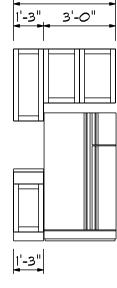
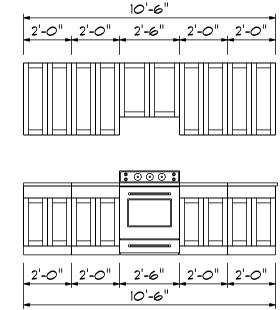
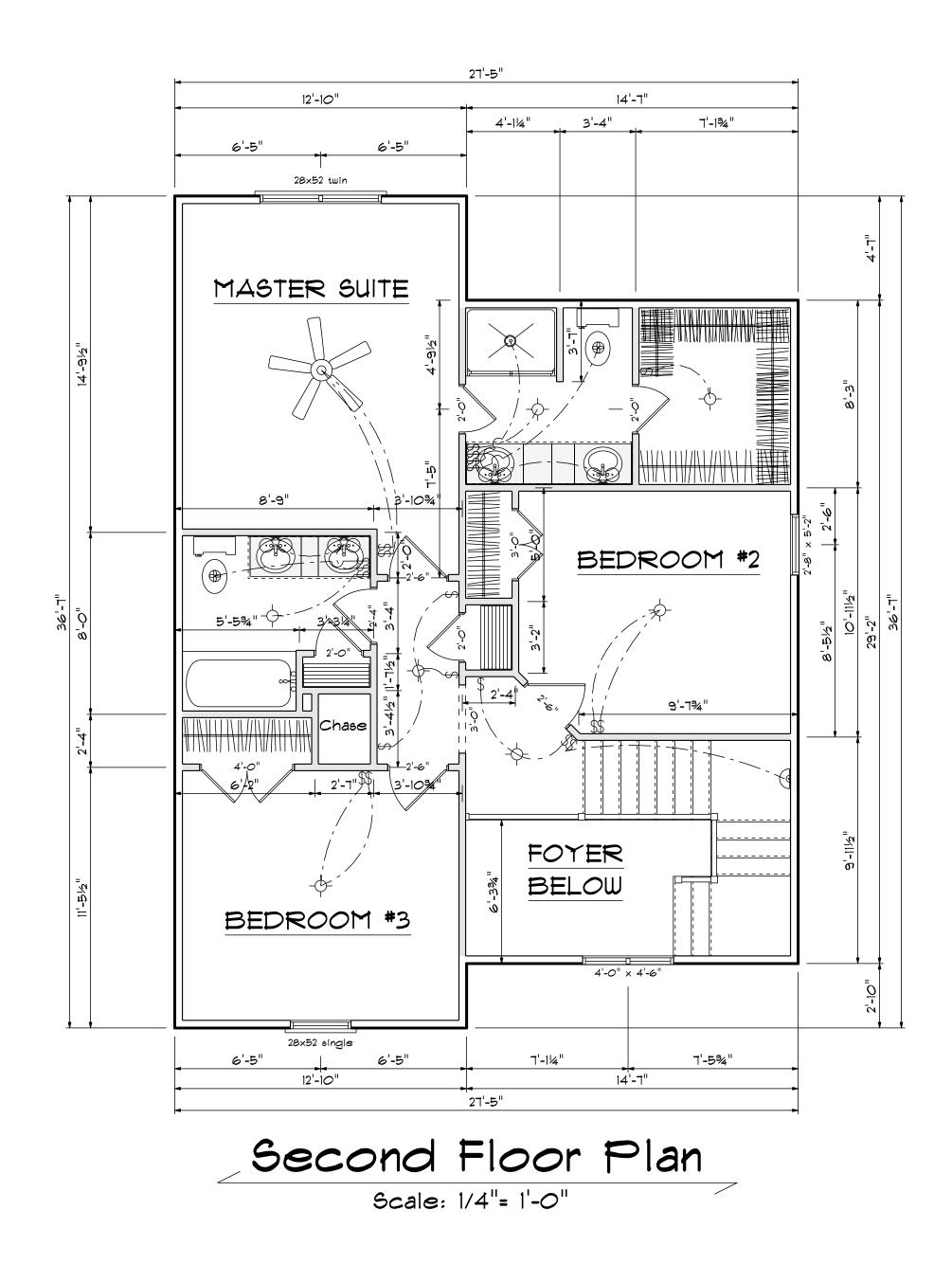

Front Elevation Scale: 1/4"= 1'0"



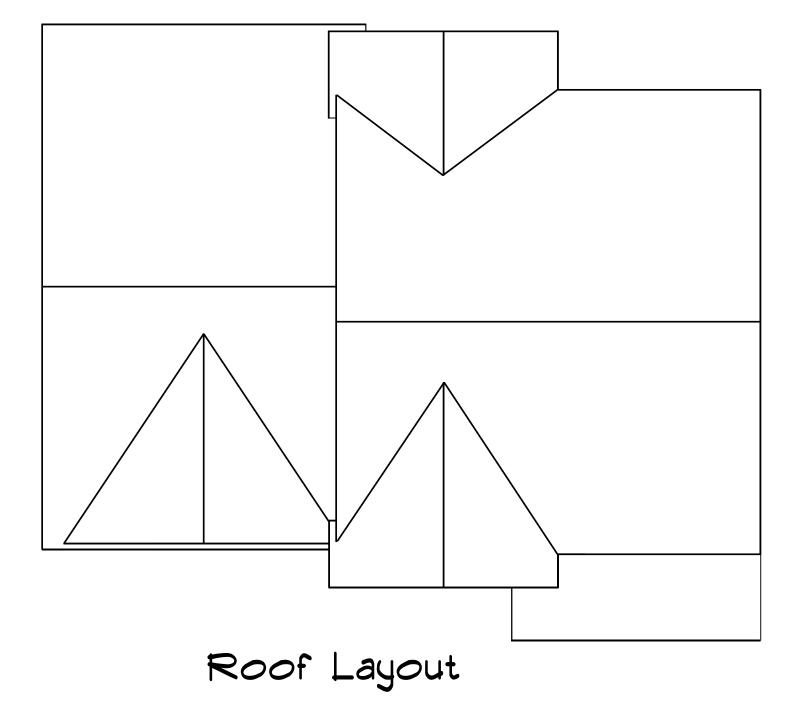


Kitchen Cabinets

		(00000000000000)
1'-6"	3'-0"	2'-0"
•	6'-6"	

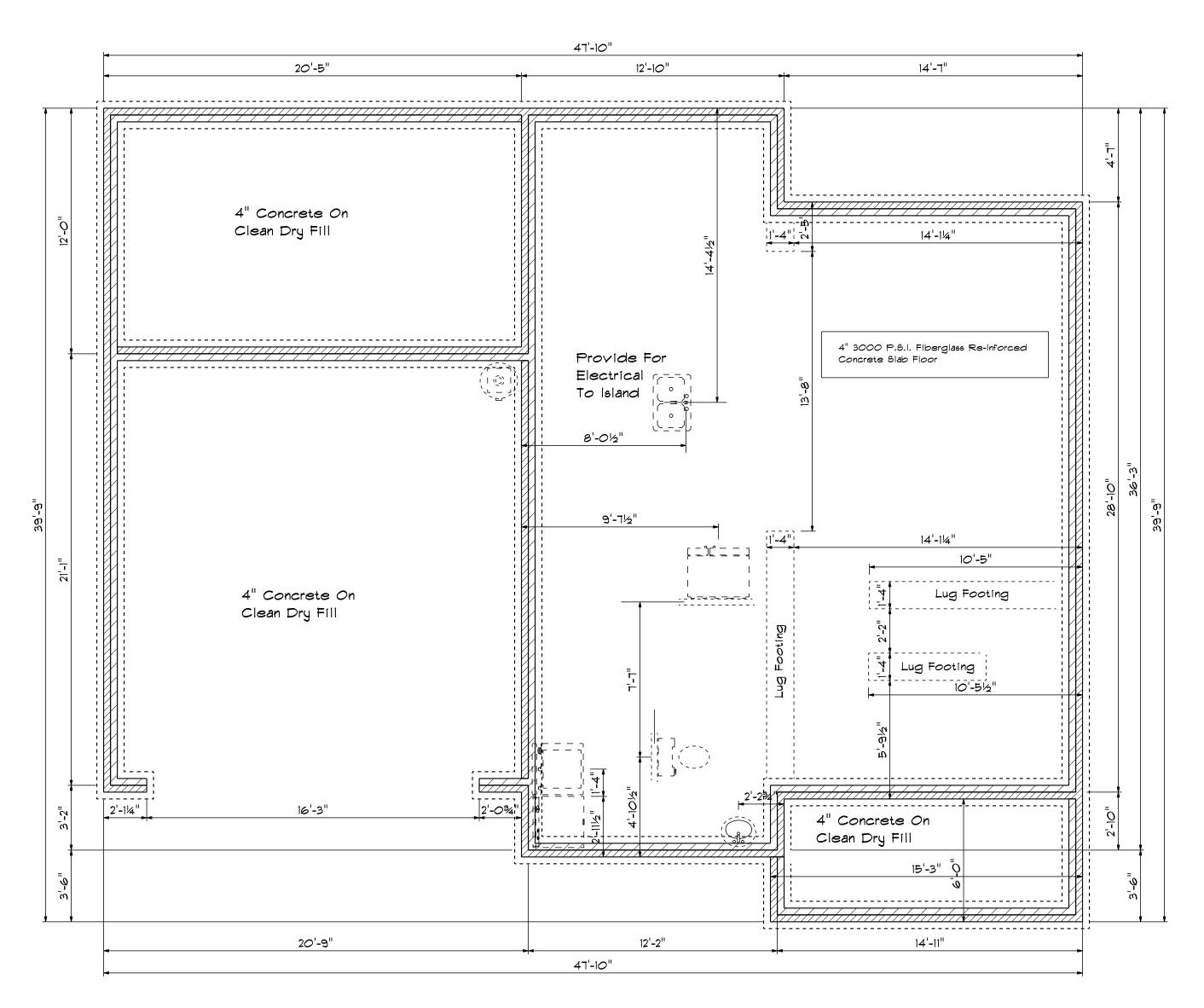

FIRST FLOOR OPENING SCHEDULE									
PRODUCT CODE	SIZE	HINGE	REVERSED	COUNT					
36X80 COLONIAL A 1	3'-0"	L	NO	1					
32X80 FRENCH A 1	2'-8"	L	NO	1					
7' x 16' GARAGE DOOR	16'-0"	U	NO	1					
2-0 Door Unit	2'-0"	R	NO	1					
2-4 Door Unit	2'-4"	R	NO	1					
2-4 Door Unit	2'-4"	L	NO	1					
2-6 Door Unit	2'-6"	R	NO	2					
2-8 Door Unit	2'-8"	L	NO	1					
2-8 Door Unit	2'-8"	R	NO	1					
28x52 single	2'-8" x 5'-2"	N	NA	5					
28x52 twin	5'-4" x 5'-2"	NN	NA	1					

Areas

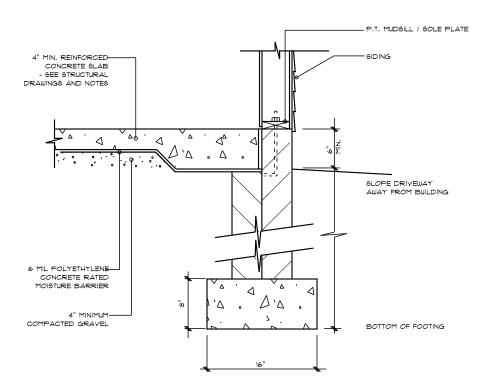

Fírst Floor Second Floor	899 774
=	======
Total Heated	1673
Garage	447
Front Porch	89
Rear Porch	237

Bass Designs	2127 Chimney Pt.	910-263-0405
DATE: 1/15/2022	REVIGED	DRAWING#
6CALE: 1/4"	DRAWN BY	APPROVED

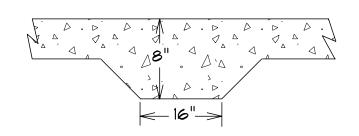
The Almirante



SECOND FLOOR OPENING SCHEDULE									
PRODUCT CODE	SIZE	HINGE	REVERSED	COUNT					
2-0 Door Unit	2'-0"	R	NO	3					
2-0 Door Unit	2'-0"	L	NO	1					
2-4 Door Unit	2'-4"	L	NO	1					
2-6 Door Unit	2'-6"	R	NO	1					
2-6 Door Unit	2'-6"	L	NO	2					
3-0 Doublehung Door Unit	3'-0"	LR	NO	1					
4-0 Doublehung Door Unit	4'-0"	LR	NO	1					
20x46 twin	4'-0" x 4'-6"	NN	NA	1					
28x52 single	2'-8" x 5'-2"	N	NA	2					
28x52 twin	5'-4" x 5'-2"	NN	NA	1					


	DATE: 1/15/2022	Bass Designs
DRAWN BY	REVIGED	Linden, N.C. 28356
APPROVED	DRAWING*	910-263-0405

The Almirante



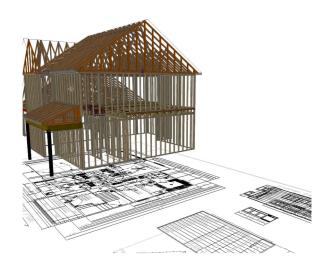
Foundation Plan

Scale: 1/4"= 1'-0"

STEM WALL FOOTING DETAIL

LUG FOOTING DETAIL

SCALE: I/4"DATE: I/15/2022Base DesigneSCALE: I/4"DRAWN BY2721 Chimney Pt.DRAWN BYREVISEDLinden, N.C. 28356APPROVEDDRAWING#910-263-0405


The Almirante

Kempsville Sanford Component Plant 298 Harvey Faulk Rd Sanford, NC 27332

Phone #:919-775-1450

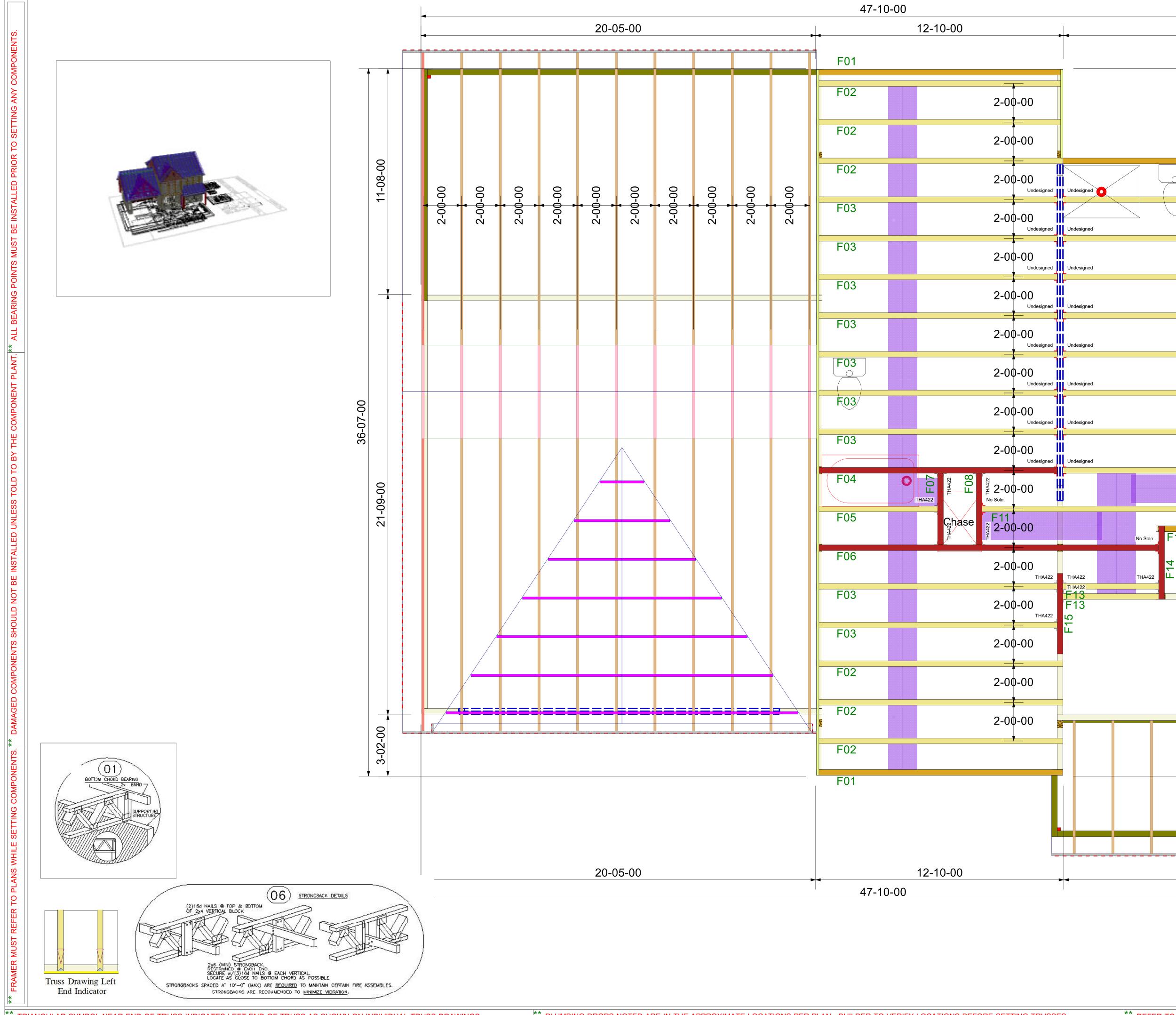
Builder: Contractors Hayes A Spring Lake

THE PLACEMENT PLAN NOTES:

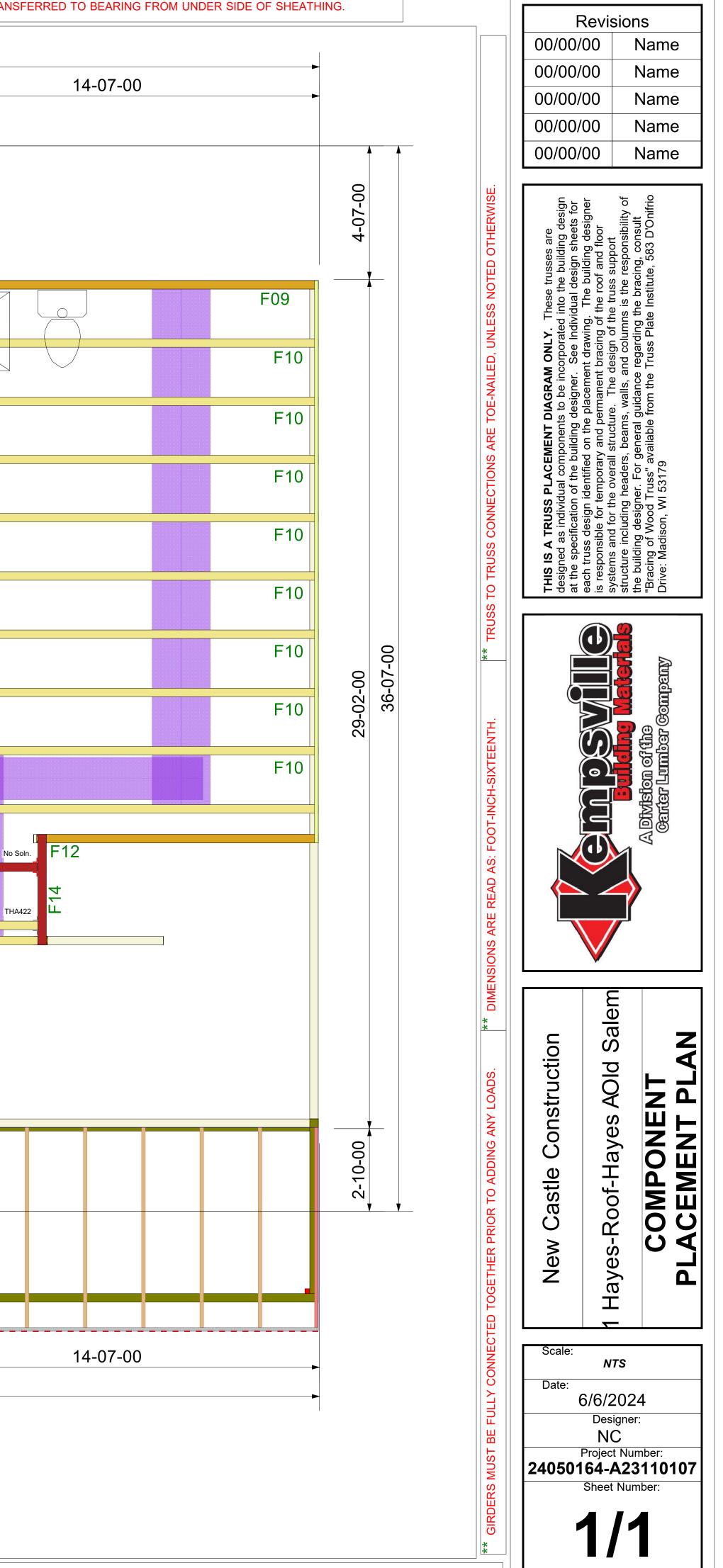
1. The Placement Plan is a diagram for truss installation. It is not an engineered drawing and has not been reviewed by an engineer. The Owner/Building Designer is responsible for obtaining an engineer's review if one is required by the local jurisdiction.

2. The responsibilities of the Owner, Contractor, Building Designer, Component Designer and Component Manufacturer shall be as set forth in ANSI/TPI 1. Capitalized terms shall be as defined in ANSI/TP 1 unless otherwise indicated.

3. Each Component is designed as an individual component utilizing information provided by others. The Owner/Building Designer is responsible for reviewing all Component Submittal Packages and individual Component Design Drawings for compliance with the Construction Documents and compatibility with the overall Building design.


4. Contractor will not proceed with component installation until the Owner/Building Designer has reviewed the Component Submittal Package. Questions on the suitability of any Component will be resolved by the Building Designer.

5. The Building Designer and Contractor are responsible for all temporary and permanent bracing.


6. The Placement Plan assumes the building is dimensionally correct, structurally sound, and in a suitable condition to support each Component during installation and thereafter, including but not limited to installation of all bearing points. Proper design and construction of all structural components, including foundations, headers, beams, walls and columns are the responsibility of the Owner, Building Designer and Contractor.

7. Do not cut, drill, or modify any Component without first consulting the Component Manufacturer or Building Designer. Damaged Components shall not be installed unless directed by the Building Designer or approved by the Component Manufacturer.

8. Components must be handled and installed following all applicable safety standards and best practices, including but not limited to BCSI, OSHA, TPI and local codes. Failure to properly handle, brace or otherwise install Component can result in serious injury or death.

** PLUMBING DROPS NOTED ARE IN THE APPROXIMATE LOCATIONS PER PLAN. BUILDER TO VERIFY LOCATIONS BEFORE SETTING TRUSSES.

** REFER TO FINAL TRUSS ENGINEERING SHEETS FOR PLY TO PLY CONNECTIONS.

RE: 24050164 1 Hayes Rd A Trenco 818 Soundside Rd Edenton, NC 27932

Site Information:Customer: New Castle ContractorsProject Name: 24050164Lot/Block:Model:Address: 1 Hayes RdSubdivision:City: Spring LakeState: NC

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2018/TPI2014 Wind Code: ASCE 7-16 Roof Load: 40.0 psf Design Program: MiTek 20/20 8.6 Wind Speed: 130 mph Floor Load: N/A psf

This package includes 15 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date
1	162356793	F15	12/5/2023
2	162356794	F11	12/5/2023
3	162356795	F05	12/5/2023
4	162356796	F08	12/5/2023
5	162356797	F07	12/5/2023
6	162356798	F14	12/5/2023
7	162356799	F06	12/5/2023
8	162356800	F04	12/5/2023
9	162356801	F10	12/5/2023
10	162356802	F03	12/5/2023
11	162356803	F02	12/5/2023
12	162356804	F13	12/5/2023
13	162356805	F12	12/5/2023
14	162356806	F09	12/5/2023
15	162356807	F01	12/5/2023

The truss drawing(s) referenced above have been prepared by

Truss Engineering Co. under my direct supervision

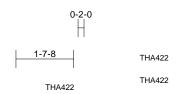
based on the parameters provided by Carter Components (Sanford, NC)).

Truss Design Engineer's Name: Gilbert, Eric

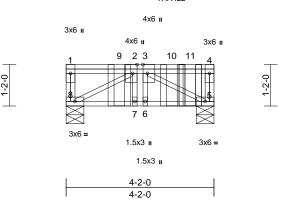
My license renewal date for the state of North Carolina is December 31, 2024

North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.



Gilbert, Eric


Job	Truss	Truss Type	Qty	Ply	1 Hayes Rd A	
24050164	F15	Floor Girder	1	1	Job Reference (optional)	162356793

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Dec 04 15:58:34 ID:p?_s0279IM10FESNfm63uazGIvT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

?f

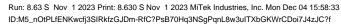
THA422

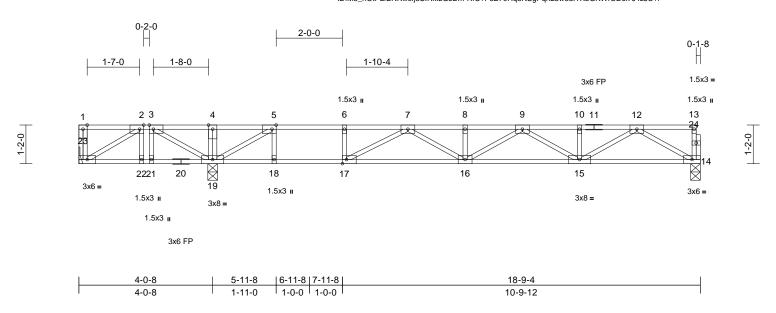
Scale = 1:32.5

Plate Offsets (X, Y): [2:0-3-0,Edge], [3:0-3-0,Edge]

Plate Offsets ((X, Y): [2:0-3-0,Edge]	, [3:0-3-0,Edge]											
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00		TC	0.84	Vert(LL)	-0.01	5-6	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.00		BC	0.45	Vert(CT)	-0.02	5-6	>999	240		
BCLL	0.0	Rep Stress Incr	NO		WB	0.32	Horz(CT)	0.01	5	n/a	n/a		
BCDL	5.0	Code	IRC2018	3/TPI2014	Matrix-MSH							Weight: 31 lb	FT = 20%F, 11%E
LUMBER			7)	In the I OAD	CASE(S) section	loads a	nnlied to the	face					
TOP CHORD	2x4 SP No.2(flat)		''		are noted as front			lace					
BOT CHORD	()		10	AD CASE(S)		(.) 0. 24	0.1 (2).						
WEBS	2x4 SP No.3(flat)		1)	• • •	or Live (balanced)). Lumbe	r Increase=1	00					
BRACING	2.0.01 1000(000)		•,	Plate Incre		. Lumbo		.00,					
TOP CHORD	Structural wood she	athing directly applie	ed or	Uniform Lo									
	4-2-0 oc purlins, ex			Vert: 5-8	s=-10, 1-4=-100								
BOT CHORD			с	Concentrat	ed Loads (lb)								
	bracing.			Vert: 9=	-571 (B), 10=-159	(F), 11=-	776 (F=-182	,					
REACTIONS	(size) 5=0-6-0,8	8=0-6-0		B=-594)									
	Max Grav 5=1360 (I												
FORCES	(lb) - Maximum Com	npression/Maximum											
	Tension												
TOP CHORD	1-8=-161/0, 4-5=-71	9/0, 1-2=0/0,											
	2-3=-1152/0, 3-4=0/	0											
BOT CHORD	7-8=0/1152, 6-7=0/1	1152, 5-6=0/1152											
WEBS	2-8=-1310/0, 3-5=-1	310/0, 2-7=0/87,											
	3-6=-73/0												
NOTES													
1) Unbalance	ed floor live loads have	e been considered fo	or										
this desig	n.												
	is designed in accorda											TH CA	1111
	nal Residential Code s		ind									WHY CA	Pall
R802.10.2	2 and referenced stand	lard ANSI/TPI 1.									1	WTH CA	10/11

 Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.


- Use Simpson Strong-Tie THA422 (6-16d Girder, 6-10d Truss) or equivalent spaced at 0-6-4 oc max. starting at 2-11-12 from the left end to 3-6-0 to connect truss(es) to front face of top chord.
- Use Simpson Strong-Tie THA422 (6-16d Girder, 6-10d Truss) or equivalent spaced at 2-0-0 oc max. starting at 1-6-0 from the left end to 3-6-0 to connect truss(es) to back face of top chord.
- 6) Fill all nail holes where hanger is in contact with lumber.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1 Hayes Rd A	
24050164	F11	Floor	1	1	Job Reference (optional)	162356794

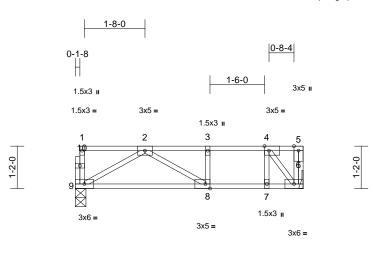
Scale = 1:34.8

Plate Offsets (X, Y): [2:0-1-8,Edge], [3:0-1-8,Edge], [5:0-1-8,Edge], [17:0-1-8,Edge]

Plate Offsets (.	X, Y): [2:0-1-8,Edge],	, [3:0-1-8,⊨dge], [5:0- -	1-8,⊨dge	j, [17:0-1-8,Edg	jej							-	
Loading TCLL TCDL BCLL BCDL	(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.00 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.92 0.95 0.52	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.42 -0.59 0.04	(loc) 16-17 16-17 14	l/defl >413 >298 n/a	L/d 360 240 n/a	PLATES MT20 Weight: 97 lb	GRIP 244/190 FT = 20%F, 11%E
									-				
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD	2x4 SP 2400F 2.0E(SP No.2(flat) 2x4 SP No.2(flat) *E 2400F 2.0E(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat)		5) 6)	International R802.10.2 ar Recommend 10-00-00 oc (0.131" X 3") at their outer	designed in accorr Residential Code nd referenced stan 2x6 strongbacks, and fastened to ea nails. Strongback ends or restrainer to not erect truss b Standard	sections dard AN on edge ich truss is to be d by othe	R502.11.1 a ISI/TPI 1. s, spaced at s with 3-10d attached to w er means.						
BOT CHORD	2-2-0 oc purlins, ex	cept end verticals. applied or 10-0-0 oc			Clandard								
	•	, 19=0-3-8, 23= :al _C 7), 19=973 (LC 1)											
FORCES	(lb) - Maximum Corr	,											
TOP CHORD	Tension 1-23=-72/0, 13-14=- 2-3=-364/0, 3-4=-13 5-6=-1925/0, 6-7=-1 8-9=-2933/0, 9-10=- 12-13=-4/0	8/84, 4-5=-138/84,	/0,									WITH CA	NRO W
BOT CHORD	,	=0/364, 19-21=0/364 8=0/1925, 16-17=0/2 5=0/1241									A N	OR	MAN
WEBS	4-19=-103/123, 5-19 2-23=-422/0, 2-22=-	9=-2134/0, 3-19=-321 30/74, 3-21=-15/91, 15=0/1010, 10-15=-10 0/295, 8-16=-99/0,	,							A MILLING		SEA 0363	• -
NOTES											Ξ.	· · · ·	allis
 Unbalance this design 	ed floor live loads have	e been considered for									15	RC AGIN	EFER
2) All plates a	are 3x5 MT20 unless of inder(s) for truss to trus											in a. C	ILBE INT

December 5,2023

Page: 1


TENGINEERING BY TREENCO A MITek Atfillate 818 Soundside Road Edenton, NC 27932

A WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org)
and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1 Hayes Rd A	
24050164	F05	Floor	1	1	Job Reference (optional)	162356795

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Dec 04 15:58:31 ID:12otELGJLs4RAPdiCndx3KzGJGX-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:31.7

Plate Offsets (X, Y): [4:0-1-8,Edge], [8:0-1-8,Edge]

	(x, i). [iio i 0,Eugo],	, [0.0 1 0,Edg0]										
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	0.58	Vert(LL)	-0.06	8-9	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.54	Vert(CT)	-0.10	8-9	>739	240	-	
BCLL	0.0	Rep Stress Incr	YES	WB	0.14	Horz(CT)	0.00	6	n/a	n/a		
BCDL	5.0	Code	IRC2018/TPI2014	Matrix-MSH							Weight: 34 lb	FT = 20%F, 11%E
LUMBER												
TOP CHORD	2x4 SP No.2(flat)											
BOT CHORD												
WEBS	2x4 SP No.3(flat)											
OTHERS	2x4 SP No.3(flat)											
BRACING												
TOP CHORD			ed or									
	6-0-0 oc purlins, ex											
BOT CHORD	Rigid ceiling directly bracing.	applied of 10-0-0 of	C									
REACTIONS	0	anical, 9=0-3-8										
REACTIONS	Max Grav 6=331 (L0	,										
FORCES	(lb) - Maximum Corr											
TORGES	Tension	ipression/maximum										
TOP CHORD		1, 1-2=-4/0, 2-3=-39	3/0,									
	3-4=-393/0, 4-5=0/0											
BOT CHORD	,	,										
WEBS	3-8=-41/0, 4-7=0/15											
	2-9=-475/0, 2-8=-39	/85										
NOTES												
	ed floor live loads have	e been considered fo	or									
this design 2) Refer to a	n. girder(s) for truss to trus	ss connections									OR FESS	unin,
	is designed in accorda										IN TH CA	Roite
	nal Residential Code s		nd							N	A	in the
R802.10.2	2 and referenced stand	ard ANSI/TPI 1.								12	U. FESS	Marin
	end 2x6 strongbacks, o								4	12		
	oc and fastened to eac											111 111
	3") nails. Strongbacks		alls								SEA	L 1 1
	uter ends or restrained I, Do not erect truss ba								=	:	0363	• -
LOAD CASE		unwdlus.							1		0303	
LOAD CASE((J) Stanuaru								THE PARTY		N	1 8

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Truss Type Qt		Ply	1 Hayes Rd A				
24050164	F08	Floor Girder	1	1	Job Reference (optional)	162356796			

1-5-8

3x6 II

f

3x5 II

0-11-12 0-3-0

0-3-0

6

1-2-0

Special

3x6 🛛 2

8

5

1.5x3 u

3-8-8 2-0-0

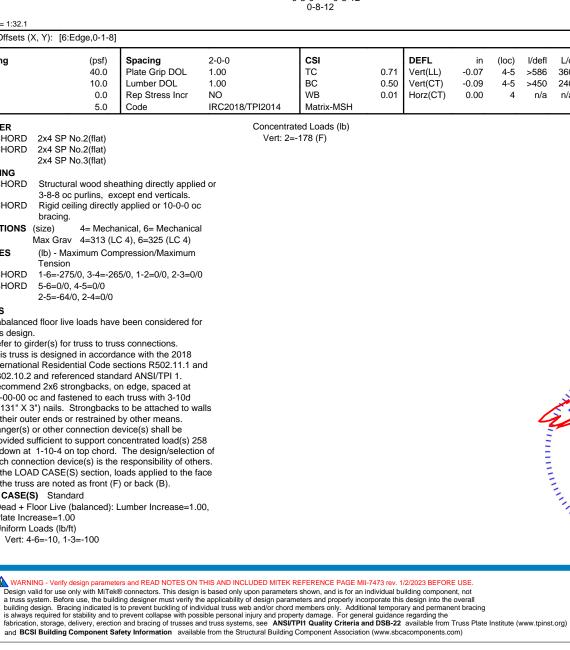
1-8-8

0-8-12

1-7-8

3x6 🛛

Î


3x6 =

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Dec 04 15:58:32 ID:pLktyzm9trkF6xAv93lsKZzGJ88-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

1-2-0

Page: 1

A STATISTICS

т

818 Soundside Road Edenton, NC 27932

Scale = 1:32.1

Plate Offsets (X, Y): [6:Edge,0-1-8]

Loading TCLL TCDL BCLL	(psf) 40.0 10.0 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.00 1.00 NO	CSI TC BC WB	0.71 0.50 0.01	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.07 -0.09 0.00	(loc) 4-5 4-5 4	l/defl >586 >450 n/a	L/d 360 240 n/a	PLATES MT20	GRIP 244/190	
BCDL	5.0	Code	IRC2018/TPI2014	Matrix-MSH							Weight: 25 lb	FT = 20%F, 11%	E
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x4 SP No.2(flat) 2x4 SP No.3(flat)		Vert: 2=-	ed Loads (lb) 178 (F)									
BOT CHORD	Rigid ceiling directly		:										
REACTIONS	bracing. (size) 4= Mecha	anical, 6= Mechanica	I										
	Max Grav 4=313 (L0	C 4), 6=325 (LC 4)											
FORCES	(lb) - Maximum Com Tension	pression/Maximum											
TOP CHORD		5/0, 1-2=0/0, 2-3=0/0)										
BOT CHORD WEBS	,												
NOTES	2-5=-64/0, 2-4=0/0												
 this desig 2) Refer to g 3) This truss Internation R802.10.2 4) Recomment 10-00-00 (0.131" X at their out 5) Hanger(s) provided s b down a such conr 6) In the LO/ of the trus LOAD CASE(1) Dead + I Plate Inc Uniform 	jirder(s) for truss to trus is designed in accordanal Residential Code si 2 and referenced stand end 2x6 strongbacks, o oc and fastened to ead 3") nails. Strongbacks there ends or restrained o or other connection do sufficient to support con to 1-10-4 on top chord. hection device(s) is the AD CASE(S) section, Id is are noted as front (F (S) Standard Floor Live (balanced): I prease=1.00 Loads (lb/ft)	ss connections. ance with the 2018 ections R502.11.1 an ard ANSI/TPI 1. In edge, spaced at th truss with 3-10d to be attached to with by other means. evice(s) shall be incentrated load(s) 25 The design/selection responsibility of otho bads applied to the fa-) or back (B).	nd alls 58 n of ers. ace						V. HILLING	the second se	SEA 0363	L 22 EEFR-FR- ILBF	2.0000000
Vert: 4	4-6=-10, 1-3=-100										Decemb	er 5,2023	
	NING - Verify design paramete	ers and READ NOTES ON	THIS AND INCLUDED MITEK R	EFERENCE PAGE MII	-7473 rev. 1	/2/2023 BEFORE	USE.						

Job	Truss	Truss Type	Qty	Ply	1 Hayes Rd A	
24050164	F07	Floor Girder	1	1	Job Reference (optional)	162356797

1-7-8

3x6 II

3x6 =

<u>2-0-0</u> 2-0-0

1-2-0

THA422

3x6 II 2

5

1.5x3 u

0-8-12

1-5-8

3x6 II

¢ 4

3x5 II

3-5-8 2 3-8-8

2 0-3-0 0-8-12

Carter Components (Sanford, NC), Sanford, NC - 27332,

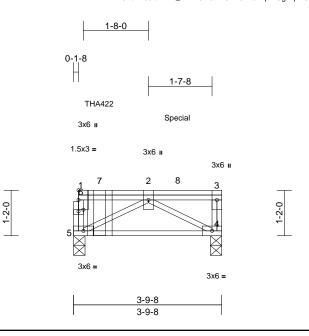
Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Dec 04 15:58:31 ID:v8IW?HsgscyWmogkSbR2TSzGJAb-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

1-2-0

Page: 1

Scale =	1:34.9
---------	--------

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC 0.8	.80	Vert(LL)	-0.08	5-6	>539	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC 0.5	.55	Vert(CT)	-0.10	5-6	>406	240		
BCLL	0.0	Rep Stress Incr	NO	WB 0.0	.02	Horz(CT)	n/a	-	n/a	n/a		
BCDL	5.0	Code	IRC2018/TPI2014	Matrix-MSH							Weight: 25 lb	FT = 20%F, 11%E
LUMBER			Vert: 2=-	231 (B)								
	2x4 SP No.2(flat)		Von. 2-	201 (D)								
	2x4 SP No.2(flat)											
WEBS	2x4 SP No.3(flat)											
BRACING	· · /											
TOP CHORD	Structural wood she	athing directly applie	d or									
	3-8-8 oc purlins, ex	cept end verticals.										
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 oc	:									
REACTIONS	(size) 4= Mecha	anical, 6= Mechanica	I									
	Max Grav 4=353 (L0											
FORCES	(lb) - Maximum Com Tension	npression/Maximum										
TOP CHORD	1-6=-286/0, 3-4=-29	8/0, 1-2=0/0, 2-3=0/0)									
BOT CHORD	5-6=0/0, 4-5=0/0											
WEBS	2-6=0/0, 2-5=-73/0											
NOTES												
 Unbalance this design. 	d floor live loads have	e been considered fo	r									
	rder(s) for truss to trus	ss connections										
	s designed in accorda											
	al Residential Code s		nd									
	and referenced stand											11
	nd 2x6 strongbacks, c										OR EESS	Dille
	c and fastened to eac										"ATH UA	TO MA
	8") nails. Strongbacks er ends or restrained		alis							N	OVEESS	i Alle
	on Strong-Tie THA42)d							25		V. Tim
	quivalent at 1-10-4 fro								4		:0	2.
,	iss(es) to back face o								-		054	1 3
	holes where hanger is										SEA	4 <u>8 8</u> .
	D CASE(S) section, le		ace							:	0363	22 : =
	are noted as front (F	F) or back (B).							-	i d		- 1 - <i>2</i> -
LOAD CASE(S	,								Contraction of the second seco	-	N. 4	L 22
	loor Live (balanced): I	Lumber Increase=1.0	00,							20	A.S.NOINI	FRIAN
	ease=1.00 .oads (lb/ft)									1	A. GIN	St. CAN
	-6=-10, 1-3=-100										A G	ILBUIN
	ated Loads (lb)										A. G	in the second se
50											Decembe	er 5 2023
											Decembe	51 0,2020



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

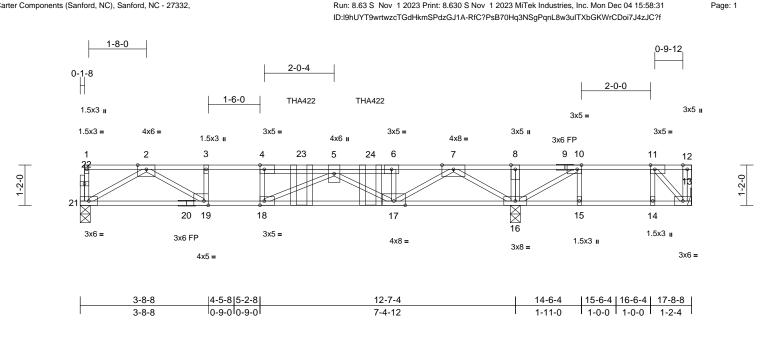
Job	Truss	Truss Type Qty		Ply	1 Hayes Rd A	
24050164	F14	Floor Girder	1	1	Job Reference (optional)	162356798

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Dec 04 15:58:33 ID:YI4vIOLuvh3efutABT_7Z4zGIz3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:29.5

Plate Offsets (X, Y): [6:0-1-8,0-0-8]

	[0.0 . 0,0 0 0]												
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00		TC	0.18	Vert(LL)	n/a	(.00)	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.00		BC	0.20	Vert(CT)	-0.03	4-5	>999	240	-	
BCLL	0.0	Rep Stress Incr	NO		WB	0.08	Horz(CT)	0.00	4	n/a	n/a		
BCDL	5.0	Code	IRC2018/T	PI2014	Matrix-MP							Weight: 27 lb	FT = 20%F, 11%E
LUMBER TOP CHORD 2x4 BOT CHORD 2x4 WEBS 2x4 OTHERS 2x4 BRACING TOP CHORD Stru 3-9- BOT CHORD Rigi brac REACTIONS (size) Max 0 FORCES (lb) TOP CHORD 1-5- BOT CHO	SP No.2(flat) SP No.2(flat) SP No.3(flat) SP No.3(flat) SP No.3(flat) SP No.3(flat) SP No.3(flat) SP No.3(flat) at ceiling directly cing. 4=0-3-8, Grav 4=242 (L1 - Maximum Con sion 192/0, 3-4=-71 -0/275 299/0, 2-4=-31 ar live loads have igned in accord: sidential Code s eferenced stance 6 strongbacks, co I fastened to ead Is. Strongbacks, co I fastened to ead is. Strongbacks, co I fastened to ead is. Strongbacks, co I fastened to ead ot erect truss be rong-Tie THA42 lent at 0-8-0 froi face of top cho where hanger is ere connection de n to support co o up at 2-8-0 on a connection dev	athing directly applied cept end verticals. applied or 10-0-0 oc 5=0-3-8 C 1), 5=353 (LC 1) pression/Maximum /0, 1-2=-12/0, 2-3=0/0 5/0 e been considered for ance with the 2018 ections R502.11.1 an lard ANSI/TPI 1. n edge, spaced at th truss with 3-10d to be attached to wa by other means. ckwards. 2 (6-16d Girder, 6-10 n the left end to conn rd. s in contact with lumb- evice(s) shall be nocentrated load(s) 27 top chord. The desig	8) In IOAE 1) I dor dor d lls d ect er. lb	n the LOAD f the truss a D CASE(S) Dead + Floo Plate Increa Uniform Loa Vert: 4-5= Concentrate	CASE(S) section, re noted as front (I Standard or Live (balanced): ase=1.00	F) or ba	ck (B).					SEA 0363	ROUL 22


December 5,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1 Hayes Rd A	
24050164	F06	Floor Girder	1	1	Job Reference (optional)	162356799

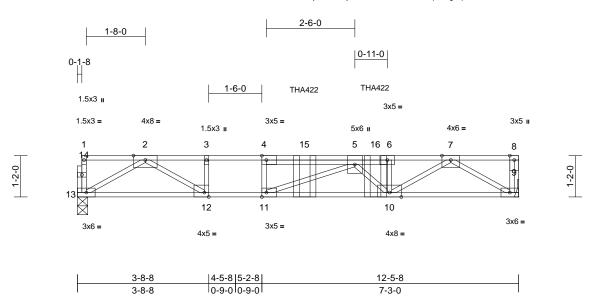
Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Mon Dec 04 15:58:31

Carter Components (Sanford, NC), Sanford, NC - 27332,

Scale =	1:33.4
---------	--------

	(X, Y): [4:0-1-8,Edge]	, [-9-1,[.0.0 1 0,	, [9-1						1	
oading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL	40.0	Plate Grip DOL	1.00		TC	0.90	Vert(LL)		17-18	>671	360	MT20	244/190
CDL	10.0	Lumber DOL	1.00		BC	0.77	Vert(CT)		17-18	>508	240		
CLL	0.0	Rep Stress Incr	NO		WB	0.80	Horz(CT)	0.03	16	n/a	n/a		
CDL	5.0	Code	IRC20	18/TPI2014	Matrix-MSH	-						Weight: 95 lb	FT = 20%F, 11%
JMBER				4) This truss is	designed in acco	ordance w	ith the 2018						
OP CHORD		xcept* 1-9:2x4 SP 2	400F		I Residential Cod			nd					
	2.0E(flat)				and referenced st								
OT CHORD		xcept* 20-13:2x4 SF		,	d 2x6 strongback c and fastened to								
EBS	2400F 2.0E(flat) 2x4 SP No.3(flat)) nails. Strongba			alls					
THERS	2x4 SP No.3(flat)				r ends or restrain			115					
RACING	2x4 01 140.0(nat)				Do not erect truss								
OP CHORD	Structural wood she	eathing directly applie	ed or	7) Use Simpso	on Strong-Tie THA	422 (6-1	6d Girder, 6-10)d					
or original	6-0-0 oc purlins, ex				quivalent spaced a								
OT CHORD		applied or 6-0-0 oc			he left end to 8-5	0 to conn	ect truss(es) to	C					
	bracing.			back face o			4 4						
EACTIONS	(size) 13= Mech	hanical, 16=0-3-8,			oles where hange CASE(S) sectio								
	21=0-3-8				are noted as fron			ace					
	Max Uplift 13=-92 (L			LOAD CASE(S			on (D).						
	Max Grav 13=127 (9).	· ·	or Live (balance	1). Lumbe	r Increase=1 0	00					
	21=864 (,		Plate Incre	· ·	.). <u>L</u> a	increase inc	,					
ORCES	(ID) - Maximum Con Tension	npression/Maximum		Uniform Lo	oads (lb/ft)								
OP CHORD	1-21=-100/0, 12-13:	=-100/0 1-2=-6/0			-21=-10, 1-12=-1	00							
		2575/0, 4-5=-2590/0,			ted Loads (lb)								
	5-6=-2297/0, 6-7=-2	, ,		Vert: 23	=-238 (B), 24=-22	25 (B)							
	8-10=0/1045, 10-11	=0/262, 11-12=0/0											1111
OT CHORD	,	9=0/2575, 17-18=0/3	,									TH CA	Boilte
		=-262/0, 14-15=-262	2/0,								A	P. Hick	A14
	13-14=-262/0	0/000 0 40 445/0									33	A ESS	SN.
EBS	3-19=-580/0, 4-18=	0/228, 8-16=-145/0, -1536/0, 2-19=0/144	0							9			Ch.
		=0/1675, 6-17=-214/									() (:4	
	,	=-862/0, 5-17=-1153	,									SEA	
	10-15=0/182, 11-14	,	-,							=		0363	•
DTES												0363	22
	ed floor live loads have	e been considered fo	or							-	2	1. Contract (1. Contract)	1 - E
this desigr										5	1	N.E.	Richi
	irder(s) for truss to tru										25	S ENGIN	EFICAS
Drovido m	achanical connection	(by others) of truce to	<u>^</u>								1	110	11 G \ \

Provide mechanical connection (by others) of truss to 3) bearing plate capable of withstanding 92 lb uplift at joint


13.

A. GILBE December 5,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component for the prevention. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	ss Truss Type Q		Ply	1 Hayes Rd A	
24050164	F04	Floor Girder	1	1	Job Reference (optional)	162356800

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Dec 04 15:58:30 ID:zePmdoobmzMdjVs9MHmj?VzGJ4D-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

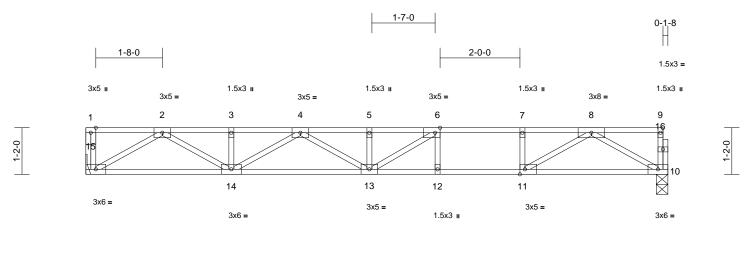
Scale = 1:32.5

Plate Offsets (X, Y): [4:0-1-8,Edge], [11:0-1-8,Edge], [12:0-1-8,Edge]

	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	[:e : 0,20ge], [:.		901									
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00		тс	0.94	Vert(LL)	-0.25	10-11	>586	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.00		BC	0.84	Vert(CT)	-0.33	10-11	>447	240		
BCLL	0.0	Rep Stress Incr	NO		WB	0.77	Horz(CT)	0.03	9	n/a	n/a		
BCDL	5.0	Code	IRC201	8/TPI2014	Matrix-MSH							Weight: 68 lb	FT = 20%F, 11%E
LUMBER TOP CHORD BOT CHORD WEBS	2x4 SP 2400F 2.0E(No.2(flat) 2x4 SP 2400F 2.0E(2x4 SP No.3(flat)	<i>,</i> .	6) (4 SP 7)	Truss) or equ 6-5-0 from the front face of	n Strong-Tie THA4 uivalent spaced at le left end to 8-5-0 top chord. bles where hanger	2-0-0 or to conn	c max. startin ect truss(es)	ig at to					
OTHERS	2x4 SP No.3(flat)		8)		CASE(S) section,								
BRACING	2X4 3F NU.3(IIdl)		0)		are noted as front (1000					
TOP CHORD	Structural wood she	athing directly applie	ed or L(DAD CASE(S)		,	()						
	6-0-0 oc purlins, ex		1)	• • • •	or Live (balanced):	Lumbe	r Increase=1	.00.					
BOT CHORD	Rigid ceiling directly		с.,	Plate Increa				,					
	bracing.			Uniform Lo	ads (lb/ft)								
REACTIONS	•	inical, 13=0-3-8		Vert: 9-1	3=-10, 1-8=-100								
	Max Grav 9=1002 (L	_C 4), 13=856 (LC 1)	Concentrat	ed Loads (lb)								
FORCES	(lb) - Maximum Com		,	Vert: 15=	-253 (F), 16=-213	(F)							
	Tension												
TOP CHORD	1-13=-98/0, 8-9=-72	/0, 1-2=-6/0,											
	2-3=-2556/0, 3-4=-2	556/0, 4-5=-2566/0,											
	5-6=-2794/0, 6-7=-2	,											
BOT CHORD	12-13=0/1330, 11-12	2=0/2556, 10-11=0/3	3466,										
	9-10=0/1585	470 0 40 4500/0											
WEBS	3-12=-604/0, 4-11=0 2-12=0/1613, 7-9=-1	,	,										
	6-10=0/84, 5-11=-10		,									MILLIN	1111.
NOTES	0-10-0/04, 0-11-10	125/0, 5-10331/0										IN'TH CA	ROUL
	ed floor live loads have	been considered fo									N	2	
this design											E	U' FES	Post Ville
0	irder(s) for truss to trus	s connections									71	<u>, ()</u>	Na Sil
	is designed in accorda											:2	
	nal Residential Code se		ind							=		SFA	n 1 E .

- R802.10.2 and referenced standard ANSI/TPI 1.
 4) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d
- (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
 5) CAUTION, Do not erect truss backwards.

SEAL 036322 A. GILBERT


Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	s Truss Type Qty Ply				
24050164	F10	Floor	8	1	Job Reference (optional)	162356801

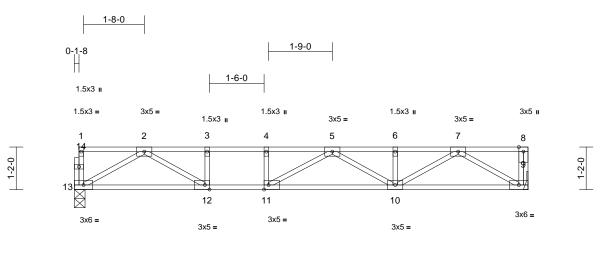
Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Dec 04 15:58:32 ID:CtOjzx6P42?ijaBHNCcvcMzGly4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

8-10-8	9-10-8	10-10-8	14-7-0	
8-10-8	1-0-0	1-0-0	3-8-8	

Scale = 1:28.9

Plate Offsets (X, Y): [6:0-1-8,Edge], [11:0-1-8,Edge]

								(1.)	1/1 2			
Loading TCLL	(psf) 40.0	Spacing Plate Grip DOL	2-0-0 1.00	CSI TC	0.94	DEFL Vert(LL)	in -0.28	(loc) 12-13	l/defl >616	L/d 360	PLATES MT20	GRIP 244/190
TCDL	40.0	Lumber DOL	1.00	BC	0.94	Vert(LL)	-0.28	12-13	>457	240	WIT20	244/190
BCLL	0.0	Rep Stress Incr	YES	WB	0.78	Horz(CT)	0.03	12-13	n/a	240 n/a		
BCDL	5.0	Code	IRC2018/TPI2014	Matrix-MSH	0.00	11012(01)	0.05	10	n/a	n/a	Weight: 74 lb	FT = 20%F, 11%E
BODL	5.0	Code	11(02010/11/12014	WIALTIX-WIGHT	-						Weight. 74 lb	11 = 20701, 1170L
LUMBER												
TOP CHORD	()											
BOT CHORD		(flat)										
WEBS	2x4 SP No.3(flat)											
OTHERS	2x4 SP No.3(flat)											
BRACING												
TOP CHORD			ed or									
BOT CHORD	2-2-0 oc purlins, ex Rigid ceiling directly		C									
BOT CHORD	bracing.		C									
REACTIONS	0	, 15= Mechanical										
	Max Grav 10=782 (,)									
FORCES	(lb) - Maximum Con	npression/Maximum										
	Tension											
TOP CHORD	,											
	2-3=-2026/0, 3-4=-2											
	5-6=-2784/0, 6-7=-2	2300/0, 7-8=-2300/0,	,									
BOT CHORD	8-9=-6/0	4 0/0507 40 40 0/	2200									
BOT CHORD	14-15=0/1200, 13-1 11-12=0/2300, 10-1		2300,									
WEBS	8-10=-1406/0, 8-11=		0									
	7-11=-446/0, 2-15=-											1.1.1
	3-14=-171/0, 4-14=-	-584/0, 4-13=0/300,	,									1111
	5-13=-316/0, 6-13=-	-53/690									WITH CA	ROUL
NOTES										S	OHIESE	D. CIN'L
	ed floor live loads have	e been considered fo	or						/	22	FESC	PA
this desig	•								4			ng
	girder(s) for truss to tru								1		· ×	
	s is designed in accorda nal Residential Code s		and								SEA	(L : =
	2 and referenced stand		inu						=	:	0363	• –
	end 2x6 strongbacks, c								-	A A A A A A A A A A A A A A A A A A A	0303	
	oc and fastened to ead										1	1 E
	3") nails. Strongbacks		alls							2	· . Fr.	Airs
at their ou	uter ends or restrained	by other means.								115	S SNGIN	EFICAN
5) CAUTION	N, Do not erect truss ba	ackwards.								11	10 m	BEN
LOAD CASE	(S) Standard										Decemb	allenn
											in nu	IIII.
											Decemb	or E 2022


Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type Qty Ply		Ply	1 Hayes Rd A	
24050164	F03	Floor	9	1	Job Reference (optional)	162356802

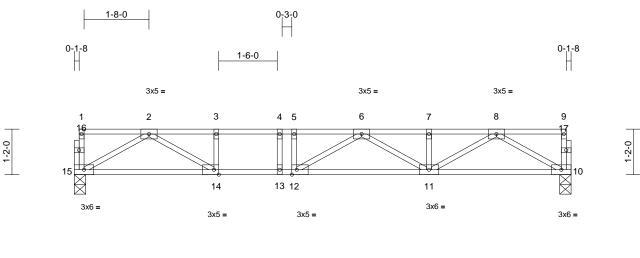
Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Dec 04 15:58:30 ID:QSFbKtfug_JJjzy8vMkIAHzGJIc-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:31.6

Plate Offsets (X, Y): [11:0-1-8,Edge], [12:0-1-8,Edge]

·`	, , ,	. , , , , ,	-									
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	0.84	Vert(LL)		10-11	>768	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.98	Vert(CT)	-0.26	10-11	>563	240		
BCLL	0.0	Rep Stress Incr	YES	WB	0.44	Horz(CT)	0.03	9	n/a	n/a		
BCDL	5.0	Code	IRC2018/TPI2014	Matrix-MSH							Weight: 63 lb	FT = 20%F, 11%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES	2x4 SP No.2(flat) 2x4 SP No.2(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing, Except: 2-2-0 oc bracing: 10	athing directly applie cept end verticals. applied or 10-0-0 or -11. unical, 13=0-3-8 C 1), 13=665 (LC 1)	ed or	Manx-mort		I					Weight. 65 ib	
TOP CHORD	2-3=-1785/0, 3-4=-1 5-6=-1647/0, 6-7=-1	785/0, 4-5=-1785/0, 647/0, 7-8=0/0										
WEBS	9-10=0/1012 2-13=-1155/0, 2-12= 4-11=-76/57, 7-9=-1 6-10=-138/0, 5-10=-	171/0, 7-10=0/741,										1100
NOTES											N'TH CA	ROUL
this design 2) Refer to g 3) This truss Internation R802.10.2 4) Recomme 10-00-00 (0.131" X at their ou	irder(s) for truss to trus is designed in accordanal Residential Code s 2 and referenced stand and 2x6 strongbacks, o oc and fastened to eac 3") nails. Strongbacks iter ends or restrained I, Do not erect truss ba	ss connections. ance with the 2018 ections R502.11.1 a lard ANSI/TPI 1. n edge, spaced at th truss with 3-10d to be attached to w by other means.	nd						C. miner	The second secon	SEA 0363	EEP A LUI


TRENCO A MITEK Affiliate

818 Soundside Road Edenton, NC 27932

December 5,2023

Job	Truss	Truss Type		Ply	1 Hayes Rd A	
24050164	F02	Floor	6	1	Job Reference (optional)	162356803

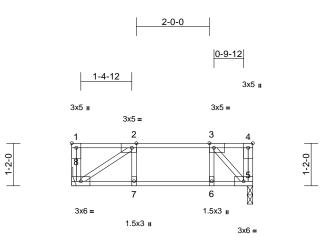
Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Dec 04 15:58:30 ID:U_17exo_9UVEKCchpfUKKWzGJJi-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

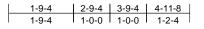
Scale = 1:29.6

Plate Offsets (X, Y): [12:0-1-8,Edge], [14:0-1-8,Edge]

		1		-								
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	0.93	Vert(LL)		11-12	>667	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.77	Vert(CT)		11-12	>497	240		21.0.00
BCLL	0.0	Rep Stress Incr	YES	WB	0.47	Horz(CT)	0.03	10	n/a	n/a	1	
BCDL	5.0	Code	IRC2018/TPI2014	Matrix-MSH	0.17	11012(01)	0.00	10	n/a	n, a	Weight: 65 lb	FT = 20%F, 11%E
BODE	0.0	Oude									Weight. 00 lb	11 = 20 /01 ; 11 /02
LUMBER												
TOP CHORD	2x4 SP No.2(flat)											
BOT CHORD	2x4 SP No.1(flat)											
WEBS	2x4 SP No.3(flat)											
OTHERS	2x4 SP No.3(flat)											
BRACING												
TOP CHORD	Structural wood she	athing directly applie	ed or									
	2-2-0 oc purlins, ex											
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 or	0									
	bracing.											
REACTIONS	(size) 10=0-3-8,	15=0-3-8										
	Max Grav 10=681 (I	LC 1), 15=681 (LC 1)									
FORCES	(lb) - Maximum Corr	pression/Maximum	, ,									
	Tension											
TOP CHORD	1-15=-86/0, 9-10=-6	9/0, 1-2=-5/0,										
	2-3=-1871/0, 3-4=-1	871/0, 4-5=-1871/0,										
	5-6=-1871/0, 6-7=-1	702/0, 7-8=-1702/0,										
	8-9=-4/0											
BOT CHORD	14-15=0/1039, 13-1	4=0/1871, 12-13=0/1	1871,									
	11-12=0/2023, 10-1	1=0/1039										
WEBS	2-15=-1196/0, 2-14=											
	4-13=-106/0, 8-10=-											111
	7-11=-136/0, 6-11=-	375/0, 6-12=-395/0,									N''LI CA	(D) III
	5-12=0/143									1	THUR	ROM
NOTES										1	n ises	De la la
,	ed floor live loads have	e been considered fo	r							12	. TEUG	My My
this desigr									4	n		
	are 1.5x3 MT20 unless		1.						-	6 12	:*	N : E
	is designed in accorda								Ξ		SEA	1 1 2
	nal Residential Code s		nd						Ξ.			• -
	2 and referenced stand										0363	22 : :
	end 2x6 strongbacks, o									0	1	1 2
	oc and fastened to eac		alla							1	1. A	A 1. 3
	3") nails. Strongbacks		alis							20	A.SNOW	EFH. X N
	ter ends or restrained	by other means.								1	A NGIN	5 K

LOAD CASE(S) Standard


Page: 1


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

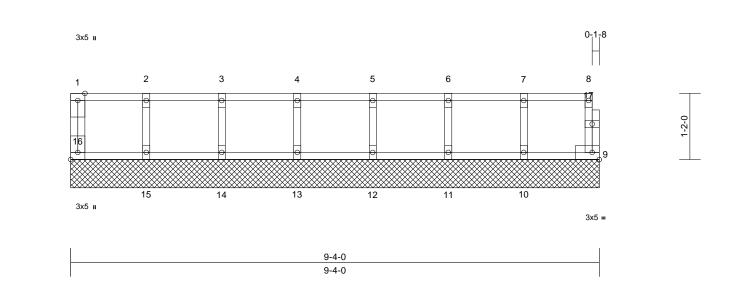
Job	Truss	Truss Type	Qty	Ply	1 Hayes Rd A	
24050164	F13	Floor	2	1	Job Reference (optional)	162356804

Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Mon Dec 04 15:58:33 ID:4CuOi_Ix9GDrLgIe9PRy4xzGJ_P-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:31.6

Plate Offsets (X, Y): [1:Edge,0-1-8], [2:0-1-8,Edge], [3:0-1-8,Edge]

	(,, ,). [1.2090,0 1 0],	[2.0 + 0,Eugo], [0.0	- 1 0,Eugo]									
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	0.29	Vert(LL)	-0.02	7-8	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.25	Vert(CT)	-0.02	7-8	>999	240		
BCLL	0.0	Rep Stress Incr	YES	WB	0.09	Horz(CT)	0.00	5	n/a	n/a		
BCDL	5.0	Code	IRC2018/TPI2014	Matrix-MSH							Weight: 27 lb	FT = 20%F, 11%E
LUMBER												
TOP CHORD	2x4 SP No.2(flat)											
BOT CHORD	2x4 SP No.2(flat)											
WEBS	2x4 SP No.3(flat)											
BRACING												
TOP CHORD	Structural wood she	athing directly applie	ed or									
	4-11-8 oc purlins, e											
BOT CHORD		applied or 10-0-0 o	C									
	bracing.											
REACTIONS	· · · · · · · · · · · · · · · · · · ·	8= Mechanical										
500050	Max Grav 5=259 (LC	,, , ,										
FORCES	(lb) - Maximum Com Tension	pression/iviaximum										
TOP CHORD		1 1-2=0/0 2-3=-26	4/0									
	3-4=0/0	11, 1 2=0/0, 2 0= 20	1,0,									
BOT CHORD		4, 5-6=0/264										
WEBS	2-8=-315/0, 3-5=-38	1/0, 2-7=-17/15, 3-6	=0/66									
NOTES												
1) Unbalance	ed floor live loads have	been considered for	or									
, this desigr	n.											
	irder(s) for truss to trus											
	echanical connection (by others) of truss t	0								mini	1111.
	ate at joint(s) 5.										WAH CA	ROUL
	is designed in accorda		ام ما							AN'	A.	· · · · · · · ·
	2 and referenced stand		nu						/	S.	O'.:ESS	William .
	end 2x6 strongbacks, o								2			1 All
	oc and fastened to eac								-		2	
	3") nails. Strongbacks		alls						-		SEA	1 7 7
	ter ends or restrained l	by other means.							Ξ			• -
LOAD CASE	S) Standard								Ξ		0363	22 : 3
									-	8		1 2
										-	1	


Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1 Hayes Rd A		
24050164	F12	Floor Supported Gable	1	1	Job Reference (optional)	162356805	

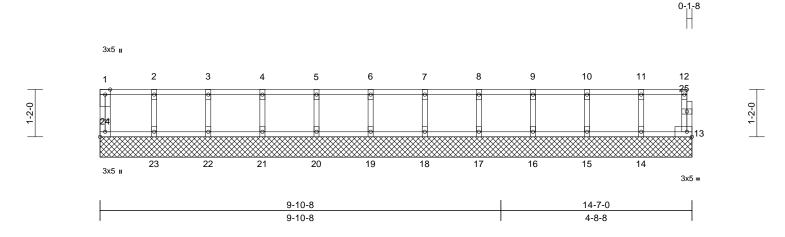
Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Dec 04 15:58:33 ID:?OgRucTj9yZ1cXbmlfcd0UzGlv1-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:20.3

1-2-0

Plate Offsets (X, Y): [16:Edge,0-1-8]


	(X, Y): [16:Edge,0-1-8				-							
Loading TCLL TCDL BCLL	(psf) 40.0 10.0 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.00 1.00 YES	CSI TC BC WB	0.08 0.01 0.03	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 9	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL	5.0	Code	IRC2018/TPI2014	Matrix-MR	-						Weight: 41 lb	FT = 20%F, 11%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No.2(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) Structural wood she 6-0-0 oc purlins, ex	cept end verticals.	10-00-00 o (0.131" X 3 at their out 7) CAUTION, LOAD CASE(S	d 2x6 strongbacks c and fastened to e ") nails. Strongbac er ends or restraine Do not erect truss) Standard	each truss cks to be ed by othe	with 3-10d attached to w er means.	alls					
REACTIONS	(size) 9=9-4-0, 7 12=9-4-0,	10=9-4-0, 11=9-4-0, 13=9-4-0, 14=9-4-0 16=9-4-0	l,									
	13=146 (L	1), 10=142 (LC 1), _C 1), 12=146 (LC 1), _C 1), 14=148 (LC 1), _C 1), 16=63 (LC 1)										
FORCES	(lb) - Maximum Com											
TOP CHORD	Tension 1-16=-57/0, 8-9=-51 3-4=-10/0, 4-5=-10/0 7-8=-10/0											
BOT CHORD											TH CA	Routin
WEBS	2-15=-130/0, 3-14=- 5-12=-133/0, 6-11=-	, , ,							4	i	O EE8S	Rell
 2) Gable req 3) Truss to b braced ag 4) Gable stud 5) This truss Internation 	are 1.5x3 MT20 unless uires continuous botto e fully sheathed from o lainst lateral movemen ds spaced at 1-4-0 oc. is designed in accorda al Residential Code si 2 and referenced stand	m chord bearing. one face or securely t (i.e. diagonal web). ance with the 2018 ections R502.11.1 a									SEA 0363	EER ALI

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

A MiTek Affi 818 Soundside Road Edenton, NC 27932

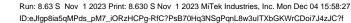
December 5,2023


Job	Truss	Truss Type	Qty	Ply	1 Hayes Rd A	
24050164	F09	Floor Supported Gable	1	1	Job Reference (optional)	162356806

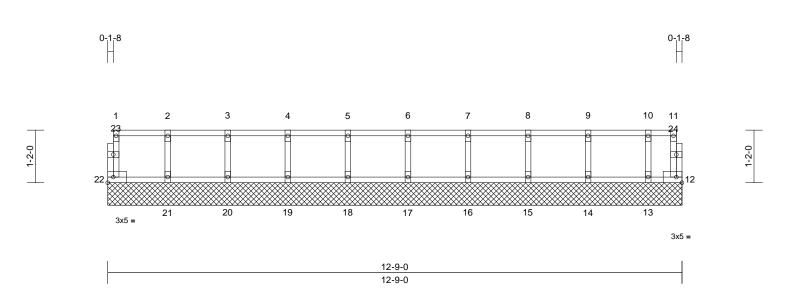
Scale = 1:28.4

Plate Offsets (X, Y): [24:Edge,0-1-8]											
Loading TCLL TCDL	(psf) 40.0 10.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.00 1.00		CSI TC BC	0.08 0.01	DEFL Vert(LL) Vert(TL)	in n/a n/a	(loc) - -	l/defl n/a n/a	L/d 999 999	PLATES MT20	GRIP 244/190
BCLL BCDL	0.0 5.0	Rep Stress Incr Code	YES IRC20	18/TPI2014	WB Matrix-MR	0.03	Horiz(TL)	0.00	13	n/a	n/a	Weight: 62 lb	FT = 20%F, 11%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2(flat) 2x4 SP No.2(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) Structural wood she 6-0-0 oc purlins, exx Rigid ceiling directly bracing. (size) 13=14-7-(16=14-7-(22=14-7-(22=14-7-(Max Grav 13=52 (LC 15=149 (L 17=147 (L 21=146 (L 23=144 (L	athing directly applie cept end verticals. applied or 10-0-0 oc), 14=14-7-0, 15=14-), 17=14-7-0, 18=14-), 20=14-7-0, 24=14- C 1), 14=137 (LC 1), .C 1), 16=146 (LC 1) .C 1), 18=147 (LC 1) .C 1), 20=147 (LC 1) .C 1), 22=147 (LC 1) .C 1), 22=147 (LC 1) .C 1), 24=62 (LC 1)	4 5 d or 5 7-0, 7-0, 7-0, 7-0, 7-0, 7-0,	 Gable studs This truss is International R802.10.2 ai Recommend 10-00-00 oc (0.131" X 3") at their outer 	spaced at 1-4-0 designed in accc Residential Cod nd referenced sta 2x6 strongback and fastened to nails. Strongba ends or restrain to not erect truss	ordance w le sections andard AN s, on edge each truss icks to be led by othe	R502.11.1 a ISI/TPI 1. s, spaced at s with 3-10d attached to w er means.						
FORCES	(lb) - Maximum Com Tension 1-24=-56/0, 12-13=-		·9/0,									TH CA	11111
2) Gable requ	3-4=-9/0, 4-5=-9/0, 5 7-8=-9/0, 8-9=-9/0, 5 11-12=-9/0 23-24=0/9, 22-23=0/ 19-20=0/9, 18-19=0/ 15-16=0/9, 14-15=0/ 2-23=-131/0, 3-22=- 5-20=-133/0, 6-19=- 8-17=-133/0, 9-16=- 11-14=-125/0 are 1.5x3 MT20 unless uires continuous bottoi e fully sheathed from c	9-10=-9/0, 10-11=-9/ 9, 21-22=0/9, 20-21: 9, 17-18=0/9, 16-17: 9, 13-14=0/9 134/0, 4-21=-133/0, 133/0, 7-18=-133/0, 133/0, 10-15=-135/0 6 otherwise indicated n chord bearing.	=0/9, =0/9,							Guillin	20	SEA 0363	L 22 EEERCA LUU

braced against lateral movement (i.e. diagonal web).



Page: 1


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Dec 04 15:58:32 ID:irK47f?KnU6ouIzDtuOyomzGIuL-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

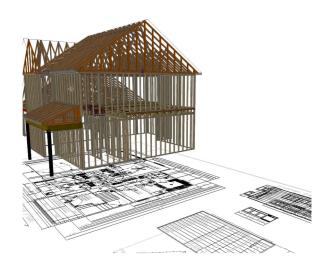
Job	Truss	Truss Type	Qty	Ply	1 Hayes Rd A	
24050164	F01	Floor Supported Gable	2	1	Job Reference (optional)	162356807

Page: 1

4.05.0

Scale = 1:25.6												
Loading TCLL TCDL BCLL BCDL	(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.00 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MR	0.08 0.02 0.03	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 12	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 55 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2(flat) 2x4 SP No.2(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) Structural wood shea 6-0-0 oc purlins, exc Rigid ceiling directly bracing. (size) 12=12-9-0 18=12-9-0 21=12-9-0 Max Grav 12=22 (LC 14=153 (L 16=147 (L 20=147 (L	athing directly applie cept end verticals. applied or 10-0-0 oc), 13=12-9-0, 14=12-), 16=12-9-0, 17=12-), 19=12-9-0 C 1), 13=109 (LC 1), C 1), 15=145 (LC 1) C 1), 17=147 (LC 1) C 1), 12=147 (LC 1) C 1), 21=148 (LC 1)	6) Recomme 10-00-00 (0.131" X at their ou LOAD CASE(ed or -9-0, -9-0, -9-0, -9-0,),),	nd 2x6 strongbacks oc and fastened to e 3") nails. Strongbac ter ends or restraine	ach truss ks to be	with 3-10d attached to w	alls					
FORCES	22=52 (LC (lb) - Maximum Com Tension	,										
TOP CHORD	1-22=-49/0, 11-12=- 3-4=-6/0, 4-5=-6/0, 5 7-8=-6/0, 8-9=-6/0, 9	5-6=-6/0, 6-7=-6/0,									OR EESE	Della
BOT CHORD	21-22=0/6, 20-21=0/ 17-18=0/6, 16-17=0/ 13-14=0/6, 12-13=0/	/6, 15-16=0/6, 14-15 /6							6	I'I'I	ORTESE	D. W.
WEBS	2-21=-132/0, 3-20=- 5-18=-133/0, 6-17=- 8-15=-132/0, 9-14=-	133/0, 7-16=-134/0,)						111		SEA	
 2) Gable required 3) Truss to be braced aga 4) Gable studies 5) This truss Internation 	are 1.5x3 MT20 unless uires continuous bottor e fully sheathed from o ainst lateral movement is spaced at 1-4-0 oc. is designed in accorda nal Residential Code se and referenced standa	m chord bearing. one face or securely t (i.e. diagonal web). ance with the 2018 ections R502.11.1 ar							HTTAK.		0363	22 EER A

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Kempsville Sanford Component Plant 298 Harvey Faulk Rd Sanford, NC 27332

Phone #:919-775-1450

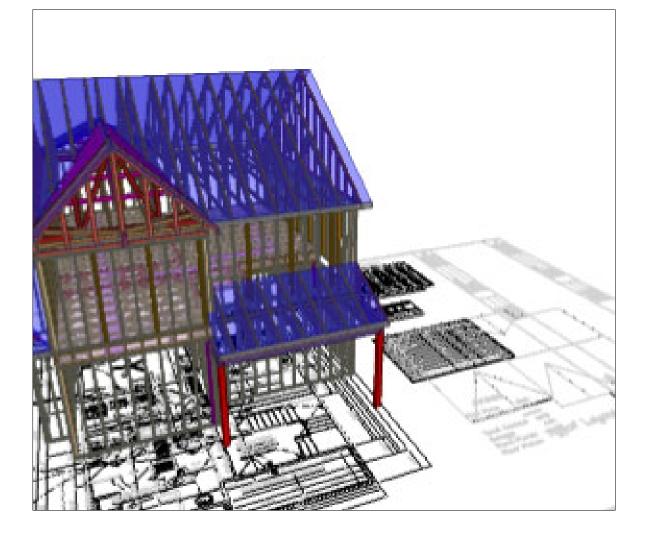
Builder: Contractors Hayes A Spring Lake

THE PLACEMENT PLAN NOTES:

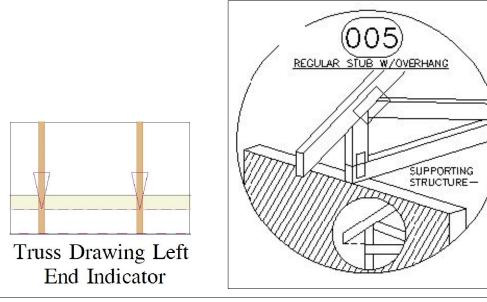
1. The Placement Plan is a diagram for truss installation. It is not an engineered drawing and has not been reviewed by an engineer. The Owner/Building Designer is responsible for obtaining an engineer's review if one is required by the local jurisdiction.

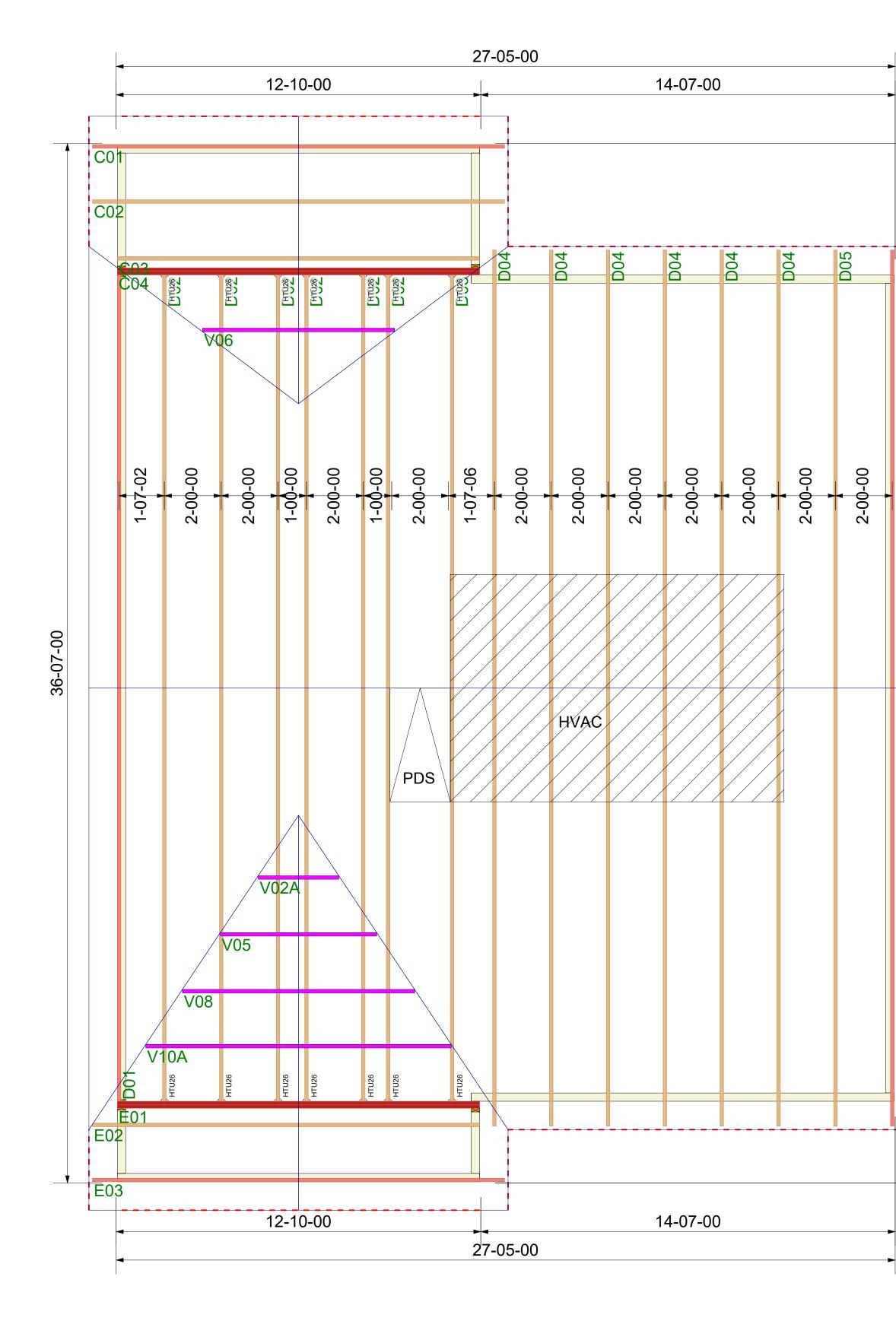
2. The responsibilities of the Owner, Contractor, Building Designer, Component Designer and Component Manufacturer shall be as set forth in ANSI/TPI 1. Capitalized terms shall be as defined in ANSI/TP 1 unless otherwise indicated.

3. Each Component is designed as an individual component utilizing information provided by others. The Owner/Building Designer is responsible for reviewing all Component Submittal Packages and individual Component Design Drawings for compliance with the Construction Documents and compatibility with the overall Building design.


4. Contractor will not proceed with component installation until the Owner/Building Designer has reviewed the Component Submittal Package. Questions on the suitability of any Component will be resolved by the Building Designer.

5. The Building Designer and Contractor are responsible for all temporary and permanent bracing.


6. The Placement Plan assumes the building is dimensionally correct, structurally sound, and in a suitable condition to support each Component during installation and thereafter, including but not limited to installation of all bearing points. Proper design and construction of all structural components, including foundations, headers, beams, walls and columns are the responsibility of the Owner, Building Designer and Contractor.


7. Do not cut, drill, or modify any Component without first consulting the Component Manufacturer or Building Designer. Damaged Components shall not be installed unless directed by the Building Designer or approved by the Component Manufacturer.

8. Components must be handled and installed following all applicable safety standards and best practices, including but not limited to BCSI, OSHA, TPI and local codes. Failure to properly handle, brace or otherwise install Component can result in serious injury or death.

** AI	LL BEARIN		IS MUST B	E INST	ALLED P	RIOR TO SE	TTING AN	Y COMPON	ENTS.					
													Revisio	
												00/00/		Name
												00/00/		Name
												00/00/		Name
												00/00/	00	Name
												00/00/	00	Name
07-00											ui			
-	D04	D04	D05	D06		_					LED, UNLESS NOTED OTHERWISE	M ONLY. These trusses are ncorporated into the building design . See Individual design sheets for	each truss design identified on the placement drawing. The building designer is responsible for temporary and permanent bracing of the roof and floor systems and for the overall structure. The design of the truss support structure including headers, beams, walls, and columns is the responsibility of	e regarding the bracing, consult e Truss Plate Institute, 583 D'Onifrio
											E TOE-NAILED,	IT DIAGRA ents to be ir ng designer	the placem d permaner tcture. The ams, walls,	ble from the
											S ARI	EMEN mpone buildir	ed on t Iry and Ill stru s, bea	genel availal
												PLAC all cor	entifie npora overa eader	r. For uss" a 53179
												JSS F Jividu tion o	ign id for ter vr the 'ing he	signe od Tr WI {
_	_	-										 TRU as inc cificat 	s des sible 1 ind fo nclud	ng de of Wo dison
00-0	00-(00-(00-(SSUS	i IS A jned ¿ ∋ spe(truss spons ms a ture in	buildir cing c 3: Mac
2-00-00	2-00-00	2-00-00	2-00-00								<mark>0</mark>	THIS desig at the	each is ret syste struct	the t "Brac Drive
	, , , ,										TRUSS TO TRUSS CONNECTIONS ARE			
											*			A Division of the Certer Lumber Company
					00-									
					36-07-00						NTH.			B B B B
					36 36									
				Ċ	L L						H-NIX			r Lu
											001-			98 8
											AS: F(1
											S AR			
													V	
											DIMENSIONS ARE READ AS: FOOT-INCH-SIXTEENTH			
											* <u>*</u>	S		AN
											JADS.	acto		
											R PRIOR TO ADDING ANY LOADS.	Contractors	llem	
			<u> </u>										Old Salem	COMPONE
				с 		_					R TO	Castle	ŏ	
በ7 ቦቦ											PRIC			
07-00												New		
			•								TOGETHE			D
											CONNECTED	Scale:		
													NTS	
												Date:	6/6/202	24
											E FULLY		Designe	
											ST BE		NC Project Nu	Imber:
											MUST	240501	64-A2	3110107
											GIRDERS		Sheet Nu	
											*		1/'	1
TRUSS	SES.		** REFE	R TO FI	NAL TRU	ISS ENGINE	ERING SH	EETS FOR F	PLY TO PLY	CONNECTION	5 .	<u> </u>		

RE: 24050164 Hayes Rd A Trenco 818 Soundside Rd Edenton, NC 27932

Site Information:Customer: New Castle ContractorsProject Name: 24050164Lot/Block:Model:Address: 1 Hayes RdSubdivision:City: Spring LakeState: NC

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2018/TPI2014 Wind Code: ASCE 7-16 Roof Load: 40.0 psf Design Program: MiTek 20/20 8.6 Wind Speed: 130 mph Floor Load: N/A psf

This package includes 31 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
1	162356808	V06	12/5/2023	21	162356828	B01	12/5/2023
2	162356809	V02A	12/5/2023	22	162356829	B02	12/5/2023
3	162356810	V05	12/5/2023	23	162356830	A02	12/5/2023
4	162356811	V08	12/5/2023	24	l62356831	A01	12/5/2023
5	162356812	V10A	12/5/2023	25	l62356832	V02	12/5/2023
6	l62356813	C03	12/5/2023	26	162356833	V04	12/5/2023
7	162356814	C02	12/5/2023	27	162356834	V07	12/5/2023
8	162356815	C01	12/5/2023	28	l62356835	V10	12/5/2023
9	162356816	E02	12/5/2023	29	162356836	V12	12/5/2023
10	162356817	E03	12/5/2023	30	162356837	V15	12/5/2023
11	162356818	D01	12/5/2023	31	162356838	V18	12/5/2023
12	162356819	D02	12/5/2023				
13	162356820	D03	12/5/2023				
14	162356821	E01	12/5/2023				
15	162356822	D04	12/5/2023				
16	162356823	D05	12/5/2023				
17	162356824	D06	12/5/2023				
18	162356825	C04	12/5/2023				
19	162356826	PB04A	12/5/2023				
20	162356827	PB04	12/5/2023				

The truss drawing(s) referenced above have been prepared by

Truss Engineering Co. under my direct supervision

based on the parameters provided by Carter Components (Sanford, NC)).

Truss Design Engineer's Name: Gilbert, Eric

My license renewal date for the state of North Carolina is December 31, 2024

North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Gilbert, Eric

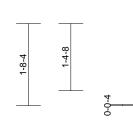
Job	Truss	Truss Type	Qty	Ply	Hayes Rd A	
24050164	V06	Valley	1	1	Job Reference (optional)	162356808

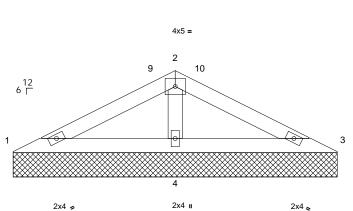
3-4-0

3-4-0

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries. Inc. Mon Dec 04 16:00:01 ID:7iA?GrsyZEIywua1edcC7EzHsFE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


6-1-1


2-9-1

6-8-0

0-6-15

6-8-0

2x4 ዾ

Scale = 1:23.7		-i										i	
oading	(psf)	Spacing	1-11-4		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.16	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.18	Vert(TL)	n/a	-	n/a	999		
CDL	10.0	Rep Stress Incr	YES		WB	0.05	Horiz(TL)	0.00	4	n/a	n/a		
BCLL	0.0*	Code	IRC2018	/TPI2014	Matrix-MP								
SCDL	10.0											Weight: 21 lb	FT = 20%
			4)		E 7-16; Pr=20.0								
OP CHORD					1.15); Pf=20.0 p Is=1.0; Rough								
THERS	2x4 SP No.2 2x4 SP No.3			Cs=1.00; Ct		Car D, i uliy	LAP., 06=0.	σ,					
RACING	2A4 01 NU.3		5)	,	snow loads ha	ve been cor	sidered for t	his					
OP CHORD	Structural wood she	eathing directly applie	- /	design.									
	6-8-0 oc purlins.	cauling ancony applic	6)	Gable requi	res continuous l	pottom chor	d bearing.						
OT CHORD		y applied or 6-0-0 oc	7)		spaced at 4-0-								
	bracing.		8)		as been designe								
EACTIONS	(size) 1=6-8-0,	3=6-8-0, 4=6-8-0	9)		ad nonconcurre has been desig								
	Max Horiz 1=23 (LC	C 14)	9)		m chord in all a			opsi					
	Max Uplift 1=-10 (Lo 4=-31 (Lo	,, , , ,	,	3-06-00 tall	by 2-00-00 wide	e will fit betw		om					
	Max Grav 1=103 (L 4=407 (L	.C 20), 3=103 (LC 21), 10)	Provide med	ny other membe	tion (by oth	,						
ORCES	(lb) - Maximum Cor Tension	mpression/Maximum		1, 15 lb uplit	e capable of wit t at joint 3 and 3	31 lb uplift a	t joint 4.	joint					
OP CHORD		-116/191	11)		designed in ac Residential Co			and					
OT CHORD					ind referenced s								
VEBS	2-4=-267/157		10	AD CASE(S)									
IOTES			20		Clandara								
) Unbalance	ed roof live loads have	e been considered fo	r										
this desigr												TH CA	Dille
	CE 7-16; Vult=130mpl										1	"TH CA	TO I'I

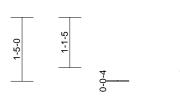
- 2 Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-8 to 3-0-8, Exterior(2R) 3-0-8 to 3-8-8, Exterior(2E) 3-8-8 to 6-8-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

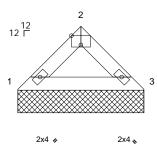
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

GI

SEAL


036322


Variation

Job	Truss	Truss Type	Qty	Ply	Hayes Rd A	
24050164	V02A	Valley	1	1	Job Reference (optional)	162356809

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Dec 04 16:00:00 ID:fVcd2VrKoxA5lk?r4w4za0zHsFF-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

2-9-8

3x5 =

Scale = 1:25.5

Plate Offsets (X, Y): [2:0-2-8,Edge]

Loading (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0* BCDL 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MP	0.06 0.05 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 9 lb	GRIP 244/190 FT = 20%
2-9-8 oc purlins.	: 12) 14), 3=-8 (LC 15) C 20), 3=130 (LC 21) pression/Maximum 50/70 been considered for (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior ; cantilever left and rig ght exposed;C-C for for reactions shown; L=1.60 n the plane of the trus (normal to the face), d Details as applicabl gner as per ANSI/TPI roof LL: Lum DOL=1. um DOL=1.15 Plate S; Fully Exp.; Ce=0.9; seen considered for this	8) This truss ha chord live lo 9) * This truss on the botto 3-06-00 tall chord and a 10) Provide mee bearing plat and 8 lb upli 11) This truss is Internationa R802.10.2 a LOAD CASE(S)	designed in accord Residential Code nd referenced stan	or a 10.0 vith any for a liv s where Il fit betv (by oth anding 8 dance w sections	other live loa e load of 20.0 a rectangle veen the botto ers) of truss t b lb uplift at jo ith the 2018 s R502.11.1 a	Opsf om oo int 1				SEA 0363	EER HUIL

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSUPTI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Hayes Rd A	
24050164	V05	Valley	1	1	Job Reference (optional)	162356810

2-8-12

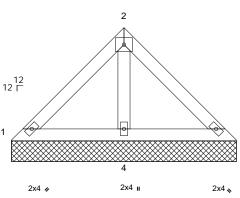
2-8-12

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Dec 04 16:00:01 ID:fVcd2VrKoxA5Ik?r4w4za0zHsFF-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

5-2-1

2-5-5


3

1 0-0-0 2x4 4

2-5-5

2-9-0

4x5 =

5-5-8

Scale = 1:28

Loading (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0* BCDL 10.0	Plate Grip DOL1.1Lumber DOL1.1Rep Stress IncrYE	15	BC C).13).15	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 21 lb	GRIP 244/190 FT = 20%
5-5-8 oc purlins. BOT CHORD Rigid ceiling directly bracing.	B=5-5-8, 4=5-5-8 10) 14) 2 20), 3=100 (LC 21), 2 20) pression/Maximum 3/126	 design. 6) Gable require 7) Gable studs and the state of the structure 8) This truss hat chord live load 9) * This truss hat on the botton 3-06-00 tall be chord and and 10) Provide mech bearing plate 4. 11) This truss is a linternational 	snow loads have been es continuous bottom spaced at 4-0-0 oc. s been designed for at d nonconcurrent with has been designed for n chord in all areas will y 2-00-00 wide will fit y other members. nanical connection (by capable of withstand designed in accordan Residential Code sec nd referenced standar Standard	chord a 10.0 a any c r a live here a t betwo y othe ding 56 ace wit ctions	d bearing. psf bottom other live loa e load of 20.0 a rectangle een the botto ers) of truss t 6 lb uplift at j th the 2018 R502.11.1 a	ids. Dpsf om io oint					

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Hayes Rd A	
24050164	V08	Valley	1	1	Job Reference (optional)	162356811

4-0-12

Carter Components (Sanford, NC), Sanford, NC - 27332,

Scale = 1:33.4 Loading

TCLL (roof)

Snow (Pf)

LUMBER

OTHERS

BRACING

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

REACTIONS

FORCES

WFBS

1)

2)

3)

NOTES

TOP CHORD

BOT CHORD

this design.

DOL=1.60

2x4 SP No.2

2x4 SP No.2

2x4 SP No.3

bracing.

Max Uplift

Max Grav

Tension

2-4=-466/287

(size)

TCDL

BCLL

BCDL

Run: 8.63 S. Nov. 1 2023 Print: 8.630 S.Nov. 1 2023 MiTek Industries. Inc. Mon. Dec. 04 16:00:02 ID:7iA?GrsyZEIywua1edcC7EzHsFE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

7-10-1

VIIIIIIIIIIIII

Edenton, NC 27932

4-0-12 3-9-5 4x5 = 2 9 10 4-1-0 12 12 Г 3 4 3x5 🅢 2x4 🛚 3x5 、 8-1-8 Spacing 2-0-0 CSI DEFL l/defl L/d PLATES GRIP (psf) in (loc) Plate Grip DOL 20.0 1.15 TC 0.36 Vert(LL) n/a n/a 999 MT20 244/190 BC 20.0 Lumber DOL 1 15 0.35 Vert(TL) n/a n/a 999 10.0 Rep Stress Incr YES WB 0.14 Horiz(TL) 0.00 4 n/a n/a 0.0 Code IRC2018/TPI2014 Matrix-MP 10.0 Weight: 33 lb FT = 20%TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 Unbalanced snow loads have been considered for this 5) desian. Structural wood sheathing directly applied or Gable requires continuous bottom chord bearing. 6) 8-1-8 oc purlins. 7) Gable studs spaced at 4-0-0 oc. Rigid ceiling directly applied or 6-0-0 oc 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 1=8-1-8, 3=8-1-8, 4=8-1-8 9) Max Horiz 1=91 (LC 11) on the bottom chord in all areas where a rectangle 1=-34 (LC 21), 3=-34 (LC 20), 3-06-00 tall by 2-00-00 wide will fit between the bottom 4=-125 (LC 14) chord and any other members. 1=87 (LC 20), 3=87 (LC 21), 4=637 10) Provide mechanical connection (by others) of truss to (LC 21) bearing plate capable of withstanding 34 lb uplift at joint (lb) - Maximum Compression/Maximum 1, 34 lb uplift at joint 3 and 125 lb uplift at joint 4. 11) This truss is designed in accordance with the 2018 1-2=-132/272, 2-3=-132/272 International Residential Code sections R502.11.1 and 1-4=-191/201, 3-4=-191/201 R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard Unbalanced roof live loads have been considered for Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-4 to 3-0-4, Exterior(2R) 3-0-4 to 5-1-12, Exterior(2E) 5-1-12 to 8-1-12 zone; THE REAL PROPERTY. cantilever left and right exposed ; end vertical left and SEAL right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip 036322 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face). see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1. G (1111111) December 5,2023 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall 818 Soundside Road

bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty Ply Hayes Rd A		Hayes Rd A	
24050164	V10A	Valley	1	1	Job Reference (optional)	162356812

5-4-4

5-4-4

Carter Components (Sanford, NC), Sanford, NC - 27332,

Loading

TCLL (roof)

Snow (Pf)

LUMBER

OTHERS

FORCES

WEBS

NOTES

1)

2)

BRACING

TCDL

BCLL

BCDL

Run: 8.63 S. Nov. 1 2023 Print: 8.630 S.Nov. 1 2023 MiTek Industries. Inc. Mon. Dec. 04 16:00:02 ID:7iA?GrsyZEIywua1edcC7EzHsFE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

10-5-1

5-0-13

4x5 =

10-8-8

Page: 1

3 13 14 5-4-8 ò 2x4 2x4 II 12 12 □ 2 0-0-0 8 6 7 3x5 🖌 2x4 II 2x4 u 2x4 II 3x5、 10-8-8 Scale = 1:43.3 Spacing 1-11-4 CSI DEFL l/defl L/d PLATES GRIP (psf) in (loc) 20.0 Plate Grip DOL 1.15 TC 0.34 Vert(LL) n/a 999 MT20 244/190 n/a 20.0 1 15 BC Lumber DOL 0.13 Vert(TL) n/a n/a 999 10.0 Rep Stress Incr YES WB 0.10 Horiz(TL) 0.00 5 n/a n/a 0.0 Code IRC2018/TPI2014 Matrix-MSH 10.0 Weight: 47 lb FT = 20%Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 see Standard Industry Gable End Details as applicable, 2x4 SP No.3 or consult qualified building designer as per ANSI/TPI 1. 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate TOP CHORD Structural wood sheathing directly applied or DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; 6-0-0 oc purlins. Cs=1.00: Ct=1.10 BOT CHORD Rigid ceiling directly applied or 10-0-0 oc Unbalanced snow loads have been considered for this 5) bracing. desian. REACTIONS (size) 1=10-8-8, 5=10-8-8, 6=10-8-8, 6) Gable requires continuous bottom chord bearing. 7=10-8-8, 8=10-8-8 Gable studs spaced at 4-0-0 oc. 7) Max Horiz 1=-118 (LC 10) This truss has been designed for a 10.0 psf bottom 8) 1=-73 (LC 12), 5=-43 (LC 13), Max Uplift chord live load nonconcurrent with any other live loads. 6=-165 (LC 15), 8=-171 (LC 14) * This truss has been designed for a live load of 20.0psf 9) 1=102 (LC 14), 5=82 (LC 15), Max Grav on the bottom chord in all areas where a rectangle 6=461 (LC 21), 7=225 (LC 20), 3-06-00 tall by 2-00-00 wide will fit between the bottom 8=461 (LC 20) chord and any other members. (Ib) - Maximum Compression/Maximum 10) Provide mechanical connection (by others) of truss to Tension bearing plate capable of withstanding 73 lb uplift at joint TOP CHORD 1-2=-183/130, 2-3=-252/122, 3-4=-252/122, 1, 43 lb uplift at joint 5, 171 lb uplift at joint 8 and 165 lb 4-5=-161/98 uplift at joint 6. BOT CHORD 1-8=-50/87, 7-8=-33/83, 6-7=-33/83, 11) This truss is designed in accordance with the 2018 5-6=-57/92 International Residential Code sections R502.11.1 and 3-7=-139/0. 2-8=-483/333. 4-6=-483/333 R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard C Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-16; Vult=130mph (3-second gust) Manan Manan UTITITITI I Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; SEAL Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-4 to 3-0-4, Exterior(2R) 036322 3-0-4 to 7-8-12, Exterior(2E) 7-8-12 to 10-8-12 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 G (1111111) December 5,2023 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) 818 Soundside Road and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com) Edenton, NC 27932

Job	Truss	Truss Type	Qty Ply Hayes Rd A			
24050164	C03	Common	1	1	Job Reference (optional)	162356813

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Dec 04 15:59:53 ID:M9h_a6ixRnl5yfzVAySKoYzHsFM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

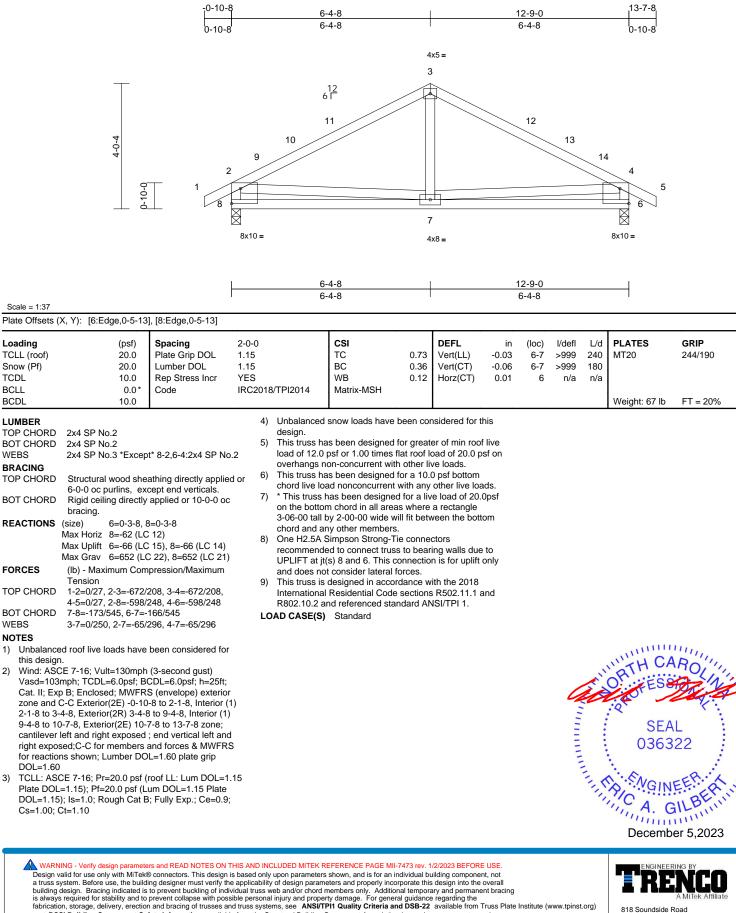
6-4-8 12-9-0 6-4-8 6-4-8 4x5 = 2 12 6 Г 8 9 8x10 ≠ 4-0-4 7 10 3 0-10-0 4 K 5 8x10 👟 4x8 =

L	6-4-8	12-9-0	
Г	6-4-8	6-4-8	

Plate Offsets (X_Y):	[1:Edge,0-2-4], [4:Edge,0-2-4]
	[1.Luge,0-2-4], [4.Luge,0-2-4]

Scale = 1:35.6

	d PLATES GRIP
TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.87 Vert(LL) -0.03 4-5 >999 24 Snow (Pf) 20.0 Lumber DOL 1.15 BC 0.35 Vert(CT) -0.07 4-5 >999 14 TCDL 10.0 Rep Stress Incr YES WB 0.14 Horz(CT) 0.01 4 n/a n BCLL 0.0* Code IRC2018/TPI2014 Matrix-MSH Horz(CT) 0.01 4 n/a n	0
 LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 BRACING Structural wood sheathing directly applied or 22-0 oc purlins. except end verticals. BOT CHORD Structural wood sheathing directly applied or 10-00 oc bracing. REACTIONS (size) 4=0-3-8, 6=0-3-8 Max Horiz 6=57 (LC 10) Max Uplift 4=-46 (LC 15), 6=-46 (LC 14) Max Grav 4=590 (LC 21), 6=-590 (LC 20) FORCES (b) - Maximum Compression/Maximum Tension FORCES (b) - Maximum Compression/Maximum Tension FORCES (b) - Maximum Compression/Maximum Tension Or CHORD 5-6-123/381, 4-5=-123/381 WEBS 2-5=0/243, 1-5=0/350, 3-5=-1/350 NOTES 1) Unbalanced roof live loads have been considered for this design. 3) TCLL: ASCE 7-16; Vull=130mph (3-second gust) vade-103mph; TCDL=6.0pst; BCDL=6.0pst; h=-251t; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-1-12: 0.31-12; Exterior (2R) 3-1-12 to 9-74. Exterior(2E) 9-74 to t27-4 zone; cantilever left and right exposed; i-or durits (a plate grip DOL=1.6) 3) TCLL: ASCE 7-16; Ph=20.0 psf (root LL: turn DOL=1.15 Plate DOL=1.15); PI=20.0 psf (root LL: turn DOL=1.15 PLATE PLATE PLATE	SEAL 036322 MGINEEP CA. GILBER



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty Ply Hayes Rd A		Hayes Rd A	
24050164	C02	Common	1	1	Job Reference (optional)	162356814

3)

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Dec 04 15:59:53 ID:bdCyvNfwKKHD?QMyiGJSTszHsFU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

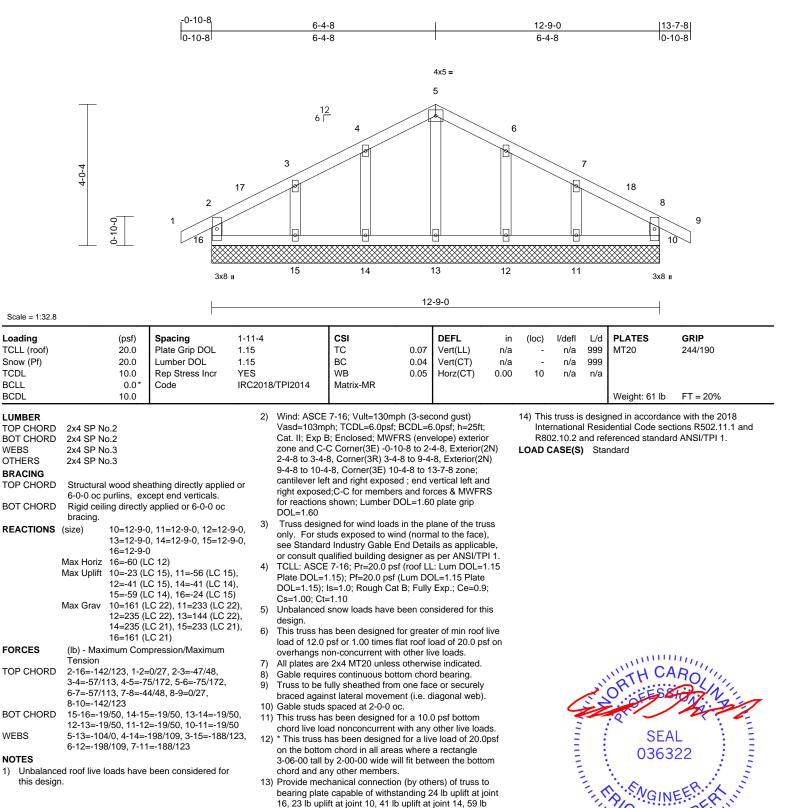
818 Soundside Road Edenton, NC 27932

UNUTATION IN THE

Job	Truss	Truss Type	Qty	Ply	Hayes Rd A	
24050164	C01	Common Supported Gable	1	1	Job Reference (optional)	162356815

TCDL

BCLL


BCDL

WFBS

WEBS

NOTES

Run: 8.63 S. Nov. 1.2023 Print: 8.630 S.Nov. 1.2023 MiTek Industries. Inc. Mon. Dec 04 15:59:53 ID:IGHJRzaXzAPDfMJcolhphNzHsFb-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters when Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

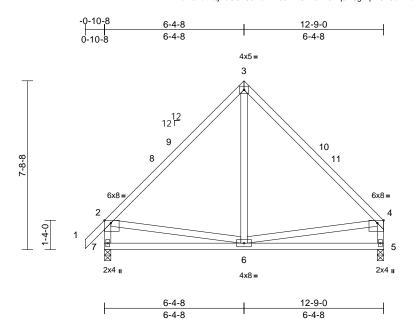
joint 11.

uplift at joint 15, 41 lb uplift at joint 12 and 56 lb uplift at

818 Soundside Road

Edenton, NC 27932

G


unnun 1 December 5,2023

Job	Truss	Truss Type	Qty	Ply	Hayes Rd A	
24050164	E02	Common	1	1	Job Reference (optional)	162356816

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries. Inc. Mon Dec 04 15:59:59 ID:V2cRIJYunfQjDdCGvC0MuLzHs5I-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale	= 1:52.6	

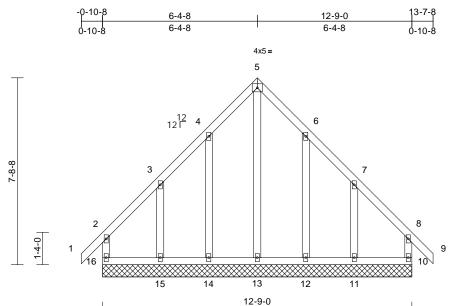
Plate Offsets (X, Y): [2:0-3-8,Edge], [4:0-3-8,Edge]

Plate Offsets	(X, Y): [2:0-3-8,Edge],	[4:0-3-8,Edge]										-	
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	/TPI2014	CSI TC BC WB Matrix-MSH	0.94 0.34 0.10	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.03 -0.06 0.00	(loc) 5-6 5-6 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 79 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this desig 2) Wind: ASI Vasd=103 Cat. II; Ex zone and 2-1.8 to 3 9-7.4 to 1 end vertic forces & M DOL=1.60 3) TCLL: ASI Plate DOI DOL=1.16 Cs=1.00;	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 *Excep Structural wood she except end verticals Rigid ceiling directly bracing. (size) 5=0-3-8, 7 Max Horiz 7=201 (LC Max Uplift 5=-38 (LC Max Uplift 5=-38, LC (Ib) - Maximum Com Tension 1-2=0/43, 2-3=-555/ 2-7=-586/178, 4-5=- 6-7=-264/345, 5-6=- 3-6=0/250, 2-6=-133 ed roof live loads have n. CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; Bf cp B; Enclosed; MWFR: C-C Exterior(2E) -0-10 i-4-8, Exterior(2R) 3-4-8 2-7-4 zone; cantilever 1 cal left and right expose WWFRS for reactions s 0 plate grip DOL=1.60 CE 7-16; PT=20.0 psf (L =1.15); Is=1.0; Rough Cat E Ct=1.10	athing directly applied applied or 10-0-0 or 7=0-3-8 C 11) 2 (4), 7=-41 (LC 14) C 22), 7=642 (LC 21) pression/Maximum 154, 3-4=-543/144, 521/136 105/196 3/282, 4-6=-81/199 been considered fo (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior 8 to 2-1-8, Interior (3 to 9-7-4, Exterior(2 left and right expose d;C-C for members hown; Lumber roof LL: Lum DOL=1 um DOL=1.15 Plate s; Fully Exp.; Ce=0.9	o.2 6) ed, 7) c 8)) 9) LO r r (1) E) d; and 1.15	load of 12.0 overhangs n This truss ha chord live loa * This truss h on the bottor 3-06-00 tail k chord and ar One H2.5A S recommende UPLIFT at jt(and does no This truss is International	Is been designed i psf or 1.00 times f on-concurrent with is been designed n chord in all area by 2-00-00 wide w y other members. Simpson Strong-Ti ed to connect truss is) 7 and 5. This ci t consider lateral f designed in accor Residential Code nd referenced star Standard	lat roof k n other lin for a 10. with any d for a liv is where ill fit betv ie conne is to bear onnectio onces. dance w sections	bad of 20.0 p ve loads. D psf bottom other live load e load of 20. a rectangle veen the bott ctors ing walls due n is for uplift ith the 2018 is R502.11.1 a	ads. Opsf com e to only				ORTH CA ORTEESS SEA 0363	EER. AL
+) Unbalanc	ed snow loads have been considered for this												

4) Unbalanced snow loads have been considered for this design.

818 Soundside Road Edenton, NC 27932

December 5,2023


A. GIL

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Hayes Rd A	162356817
24050164	E03	Common Supported Gable	1	1	Job Reference (optional)	

Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Mon Dec 04 15:59:59 ID:KCzi?MdfNVBsxYfQFT7m8czHs5C-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1	1:47.5
-----------	--------

Loading	(psf)	Spacing	1-11-4	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.17	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.10	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.50	Horz(CT)	0.00	10	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MR								
BCDL	10.0										Weight: 88 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex	athing directly applie	d or	SCE 7-16; Vult=130m 3mph; TCDL=6.0psf xp B; Enclosed; MW d C-C Corner(3E) -0- 3-4-8, Corner(3E) 3- 10-4-8, Corner(3E) 1 r left and right expos osed;C-C for membe	; BCDL=6 FRS (env 10-8 to 2- 4-8 to 9-4 0-4-8 to 1 sed ; end served for the served served for the served se	6.0psf; h=25ft; elope) exterior 4-8, Exterior(-8, Exterior(21 3-7-8 zone; /ertical left an rces & MWFF	; or (2N) N) id	Ínte R80	rnationa	al Resid and ref	ferenced standar	tions R502.11.1 and
BOT CHORD	Rigid ceiling directly bracing.		DOL=1.	ions shown; Lumber 60 esigned for wind loac								
	13=12-9-1 16=12-9-1 Max Horiz 16=-202 (Max Uplift 10=-86 (L 12=-76 (L 15=-161 (Max Grav 10=195 (L 12=272 (L 14=272 (L 16=203 (L)	LC 12) .C 11), 11=-159 (LC .C 15), 14=-75 (LC 1 (LC 14), 16=-96 (LC .C 28), 11=238 (LC .C 22), 13=274 (LC .C 21), 15=242 (LC .C 29)	9-0, only. Fc 9-0, see Star or consu 15), Plate DC 4), DOL=1. 10, Cs=1.00 (29), 5) Unbalan (5), design. (8), 6) This trus	r studs exposed to wind adard Industry Gable It qualified building d SCE 7-16; Pr=20.0 p DL=1.15); Pf=20.0 ps DL=1.15; Is=1.0; Rough Ci ; Ct=1.10 ced snow loads have s has been designed 2.0 psf or 1.00 times	rind (norm End Deta esigner a sf (roof Ll f (Lum DC at B; Fully been col l for great	al to the face ils as applical s per ANSI/TF .: Lum DOL=: DL=1.15 Plate Exp.; Ce=0.§ nsidered for th er of min roof), ble, PI 1. 1.15 9; his					
FORCES	(lb) - Maximum Com Tension	pression/Maximum		gs non-concurrent wi							muu	1111
TOP CHORD	2-16=-162/195, 1-2=	185/412, 5-6=-185/4	8) Gable re 12, 9) Truss to braced a	s are 2x4 MT20 unles equires continuous bo be fully sheathed fro igainst lateral movem	ottom cho m one fac nent (i.e. c	d bearing. e or securely				A. M.	NITH CA	ROLIN
BOT CHORD	15-16=-98/103, 14-1 13-14=-98/103, 12-1 11-12=-98/103, 10-1	13=-98/103,	11) This trus chord liv	uds spaced at 2-0-0 s has been designed e load nonconcurren	l for a 10. t with any	other live loa			4			
WEBS	5-13=-493/157, 4-14 3-15=-169/209, 6-12 7-11=-167/209	1=-235/138 ,	on the b 3-06-00 chord ar	uss has been designe ottom chord in all are tall by 2-00-00 wide v id any other member	as where will fit betv s.	a rectangle veen the botto	om		11111		SEA 0363	• -
NOTES				mechanical connection						3	N.ENIA	- FRIA S
1) Unholonoo	ad roof live loade heve	boon considered for	hearing	ماملم مممم ملمام مقيباته	ا بمعالم مرجد		a			1	· · · · · ·	- CI' A S

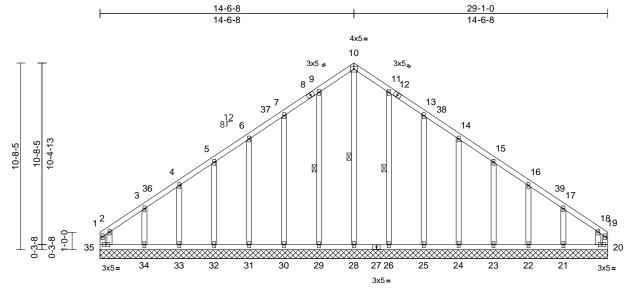
- 1) Unbalanced roof live loads have been considered for this design.
- bearing plate capable of withstanding 96 lb uplift at joint 16, 86 lb uplift at joint 10, 75 lb uplift at joint 14, 161 lb uplift at joint 15, 76 lb uplift at joint 12 and 159 lb uplift at joint 11.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

A. GILB

A. GILDIN

December 5,2023


C

Job	Truss	Truss Type	Qty	Ply	Hayes Rd A	
24050164	D01	Common Supported Gable	1	1	Job Reference (optional)	162356818

Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Mon Dec 04 15:59:54 ID:biJfAdUaJDra9tY1hYXPDCzHsEQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

20 1	
29-	1-0

00010 = 1.00												
Loading	(psf)	Spacing	1-11-4	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.13	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.07	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.20	Horiz(TL)	0.01	20	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014		0.20	1.101.2(1.2)	0.01	20		, ci	1	
BCDL	10.0		11(02010/11/12014								Weight: 213 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD		ot* 28-10:2x4 SP No. athing directly applie		3-4=-147/123, 4- 6-7=-145/201, 7- 10-11=-206/304, 13-14=-145/201, 15-16=-110/111, 17-18=-141/110,	5=-146/13 9=-179/25 11-13=-1 14-15=-1 16-17=-1 18-19=-2	35, 5-6=-133/1 57, 9-10=-206, 79/257, 15/148, 18/79, 4/17, 19-20=-	168, /304, 88/84	Pla DO Cs: 5) Unl des 6) All	te DOL= L=1.15); =1.00; C balanced sign. plates ar	:1.15); ; Is=1.0 t=1.10 d snow re 2x4	Pf=20.0 psf (Lun); Rough Cat B; F loads have beer	of LL: Lum DOL=1.15 DOL=1.15 Plate Fully Exp.; Ce=0.9; a considered for this erwise indicated. chord bearing.
BOT CHORD		applied or 10-0-0 oc		32-33=-96/124, 3 30-31=-96/124, 2								e face or securely .e. diagonal web).
WEBS	1 Row at midpt	10-28, 9-29, 11-26		28-29=-96/124, 2	6-28=-96	/124,		9) Ga	ble stude	s space	ed at 2-0-0 oc.	c ,
			1.0	25-26=-96/124, 2	4-25=-96	/124,		10) Thi	s truss h	as bee	en designed for a	10.0 psf bottom
REACTIONS (size) 20=29-1-0, 21=29-1-0, 22 23=29-1-0, 24=29-1-0, 25 26=29-1-0, 28=29-1-0, 25 30=29-1-0, 31=29-1-0, 32 33=29-1-0, 31=29-1-0, 35 Max Horiz 35=-244 (LC 12) Max Uplift 20=-51 (LC 11), 21=-131 (22=-34 (LC 15), 23=-62 (L 24=-54 (LC 15), 25=-62 (L 26=-46 (LC 15), 29=-47 (L 30=-62 (LC 14), 31=-54 (L			1-0, WEBS 1-0, WEBS 1-0 15), 5), 5), 4), NOTES	21-22=-96/124, 2 10-28=-275/134, 7-30=-177/85, 6- 4-33=-112/62, 3- 2-35=-252/202, 1 13-25=-177/85, 1 15-23=-128/83, 1 17-21=-171/137,	9-29=-21 31=-124/7 34=-183/ ⁷ 1-26=-21 4-24=-12 6-22=-11 18-20=-1	0/71, 78, 5-32=-128, 145, 0/69, 4/78, 2/62, 84/134	/84,	on 3-0	the botto 6-00 tall	om cho by 2-0	rd in all areas wh	a live load of 20.0psf ere a rectangle between the bottom
	32=-62 (L 34=-142) 20=159 (l 22=148 (l 26=249 (l 29=249 (l 31=162 (l 33=148 (l 35=191 (l) (h) Maximum Con	*/, this desi 10) this desi 10) Wind: AS 20) Wasd=10 21), Cat. II; E 25), zone and 20), 3-1-12 tc 23), zone; ca and right and right	SCE 7-16; Vult=130m)3mph; TCDL=6.0psf ixp B; Enclosed; MW J C-C Corner(3E) 0-1 0 11-6-8, Corner(3R) 6-8 to 25-11-4, Corner ntilever left and right t exposed;C-C for me							SEAL 036322		
FORCES (Ib) - Maximum Compression/Maximum Tension			only. Fo	=1.60 esigned for wind load r studs exposed to w idard Industry Gable It qualified building d	ind (norm End Deta	al to the face) ils as applicat), ble,			and the second s		EEP. KINN ILBERTIN er 5,2023

Continued on page 2 Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Scale = 1:66

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITTER REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTeR% connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPH Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) with the Section of the prevent collapse and truss contervers building Company the prevent on the prevent of the prevent for the Section of the prevent of the p and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Hayes Rd A	
24050164	D01	Common Supported Gable	1	1	Job Reference (optional)	162356818

- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 94 lb uplift at joint 35, 51 lb uplift at joint 20, 47 lb uplift at joint 29, 62 lb uplift at joint 30, 54 lb uplift at joint 31, 62 lb uplift at joint 32, 30 lb uplift at joint 33, 142 lb uplift at joint 34, 46 lb uplift at joint 26, 62 lb uplift at joint 25, 54 lb uplift at joint 24, 62 lb uplift at joint 23, 34 lb uplift at joint 22 and 131 lb uplift at joint 21.
- 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Dec 04 15:59:54 ID:biJfAdUaJDra9tY1hYXPDCzHsEQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Hayes Rd A	
24050164	D02	Common	6	1	Job Reference (optional)	162356819

Loading

TCLL (roof)

Snow (Pf)

LUMBER

TCDL

BCLL

BCDL

WEBS

WEBS

FORCES

TOP CHORD

BOT CHORD

this design.

grip DOL=1.60

WEBS

NOTES

2)

BRACING

TOP CHORD

BOT CHORD

REACTIONS (size)

bracing.

Tension

1 Row at midpt

Max Horiz 12=244 (LC 13)

1-2=-581/144, 2-4=-1580/252,

4-6=-1580/252, 6-7=-581/144,

1-12=-458/138, 7-8=-458/138

1) Unbalanced roof live loads have been considered for

Wind: ASCE 7-16; Vult=130mph (3-second gust)

Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior

zone and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior (1)

3-1-12 to 11-6-8, Exterior(2R) 11-6-8 to 17-6-8, Interior (1) 17-6-8 to 25-11-4. Exterior(2E) 25-11-4 to 28-11-4 zone: cantilever left and right exposed : end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate

Structural wood sheathing directly applied or

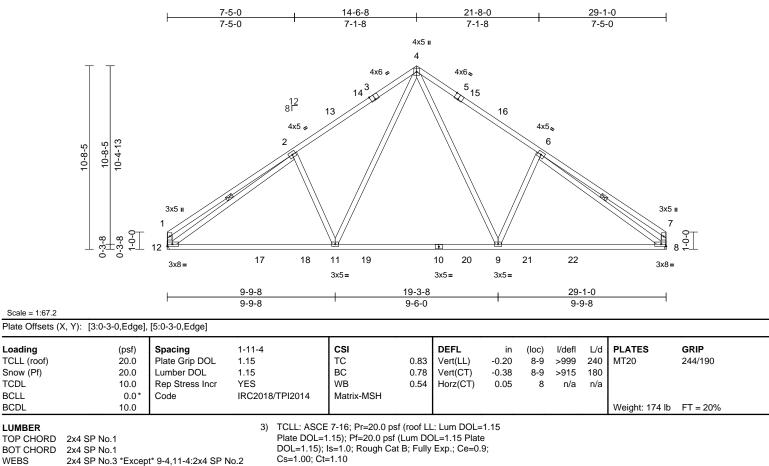
2-12, 6-8

8= Mechanical, 12= Mechanical

2-2-0 oc purlins, except end verticals.

Rigid ceiling directly applied or 10-0-0 oc

Max Uplift 8=-93 (LC 15), 12=-93 (LC 14)


(lb) - Maximum Compression/Maximum

Max Grav 8=1312 (LC 24), 12=1312 (LC 23)

11-12=-168/1461, 9-11=0/988, 8-9=-44/1307

4-9=-148/797, 6-9=-380/277, 4-11=-148/797, 2-11=-380/277, 2-12=-1221/64, 6-8=-1220/63 Run: 8.63 S. Nov. 1.2023 Print: 8.630 S.Nov. 1.2023 MiTek Industries. Inc. Mon. Dec. 04 15:59:55 ID:bukNTBsaKYQpX29DCL7RfRzHsFD-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

- 4) Unbalanced snow loads have been considered for this design.
- This truss has been designed for a 10.0 psf bottom 5)
- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 6) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. Refer to girder(s) for truss to truss connections.
 - 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 93 lb uplift at joint 12 and 93 lb uplift at joint 8.
 - This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Hayes Rd A				
24050164	D03	Common	1	1	Job Reference (optional)	162356820			

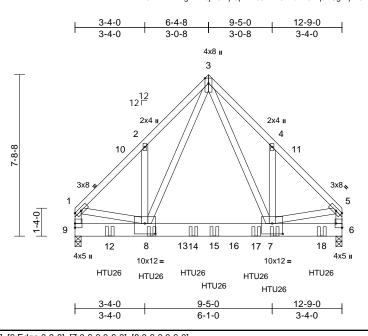
Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Dec 04 15:59:55 ID:34ImhWtC5sYg9BkQm2egCfzHsFC-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Plate Offsets (X, Y):	[2:0-0-0,0-0-0],	[3:0-3-0,Edge],	[5:0-3-0,Edge]
-----------------------	------------------	-----------------	----------------

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MSH	0.83 0.99 0.50	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.29 -0.50 0.05	(loc) 8-9 8-9 8	l/defl >999 >687 n/a	L/d 240 180 n/a		GRIP 244/190 FT = 20%
	2x4 SP No.2 2x4 SP No.3 *Excep Structural wood shei 2-2-0 oc purlins, exi Rigid ceiling directly bracing. 1 Row at midpt (size) 8= Mecha Max Horiz 13=-244 (Max Uplift 8=-93 (LC Max Grav 8=1269 (L	athing directly applie cept end verticals. applied or 2-2-0 oc 2-13, 14-15, 6-8 nical, 13= Mechanic LC 10) 15), 13=-93 (LC 14 .C 24), 13=1269 (LC	ed or cal ³⁾	Vasd=103m Cat. II; Exp B zone and C- 3-1-12 to 11- (1) 17-6-8 to zone; cantile and right exp MWFRS for grip DOL=1. TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Cts	7-16; Pr=20.0 ps .15); Pf=20.0 psf ls=1.0; Rough Ca	BCDL=6 RS (env -12 to 3- 11-6-8 to 2E) 25- exposed nbers ar Lumber 1 f (roof LI (Lum DC B; Fully	.0psf; h=25ft elope) exterior 1-12, Interior 0 17-6-8, Inter 1-4 to 28-11 ; end vertical d forces & DOL=1.60 pla :: Lum DOL= DL=1.15 Plate Exp.; Ce=0.	or (1) -4 Heft ate 1.15 9;					
FORCES	(Ib) - Maximum Com Tension 1-2=-598/142, 2-4=- 4-6=-1501/252, 6-7=	1501/252,	5) 6)	chord live loa	as been designed ad nonconcurrent has been designed	with any	other live loa						
BOT CHORD	,		969,	3-06-00 tall b	n chord in all area by 2-00-00 wide w	ill fit betv	veen the bott						
WEBS	8-9=-45/1244 4-15=-149/750, 9-15 6-9=-380/276, 12-14 4-14=-149/750, 2-12 2-13=-1124/67, 14-1 6-8=-1124/66, 11-16	=-150/734, =-380/276, 6=-31/4, 15-16=-31,	7) 8) /4, 9)	Refer to gird Provide mec bearing plate 13 and 93 lb This truss is	ny other members er(s) for truss to tr hanical connectio capable of withs uplift at joint 8. designed in accor	uss coni n (by oth anding § dance w	nections. ers) of truss 3 lb uplift at ith the 2018	to joint		4	ALL IN	ORTH CA	ROLIN
NOTES 1) Unbalance this design	ed roof live loads have n.	been considered fo		International	Residential Code	sections	R502.11.1 a	and				SEA 0363	• –

Scale = 1:74.5

- en cons this design.
- LOAD CASE(S) Standard



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Hayes Rd A	
24050164	E01	Common Girder	1	2	Job Reference (optional)	162356821

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Dec 04 15:59:58 ID:8YIhZz4RzgWF2ejm6WpCp7zHs5v-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

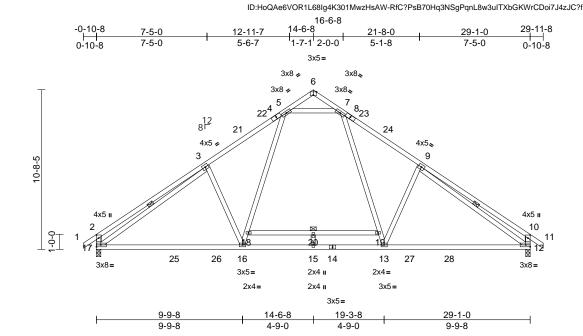
Page: 1

Scale = 1:55

Plate Offsets (X, Y): [1:0-3-7,Edge],	[5:0-3-7,Edge], [6:Ed	dge,0-3-8]	, [7:0-6-0,0-6-0)], [8:0-6-0,0-6-0]								
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 NO IRC2018	3/TPI2014	CSI TC BC WB Matrix-MSH	0.52 0.40 0.77	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.08 -0.13 0.00	(loc) 7-8 7-8 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 221 lb	GRIP 244/190 FT = 20%
				Linholonood	roof live loads how	n haan				noontro	todlo	, j	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x8 SP 2400F 2.0E 2x4 SP No.3 Structural wood she 5-6-9 oc purlins, ex Rigid ceiling directly bracing.	applied or 10-0-0 oc	4) d or	this design. Wind: ASCE Vasd=103mp Cat. II; Exp E zone; cantile and right exp DOL=1.60 TCLL: ASCE Plate DOL=1	roof live loads hav 7-16; Vult=130mr bh; TCDL=6.0psf; 3; Enclosed; MWF ver left and right e bosed; Lumber DC 57-16; Pr=20.0 psf .15); Pf=20.0 psf	oh (3-sed BCDL=6 RS (env exposed DL=1.60 f (roof Ll (Lum DC	cond gust) 0.0psf; h=25ft elope) exterio ; end vertical blate grip .: Lum DOL= DL=1.15 Plate	; or left 1.15			-1106	(B), 8=-1106 (B),	12=-1106 (B), =-1106 (B), 18=-1107
	Max Horiz 9=174 (LC Max Uplift 6=-422 (L Max Grav 6=5257 (L	C 11) .C 12), 9=-380 (LC 13		 DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 Unbalanced snow loads have been considered for this design. 									
FORCES	(lb) - Maximum Com	pression/Maximum	7)	 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 9) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 9 and 6. This connection is for uplift only 									
TOP CHORD	3-4=-4971/558, 4-5= 1-9=-4384/363, 5-6=	-5047/436,	8)										
WEBS	3-7=-446/3836, 4-7= 3-8=-411/3413, 2-8= 1-8=-224/3257, 5-7=	=-220/256, =-226/253,											Della
 (0.131"x3" Top chord oc. Bottom ch staggered Web conn Except me member 2 2) All loads except if n CASE(S) : provided t 	to be connected toge) nails as follows: s connected as follows ords connected as follows at 0-7-0 oc. etced as follows: 2x4 - ember 4-7 2x4 - 1 row at 0-6-0 are considered equally toted as front (F) or ba- section. Ply to ply conr o distribute only loads nerwise indicated.	s: 2x4 - 1 row at 0-9-(ows: 2x8 - 2 rows 1 row at 0-9-0 oc, at 0-6-0 oc, Except oc. applied to all plies, ck (B) face in the LO, nections have been) 11 12 LC) This truss is International R802.10.2 a) Use Simpsoi 11-10dx1 1/2 spaced at 2- end to 11-9- chord.) Fill all nail ho PAD CASE(S) Dead + Sno Increase=1 Uniform Lo	ow (balanced): Lui .15	dance w sections ndard AN 26 (20-10 Girder) ng at 1-7 (es) to ba is in cor mber Inc	R502.11.1 a ISI/TPI 1. Od Girder, or equivalent -14 from the ack face of bo ntact with lum	left ottom ber.		L'anna anna anna anna anna anna anna ann		SEA 0363	22 ER &

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932


December 5,2023

Job	Truss	Truss Type	Qty	Ply	Hayes Rd A	
24050164	D04	Common	6	1	Job Reference (optional)	162356822

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Dec 04 15:59:57

Page: 1

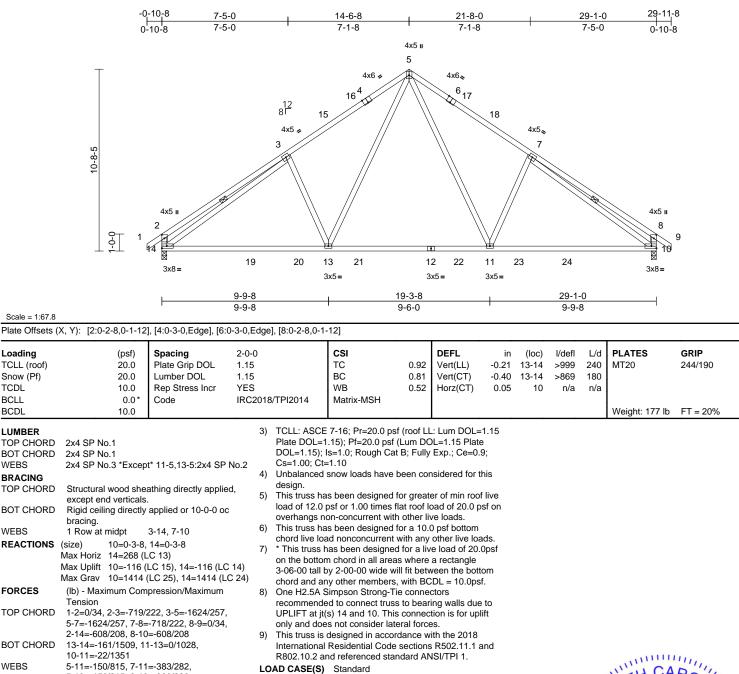
Carter Components (Sanford, NC), Sanford, NC - 27332,

Plate Offsets (X, Y): [2:0-2-8,0-1-12], [6:0-2-8,Edge], [10:0-2-8,0-1-12]

Scale = 1:77.3

	(A, T). [2.0-2-0,0-1-12	.], [6.0-2-6,⊏uge], [10.	0-2-0,0-1-	-12]	-							-	
Loading TCLL (roof) Snow (Pf)	(psf) 20.0 20.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15		CSI TC BC	0.85 0.87	DEFL Vert(LL) Vert(CT)	in -0.37 -0.56	(loc) 16-17 16-17	l/defl >928 >622	L/d 240 180	PLATES MT20	GRIP 244/190
TCDL	10.0	Rep Stress Incr	YES		WB	0.44	Horz(CT)	0.05	12	n/a	n/a		
BCLL	0.0*	Code	IRC2018	3/TPI2014	Matrix-MSH								
BCDL	10.0	1							-			Weight: 191 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.1 2x4 SP No.3 Structural wood she 2-10-4 oc purlins, e Rigid ceiling directly bracing. 1 Row at midpt	applied or 10-0-0 oc 3-17, 9-12, 18-19 , 17=0-3-8 _C 13) (LC 15), 17=-116 (LC	3) 14)	Vasd=103mj Cat. II; Exp E zone and C- 2-1-8 to 11-6 17-6-8 to 2-6 cantilever lef right expose for reactions DOL=1.60 TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct=	7-16; Vult=130mp bh; TCDL=6.0psf; E 3; Enclosed; MWFF C Exterior(2E) -0-1 5-8, Exterior(2R) 11 11-8, Exterior(2R) it and right exposed d;C-C for members shown; Lumber D(5-7-16; Pr=20.0 psf 1.15); Pf=20.0 psf 1.15); Pf=20.0 psf (1s=1.0; Rough Cat =1.10 snow loads have b	3CDL=6 RS (env 0-8 to 2 -6-8 to 26-11-8 d; end v and fo DL=1.6 (roof LI Lum DC B; Fully	6.0psf; h=25ft elope) exterio -1-8, Interior 17-6-8, Interior to 29-11-8 z vertical left an rcces & MWFF 0 plate grip .: Lum DOL= DL=1.15 Plate Exp.; Ce=0.5	br (1) or (1) cone; nd RS 1.15 9;					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	5)	design.									
TOP CHORD	1-2=0/34, 2-3=-778/ 5-6=-133/70, 6-7=-1	255, 3-5=-1523/234, 33/70, 7-9=-1522/234 11=0/34, 2-17=-647/23		load of 12.0 overhangs n This truss ha	as been designed for psf or 1.00 times fla on-concurrent with as been designed for ad nonconcurrent w	at roof l other li or a 10.	bad of 20.0 p ve loads. 0 psf bottom	sf on					
BOT CHORD	16-17=-152/1430, 1 13-15=-3/1105, 12-1	,	7)	* This truss h	nas been designed	for a liv	e load of 20.0						11111
WEBS 7-19=-123/69, 13-19=-124/679, 9-13=-348/275, 16-18=-125/682, 5-18=-123/691, 3-16=-348/275, 3-17=-1040/5, 9-12=-1041/5, 5-7=-988/244, 18-20=-21/3, 19-20=-21/3, 15-20=0/18 NOTES 1) Unbalanced roof live loads have been considered for				 on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 8) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 17 and 12. This connection is for uplift only and does not consider lateral forces. 9) The trues is designed in accordance with the 2018 11) The trues is designed in accordance with the 2018 12) The trues is designed in accordance with the 2018 								HOLIN DIVERSION	
 Unbalance this design 		9)	9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.										

LOAD CASE(S) Standard



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	Hayes Rd A	
24050164	D05	Common	1	1	Job Reference (optional)	162356823

Run: 8.63 S. Nov. 1.2023 Print: 8.630 S.Nov. 1.2023 MiTek Industries. Inc. Mon. Dec. 04 15:59:57 ID:cxjo3tT3kIDL2yu9B0wUnazHs6h-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

5-11=-150/815, 7-11=-383/282, WEBS 5-13=-150/815, 3-13=-383/282, 3-14=-1174/25, 7-10=-1173/25

NOTES

Loading

TCLL (roof)

Snow (Pf)

LUMBER

TCDL

BCLL

BCDL

WEBS

WEBS

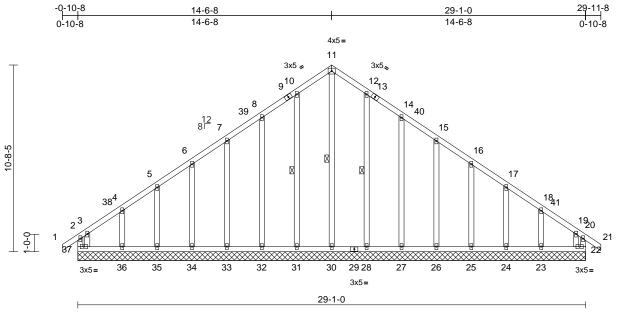
FORCES

BRACING

1) Unbalanced roof live loads have been considered for this design.

Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 11-6-8, Exterior(2R) 11-6-8 to 17-6-8, Interior (1) 17-6-8 to 26-11-8, Exterior(2E) 26-11-8 to 29-11-8 zone; cantilever left and right exposed : end vertical left and right exposed:C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

TH CAR SEAL 036322 G (1111111) December 5,2023



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Hayes Rd A	
24050164	D06	Common Supported Gable	1	1	Job Reference (optional)	162356824

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Dec 04 15:59:58 ID:cCFDdhgkkXMwaZhQh4jT_AzHs6Q-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

0					29-1-0							
Scale = 1:66		1				·						
Loading TCLL (roof) Snow (Pf) TCDL	(psf) 20.0 20.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	1-11-4 1.15 1.15 YES	CSI TC BC WB	0.14 0.07 0.20	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01		c) l/defl - n/a - n/a 22 n/a		PLATES MT20	GRIP 244/190
BCLL BCDL	0.0* 10.0	Code	IRC2018/TPI2014	Matrix-MR	0.20	1012(01)	0.01	2	.z 11/a	Π/a	Weight: 216 II	o FT = 20%
	Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. 1 Row at midpt (size) 22=29-1-(25=29-1-(25=29-1-(35=29-1-(35=29-1-(35=29-1-(35=29-1-(35=29-1-(24=35) (L 24=-35) (L 24=-36) (L 34=-62 (L 34=-62 (L 24=151) (L 24=151 (L 24=151) (L 24=151) (L 24=152) (L 24=151) (L 24=152) (L 24	applied or 6-0-0 oc 11-30, 10-31, 12-28 0, 23=29-1-0, 24=29-1 0, 26=29-1-0, 27=29-1 0, 30=29-1-0, 31=29-1 0, 33=29-1-0, 34=29-1 0, 36=29-1-0, 37=29-1 C 13) C 11), 23=-128 (LC 15) C 15), 27=-62 (LC 15) C 15), 27=-62 (LC 15) C 15), 31=-47 (LC 14) C 14), 33=-54 (LC 14) C 14), 35=-31 (LC 14) (LC 14), 35=-31 (LC 14) (LC 14), 35=-31 (LC 22) C 22), 25=168 (LC 22) C 22), 27=215 (LC 22) C 22), 30=261 (LC 15) C 22), 30=261 (LC 15) C 22), 30=261 (LC 25) C 22), 30=261 (LC 25) C 22), 36=240 (LC 25) C 21), 36=240 (LC 25) C 25)	BOT CHORD -0, -0, -0, -0, -0, -0, -0, -0,	3-4=-188/171, 4 6-7=-117/173, 7 10-11=-199/308, 12-14=-172/261, 15-16=-108/152, 17-18=-94/82, 14 19-20=-27/55, 20 36-37=-105/131, 32-33=-105/131, 32-33=-105/131, 32-33=-105/131, 27-28=-105/131, 23-24=-105/131, 11-30=-278/127, 8-32=-177/85, 7 5-35=-115/64, 4 3-37=-255/212, 14-27=-177/85, 7 5-35=-115/64, 4- 3-37=-255/212, 14-27=-177/85, 16-25=-127/83, 18-23=-162/135, ad roof live loads h 25-716; Vult=130r mph; TCDL=6.0ps 0 B; Enclosed; MW, C-C Corner(3E) -0 1-6-8, Corner(3R) 8 to 26-11-8, Corn ilever left and right ixposed; C-C for mp or reactions shown	-5=-142/12 -5=-142/12 -5=-142/12 -5=-142/12 -5=-142/12 -5=-142/12 -14-15=-1 -14-15=-1 -14-15=-1 -1329 -21-0/33 -21-0/33 -33-34=-1 -22-23=-2	28, 5-6=-135/ 5, 8-10=-172 99/308, 38/204, 2/114, /113, , 20-22=-141, 05/131, 05/131, 05/131, 05/131, 05/131, 05/131, 05/131, 05/131, 11/71, 78, 6-34=-128 (43, 11/69, 4/78, 5/64, 88/141 considered for 	2/261, /144 8/84, or ; por (2N) or 8 left uss ;), ble,	F E C C C C C C C C C C C C C C C C C C	Plate DOL- 20L=1.15; CS=1.00; C Juhbalance Jesign. This truss I oad of 12. overhangs All plates a Gable requ Fruss to be praced aga Gable stud Fhis truss I shord live I ' This truss on the bott B-06-00 tal shord and	=1.15); ; Is=1.1 d snow has bee 0 psf or non-cc wire 2x4 wires co e fully s sianst lati s space ada no bas bee o da no s has b s poc anon-cc tries co s for a s poc s has b s poc anon-cc tries co s poc s poc	Pf=20.0 psf (Lu 0; Rough Cat B; 1 loads have been en designed for r 1.00 times flat movement with of MT20 unless of intinuous bottom heathed from on teral movement ed at 2-0-0 oc. en designed for nconcurrent with een designed for nconcurrent with een designed for monocurrent with een designed for monocurent wit	herwise indicated.

Continued on page 2

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITTER REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTeR% connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPH Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) with the Section of the prevent collapse and truss contervers building Company the prevent on the prevent of the prevent for the Section of the prevent of the p and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

December 5,2023

Job	Truss	Truss Type	Qty	Ply	Hayes Rd A	
24050164	D06	Common Supported Gable	1	1	Job Reference (optional)	162356824

- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 93 lb uplift at joint 37, 50 lb uplift at joint 22, 47 lb uplift at joint 31, 62 lb uplift at joint 32, 54 lb uplift at joint 33, 62 lb uplift at joint 34, 31 lb uplift at joint 35, 140 lb uplift at joint 36, 46 lb uplift at joint 28, 62 lb uplift at joint 27, 54 lb uplift at joint 26, 61 lb uplift at joint 25, 35 lb uplift at joint 24 and 128 lb uplift at joint 23.
- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Dec 04 15:59:58 ID:cCFDdhgkkXMwaZhQh4jT_AzHs6Q-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Hayes Rd A	
24050164	C04	Common Girder	1	2	Job Reference (optional)	162356825

Scale = 1:38.9

Loading

TCLL (roof)

10.0

Bottom chords connected as follows: 2x6 - 2 rows

Web connected as follows: 2x4 - 1 row at 0-9-0 oc.

All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD

CASE(S) section. Ply to ply connections have been

provided to distribute only loads noted as (F) or (B),

Snow (Pf)

LUMBER

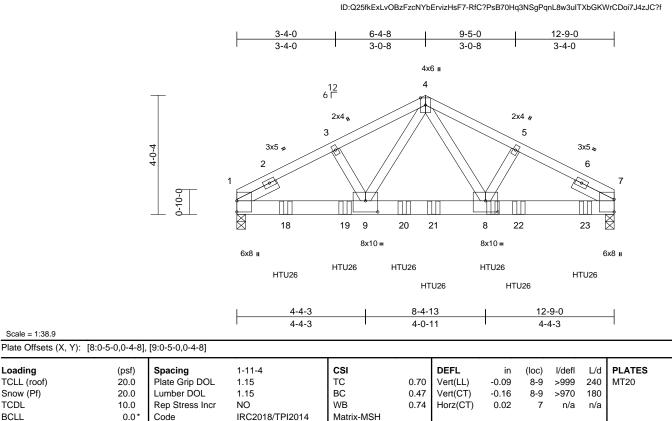
oc.

2)

staggered at 0-7-0 oc.

unless otherwise indicated.

TOP CHORD 2x4 SP No.2


TCDL

BCLL

BCDL

Run: 8.63 S. Nov. 1 2023 Print: 8.630 S.Nov. 1 2023 MiTek Industries. Inc. Mon. Dec. 04 15:59:54

Page: 1

Unbalanced roof live loads have been considered for

Weight: 146 lb FT = 20%

GRIP

244/190

Concentrated Loads (lb) Vert: 8=-1106 (F), 18=-1106 (F), 19=-1106 (F),

20=-1106 (F), 21=-1106 (F), 22=-1106 (F), 23=-1106 (F)

BOT CHORD WEBS SLIDER	2x6 SP 2400F 2.0E 2x4 SP No.3 Left 2x4 SP No.3 1-6-0, Right 2x4 SP No.3 1-6-0	4)	Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left	20 (F
BRACING TOP CHORD BOT CHORD	Structural wood sheathing directly applied or 3-8-8 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.	5)	and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9;	
REACTIONS	(size) 1=0-3-8, 7=0-3-8 Max Horiz 1=49 (LC 16) Max Uplift 1=-390 (LC 12), 7=-435 (LC 13) Max Grav 1=4681 (LC 21), 7=5198 (LC 22)	6) 7)	Cs=1.00; Ct=1.10 Unbalanced snow loads have been considered for this design. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.	
FORCES	(lb) - Maximum Compression/Maximum Tension	8)	* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle	
TOP CHORD			3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.	
BOT CHORD		9)	One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to	
WEBS	4-8=-322/3636, 5-8=-44/312, 4-9=-276/3088, 3-9=-43/304		UPLIFT at jt(s) 1 and 7. This connection is for uplift only and does not consider lateral forces.	
(0.131"x3'	s to be connected together with 10d ') nails as follows: 's connected as follows: 2x4 - 1 row at 0-9-0	,	This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. Use Simpson Strong-Tie HTU26 (20-10d Girder,	

3)

this design.

Simpson Strong-Tie HTU26 (20-10d Girde 11-10dx1 1/2 Truss, Single Ply Girder) or equivalent spaced at 2-3-0 oc max. starting at 1-7-14 from the left

- end to 11-9-6 to connect truss(es) to front face of bottom chord. 12) Fill all nail holes where hanger is in contact with lumber.
- LOAD CASE(S) Standard
- Dead + Snow (balanced): Lumber Increase=1.15, Plate 1) Increase=1.15 Uniform Loads (lb/ft)
 - Vert: 1-4=-58, 4-7=-58, 10-14=-19

VIIIIIIIIII SEAL 036322 G (1111111) December 5,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall a fuss system. Derive use, the building designer host verify the applications of design had been and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Hayes Rd A	
24050164	PB04A	Piggyback	10	1	I623 Job Reference (optional)	56826

-0-8-12

0-8-12

2

Ø

2x4 =

1-5-11

1-7-5

1-7-14

1-7-14

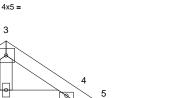
12 8 ∟

1

6

3-3-12

2x4 🛛


Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Mon Dec 04 16:00:00 ID:xmQZFe639BUIUMr60cUgc9zHsGC-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3-3-12

1-7-14

Page: 1

8

2x4 =

4-0-8

0-8-12

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Scale = 1:27.7

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MP	0.03 0.04 0.01	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 15 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 Structural wood she 4-10-0 oc purlins. Rigid ceiling directly bracing. (size) 2=3-3-12, 7=3-3-12, Max Horiz 2=33 (LC Max Uplift 2=-21 (LC (LC 14), 7 15) Max Grav 2=139 (LC	C 14), 4=-25 (LC 15), 7=-21 (LC 14), 11=-2! C 21), 4=139 (LC 22) C 1), 7=139 (LC 21),	 Plate DOL: DOL=1.15; Cs=1.00; C Unbalance design. This truss l load of 12. overhangs Gable requ Gable stud This truss l chord live l This truss l chord live l * This truss l on the bott 3-06-00 tal 	E 7-16; Pr=20.0 p =1.15); Pf=20.0 ps ; Is=1.0; Rough C 2t=1.10 d snow loads have has been designed 0 psf or 1.00 times non-concurrent w iires continuous bo s spaced at 4-0-0 has been designed oad nonconcurrents has been designed om chord in all are l by 2-00-00 wide any on other member	If (Lum DC at B; Fully be been cou d for great flat roof I ith other li bttom chou oc. d for a 10. t with any ed for a liv as where will fit betw	DL=1.15 Plate Exp.; Ce=0.5 nsidered for the er of min roof oad of 20.0 ps ve loads. d bearing. 0 psf bottom other live loa e load of 20.0 a rectangle); his live sf on ds. Dpsf					
this desig 2) Wind: AS Vasd=103 Cat. II; Ex zone and exposed ; members Lumber D 3) Truss des only. For see Stanc	2-6=-5/35, 4-6=-5/35 3-6=-52/9 ed roof live loads have	t, 3-4=-43/41, 4-5=0, been considered for (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior; cantilever left and ri ght exposed;C-C for for reactions shown; $D_{L}=1.60$ n the plane of the trus (normal to the face), d Details as applicab	LOAD CASE(to see Stand Detail for C consult qua LOAD CASE(ght	s designed in acco al Residential Cod and referenced st ard Industry Piggy connection to base alified building des c) Standard	le sections andard AN back Trus e truss as	s R502.11.1 a NSI/TPI 1. s Connection					SEA 0363	• -

only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

A. GILDIN December 5,2023

Job	Truss	Truss Type	Qty	Ply	Hayes Rd A	
24050164	PB04	Piggyback	1	1	Job Reference (optional)	162356827

-0-8-12

0-8-12

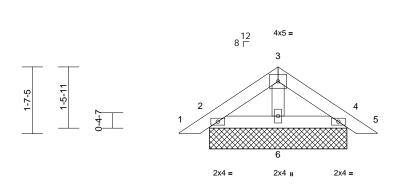
1-7-14

1-7-14

3-3-12

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Mon Dec 04 15:59:59 ID: pG8fWBxvDBrbQMLcINIdaQzHsGP-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?ff


3-3-12

1-7-14

4-0-8

0-8-12

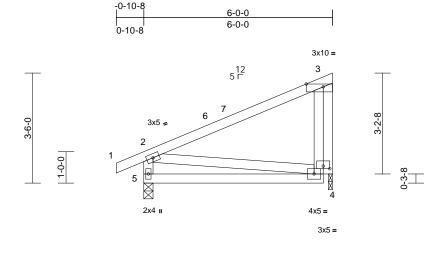
Page: 1

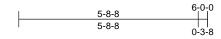
Scale = 1:27.7

Loading (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0' BCDL 10.0	Plate Grip DOL 1.7 Lumber DOL 1.7 Rep Stress Incr YE	15	CSI TC BC WB Matrix-MP	0.03 0.04 0.01	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 15 lb	GRIP 244/190 FT = 20%
4-10-0 oc purlins. BOT CHORD Rigid ceiling direct bracing. REACTIONS (size) 2=3-3-1 (size) 2=3-3-1 Max Horiz 2=32 (L Max Uplift 2=-20 (((LC 14)) 15) Max Grav 2=135 (6=115 (neathing directly applied or ly applied or 10-0-0 oc 2, 4=3-3-12, 6=3-3-12, 2, 11=3-3-12 C 13), 7=32 (LC 13) C 14), 4=-25 (LC 15), 6=-1 , 7=-20 (LC 14), 11=-25 (LC LC 21), 4=135 (LC 22), LC 21), 7=135 (LC 21), (LC 22)	 Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced design. This truss ha load of 12.0 overhangs n Gable requirs Gable requirs Gable studs This truss ha chord live loa * This truss r on the bottor 3-06-00 tall b 	7-16; Pr=20.0 psf (15); Pf=20.0 psf (Is=1.0; Rough Cat =1.10 snow loads have b as been designed fipsf or 1.00 times fl on-concurrent with es continuous bott spaced at 2-0-00 of ad nonconcurrent v nas been designed n chord in all areas by 2-00-00 wide wii by other members.	Lum DC B; Fully been cor or greate at roof lo other liv om chor c. or a 10.0 with any for a liv s where Il fit betv	L=1.15 Plate Exp.; Ce=0.9 asidered for the or of min roof or do 20.0 pr e loads. d bearing. D psf bottom other live load e load of 20.0 a rectangle	e); live sf on ds. Dpsf					
Tension	ve been considered for bh (3-second gust) BCDL=6.0psf; h=25ft; RS (envelope) exterior le; cantilever left and right right exposed;C-C for S for reactions shown; VDL=1.60	International R802.10.2 au 13) See Standar Detail for Co	designed in accord Residential Code nd referenced stan d Industry Piggyba nnection to base tr fied building design Standard	sections dard AN ick Trus uss as a	R502.11.1 a ISI/TPI 1. s Connection			Contraction of the second seco		SEA 0363	• • •

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

A. GILB A. GILD December 5,2023


C


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Hayes Rd A	
24050164	B01	Monopitch	7	1	Job Reference (optional)	162356828

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Dec 04 15:59:52 ID:a495mkFbKt?2wClQj7iU5hzHsG0-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

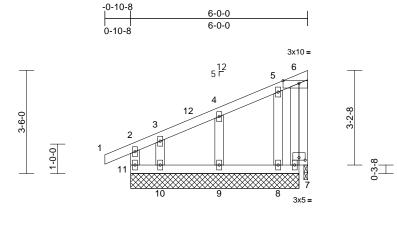
Scale = 1:36.7

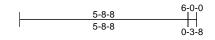
Plate Offsets (X, Y): [3:0-6-8,Edge], [4:0-2-8,0-1-0]

	(⊼, 1). [3.0-0-0,∟uge],	, [4.0-2-0,0-1-0]											
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2017	8/TPI2014	CSI TC BC WB Matrix-MP	0.91 0.39 0.04	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.06 -0.11 0.00	(loc) 4-5 4-5 4	l/defl >999 >581 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 37 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 OTHERS 2x4 SP No.3 OTHERS 2x4 SP No.3 BRACING TOP CHORD Structural wood sheathing directly applied or 2-2-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (size) 4=0-1-8, 5=0-3-8 Max Horiz 5=125 (LC 13) Max Uplift 4=-48 (LC 14), 5=-42 (LC 14) Max Grav 4=307 (LC 21), 5=380 (LC 21) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/24, 2-3=-89/77, 3-4=-251/135,			2 7) 8)) 9)	load of 12.0 overhangs n This truss ha chord live loa * This truss l on the bottor 3-06-00 tall b chord and at Bearing at jo using ANSI/ designer sho Provide meo bearing plate One H2.5A S recommende UPLIFT at jtu and does no	as been designed fc psf or 1.00 times fla on-concurrent with as been designed fc ad nonconcurrent w has been designed m chord in all areas by 2-00-00 wide will y other members. int(s) 4 considers p TPI 1 angle to grain build verify capacity hanical connection at joint(s) 4. Simpson Strong-Tie ad to connect truss (s) 5 and 4. This co t consider lateral fo	at roof le other life or a 10. vith any for a live where l fit betw oarallel i formul of bear (by oth e conne to bear nnectio prces.	bad of 20.0 p ve loads. O psf bottom other live load e load of 20. a rectangle veen the bott to grain value a. Building ing surface. ers) of truss ctors ing walls due n is for uplift	ads. Opsf com e to					
2-5=-324/181 BOT CHORD 4-5=-122/0 WEBS 2-4=-12/130 NOTES 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 2-8-8, Exterior(2E) 2-8-8 to 5-8-8 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS			r 1) d	ÍInternational	designed in accord Residential Code s nd referenced stand Standard	sections	s R502.11.1 a	and		G		OR TH CA	ROUT
	ns shown; Lumber DC	-									0363	• –	

- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.

SEAL 036322 A. GILBER December 5,2023


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)


ENGINEERING BY A MITCH A HILIDA

Job	Truss	Truss Type	Qty	Ply	Hayes Rd A	
24050164	B02	Monopitch Supported Gable	1	1	Job Reference (optional)	162356829

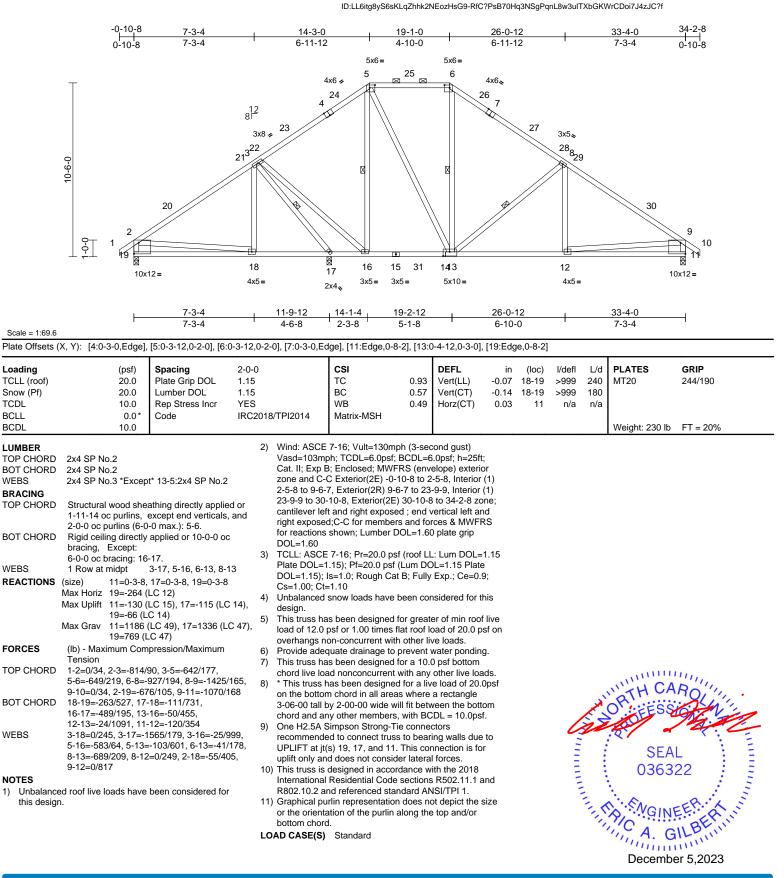
Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Dec 04 15:59:52 ID:iaR0VBPIGteC_CFwzMRX7QzHsFp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:39.1

	X, 1). [0.0 0 0,E0	dge], [7:0-2-8,0-1-0]			-	· · ·						-	
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(ps 20. 20. 10. 0. 10.	OPlate Grip DOL.0Lumber DOL.0Rep Stress Incr.0*Code	1-11-4 1.15 1.15 YES IRC2018/TPI20	CSI TC BC WB 4 Matrix-MR	0.22 0.09 0.05	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 10-11 9-10 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 37 lb	GRIP 244/190 FT = 20%	
	6-0-0 oc purlins Rigid ceiling dire bracing. (size) 7=5-8 10=5 Max Horiz 11=1 Max Uplift 7=-3 9=-37 Max Grav 7=7 ((LC 2 (LC 2	7 (LC 13), 8=-10 (LC 14) 7 (LC 14), 10=-92 (LC 11) LC 21), 8=169 (LC 21), 21), 10=136 (LC 21), 11=	ed or 9=238 9=238 e142 9 0 0 0 0 0 0 0 0 0 0 0 0 0	uss has been designe 12.0 psf or 1.00 times ngs non-concurrent w es are 2x4 MT20 unle to be fully sheathed fro against lateral mover studs spaced at 2-0-0 uss has been designe ive load nonconcurrer	vind (norm End Deta designer a sesigner d sesigner a sesigner a sesigner a the full the full e been cou- d for great f flat roof I ith other li ses otherwi- ses otherwi- om one fac nent (i.e. c oc. d for a 10. d for a 10. nt with any	al to the face ils as applicas s per ANSI/T :: Lum DOL= DL=1.15 Plate Exp.; Ce=0.1 hsidered for t er of min rool bad of 20.0 p ve loads. se indicated. te or securely liagonal web) D psf bottom other live loa), ble, PI 1. 1.15 9; 9; f live sf on ,						
FORCES	Tension 2-11=-109/31, 1	-2=0/23, 2-3=-130/18, =-55/31, 5-6=-53/66,	on the 3-06-0 chord	truss has been design bottom chord in all are 0 tall by 2-00-00 wide and any other membe	eas where will fit bety	a rectangle	•				OR FESS	ROUL	
BOT CHORD	10-11=-50/57, 9 7-8=-50/57	9-10=-50/57, 8-9=-50/57,								- IL	ORIFESS	NY ST	
Vasd=103 Cat. II; Ex zone and 2-1-8 to 2- cantilever right expos	CE 7-16; Vult=130 mph; TCDL=6.0ps p B; Enclosed; MV C-C Corner(3E) -C 8-8, Corner(3E) 2 left and right expo sed;C-C for memb ns shown; Lumbe	I-10=-111/171, 5-8=-134 mph (3-second gust) sf; BCDL=6.0psf; h=25ft; VFRS (envelope) exteric)-10-8 to 2-1-8, Exterior(-8-8 to 5-8-8 zone; used ; end vertical left an vers and forces & MWFF r DOL=1.60 plate grip	12) This tr Interna ; R802. or LOAD CA 2N) d	uss is designed in acc tional Residential Coo 0.2 and referenced st SE(S) Standard	le sections	s R502.11.1 a	and		G		SEA 0363	EER A III	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


818 Soundside Road Edenton, NC 27932

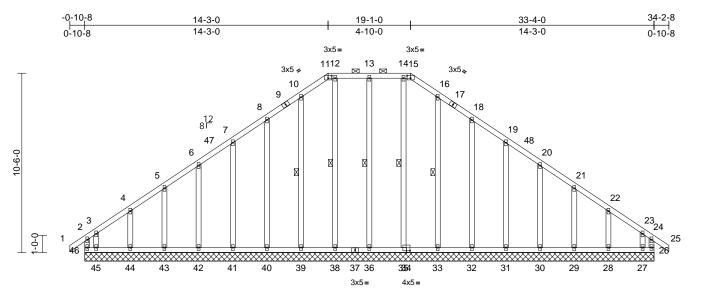
December 5,2023

Job	Truss	Truss Type	Qty	Ply	Hayes Rd A	
24050164	A02	Piggyback Base	10	1	Job Reference (optional)	162356830

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Dec 04 15:59:52

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


818 Soundside Road

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Hayes Rd A	
24050164	A01	Piggyback Base Supported Gable	1	1	Job Reference (optional)	162356831

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Dec 04 15:59:48 ID:mfGPxtzAlp6JfgV?soo5frzHsGN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:67.5

33-4-0

Plate Offsets (X, Y):	[11:0-2-8,0-1-13], [15:0-2-8,0-1-13], [35:0-2-8,0-1-4]	

Loading TCLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	1-11-4 1.15	CSI TC	0.20	DEFL Vert(LL)	in n/a	(loc) -	l/defl n/a	L/d 999	PLATES MT20	GRIP 244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.10	Vert(CT)	n/a	-	n/a	999		
TCDL BCLL	10.0 0.0*	Rep Stress Incr Code	YES IRC2018/TPI2014	WB Matrix-MR	0.21	Horz(CT)	0.01	26	n/a	n/a		
BCDL	10.0	Code	IRC2010/1PI2014	Matrix-IVIR							Weight: 259 lb	FT = 20%
6-0-0 o 2-0-0 o BOT CHORD Rigid c bracing WEBS 1 Row REACTIONS (size)	No.2 No.3 No.3 al wood she purlins, ex purlins, ex purlins (6-0 iiling directly tat midpt 26=33-4-(29=33-4-(36=33-4-(40=33-4-(40=33-4-(46=256 (L 30=-56 (L 32=-66 (L 32=-66 (L 42=-56 (L	LC 12) LC 13), 27=-237 (LC C 15), 29=-57 (LC 19 C 15), 31=-55 (LC 19 C 15), 33=-27 (LC 19 C 10), 39=-31 (LC 10 C 14), 41=-55 (LC 10 C 14), 43=-57 (LC 10 C 14), 45=-281 (LC	d or hd FORCES TOP CHORD 4-0, 4	30=188 32=219 35=208 38=208 40=219 42=187 44=165	r (LC 49), (LC 49), (LC 39), (LC 39), (LC 22), (LC 22), (LC 47), (LC	29=163 (LC 31=221 (LC 33=218 (LC 39=218 (LC 41=221 (LC 43=163 (LC 43=163 (LC 45=309 (LC con/Maximum 2-3=-247/220 7, 5-6=-125/ 6, 8-10=-143 42/253, 33/277, 09/185, 90, 21-22=-5 5/135, 24-25= 07/134, 07/134, 07/134, 07/134, 07/134, 07/134, 07/134, 07/134, 07/134, 07/134, 07/134, 07/134, 07/134,	29), 39), 39), 38), 39), 24), 12), 12), 133, 3/244,	this 2) Wir Vas Cat zor 2-8 (2N zor anc MW grip	balanced design. nd: ASCI sd=103m t. II; Exp ne and C -0 to 10- I) 22-8-0 ne; cantil d right exv VFRS for DOL=1	10-39 6-42= 3-45= 16-33 19-31 21-29 23-27 d roof II 5 7-16 6 pph; TC 8; Enc. -C Con 8-0, C to 30- ever le posed reacti .60	149/80, 5-43=-1 149/164, 14-35= =-179/50, 18-32= =-183/78, 20-30= =-124/79, 22-28= =-110/144 ive loads have be ; Vult=130mph (3 CDL=6.0psf; BCD closed; MWFRS (mer(3E) -0-10-8 t orner(3E) -0-10-8 t s-0, Corner(3E) ; off and right exposi- for shown; Lumi	180/88, 7-41=-183/78 24/79, 4-44=-129/82, 169/10, 180/89, 149/80, 129/82, een considered for -second gust) PL=6.0psf; h=25ft; envelope) exterior o 2-8-0, Exterior o 2-8-0, Exterior o 2-8-0, Exterior 30-8-0 to 34-2-8 sed ; end vertical left

GI A. GIL December 5,2023

Continued on page 2

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MTek connectors. This design is based only upon parameters and property incorporate this design is based only upon parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Hayes Rd A	
24050164	A01	Piggyback Base Supported Gable	1	1	Job Reference (optional)	162356831

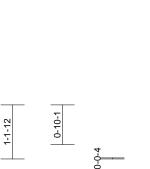
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable. or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- Provide adequate drainage to prevent water ponding.
- All plates are 2x4 MT20 unless otherwise indicated. 8)
- 9) Gable requires continuous bottom chord bearing. 10) Truss to be fully sheathed from one face or securely
- braced against lateral movement (i.e. diagonal web). 11) Gable studs spaced at 2-0-0 oc.
- 12) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 13) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
- chord and any other members. 14) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 283 lb uplift at joint 46, 165 lb uplift at joint 26, 40 lb uplift at joint 36, 31 Ib uplift at joint 39, 64 lb uplift at joint 40, 55 lb uplift at joint 41, 56 lb uplift at joint 42, 57 lb uplift at joint 43, 52 Ib uplift at joint 44, 281 Ib uplift at joint 45, 27 Ib uplift at joint 33, 66 lb uplift at joint 32, 55 lb uplift at joint 31, 56 Ib uplift at joint 30, 57 lb uplift at joint 29, 53 lb uplift at joint 28 and 237 lb uplift at joint 27.
- 15) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 16) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord

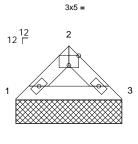
LOAD CASE(S) Standard

Run: 8.63 S. Nov. 1 2023 Print: 8.630 S.Nov. 1 2023 MiTek Industries. Inc. Mon. Dec. 04 15:59:48 ID:mfGPxtzAlp6JfgV?soo5frzHsGN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Job	Truss	Truss Type	Qty	Ply	Hayes Rd A	
24050164	V02	Valley	1	1	Job Reference (optional)	162356832


Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Dec 04 16:00:00 ID:PFboh?SNpuCRYliRbgKAmSzHs2r-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

> 2-3-0 <u>1-1-8</u> <u>1-11-9</u> <u>1-1-8</u> 0-10-1

Page: 1

2x4 🧳 2x4 🔪

2-3-0

Scale = 1:24.4

Plate Offsets (X, Y): [2:0-2-8,Edge]

Loading (ps TCLL (roof) 20 Snow (Pf) 20 TCDL 10 BCLL 0 BCDL 10	 Plate Grip DOL Lumber DOL Rep Stress Incr Code 	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MP	0.04 0.04 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 7 lb	GRIP 244/190 FT = 20%
BCDL 10 LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 BRACING TOP CHORD Structural wood 2-3-0 oc purling BOT CHORD Rigid ceiling dir bracing. REACTIONS (size) Max Horiz 1=-2 Max Grav 1=10	sheathing directly applie ectly applied or 10-0-0 or ectly applied or 10-0-0 or 2 (LC 10) (LC 14), 3=-7 (LC 15) 2 (LC 20), 3=102 (LC 21) Compression/Maximum 3=-114/59 have been considered for mph (3-second gust) sf; BCDL=6.0psf; h=25ft; VFRS (envelope) exterio cone; cantilever left and r nd right exposed;C-C for FRS for reactions shown; 0 DCL=1.60 ds in the plane of the tru wind (normal to the face) a End Details as applicat designer as per ANSI/TF psf (roof LL: Lum DOL=1	7) Gable stud 8) This truss chord live I 9) * This truss on the bott 3-06-00 tal chord and 10) Provide me bearing pla and 7 lb up 11) This truss Internation R802.10.2 LOAD CASE(S r r ight ss , ble, 11.	s spaced at 4-0-0 c has been designed oad nonconcurrent has been designe om chord in all area by 2-00-00 wide w any other members echanical connection the capable of withs lift at joint 3. s designed in acco al Residential Code and referenced sta	for a 10.0 with any d for a liv as where will fit betw s. on (by oth standing 7 rdance w e sections	other live loa e load of 20.0 a rectangle veen the both ers) of truss to ' lb uplift at jo ith the 2018 \$ R502.11.1 a	Opsf om to int 1				Weight: 7 Ib ORTH CA ORTH CA O	ROL
 DOL=1.15); Is=1.0; Rough Cs=1.00; Ct=1.10 Unbalanced snow loads hav design. Gable requires continuous I 	e been considered for th									A. (Decemb	DEFRICTION DEFRICTION Der 5,2023

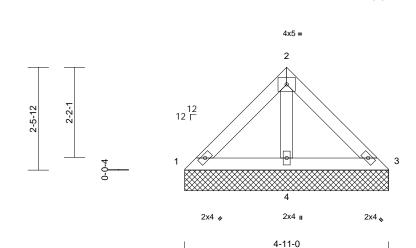
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Hayes Rd A	
24050164	V04	Valley	1	1	Job Reference (optional)	162356833

2-5-8

2-5-8

Carter Components (Sanford, NC), Sanford, NC - 27332,


Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Mon Dec 04 16:00:01 ID:6BBZoPZfSyT0IITMBnWW9ZzHs2h-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4-7-9

2-2-1

4-11-0

Scale = 1:27.8

		Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
()		Plate Grip DOL	1.15	TC	0.10	Vert(LL)	n/a	-	n/a	999	MT20	244/190
()		Lumber DOL	1.15	BC	0.12	Vert(TL)	n/a	-	n/a	999		
		Rep Stress Incr	YES	WB	0.04	Horiz(TL)	0.00	3	n/a	n/a		
BCLL		Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 19 lb	FT = 20%
4-11-0 oc pur BOT CHORD Rigid ceiling o bracing. REACTIONS (size) 1=- Max Horiz 1=- Max Uplift 4=- Max Grav 1=5	lins. directly ap 4-11-0, 3= -53 (LC 10 -45 (LC 10 94 (LC 20		design. 6) Gable requi 7) Gable studs 8) This truss h chord live lo 9) * This truss on the botto 3-06-00 tall chord and a 10) Provide me bearing plat 4. 303 11) This truss is	snow loads have res continuous bot spaced at 4-0-0 d as been designed ad nonconcurrent has been designe m chord in all area by 2-00-00 wide w ny other members chanical connection e capable of withs designed in acco	ttom chor oc. for a 10.0 with any d for a liv as where vill fit betv s. on (by oth tanding 4 rdance w	d bearing. D psf bottom other live loa e load of 20.0 a rectangle veen the botto ers) of truss t 15 lb uplift at j ith the 2018	ds. Dpsf om oint					
(C 21) m Compre	ession/Maximum		Residential Code nd referenced sta			nd					
Tension	in compr		LOAD CASE(S)		indard Ar	NOI/TPTT.						
TOP CHORD 1-2=-80/103,	2-3=-80/1	103	LOAD CASE(S)	Standard								
BOT CHORD 1-4=-83/107,		107										
WEBS 2-4=-187/114												
NOTES												
1) Unbalanced roof live load	s have be	een considered for										
 this design. Wind: ASCE 7-16; Vult=1: Vasd=103mph; TCDL=6.0 Cat. II; Exp B; Enclosed; I zone and C-C Exterior(2E exposed ; end vertical left members and forces & M Lumber DOL=1.60 plate c 	Dpsf; BCD WWFRS () zone; ca and right WFRS for	DL=6.0psf; h=25ft; (envelope) exterior antilever left and rig t exposed;C-C for r reactions shown;	lht						4	EN L	OR TH CA	NROLINII Diagonal
 Truss designed for wind I only. For studs exposed i see Standard Industry Ga or consult qualified buildin TCLL: ASCE 7-16; Pr=20. Plate DOL=1.15); Pf=20.0 DOL=1.15); Is=1.0; Rougi Cs=1.00; Ct=1.10 	loads in th to wind (n ble End E ng designe .0 psf (roc) psf (Lum	he plane of the truss normal to the face), Details as applicable er as per ANSI/TPI of LL: Lum DOL=1.1 n DOL=1.15 Plate	e, 1.						11111		SEA 0363	• –

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind loads in the plane of the trdss see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate 4) DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Α. GI A. GIL December 5,2023

Job	Truss	Truss Type	Qty	Ply	Hayes Rd A	
24050164	V07	Valley	1	1	Job Reference (optional)	162356834

3-9-8

3-9-8

9

Carter Components (Sanford, NC), Sanford, NC - 27332,

3-9-12

3-0-

Run: 8.63 S. Nov. 1 2023 Print: 8.630 S.Nov. 1 2023 MiTek Industries. Inc. Mon. Dec. 04 16:00:01 ID:xKZr2TeP1oDATDwWX1cwPqzHs2b-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

7-3-9

3-6-1

10

4x5 : 2

GRIP

244/190

FT = 20%

12 12 Г 3 4 3x5 🅢 2x4 II 3x5 💊 7-7-0 Spacing 2-0-0 CSI DEFL l/defl L/d PLATES in (loc) Plate Grip DOL 1.15 TC 0.30 Vert(LL) n/a n/a 999 MT20 BC Lumber DOL 1 15 0.30 999 Vert(TL) n/a n/a Rep Stress Incr YES WB 0.12 Horiz(TL) 0.00 3 n/a n/a Code IRC2018/TPI2014 Matrix-MP Weight: 31 lb TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 5) Unbalanced snow loads have been considered for this desian. 6) Gable requires continuous bottom chord bearing. Gable studs spaced at 4-0-0 oc. 7) This truss has been designed for a 10.0 psf bottom 8) chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 9) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 0 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 21 lb uplift at joint 1, 21 lb uplift at joint 3 and 108 lb uplift at joint 4. 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design that the operating of the second se and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Scale = 1:32.3

Loading

TCLL (roof)

Snow (Pf)

TCDL

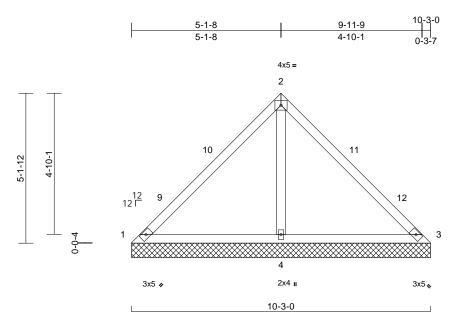
BCLL

BCDL		10.0	Code							
		-		-						
	0 4 0 D N	•								
TOP CHORD										
BOT CHORD										
OTHERS	2x4 SP N	0.3								
BRACING										
TOP CHORD	Structural 7-7-0 oc p		athing direct	y applied or						
BOT CHORD	Rigid ceili bracing.	Rigid ceiling directly applied or 6-0-0 oc bracing.								
REACTIONS	(size)	size) 1=7-7-0, 3=7-7-0, 4=7-7-0								
	Max Horiz	1=-85 (LC	12)							
	Max Uplift	1=-21 (LC	21), 3=-21 (LC 20),						
		4=-108 (L	C 14)							
	Max Grav	1=88 (LC) (LC 21)	20), 3=88 (L	C 21), 4=570						
FORCES		imum Com	pression/Ma	ximum						
	Tension									
TOP CHORD		1-2=-113/237, 2-3=-113/237								
BOT CHORD	1-4=-171/	1-4=-171/184, 3-4=-171/184								
WEBS	2-4=-409/	255								
NOTES										

(psf)

20.0

20.0


10.0

0.0

- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-4 to 3-0-4, Exterior(2R) 3-0-4 to 4-7-4, Exterior(2E) 4-7-4 to 7-7-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

Job	Truss	Truss Type	Qty	Ply	Hayes Rd A	
24050164	V10	Valley	1	1	Job Reference (optional)	162356835

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries. Inc. Mon Dec 04 16:00:02 ID:HIMk6AiYsLsSa_pTKaC56uzHs2W-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale =	1.20 E

Loading TCLL (roof) Snow (Pf)	(psf) 20.0 20.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15		CSI TC BC	0.53 0.49	DEFL Vert(LL) Vert(TL)	in n/a n/a	(loc) - -	l/defl n/a n/a	L/d 999 999	PLATES MT20	GRIP 244/190
TCDL BCLL BCDL	10.0 0.0* 10.0	Rep Stress Incr Code	YES IRC201	8/TPI2014	WB Matrix-MSH	0.29	Horiz(TL)	0.01	4	n/a	n/a	Weight: 42 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 10-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=10-3-0, Max Horiz 1=-116 (LC Max Grav 1=88 (LC 2 (LC 20)	applied or 6-0-0 oc 3=10-3-0, 4=10-3-0 C 10) 21), 3=-54 (LC 20), C 14)	6) 7) 8) 9)	Plate DOL=1 DOL=1.15); 1 Cs=1.00; Ct Unbalanced design. Gable require Gable studs This truss ha chord live loa * This truss h on the bottom 3-06-00 tall b chord and an	7-16; Pr=20.0 p .15); Pf=20.0 ps s=1.0; Rough C: .1.10 snow loads have es continuous bo spaced at 4-0-0 s been designed an onconcurren nas been designen n chord in all are y 2-00-00 wide v hanical connectii capable of with	f (Lum DC at B; Fully be been cor bottom chor oc. d for a 10.0 t with any ed for a liv eas where sas where s. on (by oth	DL=1.15 Plate Exp.; Ce=0.9 asidered for the d bearing. D psf bottom other live load e load of 20.1 a rectangle veen the botther ers) of truss f	e 9; his dds. 0psf om to					
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Maximum Comp Tension 1-2=-170/394, 2-3=-1 1-4=-228/216, 3-4=-2 2-4=-643/356	170/394		1, 54 lb uplift) This truss is International	at joint 3 and 16 designed in acco Residential Cod nd referenced sta	63 lb uplift ordance w e sections	at joint 4. ith the 2018 R502.11.1 a						
this design2) Wind: ASC	ed roof live loads have l n. CE 7-16; Vult=130mph mph; TCDL=6.0psf; BC	(3-second gust)			Gandalu						AL	NITH CA	Rollin

- Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-4 to 3-0-4, Exterior(2R) 3-0-4 to 7-3-4, Exterior(2E) 7-3-4 to 10-3-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

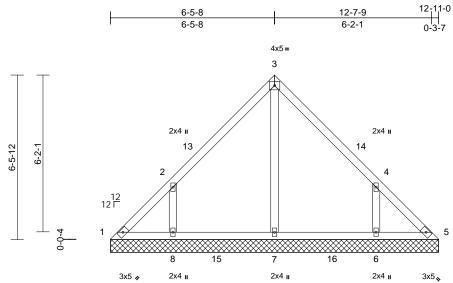
SEAL

036322

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Hayes Rd A	
24050164	V12	Valley	1	1	Job Reference (optional)	162356836


6-5-8

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Mon Dec 04 16:00:03 ID:xmQZFe639BUIUMr60cUgc9zHsGC-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

12-7-9

12-11-0

Scale = 1:45.4

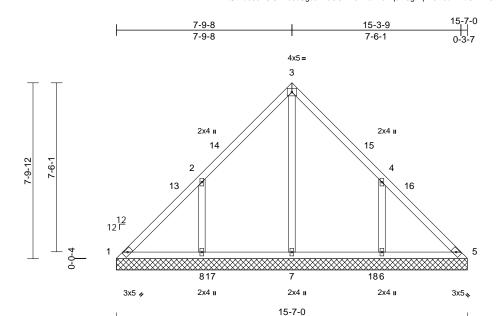
					-								
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MSH	0.34 0.17 0.12	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 59 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 Structural wood shea 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=12-11-0 7=12-11-0 Max Horiz 1=-147 (LI Max Uplift 1=-43 (LC 6=-179 (LI	applied or 10-0-0 oc), 5=12-11-0, 6=12-1), 8=12-11-0 C 12) 10), 5=-9 (LC 11), C 15), 8=-184 (LC 1-	d or 5) 1-0, 6) 7) 8) 4) 9)	only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced design. Gable requir Gable studs This truss ha chord live loa	ned for wind load dds exposed to w d Industry Gable allifed building dd 7-16; Pr=20.0 ps 1.5); Pf=20.0 psf Is=1.0; Rough Ca =1.10 snow loads have es continuous bo spaced at 4-0-0 d is been designed ad nonconcurrent nas been designed	ind (norm End Deta esigner as sf (roof LL (Lum DC at B; Fully been cor ttom chor bc. for a 10.0	al to the face ils as applica s per ANSI/TI :: Lum DOL= DL=1.15 Plate Exp.; Ce=0.9 nsidered for th d bearing.), ble, PI 1. 1.15 9 9; his					
FORCES TOP CHORD BOT CHORD	8=448 (LC (lb) - Maximum Com Tension 1-2=-151/131, 2-3=-2 4-5=-129/89	2 21), 7=352 (LC 23) 2 20) pression/Maximum 239/135, 3-4=-239/1	, , 10 35,	on the bottor 3-06-00 tall to chord and ar Provide mec bearing plate 1, 9 lb uplift at uplift at joint	n chord in all area by 2-00-00 wide v by other members hanical connection capable of withs at joint 5, 184 lb u 6.	as where vill fit betv s, with BC on (by oth standing 4 uplift at joi	a rectangle veen the both DL = 10.0psi ers) of truss t 3 lb uplift at j nt 8 and 179	om f. to oint					
WEBS NOTES	5-6=-53/110 3-7=-173/0, 2-8=-392	2/250, 4-6=-392/250		International	designed in acco Residential Code nd referenced sta Standard	e sections	R502.11.1 a	ind			-	NITH CA	ROJA

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-4 to 3-0-4, Interior (1) 3-0-4 to 3-5-12, Exterior(2R) 3-5-12 to 9-5-12, Interior (1) 9-5-12 to 9-11-4, Exterior(2E) 9-11-4 to 12-11-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
 - WARNING Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

G 11111111 December 5,2023

SEAL

036322


WILLING THE

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Hayes Rd A	
24050164	V15	Valley	1	1	Job Reference (optional)	162356837

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Dec 04 16:00:03 ID:xmQZFe639BUIUMr60cUgc9zHsGC-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:51.2

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MSH	0.33 0.17 0.26	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 75 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=15-7-0 7=15-7-0 Max Horiz 1=-179 (L Max Uplift 1=-38 (LC 8=-217 (L Max Grav 1=151 (L)	C 10), 6=-213 (LC 15 LC 14) C 24), 5=124 (LC 26 C 6), 7=437 (LC 23),	5) , 6) 7)), 8)), 9)	only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); I Cs=1.00; Ct= Unbalanced design. Gable requirt Gable studs This truss ha chord live loa * This truss ha on the bottor 3-06-00 tall b	hed for wind load ds exposed to w d Industry Gable alified building d 7-16; Pr=20.0 ps s=1.0; Rough Ca 1.10 snow loads have es continuous bo spaced at 4-0-0 d s been designed d nonconcurrent has been designed n chord in all are y 2-00-00 wide v y other members	ind (norm End Deta ssigner as sf (roof LL (Lum DC to LL (Lum DC to LL been cor ttom chor oc. for a 10.1 with any d for a liv as where vill fit betw	al to the face ils as applica is per ANSI/T :: Lum DOL= :L=1.15 Plate Exp.; Ce=0.1 d bearing. 0 psf bottom other live loa e load of 20. a rectangle veen the bott), ble, Pl 1. 1.15 e 9; his dds. Dpsf om					
FORCES	(lb) - Maximum Con Tension	npression/Maximum	10) Provide mec	hanical connection capable of withs	on (by oth	ers) of truss	to					
TOP CHORD BOT CHORD WEBS	4-5=-152/160 1-8=-96/154, 7-8=-9 5-6=-96/154	-186/150, 3-4=-186/1 96/154, 6-7=-96/154, 92/252, 4-6=-392/250	11	1, 217 lb upli) This truss is International	ft at joint 8 and 2 designed in acco Residential Code nd referenced sta	13 lb upli rdance w sections	ft at joint 6. ith the 2018 s R502.11.1 a					WITH CA	Rout

NOTES

- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-4 to 3-0-4, Interior (1) 3-0-4 to 4-9-12, Exterior(2R) 4-9-12 to 10-9-12, Interior (1) 10-9-12 to 12-7-4, Exterior(2E) 12-7-4 to 15-7-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Hayes Rd A	
24050164	V18	Valley	1	1	Job Reference (optional)	162356838

4x5 =3

9-1-0 9-1-0

Carter Components (Sanford, NC), Sanford, NC - 27332

Scale = 1:59.8 Loading

TCLL (roof)

Snow (Pf)

LUMBER

OTHERS

BRACING

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

REACTIONS (size)

WEBS

FORCES

WEBS

2)

NOTES

TOP CHORD

BOT CHORD

this design.

DOL=1.60

TCDL

BCLL

BCDL

9-1-4

(psf)

20.0

20.0

10.0

10.0

2x4 SP No.2

2x4 SP No.2

2x4 SP No.3

6-0-0 oc purlins.

1 Row at midpt

Max Horiz 1=202 (LC 11)

9=580 (LC 23)

bracing.

Max Grav

Tension

4-5=-177/277

5-6=-161/194

0.0

3-8

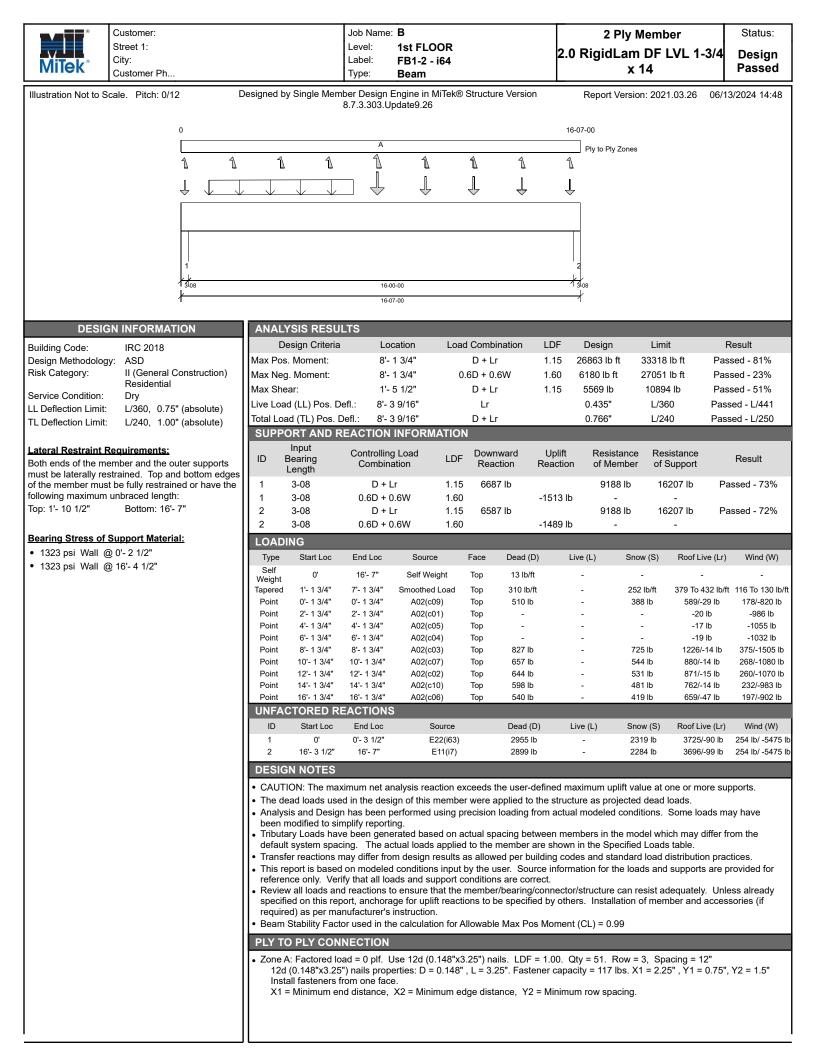
Run: 8.63 S. Nov. 1 2023 Print: 8.630 S.Nov. 1 2023 MiTek Industries. Inc. Mon. Dec. 04 16:00:03 ID:Pz_xS_6hwVcc5WPJZJ?v8NzHsGB-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

17-10-9

8-9-9

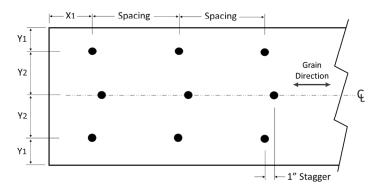
18-2-0 || 0-3-7

818 Soundside Road


Edenton, NC 27932

Page: 1

2x4 II 2x4 II 15 16 2 8-9-9 14 12 12∟ 1189 6 6 9 8 7 6 2x4 II 2x4 II 3x5 🗸 3x5= 3x5、 2x4 II 18-2-0 Spacing 1-11-4 CSI DEFL l/defl L/d PLATES GRIP in (loc) Plate Grip DOL 1.15 TC 0.39 Vert(LL) n/a n/a 999 MT20 244/190 BC Lumber DOL 1 15 0.23 Vert(TL) n/a n/a 999 Rep Stress Incr YES WB 0.19 Horiz(TL) 0.01 5 n/a n/a Code IRC2018/TPI2014 Matrix-MSH Weight: 90 lb FT = 20%3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate Structural wood sheathing directly applied or DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10 Rigid ceiling directly applied or 6-0-0 oc 5) Unbalanced snow loads have been considered for this desian. 6) Gable requires continuous bottom chord bearing. 1=18-2-0, 5=18-2-0, 6=18-2-0, 7) Gable studs spaced at 4-0-0 oc. 8=18-2-0, 9=18-2-0 This truss has been designed for a 10.0 psf bottom 8) chord live load nonconcurrent with any other live loads. Max Uplift 1=-40 (LC 12), 5=-4 (LC 13), 9) * This truss has been designed for a live load of 20.0psf 6=-248 (LC 15), 9=-253 (LC 14) on the bottom chord in all areas where a rectangle 1=141 (LC 25), 5=108 (LC 26), 3-06-00 tall by 2-00-00 wide will fit between the bottom 6=574 (LC 28), 8=521 (LC 27), chord and any other members, with BCDL = 10.0psf. 10) Provide mechanical connection (by others) of truss to (Ib) - Maximum Compression/Maximum bearing plate capable of withstanding 40 lb uplift at joint 1, 4 lb uplift at joint 5, 253 lb uplift at joint 9 and 248 lb 1-2=-217/323, 2-3=-109/214, 3-4=-110/196, uplift at joint 6. 11) This truss is designed in accordance with the 2018 1-9=-161/194, 8-9=-161/194, 6-8=-161/194, International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 3-8=-356/0 2-9=-412/282 4-6=-412/280 LOAD CASE(S) Standard \cap 1) Unbalanced roof live loads have been considered for CHINA AND Wind: ASCE 7-16; Vult=130mph (3-second gust) SEAL Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior 036322 zone and C-C Exterior(2E) 0-0-4 to 3-0-4, Interior (1) 3-0-4 to 6-1-4, Exterior(2R) 6-1-4 to 12-1-4, Interior (1) 12-1-4 to 14-10-4, Exterior(2E) 14-10-4 to 17-10-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip G unnun 1 December 5,2023

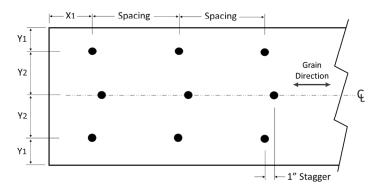




ſ		Customer:	Job Name	B	2 Ply Member	Status:						
	MiTek®	Street 1: City: Customer Ph	Level: Label: Type:	1st FLOOR FB1-2 - i64 Beam	2.0 RigidLam DF LVL 1-3/4 x 14	Design Passed						

PLY TO PLY CONNECTION

FASTENER INSTALLATION – 3 ROWS (FROM ONE FACE)



ſ		Customer:	Job Name	B	2 Ply Member	Status:						
	MiTek®	Street 1: City: Customer Ph	Level: Label: Type:	1st FLOOR FB2-2 - i74 Beam	2.0 RigidLam DF LVL 1-3/4 x 18	Design Passed						

PLY TO PLY CONNECTION

FASTENER INSTALLATION – 3 ROWS (FROM ONE FACE)

