

Trenco 818 Soundside Rd Edenton, NC 27932

Re: J0425-1937 Lot 19 Turlington Acres

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Comtech, Inc - Fayetteville.

Pages or sheets covered by this seal: I73175046 thru I73175062

My license renewal date for the state of North Carolina is December 31, 2025.

North Carolina COA: C-0844

May 2,2025

Galinski, John

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	Lot 19 Turlington Acres	
J0425-1937	A01	Common Supported Gable	1	1	- Job Reference (optional)	173175046

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Thu May 01 12:22:07

Page: 1

24

4x6=

ID:xCjF5sS_An5AZx8iaaJP_qzvAPL-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f -0-10-8 21-6-0 43-0-0 0-10-8 21-6-0 21-6-0 6x6= 13 12 51 12 14 仚 11 15 4x8 🚅 10 16 4x8≈ 9 17 ¹⁸ 19 7 ⁸ \mathbb{T} 9-8-2 9-8-0 6 20 5 21 22 Δ ⁵² 23 3 2 0-8-8 _____ 44 42 3988 37 34 32 3029 28 27 45 43 41 40 36 33 31 26 25 35 4x6= 4x8= 4x8=

Scale - 1:75 9

Scale = 1:75.9																
Loading TCLL (roof) TCDL BCLL BCDL	2	psf) 20.0 0.0 0.0* 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-(1.15 1.15 YES IRC2		Ma	CSI TC BC WB Matrix-AS	0.05 0.05 0.12	- (-)	in n/a n/a 0.00		loc) - 24	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 348 lb	
	No.2(flat) Structural woo Structural woo T-Brace: Fasten (2X) 1 of web with 10 o.c., with 3in m Brace must of (size) 2=4 26= 29= 33= 36= 40= 43= 46= Max Horiz 2=1 Max Uplift 2=- 28= 31= 33= 36= 31= 31= 31= 31= 31= 31= 31= 31	C and I Dd (0.1 Dd (0.1 Dd (0.1 Dd (0.1 33-0-0, 43-0-0 43-0-0 43-0-0 43-0-0 43-0-0 43-0-0 135 (LC 2 (LC))))))))))))))))))))))))))))))))))))	t* 0-0,0-0,0-0:2x4 SF athing directly applie athing directly applie 2x4 SPF No.2 - 13-3 12-36, 14-34 braces to narrow ed 31*x3*) nails, 6in m end distance. 30% of web length. 24=43-0-0, 25=43-0 0, 27=43-0-0, 28=43- 0, 31=43-0-0, 28=43- 0, 31=43-0-0, 28=43- 0, 37=43-0-0, 32=43- 0, 41=43-0-0, 42=443- 0, 44=43-0-0, 42=443- 0, 44=43-0-0, 45=43- 0, 44=43-0-0 C 12), 46=115 (LC 12, 13), 22=-63 (LC 13), C 13), 32=-29 (LC 13 C 13), 32=-29 (LC 13 C 12), 40=-28 (LC 13) C 12), 40=-28 (LC 13) C 12), 42=-28 (LC 13) C 12), 46=-2 (LC 13)	d. d. 55, ge -0, 0-0, 0-0, 0-0, 0-0, 0-0, 0-0, 0-0, 2) 3), 2), 2), 2), 2),	FORCES TOP CHORD BOT CHORD	(II T 1 4 7 1 1 1 1 2 2 4 4 3 3	27=169 29=160 32=160 36=160 39=160 41=160 43=168	(LC 26), (LC 26), (LC 26), (LC 26), (LC 21), ((LC 25), (LC 25),	26=116 (LC 28=158 (LC 33=160 (LC 33=162 (LC 2 35=151 (LC 37=162 (LC 1 42=158 (LC 44=120 (LC 4 44=120 (LC 44=175 (LC 0n/Maximum =-104/53, 7=-62/119, 10-11=-102 31/341, 20/309, 3/212, 119, 5, 22-23=-70 62, 162, 162,	1), 1), 1), 6), 22), 25),), 1), 1), 1), 1), (259,	1) 2) 3)	TES Unb: Wind Vasc Cat. Corrr 43-00 POL Trus only see or cc	alanced design. d: ASCE d=103m II; Exp her(3R) i-0 zone tions sh .=1.60 s desig . For st Standa onsult q	11-37 9-40= 5-43= 15-33 17-31 20-28 22-26 1 roof li 5 7-16 (c; Enc -0-8-7 21-6-(c; enc -0-8-7 21-6-(c); c-C f isown; l need fo uuds ex rd Indu	-123/101, 4-44=- -183/199, 14-34= =-122/109, 16-34= =-120/97, 19-29= =-120/97, 21-27= =-99/81, 23-25=- ive loads have be ; Vult=130mph (3- CDL=6.0psf; BCD closed; MWFRS (to 3-6-0, Exterior to to 25-10-13, Ext or members and 1 Lumber DOL=1.60 r wind loads in the posed to wind (no ustry Gable End D	=-120/98, 20/97, 6-42=-120/97, 100/82, 120/58, =-120/98, 120/97, 123/100, 187/221 ten considered for -second gust) □L=6.0psf; h=15ft; envelope) and C-C -(2N) 3-6-0 to 21-6-0, reiror(2N) 25-10-13 to forces & MWFRS for

43-0-0

May 2,2025

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job J0425-1937	Truss A01	Truss Type Common Supported Gable	Qty 1	Ply 1	Lot 19 Turlington Acres - Job Reference (optional)	173175046
Comtech, Inc, Fayetteville, NC - 2	28314,	Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Thu May 01 12:22:07				Page: 2

All plates are 2x4 MT20 unless otherwise indicated. 4)

Gable requires continuous bottom chord bearing. 5)

- 6) Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom 7)
- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 8) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom

chord and any other members. 9) All bearings are assumed to be SP No.1 crushing capacity of 565 psi.

10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 2 lb uplift at joint 2, 12 lb uplift at joint 36, 34 lb uplift at joint 37, 29 lb uplift at joint 39, 28 lb uplift at joint 40, 29 lb uplift at joint 41, 28 lb uplift at joint 42, 31 lb uplift at joint 43, 14 lb uplift at joint 44, 67 lb uplift at joint 45, 6 lb uplift at joint 34, 35 lb uplift at joint 33, 29 lb uplift at joint 32, 28 lb uplift at joint 31, 29 lb uplift at joint 29, 28 lb uplift at joint 28, 31 lb uplift at joint 27, 16 lb uplift at joint 26, 63 lb uplift at joint 25 and 2 lb uplift at joint 2.

- 11) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 12) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

LOAD CASE(S) Standard

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Thu May 01 12:22:07 ID:xCjF5sS_An5AZx8iaaJP_qzvAPL-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 19 Turlington Acres	
J0425-1937	A02	Common	5	1	- Job Reference (optional)	173175047

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Thu May 01 12:22:08 ID:iB7t_85o5bhCGEe6_9FfiXzvAxN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

-0-10-8 0-10-8 43-0-0 10-10-2 21-6-0 32-1-14 10-7-14 10-10-2 10-7-14 10-10-2 5x8= 5 12 51 22 23 2x4 4 4x8 🚅 4x8. 2x4、 6 4 3 9-8-2 9-8-0 24 21 8 0-5-8 ⊢ 8-9 9-• 25 26 14 13 1**2**7 28 29 301 10 9 31 32 4x4 **n** 4x4= 4x4= 5x8= 6x6= 6x6= 4x4 II 4x8 =4x4 u 4x4 II 17-6-0 16-0-0 28-5-10 30-9-0 2-11-10 2-3-6 14-6-6 25-6-0 43-0-0 14-6-6 8-0-0 12-3-0 1-5-10 1-6-0

Scale = 1:77.6

Plate Offsets (X, Y): [2:0-2-11,0-3-0], [8:0-2-11,0-3-0]

- 1010 0110010	(,,, ,). [=:0 =,0 0 0]; [6:6 = 1:];6 6 6]										
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-AS	0.39 0.89 0.42	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.26 -0.50 0.10 0.10	(loc) 10-17 10-14 8 14-20	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 281 lb	GRIP 244/190 FT = 25%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS	2x6 SP No.1 2x4 SP No.2 Structural wood she Structural wood she (size) 2=0-3-8, 8 Max Horiz 2=115 (LC Max Uplift 2=-18 (LC Max Grav 2=2052 (L (Ib) - Maximum Com Tension 1-2=0/16, 2-3=-4012 5-7=-3662/412, 7-8=	athing directly applie 3=0-3-8 C 12) C 12), 8=-9 (LC 13) C 2), 8=2016 (LC 2) pression/Maximum 2/452, 3-5=-3661/406 -4013/459 14=-102/2440,	capacity of 7) One RT3, truss to b This conn lateral for ed. 8) This truss structural chord and the bottor LOAD CASE	A MiTek connectors earing walls due to U ection is for uplift or ces. design requires tha wood sheathing be 1 1/2" gypsum sheet n chord.	recomme JPLIFT at Ily and do It a minim applied di	nded to conn jt(s) 8 and 2. es not consic um of 7/16" rectly to the t	ler					
this desig 2) Wind: AS Vasd=10: Cat. II; Ex Exterior(2 43-0-0 zo reactions DOL=1.6(3) 200.0lb A from left e 4) This truss chord live 5) * This trus on the bo	CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; B4 xp C; Enclosed; MWFR 2E) -0-8-7 to 3-8-6, Inter 2R) 21-6-0 to 25-10-13, nne;C-C for members ar shown; Lumber DOL="	(3-second gust) CDL=6.0psf; h=15ft; S (envelope) and C- rior (1) 3-8-6 to 21-6 Interior (1) 25-10-13 d forces & MWFRS 1.60 plate grip he bottom chord, 21- oints, 5-0-0 apart. r a 10.0 psf bottom th any other live load or a live load of 20.0 where a rectangle	C -0, 8 to for -6-0 ds. ppsf							and	SEA 2867	EER OLIV

3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

May 2,2025

Page: 1

L. GAL

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 19 Turlington Acres	
J0425-1937	A03	Common	1	1	- Job Reference (optional)	173175048

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Thu May 01 12:22:08 ID:iB7t_85o5bhCGEe6_9FfiXzvAxN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

5-4-11

-0-10-8 21-6-0 31-8-5 11-3-11 43-0-0 0-10-8 11-3-11 10-2-5 10-2-5 11-3-11 6x6= 5 12 51 21 2x4 🎣 22 4x8 -4x8. 2x4, 6 4 3 7 9-8-2 9-8-0 23 8 ł H Ň Ø 24 25 13 12 26 27 10 928 29 11 4x4= 4x4= 5x8= 6x6= 6x6= 4x8= 14-8-2 28-3-14 43-0-0 22-11-4

8-3-2

Scale = 1:75.9

00010 - 1.70.0													
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.42	Vert(LL)	-0.36	10-19	>678	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.82	Vert(CT)	-0.68	10-19	>354	240		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.42	Horz(CT)	0.08	8	n/a	n/a		
BCDL	10.0	Code	IRC2021	/TPI2014	Matrix-AS		Wind(LL)	0.13	10-19	>999	240	Weight: 262 lb	FT = 25%
	(size) 2=0-3-8, 8 Max Horiz 2=115 (LC Max Uplift 2=-126 (L Max Grav 2=1804 (L 11=344 (L	athing directly applie 3=0-3-8, 11=0-3-8 C 12) C 12), 8=-119 (LC 1: LC 2), 8=1745 (LC 2) LC 2)	ed. LO 3)	truss to beau This connect lateral forces This truss de structural wo	esign requires t bod sheathing b /2" gypsum she chord.	o UPLIFT at only and do that a minim be applied di	ift(s) 2, 8, an es not consid um of 7/16" irectly to the	id 11. der top					
FORCES	(lb) - Maximum Com Tension	pression/Maximum											
TOP CHORD	1-2=0/16, 2-3=-3307 5-7=-2926/665, 7-8=	,),										
BOT CHORD	2-13=-531/2998, 11- 10-11=-257/1986, 8-	-13=-257/1986,											
WEBS	3-13=-687/339, 5-13	3=-128/1177,											

NOTES

1) Unbalanced roof live loads have been considered for this design.

5-10=-125/1081, 7-10=-691/340

14-8-2

- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -0-8-7 to 3-8-6, Interior (1) 3-8-6 to 21-6-0, Exterior(2R) 21-6-0 to 25-10-13, Interior (1) 25-10-13 to 43-0-0 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 4) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- All bearings are assumed to be SP No.1 crushing 5) capacity of 565 psi.

May 2,2025

Page: 1

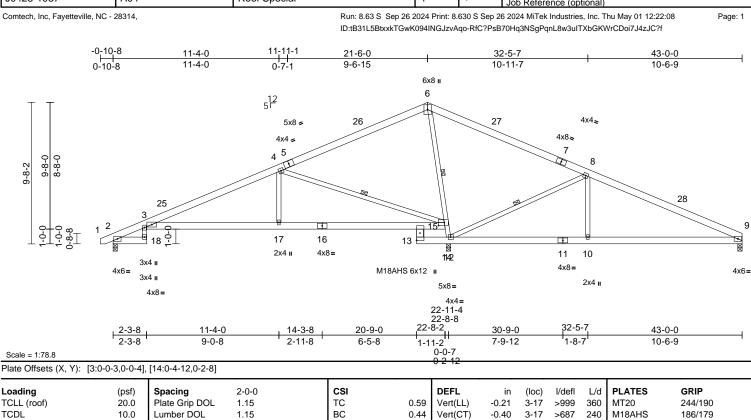
GA

(IIIIIII)

SEAL

28677

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


818 Soundside Road Edenton, NC 27932

HIN SOL

ORT

14-8-2

Job	Truss	Truss Type	Qty	Ply	Lot 19 Turlington Acres	
J0425-1937	A04	Roof Special	4	1	- Job Reference (optional)	173175049

LUMBER
LOWIDER
TOP CHORD

BCLL

BCDL

LOWIDER	
TOP CHORD	2x6 SP No.1
BOT CHORD	2x6 SP No.1 *Except* 18-3:2x4 SP No.2
WEBS	2x4 SP No.2
BRACING	
TOP CHORD	Structural wood sheathing directly applied.
BOT CHORD	Structural wood sheathing directly applied.
WEBS	1 Row at midpt 6-12, 4-14, 8-12
REACTIONS	(size) 2=0-3-8, 9=0-3-8, 12=0-3-8
	Max Horiz 2=115 (LC 12)
	Max Uplift 2=-62 (LC 12), 9=-147 (LC 13),
	12=-122 (LC 12)
	Max Grav 2=539 (LC 25), 9=510 (LC 26),
	12=2666 (LC 1)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=0/16, 2-3=-294/118, 3-4=-407/196,
	4-6=-45/1144, 6-8=-54/1398, 8-9=-514/649
BOT CHORD	2-18=-84/175, 3-18=-50/239, 13-15=-180/0,
	12-13=-823/182, 10-12=-549/415,
	9-10=-549/415, 3-17=-91/342,
	15-17=-91/341, 14-15=-256/1137
WEBS	4-17=0/417, 6-14=-1480/295,
	12-14=-1965/430, 8-10=0/453,
	4-14=-1348/330, 8-12=-1249/349
NOTEO	

0.0*

10.0

Rep Stress Incr

Code

YES

IRC2021/TPI2014

- NOTES
- 1) Unbalanced roof live loads have been considered for this design
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -0-8-7 to 3-8-6, Interior (1) 3-8-6 to 21-6-0, Exterior(2R) 21-6-0 to 25-10-13, Interior (1) 25-10-13 to 43-0-0 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) All plates are MT20 plates unless otherwise indicated.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

0.90

Horz(CT)

Wind(LL)

0.10

0.19

12

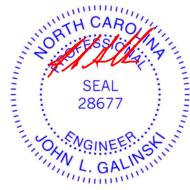
3-17

n/a n/a

240

Weight: 276 lb

FT = 25%


>999

WB

Matrix-AS

- * This truss has been designed for a live load of 20.0psf 5) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SP No.1 crushing 6) capacity of 565 psi.
- 7) One RT3A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2, 12, and 9. This connection is for uplift only and does not consider lateral forces.
- 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

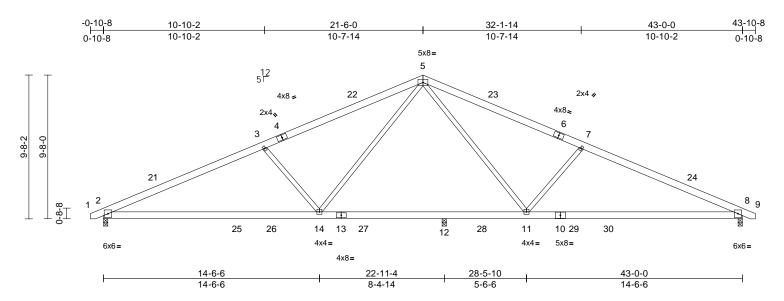
May 2,2025

9

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent bucking of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss		Truss Type		Qty	Ply	l	_ot 19 Tur	lington A	Acres		1704750	50
J0425-1937	A05		Roof Special		2	1		Job Refere	ence (op	otional)		1731750	50
Comtech, Inc, Fa	yetteville, NC - 28314,				Sep 26 2024 Prin xkTGwK094INGJ						hu May 01 12:22:08	Р	age: 1
				10.10312301	xx16wR094IN65	20440-110	F 5D70	n iqənəyr q	neowour	TADGIN	WCD0173423C !1		
	-0-10-8 	<u>11-4-0</u> 11-4-0	11-11-1 0-7-1	<u>21-6-0</u> 9-6-15			<u>32-5-</u> 10-11-				<u>43-0-0</u> 10-6-9		43-10-8
	0-10-0		0-7-1		6x8 II								0-10-0
			12 5F		6								
			5x8 =	27		\sim	28		4>	(4 <u>×</u>			
			4x4 =						4x8≈				
			4 5					\sim	7	8			
9-8-2 9-8-0 8-8-0			T		8					7	_		
				R				./					
	3	26				/		*/				29	
0-0-0 0-0-0		⊴ 19 ^o ,⊥	18 1										⁹ 10
⊥ ÷⊥÷ č				<8=	14 <u>8</u> 1152				12 1	1			
	4x6= 3x4 3x4			M18/	AHS 6x12 II				4x8=				4x6=
		x8=			5x8				2	x4 II			
					22-11								
	2-3-8	11-4-0	14-3-8	20-9-0	22-8- 22-8-2	:	30-9-(32-5-7	7	43-0-0		
Scale = 1:78.8	2-3-8	9-0-8	2-11-8	6-5-8	1-11-2 0-0-7		7-9-12	2	1-8-7	1	10-6-9		I
	(, Y): [3:0-0-3,0-0-4]	, [15:0-4-12,0-2-8]			021	2							
_oading	(psf)	Spacing	2-0-0	CSI	D	EFL	ir	n (loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof) TCDL	20.0 10.0	Plate Grip DOL Lumber DOL	1.15 1.15	TC BC		ert(LL) ert(CT)	-0.21 -0.40		>999 >687	360 240	MT20 M18AHS	244/190 186/179	
BCLL	0.0*	Rep Stress Incr	YES	WB	0.90 H	orz(CT)	0.10) 13	n/a	n/a			
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-AS		ind(LL)	0.19	9 3-18	>999	240	Weight: 278 lb	FT = 25%	
LUMBER	2x6 SP No.1		chord live	has been designe load nonconcurre	nt with any oth	er live load							
BOT CHORD WEBS	2x6 SP No.1 *Excep 2x4 SP No.2	pt* 19-3:2x4 SP No.2		s has been desigi tom chord in all a			psf						
BRACING		- deline allocado a contra	abord and	all by 2-00-00 wide any other member		n the botto	m						
FOP CHORD BOT CHORD		eathing directly applied eathing directly applied	I. C) All beering	gs are assumed to		ushing							
NEBS REACTIONS	1 Row at midpt (size) 2=0-3-8.	6-13, 4-15, 8-13 9=0-3-8, 13=0-3-8	7) One RT3/	A MiTek connector									
1	Max Horiz 2=111 (L	C 12)	This conn	earing walls due to ection is for uplift									
	13=-119			ces. design requires th	nat a minimum	of 7/16"							
1	Max Grav 2=539 (L 13=2665	C 25), 9=553 (LC 26), (LC 1)		wood sheathing b 1/2" gypsum she									
ORCES	(lb) - Maximum Con Tension	npression/Maximum	the bottor	n chord.		,							
FOP CHORD	1-2=0/16, 2-3=-294	/125, 3-4=-407/210, -49/1398, 8-9=-511/65		S) Standard									
	9-10=0/16												
BOT CHORD	13-14=-823/184, 11		0,										
	9-11=-550/412, 3-1 16-18=-90/341, 15-											11111	
WEBS	4-18=0/417, 6-15=- 13-15=-1965/416, 8	,								S	RTHUA	HOLI	4
10750	4-15=-1348/328, 8-									i e	AT	Mr.	1º
		e been considered for							-		P		11
this design. 2) Wind: ASC	E 7-16; Vult=130mpt	n (3-second gust)							Ξ		SEA	L	Ξ
		CDL=6.0psf; h=15ft; (envelope) and C-C									2867	/	Ξ
Exterior(2E) -0-8-7 to 3-8-6, Inte	erior (1) 3-8-6 to 21-6-0),							Ξ.	SEA 2867	Ja in	in the
43-8-7 zon	e;C-C for members a	, Interior (1) 25-10-13 and forces & MWFRS f								11,	OKNGINI	E	11 A
reactions s DOL=1.60	hown; Lumber DOL=	1.60 plate grip									L.G.	ALIM	
	re MT20 plates unles	ss otherwise indicated.									- minn	m	
											Ma	y 2,2025	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


818 Soundside Road Edenton, NC 27932

6

Job	Truss	Truss Type	Qty	Ply	Lot 19 Turlington Acres	
J0425-1937	A06	Common	1	1	- Job Reference (optional)	173175051

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Thu May 01 12:22:08 ID:pHcUBcwKoMW0EiisJ5dEySzvAWU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

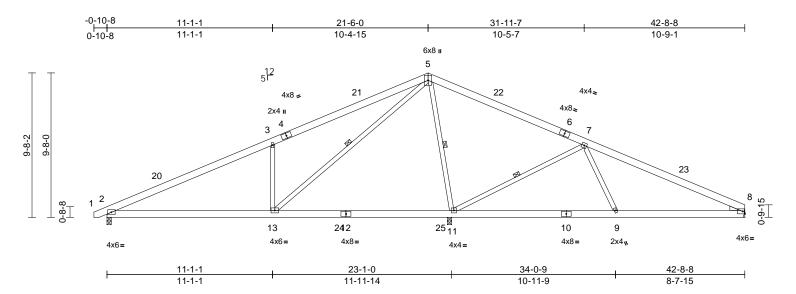
Page: 1

Scale = 1:77.5

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-AS	0.41 0.80 0.43	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.33 -0.64 0.08 0.12	(loc) 11-20 11-20 8 11-20	l/defl >723 >374 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 264 lb	GRIP 244/190 FT = 25%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x6 SP No.1 2x6 SP No.1 2x4 SP No.2 Structural wood she (size) 2=0-3-8, 8 Max Horiz 2=-111 (L Max Uplift 2=-128 (L Max Grav 2=1787 (L 12=365 (L	athing directly applie 3=0-3-8, 12=0-3-8 C 13) C 12), 8=-131 (LC 13 LC 2), 8=1763 (LC 2)	truss to be This conn lateral for 7) This truss d. structural chord and the bottor LOAD CASE(3)	design requires th wood sheathing be 1/2" gypsum shee n chord.	UPLIFT at only and do at a minim applied di	jt(s) 2, 8, an es not consid um of 7/16" rectly to the	d 12. Jer top					
FORCES	(lb) - Maximum Com Tension	pression/Maximum										
TOP CHORD	1-2=0/16, 2-3=-3299 5-7=-2882/654, 7-8=											
BOT CHORD	2-14=-527/2994, 12- 11-12=-241/1960, 8-											
WEBS	5-14=-114/1146, 7-1 5-11=-111/1042, 3-1	1=-700/342,										
NOTES												
1) Unbalance	ed roof live loads have	been considered for										

- this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -0-8-7 to 3-8-6, Interior (1) 3-8-6 to 21-6-0, Exterior(2R) 21-6-0 to 25-10-13, Interior (1) 25-10-13 to 43-8-7 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 5) All bearings are assumed to be SP No.1 crushing capacity of 565 psi.

May 2,2025



TRENCO A MiTek Affiliate 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Lot 19 Turlington Acres	
J0425-1937	A07	Common	6	1	- Job Reference (optional)	173175052

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Thu May 01 12:22:09 ID:LRhEpKx0?A55Jc70Ek7xMAzvAVA-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:77.1

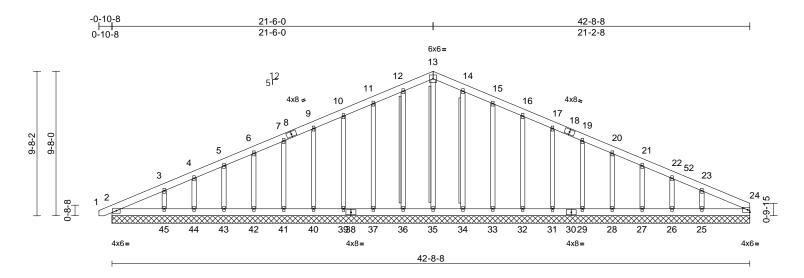
-		1			· · · · · · · · · · · · · · · · · · ·		· · · · · ·						
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-AS	0.40 0.44 0.52	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.17 -0.25 0.01 0.07	2	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 273 lb	GRIP 244/190 FT = 25%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x6 SP No.1 2x4 SP No.2 Right: 2x4 SP No.3 Structural wood she Structural wood she 1 Row at midpt	.C 12), 8=-99 (LC 13) .C 12) C 27), 8=645 (LC 28),	d. 6) -3-8 , 8)	on the bottor 3-06-00 tall b chord and ar Bearings are capacity of 5 of 565 psi. Refer to gird Provide mec bearing plate 8. O One RT3A M truss to bear This connect lateral forces	has been designed in chord in all area by 2-00-00 wide wi hy other members, assumed to be: J i65 psi, Joint 11 SI er(s) for truss to tr shanical connection e capable of withst MiTek connectors r ing walls due to U tion is for uplift onl s. sign requires that	s where ill fit betw, with BC loint 2 SI P No.1 c uss conr n (by oth canding S recomme PLIFT at y and do	a rectangle veen the bott CDL = 10.0psi P No.1 crushin rushing capa nections. ers) of truss t 90 lb uplift at j ended to conrr i jt(s) 2 and 1 es not consid	om f. ing city to joint nect 1.					
FORCES	(lb) - Maximum Com Tension		-,	structural wo	ood sheathing be a	applied d	irectly to the						
TOP CHORD	5-7=0/578, 7-8=-888		,	the bottom c OAD CASE(S)									
WEBS	9-11=-131/620, 8-9=	=-130/722 1=-1054/349, 7-9=0/	447,										
this design 2) Wind: ASC Vasd=103	ed roof live loads have	been considered for (3-second gust) CDL=6.0psf; h=15ft;	C								View	OR CA	ROUNT

Exterior(2E) -0-8-7 to 3-8-6, Interior (1) 3-8-6 to 21-6-0, Exterior(2R) 21-6-0 to 25-10-13, Interior (1) 25-10-13 to 42-8-8 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. STITUTION STATE The second s L. GA (IIIIIII) May 2,2025

SEAL

28677


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 19 Turlington Acres	
J0425-1937	A08	Common Supported Gable	1	1	- Job Reference (optional)	173175053

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Thu May 01 12:22:09 ID:jD3PZTd8pN991DPmWV73d_zvAUI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:77.1

Loading(psTCLL (roof)20TCDL10	.0 .0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15		CSI TC BC	0.	05 05	Vert(CT)	in n/a n/a	·	oc) - -	l/defl n/a n/a	L/d 999 999	PLATES MT20	GRIP 244/190
BCLL 0 BCDL 10		Rep Stress Incr Code	YES IRC20	21/TPI2014	WB Matrix-		12	Horz(CT)	0.00		24	n/a	n/a	Weight: 347 lb	FT = 25%
No.2(flat) BRACING TOP CHORD BOT CHORD WEBS T-Brace: Fasten (2X) T a of web with 10d o.c.,with 3in min Brace must co REACTIONS (size) 2=42 26=4 29=4 26=4 29=4 40=4 40=4 43=4 Max Horiz 2=11 Max Uplift 2=-2 26=-7 28=-7 31=-7 33=-7 33=-7 33=-7 34=-7	I sheat 2 : 1: 2: 2: 3: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1:	* 0-0,0-0,0-0:2x4 SP thing directly applied thing directly applied (x4 SPF No.2 - 13-3) 2-36, 14-34 vraces to narrow edg 1*x3") nails, 6in end distance. % of web length. 24=42-8-8, 25=42-8 31=42-8-8, 32=42-8 31=42-8-8, 32=42-8 41=42-8-8, 42=42-8 41=42-8-8, 42=42-8 42=42-8-8, 42=42-8, 42=42-8, 42=42-8-8, 42=42-8, 42=42-8, 42=42-8, 42=42-8, 42=42-8, 42=42-8, 42=42-8, 42=42-8, 42=42-8, 42=42-8, 42=42-8, 42=42-8, 42=42-8, 42=42-8,	I. J. 5, ge 8, 3-8,	FORCES TOP CHORD BOT CHORD	(lb) - Max Tension 1-2=0/16, 4-5=-89/6 7-9=-70/1 11-12=-11 13-14=-11 15-16=-11 17-19=-7 20-21=-5 23-24=-12 2-45=-36, 43-44=-3 41-42=-3 39-40=-3 36-37=-3 34-35=-4	27=167 (LC 29=160 (LC 32=160 (LC 34=160 (LC 39=160 (LC 39=160 (LC 41=160 (LC 43=168 (LC 45=271 (LC 49=120 (LC imum Compr 2-3=-141/55 56, 5-6=-76/84 67, 9-10=-87, 21/311, 12-13 32/343, 14-15 03/261, 16-17 0/167, 19-20= 1/74, 21-22=-	26), 26), 26), 26), 26), 26), 26), 26),	26=128 (LC 28=159 (LC 31=160 (LC 33=162 (LC 2 35=150 (LC 37=162 (LC 40=160 (LC 1 42=158 (LC 44=120 (LC 46=176 (LC 0n/Maximum =-106/53, 7=-63/121, , 10-11=-103, 32/343, 21/311, 7/214, 121, 6, 22-23=-70, 54, 154, 154, 154, 154, 154, 154, 154,	1), 1), 1), (6), 22), 25),), 1), 1), 1), 1), 1), (/261,	1) 2) 3)	TES Unbacthis of Winc Vasc Cat. Corm Corm 42-8 react DOL Trus: only. see \$ or co	alancec design. 1: ASCE d=103m II; Exp ler(3E) eer(3E) eer(3E) eer(3R) -8 zone tions sf =1.60 s desig . For st Standa	11-37 9-40= 5-43= 3-45= 17-31 17-31 20-28 22-26 d roof l E 7-166 hph; Tri C; Enr- 0-8-7 21-6-(c; C-C t hown; uned fc tuds e: rd Indu	123/101, 4-44=- 183/199, 14-34= =-122/109, 16-32 =-120/97, 19-29= =-120/97, 21-27= =-103/83, 23-25= ive loads have be ; Vult=130mph (3 CDL=6.0psf; BCD closed; MWFRS (to 3-6-0, Exterior 0 to 25-10-13, Ext for members and Lumber DOL=1.6 or wind loads in th xposed to wind (n ustry Gable End I)=-120/98, 20/97, 6-42=-120/97, 100/82, :-120/58, :=-120/98, :-120/97, :-122/100, :-176/223 een considered for -second gust) 9L=6.0psf; h=15ft; envelope) and C-C r(2N) 3-6-0 to 21-6-0, terior(2N) 25-10-13 to forces & MWFRS for

May 2,2025

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and RCSI Building Component Safety (Information, available from the Structural Building Component Association (www shearcomponent Safety Information, available from the Structural Building Component Association (www shearcomponent Safety Information, available from the Structural Building Component Association (www shearcomponent Association) (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

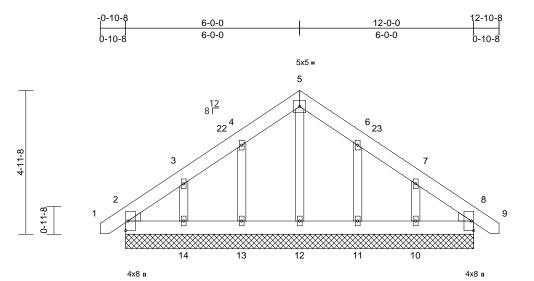
Job J0425-1937	Truss A08	Truss Type Common Supported Gable	Qty 1	Ply 1	Lot 19 Turlington Acres - Job Reference (optional)	173175053
Comtech, Inc, Fayetteville, NC - 2	28314,	Run: 8.63 S Sep 26 2	2024 Print: 8.	630 S Sep 2	6 2024 MiTek Industries, Inc. Thu May 01 12:22:09	Page: 2

All plates are 2x4 MT20 unless otherwise indicated. 4)

Gable requires continuous bottom chord bearing. 5)

- 6) Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom 7)
- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 8) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
- chord and any other members. 9) All bearings are assumed to be SP No.1 crushing capacity of 565 psi.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 2 lb uplift at joint 2, 12 lb uplift at joint 36, 34 lb uplift at joint 37, 29 lb uplift at joint 39, 28 lb uplift at joint 40, 29 lb uplift at joint 41, 28 lb uplift at joint 42, 31 lb uplift at joint 43, 14 lb uplift at joint 44, 67 lb uplift at joint 45, 6 lb uplift at joint 34, 35 lb uplift at joint 33, 29 lb uplift at joint 32, 28 lb uplift at joint 31, 29 lb uplift at joint 29, 28 lb uplift at joint 28, 31 lb uplift at joint 27, 15 lb uplift at joint 26, 67 lb uplift at joint 25 and 2 lb uplift at joint 2.
- 11) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 12) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

LOAD CASE(S) Standard


Run; 8.63 S Sep 26 2024 Print; 8.630 S Sep 26 2024 MiTek Industries, Inc. Thu May 01 12:22:09 ID:jD3PZTd8pN991DPmWV73d_zvAUI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

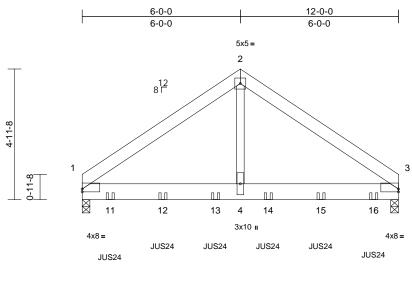
Job	Truss	Truss Type	Qty	Ply	Lot 19 Turlington Acres	
J0425-1937	B01	Common Supported Gable	1	1	- Job Reference (optional)	173175054

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Thu May 01 12:22:09 ID:wL1gjtdqczubHZHm5IUXntzvAIg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:39.7						12-0-	0						
Loading TCLL (roof) TCDL BCLL BCDL LUMBER	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code			CSI TC BC WB Matrix-AS 7-16; Vult=130			in n/a n/a 0.00	(loc) - - 8	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 87 lb	GRIP 244/190 FT = 25%
TOP CHORD BOT CHORD OTHERS WEDGE BRACING	2x6 SP No.1 2x4 SP No.2 Left: 2x4 SP No.2 Right: 2x4 SP No.2			Cat. II; Exp (Corner(3E) - Corner(3R) (12-8-12 zone	bh; TCDL=6.0ps C; Enclosed; MV 0-8-12 to 3-8-1, 5-0-0 to 10-4-13 e;C-C for memb shown; Lumbe	WFRS (enve , Exterior(21 8, Exterior(2 9, Exterior(2 9, ers and for	elope) and C N) 3-8-1 to 6- N) 10-4-13 to ces & MWFR	-C 0-0,					
TOP CHORD BOT CHORD REACTIONS	Structural wood she (size) 2=12-0-0, 11=12-0-0 14=12-0-0 Wax Horiz 2=108 (LC Max Uplift 2=-20 (LC 11=-34 (L 14=-76 (L Max Grav 2=144 (LC 10=186 (L 12=121 (L	athing directly applie 8=12-0-0, 10=12-0-1 0, 12=12-0-0, 13=12- 0, 15=12-0-0, 19=12- C 11), 15=108 (LC 11 8, 10=-72 (LC 13), C 13), 13=-34 (LC 12 C 12), 15=-20 (LC 8) C 20), 8=143 (LC 1), C 20), 11=169 (LC 2) C 1), 13=170 (LC 12 C 1), 15=144 (LC 2) C 1)	d. 3) 0, 0-0, 0-0 4) 1) 5) 2), 6) 0 7) 20), 8) 20), 8)	Truss design only. For stu see Standari or consult qu All plates are Gable requir Gable studs This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar All bearings	ted for wind load ads exposed to d Industry Gable lalified building 2 2x4 MT20 unle es continuous b spaced at 2-0-0 is been designe ad nonconcurre nas been designe n chord in all ar by 2-00-00 wide y other membe are assumed to	wind (norm e End Detai designer as ess otherwis oottom chor) oc. ed for a 10.0 nt with any need for a liv reas where e will fit betw ers.	al to the face Is as applical s per ANSI/TF se indicated. d bearing.) psf bottom other live loa e load of 20.0 a rectangle reen the bottom), ble, PI 1. ds. Dpsf					
TOP CHORD	Tension 1-2=0/24, 2-3=-93/6 4-5=-106/182, 5-6=- 7-8=-69/35, 8-9=0/2 2-14=-70/133, 13-14	6, 3-4=-90/94, 106/183, 6-7=-68/88 4 !=-32/133,	,	bearing plate 2, 34 lb uplift uplift at joint joint 2.	hanical connect capable of with t at joint 13, 76 11, 72 lb uplift a	hstanding 2 lb uplift at jo at joint 10 a	0 lb́ uplift at j bint 14, 34 lb nd 20 lb uplif	oint			and a	OR	ROUNIN
WEBS NOTES 1) Unbalanc this desig	12-13=-32/133, 11-1 10-11=-32/133, 8-10 5-12=-80/0, 4-13=-1 6-11=-133/147, 7-10 ed roof live loads have n.)=-32/133 35/149, 3-14=-135/2)=-136/202	03, LC	structural wo		e applied di	rectly to the t				S. S	SEA 2867	EER.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



111111111 May 2,2025

Job	Truss	Truss Type	Qty	Ply	Lot 19 Turlington Acres	
J0425-1937	B02	Common Girder	1	2	- Job Reference (optional)	173175055

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Thu May 01 12:22:09 ID:qTvJOJifeK6zTEbtpxaPuezvAHH-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

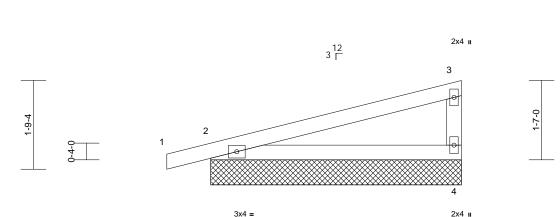
Page: 1

	6-0-0	12-0-0	I
	6-0-0	6-0-0	
Scale = 1:43.7			
Plate Offsets (X, Y): [1:Edge,0-1-5], [3:Edge,0-1-5]			

	5], [5.Edge,0-1-5]									
Loading (psf) TCLL (roof) 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	Plate Grip DOL 1.1 Lumber DOL 1.1 * Rep Stress Incr NO	15 O 2C2021/TPI2014	CSI TC 0.10 BC 0.30 WB 0.20 Matrix-MS 0.20	6 Vert(CT) 6 Horz(CT) Wind(LL)	in -0.02 -0.03 0.00 0.02	(loc) 4-7 4-7 3 4-7	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 155 lb	GRIP 244/190 FT = 25%
BOT CHORD 6-0-0 oc purlins. BOT CHORD Structural wood set 10-0-0 oc bracing REACTIONS (size) 1=0-3- Max Horiz 1=-96 Max Uplift 1=-354 Max Grav 1=236	9, 3=0-3-8 (LC 4) (LC 8), 3=-361 (LC 9) 6 (LC 1), 3=2375 (LC 1) ompression/Maximum -3=-2359/387 -4=-266/1890 gether with 10d ows: 2x6 - 2 rows iollows: 2x8 - 2 rows iollows: 2x8 - 2 rows idl - 1 row at 0-9-0 oc. Ily applied to all plies, back (B) face in the LOAD onnections have been ds noted as (F) or (B), we been considered for ph (3-second gust) BCDL=6.0psf; h=15ft; FRS (envelope); Lumber	 chord live loa * This truss h on the bottom 3-06-00 tall b chord and an 7) All bearings a capacity of 5(8) One RT7A M truss to beari This connecti lateral forces 9) Use MiTek JU nails into Tru starting at 1-0 truss(es) to b 10) Fill all nail hoi LOAD CASE(S) 1) Dead + Roo Plate Increa Uniform Loa Vert: 1-2= Concentrate 	liTek connectors recomr ing walls due to UPLIFT ion is for uplift only and US24 (With 4-10d nails i ss) or equivalent spaced 0-12 from the left end to pack face of bottom chor ides where hanger is in c Standard of Live (balanced): Lumb ase=1.15	y other live load ive load of 20.0 e a rectangle tween the botto o.1 crushing nended to conn at jt(s) 1 and 3. Joes not consid nto Girder & 2- i at 2-0-0 oc ma 11-0-12 to cond bontact with lumi er Increase=1.1 3=-625 (B),	Dpsf Dom Jer 10d ax. nect ber.				SEA 2867	ROLL STITUTION

May 2,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Job	Truss	Truss Type	Qty	Ply	Lot 19 Turlington Acres	
J0425-1937	M01	Monopitch Structural Gable	1	1	- Job Reference (optional)	173175056

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Thu May 01 12:22:09 ID:pgMaLi7Xssps16ifOhm6Yizv9mS-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

5-0-0

5-0-0

Page: 1

3x4 =

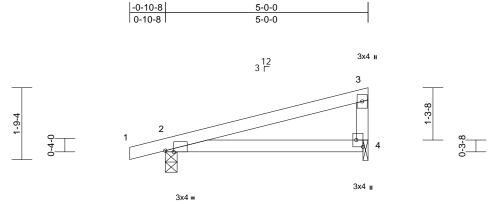
-0-10-8

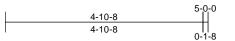
0-10-8

Scale = 1:23

Scale = 1:23														
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TP	12014	CSI TC BC WB Matrix-AS	0.25 0.25 0.03	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 2	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 18 lb	GRIP 244/190 FT = 25%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.1 2x4 SP No.1 2x4 SP No.1 Structural wood she Structural wood she	eathing directly applie eathing directly applie 4=5-0-0, 5=5-0-0 8), 5=50 (LC 8) C 8), 4=-23 (LC 12), 5 C 1), 4=192 (LC 1), 5	7) All ca 8) Or tru Th lat ed. 9) Th str ch 5=-50 LOAD	bearings pacity of 5 he RT3A M ss to bear is connect eral forces is truss de uctural wo ord and 1/ bottom c	are assumed to be 65 psi. IiTek connectors ri ing walls due to Ul ion is for uplift only. sign requires that od sheathing be a 2" gypsum sheetro	ecomme PLIFT at y and do a minim pplied di	inded to conn jt(s) 2 and 4. es not consid um of 7/16" irectly to the t	ler						
TOP CHORD BOT CHORD WEBS	1-2=0/13, 2-3=-133/ 2-4=-153/144 3-4=-125/215	86												
NOTES 1) Wind: ASC Vasd=103i Cat. II; Exp Corner(3E zone;C-Cf reactions s DOL=1.60 2) Truss desi only. For s see Stand or consult 3) Gable requ 4) Gable stud 5) This truss chord live I 6) * This truss on the bott 3-06-00 tal	CE 7-16; Vult=130mph mph; TCDL=6.0psf; B o C; Enclosed; MWFR) -0-10-8 to 3-6-5, Ext for members and force shown; Lumber DOL=	CDL=6.0psf; h=15ft; S (envelope) and C- erior(2N) 3-6-5 to 4- es & MWFRS for 1.60 plate grip h the plane of the trus d (normal to the face) d Details as applicat gner as per ANSI/TF m chord bearing. r a 10.0 psf bottom ith any other live load for a live load of 20.0 where a rectangle	10-4 ss , ole, ole, v1 1. ds. ipsf								and a state of the	SEA 2867	ROUL L Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	and an

May 2,2025




WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	uss Truss Type Qty Ply Lot 19 Turlington Acres		Lot 19 Turlington Acres		
J0425-1937	M02	Monopitch	13	1	- Job Reference (optional)	173175057

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Thu May 01 12:22:09 ID:8ATQ2HsdTMuq3a4DbdXycwzvB60-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?ff

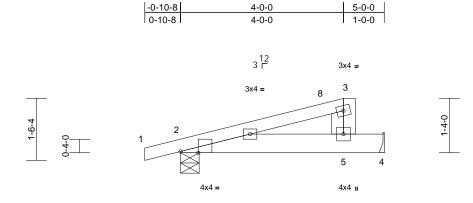
Page: 1

Scale = 1:28.4

Plate Offsets (X, Y): [2:0-2-8,Edge], [4:Edge,0-2-0]

	.,=-:9-1,		-									
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.28	Vert(LL)	-0.02	4-7	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.29	Vert(CT)	-0.05	4-7	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	2	n/a	n/a		
BCDL	10.0	Code	IRC2021/TPI201	4 Matrix-AS		Wind(LL)	0.08	4-7	>690	240	Weight: 18 lb	FT = 25%
LUMBER TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 BRACING TOP CHORD 2x4 SP No.1 BRACING TOP CHORD Structural wo except end v BOT CHORD Structural wo REACTIONS (size) 2= Max Horiz 2= Max Horiz 2= Max Grav 2= FORCES (lb) - Maximu Tension	bod she rerticals bod she co-3-8, 4 50 (LC -104 (L -251 (L) -104 (athing directly applie 4=0-1-8 8) C 8), 4=-77 (LC 8) C 1), 4=189 (LC 1) pression/Maximum 234, 3-4=-125/185 (G-second gust) CDL=6.0psf; h=15ft; S (envelope) and C- erior (1) 3-6-5 to 4-11 ad;C-C for members hown; Lumber r a 10.0 psf bottom ith any other live load or a live load of 20.0 where a rectangle fit between the botto SP No.1 crushing arallel to grain value formula. Building of bearing surface.	7) One R truss to lateral 8) This tru- 8) This tru- 8) This tru- 8) This tru- 8) This tru- 8 the bot LOAD CAS LOAD CAS C 0-4 and ds. psf	T3A MiTek connectors bearing walls due to l nnection is for uplift or	UPLIFT at hly and do at a minim applied d	ended to com i jt(s) 2 and 4 les not consi um of 7/16" irectly to the	nect der top				ORTH CA ORTH CA SEA 286	ROUL IL 77

Thummen a May 2,2025



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	russ Truss Type		Ply	Lot 19 Turlington Acres	
J0425-1937	M03	Jack-Closed	6	1	- Job Reference (optional)	173175058

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Thu May 01 12:22:09 ID:zQxOaal215DKxxkRxAsJcXzvB4s-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

I	4-0-0	5-0-0
	4-0-0	1-0-0

Scale = 1:28.3

Plate Offsets (X, Y): [2:0-5-4,Edge]

Loading (psf) TCLL (roof) 20.0 TCDL 10.0 BCLL 0.0* BCDL 10.0	Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 NO IRC2021/TPI2014	CSI TC BC WB Matrix-AS	0.18 0.48 0.01	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.03 -0.06 0.00 0.02	(loc) 5-7 5-7 4 5-7	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 21 lb	GRIP 244/190 FT = 25%
BOT CHORD Structural wood shea	a) (1), 4=595 (LC 1) pression/Maximum (3-second gust) CDL=6.0psf; h=15ft; S (envelope) and C-C prior (1) 3-6-5 to 4-1-1: s & MWFRS for .60 plate grip a 10.0 psf bottom th any other live loads or a live load of 20.0ps where a rectangle fit between the bottom ht 2 SP No.1 crushing s connections. commended to connect .IFT at jt(s) 2. This	designer mu correct for th 8) This truss du structural we chord and 1, the bottom c 9) Hanger(s) o provided suf down and 50 design/selec responsibilit 10) In the LOAD of the truss a LOAD CASE(S) 1) Dead + Ro Plate Incre Uniform Lo Vert: 1-3 Concentrat Vert: 5=- 2	r other connection ficient to support c 0 lb up at 4-1-12 o tion of such conne y of others. 0 CASE(S) section, are noted as front (Standard of Live (balanced): ase=1.15	verify that this truss a minim upplied d bock be a device(s concentra n bottom ection de loads a (F) or ba	at they are s. um of 7/16" irrectly to the to oplied directly) shall be atted load(s) 5 o chord. The vice(s) is the oplied to the to ck (B).	y to 55 lb face			A DECEMBER OF A	SEA 286 OF LESS OF MGIN	EER.SK

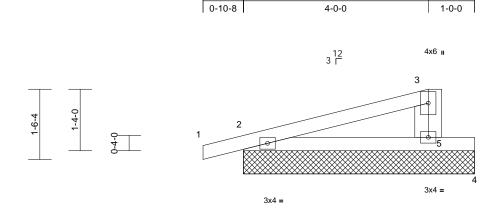
May 2,2025

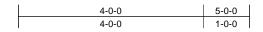
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 19 Turlington Acres	
J0425-1937	M04	Monopitch	1	1	- Job Reference (optional)	173175059

-0-10-8

Comtech, Inc, Fayetteville, NC - 28314,


Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Thu May 01 12:22:09 ID:1_iLULWdxLBo257wp8OxuvzvAzQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


5-0-0

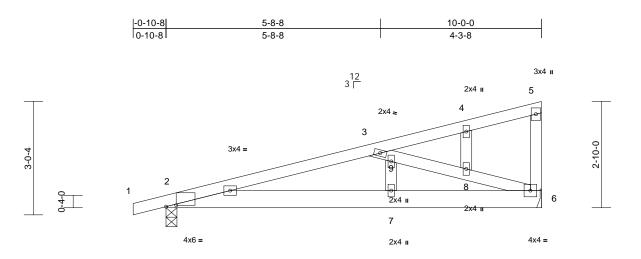
4-0-0

9 Pa

Scale = 1:24.9

Loading (psf) TCLL (roof) 20.0 TCDL 10.0 BCLL 0.0* BCDL 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-AS	0.13 0.15 0.00	DEFLiVert(LL)n/Vert(CT)n/Horz(CT)0.0	a -	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 18 lb	GRIP 244/190 FT = 25%
Max Horiz 2=42 (LC Max Uplift 2=-49 (LC (LC 12), 6 Max Grav 2=204 (LC	athing directly applie 4=5-0-0, 5=5-0-0, 6=4 8), 6=42 (LC 8) 2 8), 4=-48 (LC 1), 5= 5=-49 (LC 8)	capacity of 8) One RT3A truss to be This connu- lateral ford 9) This truss structural 5-0-0 the bottom =-11 LOAD CASE(MiTek connectors aring walls due to L cction is for uplift on es. design requires tha vood sheathing be 1/2" gypsum sheet chord.	recomme JPLIFT at ly and do t a minim applied d	ended to connect t jt(s) 5, 2, and 4. bes not consider num of 7/16" irectly to the top					
 FORCES (Ib) - Maximum Com Tension TOP CHORD 1-2=0/13, 2-3=-92/5 BOT CHORD 2-5=-102/102, 4-5=0 NOTES 1) Wind: ASCE 7-16; Vult=130mph Vasd=103mph; TCDL=6.0psf; BU Cat. II; Exp C; Enclosed; MWFR Corner(3E) -0-10-8 to 3-6-5, Ext zone;C-C for members and force reactions shown; Lumber DOL=* DOL=1.60 2) Truss designed for wind loads in only. For studs exposed to wind see Standard Industry Gable En- or consult qualified building desig 3) Gable requires continuous botton 4) Gable studs spaced at 2-0-0 oc. 5) This truss has been designed for chord live load nonconcurrent wi 6) * This truss has been designed for on the bottom chord in all areas; 3-06-00 tall by 2-00-00 wide will chord and any other members. 	1, 3-5=-88/153 //0 (3-second gust) CDL=6.0psf; h=15ft; S (envelope) and C- erior(2N) 3-6-5 to 3-1 es & MWFRS for 1.60 plate grip the plane of the trus (normal to the face) d Details as applicab gner as per ANSI/TP m chord bearing. r a 10.0 psf bottom th any other live load or a live load of 20.0 where a rectangle	C 10-4 ss , , ole, , 1. ds. psf							SEA 2867	T EFR. St.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com) May 2,2025



Job	Truss	Truss Type	Qty	Ply	Lot 19 Turlington Acres	
J0425-1937	P01	Monopitch Structural Gable	2	1	- Job Reference (optional)	173175060

Run: 8.63 E Jul 12 2024 Print: 8.630 E Jul 12 2024 MiTek Industries, Inc. Fri May 02 15:30:30 ID:BCABTu9cuOOBXIQV559eXFzvA8x-qK53sm2LYIMShmVVnxY1mKuHCExlqSP5rlsTIJzKVEO

-

Page: 1

					10-0	-0							
Scale = 1:30.7			I										
Plate Offsets (X, Y):	[2:0-3-4,0-0-7]												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl		PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.17	Vert(LL)	-0.02	7-11	>999	360	MT20	244/190	

Vert(CT)

Horz(CT)

Wind(LL)

-0.05

0.01

0.04

7-11

7-11

6

>999

>999

240

n/a n/a

240

Weight: 53 lb

FT = 25%

0.21

0.25

BCDL	10.0	Code	IRC2021/TPI2014
LUMBER	2x4 SP No.1		7) Provide r bearing p
BOT CHORD			2 and 51
WEBS	2x4 SP No.2		This trus:
OTHERS	2x4 SP No.2		structura
BRACING			chord an
TOP CHORD	Structural wood shea	athing directly applied	
	except end verticals.		LOAD CASE
BOT CHORD	Structural wood shea	athing directly applied	L.
REACTIONS	(lb/size) 2=453/0-3	8-8, 6=385/ Mechanica	al
	Max Horiz 2=91 (LC	8)	
	Max Uplift 2=-71 (LC	8), 6=-51 (LC 12)	
FORCES	(lb) - Max. Comp./Ma (lb) or less except w	ax. Ten All forces 29 hen shown.	50
TOP CHORD	2-3=-785/568		
BOT CHORD	2-7=-694/747, 6-7=-	694/747	
WEBS	3-9=-718/693, 8-9=-	748/688, 6-8=-765/71	8
NOTES			

10.0

0.0*

Lumber DOL

Rep Stress Incr

1.15

YES

 Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Corner(3E) -0-10-8 to 3-6-5, Exterior(2N) 3-6-5 to 9-10-4 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable studs spaced at 2-0-0 oc.

TCDL

BCLL

- 4) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
 * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle
- 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.6) Refer to girder(s) for truss to truss connections.

- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 71 lb uplift at joint
 - 2 and 51 lb uplift at joint 6.

BC

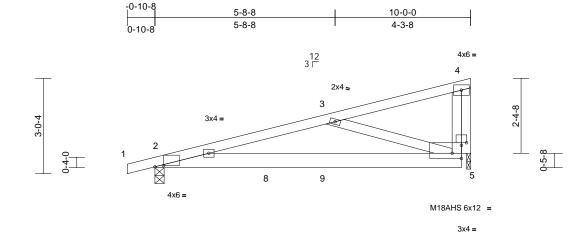
WB

Matrix-AS

This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

May 2,2025


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 19 Turlington Acres	170/7500/	
J0425-1937	P02	Monopitch	4	1	- Job Reference (optional)	173175061	

Run: 8.63 E Jul 12 2024 Print: 8.630 E Jul 12 2024 MiTek Industries, Inc. Fri May 02 15:31:01 ID:3AqQcqb7yyTsO4KTrjpc7LzvA9g-uU19aiRP0aOvWhxeff7X33DhC7rvKxPpCkdAQTzKVDu

Page: 1

Scale = 1:36.5

Plate Offsets (X, Y): [2:0-3-4,0-0-7], [5:Edge,0-2-0], [5:0-2-0,0-1-0]

Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.42	Vert(LL)	0.17	5-7	>685	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.30	Vert(CT)	-0.11	5-7	>999	240	M18AHS	186/179
BCLL	0.0*	Rep Stress Incr	YES	WB	0.18	Horz(CT)	-0.01	5	n/a	n/a		
BCDL	10.0	Code	IRC2021/TPI2014	4 Matrix-AS							Weight: 52 lb	FT = 25%
LUMBER			7) Provide	mechanical connecti	on (by oth	ers) of truss	to					
TOP CHORD	2x4 SP No.1			plate capable of with		77 lb uplift a	t					
BOT CHORD	2x6 SP No.1			nd 155 lb uplift at joir								
WEBS	2x4 SP No.2			ss design requires the								
OTHERS	OTHERS 2x4 SP No.2 structural wood sheathing be applied directly to the top											
BRACING				nd 1/2" gypsum shee	trock be a	pplied directl	y to					
TOP CHORD	Structural wood she	athing directly applie	eu,	om chord.								
	except end verticals			E(S) Standard								
BOT CHORD		• • • • •	ed.									
REACTIONS	(3-8, 5=379/0-1-8										
	Max Horiz 2=90 (LC											
	Max Uplift 2=-177 (L	,, ()										
FORCES	(lb) - Max. Comp./M		250									
TOP CHORD	(lb) or less except w	hen shown.										
TOP CHORD 2-3=-675/998 BOT CHORD 2-8=-1076/647, 8-9=-877/647, 5-9=-877/647												
WEBS												
NOTES	3-3303/110											
	CE 7-16; Vult=130mph	(2 accord quat)										
	3mph; TCDL=6.0psf; B											
	xp C; Enclosed; MWFR											
	2E) -0-10-8 to 3-6-5, Int										MILLIN	UIII.
	rch left and right expose									WH CA	ROUL	
forces &	MWFRS for reactions s								N	R'1.		
	0 plate grip DOL=1.60									5.	O' FESS	NSHV 1
2) All plates are MT20 plates unless otherwise indicated.							14: 7 2					
	 Vasue Tochiphi, TobLe-Jopsi, He Toti, Cat. II: Exp C: Enclosed; MWFRS (envelope) and C-C Exterior(2E) -0-10-8 to 3-6-5, Interior (1) 3-6-5 to 9-8-8 zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) All plates are MT20 plates unless otherwise indicated. 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) * This truss has been designed for a 20.0 psf. 											
chord live load nonconcurrent with any other live loads. 4) * This truss has been designed for a live load of 20.0psf SEAL								u 1 1				
								• -				
	all by 2-00-00 wide will		om						=		286	// : =
	d any other members.								-			1 3
	at ioint(s) 5 considers n	arallel to grain value	2								N	1 1 S

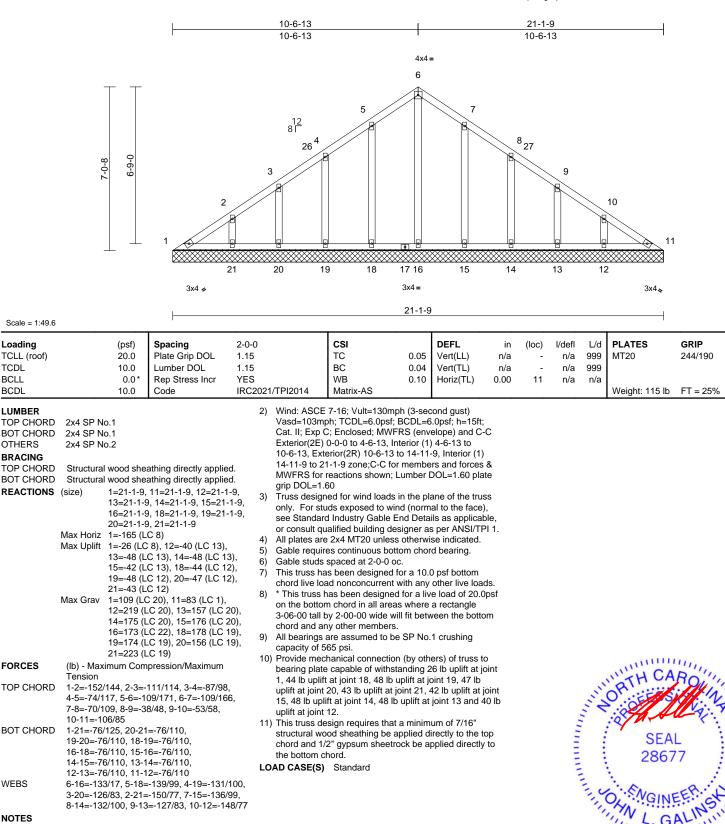
5) Bearing at joint(s) 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

6) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 5.

May 2,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

GA


minin

Job	Truss	Truss Type	Qty	Ply	Lot 19 Turlington Acres	
J0425-1937	V01	Valley	1	1	- Job Reference (optional)	173175062

Comtech, Inc. Favetteville, NC - 28314

Run; 8.63 S Sep 26 2024 Print; 8.630 S Sep 26 2024 MiTek Industries, Inc. Thu May 01 12:22:10 ID:75MORW_i?h7ZLwQUD_?1sizvAGv-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

NOTES

WEBS

FORCES

Loading

TCDI

BCLL

BCDL

LUMBER

OTHERS

1) Unbalanced roof live loads have been considered for this design.

May 2,2025

MANAN INTERNET

Edenton, NC 27932

GA

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

