

= Indicates Left End of Truss
(Reference Engineered Truss Drawing)
Do NOT Erect Truss Backwards

LO	AD (CHAR	T FO	RЈ	ACK .	STUD	S		
	(B	ASED O	N TABLES	5 R502	.5(1) & (1	o))			
NUMBER OF JACK STUDS REQUIRED @ EA END OF HEADER/GIRDER									
END REACTION (UP TO)	REQ'D STUDS FOR (2) PLY HEADER		END REACTION (UP TO)	REQ'D STUDS FOR (3) PLY HEADER		END REACTION (UP TO)	REQ'D STUDS FOR (4) PLY HEADER		
1700	1		2550	1		3400	1		
3400	2		5100	2		6800	2		
5100	3		7650	3		10200	3		
6800	4		10200	4		13600	4		
8500	5		12750	5		17000	5		
10200	6		15300	6					
11900	7								
13600	8								
15300	9								

BUILDER	Wellco Contractors, Inc.	CITY / CO.	Spring Lake / Harnett	THIS IS A These truss the building sheets for e
JOB NAME	Lot 5 Overhills Creek	ADDRESS	348 Caldwell Street	is responsib the overall s walls, and co regarding br
PLAN	Plan 13 / 2 <i>G</i> LF	MODEL	Roof	or online @ Bearing rea prescriptive
SEAL DATE	Seal Date	DATE REV.	04/17/24	(derived from foundation than 3000# be retained
QUOTE#	Quote #	DRAWN BY	David Landry	specified in retained to
JOB#	J0424-2238	SALES REP.	Lenny Norris	Signatu


earing reactions less than or equal to 3000# are deemed to comply with the rescriptive Code requirements. The contractor shall refer to the attached Tables derived from the prescriptive Code requirements) to determine the minimum bundation size and number of wood studs required to support reactions greater han 3000# but not greater than 15000#. A registered design professional shall be retained to design the support system for any reaction that exceeds those pecified in the attached Tables. A registered design professional shall be stained to design the support system for all reactions that exceed 15000#.

David Landry

David Landry

Phone: (910) 864-8787 Fax: (910) 864-4444

= Indicates Left End of Truss
(Reference Engineered Truss Drawing)
Do NOT Erect Truss Backwards

LO	AD (CHAR	T FO	RЈ	ACK .	STUD	s				
(BASED ON TABLES R502.5(1) & (b))											
NUMBER OF JACK STUDS REQUIRED @ EA END OF HEADER/GIRDER											
END REACTION (UP TO)	REQ'D STUDS FOR (2) PLY HEADER		END REACTION (UP TO)	REQ'D STUDS FOR (3) PLY HEADER		END REACTION (UP TO)	REQ'D STUDS FOR (4) PLY HEADER				
1700	1		2550	1		3400	1				
3400	2		5100	2		6800	2				
5100	3		7650	3		10200	3				
6800	4		10200	4		13600	4				
8500	5		12750	5		17000	5				
10200	6		15300	6							
11900	7										
13600	8										
15300	9										

					_
	BUILDER	Wellco Contractors, Inc.	CITY / CO.	Spring Lake / Harnett	THIS IS A These truss the building sheets for ea
	JOB NAME	Lot 5 Overhills Creek	ADDRESS	348 Caldwell Street	is responsib the overall s walls, and c regarding br
	PLAN	Plan 13 / 2 <i>G</i> LF	MODEL	Roof	or online @ Bearing rea prescriptive
	SEAL DATE	Seal Date	DATE REV.	04/17/24	(derived from foundation than 3000# be retained
	QUOTE#	Quote #	DRAWN BY	David Landry	specified in retained to
	JOB#	J0424-2238	SALES REP.	Lenny Norris	Signatu
٠					•

THIS IS A TRUSS PLACEMENT DIAGRAM ONLY.

These trusses are designed as individual building components to be incorporated into the building design at the specification of the building designer. See individual design sheets for each truss design identified on the placement drawing. The building designer is responsible for temporary and permanent bracing of the roof and floor system and for the overall structure. The design of the truss support structure including headers, beams, walls, and columns is the responsibility of the building designer. For general guidance regarding bracing, consult BCSI-B1 and BCSI-B3 provided with the truss delivery package or online @ sbcindustry.com

Bearing reactions less than or equal to 3000# are deemed to comply with the prescriptive Code requirements. The contractor shall refer to the attached Tables

Bearing reactions less than or equal to 3000# are deemed to comply with the prescriptive Code requirements. The contractor shall refer to the attached Tables (derived from the prescriptive Code requirements) to determine the minimum foundation size and number of wood studs required to support reactions greater than 3000# but not greater than 15000#. A registered design professional shall be retained to design the support system for any reaction that exceeds those specified in the attached Tables. A registered design professional shall be retained to design the support system for all reactions that exceed 15000#.

e support system for all reactions that exceed 15000#.

David Landry

David Landry

Reilly Road Industrial Park Fayetteville, N.C. 28309 Phone: (910) 864-8787 Fax: (910) 864-4444

Trenco 818 Soundside Rd Edenton, NC 27932

Re: J0424-2238

Lot 5 Overhills Creek

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Comtech, Inc - Fayetteville.

Pages or sheets covered by this seal: I65027722 thru I65027748

My license renewal date for the state of North Carolina is December 31, 2024.

North Carolina COA: C-0844

April 19,2024

Tony Miller

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job Truss Truss Type Qty Ply Lot 5 Overhills Creek 165027722 J0424-2238 A1-GR HIP GIRDER 2 Job Reference (optional) Fayetteville, NC - 28314, 8.430 s Jan 6 2022 MiTek Industries, Inc. Fri Apr 19 07:13:11 2024 Page 1 Comtech, Inc. ID:sDGgqS?97a5hnuyVu1sqZuzPsQT-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

8-0-8

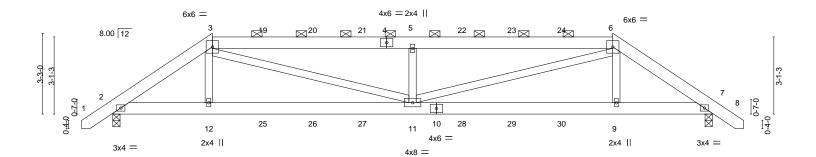
20-1-0

8-0-8

Scale = 1:46.3

25-4-0

1-3-0


24-1-0

4-0-0

Structural wood sheathing directly applied or 6-0-0 oc purlins, except

2-0-0 oc purlins (6-0-0 max.): 3-6.

Rigid ceiling directly applied or 10-0-0 oc bracing.

	4-0-0 4-0-0	12-0-8 8-0-8		20-1-0 8-0-8	24-1-0 4-0-0
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	Plate Grip DOL	2-0-0 CSI. 1.15 TC 0.19 1.15 BC 0.22 NO WB 0.20 1014 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in (loc) I/defl L/d -0.06 11 >999 360 -0.12 9-11 >999 240 0.02 7 n/a n/a 0.05 11 >999 240	PLATES GRIP MT20 244/190 Weight: 317 lb FT = 25%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x6 SP No 1 **BOT CHORD** 2x6 SP No.1

WEBS 2x4 SP No.2

REACTIONS. (size) 2=0-3-8, 7=0-3-8

Max Horz 2=80(LC 26) Max Uplift 2=-186(LC 8), 7=-186(LC 9) Max Grav 2=1498(LC 1), 7=1497(LC 1)

4-0-0

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-2437/323, 3-5=-3472/492, 5-6=-3472/492, 6-7=-2435/323 **BOT CHORD** 2-12=-289/2012, 11-12=-293/1989, 9-11=-230/1987, 7-9=-226/2010 3-12=0/496, 3-11=-267/1597, 5-11=-665/323, 6-11=-269/1599, 6-9=0/496

WEBS

NOTES-

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:

Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc.

Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc.

Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.

- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- Unbalanced roof live loads have been considered for this design.
- 4) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); Lumber DOL=1.60 plate grip DOL=1.60
- 5) Provide adequate drainage to prevent water ponding.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 186 lb uplift at joint 2 and 186 lb uplift at joint 7.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 10) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 77 lb down and 64 lb up at 4-0-0, 82 lb down and 60 lb up at 6-0-4, 82 lb down and 60 lb up at 8-0-4, 82 lb down and 60 lb up at 10-0-4, 82 lb down and 60 lb up at 12-0-4, 82 lb down and 60 lb up at 14-0-4, 82 lb down and 60 lb up at 16-0-4, and 82 lb down and 60 lb up at 18-0-4, and 77 lb down and 64 lb up at 20-1-0 on top chord, and 214 lb down and 63 lb up at 4-0-0, 48 lb down at 6-0-4, 48 lb down at 8-0-4, 48 lb down at 10-0-4, 48 lb down at 12-0-4, 48 lb down at 14-0-4, 48 lb down at 16-0-4, and 48 lb down at 18-0-4, and 214 lb down and 63 lb up at 20-0-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

Continued on page 2

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty Ply Lot 5 Overhills Creek 165027722 HIP GIRDER J0424-2238 A1-GR | **Z** | Job Reference (optional) 8.430 s Jan 6 2022 MiTek Industries, Inc. Fri Apr 19 07:13:11 2024 Page 2

Comtech, Inc, Fayetteville, NC - 28314,

ID:sDGgqS?97a5hnuyVu1sqZuzPsQT-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-3=-60, 3-6=-60, 6-8=-60, 13-16=-20

Concentrated Loads (lb)

Vert: 3=-25(B) 12=-214(B) 11=-41(B) 5=-25(B) 6=-25(B) 9=-214(B) 19=-25(B) 20=-25(B) 21=-25(B) 22=-25(B) 23=-25(B) 24=-25(B) 25=-41(B) 26=-41(B) 27=-41(B)

28=-41(B) 29=-41(B) 30=-41(B)

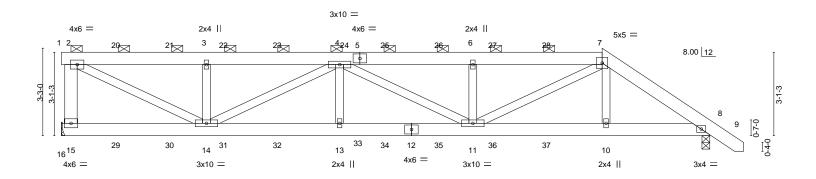
818 Soundside Road Edenton, NC 27932

Job Truss Truss Type Qty Ply Lot 5 Overhills Creek 165027723 HALF HIP GIRDER J0424-2238 A1A-GR Job Reference (optional)
8.430 s Jan 6 2022 MiTek Industries, Inc. Fri Apr 19 07:13:10 2024 Page 1 Comtech, Inc, Fayetteville, NC - 28314, ID:sDGgqS?97a5hnuyVu1sqZuzPsQT-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f 24-1-0 15-3-6 20-1-0 25-4-0

4-11-6

4-9-10

Scale = 1:42.8


1-3-0

4-0-0

Structural wood sheathing directly applied or 6-0-0 oc purlins,

except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 1-7.

Rigid ceiling directly applied or 10-0-0 oc bracing.

	i-4-10 i-4-10	10-4 4-11	-	15-3-6 4-11-6	-	20-1- 4-9-1		24-1-0 4-0-0	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/T	2-0-0 1.15 1.15 NO PI2014	CSI. TC 0.0 BC 0.2 WB 0.2 Matrix-MS	Vert(CT) Horz(CT)	in (loc) -0.05 11-13 -0.10 11-13 0.02 8 0.04 13	>999	L/d 360 240 n/a 240	PLATES MT20 Weight: 334 lb	GRIP 244/190 FT = 25%

BOT CHORD

LUMBER-BRACING-TOP CHORD

4-11-6

TOP CHORD 2x6 SP No 1 **BOT CHORD** 2x6 SP No.1 2x4 SP No.2 *Except* **WEBS**

2-15: 2x6 SP No.1

5-4-10

(size) 15=Mechanical, 8=0-3-8

Max Horz 15=-103(LC 9)

Max Uplift 15=-196(LC 4), 8=-182(LC 4) Max Grav 15=1365(LC 1), 8=1456(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-15=-1245/232, 2-3=-2085/295, 3-4=-2085/295, 4-6=-2963/438, 6-7=-2964/439,

7-8=-2269/330

BOT CHORD 13-14=-398/3050, 11-13=-398/3050, 10-11=-225/1844, 8-10=-224/1861 WEBS 2-14=-313/2224, 3-14=-344/180, 4-14=-1094/167, 4-13=0/295, 6-11=-379/185,

7-11=-196/1309, 7-10=0/345

NOTES-

REACTIONS.

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:

Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc.

Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.

- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 3) Unbalanced roof live loads have been considered for this design.
- 4) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); Lumber DOL=1.60 plate grip DOL=1.60
- 5) Provide adequate drainage to prevent water ponding.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Refer to girder(s) for truss to truss connections.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 196 lb uplift at joint 15 and 182 lb uplift at joint 8.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 11) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 82 lb down and 60 lb up at 2-0-4, 82 lb down and 60 lb up at 4-0-4, 82 lb down and 60 lb up at 6-0-4, 82 lb down and 60 lb up at 8-0-4, 82 lb down and 60 lb up at 10-0-4, 82 lb down and 60 lb up at 12-0-4, 82 lb down and 60 lb up at 14-0-4, 82 lb down and 60 lb up at 16-0-4, and 82 lb down and 60 lb up at 18-0-4, and 77 lb down and 64 lb up at 20-1-0 on top chord, and 48 lb down at 2-0-4, 48 lb down at 4-0-4, 48 lb down at 6-0-4, 48 lb down at 8-0-4, 48 lb down at 10-0-4, 48 lb down at 12-0-4, 48 lb down at 14-0-4, 48 lb down at 16-0-4

, and 48 lb down at 18-0-4, and 214 lb down and 63 lb up at 20-0-4 on bottom chord. The design/selection of such connection

Contidered (a) plate responsibility of others.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty Ply Lot 5 Overhills Creek 165027723 HALF HIP GIRDER J0424-2238 A1A-GR | **Z** | Job Reference (optional) 8.430 s Jan 6 2022 MiTek Industries, Inc. Fri Apr 19 07:13:10 2024 Page 2

Fayetteville, NC - 28314, Comtech, Inc,

ID:sDGgqS?97a5hnuyVu1sqZuzPsQT-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-2=-60, 2-7=-60, 7-9=-60, 16-17=-20

Concentrated Loads (lb)

Vert: 7=-25(F) 10=-214(F) 20=-25(F) 21=-25(F) 22=-25(F) 23=-25(F) 24=-25(F) 25=-25(F) 26=-25(F) 27=-25(F) 28=-25(F) 29=-41(F) 30=-41(F) 31=-41(F) 32=-41(F)

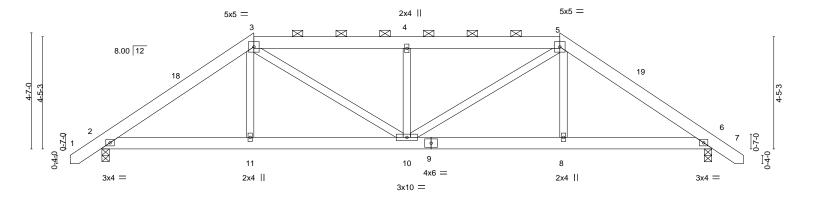
33=-41(F) 34=-41(F) 35=-41(F) 36=-41(F) 37=-41(F)

818 Soundside Road Edenton, NC 27932

Job Truss Truss Type Qty Ply Lot 5 Overhills Creek 165027724 J0424-2238 A2 HIP Job Reference (optional) 8.430 s Jan 6 2022 MiTek Industries, Inc. Fri Apr 19 07:13:12 2024 Page 1 Comtech, Inc, Fayetteville, NC - 28314,

12-0-8

6-0-8


ID: sDGgqS? 97a5hnuyVu1sqZuzPsQT-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC? full for the property of the pro<u>18-1-0</u> 24-1-0 25-4-0 6-0-8 6-0-0 1-3-0

Structural wood sheathing directly applied, except

2-0-0 oc purlins (6-0-0 max.): 3-5.

Rigid ceiling directly applied.

Scale = 1:45.5

	6-0-0	12-0-8	18-1-0	24-1-0
	6-0-0	6-0-8	6-0-8	6-0-0
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.14 BC 0.17 WB 0.13 Matrix-AS	DEFL. in (loc) l/defl L/d Vert(LL) -0.03 10 >999 360 Vert(CT) -0.07 10 >999 240 Horz(CT) 0.02 6 n/a n/a Wind(LL) 0.02 10 >999 240	PLATES GRIP MT20 244/190 Weight: 162 lb FT = 25%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-TOP CHORD

2x6 SP No.1 2x6 SP No.1

BOT CHORD WEBS 2x4 SP No.2

-1-3-0 1-3-0

6-0-0

REACTIONS.

2=0-3-8, 6=0-3-8 (size) Max Horz 2=-111(LC 10)

Max Uplift 2=-34(LC 12), 6=-34(LC 13) Max Grav 2=1029(LC 1), 6=1029(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-1429/357, 3-4=-1501/440, 4-5=-1501/440, 5-6=-1429/357 **BOT CHORD** 2-11=-158/1130, 10-11=-160/1124, 8-10=-165/1124, 6-8=-163/1130 WEBS 3-11=0/251, 3-10=-116/526, 4-10=-398/199, 5-10=-117/526, 5-8=0/251

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -1-1-1 to 3-3-12, Interior(1) 3-3-12 to 6-0-0, Exterior(2) 6-0-0 to 12-0-8, Interior(1) 12-0-8 to 18-1-0, Exterior(2) 18-1-0 to 24-1-0, Interior(1) 24-1-0 to 25-2-1 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 34 lb uplift at joint 2 and 34 lb uplift at
- 7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

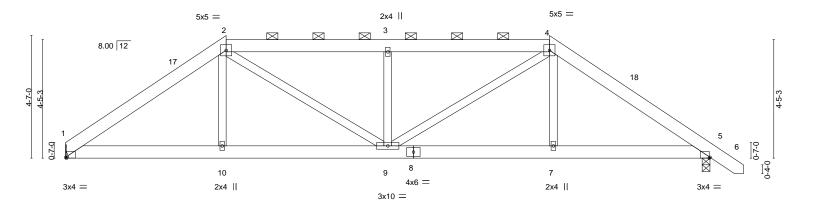
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty Lot 5 Overhills Creek 165027725 J0424-2238 A2A HIP Job Reference (optional) 8.430 s Jan 6 2022 MiTek Industries, Inc. Fri Apr 19 07:13:13 2024 Page 1 Comtech, Inc, Fayetteville, NC - 28314, ID:sDGgqS?97a5hnuyVu1sqZuzPsQT-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f 24-1-0 25-4-0 12-0-8 18-1-0

6-0-8

6-0-8

Scale = 1:43.1


1-3-0

6-0-0

Structural wood sheathing directly applied, except

2-0-0 oc purlins (6-0-0 max.): 2-4.

Rigid ceiling directly applied.

	6-0-0	1	12-0-8		18-1-0			1	24-1-0	
	6-0-0	I	6-0-8	I	6-0-8			1	6-0-0	<u>'</u>
ets (X,Y)	[1:0-0-6,Edge], [5:0-0-5,Edge]	lge]								
(psf)	SPACING-	2-0-0	CSI.	DEFL.	in	(loc)	I/defl	L/d	PLATES	GRIP
20.0	Plate Grip DOL	1.15	TC 0.14	Vert(LL)	-0.03	9	>999	360	MT20	244/190
10.0	Lumber DOL	1.15	BC 0.18	Vert(CT)	-0.07	9	>999	240		
0.0 *	Rep Stress Incr	YES	WB 0.13	Horz(CT)	0.02	5	n/a	n/a		
10.0	Code IRC2015/TPI	2014	Matrix-AS	Wind(LL)	0.02	9	>999	240	Weight: 159 lb	FT = 25%
	(psf) 20.0 10.0 0.0 *	6-0-0 ets (X,Y) [1:0-0-6,Edge], [5:0-0-5,Edge], [5:0-0-5,Edg	6-0-0 ets (X,Y) [1:0-0-6,Edge], [5:0-0-5,Edge] i (psf)	6-0-0 6-0-8 ets (X,Y) [1:0-0-6,Edge], [5:0-0-5,Edge] i (psf) SPACING- 2-0-0 CSI. 20.0 Plate Grip DOL 1.15 TC 0.14 10.0 Lumber DOL 1.15 BC 0.18 0.0 * Rep Stress Incr YES WB 0.13	6-0-0 6-0-8 ets (X,Y) [1:0-0-6,Edge], [5:0-0-5,Edge] i (psf) SPACING- 2-0-0 CSI. DEFL. 20.0 Plate Grip DOL 1.15 TC 0.14 Vert(LL) 10.0 Lumber DOL 1.15 BC 0.18 Vert(CT) 0.0 * Rep Stress Incr YES WB 0.13 Horz(CT)	6-0-0 6-0-8 6-0-8 ets (X,Y) [1:0-0-6,Edge], [5:0-0-5,Edge] i (psf) SPACING- 2-0-0 CSI. DEFL. in 20.0 Plate Grip DOL 1.15 TC 0.14 Vert(LL) -0.03 10.0 Lumber DOL 1.15 BC 0.18 Vert(CT) -0.07 0.0 * Rep Stress Incr YES WB 0.13 Horz(CT) 0.02	6-0-0 6-0-8 6-0-8 ets (X,Y) [1:0-0-6,Edge], [5:0-0-5,Edge] i (psf) SPACING- 2-0-0 CSI. DEFL. in (loc) 20.0 Plate Grip DOL 1.15 TC 0.14 Vert(LL) -0.03 9 10.0 Lumber DOL 1.15 BC 0.18 Vert(CT) -0.07 9 0.0 * Rep Stress Incr YES WB 0.13 Horz(CT) 0.02 5	6-0-0 6-0-8 6-0-8 ets (X,Y) [1:0-0-6,Edge], [5:0-0-5,Edge] i (psf) SPACING- 2-0-0 CSI. DEFL. in (loc) I/defl 20.0 Plate Grip DOL 1.15 TC 0.14 Vert(LL) -0.03 9 >999 10.0 Lumber DOL 1.15 BC 0.18 Vert(CT) -0.07 9 >999 0.0 * Rep Stress Incr YES WB 0.13 Horz(CT) 0.02 5 n/a	6-0-0 6-0-8 6-0-8 ets (X,Y) [1:0-0-6,Edge], [5:0-0-5,Edge] i (psf) SPACING- 2-0-0 CSI. DEFL. in (loc) I/defl L/d 20.0 Plate Grip DOL 1.15 TC 0.14 Vert(LL) -0.03 9 >999 360 10.0 Lumber DOL 1.15 BC 0.18 Vert(CT) -0.07 9 >999 240 0.0 * Rep Stress Incr YES WB 0.13 Horz(CT) 0.02 5 n/a n/a	6-0-0 6-0-8 6-0-8 6-0-8 6-0-0 ets (X,Y) [1:0-0-6,Edge], [5:0-0-5,Edge] i (psf) SPACING- 2-0-0 CSI. DEFL. in (loc) I/defl L/d PLATES 20.0 Plate Grip DOL 1.15 TC 0.14 Vert(LL) -0.03 9 >999 360 MT20 10.0 Lumber DOL 1.15 BC 0.18 Vert(CT) -0.07 9 >999 240 0.0 * Rep Stress Incr YES WB 0.13 Horz(CT) 0.02 5 n/a n/a

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1

WEBS 2x4 SP No.2

REACTIONS. (size) 1=Mechanical, 5=0-3-8

6-0-0

Max Horz 1=-106(LC 10) Max Uplift 1=-19(LC 9), 5=-34(LC 13)

Max Grav 1=962(LC 1), 5=1030(LC 1)

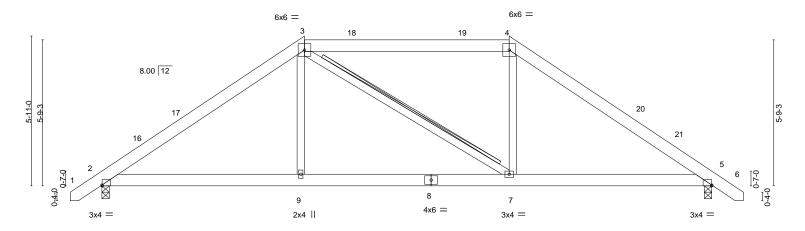
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-1437/376, 2-3=-1505/451, 3-4=-1505/451, 4-5=-1431/358 **BOT CHORD** 1-10=-179/1138, 9-10=-181/1133, 7-9=-170/1127, 5-7=-169/1132 WFBS 2-10=0/252, 2-9=-115/524, 3-9=-398/198, 4-9=-117/528, 4-7=0/251

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-0-0 to 4-4-13, Interior(1) 4-4-13 to 6-0-0, Exterior(2) 6-0-0 to 12-0-8, Interior(1) 12-0-8 to 18-1-0, Exterior(2) 18-1-0 to 24-1-0, Interior(1) 24-1-0 to 25-2-1 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 19 lb uplift at joint 1 and 34 lb uplift at joint 5.
- 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job Truss Truss Type Qty Lot 5 Overhills Creek 165027726 J0424-2238 **A3** HIP Job Reference (optional) 8.430 s Jan 6 2022 MiTek Industries, Inc. Fri Apr 19 07:13:14 2024 Page 1 Fayetteville, NC - 28314, Comtech, Inc.

ID: sDGgqS? 97a5hnuyVu1sqZuzPsQT-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC? full for the property of the pro

24-1-0 25-4-0 -1-3-0 1-3-0 16-1-0 8-0-0 8-1-0 8-0-0 1-3-0

Scale = 1:45.5

L	8-0-0		16-1-0	1	24-1-0	
	8-0-0	1	8-1-0	I .	8-0-0	
Plate Offsets (X,Y)	[2:0-0-2,Edge], [5:0-0-2,Edge]					
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc)	I/defl L/d	PLATES GRIP	
TCLL 20.0	Plate Grip DOL 1.15	TC 0.24	Vert(LL) -0.03 9-12	>999 360	MT20 244/190	
TCDL 10.0	Lumber DOL 1.15	BC 0.24	Vert(CT) -0.06 9-12	>999 240		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.08	Horz(CT) 0.02 5	n/a n/a		
BCDL 10.0	Code IRC2015/TPI2014	Matrix-AS	Wind(LL) 0.03 9-12	>999 240	Weight: 157 lb FT = 25%	
			` '			

LUMBER-

2x6 SP No.1 TOP CHORD BOT CHORD 2x6 SP No.1 2x4 SP No.2 **WEBS**

BRACING-

TOP CHORD

Structural wood sheathing directly applied, except 2-0-0 oc purlins (6-0-0 max.): 3-4.

BOT CHORD Rigid ceiling directly applied.

WEBS T-Brace:

2x4 SPF No.2 - 3-7

Fasten (2X) T and I braces to narrow edge of web with 10d (0.131"x3") nails, 6in o.c., with 3in minimum end distance. Brace must cover 90% of web length.

REACTIONS. (size) 2=0-3-8, 5=0-3-8

Max Horz 2=143(LC 11)

Max Uplift 2=-47(LC 12), 5=-47(LC 13) Max Grav 2=1029(LC 1), 5=1029(LC 1)

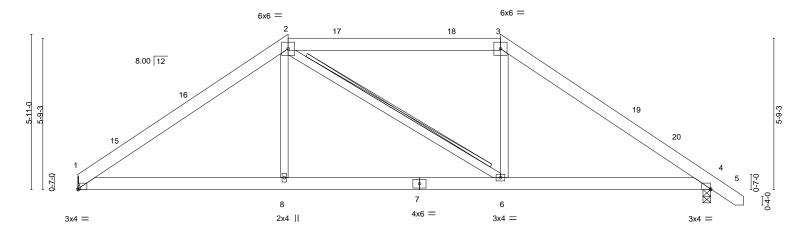
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1345/337, 3-4=-1031/374, 4-5=-1346/337 **BOT CHORD** 2-9=-114/1035, 7-9=-116/1030, 5-7=-126/1036

WEBS 3-9=0/343, 4-7=0/343

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -1-1-1 to 3-3-12, Interior(1) 3-3-12 to 8-0-0, Exterior(2) 8-0-0 to 14-2-11, Interior(1) 14-2-11 to 16-1-0, Exterior(2) 16-1-0 to 22-3-11, Interior(1) 22-3-11 to 25-2-1 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 47 lb uplift at joint 2 and 47 lb uplift at joint 5. 7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum
- sheetrock be applied directly to the bottom chord. 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 9) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty Lot 5 Overhills Creek 165027727 J0424-2238 A3A HIP Job Reference (optional) 8.430 s Jan 6 2022 MiTek Industries, Inc. Fri Apr 19 07:13:14 2024 Page 1 Fayetteville, NC - 28314, Comtech, Inc.

ID: sDGgqS? 97a5hnuyVu1sqZuzPsQT-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC? full for the property of the pro25-4-0 8-1-0 8-0-0 1-3-0

Scale = 1:43.8

		8-0-0		1		8-1-0		- 1			8-0-0	
Plate Offs	sets (X,Y)	[1:0-0-2,Edge], [4:0-0-1,E	dge]									
LOADING	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.24	Vert(LL)	-0.03	8-11	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.25	Vert(CT)	-0.07	8-11	>999	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.08	Horz(CT)	0.02	4	n/a	n/a		
BCDL	10.0	Code IRC2015/TF	PI2014	Matri	x-AS	Wind(LL)	0.03	8-11	>999	240	Weight: 153 lb	FT = 25%

16-1-0

LUMBER-

TOP CHORD 2x6 SP No.1 **BOT CHORD** 2x6 SP No.1 2x4 SP No.2 **WEBS**

BRACING-

TOP CHORD Structural wood sheathing directly applied, except

2-0-0 oc purlins (6-0-0 max.): 2-3.

BOT CHORD Rigid ceiling directly applied.

WEBS T-Brace:

2x4 SPF No.2 - 2-6

Fasten (2X) T and I braces to narrow edge of web with 10d (0.131"x3") nails, 6in o.c., with 3in minimum end distance. Brace must cover 90% of web length.

24-1-0

REACTIONS. 1=Mechanical, 4=0-3-8 (size)

Max Horz 1=-138(LC 10)

Max Uplift 1=-32(LC 12), 4=-48(LC 13) Max Grav 1=962(LC 1), 4=1030(LC 1)

8-0-0

8-0-0

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-1327/347, 2-3=-1032/379, 3-4=-1348/343 **BOT CHORD** 1-8=-122/1041, 6-8=-124/1036, 4-6=-131/1038

2-8=0/344, 3-6=0/344 **WEBS**

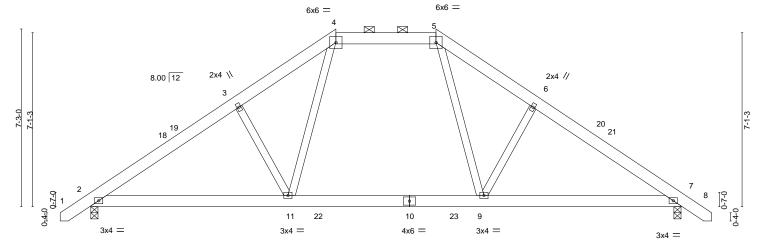
NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-0-0 to 4-4-13, Interior(1) 4-4-13 to 8-0-0, Exterior(2) 8-0-0 to 14-2-11, Interior(1) 14-2-11 to 16-1-0, Exterior(2) 16-1-0 to 22-3-11, Interior(1) 22-3-11 to 25-2-1 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 32 lb uplift at joint 1 and 48 lb uplift at ioint 4.
- 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 10) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

3-11-8


ID: sDGgqS? 97a5hnuyVu1sqZuzPsQT-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC? full for the property of the pro24-1-0 25-4-0 14-1-0 18-0-8 4-1-0 3-11-8 6-0-8 1-3-0

Structural wood sheathing directly applied, except

2-0-0 oc purlins (6-0-0 max.): 4-5.

Rigid ceiling directly applied.

Scale = 1:47.0

	8-0-8 8-0-8		16-0-8 8-0-0		4-1-0 -0-8	\dashv
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.14 BC 0.30 WB 0.13 Matrix-AS	DEFL. in (loc) Vert(LL) -0.08 9-11 Vert(CT) -0.11 9-11 Horz(CT) 0.02 7 Wind(LL) 0.04 11-14	>999 360 >999 240 n/a n/a	_	GRIP 244/190 FT = 25%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-TOP CHORD

2x6 SP No.1

BOT CHORD 2x6 SP No.1 WEBS 2x4 SP No.2

REACTIONS.

2=0-3-8, 7=0-3-8 (size) Max Horz 2=-175(LC 10)

Max Uplift 2=-58(LC 12), 7=-58(LC 13) Max Grav 2=1055(LC 19), 7=1055(LC 20)

6-0-8

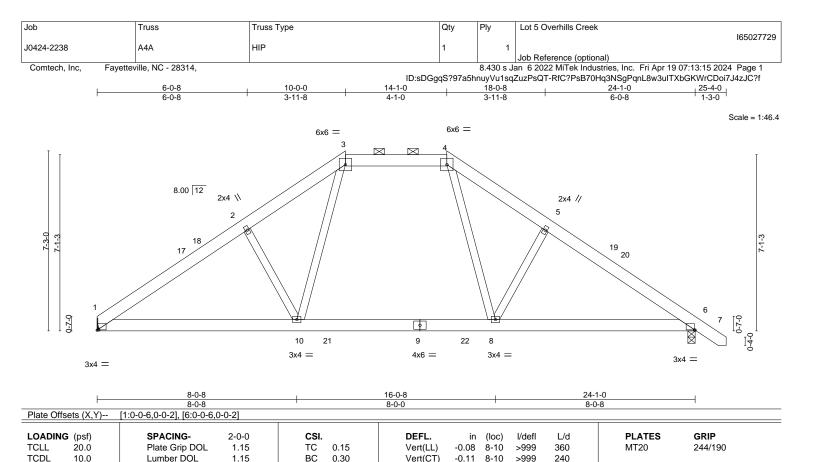
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-3=-1440/340, 3-4=-1313/382, 4-5=-913/333, 5-6=-1313/382, 6-7=-1440/340 TOP CHORD

BOT CHORD 2-11=-155/1247, 9-11=-39/945, 7-9=-168/1140

WEBS 3-11=-331/216, 4-11=-97/586, 5-9=-97/586, 6-9=-331/216

NOTES-


- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -1-1-1 to 3-3-12, Interior(1) 3-3-12 to 10-0-0, Exterior(2) 10-0-0 to 20-3-11, Interior(1) 20-3-11 to 25-2-1 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 58 lb uplift at joint 2 and 58 lb uplift at joint 7.
- 7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Horz(CT)

Wind(LL)

BRACING-

TOP CHORD

BOT CHORD

0.02

0.04 10-13

6

n/a

>999

n/a

240

2-0-0 oc purlins (6-0-0 max.): 3-4.

Rigid ceiling directly applied.

Structural wood sheathing directly applied, except

BCLL

BCDL

LUMBER-

2x6 SP No.1 TOP CHORD BOT CHORD

0.0

10.0

2x6 SP No.1 WEBS 2x4 SP No.2

REACTIONS. (size) 1=Mechanical, 6=0-3-8 Max Horz 1=-170(LC 8)

Max Uplift 1=-43(LC 12), 6=-59(LC 13) Max Grav 1=993(LC 19), 6=1056(LC 20)

Rep Stress Incr

Code IRC2015/TPI2014

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. 1-2=-1431/350, 2-3=-1320/392, 3-4=-916/340, 4-5=-1315/391, 5-6=-1442/347 TOP CHORD

YES

BOT CHORD 1-10=-159/1254, 8-10=-46/948, 6-8=-174/1142

WFBS 2-10=-329/219, 3-10=-101/593, 4-8=-95/586, 5-8=-330/214

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-0-0 to 4-4-13, Interior(1) 4-4-13 to 10-0-0, Exterior(2) 10-0-0 to 20-3-11, Interior(1) 20-3-11 to 25-2-1 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WB

Matrix-AS

0.13

- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 43 lb uplift at joint 1 and 59 lb uplift at
- 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

FT = 25%

Weight: 158 lb

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty Lot 5 Overhills Creek 165027730 J0424-2238 **A5** COMMON Job Reference (optional) 8.430 s Jan 6 2022 MiTek Industries, Inc. Fri Apr 19 07:13:16 2024 Page 1 Fayetteville, NC - 28314, Comtech, Inc. ID:sDGgqS?97a5hnuyVu1sqZuzPsQT-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f 24-1-0 -1-3-0 1-3-0 12-0-8 17-0-8 25-4-0 7-0-8 5-0-0 5-0-0 7-0-8 1-3-0 Scale = 1:44.9 8.00 12 3x4 =3x4 = 5 2x4 || 6x8 // 2x4 || 23 6x8 × 8 9 0-0-9 10-0-0 0-4-0 0-7-0 0 0 0 13 12 14 6x6 = 7-0-8 7-0-8 10-0-0 7-0-8 Plate Offsets (X,Y)--[2:0-2-14,0-2-0], [3:0-3-10,Edge], [6:0-3-0,Edge], [9:0-3-10,Edge], [10:0-2-14,0-2-0] LOADING (psf) SPACING-DEFL. in (loc) I/defl L/d **PLATES** GRIP -0.25 12-14 TCLL 20.0 Plate Grip DOL 1.15 TC 0.80 Vert(LL) >999 360 244/190 MT20 -0.41 12-14 TCDL 10.0 Lumber DOL 1.15 ВС 0.41 Vert(CT) >699 240 **BCLL** 0.0 Rep Stress Incr YES WB 0.43 Horz(CT) 0.02 10 n/a n/a Code IRC2015/TPI2014 **BCDL** 10.0 Wind(LL) 0.15 14-17 >999 240 FT = 25%Matrix-AS Weight: 173 lb

BRACING-

TOP CHORD

BOT CHORD

Structural wood sheathing directly applied.

Rigid ceiling directly applied.

LUMBER-

2x6 SP No.1 TOP CHORD 2x6 SP No.1 BOT CHORD

WEBS 2x4 SP No.2

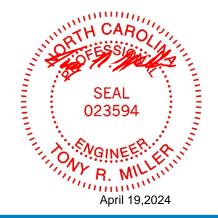
REACTIONS. (size) 2=0-3-8, 10=0-3-8 Max Horz 2=210(LC 11)

Max Uplift 2=-66(LC 12), 10=-66(LC 13)

Max Grav 2=1189(LC 19), 10=1189(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-4=-1573/241, 4-5=-1103/311, 5-6=-155/877, 6-7=-155/878, 7-8=-1104/311,

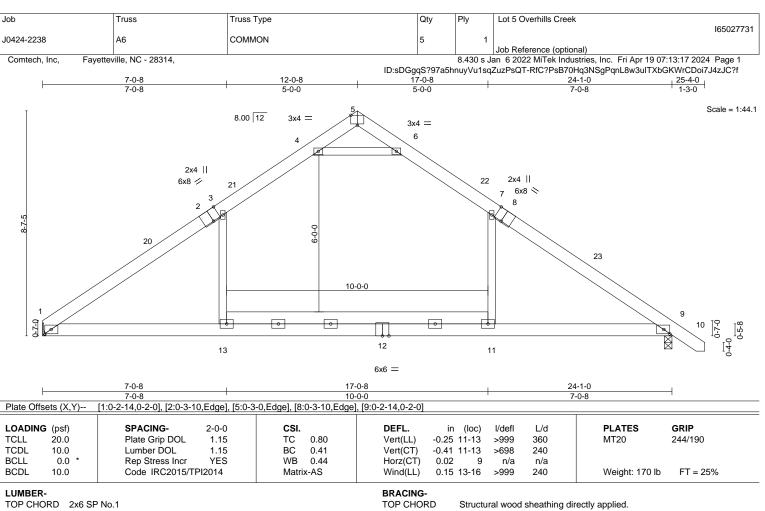

8-10=-1574/241

BOT CHORD 2-14=-40/1191, 12-14=-44/1192, 10-12=-40/1191 WEBS 4-14=0/545, 8-12=0/546, 5-7=-2151/540

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -1-1-1 to 3-3-12, Interior(1) 3-3-12 to 12-0-8, Exterior(2) 12-0-8 to 16-5-5, Interior(1) 16-5-5 to 25-2-1 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) All plates are 4x6 MT20 unless otherwise indicated.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 66 lb uplift at joint 2 and 66 lb uplift at
- 7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

BOT CHORD

Rigid ceiling directly applied.

LUMBER-

2x6 SP No.1 BOT CHORD

WEBS 2x4 SP No.2

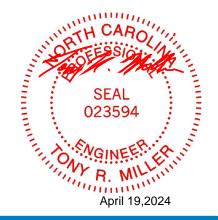
REACTIONS. (size) 1=Mechanical, 9=0-3-8 Max Horz 1=-204(LC 8)

Max Uplift 1=-51(LC 12), 9=-67(LC 13)

Max Grav 1=1127(LC 19), 9=1190(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-3=-1575/249, 3-4=-1105/318, 4-5=-157/882, 5-6=-166/880, 6-7=-1107/312,


7-9=-1579/244

BOT CHORD 1-13=-49/1194, 11-13=-53/1195, 9-11=-49/1194 WEBS 3-13=0/545, 7-11=0/546, 4-6=-2160/564

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-0-0 to 4-4-13, Interior(1) 4-4-13 to 12-0-8, Exterior(2) 12-0-8 to 16-5-5, Interior(1) 16-5-5 to 25-2-1 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) All plates are 4x6 MT20 unless otherwise indicated.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 51 lb uplift at joint 1 and 67 lb uplift at
- 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty Ply Lot 5 Overhills Creek 165027732 J0424-2238 **B1** COMMON 3 Job Reference (optional) Comtech, Inc, Fayetteville, NC - 28314, 8.430 s Jan 6 2022 MiTek Industries, Inc. Fri Apr 19 07:13:17 2024 Page 1 ID:sDGgqS?97a5hnuyVu1sqZuzPsQT-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f 21-1-8 -1-3-0 1-3-0

5x8 ||

9-11-4

Scale = 1:46.3

Structural wood sheathing directly applied.

Rigid ceiling directly applied.

1-3-0

19-10-8

9-11-4

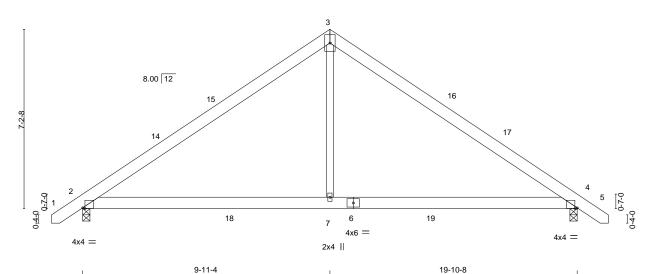


Plate Offsets (X,Y)--[2:0-1-2,Edge], [4:0-1-2,Edge] LOADING (psf) SPACING-CSI. DEFL. in (loc) I/defI L/d **PLATES** GRIP TCLL 20.0 Plate Grip DOL 1.15 TC 0.35 Vert(LL) -0.07 7-10 >999 360 244/190 MT20 TCDL 10.0 Lumber DOL 1.15 ВС 0.45 Vert(CT) -0.14 7-10 >999 240 **BCLL** 0.0 Rep Stress Incr YES WB 0.15 Horz(CT) 0.01 4 n/a n/a Code IRC2015/TPI2014 FT = 25% **BCDL** 10.0 Wind(LL) 240 Weight: 119 lb Matrix-AS 0.06 7-13 >999

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1

WEBS 2x4 SP No.2

REACTIONS. (size) 4=0-3-8, 2=0-3-8

Max Horz 2=176(LC 11)

Max Uplift 4=-58(LC 13), 2=-58(LC 12) Max Grav 4=983(LC 20), 2=983(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1167/230, 3-4=-1167/230

BOT CHORD 2-7=0/938, 4-7=0/938 WFBS

3-7=0/670

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -1-1-1 to 3-3-12, Interior(1) 3-3-12 to 9-11-4, Exterior(2) 9-11-4 to 14-4-1, Interior(1) 14-4-1 to 20-11-9 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 58 lb uplift at joint 4 and 58 lb uplift at joint 2.
- 6) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

Job Truss Truss Type Qty Ply Lot 5 Overhills Creek 165027733 J0424-2238 B1-GR COMMON GIRDER Job Reference (optional)
8.430 s Jan 6 2022 MiTek Industries, Inc. Fri Apr 19 07:13:18 2024 Page 1 Fayetteville, NC - 28314, Comtech, Inc. ID: sDGgqS? 97a5hnuyVu1sqZuzPsQT-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC? full for the property of the pro21-1-8 14-11-4 19-10-8 4-11-4 5-0-0 5-0-0 4-11-4 1-3-0 5x5 || Scale = 1:43.2 3 8.00 12 4x6 🖊 4x6 < 0-2-0 6 18 20 21 19 8 23 10 7 9 8x8 = 6x6 =6x6 = 3x10 || 3x10 || 14-11-4 19-10-8 4-11-4 4-11-4 Plate Offsets (X,Y)-- [1:0-0-1,0-0-2], [5:0-0-2,0-0-2], [9:0-4-0,0-4-12]

LOADING (psf) TCLL 20.0	SPACING- 2-0-0 Plate Grip DOL 1.15	CSI. TC 0.24	DEFL. in Vert(LL) -0.08	7-9	l/defl >999	L/d 360	PLATES MT20	GRIP 244/190
TCDL 10.0 BCLL 0.0 * BCDL 10.0	Lumber DOL 1.15 Rep Stress Incr NO Code IRC2015/TPI2014	BC 0.76 WB 0.64 Matrix-MS	Vert(CT) -0.16 Horz(CT) 0.05 Wind(LL) 0.05	7-9 5 7-9	>999 n/a >999	240 n/a 240	Weight: 283 lb	FT = 25%

LUMBER-

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 WEBS 2x4 SP No.2 **BRACING-**

TOP CHORD **BOT CHORD**

Structural wood sheathing directly applied or 5-11-7 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 1=0-3-8, 5=0-3-8 Max Horz 1=-171(LC 23)

Max Uplift 1=-330(LC 8), 5=-358(LC 9) Max Grav 1=5068(LC 1), 5=4526(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. 1-2=-7459/503, 2-3=-5114/395, 3-4=-5101/396, 4-5=-7394/555 TOP CHORD **BOT CHORD** 1-10=-424/6190, 9-10=-424/6190, 7-9=-389/6067, 5-7=-389/6067

WFBS 3-9=-340/5222, 4-9=-2242/316, 4-7=-167/2320, 2-9=-2391/265, 2-10=-106/2339

NOTES-

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-7-0 oc.

Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.

2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

3) Unbalanced roof live loads have been considered for this design.

- 4) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); Lumber DOL=1.60 plate grip DOL=1.60
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=330, 5=358.
- 8) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 942 lb down and 71 lb up at 1-9-12. 942 lb down and 71 lb up at 3-9-12. 942 lb down and 71 lb up at 5-9-12. 942 lb down and 71 lb up at 7-9-12. 946 lb down and 63 lb up at 9-9-12, 942 lb down and 52 lb up at 11-9-12, and 942 lb down and 39 lb up at 13-9-12, and 1345 lb down and 216 lb up at 15-9-0 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-3=-60, 3-6=-60, 11-14=-20

Continued on page 2

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty Ply Lot 5 Overhills Creek 165027733 J0424-2238 B1-GR COMMON GIRDER

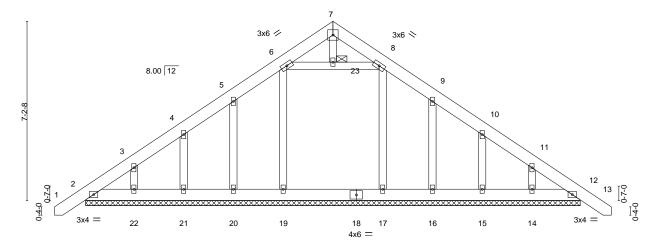
Comtech, Inc, Fayetteville, NC - 28314,

2 Job Reference (optional) 8.430 s Jan 6 2022 MiTek Industries, Inc. Fri Apr 19 07:13:18 2024 Page 2 ID:sDGgqS?97a5hnuyVu1sqZuzPsQT-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

LOAD CASE(S) Standard

Concentrated Loads (lb)

Vert: 9=-942(B) 17=-942(B) 18=-942(B) 19=-942(B) 20=-942(B) 21=-942(B) 22=-942(B) 23=-1345(B)



818 Soundside Road Edenton, NC 27932

Job Truss Truss Type Qty Ply Lot 5 Overhills Creek 165027734 J0424-2238 B1GE **GABLE** Job Reference (optional) Comtech, Inc, Fayetteville, NC - 28314, 8.430 s Jan 6 2022 MiTek Industries, Inc. Fri Apr 19 07:13:18 2024 Page 1

ID: sDGgqS? 97a5hnuyVu1sqZuzPsQT-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC? full for the property of the pro21-1-8 19-10-8 9-11-4 9-11-4 1-3-0

> Scale = 1:46.3 5x5 =

19-10-8 LOADING (psf) SPACING-CSI. DEFL. L/d **PLATES GRIP** 2-0-0 (loc) I/def 20.0 Plate Grip DOL -0.00 120 244/190 **TCLL** 1.15 TC 0.03 Vert(LL) 12 n/r MT20 TCDL 10.0 Lumber DOL 1.15 ВС 0.06 Vert(CT) -0.00 12 n/r 120 **BCLL** 0.0 Rep Stress Incr YES WB 0.08 Horz(CT) 0.00 12 n/a n/a Code IRC2015/TPI2014 **BCDL** 10.0 Matrix-S Weight: 152 lb FT = 25%

19-10-8

BRACING-LUMBER-

TOP CHORD TOP CHORD 2x6 SP No.1 Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD 2x6 SP No.1 BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. WEBS 2x4 SP No.2 **JOINTS** 1 Brace at Jt(s): 23 **OTHERS** 2x4 SP No.2

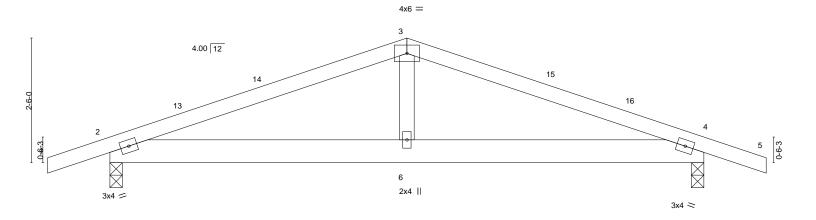
REACTIONS. All bearings 19-10-8

Max Horz 2=220(LC 11) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 12, 2, 19, 20, 21, 22, 16, 15, 14

All reactions 250 lb or less at joint(s) 12, 2, 20, 21, 22, 16, 15, 14 except 19=368(LC 19), 17=334(LC Max Grav

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.


- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOI = 1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 12, 2, 19, 20, 21, 22, 16, 15, 14.

Job	Truss	Truss Type	Qty	Ply	Lot 5 Overhills Creek		
						165027735	
J0424-2238	D1	COMMON	5	1			
					Job Reference (optional)		
Comtech, Inc, Fayette	ville, NC - 28314,		•	8.430 s Ja	an 6 2022 MiTek Industries, Inc. Fri Apr 19 07:13:	19 2024 Page 1	
		II	D:sDGgqS?97a5h	nuyVu1sq2	ZuzPsQT-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKW	/rCDoi7J4zJC?f	
-1-3-0		5-11-8	= :		11-11-0	13-2-0	
1-3-0		5-11-8			5-11-8	1-3-0	

Scale = 1:23.1

5-11-8				11-11-0				
5-11-8				5-11-8				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.21 BC 0.17 WB 0.06 Matrix-AS	Vert(LL) -0.0 Vert(CT) -0.0 Horz(CT) 0.0	03 6-9	I/defI >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 53 lb	GRIP 244/190 FT = 25%

BRACING-

TOP CHORD

BOT CHORD

Structural wood sheathing directly applied.

Rigid ceiling directly applied.

LUMBER-TOP CHORD

2x4 SP No.1 2x6 SP No.1

BOT CHORD 2x4 SP No.2 WEBS

REACTIONS.

2=0-3-0, 4=0-3-0 (size) Max Horz 2=29(LC 8)

Max Uplift 2=-217(LC 8), 4=-217(LC 9) Max Grav 2=552(LC 1), 4=552(LC 1)

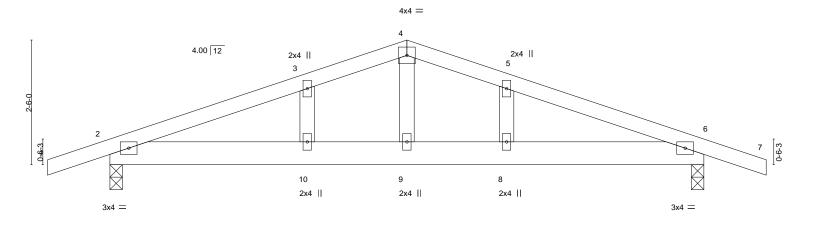
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-831/908, 3-4=-831/908 **BOT CHORD** 2-6=-773/742, 4-6=-773/742

WEBS 3-6=-359/270

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -1-3-0 to 3-1-13, Interior(1) 3-1-13 to 5-11-8, Exterior(2) 5-11-8 to 10-4-5, Interior(1) 10-4-5 to 13-2-0 zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb)
- 6) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPII Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 5 Overhills Creek	
						165027736
J0424-2238	D1GE	GABLE	1	1		
					Job Reference (optional)	
Comtech, Inc, Fayet	eville, NC - 28314,			8.430 s Ja	an 6 2022 MiTek Industries, Inc. Fri Apr 19 07:13:	19 2024 Page 1
		ID	:sDGgqS?97a5h	nuyVu1sq2	ZuzPsQT-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKV	/rCDoi7J4zJC?f
-1-3-0		5-11-8			11-11-0	13-2-0
1-3-0		5-11-8			5-11-8	1-3-0

Scale = 1:23.1

	5-11-8 5-11-8		11-11-0 5-11-8	<u> </u>
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.17 BC 0.20 WB 0.08 Matrix-AS	DEFL. in (loc) l/defl L/d Vert(LL) 0.04 8 >999 240 Vert(CT) -0.04 10-13 >999 240 Horz(CT) 0.01 6 n/a n/a	PLATES GRIP MT20 244/190 Weight: 57 lb FT = 25%

BRACING-

TOP CHORD

BOT CHORD

Structural wood sheathing directly applied.

Rigid ceiling directly applied.

LUMBER-

TOP CHORD 2x4 SP No.1

BOT CHORD 2x6 SP No.1 2x4 SP No.2 WEBS

OTHERS 2x4 SP No.2

REACTIONS.

(size) 2=0-3-0, 6=0-3-0 Max Horz 2=49(LC 12)

Max Uplift 2=-309(LC 8), 6=-309(LC 9) Max Grav 2=552(LC 1), 6=552(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-3=-829/966, 3-4=-807/1003, 4-5=-807/1003, 5-6=-829/966 TOP CHORD **BOT CHORD** 2-10=-842/754, 9-10=-842/754, 8-9=-842/754, 6-8=-842/754

WFBS 4-9=-478/340

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable studs spaced at 2-0-0 oc.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=309, 6=309
- 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

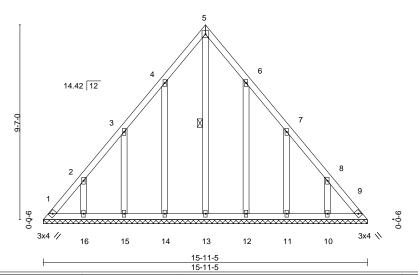
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty Ply Lot 5 Overhills Creek 165027737 J0424-2238 LG1 **GABLE** 2

Comtech, Inc, Fayetteville, NC - 28314, Job Reference (optional) 8.430 s Jan 6 2022 MiTek Industries, Inc. Fri Apr 19 07:13:20 2024 Page 1

ID:sDGgqS?97a5hnuyVu1sqZuzPsQT-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f 7-11-11 7-11-11


> Scale = 1:56.7 4x4 =

> > Structural wood sheathing directly applied or 6-0-0 oc purlins.

5-13

Rigid ceiling directly applied or 10-0-0 oc bracing.

1 Row at midpt

LOADING TCLL TCDL	20.0 10.0	SPACING- Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15	CSI. TC BC	0.07 0.04	DEFL. Vert(LL) Vert(CT)	in n/a n/a	(loc) - -	l/defl n/a n/a	L/d 999 999	PLATES MT20	GRIP 244/190
BCLL BCDL	0.0 * 10.0	Rep Stress Incr Code IRC2015/TPI	YES 12014	WB Matri	0.18 x-S	Horz(CT)	0.01	9	n/a	n/a	Weight: 110 lb	FT = 25%

BRACING-

TOP CHORD

BOT CHORD

WEBS

LUMBER-

TOP CHORD 2x4 SP No.1 **BOT CHORD** 2x4 SP No.1 **OTHERS** 2x4 SP No.2

REACTIONS. All bearings 15-11-5. Max Horz 1=291(LC 11) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) except 1=-151(LC 10), 9=-110(LC 11), 14=-182(LC 12),

15=-184(LC 12), 16=-183(LC 12), 12=-180(LC 13), 11=-185(LC 13), 10=-183(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 13, 14, 15, 16, 12, 11, 10 except 1=303(LC 12), 9=277(LC 13)

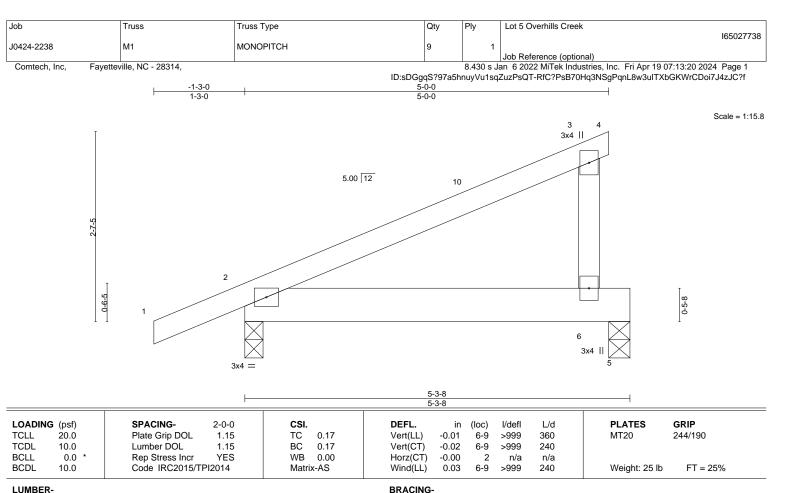
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-413/265, 8-9=-379/265

BOT CHORD $1-16 = -192/278,\ 15-16 = -192/278,\ 14-15 = -192/278,\ 13-14 = -192/278,\ 12-13 = -192/278,$

11-12=-192/278, 10-11=-192/278, 9-10=-192/278

NOTES-


- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) All plates are 2x4 MT20 unless otherwise indicated.
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 151 lb uplift at joint 1, 110 lb uplift at joint 9, 182 lb uplift at joint 14, 184 lb uplift at joint 15, 183 lb uplift at joint 16, 180 lb uplift at joint 12, 185 lb uplift at joint 11 and 183 lb uplift at joint 10.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

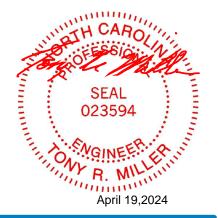
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

TOP CHORD

BOT CHORD

LUMBER-

REACTIONS.


TOP CHORD 2x4 SP No.1 BOT CHORD 2x6 SP No.1 WEBS 2x4 SP No.2

2=0-3-0, 5=0-3-8 (size) Max Horz 2=81(LC 12) Max Uplift 2=-84(LC 8), 5=-60(LC 8) Max Grav 2=289(LC 1), 5=178(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -1-3-0 to 3-1-13, Interior(1) 3-1-13 to 5-0-0 zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psg bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 84 lb uplift at joint 2 and 60 lb uplift at joint 5.
- 5) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

Structural wood sheathing directly applied, except end verticals.

Rigid ceiling directly applied.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty Lot 5 Overhills Creek 165027739 J0424-2238 M1GE **GABLE** Job Reference (optional) 8.430 s Jan 6 2022 MiTek Industries, Inc. Fri Apr 19 07:13:21 2024 Page 1 Comtech, Inc, Fayetteville, NC - 28314, ID: sDGgqS? 97a5hnuyVu1sqZuzPsQT-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC? full for the property of the pro1-3-0 5-0-0 Scale = 1:15.8 5 3x4 II 2x4 || 5.00 12 2x4 II 3 0-6-5 0-5-8 10 9 2x4 || 2x4 || 3x4 = LOADING (psf) SPACING-2-0-0 CSI. DEFL. I/defI L/d **PLATES** GRIP (loc) 20.0 Plate Grip DOL 1.15 Vert(LL) 0.02 9-10 240 244/190 **TCLL** TC 0.18 >999 MT20 **TCDL** 10.0 Lumber DOL 1.15 ВС 0.13 Vert(CT) -0.02 9-10 >999 240 **BCLL** 0.0 Rep Stress Incr YES WB 0.02 Horz(CT) -0.00 n/a n/a Code IRC2015/TPI2014

BRACING-

TOP CHORD

BOT CHORD

LUMBER-TOP CHORD

BCDL

2x4 SP No.1 2x6 SP No.1

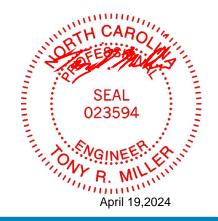
BOT CHORD WEBS 2x4 SP No.2 **OTHERS** 2x4 SP No.2

10.0

REACTIONS.

(size) 2=0-3-8, 7=0-3-8 Max Horz 2=119(LC 12)

Max Uplift 2=-124(LC 8), 7=-84(LC 8) Max Grav 2=295(LC 1), 7=169(LC 1)


FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Matrix-S

- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable studs spaced at 2-0-0 oc.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 124 lb uplift at joint 2 and 84 lb uplift at joint 7.

Weight: 28 lb

Structural wood sheathing directly applied or 5-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

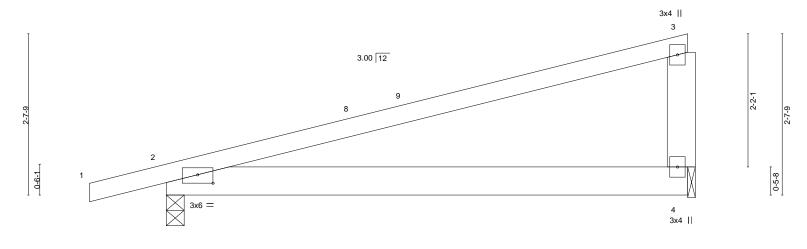
except end verticals.

FT = 25%

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Job Truss Truss Type Qty Lot 5 Overhills Creek 165027740 J0424-2238 M2 MONOPITCH 9 Job Reference (optional) Comtech, Inc, Fayetteville, NC - 28314, 8.430 s Jan 6 2022 MiTek Industries, Inc. Fri Apr 19 07:13:21 2024 Page 1

ID:sDGgqS?97a5hnuyVu1sqZuzPsQT-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f 8-7-8 8-7-8

Structural wood sheathing directly applied, except end verticals.

Rigid ceiling directly applied.

Scale = 1:18.8

Plate Offsets (X,Y)	Plate Offsets (X,Y) [2:0-3-0,0-1-10]						
LOADING (psf) TCLL 20.0	SPACING- 2-0-0 Plate Grip DOL 1.15	CSI. TC 0.53	DEFL. in (loc) I/defl L/d Vert(LL) -0.07 4-7 >999 360	PLATES GRIP MT20 244/190			
TCDL 10.0	Lumber DOL 1.15	BC 0.40	Vert(CT) -0.16 4-7 >618 240	W1120 244/190			
BCLL 0.0 * BCDL 10.0	Rep Stress Incr YES Code IRC2015/TPI2014	WB 0.00 Matrix-AS	Horz(CT) 0.01 2 n/a n/a Wind(LL) 0.07 4-7 >999 240	Weight: 39 lb FT = 25%			

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

2x4 SP No.1 TOP CHORD BOT CHORD 2x6 SP No.1 WEBS 2x6 SP No.1

REACTIONS. (size) 2=0-3-8, 4=0-1-8

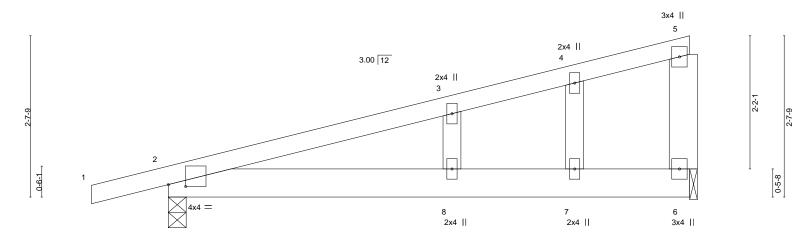
1-3-0

Max Horz 2=83(LC 8) Max Uplift 2=-75(LC 8), 4=-44(LC 12) Max Grav 2=416(LC 1), 4=330(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -1-3-0 to 3-1-13, Interior(1) 3-1-13 to 8-4-12 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 75 lb uplift at joint 2 and 44 lb uplift at ioint 4.
- 7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.



Job Truss Truss Type Qty Lot 5 Overhills Creek 165027741 J0424-2238 M2GE **GABLE** 2 Job Reference (optional) 8.430 s Jan 6 2022 MiTek Industries, Inc. Fri Apr 19 07:13:21 2024 Page 1 Comtech, Inc, Fayetteville, NC - 28314, ID:sDGgqS?97a5hnuyVu1sqZuzPsQT-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

8-7-8 8-7-8

Scale = 1:18.8

Plate Off	sets (X,Y)	[2:0-3-6,0-0-6]										
LOADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL	20.Ó	Plate Grip DOL	1.15	TC	0.28	Vert(LL)	-0.10	` ź	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.47	Vert(CT)	-0.20	8-11	>497	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.02	Horz(CT)	0.01	2	n/a	n/a		
BCDL	10.0	Code IRC2015/TF	PI2014	Matri	x-AS	Wind(LL)	0.13	8-11	>790	240	Weight: 43 lb	FT = 25%

TOP CHORD

BOT CHORD

LUMBER-BRACING-

2x4 SP No.1 TOP CHORD BOT CHORD 2x6 SP No.1 **WEBS** 2x6 SP No.1 **OTHERS** 2x4 SP No.2

REACTIONS. (size) 2=0-3-8, 6=0-1-8 Max Horz 2=118(LC 8)

Max Uplift 2=-150(LC 8), 6=-107(LC 12) Max Grav 2=416(LC 1), 6=330(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable studs spaced at 2-0-0 oc.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Bearing at joint(s) 6 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 7) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 6.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 150 lb uplift at joint 2 and 107 lb uplift at
- 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

Structural wood sheathing directly applied, except end verticals.

Rigid ceiling directly applied.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty Ply Lot 5 Overhills Creek 165027742 J0424-2238 V1 VALLEY Job Reference (optional) 8.430 s Jan 6 2022 MiTek Industries, Inc. Fri Apr 19 07:13:22 2024 Page 1 Comtech, Inc, Fayetteville, NC - 28314, ID: sDGgqS? 97a5hnuyVu1sqZuzPsQT-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC? full for the property of the pro8-1-7 5-8-4 Scale = 1:34.2 4x4 = 3 8.00 12 2x4 || 2x4 || 2 ¹³ 3x6 <> 10 3x4 🖊 63x4 II 9 7 8 2x4 || 2x4 3x4 =13-9-11 LOADING (psf) SPACING-2-0-0 CSI. DEFL. L/d **PLATES** GRIP I/defl 20.0 Plate Grip DOL 1.15 Vert(LL) 999 244/190 **TCLL** TC 0.16 n/a n/a MT20 **TCDL** 10.0 Lumber DOL 1.15 ВС 0.09 Vert(CT) n/a 999 n/a **BCLL** 0.0 Rep Stress Incr YES WB 0.08 Horz(CT) 0.00 6 n/a n/a Code IRC2015/TPI2014 BCDL 10.0 Matrix-S Weight: 63 lb FT = 25% BRACING-LUMBER-TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins,

BOT CHORD

except end verticals.

6-0-0 oc bracing: 6-7.

Rigid ceiling directly applied or 10-0-0 oc bracing, Except:

TOP CHORD 2x4 SP No.1

BOT CHORD 2x4 SP No.1 WEBS 2x4 SP No.2 **OTHERS** 2x4 SP No.2

REACTIONS. All bearings 13-9-2. Max Horz 1=120(LC 9) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 6 except 9=-109(LC 12), 7=-129(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 1, 6 except 8=256(LC 1), 9=385(LC 19), 7=314(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-9=-326/216, 4-7=-280/202 WEBS

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-5-15 to 4-10-12, Interior(1) 4-10-12 to 8-1-7, Exterior(2) 8-1-7 to 12-6-4, Interior(1) 12-6-4 to 13-6-7 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6 except (jt=lb) 9=109, 7=129

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty Ply Lot 5 Overhills Creek 165027743 J0424-2238 V2 VALLEY Job Reference (optional) 8.430 s Jan 6 2022 MiTek Industries, Inc. Fri Apr 19 07:13:22 2024 Page 1 Comtech, Inc, Fayetteville, NC - 28314, ID: sDGgqS? 97a5hnuyVu1sqZuzPsQT-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC? full for the property of the pro11-9-11 6-1-7 5-8-4 Scale = 1:26.2 4x4 = 10 8.00 12 2x4 || ₄2x4 || 8 7 6 3x4 🖊 3x4 ≫ 2x4 || 2x4 || 2x4 || 11-9-11 Plate Offsets (X,Y)--[4:0-0-0,0-0-0] SPACING-GRIP LOADING (psf) 2-0-0 CSI. DEFL. in (loc) I/defI L/d **PLATES** 20.0 TCLL Plate Grip DOL 1.15 TC 0.13 Vert(LL) 999 244/190 n/a n/a MT20 TCDL 10.0 Lumber DOL 1.15 ВС 0.09 Vert(CT) n/a n/a 999 BCLL 0.0 Rep Stress Incr YES WB 0.05 0.00 5 Horz(CT) n/a n/a Code IRC2015/TPI2014 FT = 25% **BCDL** 10.0 Weight: 46 lb Matrix-S LUMBER-**BRACING-**

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 **OTHERS** 2x4 SP No.2

TOP CHORD **BOT CHORD** Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 12-1-13.

(lb) -Max Horz 1=-90(LC 8)

Max Uplift All uplift 100 lb or less at joint(s) 1, 5, 8, 6

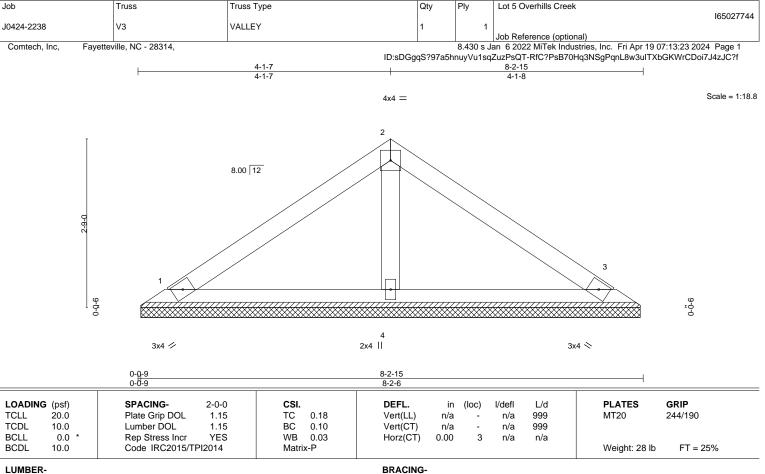
Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 7=264(LC 1), 8=314(LC 19), 6=313(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WEBS 2-8=-279/203, 4-6=-279/203

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-5-15 to 4-10-12, Interior(1) 4-10-12 to 6-1-7, Exterior(2) 6-1-7 to 10-6-4, Interior(1) 10-6-4 to 11-9-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5, 8, 6.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1

OTHERS 2x4 SP No.2

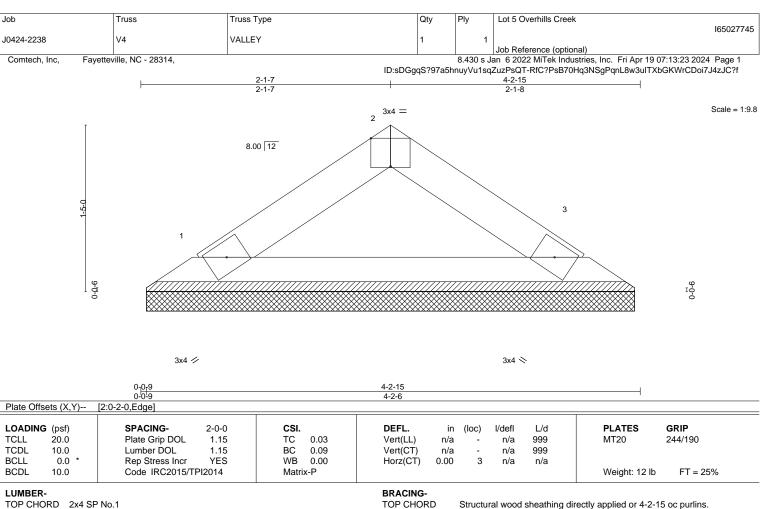
REACTIONS.

1=8-1-13, 3=8-1-13, 4=8-1-13 (size) Max Horz 1=-58(LC 10) Max Uplift 1=-25(LC 12), 3=-31(LC 13)

Max Grav 1=158(LC 1), 3=158(LC 1), 4=265(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-


- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 6) Non Standard bearing condition. Review required.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

BOT CHORD 2x4 SP No.1 **BOT CHORD**

Structural wood sheathing directly applied or 4-2-15 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS.

1=4-1-13, 3=4-1-13 (size) Max Horz 1=-26(LC 8) Max Uplift 1=-7(LC 12), 3=-7(LC 13) Max Grav 1=130(LC 1), 3=130(LC 1)

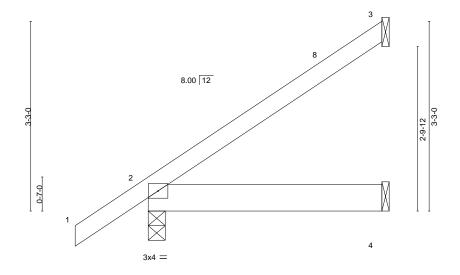
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 6) Non Standard bearing condition. Review required.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall


building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty Lot 5 Overhills Creek 165027746 J0424-2238 X1 Jack-Open 19 Job Reference (optional) 8.430 s Jan 6 2022 MiTek Industries, Inc. Fri Apr 19 07:13:24 2024 Page 1 Comtech, Inc, Fayetteville, NC - 28314,

ID:sDGgqS?97a5hnuyVu1sqZuzPsQT-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f 4-0-0 1-3-0 4-0-0

Scale = 1:19.7

4-0-0 LOADING (psf) SPACING-2-0-0 CSI. DEFL. I/defI L/d **PLATES** GRIP (loc) 20.0 Plate Grip DOL 1.15 TC Vert(LL) -0.00 360 244/190 **TCLL** 0.12 >999 MT20 TCDL 10.0 Lumber DOL 1.15 ВС 0.09 Vert(CT) -0.01 >999 240 **BCLL** 0.0 Rep Stress Incr YES WB 0.00 Horz(CT) 0.00 3 n/a n/a Code IRC2015/TPI2014 **BCDL** 10.0 Matrix-AS Wind(LL) -0.01 >999 240 Weight: 19 lb FT = 25%

BRACING-

TOP CHORD

BOT CHORD

Structural wood sheathing directly applied.

Rigid ceiling directly applied.

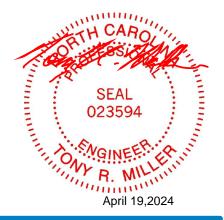
LUMBER-

REACTIONS.

TOP CHORD 2x4 SP No.1

2x6 SP No.1 BOT CHORD

3=Mechanical, 2=0-3-8, 4=Mechanical


Max Horz 2=107(LC 12) Max Uplift 3=-51(LC 12), 2=-6(LC 12)

Max Grav 3=99(LC 19), 2=244(LC 1), 4=80(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -1-3-0 to 3-1-13, Interior(1) 3-1-13 to 3-11-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2.
- 6) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

Job Truss Truss Type Qty Lot 5 Overhills Creek 165027747 J0424-2238 Y1 Jack-Open 6 Job Reference (optional) 8.430 s Jan 6 2022 MiTek Industries, Inc. Fri Apr 19 07:13:24 2024 Page 1 Comtech, Inc, Fayetteville, NC - 28314, ID:sDGgqS?97a5hnuyVu1sqZuzPsQT-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f 1-10-15 1-3-0 1-10-15 Scale = 1:12.8 0-5-3 8.00 12 1-5-1 0-7-0

				<u> </u>	1-10-15	
LOADIN	G (psf)	SPACING-	2-0-0	CSI.	DEFL. in (loc) I/defl I	L/d PLATES GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC 0.08	Vert(LL) -0.00 7 >999 3	60 MT20 244/190
TCDL	10.0	Lumber DOL	1.15	BC 0.03	Vert(CT) -0.00 7 >999 2	40
BCLL	00 *	Ren Stress Incr	VES	WB 0.00	Horz(CT) 0.00 3 n/a	n/a

LUMBER-

TCLL **TCDL BCLL**

BCDL

TOP CHORD 2x4 SP No.1 BOT CHORD 2x6 SP No.1

10.0

Wind(LL) **BRACING-**

TOP CHORD **BOT CHORD**

1-10-15

-0.00

Structural wood sheathing directly applied or 1-10-15 oc purlins.

Weight: 10 lb

FT = 25%

Rigid ceiling directly applied or 10-0-0 oc bracing.

240

>999

REACTIONS. 3=Mechanical, 2=0-3-8, 4=Mechanical (size)

Max Horz 2=63(LC 12)

Max Uplift 3=-22(LC 12), 2=-16(LC 12)

Max Grav 3=41(LC 19), 2=176(LC 1), 4=34(LC 3)

Code IRC2015/TPI2014

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Matrix-MP

- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2.

Job Truss Truss Type Qty Lot 5 Overhills Creek 165027748 J0424-2238 **Z**1 Diagonal Hip Girder 3 Job Reference (optional) 8.430 s Jan 6 2022 MiTek Industries, Inc. Fri Apr 19 07:13:24 2024 Page 1 Comtech, Inc, Fayetteville, NC - 28314, ID:sDGgqS?97a5hnuyVu1sqZuzPsQT-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f 1-9-3 5-6-6 Scale = 1:20.3 3x4 || 3 5.66 12

> 11 6 3x4 ||

LOADING	G (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP
TCLL	20.0	Plate Grip DOL 1.15	TC 0.26	Vert(LL) -0.01 6-9 >999 360	MT20 244/190
TCDL	10.0	Lumber DOL 1.15	BC 0.12	Vert(CT) -0.02 6-9 >999 240	
BCLL	0.0 *	Rep Stress Incr NO	WB 0.00	Horz(CT) 0.00 2 n/a n/a	
BCDL	10.0	Code IRC2015/TPI2014	Matrix-MP	Wind(LL) 0.01 6-9 >999 240	Weight: 29 lb FT = 25%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

REACTIONS.

TOP CHORD 2x4 SP No.1 BOT CHORD 2x6 SP No.1

WEBS 2x4 SP No.2

> (size) 6=Mechanical, 2=0-4-9 Max Horz 2=106(LC 23)

0-2-0

Max Uplift 6=-42(LC 8), 2=-28(LC 8) Max Grav 6=202(LC 29), 2=332(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 2.
- 6) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 62 lb down and 28 lb up at 2-9-8, and 62 lb down and 28 lb up at 2-9-8 on top chord, and 13 lb down and 2 lb up at 2-9-8, and 13 lb down and 2 lb up at 2-9-8 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 7) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-60, 3-4=-20, 5-7=-20

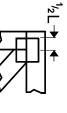
Concentrated Loads (lb)

Vert: 11=3(F=2, B=2)

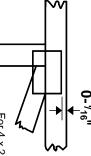
Structural wood sheathing directly applied or 5-6-6 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Symbols

PLATE LOCATION AND ORIENTATION

Center plate on joint unless x, y offsets are indicated.
Dimensions are in ft-in-sixteenths.
Apply plates to both sides of truss and fully embed teeth.

For 4 x 2 orientation, locate plates 0- ¹/16" from outside edge of truss.

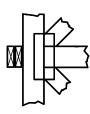
₹

This symbol indicates the required direction of slots in connector plates.

*Plate location details available in MiTek software or upon request.

PLATE SIZE

4 × 4

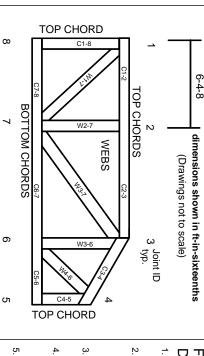

The first dimension is the plate width measured perpendicular to slots. Second dimension is the length parallel to slots.

LATERAL BRACING LOCATION

Indicated by symbol shown and/or by text in the bracing section of the output. Use T or I bracing if indicated.

BEARING

Indicates location where bearings (supports) occur. Icons vary but reaction section indicates joint number/letter where bearings occur Min size shown is for crushing only.


Industry Standards: ANSI/TPI1: National I

National Design Specification for Metal Plate Connected Wood Truss Construction. Design Standard for Bracing.

Building Component Safety Information, Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses.

DSB-22:

Numbering System

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

Product Code Approvals

ICC-ES Reports:

ESR-1988, ESR-2362, ESR-2685, ESR-3282 ESR-4722, ESL-1388

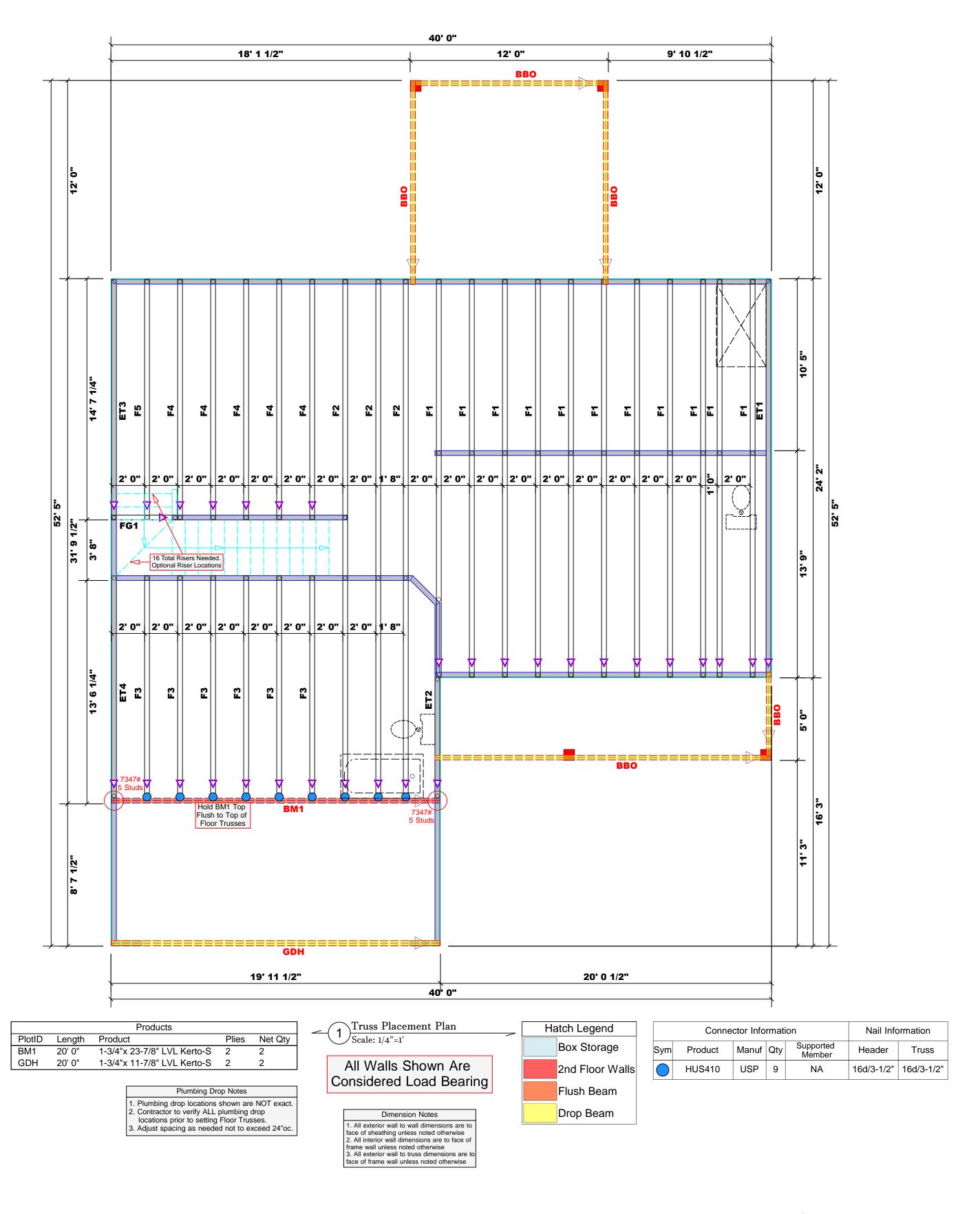
Design General Notes

Trusses are designed for wind loads in the plane of the truss unless otherwise shown.

Lumber design values are in accordance with ANSI/TPI 1 section 6.3 These truss designs rely on lumber values established by others.

© 2023 MiTek® All Rights Reserved

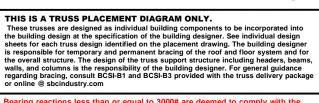
MiTek



MiTek Engineering Reference Sheet: MII-7473 rev. 1/2/2023

▲ General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury


- Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI
- Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.
- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- Cut members to bear tightly against each other.
- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.
- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- Top chords must be sheathed or purlins provided at spacing indicated on design.
- Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others
- Do not cut or alter truss member or plate without prior approval of an engineer.
- 17. Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- The design does not take into account any dynamic or other loads other than those expressly stated.

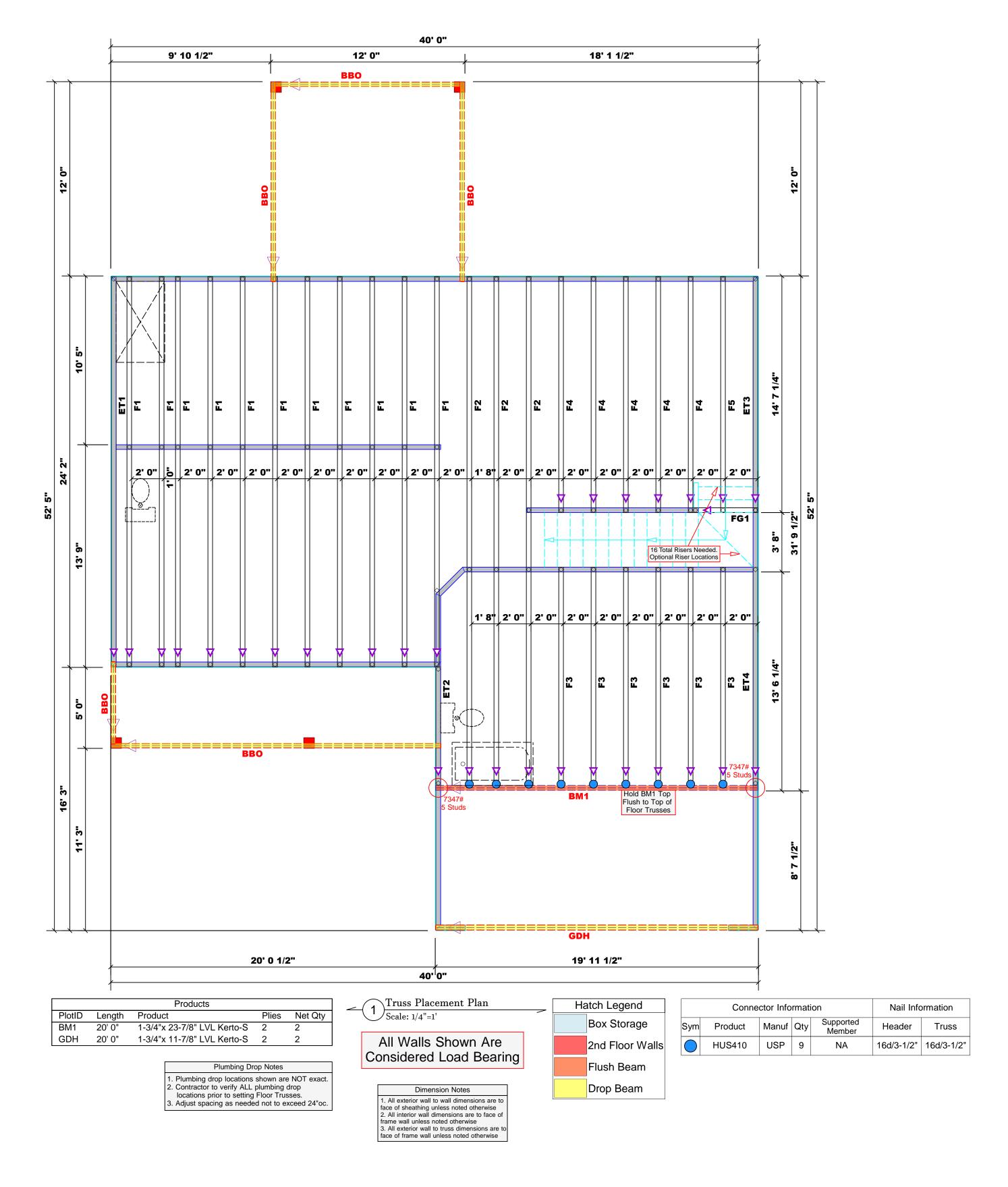
___ = Indicates Left End of Truss (Reference Engineered Truss Drawing) Do NOT Erect Truss Backwards

LO	AD (CHAR	T FO	RЈ	ACK .	STUD	S	
	(B	ASED O	N TABLES	5 R502	.5(1) & (1	o))		
NUMBER OF JACK STUDS REQUIRED @ EA END OF HEADER/GIRDER								
END REACTION (UP TO)	REQ'D STUDS FOR (2) PLY HEADER		END REACTION (UP TO)	REQ'D STUBS FOR (3) PLY HEADER		END REACTION (UP TO)	REQ'D STUDS FOR (4) PLY HEADER	
1700	1		2550	1		3400	1	
3400	2		5100	2		6800	2	
5100	3		7650	3		10200	3	
6800	4		10200	4		13600	4	
8500	5		12750	5		17000	5	
10200	6		15300	6				
11900	7							
13600	8							
15300	9							

BUILDER	Wellco Contractors, Inc.	CITY / CO.	Spring Lake / Harnett	THIS I These t
JOB NAME	Lot 5 Overhills Creek	ADDRESS	348 Caldwell Street	sheets for is resporthe over walls, ar regarding
PLAN	Plan 13 / 2 <i>G</i> LF	MODEL	Roof	or online Bearing
SEAL DATE	Seal Date	DATE REV.	04/17/24	(derive foundat than 30 be retai
QUOTE#	Quote #	DRAWN BY	David Landry	specifie retained
JOB#	J0424-2238	SALES REP.	Lenny Norris	Sigr

ring reactions less than or equal to 3000# are deemed to comply with the ciriptive Code requirements. The contractor shall refer to the attached Tables rived from the prescriptive Code requirements) to determine the minimum idation size and number of wood studs required to support reactions greater a 3000# but not greater than 15000#. A registered design professional shall etained to design the support system for any reaction that exceeds those cified in the attached Tables. A registered design professional shall be ined to design the support system for all reactions that exceed 15000#.

David Landry


David Landry

Reilly Road Industrial Park Fayetteville, N.C. 28309 Phone: (910) 864-8787

Fax: (910) 864-4444

ROOF & FLOOR TRUSSES & BEAMS


соттесн

= Indicates Left End of Truss
(Reference Engineered Truss Drawing)
Do NOT Erect Truss Backwards

LO	AD (CHAF	T FO	RЈ	ACK .	STUD	s			
(BASED ON TABLES R502.5(1) & (b))										
NUI	NUMBER OF JACK STUDS REQUIRED @ EA END OF HEADER/GIRDER									
END REACTION (UP TO)	REQ'D STUDS FOR (2) PLY HEADER		END REACTION (UP TO)	REQ'D STUDS FOR (3) PLY HEADER		END REACTION (UP TO)	REQ'D STUDS FOR (4) PLY HEADER			
1700	1		2550	1		3400	1			
3400	2		5100	2		6800	2			
5100	3		7650	3		10200	3			
6800	4		10200	4		13600	4			
8500	5		12750	5		17000	5			
10200	6		15300	6						
11900	7									
13600	8									
15300	9									

	BUILDER	Wellco Contractors, Inc.	CITY / CO.	Spring Lake / Harnett	THIS IS These true the build sheets for is respond the over-walls, an regarding or online Bearing prescrip (deriver foundat than 300 be retain specified retained Sign
	JOB NAME	Lot 5 Overhills Creek	ADDRESS	348 Caldwell Street	
	PLAN	Plan 13 / 2 <i>G</i> LF	MODEL	Roof	
	SEAL DATE	Seal Date	DATE REV.	04/17/24	
	QUOTE#	Quote #	DRAWN BY	David Landry	
	JOB#	J0424-2238	SALES REP.	Lenny Norris	

aring reactions less than or equal to 3000# are deemed to comply with the escriptive Code requirements. The contractor shall refer to the attached Tables erived from the prescriptive Code requirements) to determine the minimum undation size and number of wood studs required to support reactions greater in 3000# but not greater than 15000#. A registered design professional shall retained to design the support system for any reaction that exceeds those ecified in the attached Tables. A registered design professional shall be ained to design the support system for all reactions that exceed 15000#.

David Landry

David Landry

Reilly Road Industrial Park Fayetteville, N.C. 28309 Phone: (910) 864-8787 Fax: (910) 864-4444

Client: Project:

Address:

Wellco Contractors, Inc.

Date: 4/22/2024

Input by: David Landry Job Name: Lot 5 Overhills Creek Page 1 of 5

Wind

Total Ld. Case

7347 L

7347 L

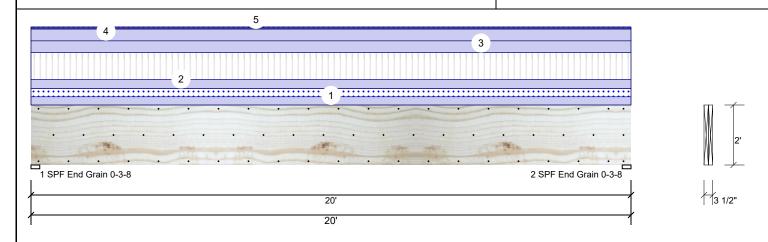
0

0

Const

Ld. Comb. D+0.75(L+S)

D+0.75(L+S)


0

0

Project #: J0424-2239

1.750" X 24.000" 2-Ply - PASSED Kerto-S LVL BM₁

Level: Level

Member Information Reactions UNPATTERNED Ib (Uplift) Application: Type: Floor Brg Direction Live Dead Snow ASD Plies: 2 Design Method: 2730 4527 1030 Vertical 1 Moisture Condition: Dry **Building Code: IBC/IRC 2015** 2 Vertical 2730 4527 1030 Deflection LL: 480 Load Sharing: No Deflection TL: 360 Deck: Not Checked Importance: Normal - II Ceiling: Gypsum 1/2" Temp <= 100°F Temperature: **Bearings**

Analysis Results

•						
Analysis	Actual	Location	Allowed	Capacity	Comb.	Case
Moment	34713 ft-lb	10'	73185 ft-lb	0.474 (47%)	D+L	L
Unbraced	35144 ft-lb	10'	35247 ft-lb	0.997 (100%)	D+0.75(L+S)	L
Shear	6525 lb	17'8 1/2"	17920 lb	0.364 (36%)	D+L	L
LL Defl inch	0.134 (L/1755)	10' 1/16"	0.489 (L/480)	0.273 (27%)	0.75(L+S)	L
TL Defl inch	0.348 (L/674)	10' 1/16"	0.652 (L/360)	0.534 (53%)	D+0.75(L+S)	L

Design Notes

- 1 Provide support to prevent lateral movement and rotation at the end bearings. Lateral support may also be required at the interior bearings by the building code.
- 2 Fasten all plies using 3 rows of 10d Box nails (.128x3") at 12" o.c. Maximum end distance not to exceed 6".
- 3 Refer to last page of calculations for fasteners required for specified loads.
- 4 Girders are designed to be supported on the bottom edge only.
- 5 Top loads must be supported equally by all plies.
- 6 Top must be laterally braced at a maximum of 5' 1/2" o.c.

ı	7 Lateral slende	erness ratio based on si	ngle ply width.									
	ID	Load Type	Location	Trib Width	Side	Dead 0.9	Live 1	Snow 1.15	Wind 1.6	Const. 1.25	Comments	
	1	Uniform			Near Face	83 PLF	0 PLF	83 PLF	0 PLF	0 PLF	M2	
	2	Uniform			Far Face	91 PLF	273 PLF	0 PLF	0 PLF	0 PLF	F3	
	3	Uniform			Тор	120 PLF	0 PLF	0 PLF	0 PLF	0 PLF	Wall	
	4	Uniform			Тор	120 PLF	0 PLF	0 PLF	0 PLF	0 PLF	B1GE	
	5	Tie-In Far	0-0-0 to 20-0-0	1-0-0	Тор	20 PSF	0 PSF	20 PSF	0 PSF	0 PSF	Roof	

Continued on page 2...

Handling & Installation

Calculated Structured Designs is responsible only of the structural adequacy of this component based on the design criteria and loadings shown. It is the responsibility of the customer and/or the contractor to ensure the component suitability of the intended application, and to verify the dimensions and loads.

- Dry service conditions, unless noted otherwise
 LVL not to be treated with fire retardant or corrosive
- approvals

 Damaged Beams must not be used
- Design assumes top edge is laterally restrained
 Provide lateral support at bearing points to avoid
 lateral displacement and rotation

LVL beams must not be cut or drilled Refer to manufacturer's product information regarding installation requirements, multi-ply fastening details, beam strength values, and code

6. For flat roofs provide proper drainage to prevent ponding

Manufacturer Info Metsä Wood 301 Merritt 7 Building, 2nd Floor Norwalk, CT 06851 (800) 622-5850 www.metsawood.com/us

Bearing Length

1 - SPF 3.500"

2 - SPF 3.500"

End Grain

End Grain Dir.

Vert

Vert

Cap. React D/L lb

4527 / 2820

4527 / 2820

Comtech, Inc. 1001 S Reilly Rd., NC 28314 (910) 864-8787

This design is valid until 6/28/2026

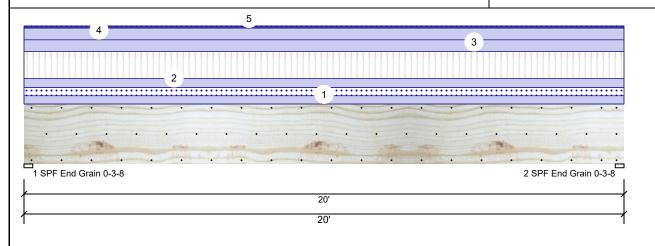
isDesign

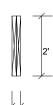
Client:

Project:

Address:

Wellco Contractors, Inc.


4/22/2024


Input by: David Landry Job Name: Lot 5 Overhills Creek

Project #: J0424-2239

1.750" X 24.000" 2-Ply - PASSED **Kerto-S LVL** BM₁

Level: Level

Page 2 of 5

.Continued from page 1

Location Trib Width ID Load Type Side Dead 0.9 Live 1 Snow 1.15 Wind 1.6 Const. 1.25 Comments 5 Tie-In Near 0-0-0 to 20-0-0 0-0-0 Тор 20 PSF 0 PSF 20 PSF 0 PSF 0 PSF Roof Self Weight 19 PLF

NOtes
Calculated Structured Designs is responsible only of the structural adequacy of this component based on the design criteria and loadings shown. It is the responsibility of the customer and/or the contractor to ensure the component suitability of the intended application, and to verify the dimensions and loads.

Dry service conditions, unless noted otherwise
 LVL not to be treated with fire retardant or corrosive

Handling & Installation

Handling & Installation

1. IVI beams must not be cut or drilled

2. Refer to manufacturer's product information regarding installation requirements, multi-ply fastening details, beam strength values, and code approvals

3. Damaged Beams must not be used

4. Design assumes top edge is laterally restrained

5. Provide lateral support at bearing points to avoid lateral displacement and rotation

6. For flat roofs provide proper drainage to prevent ponding

This design is valid until 6/28/2026

(800) 622-5850 www.metsawood.com/us

Manufacturer Info

Metsä Wood

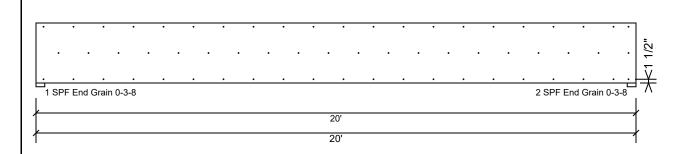
301 Merritt 7 Building, 2nd Floor Norwalk, CT 06851

isDesign

Client: Project:

Address:

Wellco Contractors, Inc.


Date: 4/22/2024 Input by:

David Landry Job Name: Lot 5 Overhills Creek Page 3 of 5

Project #: J0424-2239

1.750" X 24.000" 2-Ply - PASSED **Kerto-S LVL** BM₁

Level: Level

Multi-Ply Analysis

Fasten all plies using 3 rows of 10d Box nails (.128x3") at 12" o.c.. Maximum end distance not to exceed 6".

rasterrain pries asing 5 rows or roa box rians (.126x5) a							
Capacity	74.1 %						
Load	182.0 PLF						
Yield Limit per Foot	245.6 PLF						
Yield Limit per Fastener	81.9 lb.						
См	1						
Yield Mode	IV						
Edge Distance	1 1/2"						
Min. End Distance	3"						
Load Combination	D+L						
Duration Factor	1.00						

Notes

NOtes
Calculated Structured Designs is responsible only of the structural adequacy of this component based on the design criteria and loadings shown. It is the responsibility of the customer and/or the contractor to ensure the component suitability of the intended application, and to verify the dimensions and loads.

- Dry service conditions, unless noted otherwise
 LVL not to be treated with fire retardant or corrosive

Handling & Installation

- Handling & Installation

 1. UVI beams must not be cut or drilled

 2. Refer to manufacturer's product information regarding installation requirements, multi-ply fastening details, beam strength values, and code approvals

 3. Damaged Beams must not be used

 4. Design assumes top edge is laterally restrained

 5. Provide lateral support at bearing points to avoid lateral displacement and rotation

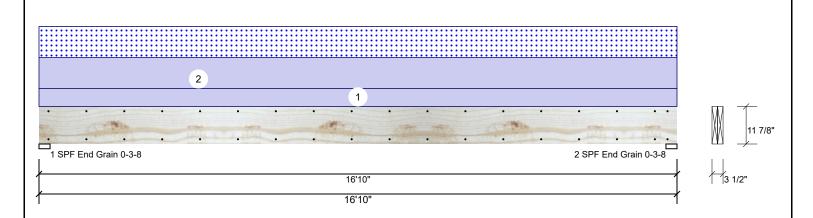
- For flat roofs provide proper drainage to prevent ponding

Metsä Wood 301 Merritt 7 Building, 2nd Floor Norwalk, CT 06851 (800) 622-5850 www.metsawood.com/us

Manufacturer Info

Client:

Wellco Contractors, Inc.


Project: Address: Date: 4/22/2024

Input by: David Landry Job Name: Lot 5 Overhills Creek

Project #: J0424-2239

Kerto-S LVL 2-Ply - PASSED 1.750" X 11.875" **GDH**

Level: Level

Type:	Girder
Plies:	2
Moisture Condition:	Dry
Deflection LL:	480
Deflection TL:	360

Member Information

Importance: Normal - II Temp <= 100°F Temperature:

Application: Floor Design Method: ASD **Building Code: IBC/IRC 2015** Load Sharing: No Deck: Not Checked Ceiling: Gypsum 1/2"

Reactions UNPATTERNED Ib (Uplift)

Brg	Direction	Live	Dead	Snow	Wind	Const
1	Vertical	0	1458	875	0	0
2	Vertical	0	1458	875	0	0

Page 4 of 5

Bearings

Grain

ı	Bearing	Length	Dir.	Cap. Re	eact D/L lb	Iotal	Ld. Case	Ld. Comb
I	1 - SPF	3.500"	Vert	23%	1458 / 875	2333	L	D+S
7	End							
l	Grain							
l	2 - SPF	3.500"	Vert	23%	1458 / 875	2333	L	D+S
I	End							

Analysis Results

Analysis	Actual	Location	Allowed	Capacity	Comb.	Case
Moment	9292 ft-lb	8'5"	22897 ft-lb	0.406 (41%)	D+S	L
Unbraced	9292 ft-lb	8'5"	9309 ft-lb	0.998 (100%)	D+S	L
Shear	1987 lb	1'3 3/8"	10197 lb	0.195 (19%)	D+S	L
LL Defl inch	0.182 (L/1080)	8'5 1/16"	0.409 (L/480)	0.444 (44%)	S	L
TL Defl inch	0.485 (L/405)	8'5 1/16"	0.546 (L/360)	0.888 (89%)	D+S	L

Design Notes

- 1 Provide support to prevent lateral movement and rotation at the end bearings. Lateral support may also be required at the interior bearings by the building code.
- 2 Fasten all plies using 2 rows of 10d Box nails (.128x3") at 12" o.c. Maximum end distance not to exceed 6".
- 3 Refer to last page of calculations for fasteners required for specified loads.
- 4 Girders are designed to be supported on the bottom edge only.
- 5 Top loads must be supported equally by all plies.
- 6 Top must be laterally braced at a maximum of 10' 7/8" o.c.

7 Lateral slenderness ratio based on single ply width

1 Lateral diolide	orridad ratio badda dir dirigio	pry wiatri.									
ID	Load Type	Location	Trib Width	Side	Dead 0.9	Live 1	Snow 1.15	Wind 1.6	Const. 1.25	Comments	
1	Uniform			Тор	60 PLF	0 PLF	0 PLF	0 PLF	0 PLF	Wall	
2	Uniform			Тор	104 PLF	0 PLF	104 PLF	0 PLF	0 PLF	M2	
	Self Weight				9 PLF						ļ

Calculated Structured Designs is responsible only of the structural adequacy of this component based on the design criteria and loadings shown. It is the responsibility of the customer and/or the contractor to ensure the component suitability of the intended application, and to verify the dimensions and loads.

- Dry service conditions, unless noted otherwise
 LVL not to be treated with fire retardant or corrosive
- Handling & Installation
- LVL beams must not be cut or drilled Refer to manufacturer's product information regarding installation requirements, multi-ply fastening details, beam strength values, and code
- approvals

 Damaged Beams must not be used
- Design assumes top edge is laterally restrained
 Provide lateral support at bearing points to avoid
 lateral displacement and rotation
- 6. For flat roofs provide proper drainage to prevent ponding

This design is valid until 6/28/2026

Metsä Wood 301 Merritt 7 Building, 2nd Floor Norwalk, CT 06851 (800) 622-5850 www.metsawood.com/us

Manufacturer Info

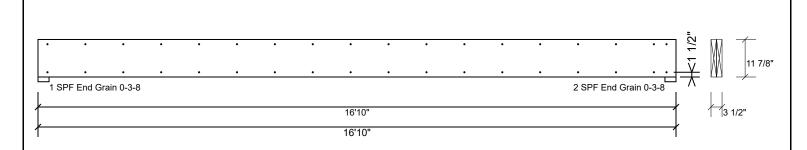
isDesign

Client:

Address:

Project:

Wellco Contractors, Inc.


4/22/2024

Input by: David Landry Job Name: Lot 5 Overhills Creek Page 5 of 5

Project #: J0424-2239

1.750" X 11.875" 2-Ply - PASSED **Kerto-S LVL GDH**

Level: Level

Multi-Ply Analysis

Fasten all plies using 2 rows of 10d Box nails (.128x3") at 12" o.c.. Maximum end distance not to exceed 6".

·		
Capacity	0.0 %	
Load	0.0 PLF	
Yield Limit per Foot	163.7 PLF	
Yield Limit per Fastener	81.9 lb.	
См	1	
Yield Mode	IV	
Edge Distance	1 1/2"	
Min. End Distance	3"	
Load Combination		
Duration Factor	1 00	

Notes

NOtes
Calculated Structured Designs is responsible only of the structural adequacy of this component based on the design criteria and loadings shown. It is the responsibility of the customer and/or the contractor to ensure the component suitability of the intended application, and to verify the dimensions and loads.

- Dry service conditions, unless noted otherwise
 LVL not to be treated with fire retardant or corrosive

Handling & Installation

- Infoculing & Installation

 I. VIL beams must not be cut or drilled

 Refer to manufacturer's product information regarding installation requirements, multi-ply fastening details, beam strength values, and code approvals

 Damaged Beams must not be used

 Design assumes top edge is laterally restrained

 Design assumes top edge is laterally restrained is provide lateral support at bearing points to avoid lateral displacement and rotation

For flat roofs provide proper drainage to prevent ponding

This design is valid until 6/28/2026

Metsä Wood 301 Merritt 7 Building, 2nd Floor Norwalk, CT 06851 (800) 622-5850 www.metsawood.com/us

Manufacturer Info

Trenco 818 Soundside Rd Edenton, NC 27932

Re: J0424-2239

Lot 5 Overhills Creek

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Comtech, Inc - Fayetteville.

Pages or sheets covered by this seal: I65027749 thru I65027758

My license renewal date for the state of North Carolina is December 31, 2024.

North Carolina COA: C-0844

April 19,2024

Gilbert, Eric

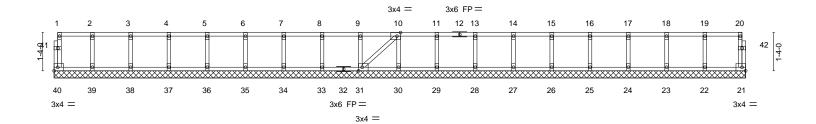
IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

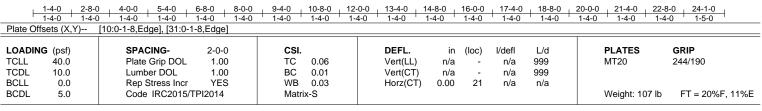
Job	Truss	Truss Type	Qty	Ply	Lot 5 Overhills Creek
10.40.4.0000	FT4	CARLE			165027749
J0424-2239	ET1	GABLE	1	1	Lab Dafanana (anti-nal)
					Job Reference (optional)

0-<u>1</u>1-8

8.430 s Jan 6 2022 MiTek Industries, Inc. Fri Apr 19 07:13:42 2024 Page 1

18-8-0


20-0-0


21-4-0

ID:sDGgqS?97a5hnuyVu1sqZuzPsQT-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

0-<u>1</u>-8

Scale = 1:40.1

13-4-0

14-8-0

16-0-0

LUMBER-**BRACING-**

6-8-0

8-0-0

TOP CHORD 2x4 SP No.1(flat) TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, BOT CHORD 2x4 SP No.1(flat) except end verticals.

12-0-0

WEBS 2x4 SP No.3(flat) **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc bracing. **OTHERS** 2x4 SP No.3(flat)

10-8-0

REACTIONS. All bearings 24-1-0.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 40, 21, 39, 38, 37, 36, 35, 34, 33, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

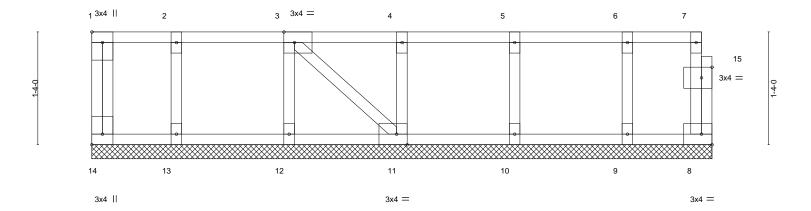
NOTES-

- 1) All plates are 1.5x3 MT20 unless otherwise indicated.
- 2) Plates checked for a plus or minus 1 degree rotation about its center.
- 3) Gable requires continuous bottom chord bearing.
- 4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 5) Gable studs spaced at 1-4-0 oc.
- 6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

Job Truss Truss Type Qty Ply Lot 5 Overhills Creek 165027750 J0424-2239 ET2 **GABLE** Job Reference (optional) 8.430 s Jan 6 2022 MiTek Industries, Inc. Fri Apr 19 07:13:43 2024 Page 1

Comtech, Inc, Fayetteville, NC - 28314,

ID:sDGgqS?97a5hnuyVu1sqZuzPsQT-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f


Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

0-1-8

Scale = 1:13.6

	1	1-0-0	2-4-0	3-8-0	1	5-0-0		1	6-4-0	7-4-0	1
		1-0-0	1-4-0	1-4-0	1	1-4-0			1-4-0	1-0-0)
Plate Offsets	(X,Y)	[1:Edge,0-1-8], [3:0-1-8,	Edge], [11:0-1-8,	Edge], [14:Edge,0-1-8],	, [15:0-1-8,0	-1-8]					
LOADING (p	sf)	SPACING-	2-0-0	CSI.	DEF	L. in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 40	0.0	Plate Grip DOL	1.00	TC 0.06	Vert	(LL) n/a	-	n/a 9	999	MT20	244/190
TCDL 10	0.0	Lumber DOL	1.00	BC 0.01	Vert	(CT) n/a	-	n/a 9	999		
BCLL 0	0.0	Rep Stress Incr	YES	WB 0.03	Horz	(CT) 0.00	8	n/a	n/a		
BCDL 5	5.0	Code IRC2015/T	PI2014	Matrix-P						Weight: 38 lb	FT = 20%F, 11%E

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

2x4 SP No.1(flat) TOP CHORD BOT CHORD 2x4 SP No.1(flat)

WEBS 2x4 SP No.3(flat) **OTHERS** 2x4 SP No.3(flat)

REACTIONS. All bearings 7-4-0.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 14, 8, 13, 12, 11, 10, 9

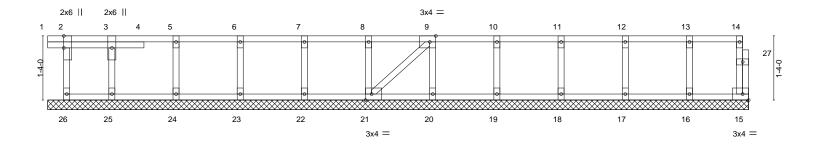
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) All plates are 1.5x3 MT20 unless otherwise indicated.
- 2) Plates checked for a plus or minus 1 degree rotation about its center.
- 3) Gable requires continuous bottom chord bearing.
- 4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 5) Gable studs spaced at 1-4-0 oc.
- 6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 7) CAUTION, Do not erect truss backwards.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Job	Truss	Truss Type	Qty	Ply	Lot 5 Overhills Creek
		0.5.5			I65027751
J0424-2239	ET3	GABLE	1	1	
					Job Reference (optional)

8.430 s Jan 6 2022 MiTek Industries, Inc. Fri Apr 19 07:13:43 2024 Page 1

ID:sDGgqS?97a5hnuyVu1sqZuzPsQT-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

ρ-4-0

Scale: 1/2"=1

Q-4-Q 1-4-0	₁ 2-8-0	4-0-0	5-4-	0 1	6-8-0	- 1	8-0-0	9-4-0	1	10-8-0	1	12-0-0	13-4-0	ı 14-6-12 ı
0-4-0 1-0-0	1-4-0	1-4-0	1-4-	0 '	1-4-0	-	1-4-0	1-4-0	1	1-4-0	-	1-4-0	1-4-0	1-2-12
Plate Offsets (X,Y) [2:0-3-0,Edge	e], [9:0-1-8,Ed	dge], [21:0-1-8	3,Edge]										
LOADING (psf)	SPAC	ING-	2-0-0	CSI.			DEFL.	in	(loc)	l/defl	L/d		PLATES	GRIP
TCLL 40.0		Grip DOL	1.00	TC	0.06		Vert(LL)	-0.00	1	n/r	180		MT20	244/190
TCDL 10.0	Lumbe	er DOL	1.00	BC	0.01		Vert(CT)	-0.00	1	n/r	120			
BCLL 0.0	Rep S	Stress Incr	YES	WB	0.03		Horz(CT)	0.00	15	n/a	n/a			
BCDL 5.0	Code	IRC2015/TPI	2014	Matri	x-S								Weight: 68 lb	FT = 20%F, 11%E
LUMBER-				1			BRACING							

2x4 SP No.1(flat) TOP CHORD

BOT CHORD 2x4 SP No.1(flat) **WEBS** 2x4 SP No.3(flat)

OTHERS 2x4 SP No.3(flat) TOP CHORD **BOT CHORD** Structural wood sheathing directly applied or 6-0-0 oc purlins,

except end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing.

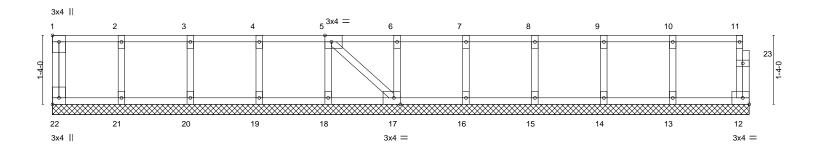
REACTIONS. All bearings 14-6-12.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 26, 15, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) All plates are 1.5x3 MT20 unless otherwise indicated.
- 2) Plates checked for a plus or minus 1 degree rotation about its center.
- 3) Gable requires continuous bottom chord bearing.
- 4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 5) Gable studs spaced at 1-4-0 oc.
- 6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 7) CAUTION, Do not erect truss backwards.



Job	Truss	Truss Type	Qty	Ply	Lot 5 Overhills Creek
					165027752
J0424-2239	ET4	GABLE	1	1	
					Job Reference (optional)

8.430 s Jan 6 2022 MiTek Industries, Inc. Fri Apr 19 07:13:43 2024 Page 1 ID:sDGgqS?97a5hnuyVu1sqZuzPsQT-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

0₁1₁8

Scale = 1:22.3

	1-4-0	2-8-0	4-0-0	5-4-0	6-8-0	8-0-0	1	9-4-0	1	10-8-0	12-0-0	13-5-12
	1-4-0	1-4-0	1-4-0	1-4-0	1-4-0	1-4-0	-	1-4-0	1	1-4-0	1-4-0	1-5-12
Plate Of	fsets (X,Y)	[1:Edge,0-1-8], [5:0-1	1-8,Edge], [17:	0-1-8,Edge], [22:	Edge,0-1-8]							
LOADIN	IG (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DO	L 1.00	TC	0.07	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.01	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Inc	cr YES	WB	0.03	Horz(CT)	0.00	12	n/a	n/a		
BCDL	5.0	Code IRC201	5/TPI2014	Matri	x-S						Weight: 63 lb	FT = 20%F, 11%E
LUMBE	R-					BRACING-						

2x4 SP No.1(flat) TOP CHORD BOT CHORD 2x4 SP No.1(flat) **WEBS** 2x4 SP No.3(flat) **OTHERS**

2x4 SP No.3(flat)

BRACING-TOP CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins,

except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 13-5-12.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 22, 12, 21, 20, 19, 18, 17, 16, 15, 14, 13

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

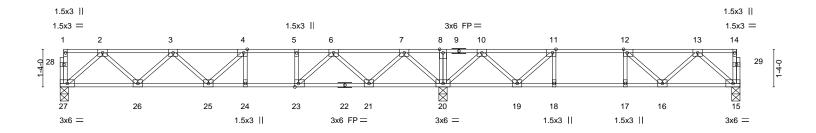
NOTES-

- 1) All plates are 1.5x3 MT20 unless otherwise indicated.
- 2) Plates checked for a plus or minus 1 degree rotation about its center.
- 3) Gable requires continuous bottom chord bearing.
- 4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 5) Gable studs spaced at 1-4-0 oc.
- 6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 7) CAUTION, Do not erect truss backwards.

Job	Truss	Truss Type	Qty	Ply	Lot 5 Overhills Creek
			l		165027753
J0424-2239	F1	Floor	11	1	
					Job Reference (optional)

Fayetteville, NC - 28314, Comtech, Inc.

8.430 s Jan 6 2022 MiTek Industries, Inc. Fri Apr 19 07:13:44 2024 Page 1 ID:sDGgqS?97a5hnuyVu1sqZuzPsQT-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f


Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing, Except:

except end verticals.

6-0-0 oc bracing: 20-21,19-20.

	13-6-12 13-6-12		24-1-0 10-6-4					
Plate Offsets (X,Y)	[4:0-1-8,Edge], [11:0-1-8,Edge], [12:0-1	-8,Edge], [23:0-1-8,Edge]			10-0	7-4		
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.48 BC 0.72 WB 0.35 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.11 24-25 -0.15 24-25 0.03 15	I/defI >999 >999 n/a	L/d 480 360 n/a	PLATES MT20 Weight: 124 lb	GRIP 244/190 FT = 20%F. 11%E

BOT CHORD

LUMBER-BRACING-TOP CHORD

TOP CHORD 2x4 SP No.1(flat) **BOT CHORD** 2x4 SP No.1(flat) WEBS 2x4 SP No.3(flat)

REACTIONS.

(size) 27=0-3-8, 20=0-3-8, 15=0-3-8 Max Grav 27=707(LC 10), 20=1437(LC 1), 15=526(LC 4)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-1214/0, 3-4=-1797/0, 4-5=-1862/0, 5-6=-1862/0, 6-7=-1020/0, 7-8=0/805,

8-10=0/805, 10-11=-649/81, 11-12=-1034/0, 12-13=-815/0

 $26 - 27 = 0/746,\ 25 - 26 = 0/1658,\ 24 - 25 = 0/1862,\ 23 - 24 = 0/1862,\ 21 - 23 = 0/1515,\ 20 - 21 = -92/531,$ BOT CHORD

 $19\hbox{-}20\hbox{=-}236/296,\ 18\hbox{-}19\hbox{=-}0/1034,\ 17\hbox{-}18\hbox{=-}0/1034,\ 16\hbox{-}17\hbox{=-}0/1034,\ 15\hbox{-}16\hbox{=-}0/556$ 2-27=-991/0, 2-26=0/650, 3-26=-617/0, 7-20=-1128/0, 7-21=0/744, 6-21=-769/0 6-23=0/646, 5-23=-276/0, 10-20=-858/0, 10-19=0/555, 11-19=-627/0, 13-15=-738/0,

13-16=0/361, 12-16=-297/43

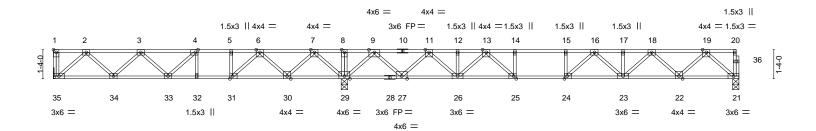
NOTES-

WFBS

- 1) Unbalanced floor live loads have been considered for this design.
- 2) All plates are 3x4 MT20 unless otherwise indicated.
- 3) Plates checked for a plus or minus 1 degree rotation about its center.
- 4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 5) CAUTION, Do not erect truss backwards.

Job	Truss	Truss Type	Qty	Ply	Lot 5 Overhills Creek
					165027754
J0424-2239	F2	Floor	3	1	
					Job Reference (optional)

1-3-0


8.430 s Jan 6 2022 MiTek Industries, Inc. Fri Apr 19 07:13:45 2024 Page 1 ID:sDGgqS?97a5hnuyVu1sqZuzPsQT-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

31-5-0

Structural wood sheathing directly applied or 2-2-0 oc purlins,

2-2-8 0-11-8

Scale = 1:52.8

	10.0					0.00							
		13-4-0	1	18-1-0									
Plate C	Offsets (X,Y)	[1:Edge,0-1-8], [4:0-1-8,Ed	8,Edge], [25:0)-1-8,Edge]], [31:0-1-8,Edge]								
LOADI	ING (psf)	SPACING-	2-0-0	CSI.		DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP		
TCLL	40.0	Plate Grip DOL	1.00	TC	0.89	Vert(LL)	-0.24 23-24	>904	480	MT20	244/190		
TCDL	10.0	Lumber DOL	1.00	BC	0.90	Vert(CT)	-0.32 23-24	>664	360				
BCLL	0.0	Rep Stress Incr	YES	WB	0.58	Horz(CT)	0.05 21	n/a	n/a				
BCDL	5.0	Code IRC2015/TPI2	2014	Matrix	-S					Weight: 164 lb	FT = 20%F, 11%E		

LUMBER-BRACING-

2x4 SP No.1(flat) TOP CHORD TOP CHORD

BOT CHORD 2x4 SP No.1(flat) except end verticals. WEBS 2x4 SP No.3(flat) **BOT CHORD** Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS. (size) 35=Mechanical, 29=0-3-8, 21=0-3-8 Max Grav 35=645(LC 3), 29=2028(LC 1), 21=872(LC 4)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

13-4-0

1-5-8

TOP CHORD 2-3=-1067/0, 3-4=-1506/127, 4-5=-1467/357, 5-6=-1467/357, 6-7=-507/978, 7-8=0/1953,

8-9=0/1953, 9-11=-412/262, 11-12=-1851/0, 12-13=-1851/0, 13-14=-2816/0, 14-15=-2816/0, 15-16=-2816/0, 16-17=-2552/0, 17-18=-2552/0, 18-19=-1561/0

34-35=0/668, 33-34=-5/1444, 32-33=-357/1467, 31-32=-357/1467, 30-31=-692/1051,

29-30=-1253/0, 27-29=-849/0, 26-27=-19/1227, 25-26=0/2345, 24-25=0/2816,

23-24=0/2795, 22-23=0/2162, 21-22=0/939

WEBS 2-35=-889/0, 2-34=-8/555, 3-34=-525/39, 7-29=-1265/0, 7-30=0/869, 6-30=-920/0,

6-31=0/888, 4-33=0/413, 4-32=-285/0, 5-31=-359/0, 19-21=-1248/0, 19-22=0/865, 18-22=-835/0, 18-23=0/530, 9-29=-1598/0, 9-27=0/1208, 11-27=-1166/0, 11-26=0/883,

13-26=-708/0, 13-25=0/867, 16-23=-331/0, 16-24=-264/291, 14-25=-427/0

NOTES-

BOT CHORD

- 1) Unbalanced floor live loads have been considered for this design.
- All plates are 3x4 MT20 unless otherwise indicated.
- 3) Plates checked for a plus or minus 1 degree rotation about its center.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 6) CAUTION, Do not erect truss backwards.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

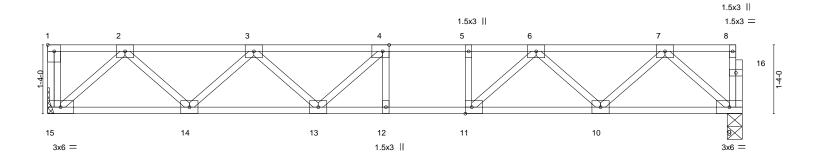
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty Ply Lot 5 Overhills Creek 165027755 Floor J0424-2239 F3 6

Comtech, Inc, Fayetteville, NC - 28314,

1-3-0

Job Reference (optional) 8.430 s Jan 6 2022 MiTek Industries, Inc. Fri Apr 19 07:13:45 2024 Page 1 ID:sDGgqS?97a5hnuyVu1sqZuzPsQT-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f


Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

1-5-12 0₁₁8

Scale = 1:22.4

Plate Offsets (X,Y)	[1:Edge,0-1-8], [4:0-1-8,Edge], [11:0-1-	P Edgol	13-5-12	
Flate Offsets (A, I)	[1.Luge,0-1-0], [4.0-1-0,Luge], [11.0-1-	b,∟ugej ⊺		
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP
TCLL 40.0	Plate Grip DOL 1.00	TC 0.36	Vert(LL) -0.10 12-13 >999 480	MT20 244/190
TCDL 10.0	Lumber DOL 1.00	BC 0.63	Vert(CT) -0.13 12-13 >999 360	
BCLL 0.0	Rep Stress Incr YES	WB 0.32	Horz(CT) 0.03 9 n/a n/a	
BCDL 5.0	Code IRC2015/TPI2014	Matrix-S		Weight: 71 lb FT = 20%F, 11%E

BRACING-

TOP CHORD

BOT CHORD

13-5-12

LUMBER-

2x4 SP No.1(flat) TOP CHORD BOT CHORD 2x4 SP No.1(flat)

WEBS 2x4 SP No.3(flat)

REACTIONS. (size) 15=Mechanical, 9=0-3-8 Max Grav 15=728(LC 1), 9=721(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-1244/0, 3-4=-1858/0, 4-5=-1958/0, 5-6=-1958/0, 6-7=-1230/0

14-15=0/764, 13-14=0/1700, 12-13=0/1958, 11-12=0/1958, 10-11=0/1680, 9-10=0/770 **BOT CHORD** WEBS 2-15=-1017/0, 2-14=0/668, 3-14=-633/0, 3-13=0/294, 4-13=-309/52, 7-9=-1022/0,

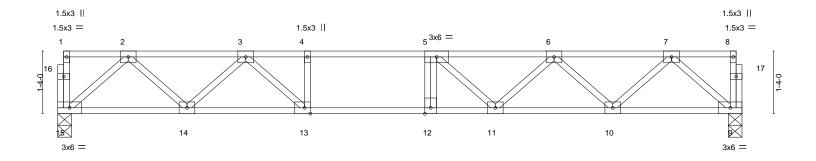
7-10=0/641, 6-10=-625/0, 6-11=0/529

NOTES-

- 1) Unbalanced floor live loads have been considered for this design.
- 2) All plates are 3x4 MT20 unless otherwise indicated.
- 3) Plates checked for a plus or minus 1 degree rotation about its center.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 6) CAUTION, Do not erect truss backwards.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPII Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job Truss Truss Type Qty Ply Lot 5 Overhills Creek 165027756 J0424-2239 Floor F4 5 Job Reference (optional) 8.430 s Jan 6 2022 MiTek Industries, Inc. Fri Apr 19 07:13:45 2024 Page 1

Fayetteville, NC - 28314, Comtech, Inc.

ID:sDGgqS?97a5hnuyVu1sqZuzPsQT-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

			14-6-12	<u> </u>
Plate Offsets (X,Y)	[13:0-1-8,Edge]			
LOADING (==f)	ODACING 0.00	001	DEEL :: (1> 1/4-# 1/4	DI ATEO ODID
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP
TCLL 40.0	Plate Grip DOL 1.00	TC 0.66	Vert(LL) -0.19 11-12 >908 480	MT20 244/190
TCDL 10.0	Lumber DOL 1.00	BC 0.87	Vert(CT) -0.24 11-12 >706 360	
BCLL 0.0	Rep Stress Incr YES	WB 0.36	Horz(CT) 0.03 9 n/a n/a	
BCDL 5.0	Code IRC2015/TPI2014	Matrix-S	, ,	Weight: 76 lb FT = 20%F, 11%E

14-6-12

LUMBER-**BRACING-**

2x4 SP No.1(flat) TOP CHORD TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, **BOT CHORD** 2x4 SP No.1(flat)

except end verticals. WEBS 2x4 SP No.3(flat) **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 15=0-3-8, 9=0-3-8 Max Grav 15=781(LC 1), 9=781(LC 1)

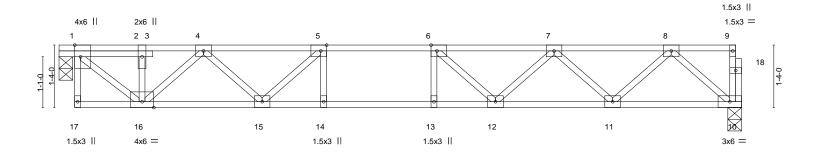
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-1353/0, 3-4=-2269/0, 4-5=-2269/0, 5-6=-2111/0, 6-7=-1373/0

BOT CHORD 14-15=0/838, 13-14=0/1868, 12-13=0/2269, 11-12=0/2269, 10-11=0/1892, 9-10=0/830 WEBS $2\text{-}15\text{=-}1113/0,\ 2\text{-}14\text{=-}0/717,\ 3\text{-}14\text{=-}717/0,\ 3\text{-}13\text{=-}0/721,\ 7\text{-}9\text{=-}1102/0,\ 7\text{-}10\text{=-}0/755,}$

6-10=-722/0, 6-11=0/380, 5-11=-424/5, 4-13=-340/0

NOTES-

- 1) Unbalanced floor live loads have been considered for this design.
- 2) All plates are 3x4 MT20 unless otherwise indicated.
- 3) Plates checked for a plus or minus 1 degree rotation about its center.
- 4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.


April 19,2024

Job	Truss	Truss Type	Qty	Ply	Lot 5 Overhills Creek
					165027757
J0424-2239	F5	Floor	1	1	
					Job Reference (optional)

8.430 s Jan 6 2022 MiTek Industries, Inc. Fri Apr 19 07:13:46 2024 Page 1 ID:sDGgqS?97a5hnuyVu1sqZuzPsQT-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

<u> </u>	4-0			14-2-12	
Plate Offs	sets (X,Y)	[1:0-3-0,Edge], [5:0-1-8,Edge], [6:0-1	-8,Edge]		
LOADING	G (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP
TCLL	40.0	Plate Grip DOL 1.00	TC 0.50	Vert(LL) -0.16 12-13 >999 480	MT20 244/190
TCDL	10.0	Lumber DOL 1.00	BC 0.82	Vert(CT) -0.20 12-13 >841 360	
BCLL	0.0	Rep Stress Incr YES	WB 0.51	Horz(CT) 0.02 10 n/a n/a	
BCDL	5.0	Code IRC2015/TPI2014	Matrix-S		Weight: 77 lb FT = 20%F, 11%E
					- · · · · · · · · · · · · · · · · · · ·

14-6-12

LUMBER-**BRACING-**

2x4 SP No.1(flat) TOP CHORD TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, BOT CHORD 2x4 SP No.1(flat) except end verticals.

WEBS 2x4 SP No.3(flat) **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 10=0-3-8, 1=0-3-8 Max Grav 10=766(LC 1), 1=772(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-815/0, 2-4=-815/0, 4-5=-1780/0, 5-6=-2201/0, 6-7=-2048/0, 7-8=-1340/0 **BOT CHORD** 15-16=0/1403, 14-15=0/2201, 13-14=0/2201, 12-13=0/2201, 11-12=0/1841, 10-11=0/814 WEBS $1 - 16 = 0/1061, \ 8 - 10 = -1081/0, \ 8 - 11 = 0/732, \ 7 - 11 = -696/0, \ 7 - 12 = 0/359, \ 6 - 12 = -410/19,$

4-16=-799/0, 4-15=0/525, 5-15=-664/0

NOTES-

Q-4-Q

- 1) Unbalanced floor live loads have been considered for this design.
- 2) All plates are 3x4 MT20 unless otherwise indicated.
- 3) Plates checked for a plus or minus 1 degree rotation about its center.
- 4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 5) Gap between inside of top chord bearing and first diagonal or vertical web shall not exceed 0.500in.
- 6) CAUTION, Do not erect truss backwards.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPII Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty Lot 5 Overhills Creek 165027758 J0424-2239 FG1 Floor Girder Job Reference (optional) Comtech, Inc, Fayetteville, NC - 28314, 8.430 s Jan 6 2022 MiTek Industries, Inc. Fri Apr 19 07:13:46 2024 Page 1 ID:sDGgqS?97a5hnuyVu1sqZuzPsQT-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f 3x4 =0-1-8 2 ⁴ 1.5x3 || ₀₋₁₋₈ _1.5x3_|| 3x4 = 1-3-0 Scale = 1:8.1 10 9 3x4 = 3x4 = 1.5x3 || 1.5x3 || 3x6 =3x6 =4-0-0 Plate Offsets (X,Y)--[2:0-1-8,Edge], [3:0-1-8,Edge], [9:0-1-8,0-1-8], [10:0-1-8,0-1-8] SPACING-**PLATES** GRIP LOADING (psf) DEFL. in (loc) I/defI L/d Plate Grip DOL **TCLL** 40.0 1.00 TC 0.33 Vert(LL) -0.02 7-8 >999 480 244/190 MT20 TCDL 10.0 Lumber DOL 1.00 BC 0.47 Vert(CT) -0.03 7-8 >999 360 **BCLL** 0.0 Rep Stress Incr NO WB 0.20 Horz(CT) 0.00 5 n/a n/a Code IRC2015/TPI2014 FT = 20%F, 11%E **BCDL** 5.0 Weight: 23 lb Matrix-S **BRACING-**TOP CHORD 2x4 SP No.1(flat) TOP CHORD Structural wood sheathing directly applied or 4-0-0 oc purlins, except end verticals.

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

LUMBER-

WEBS

BOT CHORD 2x4 SP No.1(flat)

2x4 SP No.3(flat) REACTIONS.

(size) 8=0-4-0, 5=0-3-8 Max Grav 8=615(LC 1), 5=458(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-701/0

BOT CHORD 7-8=0/701, 6-7=0/701, 5-6=0/701

3-5=-840/0, 2-8=-834/0 WEBS

NOTES-

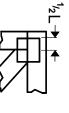
- 1) Unbalanced floor live loads have been considered for this design.
- 2) Plates checked for a plus or minus 1 degree rotation about its center.
- 3) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

LOAD CASE(S) Standard

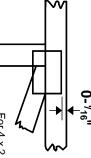
1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 5-8=-10. 1-4=-100

Concentrated Loads (lb) Vert: 2=-672

April 19,2024


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent bucking of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Symbols

PLATE LOCATION AND ORIENTATION

offsets are indicated and fully embed teeth Center plate on joint unless x, y Apply plates to both sides of truss Dimensions are in ft-in-sixteenths

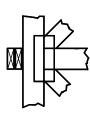
edge of truss. plates 0- 1/16" from outside For 4 x 2 orientation, locate

₹

connector plates. required direction of slots in This symbol indicates the

* Plate location details available in MiTek software or upon request

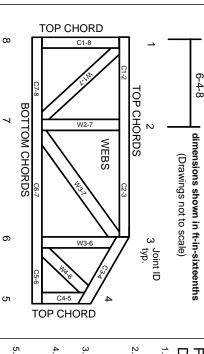
PLATE SIZE


to slots. Second dimension is the length parallel to slots. width measured perpendicular The first dimension is the plate

LATERAL BRACING LOCATION

by text in the bracing section of the output. Use T or I bracing if indicated. ndicated by symbol shown and/or

BEARING


Min size shown is for crushing only number/letter where bearings occur reaction section indicates joint (supports) occur. Icons vary but Indicates location where bearings

ANSI/TPI1: Industry Standards: National Design Specification for Metal

DSB-22:

Plate Connected Wood Trusses Installing, Restraining & Bracing of Metal Guide to Good Practice for Handling, Building Component Safety Information, Design Standard for Bracing. Plate Connected Wood Truss Construction.

Numbering System

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

Product Code Approvals

ICC-ES Reports:

ESR-1988, ESR-2362, ESR-2685, ESR-3282 ESR-4722, ESL-1388

Design General Notes

truss unless otherwise shown Trusses are designed for wind loads in the plane of the

established by others section 6.3 These truss designs rely on lumber values Lumber design values are in accordance with ANSI/TPI 1

© 2023 MiTek® All Rights Reserved

MiTek

MiTek Engineering Reference Sheet: MII-7473 rev. 1/2/2023

General Safety Notes

Damage or Personal Injury Failure to Follow Could Cause Property

- Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI
- Ņ Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.
- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- Cut members to bear tightly against each other

'n

- joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1. Place plates on each face of truss at each
- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.

œ

Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.

9

- Camber is a non-structural consideration and is the camber for dead load deflection responsibility of truss fabricator. General practice is to
- 11. Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- Lumber used shall be of the species and size, and in all respects, equal to or better than that
- Top chords must be sheathed or purlins provided at spacing indicated on design.
- Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others
- Do not cut or alter truss member or plate without prior approval of an engineer.
- Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable project engineer before use. environmental, health or performance risks. Consult with
- 19. Review all portions of this design (front, back, words is not sufficient. and pictures) before use. Reviewing pictures alone
- Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- 21. The design does not take into account any dynamic or other loads other than those expressly stated.