1111
10) SEE BCSI-B3	SUMMARY SHEET- PERM	cted Wood Trusses for additio ANENT RESTRAING/BRACIN F TOP CHORD, BOTTOM CH	G OF CHORDS & WEB MI	EMBERS F	OR RECOMMENDED	PAL Ma	Internet
MINIMUM BRA	ACING REQUIREMENTS OF	F TOP CHORD, BOTTOM CH ULT THE PROJECT ARCHITE	ORD, AND WEB PLANES.	IN ADDIT	ION TO THESE	SEAL	11111
						28147	1 8
CONSIDERAT					IIII	No. al	Inn
LOAD CASE(S) St						A TANKALAN GOVERN	
LOAD CASE(S) St 1) Dead + Floor Liv	/e (balanced): Lumber Incre	ase=1.00, Plate Increase=1.00	)			APL	Inter and
LOAD CASE(S) St 1) Dead + Floor Liv Uniform Loads (	/e (balanced): Lumber Incre	ease=1.00, Plate Increase=1.00	)			ARK K. MORAL	Inter
LOAD CASE(S) St 1) Dead + Floor Liv Uniform Loads (	/e (balanced): Lumber Incre plf)	ase=1.00, Plate Increase=1.00	)			SEAL 28147	Internet

Job	Truss	Truss Type	Qty	Ply	LOT 0.0025 HONEYCUTT HILLS   417 ADAMS	POINTE COURT ANGIER, NC
24-3417-F02	F229	Floor	5	1	Job Reference (optional)	# 48050
				0.0001.D.	Job Reference (optional)	<i>"</i> <b>10000</b>

un: 8.430 s Feb 12 2021 Print: 8.430 s Feb 12 2021 MiTek Industries, Inc. Thu May 2 21:35:04 2024 Page 2 ID:XfGBr?_CJqttCkf9NOQCWjycQDJ-sK3J5dT9IM?qkK6kqVfjivID4?1LBat0AW8JRZzKQmr


LOAD CASE(S) Standard Concentrated Loads (lb) Vert: 11=-800 2) Dead: Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 13-24=-7, 1-12=-67 Concentrated Loads (lb) Vert: 11=-800 3) 1st chase Dead + Floor Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 13-24=-7, 1-8=-67, 8-12=-13 Concentrated Loads (lb) Vert: 11=-800 4) 2nd chase Dead + Floor Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 13-24=-7, 1-7=-13, 7-12=-67 Concentrated Loads (lb) Vert: 11=-800 5) 3rd chase Dead: Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 13-24=-7, 1-8=-67, 8-12=-13 Concentrated Loads (lb) Vert: 11=-800 6) 4th chase Dead: Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 13-24=-7, 1-7=-13, 7-12=-67 Concentrated Loads (lb) Vert: 11=-800



Job	Truss	Truss Type	Qty	Ply LOT	0.0025 HONEYCU	TT HILLS   417 ADAMS I	POINTE COURT ANGIER, NO
24-3417-F02	F230	Floor	2	1	Reference (optio	nal)	# 48050
			Run: 8.430 s Feb	12 2021 Print: 8 4'	30 s Eeb 12 2021 Mi	Tek Industries Inc. Thu	May_2 21:35:04 2024_Page M?_UBcg0AW8JRZzKQm
0-11-15 ₁ 1	-3-0		2-0-0	June Construction			
	1		1				1
							Scale = 1:35.2
	3x4 =	= 1.5x3					
4x6 =			3x4 = 3x4 =		4 = 1.5x3 ∥	3x4 =	4x4 = 3x4
1 1 निकरी	2 T1 3		7 8 ज्ये दिर्	T2 9	10 R - R	11 - £21.	12 13
		B1 51				B2	
25 24	23	22 21	20 19	18	17 16	15	14
3x4    4x4 =	3x4 =	3x8 = 3x4 = 1	.5x3    1.5x3		20HS FP=	4x4 =	3x6 =
				3x4 =	3x8 =		
<b> </b>	<u> </u>		11-2-15 1-0-0 1-0-0		<u> </u>		
Plate Offsets (X,Y)-		5 lge], [8:0-1-8,Edge], [25:Edge,0-1-			9-0	-5	
L <b>OADING</b> (psf) TCLL 40.0 TCDL 10.0	Plate Grip DOL	-4-0 <b>CSI.</b> 1.00 TC 0.48 1.00 BC 0.97	<b>DEFL.</b> ir Vert(LL) -0.40 Vert(CT) -0.56	0 20 >632 6 20 >459	2 480	<b>PLATES</b> MT20 MT20HS	<b>GRIP</b> 244/190 187/143
3CLL 0.0 3CDL 5.0	Rep Stress Incr Code IRC2021/TPI	YES WB 0.50 2014 Matrix-SH	Horz(CT) 0.08	8 14 n/a	a n/a	Weight: 109 II	b FT = 20%F, 11%E
UMBER-			BRACING-			0	,
OP CHORD 2x4 S BOT CHORD 2x4 S			TOP CHORD	Structural we		irectly applied or 6-0	0-0 oc purlins, except
	SP No.3(flat)		BOT CHORD	Rigid ceiling	directly applied	or 10-0-0 oc bracin	g, Except:
REACTIONS. (Ib/si	ize) 25=780/0-3-8 (min. 0-	1-8), 14=780/Mechanical		2-2-0 oc bra	cing: 20-21,19-2	20.	
TOP CHORD 1-2	5=-776/0, 1-2=-767/0, 2-3=-2	ces 250 (lb) or less except when sł 2224/0, 3-4=-3269/0, 4-5=-3269/0,		6/0, 7-8=-3946	6/0,		
BOT CHORD 23-		11=-2937/0, 11-12=-1711/0 1-22=0/3650, 20-21=0/3946, 19-2	0=0/3946, 18-19=0/394	6, 17-18=0/33	91, 16-17=0/33	91,	
	16=0/2400, 14-15=0/999 1=-438/139, 6-21=0/350, 6-2	2=-486/0, 3-22=0/574, 3-23=-775/	/0, 2-23=0/802, 2-24=-1	094/0, 1-24=0	/1048,		
		-580/0, 11-16=0/685, 11-15=-897/			,		
2) All plates are MT	live loads have been consic 20 plates unless otherwise i for truss to truss connectior	ndicated.					
) Required 2x6 stro attached to walls	ongbacks, on edge, spaced a at their outer ends or restrai	at 10-0-0 oc and fastened to each	,	,	0		
	are only graphical represent	ations of a possible bearing condit	ion. Bearing symbols a	re not conside	red in the struct	ural	
	s to support the loads indica wn is for lateral support of in	ted. dividual web members only. Refer	to BCSI - Guide to Goo	od Practice for	Handling, Instal	ling,	
Restraining & Bra	acing of Metal Plate Connect	ed Wood Trusses for additional br ENT RESTRAING/BRACING OF (	acing guidelines, incluc	ding diagonal b	pracing.	0	1114

(1) Web Dracing shown is for lateral support of individual woo minimum woo minimum of a constraining guidelines, including diagonal bracing.
 (8) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.
 LOAD CASE(S) Standard





- 1) Unbalanced floor live loads have been considered for this design.
- 2) All plates are MT20 plates unless otherwise indicated.
- Refer to girder(s) for truss to truss connections.
- 4) Load case(s) 1, 2, 3, 4, 5, 6 has/have been modified. Building designer must review loads to verify that they are correct for the intended use of this truss.
- 5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 6) CAUTION. Do not erect truss backwards

7) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.

- the member must be braced.
  8) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.
  9) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.
  10) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.
  LOAD CASE(S) Standard
  1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 11-22=-7, 1-10=-67

dunhannun un

5/2/2024

Continuing by ber berge Zesign parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job Trus	iss T	Truss Type	Qty	Ply	LOT 0.0025 HONEYCUTT HILLS   417 ADAMS I	POINTE COURT ANGIER, NO
24-3417-F02 F231	31 F	loor	5	1	Job Reference (optional)	# 48050

Run: 8.430 s Feb 12 2021 Print: 8.430 s Feb 12 2021 MiTek Industries, Inc. Thu May 2 21:35:05 2024 Page 2 ID:XfGBr?_CJqttCkf9NOQCWjycQDJ-KXdhJzTnWf7hMUhxNCAyF6qNOOLgw2m9OAusz0zKQmq

LOAD CASE(S) Standard Concentrated Loads (lb) Vert: 9=-800 2) Dead: Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 11-22=-7, 1-10=-67 Concentrated Loads (lb) Vert: 9=-800 3) 1st chase Dead + Floor Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 11-22=-7, 1-6=-67, 6-10=-13 Concentrated Loads (lb) Vert: 9=-800 4) 2nd chase Dead + Floor Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 11-22=-7, 1-5=-13, 5-10=-67 Concentrated Loads (lb) Vert: 9=-800 5) 3rd chase Dead: Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 11-22=-7, 1-6=-67, 6-10=-13 Concentrated Loads (lb) Vert: 9=-800 6) 4th chase Dead: Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 11-22=-7, 1-5=-13, 5-10=-67 Concentrated Loads (lb) Vert: 9=-800



Job		Truss		Ti	russ Type				Qty	Ply	LOT 0.0025 HO	ONEYCUTT H	ILLS   417 AE	DAMS POINT	E COURT ANGIER, NC
24-3417-F02		F232		FI	oor Supported	Gable			1	1	Job Reference	e (optional)		#	48050
								Run: 8.4 ID:XfGB	30 s Feb 12 r?_CJqttCl	2021 Print	8.430 s Feb 12 NjycQDJ-KXd	2 2021 MiTek hJzTnWf7h	Industries, Inc MUhxNCAy	:. Thu May 2 F6qYgOYk\	21:35:05 2024 Page 1 wAC9OAusz0zKQmq
															0- <u>1</u> -8
															Scale = 1:33.8
															1.5x3
			1.5x3	1.5x3											1.5x3
3x4    1	l.5x3     ′	1.5x3	3x8 FP	'=	1.5x3	1.5x3	3x4 =	1.5x3	1.5x3	1.5x3	1.5x3	1.5x3	1.5x3	1.5x3	1.5x3 =
_	2 T1	3	4 5	6	7	8	9	10	¹¹ т2	12	13	14	15	16	17 18
	e ST1	e ST1	ST1	ST1	ST1	ST1	STI1 W2	9 2 ST1	ST1	o ST1	ST1	ST1	ST1	e ST1	
1-2-0					G B1								B		ST1 BE1 37 0-
		XXXX	XXXXXX	XXXXX		XXXXX	XXXXX		XXXXX					$\propto \sim \sim$	
36	35	34	33	32	31	30	29	28	27	26	25 24	23	22	21	20 19
3x4    1	I.5x3         ′	1.5x3	1.5x3	1.5x3	1.5x3	1.5x3	1.5x3	3x4 =	1.5x3	3x	:8 FP=	1.5x3	1.5x3	1.5x3	3x4
										1.5x3	1.5x3				1.5x3

20-6-8 20-6-8 Plate Offsets (X,Y) [1:Edge,0-1-8], [9:0-1-8,Edge], [28:0-1-8,Edge], [36:Edge,0-1-8]										
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2021/TPI2014	CSI. TC 0.06 BC 0.01 WB 0.03 Matrix-SH	<b>DEFL.</b> ir Vert(LL) n/a Vert(CT) n/a Horz(CT) -0.00	a - n/a 999	PLATES         GRIP           MT20         244/190           Weight: 89 lb         FT = 20%F, 11%E					
			BRACING- TOP CHORD BOT CHORD	Structural wood sheathing d end verticals. Rigid ceiling directly applied	irectly applied or 10-0-0 oc purlins, except or 6-0-0 oc bracing.					

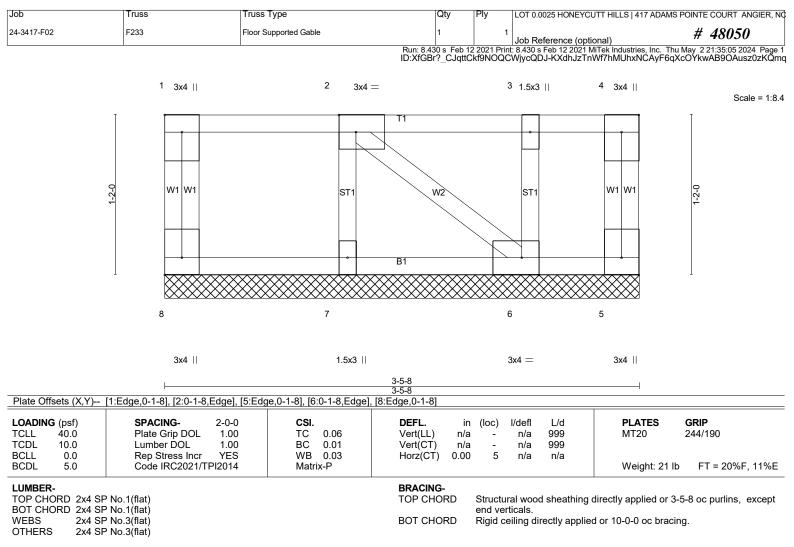
### REACTIONS. All bearings 20-6-8.

(lb) - Max Uplift All uplift 100 lb or less at joint(s) 19

Max Grav All reactions 250 lb or less at joint(s) 36, 19, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 24, 23, 22, 21, 20

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

### NOTES- (7-10)


- 1) Gable requires continuous bottom chord bearing.
- 2) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 3) Gable studs spaced at 1-4-0 oc.

LOAD CASE(S) Standard

- 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 19
- 5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to
- be attached to walls at their outer ends or restrained by other means.
- 6) CAUTION, Do not erect truss backwards.
- 7) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
- 8) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.
- 9) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing. 10) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED
- MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

# SEAL 28147

# 5/2/2024



REACTIONS. All bearings 3-5-8.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 8, 5, 7, 6

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

**NOTES-** (5-8)

- 1) Gable requires continuous bottom chord bearing.
- 2) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 3) Gable studs spaced at 1-4-0 oc.
- 4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 5) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
- 6) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.
- 7) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.
   8) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED
- 8) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

### LOAD CASE(S) Standard

