

RE: J0425-1935 Lot 21 Turlington Acres Trenco 818 Soundside Rd Edenton, NC 27932

Site Information:

Customer: Project Name: J0425-1935 Lot/Block: Address: City:

Model: Subdivision: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2021/TPI2014 Wind Code: ASCE 7-16 Roof Load: 40.0 psf Design Program: MiTek 20/20 8.6 Wind Speed: 130 mph Floor Load: N/A psf

This package includes 16 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date
1	172199004	A01	3/24/2025
2	172199005	A02	3/24/2025
3	172199006	A03	3/24/2025
4	172199007	A04	3/24/2025
5	172199008	A05	3/24/2025
6	172199009	A06	3/24/2025
7	172199010	A07	3/24/2025
8	172199011	A08	3/24/2025
9	172199012	B01	3/24/2025
10	172199013	B02	3/24/2025
11	172199014	M01	3/24/2025
12	172199015	M02	3/24/2025
13	172199016	M03	3/24/2025
14	172199017	M04	3/24/2025
15	172199018	V01	3/24/2025
16	172199019	V02	3/24/2025

The truss drawing(s) referenced above have been prepared by

Truss Engineering Co. under my direct supervision

based on the parameters provided by Comtech, Inc - Fayetteville.

Truss Design Engineer's Name: Gilbert, Eric

My license renewal date for the state of North Carolina is December 31, 2025

North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	Lot 21 Turlington Acres	
J0425-1935	A01	Common Supported Gable	1	1	Job Reference (optional)	172199004

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Fri Mar 21 08:07:54 ID:xCjF5sS_An5AZx8iaaJP_qzvAPL-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

-0-10-8 21-6-0 43-0-0 0-10-8 21-6-0 21-6-0 6x6= 13 12 仚 14 11 15 4x8 🚅 10 16 4x8≈ 12 51 9 17 ¹⁸ 19 8 7 9-8-2 \overline{D} 9-8-0 6 20 5 21 22 ⁵² 23 3 24 0-8-8 _____ 44 42 3988 37 34 32 27 45 43 41 40 36 33 3130 29 28 26 25 35 4x6= 4x8= 4x8= 4x6= 43-0-0

Scale = 1:75.9

```
Plate Offsets (X, Y): [8:0-0-0,0-0-0]
```

(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,										-			
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-A	0.05 0.05 0.12 AS	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - 24	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 348 lb	GRIP 244/190 FT = 25%		
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD WEBS	2x6 SP No.1 2x6 SP No.1 2x4 SP No.2 *Exce No.2(flat) Structural wood sh Structural wood sh T-Brace: Fasten (2X) T and of web with 10d (0 o.c.,with 3in minim Brace must cover	pt* 0-0,0-0,0-0:2x4 SF eathing directly applied eathing directly applied 2x4 SPF No.2 - 13-3 12-36, 14-34 I braces to narrow ed 131"x3") nails, 6in um end distance. 90% of web length.	PF d. d. 5, ge FORCES	$\begin{array}{c} \text{Max Grav} & 25 = 175 \ (\text{LC 1}), \ 24 = 127 \ (\text{LC 1}), \ 25 = 280 \ (\text{LC 26}), \ 26 = 116 \ (\text{LC 1}), \ 29 = 160 \ (\text{LC 26}), \ 31 = 160 \ (\text{LC 1}), \ 32 = 160 \ (\text{LC 1}), \ 33 = 160 \ (\text{LC 1}), \ 33 = 162 \ (\text{LC 26}), \ 34 = 160 \ (\text{LC 2}), \ 35 = 151 \ (\text{LC 22}), \ 36 = 160 \ (\text{LC 2}), \ 37 = 162 \ (\text{LC 25}), \ 39 = 160 \ (\text{LC 2}), \ 40 = 160 \ (\text{LC 1}), \ 41 = 160 \ (\text{LC 25}), \ 42 = 158 \ (\text{LC 1}), \ 43 = 168 \ (\text{LC 25}), \ 44 = 120 \ (\text{LC 1}), \ 43 = 168 \ (\text{LC 25}), \ 44 = 120 \ (\text{LC 1}), \ 43 = 168 \ (\text{LC 25}), \ 44 = 120 \ (\text{LC 1}), \ 49 = 127 \ (\text{LC 1}) \ 1 \\ \begin{array}{c} \text{(lb)} - \text{Maximum Compression/Maximum} \\ \text{Tension} \\ 1 - 2 = 0/16, \ 2 - 3 = -141/55, \ 3 - 4 = -104/53, \ 4 = 50 \ (\text{LC 2}), \ 32 = 158 \ (\text{LC 1}), \ 45 = 126 \ (\text{LC 2}), \ 34 = -104/53, \ 4 = 50 \ (\text{LC 2}), \ 34 = -104/53, \ 4 = 50 \ (\text{LC 2}), \ 45 = 106 \ (\text{LC 2}), \ $					 WEBS 13-35=-129/12, 12-36=-120/58, 11-37=-122/109, 10-39=-120/98, 9-40=-120/97, 7-41=-120/97, 6-42=-1 5-43=-123/101, 4-44=-100/82, 3-45=-183/199, 14-34=-120/58, 15-33=-122/109, 16-32=-120/98, 17-31=-120/97, 19-29=-120/97, 20-28=-120/97, 21-27=-123/100, 22-26=-99/81, 23-25=-187/221 NOTES 1) Unbalanced roof live loads have been considered this design. 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=1: Cat II: Exp C: Enclosed: MWERS (envelope) and 					
REACTIONS	o.c., with 3in minimum end distance. Brace must cover 90% of web length. S (size) $2=43.0-0, 24=43.0-0, 25=43.0-0, 26=43.0-0, 27=43.0-0, 28=43.0-0, 33=43.0-0, 33=43.0-0, 33=43.0-0, 35=43.0-0, 36=43.0-0, 37=43.0-0, 35=43.0-0, 40=43.0-0, 41=43.0-0, 42=43.0-0, 40=43.0-0, 41=43.0-0, 42=43.0-0, 40=43.0-0, 44=43.0-0, 45=43.0-0, 46=43.0-0, 44=43.0-0, 45=40.0-0, 45=40.000, 45=40$				5, 5-6=-75/84, 6-7 66, 9-10=-86/212 10/309, 12-13=-13 11/341, 14-15=-12 12/259, 16-17=-86 1/166, 19-20=-53/ 1/72, 21-22=-53/2 10/41 1/62, 42-43=-37/1 1/62, 42-43=-37/1 1/62, 42-43=-37/1 1/62, 37-39=-37/1 1/62, 33-34=-37/1 1/62, 33-34=-37/1 1/62, 28-29=-37/1 1/62, 24-25=-37/1 1/62,	7=-62/119, , 10-11=-102 31/341, 20/309, 3/212, 119, 5, 22-23=-70 62, 162, 162, 162, 162, 162, 162, 162,	2/259,)/8,	C C 43 re D	orner(3E) orner(3R) 3-0-0 zone actions st OL=1.60	-0-8-7 21-6-0 ;;C-C fi iown; L	to 3-6-0, Exteric to 25-10-13, Ex or members and umber DOL=1.1	(r(2N) 3-6-0 to terior(2N) 25- forces & MW 30 plate grip	21-6-0, 10-13 to FRS for	

March 24,2025

818 Soundside Road Edenton, NC 27932

Continued on page 2 WARNING - Verify of

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouckling of trusses and truss systems, see **ANSI/TPI Quality Criteria and DSE2** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 21 Turlington Acres	170400004
J0425-1935	A01	Common Supported Gable	1	1	Job Reference (optional)	172199004

Comtech. Inc. Favetteville, NC - 28314.

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable. or consult qualified building designer as per ANSI/TPI 1.
- All plates are 2x4 MT20 unless otherwise indicated. 4)
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 8) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
- chord and any other members. 9) All bearings are assumed to be SP No.1 crushing capacity of 565 psi.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 2 lb uplift at joint 2, 12 lb uplift at joint 36, 34 lb uplift at joint 37, 29 lb uplift at joint 39, 28 lb uplift at joint 40, 29 lb uplift at joint 41, 28 lb uplift at joint 42, 31 lb uplift at joint 43, 14 lb uplift at joint 44, 67 lb uplift at joint 45, 6 lb uplift at joint 34, 35 lb uplift at joint 33, 29 lb uplift at joint 32, 28 lb uplift at joint 31, 29 lb uplift at joint 29, 28 lb uplift at joint 28, 31 lb uplift at joint 27, 16 lb uplift at joint 26, 63 lb uplift at joint 25 and 2 lb uplift at joint 2.
- 11) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 12) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

LOAD CASE(S) Standard

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Fri Mar 21 08:07:54 ID:xCjF5sS_An5AZx8iaaJP_qzvAPL-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 21 Turlington Acres	
J0425-1935	A02	Common	5	1	Job Reference (optional)	172199005

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Fri Mar 21 08:07:55 ID:IB7t_85o5bhCGEe6_9FiiXzvAxN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

:07:55 Page: 1

Scale = 1:77.6

Plate Offsets (X, Y): [2:0-2-11,0-3-0], [6:0-0-0,0-0-0], [8:0-2-11,0-3-0]

															_	
Loa TCI TCI	ading _L (roof) DL	()	psf) 20.0 10.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15		CSI TC BC	0.39 0.89	DEFL Vert(LL) Vert(CT)	in -0.26 -0.50	(loc) 10-17 10-14	l/defl >999 >999	L/d 360 240	PLATES MT20	GRIP 244/190	
BCI BCI	LL DL	1	0.0* 10.0	Rep Stress Incr Code	YES IRC202	1/TPI2014	WB Matrix-AS	0.42	Horz(CT) Wind(LL)	0.10 0.10	8 14-20	n/a >999	n/a 240	Weight: 281 lb	FT = 25%	
LUI TOI BO WE BR TOI BO RE	MBER P CHORD T CHORD BS ACING P CHORD T CHORD ACTIONS	2x6 SP No.1 2x6 SP No.1 2x4 SP No.2 Structural woo (size) 2=(Max Horiz 2= Max Uplift 2=- Max Grav 2=2	od shea od shea D-3-8, 8 115 (LC 18 (LC 2052 (L)	athing directly applied athing directly applied =0-3-8 : 12) 12), 8=-9 (LC 13) C 2), 8=2016 (LC 2)	d. 8)	All bearings a capacity of 5 One RT3A M truss to beari This connect lateral forcess This truss de structural wo chord and 1/2 the bottom cl DAD CASE(S)	are assumed to be 65 psi. ITek connectors re ng walls due to UF ion is for uplift only sign requires that a od sheathing be ap 2" gypsum sheetro hord. Standard	SP No. ecomme PLIFT at a and do a minim oplied di cck be ap	1 crushing nded to conn jt(s) 8 and 2. es not consic um of 7/16" rectly to the t pplied directly	iect der iop / to			2.0			
FOI	RCES	(lb) - Maximur	m Comp	pression/Maximum												
то	P CHORD	Tension 1-2=0/16, 2-3 5-7=-3662/41	=-4012/ 2, 7-8=-	/452, 3-5=-3661/406 -4013/459	i ,											
BO	I CHORD	2-14=-323/36 8-10=-309/36	25, 10- [.] 26	14=-102/2440,												
WE	BS	5-14=0/1416, 5-10=0/1418	3-14=-6	670/353, 7-10=-671/	/353,											
NO	TES															
1)	Unbalance	ed roof live loads	s have l	been considered for												
,	this design	1.												mmm	111.	
2)	Wind: ASC	CE 7-16; Vult=13	30mph	(3-second gust)										WHY CA	Palle	
	Vasd=103	mph; TCDL=6.0	opsf; BC	CDL=6.0psf; h=15ft;									1	alrion	10/11	6
	Cat. II; Exp	C; Enclosed; N	MWFRS	S (envelope) and C-0	C								N.	O'EESS	1.	11
	Exterior(2E	=) -U-8-7 to 3-8- 2) 21 6 0 to 25	6, Interi	10[(1) 3-8-6 to 21-6- Interior (1) 25 10 12	·0, to								5	10 /	1 in	4
	43-0-0 zon	C-C for memi	bers an	Interior (1) 25-10-13	for									.0	- T :	-
	reactions s	shown; Lumber	DOL=1	.60 plate grip								-		SEAL		=
	DOL=1.60	,		. 51								=	:	SLA	- :	=
3)	200.0lb AC	C unit load place	ed on th	e bottom chord, 21-	6-0							Ξ		03632	22 :	Ξ
	from left er	nd, supported a	t two po	pints, 5-0-0 apart.											(* 1	-
4)	I DIS TRUSS	nas been desid	ned for	a 10.0 pst bottom									-			-

 This truss has been designed for a 10.0 psr bottom chord live load nonconcurrent with any other live loads.
 * This truss has been designed for a live load of 20 opsi

 * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

> TRENCO A MITEK Affiliat

> > 818 Soundside Road Edenton, NC 27932

A. GIL-

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 21 Turlington Acres	
J0425-1935	A03	Common	1	1	Job Reference (optional)	172199006

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Fri Mar 21 08:07:55 ID:iB7t_85o5bhCGEe6_9FfiXzvAxN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:75.9

Plate Offsets (X, Y): [6:0-0-0,0-0-0]

Loading FCLL (roof) FCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021	/TPI2014	CSI TC BC WB Matrix-AS	0.42 0.82 0.42	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.36 -0.68 0.08 0.13	(loc) 10-19 10-19 8 10-19	l/defl >678 >354 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 262 lb	GRIP 244/190 FT = 25%	
LUMBER FOP CHORD SOT CHORD WEBS BRACING FOP CHORD SOT CHORD REACTIONS	2x6 SP No.1 2x6 SP No.1 2x4 SP No.2 Structural wood shea Structural wood shea (size) 2=0-3-8, 8 Max Horiz 2=115 (LC Max Uplift 2=-126 (L Max Grav 2=1804 (L 11=344 (L	athing directly applied athing directly applied a=0-3-8, 11=0-3-8 C 12) C 12), 8=-119 (LC 13 .C 2), 8=1745 (LC 2), C 2)	5) 6) 1. 7) 1. 7)	All bearings a capacity of 56 One RT3A M truss to beari This connecti lateral forces This truss de structural wo chord and 1/2 the bottom ch AD CASE(S)	are assumed to be 35 psi. ITek connectors re ng walls due to UP ion is for uplift only sign requires that a od sheathing be ap 2" gypsum sheetron hord. Standard	SP No. comme LIFT at and do a minimu plied di ck be ap	1 crushing nded to conn jt(s) 2, 8, and es not consid um of 7/16" rectly to the t pplied directly	ect d 11. ler op to						
FORCES	(lb) - Maximum Com Tension 1-2=0/16, 2-3=-3307 5-7=-2926/665, 7-8= 2-13=-531/2998, 11- 10-11=-257/1986, 8- 3-13=-687/339, 5-13 5-10=-125/1081, 7-1	/685, 3-5=-2994/660 3241/691 13=-257/1986, 10=-515/2938 i=-128/1177, 0=-691/340	,											
 Unbalance this design Wind: ASC Vasd=103i Cat. II; Exp Exterior(2E 43-0-0 zon reactions s DOL=1.60 This truss chord live I * This truss on the bott 3-06-00 tal 	d roof live loads have E 7-16; Vult=130mph mph; TCDL=6.0psf; BG 0 C; Enclosed; MWFR: E) -0-8-7 to 3-8-6, Inter R) 21-6-0 to 25-10-13, e;C-C for members ar shown; Lumber DOL=1 has been designed for oad nonconcurrent wi s has been designed for oad nonconcurrent wi s has been designed for oad nonconcurrent will by 2-00-00 wide will	been considered for (3-second gust) CDL=6.0psf; h=15ft; S (envelope) and C-C rior (1) 3-8-6 to 21-6-1 Interior (1) 25-10-13 d forces & MWFRS I I.60 plate grip a 10.0 psf bottom th any other live load or a live load of 20.0p where a rectangle fit between the bottor	C 0, to for s. ssf n							Withhan		SEAL 03632		Amunit

chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 4) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

G minin March 24,2025

Job	Truss	Truss Type	Qty	Ply	Lot 21 Turlington Acres	
J0425-1935	A04	Roof Special	2	1	Job Reference (optional)	172199007

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Fri Mar 21 08:07:55

Exterior(2E) -0-8-7 to 3-8-6, Interior (1) 3-8-6 to 21-6-0, Exterior(2R) 21-6-0 to 25-10-13, Interior (1) 25-10-13 to 43-8-7 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

Edenton, NC 27932

G mmm March 24,2025

Job	Truss	Truss Type	Qty	Ply	Lot 21 Turlington Acres	
J0425-1935	A05	Roof Special	4	1	Job Reference (optional)	172199008

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Fri Mar 21 08:07:55

Page: 1 ID:tsNQ4MhvhdUULs5LB39sFrzvAP2-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f -0-10-8 12-3-4 11-7-0 21-6-0 32-4-0 43-0-0 0-10-8 11-7-0 0-8-4 10-10-0 10-8-0 9-2-12 6x8 II 6 12 51 5x8 🚽 4x4 -26 27 4x4 4x8 5 4 9-8-0 8-8-0 8 9-8-2 28 25 115 g ł ę ģ ф] 17 16 18 13 . Ø 2x4 II 4x8= 10 8x8 II 11 1142 3x4 i 4x8= 2x4 II 4x4 u 4x6= 4x6 =3x4 ı 5x8= 4x8= 4x4= 22-11-4 22-8-6 22-7-15 2-3-8 11-7-0 14-3-8 20-9-0 30-0-0 32-4-0 43-0-0 2-3-8 9-3-8 7-0-12 2-4-0 10-8-0 2-8-8 6-5-8 1-10-15 0-0-7 Scale = 1:78.4 Plate Offsets (X, Y): [3:0-0-3,0-0-4], [15:0-4-0,Edge] Loading 2-0-0 CSI DEFL in l/defl L/d PLATES GRIP (psf) Spacing (loc) TCLL (roof) 20.0 Plate Grip DOL 1.15 тс 0.58 Vert(LL) -0.21 3-17 >999 360 MT20 244/190 TCDL 10.0 Lumber DOL 1.15 BC 0.44 Vert(CT) -0.42 3-17 >663 240 BCLL 0.0* Rep Stress Incr YES WB Horz(CT) 0.10 0.91 12 n/a n/a BCDL 10.0 Code IRC2021/TPI2014 Matrix-AS Wind(LL) 0.20 >999 240 Weight: 276 lb FT = 25% 3-17 LUMBER 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle TOP CHORD 2x6 SP No.1 3-06-00 tall by 2-00-00 wide will fit between the bottom BOT CHORD 2x6 SP No.1 *Except* 18-3:2x4 SP No.2 chord and any other members. 2x4 SP No.2 WEBS All bearings are assumed to be SP No.1 crushing 5) BRACING capacity of 565 psi. TOP CHORD Structural wood sheathing directly applied. One RT3A MiTek connectors recommended to connect 6) BOT CHORD Structural wood sheathing directly applied. truss to bearing walls due to UPLIFT at jt(s) 2, 12, and 9. WFBS 1 Row at midpt 6-12, 4-14, 8-12 This connection is for uplift only and does not consider REACTIONS (size) 2=0-3-8, 9=0-3-8, 12=0-3-8 lateral forces. Max Horiz 2=115 (LC 16) This truss design requires that a minimum of 7/16" 7) Max Uplift 2=-58 (LC 12), 9=-145 (LC 13), structural wood sheathing be applied directly to the top 12=-129 (LC 12) chord and 1/2" gypsum sheetrock be applied directly to 2=531 (LC 25), 9=506 (LC 26), Max Grav the bottom chord. 12=2683 (LC 1) LOAD CASE(S) Standard FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/16, 2-3=-288/117, 3-4=-352/180, 4-6=-51/1169, 6-8=-64/1422, 8-9=-494/679 BOT CHORD 2-18=-83/171 3-18=-49/235 3-17=-76/287 15-17=-76/287, 14-15=-241/1075, 13-15=-168/0, 12-13=-813/186, 10-12=-577/395. 9-10=-577/395 WEBS 4-17=0/417. 6-14=-1484/296 12-14=-1990/433, 8-10=0/456 4-14=-1324/324, 8-12=-1246/348 \cap NOTES 1) Unbalanced roof live loads have been considered for this design CHILDRAND MAN 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) SEAL Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; 036322 Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -0-8-7 to 3-8-6, Interior (1) 3-8-6 to 21-6-0, Exterior(2R) 21-6-0 to 25-10-13, Interior (1) 25-10-13 to

DOL=1.60 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

43-0-0 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall a futs system: Denote use, the building designer inder very the applications of design had needed an intervent with a policitation of the system of the state of the system of the syste and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

G

mmm March 24,2025

Job	Truss	Truss Type	Qty	Ply	Lot 21 Turlington Acres
J0425-1935	A06	Common	1	1	Job Reference (optional)

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Fri Mar 21 08:07:55

Page: 1

8

Ň

ID:pHcUBcwKoMW0EiisJ5dEySzvAWU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f -0-10-8 10-10-2 21-6-0 32-1-14 43-0-0 0-10-8 10-10-2 10-7-14 10-7-14 10-10-2 5x8= 5 12 51 4x8 🚅 21 2x4 🎣 22 2x4、 4x8. 6 4 3 9-8-2 9-8-0 23 -8-8 ł ⊠ 11 25 27 9 24 13 12 26 10 28 29 4x4= 4x4= 6x6=

Scale = 1:75.9

Plate Offsets (X, Y): [6:0-0-0,0-0-0]

Loading TCLL (roof) TCDL BCLL BCDL	(psf 20.0 10.0 0.0 10.0	 Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code 	2-0-0 1.15 1.15 YES IRC2021/T	FPI2014	CSI TC BC WB Matrix-AS	0.41 0.80 0.43	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.33 -0.65 0.08 0.12	(loc) 10-19 10-19 8 10-19	l/defl >720 >372 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 262 lb	GRIP 244/190 FT = 25%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x6 SP No.1 2x6 SP No.1 2x4 SP No.2 Structural wood ((size) 2=0-3 Max Horiz 2=115 Max Uplift 2=-124 Max Grav 2=178 11=36	sheathing directly app sheathing directly app 8, 8=0-3-8, 11=0-3-8 (LC 12) 8 (LC 12), 8=-121 (LC 8 (LC 2), 8=1727 (LC 5 (LC 2)	5) A 6) C tt T lied. la lied. 7) T s tt 13) LOAI 2), LOAI	All bearings a capacity of 56 One RT3A Mi rruss to bearin This connecti ateral forces. This truss des structural woo chord and 1/2 he bottom ch D CASE(S)	re assumed to be 55 psi. Tek connectors re ng walls due to UF on is for uplift only sign requires that a od sheathing be ap 2" gypsum sheetro ord. Standard	SP No. ecomme PLIFT at and do a minimi oplied di ck be ap	1 crushing nded to conne jt(s) 2, 8, and es not conside um of 7/16" rectly to the to pplied directly t	ct 11. r p io					
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Maximum C Tension 1-2=0/16, 2-3=-3 5-7=-2885/661, 7 2-13=-549/2995, 10-11=-263/196' 5-13=-114/1146, 5-10=-112/1044,	300/699, 3-5=-2958/6 7-8=-3229/705 11-13=-263/1961, I, 8-10=-533/2932 7-10=-701/343, 3-13=-696/342	n 55,										
 Unbalance this design Uind: ASC Vasd=103 Cat. II; Ex Exterior(21 A3-0-0 zor reactions: DOL=1.60 This truss chord live * This truss on the bot 3-06-00 ta 	ed roof live loads hand CE 7-16; Vult=130n imph; TCDL=6.0ps p C; Enclosed; MW E) -0-8-7 to 3-8-6, I R) 21-6-0 to 25-10- ne;C-C for member shown; Lumber DC has been designed load nonconcurrent s has been designed load nonconcurrent	ave been considered f nph (3-second gust) f; BCDL=6.0psf; h=15 (FRS (envelope) and (nterior (1) 3-8-6 to 21 13, Interior (1) 25-10- s and forces & MWFR 0L=1.60 plate grip d for a 10.0 psf bottom t with any other live lo dof or a live load of 20 as where a rectangle will fit between the bot	or t; C-C 6-0, 13 to S for ads. .0psf tom							Withham		SEAL 03632	ROCH REPERENCE

chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 4) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

G mmm March 24,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 21 Turlington Acres	
J0425-1935	A07	Common	6	1	Job Reference (optional)	172199010

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Fri Mar 21 08:07:55 ID:LRhEpKx0?A55Jc70Ek7xMAzvAVA-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:77.1

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021	I/TPI2014	CSI TC BC WB Matrix-AS	0.41 0.50 0.74	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.15 -0.31 0.02 0.08	(loc) 13-16 13-16 2 13-16	l/defl >999 >879 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 270 lb	GRIP 244/190 FT = 25%	_
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x6 SP No.1 2x6 SP No.1 2x4 SP No.2 Structural wood shea 1 Row at midpt (size) 2=0-3-8, 8 Max Horiz 2=117 (LC Max Uplift 2=-88 (LC 11=-65 (LC Max Grav 2=927 (LC 11=2199 (athing directly applie athing directly applie 5-11, 7-11 = Mechanical, 11=0 12), 8=-85 (LC 13), C 12) 27), 8=-711 (LC 28) LC 2)	5) 6) 7) d. d. 8) -3-8 9) ,	Bearings are capacity of 5 of 565 psi. Refer to girdd Provide mecl bearing plate 8. One RT3A M truss to beari This connect lateral forces This truss de structural wo chord and 1// the bottom cl	assumed to be: J 65 psi, Joint 11 SF er(s) for truss to tru- hanical connection e capable of withsta liTek connectors re- ing walls due to UF ion is for uplift only sign requires that od sheathing be a 2" gypsum sheetro hord.	point 2 SF No.1 cr uss conr (by oth- anding 8 ecomme PLIFT at and do a minimi pplied di iock be ap	P No.1 crushi ushing capar ections. ers) of truss t 5 lb uplift at j nded to conr jt(s) 2 and 1 es not consid um of 7/16" rectly to the to opplied directly	ng city oint nect 1. Jer top y to						
FORCES	(lb) - Maximum Com Tension	pression/Maximum	LO	AD CASE(S)	Standard									
TOP CHORD	1-2=0/16, 2-3=-1257, 5-7=0/452, 7-8=-922	/279, 3-5=-1105/343 /213	8,											
BOT CHORD	2-13=-166/1111, 11- 9-11=-83/756, 8-9=-	13=-146/147, 139/756												
WEBS	5-13=-260/1456, 3-1 5-11=-1300/327, 7-1	3=-681/343, 1=-1161/314, 7-9=0/	417											
NOTES	,	,												
1) Unbalance	ed roof live loads have	been considered for											11111	

this design

- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -0-8-7 to 3-8-6, Interior (1) 3-8-6 to 21-6-0, Exterior(2R) 21-6-0 to 25-10-13, Interior (1) 25-10-13 to 42-8-8 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 4) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 21 Turlington Acres	
J0425-1935	A08	Common Supported Gable	1	1	Job Reference (optional)	172199011

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Fri Mar 21 08:07:55 ID:jD3PZTd8pN991DPmWV73d_zvAUI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f -

Page: 1

Scale = 1:77.1

Loading TCLL (roof) TCDL		(psf) 20.0 10.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15	CSI TC BC	0.05	DEFL Vert(LL) Vert(CT)	in n/a n/a	(le	oc) - -	l/defl n/a n/a	L/d 999 999	PLATES MT20	GRIP 244/190
BCDL		10.0	Code	IRC2021/TPI2014	Matrix-AS	0.12	Horz(CT)	0.00		24	n/a	n/a	Weight: 347 lb) FT = 25%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x6 SP M 2x6 SP M 2x4 SP M No.2(flat) Structural T-Brace: Fasten (2 of web wi o.c.,with 3 Brace m (size)	2.1 2.1 2.2 *Except wood sheat wood sheat wood sheat wood sheat wood sheat 2.422-8-8, 2.422-8-8, 2.422-8-8, 2.422-8-8, 2.422-8-8, 2.422-8-8, 2.422-8-8, 4.0=42-8, 4.0=42-8	t* 0-0,0-0,0-0:2x4 SP athing directly applied athing directly applied 2x4 SPF No.2 - 13-3: 12-36, 14-34 braces to narrow edg 31"x3") nails, 6in n end distance. 10% of web length. 24=42-8-8, 25=42-8; , 31=42-8-8, 35=42-6; , 31=42-8-8, 35=42-6; , 37=42-8-8, 35=42-6; , 41=42-8-8, 42=42-6; , 41=42-8-8, 42=42-6; , 41=42-8-8, 42=42-6; , 42=42-8-8, 45=42-6; , 41=42-8-8, 45=42-6; , 42=42-8-8, 45=42-6; , 42=42-8-8, 45=42-6; , 12), 46=-117 (LC 13), C 13), 29=-29 (LC 13) C 13), 32=-29 (LC 13) C 12), 37=-34 (LC 12) C 12), 42=-28 (LC 12) C 12), 42=-28 (LC 12) C 12), 46=-2 (LC 13)	F I. I. 5, je FORCES 8, TOP CHOR 3-8, 3-	ax Grav $2=176$ (25=256 27=167 29=160 32=160 34=160 39=160 41=160 43=168 45=271 49=120 (b) - Maximum Co Tension 1-2=0/16, 2-3=-14 4-5=-89/66, 5-6=-7 7-9=-70/167, 9=10 11-12=-121/311, 11 15-16=-103/261, 11 15-16=-103/261, 12 20-21=-51/74, 21-23 24-5=-36/154, 44-23 41-42=-34/154, 42-23 24-53=-36/154, 44-33 32-33=-34/154, 42-34 41-42=-34/154, 42-34 32-33=-34/154, 42-34 41-32=-34/154, 42-34 32-33=-34/154, 42-34 42-34=-34/154, 42-34/154,	LC 1), 2: (LC 26), (LC 26), (LC 26), (LC 26), (LC 1), : (LC 25), (LC 1), . (LC 25), (LC	4=120 (LC 1), 26=128 (LC 28=159 (LC 33=162 (LC 2) 35=150 (LC 1) 42=158 (LC 44=120 (LC 1) 44=120 (LC 46=176 (LC on/Maximum 4=-106/53, 7=-63/121, 1, 10-11=-103/ 32/343, 21/311, 7/214, 16, 22-23=-70/ 54, 154	1), 1), 1), 6), 22), 25),), 1), 1), (261, (7,	WE 1) 2)	BS TES Unbi- this o Winc Vasc Corr Corr Corr Corr Corr Corr Corr Cor	alancec design. 1: ASCE d=103m II; Exp tions sh =er(3R) -8 zone tions sh =1.60 s desig . For st Standa onsult q	13-35 11-37 9-40= 5-43= 3-45= 15-33 17-31 20-28 22-26 1 roof I 5-33 17-31 20-28 22-26 1 roof I 5-33 (C) Enroof I 5-33 (C	=-130/12, 12-36 =-122/109, 10-3 -120/97, 7-41=- -123/101, 4-44= -122/109, 16-3 =-120/97, 19-29 =-120/97, 21-27 =-103/83, 23-25 ive loads have b ; Vult=130mph (CDL=6.0psf; BC CDL=6.0psf; BC CDL=6.0psf; BC CDL=6.0psf; BC CDL=6.0psf; BC cosed; MWFRS to 3-6-0, Exterio 0 to 25-10-13, E: for members and Lumber DOL=1. r wind loads in ti xposed to wind (ustry Gable End d building design	=-120/58, 9=-120/98, 120/97, 6-42=-120/97, -100/82, =-120/58, 2=-120/98, =-120/97, =-122/100, =-176/223 een considered for 3-second gust) DL=6.0psf; h=15ft; (envelope) and C-C rr(2N) 3-6-0 to 21-6-0, <terior(2n) 25-10-13="" to<br="">1 forces & MWFRS for 60 plate grip he plane of the truss normal to the face), Details as applicable, her as per ANSI/TPI 1.</terior(2n)>

March 24,2025

TRENGINEERING BY A MITEK Affiliate

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, recetion and bracing of trusses and truss systems, see **ANSI/TPI Quility Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job Tru:	russ	Truss Type	Qty Ply		Lot 21 Turlington Acres	on Acres				
J0425-1935 A08	08	Common Supported Gable	1	1	Job Reference (optional)	172199011				

Comtech. Inc. Favetteville, NC - 28314.

All plates are 2x4 MT20 unless otherwise indicated. 4)

Gable requires continuous bottom chord bearing. 5)

- 6) Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom 7)
- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 8) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
- chord and any other members. 9) All bearings are assumed to be SP No.1 crushing capacity of 565 psi.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 2 lb uplift at joint 2, 12 lb uplift at joint 36, 34 lb uplift at joint 37, 29 lb uplift at joint 39, 28 lb uplift at joint 40, 29 lb uplift at joint 41, 28 lb uplift at joint 42, 31 lb uplift at joint 43, 14 lb uplift at joint 44, 67 lb uplift at joint 45, 6 lb uplift at joint 34, 35 lb uplift at joint 33, 29 lb uplift at joint 32, 28 lb uplift at joint 31, 29 lb uplift at joint 29, 28 lb uplift at joint 28, 31 lb uplift at joint 27, 15 lb uplift at joint 26, 67 lb uplift at joint 25 and 2 lb uplift at joint 2.
- 11) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 12) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

LOAD CASE(S) Standard

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Fri Mar 21 08:07:55 ID:jD3PZTd8pN991DPmWV73d_zvAUI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 21 Turlington Acres	
J0425-1935	B01	Common Supported Gable	1	1	Job Reference (optional)	172199012

5x5 = 5

6-0-0 6-0-0

12 8 Г

3

22 4

0-10-8

0-10-8

2

Comtech, Inc. Favetteville, NC - 28314.

4-11-8

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Fri Mar 21 08:07:56 ID:wL1gitdqczubHZHm5IUXntzvAlg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

12-0-0

6-0-0

⁶23

7

12-10-8

0-10-8

8

g

GRIP

244/190

FT = 25%

0-11-8 14 13 12 11 10 4x8 II 4x8 II 12-0-0 Spacing 2-0-0 CSI DEFL l/defl L/d PLATES (psf) in (loc) 20.0 Plate Grip DOL 1.15 TC 0.03 Vert(LL) n/a n/a 999 MT20 BC 10.0 Lumber DOL 1 15 Vert(CT) 999 0.03 n/a n/a 0.0* Rep Stress Incr YES WB 0.04 Horz(CT) 0.00 8 n/a n/a 10.0 Code IRC2021/TPI2014 Matrix-AS Weight: 87 lb 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Corner(3E) -0-8-12 to 3-8-1, Exterior(2N) 3-8-1 to 6-0-0, Corner(3R) 6-0-0 to 10-4-13, Exterior(2N) 10-4-13 to Left: 2x4 SP No.2 12-8-12 zone;C-C for members and forces & MWFRS Right: 2x4 SP No.2 for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Structural wood sheathing directly applied. 3) Truss designed for wind loads in the plane of the truss Structural wood sheathing directly applied. only. For studs exposed to wind (normal to the face), 2=12-0-0, 8=12-0-0, 10=12-0-0, see Standard Industry Gable End Details as applicable, 11=12-0-0, 12=12-0-0, 13=12-0-0, or consult qualified building designer as per ANSI/TPI 1. 14=12-0-0, 15=12-0-0, 19=12-0-0 All plates are 2x4 MT20 unless otherwise indicated. 4) Max Horiz 2=108 (LC 11), 15=108 (LC 11) Gable requires continuous bottom chord bearing. 5) Max Uplift 2=-20 (LC 8), 10=-72 (LC 13), 6) Gable studs spaced at 2-0-0 oc. 11=-34 (LC 13), 13=-34 (LC 12), 7) This truss has been designed for a 10.0 psf bottom 14=-76 (LC 12), 15=-20 (LC 8) chord live load nonconcurrent with any other live loads. 2=144 (LC 20), 8=143 (LC 1), * This truss has been designed for a live load of 20.0psf 8) 10=186 (LC 20), 11=169 (LC 20), on the bottom chord in all areas where a rectangle 12=121 (LC 1), 13=170 (LC 19), 3-06-00 tall by 2-00-00 wide will fit between the bottom 14=192 (LC 19), 15=144 (LC 20), chord and any other members. 19=143 (LC 1)

All bearings are assumed to be SP No.1 crushing capacity of 565 psi.

- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 20 lb uplift at joint 2, 34 lb uplift at joint 13, 76 lb uplift at joint 14, 34 lb uplift at joint 11, 72 lb uplift at joint 10 and 20 lb uplift at joint 2.
- 11) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Scale = 1:39.7

Loading

TCDI

BCLL

BCDL

LUMBER TOP CHORD

OTHERS

WEDGE

BRACING

TOP CHORD

BOT CHORD

REACTIONS (size)

BOT CHORD

2x6 SP No.1

2x6 SP No.1

2x4 SP No.2

Max Grav

TCLL (roof)

Tension TOP CHORD 1-2=0/24, 2-3=-93/66, 3-4=-90/94, 4-5=-106/182, 5-6=-106/183, 6-7=-68/88, 7-8=-69/35, 8-9=0/24 BOT CHORD 2-14=-70/133. 13-14=-32/133. 12-13=-32/133, 11-12=-32/133, 10-11=-32/133. 8-10=-32/133 WEBS 5-12=-80/0, 4-13=-135/149, 3-14=-135/203. 6-11=-133/147.7-10=-136/202

NOTES

FORCES

Unbalanced roof live loads have been considered for 1) this design.

(Ib) - Maximum Compression/Maximum

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Lot 21 Turlington Acres	
J0425-1935	B02	Common Girder	1	2	Job Reference (optional)	172199013

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Fri Mar 21 08:07:56 ID:qTvJOJifeK6zTEbtpxaPuezvAHH-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

	6-0-0		12-0-0	
	6-0-0	I	6-0-0	
Scale = 1:43.7				
Plate Offsets (X, Y): [1:Edge,0-2-9], [3:Edge,0-2-9]				

Loading TCLL (roof) TCDL	(psf) 20.0 10.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15		CSI TC BC	0.10 0.39	DEFL Vert(LL) Vert(CT)	in -0.02 -0.04	(loc) 4-7 4-7	l/defl >999 >999	L/d 360 240	PLATES MT20	GRIP 244/190
BCLL BCDL	0.0* 10.0	Rep Stress Incr Code	NO IRC202	1/TPI2014	WB Matrix-MS	0.29	Horz(CT) Wind(LL)	0.01 0.02	3 4-7	n/a >999	n/a 240	Weight: 155 lb	FT = 25%
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) 2-ply truss (0.131"x3" Top chord: staggered Bottom chi- staggered Web conni- staggered Web conni- staggered Wind: ASC	2x6 SP No.1 2x8 SP No.1 2x4 SP No.2 Structural wood shea 6-0-0 oc purlins. Structural wood shea 10-0-0 oc bracing. (size) 1=0-3-8, 3 Max Horiz 1=-96 (LC Max Uplift 1=-313 (L Max Grav 1=2471 (L (Ib) - Maximum Com Tension 1-2=-2483/347, 2-3= 1-4=-232/2003, 3-4= 2-4=-265/2356 to be connected toget) nais as follows: s connected as follows at 0-9-0 oc. ords connected as follows at 0-9-0 oc. ords connected as follows at 0-9-0 oc. ected as follows: 2x4 - ire considered equally oted as front (F) or bas section. Ply to ply com o distribute only loads erwise indicated. ad roof live loads have 1. CE 7-16; Vult=130mph mph; TCDL=6.0psf; BC p C; Enclosed; MWFR3 plate grip DOL=1.60	athing directly applied athing directly applied athing directly applied 3=0-3-8 :4) C 8), 3=-318 (LC 9) C 2), 3=2515 (LC 2) pression/Maximum -2464/347 -232/2003 ther with 10d :: 2x6 - 2 rows ther with 10d :: 2x6 - 2 rows 2x8 - 2 rows 1 row at 0-9-0 oc. applied to all plies, ck (B) face in the LO/ tections have been noted as (F) or (B), been considered for (3-second gust) CDL=6.0psf; h=15ft; S (envelope); Lumber	5) 6) 1 or 7) 1 or 8) 9) 1(1)	This truss ha chord live loa * This truss h on the botton 3-06-00 tall b chord and an All bearings a capacity of 5 One RT3A M truss to bearing This connect lateral forces Use MiTek JI nails into Tru starting at 1-1 truss(es) to b D) Fill all nail ho OAD CASE(S) Dead + Roo Plate Increa Uniform Loa Vert: 1-2 Concentrate Vert: 11= 14=-668	s been designed for d nonconcurrent v as been designed n chord in all areas y 2-00-00 wide wil y 2-00-00 wide wil y other members. are assumed to be 65 psi. iTek connectors re ng walls due to UF ion is for uplift only. JS24 (With 4-10d ss) or equivalent s 0-12 from the left e ack face of bottom les where hanger Standard of Live (balanced): ise=1.15 ads (lb/f) =60, 2-3=-60, 5-8: ed Loads (lb) -668 (B), 12=-668 (B), 1	or a 10.0 vith any for a liv s where I fit betw SP No. ecomme PLIFT at and do nails int paced a and to 11 a chord. is in cor Lumber =-20 (B), 13= 6=-668	D psf bottom other live loa e load of 20.0 a rectangle veen the botto 1 crushing inded to conrr jt(s) 1 and 3 es not consic o Girder & 2- tt 2-0-0 oc ma I-0-12 to con ttact with lum Increase=1.	nds. Dpsf om der 10d ax. nect iber. 15,				SEA 0363	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

March 24,2025

Job	Truss	Truss Type C		Ply	Lot 21 Turlington Acres				
J0425-1935	M01	Monopitch Supported Gable	1	1	Job Reference (optional)	172199014			

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Fri Mar 21 08:07:56 ID:pgMaLi7Xssps16ifOhm6Yizv9mS-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

3x4 =

-0-10-8

0-10-8

5-0-0

5-0-0

5-0-0

Scale = 1:23				I.						1				
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.25	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15		BC	0.25	Vert(CT)	n/a	-	n/a	999			
BCLL	0.0*	Rep Stress Incr	YES		WB	0.00	Horz(CT)	0.00	2	n/a	n/a			
BCDL	10.0	Code	IRC202	1/TPI2014	Matrix-AS							Weight: 18 lb	FT = 25%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.1 2x4 SP No.1 2x4 SP No.2 Structural wood she except end verticals Structural wood she (size) 2=5-0-0, 4 Max Horiz 2=50 (LC Max Uplift 2=-50 (LC (LC 8) Max Grav 2=251 (LC (LC 1)	athing directly applie athing directly applie 4=5-0-0, 5=5-0-0 8), 5=50 (LC 8) : 8), 4=-23 (LC 12), 5 C 1), 4=192 (LC 1), 5	7) 8) ed, 9) ed. 5=-50 5=251	All bearings a capacity of 5 Provide mec bearing plate 2, 23 lb uplift This truss de structural wo chord and 1/ the bottom cl DAD CASE(S)	are assumed to 65 psi. hanical connecti e capable of with a t joint 4 and 5 isign requires th od sheathing be 2" gypsum shee hord. Standard	be SP No. on (by oth standing 5 0 lb uplift a at a minim applied d trock be a	1 crushing ers) of truss t 50 lb uplift at ju at joint 2. um of 7/16" irectly to the t pplied directly	o oint op / to						
	(lb) - Maximum Com Tension	pression/Maximum												
BOT CHORD	2-4=-153/144	60, 3-4=-123/215												
NOTES														
1) Wind: AS Vasd=100 Cat. II; Ex Corner(3E zone;C-C reactions DOL=1.60	CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; Br vp C; Enclosed; MWFR E) -0-10-8 to 3-6-5, Ext for members and force shown; Lumber DOL= 0	(3-second gust) CDL=6.0psf; h=15ft; S (envelope) and C- erior(2N) 3-6-5 to 4- es & MWFRS for 1.60 plate grip	.С 10-4									WITH CA	ROUT	

 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

Gable requires continuous bottom chord bearing.
 Gable studs spaced at 2-0-0 oc.

5) This truss has been designed for a 10.0 psf bottom

- chord live load nonconcurrent with any other live loads. 6) * This truss has been designed for a live load of 20.0psf
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 21 Turlington Acres		
J0425-1935	M02	Monopitch	13	1	Job Reference (optional)	172199015	

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Fri Mar 21 08:07:56 ID:8ATQ2HsdTMuq3a4DbdXycwzvB60-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:28.4

Plate Offsets (X, Y): [2:0-2-8,Edge], [4:Edge,0-2-0]

Loading TCLL (roof)		(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.15	CSI TC	0.28	DEFL Vert(LL)	in -0.02	(loc) 4-7	l/defl >999	L/d 360	PLATES MT20	GRIP 244/190	
TCDL		10.0	Lumber DOL	1.15	BC	0.29	Vert(CT)	-0.05	4-7	>999	240			
BCLL		0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	2	n/a	n/a			
BCDL		10.0	Code	IRC2021/TPI2014	Matrix-AS		Wind(LL)	0.08	4-7	>690	240	Weight: 18 lb	FT = 25%	
BCDL LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD NOTES 1) Wind: ASC Vasd=103 Cat. II; Ex; Exterior(21 Zone; porc forces & M DOL=1.60 2) This truss chord live 3) * This truss on the bot 3-06-00 ta chord and (1) All bearing capacity o 5) Bearing at using ANS designer s 6) Provide m bearing pla	2x4 SP No. 2x4 SP No. 2x4 SP No. 2x4 SP No. 2x4 SP No. Structural w except end Structural w (size) 2 Max Horiz 2 Max Uplift 2 Max Grav 2 (Ib) - Maxim Tension 1-2=0/13, 2- 2-4=-260/11 CE 7-16; Vult= Brph; TCDL=6 p C; Enclosed E) -0-10-8 to 3 ch left and righ /WFRS for rea 0 plate grip DC has been des load nonconci shas been des tom chord in a all by 2-00-00 v any other me gs are assume of 565 psi. t joint(s) 4 con- S/TPI 1 angle should verify ci nechanical con ate at joint(s) 4	10.0 10.0	Code Code athing directly applied athing directly applied l=0-1-8 8) C 8), 4=-77 (LC 8) C 8), 4=-77 (LC 8) C 8), 4=-77 (LC 8) C 8), 4=-125/185 (3-second gust) CDL=6.0psf; h=15ft; S (envelope) and C-C erior (1) 3-6-5 to 4-10 d;C-C for members a nown; Lumber a 10.0 psf bottom th any other live load: or a live load of 20.0p where a rectangle fit between the bottor SP No.1 crushing arallel to grain value formula. Building f bearing surface. by others) of truss to	 IRC2021/TPI2014 7) One RT3A M truss to bear This connect lateral forces 8) This truss de structural wo chord and 1/. the bottom chord and 1/. the bottom chord and 1/. LOAD CASE(S) 	Matrix-AS liTek connectors re ing walls due to UF ion is for uplift only sign requires that od sheathing be a 2" gypsum sheetro hord. Standard	ecomme PLIFT at / and do a minimi pplied di ock be ap	Wind(LL) mded to commission of the commission o	0.08 nect I. der top ly to	4-7	>690	240	Weight: 18 lb WHICH CA OFFESS SEA 0363	FT = 25%	
												111111	1111	

- designer should verify capacity of bearing surface.
- Provide mechanical connection (by others) of truss to 6) bearing plate at joint(s) 4.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

A. GILD

March 24,2025

Job	Truss	Truss Type	Qty	Ply	Lot 21 Turlington Acres		
J0425-1935	M03	Jack-Closed	6	1	Job Reference (optional)	172199016	

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Fri Mar 21 08:07:56 ID:zQxOaal215DKxxkRxAsJcXzvB4s-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

I	4-0-0	5-0-0
	4-0-0	1-0-0

Scale = 1:28.3

Plate Offsets (X, Y): [2:0-5-4,Edge]

Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.18	Vert(LL)	-0.03	5-7	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.48	Vert(CT)	-0.06	5-7	>999	240		
BCLL	0.0*	Rep Stress Incr	NO		WB	0.01	Horz(CT)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC202	1/TPI2014	Matrix-AS		Wind(LL)	0.02	5-7	>999	240	Weight: 21 lb	FT = 25%
LUMBER			7)	Load case(s)) 1 has/have beer	n modified	d. Building						
TOP CHORD	2x4 SP No.1			designer mu	st review loads to	verify the	at they are						
BOT CHORD	2x6 SP No.1			correct for the intended use of this truss.									
WEBS	2x4 SP No.2		8)	This truss de	esign requires that	t a minim	um of 7/16"						
BRACING				structural wo	od sheathing be a	applied d	irectly to the	top					
TOP CHORD	Structural wood she	athing directly applied	ł.	chord and 1/	2" gypsum sheetr	rock be a	pplied directl	y to					
BOT CHORD	Structural wood she	athing directly applied	ł	the bottom c	hord.								
REACTIONS	(size) 2=0-5-8.4	4= Mechanical	9)	Hanger(s) or	other connection	device(s) shall be						
	Max Horiz 2=44 (LC	8)		provided suff	ficient to support		ated load(s) t	55 ID					
	Max Uplift 2=-6 (LC	8)		down and 50	tion of such conn	on bollon	vice(e) is the						
	Max Grav 2=355 (L0	C 1), 4=595 (LC 1)		design/selection of such connection device(s) is the									
FORCES	(lb) - Maximum Com	nression/Maximum	10	10) In the LOAD CASE(S) section loads applied to the face									
TOROLO	Tension	ipression/maximum	10	of the trust ended as front (F) or back (R)									
TOP CHORD	1-2=0/13, 2-3=-99/4	0	10										
BOT CHORD	2-5=-22/19, 4-5=0/0		1)		of Live (balanced)	Umber	Increase-1	15					
WEBS	3-5=-113/110		1)	Plate Increa	51 LIVE (Dalanceu)		Increase=1.	.15,					
NOTES				Uniform Lo	ads (lb/ft)								
1) Wind ASC	~E 7-16: \/ult-130mph	(3-second quet)		Vert: 1-3	=-60 2-4=-20								
Vasd=103	moh: TCDI -6 Opef: Bi	CDI = 6 Opef b = 15ft		Concentrat	ed Loads (lb)								
Cat II: Ex	n C: Enclosed: MWFR	S (envelope) and C-C	2	Vert: 5=-	550 (F=-55)								
Exterior(2)	F) -0-10-8 to 3-6-5 Int	erior (1) 3-6-5 to 4-1-1	, 12	VOI1. 0-	000 (1 = 00)								
zone C-C	for members and force	es & MWFRS for											1111
reactions	shown: Lumber DOL=	1.60 plate grip										IN CA	DIL
DOL=1.60)	j									1	THUA	TO MA
2) This truss	has been designed for	r a 10.0 psf bottom									31	ONIESS	id All
chord live	load nonconcurrent wi	ith any other live loads	S.									PNI A'	
3) * This trus	s has been designed f	or a live load of 20.0p	sf										
on the bot	tom chord in all areas	where a rectangle											
3-06-00 ta	II by 2-00-00 wide will	fit between the botton	n SFAL										
chord and	any other members.									- E		0000	
4) Bearings a	are assumed to be: Joi	int 2 SP No.1 crushing	3									0363	22 : -

capacity of 565 psi.

5) Refer to girder(s) for truss to truss connections.

 One RT3A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces. March 24,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 21 Turlington Acres	
J0425-1935	M04	Monopitch	1	1	Job Reference (optional)	172199017

-0-10-8

0-10-8

Comtech, Inc. Favetteville, NC - 28314.

Scale = 1:24.9

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Fri Mar 21 08:07:56 ID:1_iLULWdxLBo257wp8OxuvzvAzQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

5-0-0

1-0-0

5-0-0

1-0-0

4-0-0

4-0-0

4-0-0

4-0-0

Page: 1

818 Soundside Road Edenton, NC 27932

VIIIIIIIIIII

only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing. Gable studs spaced at 2-0-0 oc. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.	Contraction of the
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI Quality Criteria and DSB-22 available from Truss Plate Institute (www.t	pinst.org)

and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

4x6 🛚 12 3 Г 3 1-4-0 1-6-4 2 4 3x4 =

3x4 =

Job	Truss	Truss Type	Qty	Ply	Lot 21 Turlington Acres	
J0425-1935	V01	Valley	1	1	Job Reference (optional)	172199018

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Fri Mar 21 08:07:56 ID:Fw34KJ8q920Bu34wLuS44KzZL3t-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

11-3-4 10-3-4 10-3-4 1-0-0 3x4 II 7 6 2x4 II 5 2x4 II 15 4 7-6-8 2x4 II 6-10-8 3 2x4 II 2 _12 8Г 9-0-0 8 12 11 10 9 3x4 II 3x4 🧔 2x4 🛚 2x4 II 2x4 II 2x4 II

10-3-4

ŀ

Scale = 1:49.6

Loading		(psf)	Spacing	2-0-0		CSI	0.00	DEFL	in r/a	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (1001)		20.0	Plate Grip DOL	1.15			0.08	Vert(LL)	n/a	-	n/a	999	101120	244/190	
DOLL		10.0		1.15		BC	0.03		n/a	-	n/a	999			
BCDL		10.0	Code	IRC202	1/TPI2014	Matrix-AS	0.07		0.00	12	n/a	n/a	Weight: 62 lb	FT = 25%	
	:		•	4)	Gable require	es continuous bo	ttom chor	d bearing.					·		
TOP CHORE	2x4 SP No	o.1		5)	Gable studs	spaced at 2-0-0 o	OC.	0							
BOT CHORE	2x4 SP No	o.1		6)	This truss ha	s been designed	for a 10.0	0 psf bottom							
WEBS	2x4 SP No	o.2			chord live load nonconcurrent with any other live loads.										
OTHERS	2x4 SP No	o.2		7)	 * This truss has been designed for a live load of 20.0psf 										
BRACING					on the bottor	n chord in all are	as where	a rectangle							
TOP CHORE	Structural except en	wood she d verticals	athing directly applie	ed,	3-06-00 tall b chord and ar	by 2-00-00 wide v by other members	vill fit betv s.	veen the botto	om						
BOT CHORE	Structural	wood she	athing directly applie	ed. ⁸⁾	All bearings	are assumed to b	be SP No.	1 crushing							
REACTIONS	(size)	1=10-3-4, 10=10-3-4	8=10-3-4, 9=10-3-4 11=10-3-4 12=10-	, -3-4 9)	capacity of 5 Provide mec	65 psi. hanical connectic	on (by oth	ers) of truss t	0						
	Max Horiz Max Uplift	1=235 (LC 1=-5 (LC (LC 12), 1	10), 8=-72 (LC 9), 9= 10]-47 (LC 12), 11=-	=-37 50	bearing plate 1, 72 lb uplift at joint 10, 50 12.	e capable of withs at joint 8, 37 lb u D lb uplift at joint	standing 5 uplift at joi 11 and 32	5 lb uplift at jo nt 9, 47 lb up 2 lb uplift at jo	int lift int						
(LC 12), 12=-32 (LC 12) Max Grav 1=120 (LC 12), 8=153 (LC 19), 9=157 (LC 19), 10=176 (LC 19), 14 102 (LC 10), 12 200 (LC 10)					10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to										
FORCES	(lb) - Maxi	imum Com	pression/Maximum	,	the bottom cl	hord.									
1011020	Tension			L	DAD CASE(S)	Standard									
TOP CHORE) 1-2=-576/ 4-5=-254/ 6-8=-138/	263, 2-3=- 107, 5-6=- 239	474/212, 3-4=-367/1 154/63, 6-7=-38/0,	61,											
BOT CHORE	0 1-12=-143 9-10=-1/2	8/99, 11-12 . 8-9=-1/2	2=-1/2, 10-11=-1/2,										N''IL CA	Della	
WEBS	5-9=-144/ 3-11=-133	, 177, 4-10= 8/190, 2-12	=-137/180, 2=-138/184									H	ORTHO	6.94	11
NOTES												55		Till	11
1) Wind: AS	SCE 7-16; Vul	t=130mph	(3-second gust)								<u> </u>	U			Ļ
Vasd=10	3mph; TCDL	=6.0psf; B	CDL=6.0psf; h=15ft;								-		054	, i i i i i i i i i i i i i i i i i i i	-
Cat. II; E	xp C; Enclose	ed; MWFR	S (envelope) and C-	С							=		SEA	L :	=
Corner(3	E) 0-0-9 to 4-	3-13, Exte	erior(2N) 4-3-13 to	_									0363	22 :	
11-3-13	zone;C-C for	members a	and forces & MWFR	S							-			:	-
for reacti	ons snown; L	umber DO	L=1.60 plate grip									-			-
2) Truce do	iu signod for wir	nd loade in	the plane of the true									2.1	N. ENG	-cR. X	3
	signed for Wir r studs expos	ed to wind	(normal to the face)	55								1	S, GIN	EF. A	5
see Stan	dard Industry	Gable Fn	d Details as applicat	, ole.								1	CA -	BEN	10 A
or consu	t qualified bu	ildina desid	oner as per ANSI/TP	911.									11, A. C	11-111	
 All plates 	are 2x4 MT2	20 unless c	otherwise indicated.										11111	IIII.	

3) All plates are 2x4 MT20 unless otherwise indicated.

March 24,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 21 Turlington Acres	
J0425-1935	V02	Valley	1	1	Job Reference (optional)	172199019

2)

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Fri Mar 21 08:07:56 ID:75MORW_i?h7ZLwQUD_?1sizvAGv-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932

WWWWWWWW

