

Kempsville Sanford Component Plant 298 Harvey Faulk Rd Sanford, NC 27332

Phone #:919-775-1450

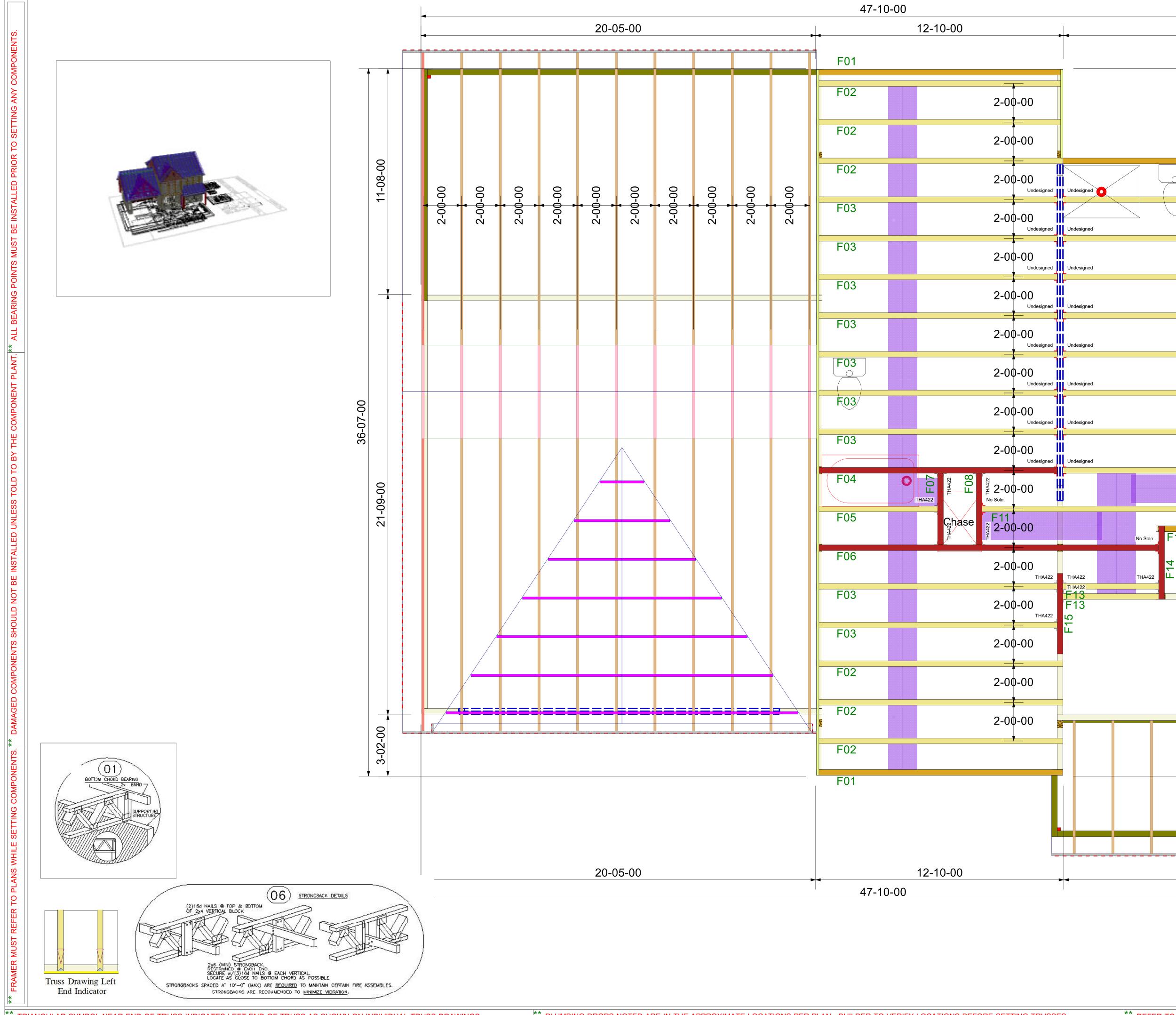
Builder: Contractors Hayes A Spring Lake

THE PLACEMENT PLAN NOTES:

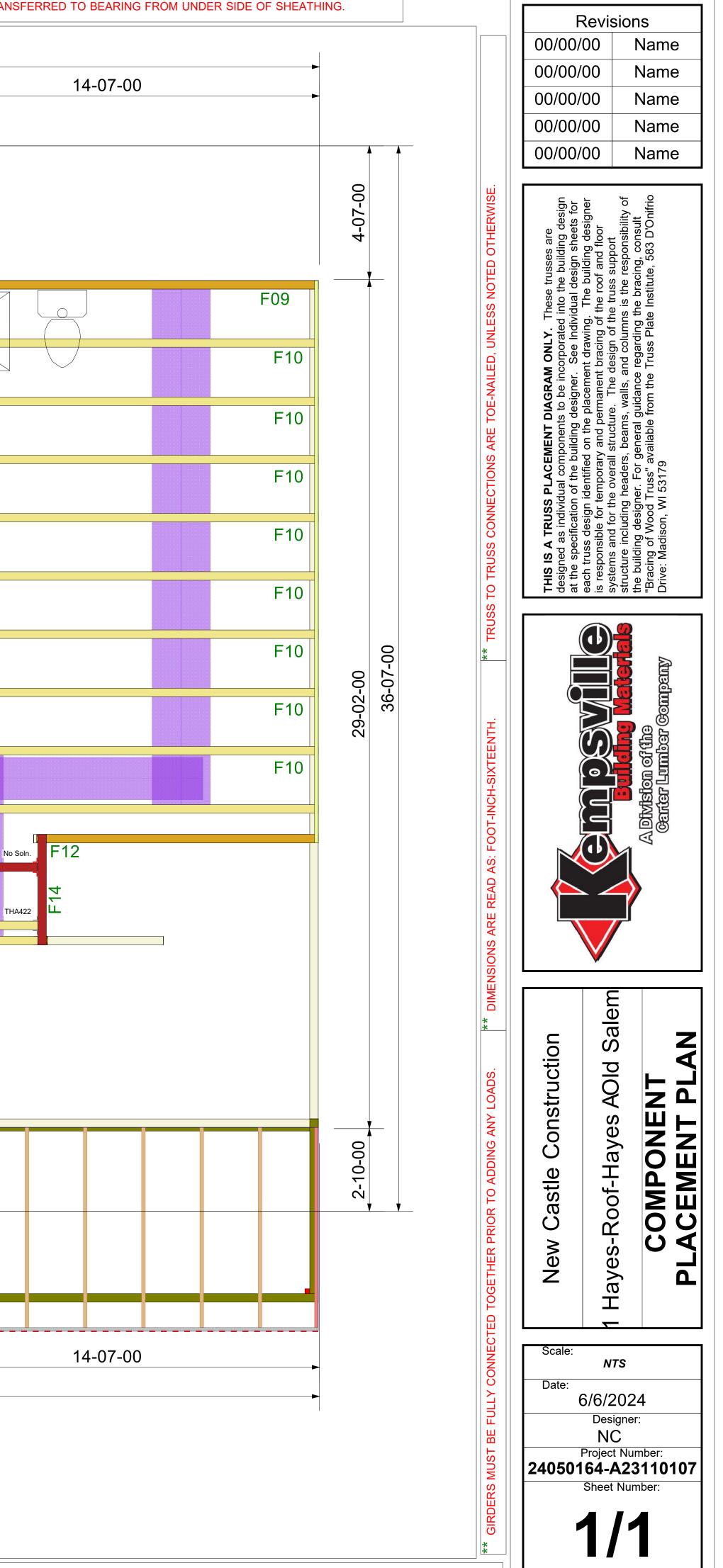
1. The Placement Plan is a diagram for truss installation. It is not an engineered drawing and has not been reviewed by an engineer. The Owner/Building Designer is responsible for obtaining an engineer's review if one is required by the local jurisdiction.

2. The responsibilities of the Owner, Contractor, Building Designer, Component Designer and Component Manufacturer shall be as set forth in ANSI/TPI 1. Capitalized terms shall be as defined in ANSI/TP 1 unless otherwise indicated.

3. Each Component is designed as an individual component utilizing information provided by others. The Owner/Building Designer is responsible for reviewing all Component Submittal Packages and individual Component Design Drawings for compliance with the Construction Documents and compatibility with the overall Building design.


4. Contractor will not proceed with component installation until the Owner/Building Designer has reviewed the Component Submittal Package. Questions on the suitability of any Component will be resolved by the Building Designer.

5. The Building Designer and Contractor are responsible for all temporary and permanent bracing.


6. The Placement Plan assumes the building is dimensionally correct, structurally sound, and in a suitable condition to support each Component during installation and thereafter, including but not limited to installation of all bearing points. Proper design and construction of all structural components, including foundations, headers, beams, walls and columns are the responsibility of the Owner, Building Designer and Contractor.

7. Do not cut, drill, or modify any Component without first consulting the Component Manufacturer or Building Designer. Damaged Components shall not be installed unless directed by the Building Designer or approved by the Component Manufacturer.

8. Components must be handled and installed following all applicable safety standards and best practices, including but not limited to BCSI, OSHA, TPI and local codes. Failure to properly handle, brace or otherwise install Component can result in serious injury or death.

** PLUMBING DROPS NOTED ARE IN THE APPROXIMATE LOCATIONS PER PLAN. BUILDER TO VERIFY LOCATIONS BEFORE SETTING TRUSSES.

** REFER TO FINAL TRUSS ENGINEERING SHEETS FOR PLY TO PLY CONNECTIONS.

RE: 24050164 1 Hayes Rd A Trenco 818 Soundside Rd Edenton, NC 27932

Site Information:Customer: New Castle ContractorsProject Name: 24050164Lot/Block:Model:Address: 1 Hayes RdSubdivision:City: Spring LakeState: NC

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2018/TPI2014 Wind Code: ASCE 7-16 Roof Load: 40.0 psf Design Program: MiTek 20/20 8.6 Wind Speed: 130 mph Floor Load: N/A psf

This package includes 15 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date
1	162356793	F15	12/5/2023
2	162356794	F11	12/5/2023
3	162356795	F05	12/5/2023
4	162356796	F08	12/5/2023
5	162356797	F07	12/5/2023
6	162356798	F14	12/5/2023
7	162356799	F06	12/5/2023
8	162356800	F04	12/5/2023
9	162356801	F10	12/5/2023
10	162356802	F03	12/5/2023
11	162356803	F02	12/5/2023
12	162356804	F13	12/5/2023
13	162356805	F12	12/5/2023
14	162356806	F09	12/5/2023
15	162356807	F01	12/5/2023

The truss drawing(s) referenced above have been prepared by

Truss Engineering Co. under my direct supervision

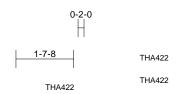
based on the parameters provided by Carter Components (Sanford, NC)).

Truss Design Engineer's Name: Gilbert, Eric

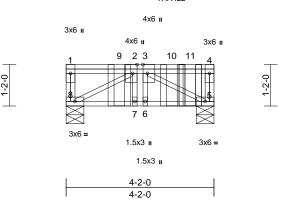
My license renewal date for the state of North Carolina is December 31, 2024

North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.



Gilbert, Eric


Job	Truss	Truss Type	Qty	Ply	1 Hayes Rd A	
24050164	F15	Floor Girder	1	1	Job Reference (optional)	162356793

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Dec 04 15:58:34 ID:p?_s0279IM10FESNfm63uazGIvT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

?f

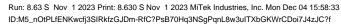
THA422

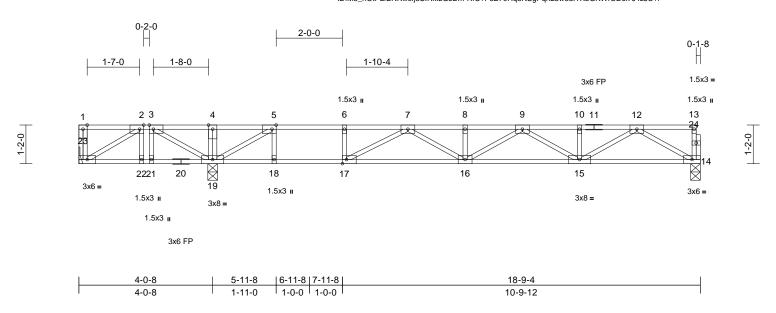
Scale = 1:32.5

Plate Offsets (X, Y): [2:0-3-0,Edge], [3:0-3-0,Edge]

Plate Offsets ((X, Y): [2:0-3-0,Edge]	, [3:0-3-0,Edge]											
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00		TC	0.84	Vert(LL)	-0.01	5-6	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.00		BC	0.45	Vert(CT)	-0.02	5-6	>999	240		
BCLL	0.0	Rep Stress Incr	NO		WB	0.32	Horz(CT)	0.01	5	n/a	n/a		
BCDL	5.0	Code	IRC2018	3/TPI2014	Matrix-MSH							Weight: 31 lb	FT = 20%F, 11%E
LUMBER			7)	In the I OAD	CASE(S) section	loads a	nnlied to the	face					
TOP CHORD	2x4 SP No.2(flat)		''		are noted as front			lace					
BOT CHORD	()		10	AD CASE(S)		(.) 0. 24	0.1 (2).						
WEBS	2x4 SP No.3(flat)		1)	• • •	or Live (balanced)). Lumbe	r Increase=1	00					
BRACING	2.0.01 1000(000)		•,	Plate Incre		. Lumbo		.00,					
TOP CHORD	Structural wood she	athing directly applie	ed or	Uniform Lo									
	4-2-0 oc purlins, ex			Vert: 5-8	s=-10, 1-4=-100								
BOT CHORD			с	Concentrat	ed Loads (lb)								
	bracing.			Vert: 9=	-571 (B), 10=-159	(F), 11=-	776 (F=-182	,					
REACTIONS	(size) 5=0-6-0,8	8=0-6-0		B=-594)									
	Max Grav 5=1360 (I												
FORCES	(lb) - Maximum Com	npression/Maximum											
	Tension												
TOP CHORD	1-8=-161/0, 4-5=-71	9/0, 1-2=0/0,											
	2-3=-1152/0, 3-4=0/	0											
BOT CHORD	7-8=0/1152, 6-7=0/1	1152, 5-6=0/1152											
WEBS	2-8=-1310/0, 3-5=-1	310/0, 2-7=0/87,											
	3-6=-73/0												
NOTES													
1) Unbalance	ed floor live loads have	e been considered fo	or										
this desig	n.												
	is designed in accorda											TH CA	1111
	nal Residential Code s		ind									WHY CA	Pall
R802.10.2	2 and referenced stand	lard ANSI/TPI 1.									1	TH CA	10/11

 Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.


- Use Simpson Strong-Tie THA422 (6-16d Girder, 6-10d Truss) or equivalent spaced at 0-6-4 oc max. starting at 2-11-12 from the left end to 3-6-0 to connect truss(es) to front face of top chord.
- Use Simpson Strong-Tie THA422 (6-16d Girder, 6-10d Truss) or equivalent spaced at 2-0-0 oc max. starting at 1-6-0 from the left end to 3-6-0 to connect truss(es) to back face of top chord.
- 6) Fill all nail holes where hanger is in contact with lumber.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1 Hayes Rd A	
24050164	F11	Floor	1	1	Job Reference (optional)	162356794

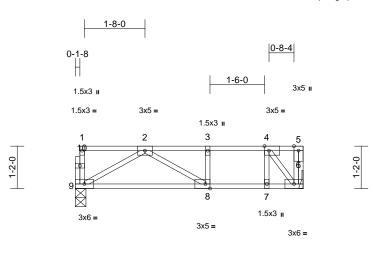
Scale = 1:34.8

Plate Offsets (X, Y): [2:0-1-8,Edge], [3:0-1-8,Edge], [5:0-1-8,Edge], [17:0-1-8,Edge]

Plate Offsets (.	X, Y): [2:0-1-8,Edge],	, [3:0-1-8,⊨dge], [5:0- -	1-8,⊨dge	j, [17:0-1-8,Edg	jej							-	
Loading TCLL TCDL BCLL BCDL	(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.00 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.92 0.95 0.52	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.42 -0.59 0.04	(loc) 16-17 16-17 14	l/defl >413 >298 n/a	L/d 360 240 n/a	PLATES MT20 Weight: 97 lb	GRIP 244/190 FT = 20%F, 11%E
									-				
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD	2x4 SP 2400F 2.0E(SP No.2(flat) 2x4 SP No.2(flat) *E 2400F 2.0E(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat)		5) 6)	International R802.10.2 ar Recommend 10-00-00 oc (0.131" X 3") at their outer	designed in accorr Residential Code nd referenced stan 2x6 strongbacks, and fastened to ea nails. Strongback ends or restrainer to not erect truss b Standard	sections dard AN on edge ich truss is to be d by othe	R502.11.1 a ISI/TPI 1. s, spaced at s with 3-10d attached to w er means.						
BOT CHORD	2-2-0 oc purlins, ex	cept end verticals. applied or 10-0-0 oc			Clandard								
	•	, 19=0-3-8, 23= :al _C 7), 19=973 (LC 1)											
FORCES	(lb) - Maximum Corr	,											
TOP CHORD	Tension 1-23=-72/0, 13-14=- 2-3=-364/0, 3-4=-13 5-6=-1925/0, 6-7=-1 8-9=-2933/0, 9-10=- 12-13=-4/0	8/84, 4-5=-138/84,	/0,									WITH CA	NRO W
BOT CHORD	,	=0/364, 19-21=0/364 8=0/1925, 16-17=0/2 5=0/1241									A N	OR	MAN
WEBS	4-19=-103/123, 5-19 2-23=-422/0, 2-22=-	9=-2134/0, 3-19=-321 30/74, 3-21=-15/91, 15=0/1010, 10-15=-10 0/295, 8-16=-99/0,	,							Annual		SEA 0363	• -
NOTES											Ξ.	· · · ·	allis
 Unbalance this design 	ed floor live loads have	e been considered for									15	RC AGIN	EFER
2) All plates a	are 3x5 MT20 unless of inder(s) for truss to trus											in a. C	ILBE INT

December 5,2023

Page: 1


TENGINEERING BY TREENCO A MITek Atfillate 818 Soundside Road Edenton, NC 27932

A WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org)
and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1 Hayes Rd A	
24050164	F05	Floor	1	1	Job Reference (optional)	162356795

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Dec 04 15:58:31 ID:12otELGJLs4RAPdiCndx3KzGJGX-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:31.7

Plate Offsets (X, Y): [4:0-1-8,Edge], [8:0-1-8,Edge]

	(x, i): [iio i 0,Eugo];	, [0.0 1 0,Edg0]										
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	0.58	Vert(LL)	-0.06	8-9	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.54	Vert(CT)	-0.10	8-9	>739	240	-	
BCLL	0.0	Rep Stress Incr	YES	WB	0.14	Horz(CT)	0.00	6	n/a	n/a		
BCDL	5.0	Code	IRC2018/TPI2014	Matrix-MSH							Weight: 34 lb	FT = 20%F, 11%E
LUMBER												
TOP CHORD	2x4 SP No.2(flat)											
BOT CHORD												
WEBS	2x4 SP No.3(flat)											
OTHERS	2x4 SP No.3(flat)											
BRACING												
TOP CHORD			ed or									
	6-0-0 oc purlins, ex											
BOT CHORD	Rigid ceiling directly bracing.	applied of 10-0-0 of	C									
REACTIONS	0	anical, 9=0-3-8										
REACTIONS	Max Grav 6=331 (L0	,										
FORCES	(lb) - Maximum Corr											
TORGES	Tension	ipression/maximum										
TOP CHORD		1, 1-2=-4/0, 2-3=-39	3/0,									
	3-4=-393/0, 4-5=0/0											
BOT CHORD	,	,										
WEBS	3-8=-41/0, 4-7=0/15											
	2-9=-475/0, 2-8=-39	/85										
NOTES												
	ed floor live loads have	e been considered fo	or									
this design 2) Refer to a	n. girder(s) for truss to trus	ss connections									OR FESS	unin,
	is designed in accorda										IN TH CA	Roite
	nal Residential Code s		nd							N	A	in the
R802.10.2	2 and referenced stand	ard ANSI/TPI 1.								12	U. FESS	Marin
	end 2x6 strongbacks, o								4	12		
	oc and fastened to eac											1111
	3") nails. Strongbacks		alls								SEA	L 1 1
	at their outer ends or restrained by other means. 5) CAUTION, Do not erect truss backwards. LOAD CASE(S) Standard											
LOAD CASE		unwdlus.							1		0303	
LOAD CASE((J) Stanuaru										N	1 8

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1 Hayes Rd A	
24050164	F08	Floor Girder	1	1	Job Reference (optional)	162356796

1-5-8

3x6 II

f

3x5 II

0-11-12 0-3-0

0-3-0

6

1-2-0

Special

3x6 🛛 2

8

5

1.5x3 u

3-8-8 2-0-0

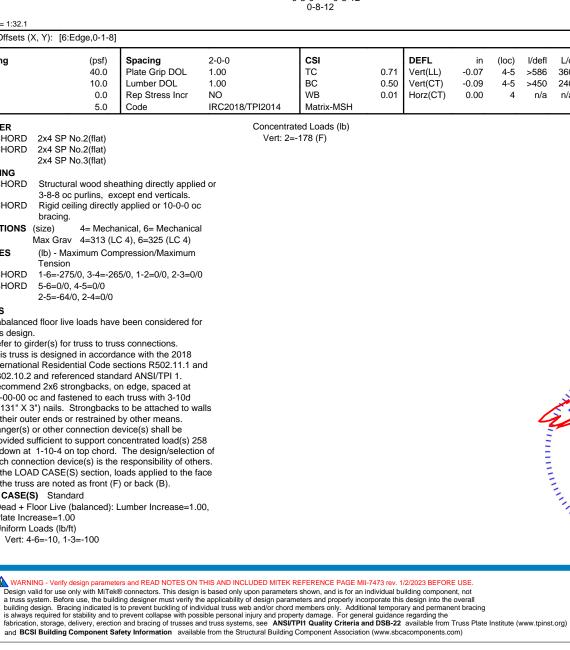
1-8-8

0-8-12

1-7-8

3x6 🛛

Î


3x6 =

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Dec 04 15:58:32 ID:pLktyzm9trkF6xAv93lsKZzGJ88-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

1-2-0

Page: 1

A THURSDAY

т

818 Soundside Road Edenton, NC 27932

Scale = 1:32.1

Plate Offsets (X, Y): [6:Edge,0-1-8]

Loading TCLL TCDL BCLL	(psf) 40.0 10.0 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.00 1.00 NO	CSI TC BC WB	0.71 0.50 0.01	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.07 -0.09 0.00	(loc) 4-5 4-5 4	l/defl >586 >450 n/a	L/d 360 240 n/a	PLATES MT20	GRIP 244/190	
BCDL	5.0	Code	IRC2018/TPI2014	Matrix-MSH							Weight: 25 lb	FT = 20%F, 11%	E
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x4 SP No.2(flat) 2x4 SP No.3(flat)		Vert: 2=-	ed Loads (lb) 178 (F)									
BOT CHORD	Rigid ceiling directly		:										
REACTIONS	bracing. (size) 4= Mecha	anical, 6= Mechanica	I										
	Max Grav 4=313 (L0	C 4), 6=325 (LC 4)											
FORCES	(lb) - Maximum Com Tension	pression/Maximum											
TOP CHORD		5/0, 1-2=0/0, 2-3=0/0)										
BOT CHORD WEBS	,												
NOTES	2-5=-64/0, 2-4=0/0												
 this desig 2) Refer to g 3) This truss Internation R802.10.2 4) Recomment 10-00-00 (0.131" X at their out 5) Hanger(s) provided s b down a such conr 6) In the LO/ of the trus LOAD CASE(1) Dead + I Plate Inc Uniform 	jirder(s) for truss to trus is designed in accordanal Residential Code si 2 and referenced stand end 2x6 strongbacks, o oc and fastened to ead 3") nails. Strongbacks there ends or restrained o or other connection do sufficient to support con to 1-10-4 on top chord. hection device(s) is the AD CASE(S) section, Id is are noted as front (F S) Standard Floor Live (balanced): I prease=1.00 Loads (lb/ft)	ss connections. ance with the 2018 ections R502.11.1 an ard ANSI/TPI 1. In edge, spaced at th truss with 3-10d to be attached to with by other means. evice(s) shall be incentrated load(s) 25 The design/selection responsibility of otho bads applied to the fa-) or back (B).	nd alls 58 n of ers. ace						V. HILLING	the second se	SEA 0363	L 22 EEFR-FR- ILBF	2000000
Vert: 4	4-6=-10, 1-3=-100										Decemb	er 5,2023	
	NING - Verify design paramete	ers and READ NOTES ON	THIS AND INCLUDED MITEK R	EFERENCE PAGE MII	-7473 rev. 1	/2/2023 BEFORE	USE.						

Job	Truss	Truss Type	Qty	Ply	1 Hayes Rd A	
24050164	F07	Floor Girder	1	1	Job Reference (optional)	162356797

1-7-8

3x6 II

3x6 =

<u>2-0-0</u> 2-0-0

1-2-0

THA422

3x6 II 2

5

1.5x3 u

0-8-12

1-5-8

3x6 II

¢ 4

3x5 II

3-5-8 2 3-8-8

2 0-3-0 0-8-12

Carter Components (Sanford, NC), Sanford, NC - 27332,

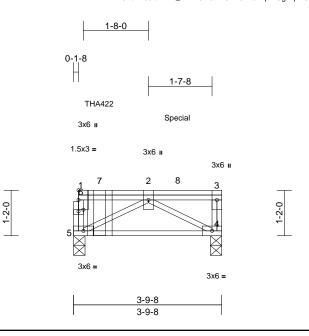
Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Dec 04 15:58:31 ID:v8IW?HsgscyWmogkSbR2TSzGJAb-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

1-2-0

Page: 1

Scale =	1:34.9
---------	--------

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC 0.8	.80	Vert(LL)	-0.08	5-6	>539	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC 0.5	.55	Vert(CT)	-0.10	5-6	>406	240		
BCLL	0.0	Rep Stress Incr	NO	WB 0.0	.02	Horz(CT)	n/a	-	n/a	n/a		
BCDL	5.0	Code	IRC2018/TPI2014	Matrix-MSH							Weight: 25 lb	FT = 20%F, 11%E
LUMBER			Vert: 2=-	231 (B)								
	2x4 SP No.2(flat)		Von. 2-	201 (D)								
	2x4 SP No.2(flat)											
WEBS	2x4 SP No.3(flat)											
BRACING	· · /											
TOP CHORD	Structural wood she	athing directly applie	d or									
	3-8-8 oc purlins, ex	cept end verticals.										
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 oc	:									
REACTIONS	(size) 4= Mecha	anical, 6= Mechanica	I									
	Max Grav 4=353 (L0											
FORCES	(lb) - Maximum Com Tension	npression/Maximum										
TOP CHORD	1-6=-286/0, 3-4=-29	8/0, 1-2=0/0, 2-3=0/0)									
BOT CHORD	5-6=0/0, 4-5=0/0											
WEBS	2-6=0/0, 2-5=-73/0											
NOTES												
 Unbalance this design. 	d floor live loads have	e been considered fo	r									
	rder(s) for truss to trus	ss connections										
	s designed in accorda											
	al Residential Code s		nd									
	and referenced stand											11
	nd 2x6 strongbacks, c										OR EESS	Dille
	c and fastened to eac										"ATH UA	TO MA
	8") nails. Strongbacks er ends or restrained		alis							N	OVEESS	i Alle
	on Strong-Tie THA42)d							25		V. Tim
	quivalent at 1-10-4 fro								4		:0	2.
,	iss(es) to back face o								-		054	1 3
	holes where hanger is										SEA	4 <u>8 8</u> .
	D CASE(S) section, le		ace							:	0363	22 : =
	are noted as front (F	F) or back (B).							-	i d		- 1 - <i>2</i> -
LOAD CASE(S	,								Contraction of the second seco	-	N. 4	L 22
	loor Live (balanced): I	Lumber Increase=1.0	00,							20	A.S.NOINI	FRIAN
	ease=1.00 .oads (lb/ft)									1	A. GIN	Star CAN
	-6=-10, 1-3=-100										A G	ILBUIN
	ated Loads (lb)										A. G	in the second se
50											Decembe	er 5 2023
											Decembe	51 0,2020



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

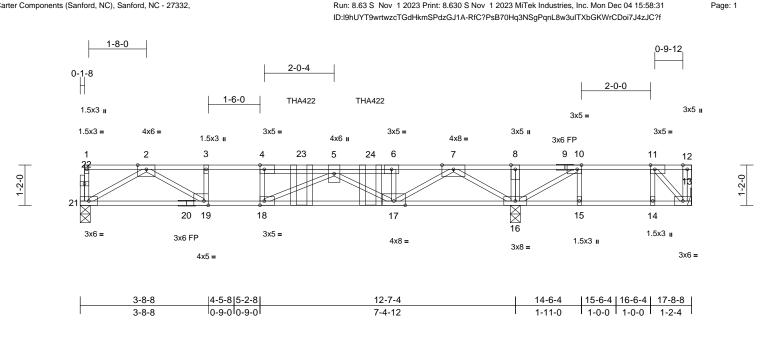
Job	Truss	Truss Type	Qty	Ply	1 Hayes Rd A	
24050164	F14	Floor Girder	1	1	Job Reference (optional)	162356798

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Dec 04 15:58:33 ID:YI4vIOLuvh3efutABT_7Z4zGIz3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:29.5

Plate Offsets (X, Y): [6:0-1-8,0-0-8]

	[0.0 . 0,0 0 0]												
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00		TC	0.18	Vert(LL)	n/a	(.00)	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.00		BC	0.20	Vert(CT)	-0.03	4-5	>999	240	-	
BCLL	0.0	Rep Stress Incr	NO		WB	0.08	Horz(CT)	0.00	4	n/a	n/a		
BCDL	5.0	Code	IRC2018/T	PI2014	Matrix-MP							Weight: 27 lb	FT = 20%F, 11%E
LUMBER TOP CHORD 2x4 BOT CHORD 2x4 WEBS 2x4 OTHERS 2x4 BRACING TOP CHORD Stru 3-9- BOT CHORD Rigi brac REACTIONS (size) Max 0 FORCES (lb) TOP CHORD 1-5- BOT CHO	SP No.2(flat) SP No.2(flat) SP No.3(flat) SP No.3(flat) SP No.3(flat) SP No.3(flat) SP No.3(flat) SP No.3(flat) at ceiling directly cing. 4=0-3-8, Grav 4=242 (L1 - Maximum Con sion 192/0, 3-4=-71 -0/275 299/0, 3-4=-71 -0/275 299/0, 3-4=-71 192/0, 3-4=-	athing directly applied cept end verticals. applied or 10-0-0 oc 5=0-3-8 C 1), 5=353 (LC 1) pression/Maximum /0, 1-2=-12/0, 2-3=0/0 5/0 e been considered for ance with the 2018 ections R502.11.1 an lard ANSI/TPI 1. n edge, spaced at th truss with 3-10d to be attached to wa by other means. ckwards. 2 (6-16d Girder, 6-10 n the left end to conn rd. s in contact with lumb- evice(s) shall be nocentrated load(s) 27 top chord. The desig	8) In IOAE 1) I dor dor d lls d ect er. lb	n the LOAD f the truss a D CASE(S) Dead + Floo Plate Increa Uniform Loa Vert: 4-5= Concentrate	CASE(S) section, re noted as front (I Standard or Live (balanced): ase=1.00	F) or ba	ck (B).					SEA 0363	ROUL 22


December 5,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1 Hayes Rd A	
24050164	F06	Floor Girder	1	1	Job Reference (optional)	162356799

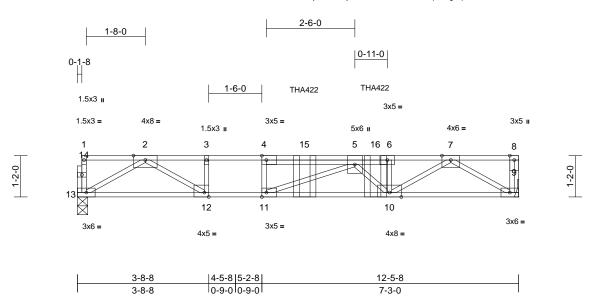
Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Mon Dec 04 15:58:31

Carter Components (Sanford, NC), Sanford, NC - 27332,

Scale =	1:33.4
---------	--------

	(X, Y): [4:0-1-8,Edge]	, [-9-1,[.0.0 1 0,	, [9-1						1	
oading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL	40.0	Plate Grip DOL	1.00		TC	0.90	Vert(LL)		17-18	>671	360	MT20	244/190
CDL	10.0	Lumber DOL	1.00		BC	0.77	Vert(CT)		17-18	>508	240		
CLL	0.0	Rep Stress Incr	NO		WB	0.80	Horz(CT)	0.03	16	n/a	n/a		
CDL	5.0	Code	IRC20	18/TPI2014	Matrix-MSH	-						Weight: 95 lb	FT = 20%F, 11%
JMBER				4) This truss is	designed in acco	ordance w	ith the 2018						
OP CHORD		xcept* 1-9:2x4 SP 2	400F		I Residential Cod			nd					
	2.0E(flat)				and referenced st								
OT CHORD		xcept* 20-13:2x4 SF		,	d 2x6 strongback c and fastened to								
EBS	2400F 2.0E(flat) 2x4 SP No.3(flat)) nails. Strongba			alls					
THERS	2x4 SP No.3(flat)				r ends or restrain			115					
RACING	2x4 01 140.0(nat)				Do not erect truss								
OP CHORD	Structural wood she	eathing directly applie	ed or	7) Use Simpso	on Strong-Tie THA	422 (6-1	6d Girder, 6-10)d					
or original	6-0-0 oc purlins, ex				quivalent spaced a								
OT CHORD		applied or 6-0-0 oc			he left end to 8-5	0 to conn	ect truss(es) to	C					
	bracing.			back face o			4 4						
EACTIONS	(size) 13= Mech	hanical, 16=0-3-8,			oles where hange CASE(S) sectio								
	21=0-3-8				are noted as fron			ace					
	Max Uplift 13=-92 (L			LOAD CASE(S			on (D).						
	Max Grav 13=127 (9).	· ·	or Live (balance	1). Lumbe	r Increase=1 0	00					
	21=864 (,		Plate Incre	· ·	.). <u>L</u> a	increase inc	,					
ORCES	(ID) - Maximum Con Tension	npression/Maximum		Uniform Lo	oads (lb/ft)								
OP CHORD	1-21=-100/0, 12-13:	=-100/0 1-2=-6/0			-21=-10, 1-12=-1	00							
		2575/0, 4-5=-2590/0,			ted Loads (lb)								
	5-6=-2297/0, 6-7=-2	, ,		Vert: 23	=-238 (B), 24=-22	25 (B)							
	8-10=0/1045, 10-11	=0/262, 11-12=0/0											1111
OT CHORD	,	9=0/2575, 17-18=0/3	,									TH CA	Boilte
		=-262/0, 14-15=-262	2/0,								A	A y de	A14
	13-14=-262/0	0/000 0 40 445/0									33	A ESS	SN.
EBS	3-19=-580/0, 4-18=	0/228, 8-16=-145/0, -1536/0, 2-19=0/144	0							9			Ch.
		=0/1675, 6-17=-214/									() (:4	
	,	=-862/0, 5-17=-1153	,									SEA	
	10-15=0/182, 11-14	,	-,							=		0363	•
DTES												0363	22
	ed floor live loads have	e been considered fo	or							-	2	1. Contract (1. Contract)	1 - E
this desigr										5	1	N.E.	Richi
	irder(s) for truss to tru										25	S ENGIN	EFICAS
Drovido m	achanical connection	(by others) of truce to	<u>^</u>								1	110	11 G \ \

Provide mechanical connection (by others) of truss to 3) bearing plate capable of withstanding 92 lb uplift at joint


13.

A. GILBE December 5,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component for the prevention. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1 Hayes Rd A				
24050164	F04	Floor Girder	1	1	Job Reference (optional)	162356800			

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Dec 04 15:58:30 ID:zePmdoobmzMdjVs9MHmj?VzGJ4D-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:32.5

Plate Offsets (X, Y): [4:0-1-8,Edge], [11:0-1-8,Edge], [12:0-1-8,Edge]

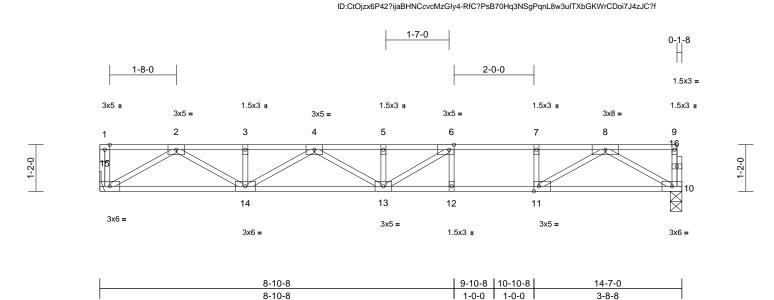
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	[:e : 0,20ge], [:.		901									
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00		тс	0.94	Vert(LL)	-0.25	10-11	>586	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.00		BC	0.84	Vert(CT)	-0.33	10-11	>447	240		
BCLL	0.0	Rep Stress Incr	NO		WB	0.77	Horz(CT)	0.03	9	n/a	n/a		
BCDL	5.0	Code	IRC201	8/TPI2014	Matrix-MSH							Weight: 68 lb	FT = 20%F, 11%E
LUMBER TOP CHORD BOT CHORD WEBS	2x4 SP 2400F 2.0E(No.2(flat) 2x4 SP 2400F 2.0E(2x4 SP No.3(flat)	<i>,</i> .	6) (4 SP 7)	Truss) or equ 6-5-0 from the front face of	n Strong-Tie THA4 uivalent spaced at le left end to 8-5-0 top chord. bles where hanger	2-0-0 or to conn	c max. startin ect truss(es)	ig at to					
OTHERS	2x4 SP No.3(flat)		8)		CASE(S) section,								
BRACING	2X4 3F NU.3(IIdl)		0)		are noted as front (1000					
TOP CHORD	Structural wood she	athing directly applie	ed or L(DAD CASE(S)		,							
	6-0-0 oc purlins, ex		1)	• • • •	or Live (balanced):	Lumbe	r Increase=1	.00.					
BOT CHORD													
	bracing.			Uniform Lo	ads (lb/ft)								
REACTIONS	•	inical, 13=0-3-8		Vert: 9-1	3=-10, 1-8=-100								
	Max Grav 9=1002 (L	_C 4), 13=856 (LC 1)	Concentrat	ed Loads (lb)								
FORCES	(lb) - Maximum Com		,	Vert: 15=	-253 (F), 16=-213	(F)							
	Tension												
TOP CHORD	1-13=-98/0, 8-9=-72	/0, 1-2=-6/0,											
	2-3=-2556/0, 3-4=-2	556/0, 4-5=-2566/0,											
	5-6=-2794/0, 6-7=-2	,											
BOT CHORD	12-13=0/1330, 11-12	2=0/2556, 10-11=0/3	3466,										
	9-10=0/1585	470 0 40 4500/0											
WEBS	3-12=-604/0, 4-11=0 2-12=0/1613, 7-9=-1	,	,										
	6-10=0/84, 5-11=-10		,									MILLIN	1111.
NOTES	0-10-0/04, 0-11-10	125/0, 5-10331/0										IN'TH CA	ROUL
	ed floor live loads have	been considered fo									1	2	
this design											E	U' FES	Post Ville
0	irder(s) for truss to trus	s connections									71	<u>, ()</u>	Na Sil
	is designed in accorda											:2	
	nal Residential Code se		ind							=		SFA	n 1 E .

- R802.10.2 and referenced standard ANSI/TPI 1.
 4) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d
- (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
 5) CAUTION, Do not erect truss backwards.

SEAL 036322 A. GILBERT

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)



Job	Truss	Truss Type Qty Ply 1 Hayes Rd A		1 Hayes Rd A		
24050164	F10	Floor	8	1	Job Reference (optional)	162356801

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Dec 04 15:58:32

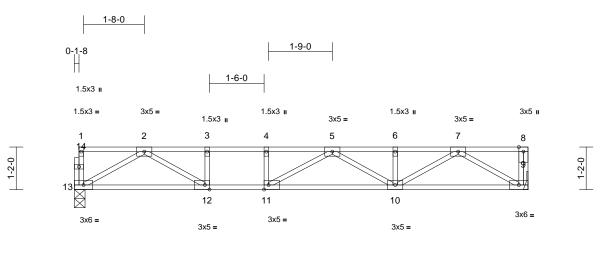
Page: 1

Carter Components (Sanford, NC), Sanford, NC - 27332,

Scale	- 1	.28	a

Plate Offsets (X, Y): [6:0-1-8,Edge], [11:0-1-8,Edge]

Loading TCLL TCDL	(psf) 40.0 10.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.00 1.00	CSI TC BC	0.94 0.78	DEFL Vert(LL) Vert(CT)	in -0.28 -0.38	(loc) 12-13 12-13	l/defl >616 >457	L/d 360 240	PLATES MT20	GRIP 244/190
BCLL	0.0	Rep Stress Incr	YES	WB	0.60	Horz(CT)	0.03	10	n/a	n/a		
BCDL	5.0	Code	IRC2018/TPI2014	Matrix-MSH	-						Weight: 74 lb	FT = 20%F, 11%E
LUMBER												
TOP CHORD		(104)										
BOT CHORD WEBS	2x4 SP 2400F 2.0E(2x4 SP No.3(flat)	(nat)										
OTHERS	2x4 SP No.3(flat)											
BRACING												
TOP CHORD	Structural wood she	athing directly appli	ed or									
	2-2-0 oc purlins, ex											
BOT CHORD	 Rigid ceiling directly bracing. 	applied or 10-0-0 o	С									
REACTIONS	(size) 10=0-3-8, Max Grav 10=782 (I	, 15= Mechanical _C 1), 15=788 (LC 1)									
FORCES	(lb) - Maximum Com	pression/Maximum										
TOP CHORD	Tension 1-15=-73/0. 9-10=-9	3/0 1-2-0/0										
	2-3=-2026/0, 3-4=-2											
	5-6=-2784/0, 6-7=-2	300/0, 7-8=-2300/0,										
	8-9=-6/0	4 0/0507 40 40 0/	0000									
BOT CHORD	14-15=0/1200, 13-1- 11-12=0/2300, 10-1		2300,									
WEBS	8-10=-1406/0, 8-11=		0.									
	7-11=-446/0, 2-15=-	1388/0, 2-14=0/965	,									11
	3-14=-171/0, 4-14=-										11'''' CI	DUL
	5-13=-316/0, 6-13=-	53/690								1	"aTH UF	NO MA
NOTES	ced floor live loads have	boon considered fr	or.							Nº.	QEES	The North
this desig									6	25	IP 1	City of
	, girder(s) for truss to trus	ss connections.									10	T i i i
	s is designed in accorda								-		SEA	1 : E
	onal Residential Code so 2 and referenced stand		ind						=		0363	• –
	end 2x6 strongbacks, o								=	A A A A A A A A A A A A A A A A A A A	0303	22 : E
	oc and fastened to eac									-	N	1 3
	3") nails. Strongbacks		alls							21	N.ENO.	-ERIX S
	uter ends or restrained									1	S.S.NGIN	E.E. P.N
,	N, Do not erect truss ba (S) Standard	uchwalus.								1	Decemb	ILBUIN
LUAD UASE	() Stanuaru										111111	111111
											Decemb	or 5 2022


December 5,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1 Hayes Rd A	
24050164	F03	Floor	9	1	Job Reference (optional)	162356802

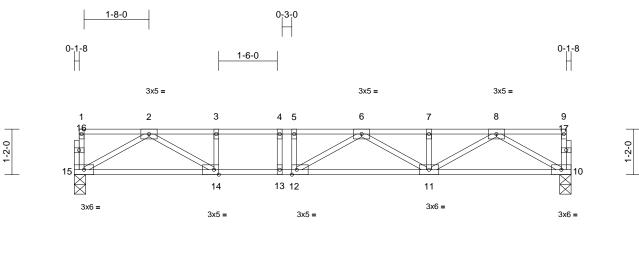
Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Dec 04 15:58:30 ID:QSFbKtfug_JJjzy8vMkIAHzGJIc-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:31.6

Plate Offsets (X, Y): [11:0-1-8,Edge], [12:0-1-8,Edge]

·`	, , ,	. , , , , ,	-									
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	0.84	Vert(LL)		10-11	>768	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.98	Vert(CT)	-0.26	10-11	>563	240		
BCLL	0.0	Rep Stress Incr	YES	WB	0.44	Horz(CT)	0.03	9	n/a	n/a		
BCDL	5.0	Code	IRC2018/TPI2014	Matrix-MSH							Weight: 63 lb	FT = 20%F, 11%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES	2x4 SP No.2(flat) 2x4 SP No.2(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing, Except: 2-2-0 oc bracing: 10	athing directly applie cept end verticals. applied or 10-0-0 or -11. unical, 13=0-3-8 C 1), 13=665 (LC 1)	ed or	Matrix-Inort		I					Weight. 65 ib	
TOP CHORD	2-3=-1785/0, 3-4=-1 5-6=-1647/0, 6-7=-1	785/0, 4-5=-1785/0, 647/0, 7-8=0/0										
WEBS	9-10=0/1012 2-13=-1155/0, 2-12= 4-11=-76/57, 7-9=-1 6-10=-138/0, 5-10=-	171/0, 7-10=0/741,										1100
NOTES											N'TH CA	ROUL
this design 2) Refer to g 3) This truss Internation R802.10.2 4) Recomme 10-00-00 (0.131" X at their ou	irder(s) for truss to trus is designed in accordanal Residential Code s 2 and referenced stand and 2x6 strongbacks, o oc and fastened to eac 3") nails. Strongbacks iter ends or restrained I, Do not erect truss ba	ss connections. ance with the 2018 ections R502.11.1 a lard ANSI/TPI 1. n edge, spaced at th truss with 3-10d to be attached to w by other means.	nd						C. miner	The second secon	SEA 0363	EEP A LUI


TRENCO A MITEK Affiliate

818 Soundside Road Edenton, NC 27932

December 5,2023

Job	Truss	Truss Type	Qty Ply 1 Hayes F		1 Hayes Rd A	
24050164	F02	Floor	6	1	Job Reference (optional)	162356803

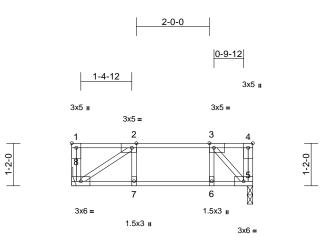
Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Dec 04 15:58:30 ID:U_17exo_9UVEKCchpfUKKWzGJJi-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

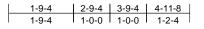
Scale = 1:29.6

Plate Offsets (X, Y): [12:0-1-8,Edge], [14:0-1-8,Edge]

		-										· · · · · · · · · · · · · · · · · · ·
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	0.93	Vert(LL)		11-12	>667	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.77	Vert(CT)		11-12	>497	240		
BCLL	0.0	Rep Stress Incr	YES	WB	0.47	Horz(CT)	0.03	10	n/a	n/a		
BCDL	5.0	Code	IRC2018/TPI2014	Matrix-MSH		- (-)					Weight: 65 lb	FT = 20%F, 11%E
		•										
LUMBER												
TOP CHORD	2x4 SP No.2(flat)											
BOT CHORD	()											
WEBS OTHERS	2x4 SP No.3(flat)											
	2x4 SP No.3(flat)											
BRACING	o , , , , , , ,											
TOP CHORD	Structural wood she		ed or									
	2-2-0 oc purlins, ex		_									
BOT CHORD	0 0 7	applied of 10-0-0 oc	5									
DEACTIONO	bracing.	45 0 0 0										
REACTIONS	()	, 15=0-3-8	\									
	Max Grav 10=681 (I)									
FORCES	(lb) - Maximum Corr Tension	pression/Maximum										
TOP CHORD		9/0 1-25/0										
	2-3=-1871/0, 3-4=-1											
	5-6=-1871/0, 6-7=-1											
	8-9=-4/0											
BOT CHORD	14-15=0/1039, 13-1-	4=0/1871, 12-13=0/1	1871,									
	11-12=0/2023, 10-1	1=0/1039										
WEBS	2-15=-1196/0, 2-14=	=0/982, 3-14=-358/0,										
	4-13=-106/0, 8-10=-											111
	7-11=-136/0, 6-11=-	375/0, 6-12=-395/0,									UNITH CA	E III
	5-12=0/143										TH UP	ROUL
NOTES										1	N	Destring .
	ed floor live loads have	e been considered fo	r						1	12	. TEU	MAN
this design									-			
	are 1.5x3 MT20 unless		1.						-	<u>е</u> в	· ×	1 1 1 E
	is designed in accorda								-		SEA	LIE
	nal Residential Code s		nd						=			• -
	2 and referenced stand								=		0363	22 : :
	end 2x6 strongbacks, o oc and fastened to eac								-	- 8		1
	3") nails. Strongbacks		alle							1	. A	all S
	ter ends or restrained		alio							20	S. ENGIN	FERINA
		by other means.								1	2/2 GIN	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1

LOAD CASE(S) Standard




Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1 Hayes Rd A	
24050164	F13	Floor	2	1	Job Reference (optional)	162356804

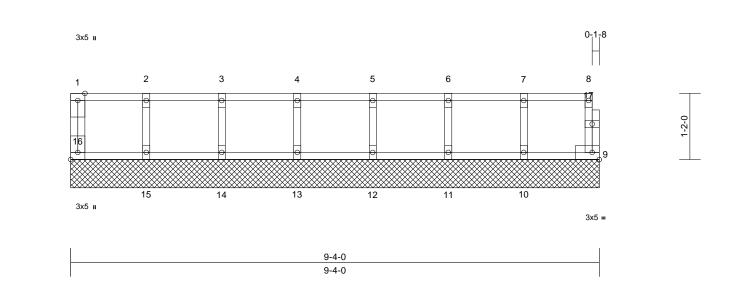
Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Mon Dec 04 15:58:33 ID:4CuOi_Ix9GDrLgIe9PRy4xzGJ_P-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:31.6

Plate Offsets (X, Y): [1:Edge,0-1-8], [2:0-1-8,Edge], [3:0-1-8,Edge]

	(,, ,). [1.2090,0 1 0],	[2.0 + 0,Eugo], [0.0	- 1 0,Eugo]								-	
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	0.29	Vert(LL)	-0.02	7-8	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.25	Vert(CT)	-0.02	7-8	>999	240		
BCLL	0.0	Rep Stress Incr	YES	WB	0.09	Horz(CT)	0.00	5	n/a	n/a		
BCDL	5.0	Code	IRC2018/TPI2014	Matrix-MSH							Weight: 27 lb	FT = 20%F, 11%E
LUMBER												
TOP CHORD	2x4 SP No.2(flat)											
BOT CHORD	2x4 SP No.2(flat)											
WEBS	2x4 SP No.3(flat)											
BRACING												
TOP CHORD	Structural wood she	athing directly applie	ed or									
	4-11-8 oc purlins, e											
BOT CHORD		applied or 10-0-0 o	C									
	bracing.											
REACTIONS	· · · · · · · · · · · · · · · · · · ·	8= Mechanical										
500050	Max Grav 5=259 (LC	,, , ,										
FORCES	(lb) - Maximum Com Tension	pression/iviaximum										
TOP CHORD		1 1-2=0/0 2-3=-26	4/0									
	3-4=0/0	11, 1 2=0/0, 2 0= 20	1,0,									
BOT CHORD		4, 5-6=0/264										
WEBS	2-8=-315/0, 3-5=-38	1/0, 2-7=-17/15, 3-6	=0/66									
NOTES												
1) Unbalance	ed floor live loads have	been considered for	or									
, this desigr	n.											
	irder(s) for truss to trus											
	echanical connection (by others) of truss t	0								mini	1111.
	ate at joint(s) 5.										WAH CA	ROUL
	is designed in accorda		ام ما							AN'	A.	· · · · · · · ·
	2 and referenced stand		nu						/	S.	O'.:ESS	William .
	end 2x6 strongbacks, o								2			1 All
	oc and fastened to eac								-		2	
	3") nails. Strongbacks		alls						-		SEA	1 7 7
	ter ends or restrained l	by other means.							Ξ			• -
LOAD CASE	S) Standard								Ξ		0363	22 : 3
									-	8		1 2
										-	1	

Page: 1


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1 Hayes Rd A	
24050164	F12	Floor Supported Gable	1	1	Job Reference (optional)	162356805

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Dec 04 15:58:33 ID:?OgRucTj9yZ1cXbmlfcd0UzGlv1-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:20.3

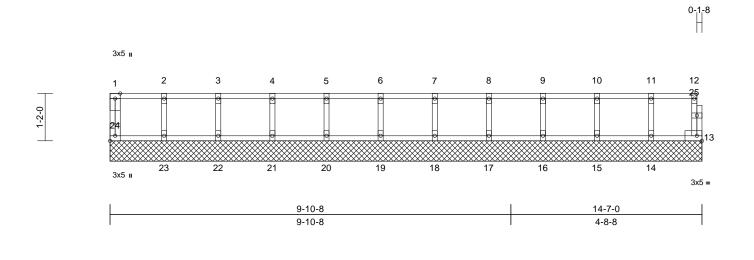
1-2-0

Plate Offsets (X, Y): [16:Edge.0-1-8]

Plate Offsets ((X, Y): [16:Edge,0-1-8]									-	
Loading TCLL TCDL BCLL BCDL	(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.00 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MR	0.08 0.01 0.03	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 9	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 41 lb	GRIP 244/190 FT = 20%F, 11%E
BODL	0.0	Obde			-		-		-		Weight. 41 lb	11 = 20/01, 11/02
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No.2(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) Structural wood she 6-0-0 oc purlins, exe	cept end verticals.	10-00-00 (0.131" X at their o 7) CAUTIOI LOAD CASE	end 2x6 strongbacks oc and fastened to (3") nails. Strongba uter ends or restrain N, Do not erect truss (S) Standard	each truss cks to be ed by othe	with 3-10d attached to w er means.	valls					
Bor onone	bracing.											
	15=9-4-0, Max Grav 9=57 (LC 11=148 (L 13=146 (L),									
FORCES	(lb) - Maximum Com	pression/Maximum										
TOP CHORD	Tension 1-16=-57/0, 8-9=-51, 3-4=-10/0, 4-5=-10/0 7-8=-10/0											
BOT CHORD	15-16=0/10, 14-15=0 12-13=0/10, 11-12=0 9-10=0/10										"ATH CA	RODU
WEBS	2-15=-130/0, 3-14=- 5-12=-133/0, 6-11=-								/	S-	O FESS	A star
 Gable req Truss to b braced ag Gable stud This truss Internation 	are 1.5x3 MT20 unless uires continuous bottor e fully sheathed from c ainst lateral movement ds spaced at 1-4-0 oc. is designed in accorda al Residential Code st 2 and referenced stand	otherwise indicated in chord bearing. one face or securely t (i.e. diagonal web). ance with the 2018 ections R502.11.1 ar							Withhere			22 EERER LUU

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication for the trust Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


December December 5,2023

Job	Truss	Truss Type	Qty	Ply	1 Hayes Rd A	100050000	
24050164	F09	Floor Supported Gable	1	1	Job Reference (optional)	162356806	

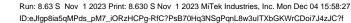
Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Dec 04 15:58:32 ID:irK47f?KnU6oulzDtuOyomzGIuL-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale =	1:28.4
---------	--------

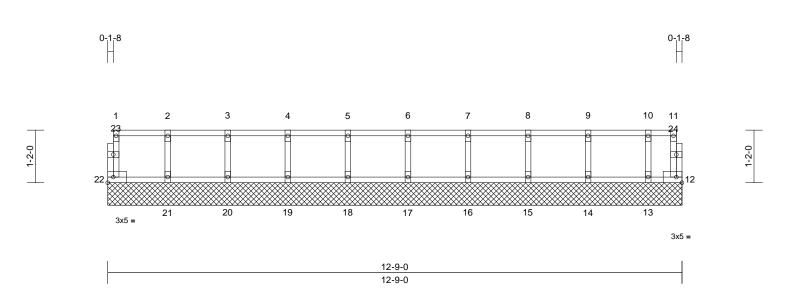
Plate Offsets (X, Y): [24:Edge,0-1-8]

Plate Offsets (2	X, Y): [24:Edge,0-1-8]										
Loading TCLL TCDL BCLL BCDL	(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.00 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MR	0.08 0.01 0.03	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 13	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 62 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	6-0-0 oc purlins, exe Rigid ceiling directly bracing.	applied or 10-0-0 oc	5) This truss is Internationa R802.10.2 a 6) Recommenu 10-00-00 oc (0.131" X 3" at their oute 7) CAUTION, I LOAD CASE(S)	spaced at 1-4-0 oc designed in accord Residential Code and referenced stand 2 26 strongbacks, and fastened to ea) nails. Strongback r ends or restrained Do not erect truss b Standard	dance w sections idard AN on edge ach truss is to be d by othe	R502.11.1 a ISI/TPI 1. s, spaced at s with 3-10d attached to w er means.						
REACTIONS	16=14-7-0 19=14-7-0 22=14-7-0 22=14-7-0 13=52 (LC 15=149 (L 17=147 (L 19=147 (L 21=146 (L	D, 14=14-7-0, 15=14- D, 17=14-7-0, 18=14- D, 20=14-7-0, 21=14- D, 23=14-7-0, 24=14- C 1), 14=137 (LC 1), LC 1), 16=146 (LC 1) LC 1), 18=147 (LC 1) LC 1), 20=147 (LC 1) LC 1), 22=147 (LC 1) LC 1), 24=62 (LC 1)	7-0, 7-0, 7-0									
FORCES	(lb) - Maximum Com Tension	pression/Maximum										
TOP CHORD	1-24=-56/0, 12-13=- 3-4=-9/0, 4-5=-9/0, 5									and and	NITH CA	ROUT
BOT CHORD	15-16=0/9, 14-15=0/ 2-23=-131/0, 3-22=- 5-20=-133/0, 6-19=-	/9, 17-18=0/9, 16-17= /9, 13-14=0/9 134/0, 4-21=-133/0, 133/0, 7-18=-133/0,	=0/9,						Guinn		SEA 0363	• -
 2) Gable required 3) Truss to be 	8-17=-133/0, 9-16=- 11-14=-125/0 are 1.5x3 MT20 unless uires continuous bottor e fully sheathed from c ainst lateral movement	m chord bearing. one face or securely							1112.0		A.C.	FERIX

December 5,2023


Page: 1

1-2-0



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1 Hayes Rd A	
24050164	F01	Floor Supported Gable	2	1	Job Reference (optional)	162356807

Page: 1

4.05.0

Scale = 1:25.6												
Loading TCLL TCDL BCLL BCDL	(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.00 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MR	0.08 0.02 0.03	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 12	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 55 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2(flat) 2x4 SP No.2(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) Structural wood shea 6-0-0 oc purlins, exc Rigid ceiling directly bracing. (size) 12=12-9-0 18=12-9-0 21=12-9-0 Max Grav 12=22 (LC 14=153 (L 16=147 (L 20=147 (L	athing directly applie cept end verticals. applied or 10-0-0 oc), 13=12-9-0, 14=12-), 16=12-9-0, 17=12-), 19=12-9-0 C 1), 13=109 (LC 1), C 1), 15=145 (LC 1) C 1), 17=147 (LC 1) C 1), 21=147 (LC 1) C 1), 21=148 (LC 1)	6) Recomme 10-00-00 (0.131" X at their ou LOAD CASE(ed or -9-0, -9-0, -9-0, -9-0,),),	nd 2x6 strongbacks oc and fastened to e 3") nails. Strongbac ter ends or restraine	ach truss ks to be	with 3-10d attached to w	alls					
FORCES	22=52 (LC (lb) - Maximum Com Tension	,										
TOP CHORD	1-22=-49/0, 11-12=- 3-4=-6/0, 4-5=-6/0, 5 7-8=-6/0, 8-9=-6/0, 9	5-6=-6/0, 6-7=-6/0,									OR EESE	Della
BOT CHORD	21-22=0/6, 20-21=0/ 17-18=0/6, 16-17=0/ 13-14=0/6, 12-13=0/	/6, 15-16=0/6, 14-15 /6							6	I'I'I	ORTESE	D. W.
WEBS	2-21=-132/0, 3-20=- 5-18=-133/0, 6-17=- 8-15=-132/0, 9-14=-	133/0, 7-16=-134/0,)						111		SEA	
 2) Gable required 3) Truss to be braced aga 4) Gable studies 5) This truss Internation 	are 1.5x3 MT20 unless uires continuous bottor e fully sheathed from o ainst lateral movement is spaced at 1-4-0 oc. is designed in accorda nal Residential Code se and referenced standa	m chord bearing. one face or securely t (i.e. diagonal web). ance with the 2018 ections R502.11.1 ar							HTTAK.		0363	22 EER A

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component for the prevention. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

