Mark Morris, P.E.

#126, 1317-M, Summerville, SC 29483 843 209-5784, Fax (866)-213-4614

The truss drawing(s) listed below have been prepared by **Atlantic Building Components** under my direct supervision based on the parameters provided by the truss designers.

AST #: 46042 JOB: 24-1170-F02 JOB NAME: LOT 0.0003 HONEYCUTT HILLS Wind Code: N/A Wind Speed: Vult= N/A Exposure Category: N/A Mean Roof Height (feet): N/A These truss designs comply with IRC 2015 as well as IRC 2018. 16 Truss Design(s)

Trusses: F01, F02, F03, F04, F05, F06, F07, F08, F09, F10, F12, F13, F14, F15, F16, F17

Warning !--- Verify design parameters and read notes before use.

This design is based only upon parameters shown, and is for an individual building component to be installed and loaded vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 *National Design Standard for Metal Plate Connected Wood Truss Construction* and BCSI 1-03 Guide to

				12.1.0		
Plate O	ffsets (X,Y)	[6:0-1-8,Edge], [16:0-1-8,Edge], [20:1	Edge,0-1-8]	12-1-0		
LOADIN TCLL TCDL BCLL BCDL	IG (psf) 40.0 10.0 0.0 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2021/TPI2014	CSI. TC 0.06 BC 0.01 WB 0.03 Matrix-SH	DEFL. ir Vert(LL) n/a Vert(CT) n/a Horz(CT) 0.00	n (loc) l/defl L/d a - n/a 999 a - n/a 999) 11 n/a n/a	PLATES GRIP MT20 244/190 Weight: 54 lb FT = 20%F, 11%E
LUMBE TOP CH BOT CH WEBS OTHER	R- IORD 2x4 SF IORD 2x4 SF 2x4 SF S 2x4 SF	P No.1(flat) P No.1(flat) P No.3(flat) P No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing d end verticals. Rigid ceiling directly applied	irectly applied or 6-0-0 oc purlins, except or 10-0-0 oc bracing.

12-1-0

REACTIONS. All bearings 12-1-0.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 20, 11, 19, 18, 17, 16, 15, 14, 13, 12

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES- (5)

1) Gable requires continuous bottom chord bearing.

- 2) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 3) Gable studs spaced at 1-4-0 oc.
- 4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

LOAD CASE(S) Standard

ļ	5-2-10 5-2-10	6-2-1 1-0-0	0 7-2-10 0 1-0-0	12- 5-2	5-4 -10
Plate Offsets (X,Y)	[3:0-1-8,Edge], [4:0-1-8,Edge], [6:0-1-	8,Edge], [14:Edge,0-1-8]			
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 1-7-3 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2021/TPI2014	CSI. TC 0.23 BC 0.44 WB 0.32 Matrix-SH	DEFL. ir Vert(LL) -0.07 Vert(CT) -0.09 Horz(CT) 0.02	n (loc) l/defl L/d 7 11-12 >999 480 9 11 >999 360 2 7 n/a n/a	PLATES GRIP MT20 244/190 Weight: 62 lb FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x4 SP WEBS 2x4 SP	P No.1(flat) P No.1(flat) P No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing d end verticals. Rigid ceiling directly applied	irectly applied or 6-0-0 oc purlins, except or 10-0-0 oc bracing.

REACTIONS. (lb/size) 14=531/0-3-6 (min. 0-1-8), 7=531/0-3-6 (min. 0-1-8)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 14-15=-528/0, 1-15=-527/0, 7-16=-528/0, 6-16=-527/0, 1-2=-533/0, 2-3=-1304/0, 3-4=-1546/0, 4-5=-1304/0, 5-6=-533/0

- BOT CHORD 12-13=0/1055, 11-12=0/1546, 10-11=0/1546, 9-10=0/1546, 8-9=0/1055
- WEBS 3-12=-396/0, 2-12=0/335, 2-13=-679/0, 1-13=0/675, 4-9=-396/0, 5-9=0/335, 5-8=-679/0, 6-8=0/675

NOTES-(3-6)

- 1) Unbalanced floor live loads have been considered for this design.
- 2) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 3) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
- 4) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.
- 5) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing. 6) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED
- MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

Warning !—Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 *National Design Standard for Metal Plate Connected Wood Truss Construction* and BCSI 1-03 Guide to *Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses* from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

3/1/2024

Plate Offsets (X.Y)	5-2-10 5-2-10 [3:0-1-8.Edge]. [4:0-1-8.Edge]. [17:Eg	6-2-10 7-2- 1-0-0 1-0 dae.0-1-8]	-10)-0	12-3-14 5-1-4	12-5-6 14-5-7 0-1-8 2-0-1
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 1-7-3 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2021/TPI2014	CSI. TC 0.27 BC 0.46 WB 0.33 Matrix-SH	DEFL. in Vert(LL) -0.07 Vert(CT) -0.09 Horz(CT) 0.02	(loc) l/defl L/d 14-15 >999 480 14-15 >999 360 10 n/a n/a	PLATES GRIP MT20 244/190 Weight: 75 lb FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF	P No.1(flat) P No.1(flat) P No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing of end verticals. Rigid ceiling directly applied	lirectly applied or 6-0-0 oc purlins, except

6-0-0 oc bracing: 10-11,9-10.

REACTIONS. (lb/size) 17=517/0-3-6 (min. 0-1-8), 10=727/0-3-8 (min. 0-1-8) Max Grav 17=527(LC 3), 10=727(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 17-18=-525/0, 1-18=-524/0, 1-2=-529/0, 2-3=-1292/0, 3-4=-1526/0, 4-5=-1275/0, 5-6=-503/0

BOT CHORD 15-16=0/1047, 14-15=0/1526, 13-14=0/1526, 12-13=0/1526, 11-12=0/1017

WEBS 6-10=-707/0, 3-15=-387/0, 2-15=0/328, 2-16=-674/0, 1-16=0/670, 4-12=-440/0, 5-12=0/366, 5-11=-672/0, 6-11=0/684

NOTES- (4-7)

1) Unbalanced floor live loads have been considered for this design.

2) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

3) CAUTION, Do not erect truss backwards.

4) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.

5) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

 Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.
 SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED

7) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

Max Grav 20=471(LC 3), 12=961(LC 1), 10=111(LC 4)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 20-21=-466/0, 1-21=-465/0, 1-2=-464/0, 2-3=-1088/0, 3-4=-1195/0, 4-5=-817/0, 5-6=-115/292, 6-7=-115/292,

7-8=0/424 BOT CHORD 18-19=0/921, 17-18=0/1195, 16-17=0/1195, 15-16=0/1195, 14-15=0/480, 13-14=0/480, 12-13=-791/0, 11-12=-787/0 WFBS 7-12=-944/0, 2-19=-596/0, 1-19=0/587, 4-15=-492/0, 5-15=0/445, 5-13=-745/0, 7-13=0/757, 7-11=0/457, 8-11=-411/0, 8-10=-135/252

NOTES-(5-8)

1) Unbalanced floor live loads have been considered for this design.

2) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 139 lb uplift at joint 10.

3) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

4) CAUTION, Do not erect truss backwards.

5) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.

6) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

7) Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing,

8) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED

LOAD CASE(S) Standard

Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing. SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS OAD CASE(S) Standard SEAL 28147 And an and a second second 3/1/2024

TOP CHORD 23-24=-715/0, 1-24=-714/0, 12-25=-714/0, 11-25=-713/0, 1-2=-855/0, 2-3=-2137/0, 3-4=-2137/0, 4-5=-2994/0,

5-6=-2994/0, 6-7=-3356/0, 7-8=-3344/0, 8-9=-2961/0, 9-10=-2139/0, 10-11=-854/0

BOT CHORD 21-22=0/1614, 20-21=0/2638, 19-20=0/3277, 18-19=0/3344, 17-18=0/3344, 16-17=0/3344, 15-16=0/2637, 14-15=0/2637, 13-14=0/1614

WEBS 1-22=0/1037, 2-22=-987/0, 2-21=0/681, 4-21=-652/0, 4-20=0/455, 6-20=-361/0, 6-19=-49/276, 8-16=-623/0,

9-16=0/468, 9-14=-648/0, 10-14=0/684, 10-13=-988/0, 11-13=0/1036, 7-19=-288/250

NOTES- (4)

1) Unbalanced floor live loads have been considered for this design.

2) All plates are MT20 plates unless otherwise indicated.

3) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to

be attached to walls at their outer ends or restrained by other means.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	LOT 0.0003 HONEYC	UTT HILLS 53 SHELBY	MEADOW LANE ANGIER, NC
24-1170-F02	F08	Floor	3	1	Ioh Reference (ont	ional)	# 46042
	1	1	Run: 8.430 s Feb 1 ID:C6coucD	12 2021 Prir 02lwHaZ3s	sGy11mE3vowb3-N?	MiTek Industries, Inc. Mor U9Z?i1lpKY7z65piHFfz	n Mar 4 15:26:40 2024 Page 1 zJKt0v4kvTyCZ9KSbzeGvz
0-1-8					, .,		,0.2
H ⊢ <u>1-0-10</u> ⊢	2-0-0 -1-0-10 -1-3	-0 1-2-	12 2-0-0				0- <u>1</u> -8 Scale = 1:33.1
3x4 =							3x4 =
$1.5x3 = 1.5x3 \parallel$	1.5x3 3x8 =	$3x4 = 1.5x3 \parallel$	3x4 = 3	3x4 =	3x4 =	3x8 FP = 3x4 =	1.5x3 =
			, सि	, R			
2 ²⁶ BE	w2	W					
					₩7 B2		
25 24	23 22	21 20 19	18 1	17	16	15	14 13
3x4 3x4 =	3x4 = − 3x4	3x4 = 3x8 FP = 3x8 - 3	1.5x3 1.5	5x3	3x4 =	3x4 =	$3x4 = 3x4 \parallel$
		570 —					
4	-8-12	10-1-0	<u>, 11-1-0 , 12-1-0 ,</u>			19-11-8	
Plate Offsets (X.Y) [7:0	-8-12)-1-8.Edge], [8:0-1-8.Edge],	5-4-4 [12:0-1-8.Edge]. [23:0-1-8.Edge	1-0-0 1-0-0 1. [24:0-1-8.Edge]. [2	5:Edae.0·	-1-8]	7-10-8	
LOADING (psf)	SPACING- 1-4-0		DEFL. ir	n (loc)	l/defl l/d	PLATES	GRIP
TCLL 40.0	Plate Grip DOL 1.00	TC 0.48	Vert(LL) -0.17	7 16-17	>999 480	MT20	244/190
BCLL 0.0	Rep Stress Incr YES	WB 0.39 Matrix SH	Horz(CT) 0.03	3 13	n/a n/a	Woight: 101	IL ET - 2004 E 1194 E
		Maurix-SH				weight. 1011	ID FI - 20%F, 11%E
TOP CHORD 2x4 SP No	o.1(flat)		TOP CHORD	Structu	ral wood sheathing	directly applied or 6-	0-0 oc purlins, except
WEBS 2x4 SP No	o.1(flat) o.3(flat)		BOT CHORD	end ver Rigid ce	ticals. eiling directly applie	d or 6-0-0 oc bracing] .
REACTIONS. (Ib/size)	25=99/0-3-8 (min. 0-1-8), 1	3=530/0-3-0 (min. 0-1-8), 22=8	09/0-3-8 (min. 0-1-8))			
Max Horz Max Uplifi	25=26(LC 4) 25=-49(LC 11), 13=-46(LC	7)					
Max Grav	25=157(LC 12), 13=549(LC	(18), 22=809(LC 1)					
FORCES. (Ib) - Max. Co	mp./Max. Ten All forces 2	250 (lb) or less except when sho	WN.	1			
6-7=-140)3/180, 7-8=-1789/0, 8-9=-1	817/0, 9-10=-1450/0, 10-11=-14	50/0, 11-12=-625/44	1,			
BOT CHORD 22-23=-4 17-18=0	/1789, 16-17=0/1789, 15-16	0-21=0/1105, 19-20=0/963, 18-1 =0/1750, 14-15=-25/1139	9=-207/1882,				
WEBS 7-18=-12 8-16=-43	24/260, 4-22=-839/0, 4-23=- 36/441, 9-16=-249/347, 9-15	93/440, 4-21=-77/852, 5-21=-76 5=-475/144, 11-15=-135/505, 11	60/90, 5-19=-105/544, -14=-744/119,	,			
12-14=-9	93/787, 7-19=-908/379						
NOTES- (6) 1) Unbalanced floor live I	oads have been considered	for this design					
2) Provide mechanical co	onnection (by others) of trus	s to bearing plate capable of wit	hstanding 49 lb uplift	at joint 2	5 and 46 lb uplift at	joint	
3) This truss has been de	esigned for a total drag load	of 125 plf. Lumber DOL=(1.33)	Plate grip DOL=(1.33	3) Conne	ct truss to resist dra	ag	
4) Recommend 2x6 stron	ord from 4-8-12 to 19-11-8 f igbacks, on edge, spaced a	or 103.8 pir. t 10-0-0 oc and fastened to eac	h truss with 3-10d (0.	.131" X 3'	') nails. Strongbacl	ks to	
5) CAUTION, Do not erec	their outer ends or restrain t truss backwards.	ed by other means.				munin	11100
LOAD CASE(S) Standard	d					UNINGTH CAL	POLIMIN
. ,						Willing OFESSI	ON2 P III
						E E IL	

Job	Truss	Truss Type	Qty	Ply	LOT 0.0003 HONEYCUTT HIL	S 53 SHELBY MEADOW LANE ANGIER, N
24-1170-F02	F09	Floor	1	1	Job Reference (optional)	# 46042
			Run: 8.430 s Feb 12 ID:C6coucD2IwH	2 2021 Print laZ3sGy1	:: 8.430 s Feb 12 2021 MiTek Ind 1mE3yowb3-JOcw_hkHHRa	ustries, Inc. Mon Mar 4 15:26:42 2024 Page GNHGTx7JjIOPjbqe8CqNEgteRXUzeG
0-1-8						
H ⊢ 1-1-2 1-3	<u>-0</u>	2-0-0	1-1-0		<u> 1-2-0</u>	<u> </u>
3x4 =						1.5x3
1.5x3 =	3x4 = 3x4	= 3x4 =	3x4 = 3x8 FP = 3x8	3 =	3x4 = 3x6 =	= 3x4 = 1.5x3 =
1	2 3	4 T1	5 6 7		8 T2 9	10 11
9 25 B 25 B 2 V 2	B				B2 B2	
24 23	22 21	20 19	18 17 16		15 14	13 12
3x4 3x4 =	3x4 = 1.5x3	3 1.5x3 3x4 =	3x8 FP= 3x4 = 3x4	1 3	3x4 = 3x6 =	3x4 ≕ 6x6
	5-2-10	6-2-10 7-2-10	12-3-10		16-2-10	20-3-6
Plate Offsets (X,Y) [3:	<u>5-2-10</u> 0-1-8,Edge], [4:0-1-8,Edge	1-0-0 1-0-0], [24:Edge,0-1-8]	5-1-0		3-11-0	4-0-12
LOADING (psf) TCLL 40.0 TCDL 10.0 PCLL 0.0	SPACING- 1-7 Plate Grip DOL 1.0 Lumber DOL 1.0 Rep Stress Incr.	-3 CSI. 10 TC 0.28 10 BC 0.47 S WP 0.22	DEFL. in Vert(LL) -0.07 Vert(CT) -0.10	(loc) 21-22 21-22	l/defl L/d >999 480 >999 360	PLATES GRIP MT20 244/190
BCDL 5.0	Code IRC2021/TPI20	4 Matrix-SH		10	11/a 11/a	Weight: 105 lb FT = 20%F. 11%E

BRACING-

TOP CHORD

BOT CHORD

end verticals

BOT CHORD	22-23=0/921, 21-22=0/1196, 20-21=0/1196, 19-20=0/1196, 18-19=0/481, 17-18=0/481, 16-17=-788/0, 15-16=-784/0,
	14-15=-255/58
WEBS	7-16=-922/0, 9-14=-256/0, 2-23=-596/0, 1-23=0/587, 4-19=-491/0, 5-19=0/445, 5-17=-744/0, 7-17=0/755, 7-15=0/398,

(lb) - Max Grav All reactions 250 lb or less at joint(s) 12 except 24=471(LC 5), 16=940(LC 3), 14=350(LC 4)

8-15=-359/0 8-14=-155/267

TOP CHORD 2x4 SP No.1(flat)

BOT CHORD 2x4 SP No.1(flat)

2x4 SP No.3(flat)

7-8=0/468

LUMBER-

WEBS REACTIONS.

NOTES-(4-7)

TOP CHORD

1) Unbalanced floor live loads have been considered for this design.

Code IRC2021/TPI2014

All bearings 0-3-8 except (jt=length) 24=0-3-6.

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

2) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

24-25=-466/0, 1-25=-465/0, 1-2=-464/0, 2-3=-1088/0, 3-4=-1196/0, 4-5=-818/0, 5-6=-117/290, 6-7=-117/290,

CAUTION, Do not erect truss backwards.

4) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.

5) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

6) Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing,

Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing, SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM WITH CAROUND CONSIDERATIONS OF THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS. 7)

LOAD CASE(S) Standard

The A ----MATH CAROL IONS. PROFESSIO SEAL 28147 K. MORP 3/1/2024

Structural wood sheathing directly applied or 6-0-0 oc purlins, except

Rigid ceiling directly applied or 6-0-0 oc bracing.

	Truco			Dist		ITT 0 50 0	
24-1170-F02	F10	Floor			LOT 0.0003 HONEYCU	JTT HILLS 53 SHELBY	H AGAA
			Run: 8.430 s Feb	12 2021 Print	Job Reference (option: 8.430 s Feb 12 2021 M	onal) liTek Industries, Inc. Mo	# 40042 n Mar 4 15:26:43 2024 Page 1
0-1-8			ID:C6coucD)2lwHaZ3sG	y11mE3yowb3-naAlE	31lv2ki7_RrgVqryHc	u_E_1xHeOvXO_3wzeĞvw
⊔ <u>⊥1-1-2 1-</u>	3-0	2-0-0	1-1-0	4			<u>1-2-12</u> 0- <u>1</u> -8
111 1	1 1	I	I	1			Scale = 1:33.6
3x4 =	2:4	2:4-	2×4 2×0 FD (2.4 -	1 5-2 11 - 2-4	3x4 =
1.5x5 — 1	2 3x4 3x4		5 6	7	3x4 — 8 — To	9 10	1.5x5 — 11
	PL P						26
	ВТ				B2		
				K I	<u> </u>		
24° 23 3x4 3x4 =	22 21 3x4 = 15x3	20 19	18 17 3x8 FP= $3x4 = 3$	116° · 3x4 ⊔ 3	15 8x4 —	14 3x8 =	13 12 3x4 = 3x4
	0/1 - 1.0/0					0,0 -	
	5.2.10 6	2.10 7.2.10 1	12-3-10			20.3.6	
	<u>5-2-10</u> 5-2-10 10 1 8 Edgel [4:0 1 8 Edgel	-2-10 1-2-10 -0-0 1-0-0 [11:0 1 8 Edge] [24:Edge 0 1	5-1-0 81	-	7	7-11-12	
	SPACING 1.7			in (loc)	l/dofl l/d		CRIP
TCLL 40.0	Plate Grip DOL 1.00	TC 0.30	Vert(LL) -0.0)7 21-22	>999 480	MT20	244/190
BCLL 0.0	Rep Stress Incr YES	BC 0.49 S WB 0.36	Horz(CT) -0.7	10 21-22 ÷)1 12	>999 360 n/a n/a		
BCDL 5.0	Code IRC2021/TPI2014	A Matrix-SH				Weight: 104	lb FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SP N	lo.1(flat)		BRACING- TOP CHORD	Structura	al wood sheathing o	directly applied or 6	-0-0 oc purlins, except
BOT CHORD 2x4 SP N WEBS 2x4 SP N	vo.1(flat) vo.3(flat)		BOT CHORD	end vert Rigid ce	icals. iling directly applied	d or 6-0-0 oc bracin	a.
REACTIONS (Ib/size)	$24=462/0_{-3-6}$ (min 0_1_8)	12=231/0-3-8 (min 0-1-8) 16	$3=1055/0_{-3}-8$ (min 0-	.1_8)	inig anoon) approv		9.
Max Gra	v 24=473(LC 3), 12=295(LC	4), 16=1055(LC 1)	5-1055/0-5-8 (mm. 0-	1-0)			
FORCES. (Ib) - Max. C	omp./Max. Ten All forces	250 (lb) or less except when sh	iown.				
TOP CHORD 24-25= 5-6=-1/	-468/0, 1-25=-467/0, 12-26= '353, 6-7=-1/353, 7-8=-64/44	-291/0, 11-26=-291/0, 1-2=-460 9, 8-9=-477/152, 9-10=-477/15	6/0, 2-3=-1096/0, 3-4= 52, 10-11=-275/20	-1208/0, 4-	5=-835/0,		
BOT CHORD 22-23= 14-15=	0/926, 21-22=0/1208, 20-21 -292/385, 13-14=-59/505	=0/1208, 19-20=0/1208, 18-19=	=-4/501, 17-18=-4/501	, 16-17=-85	57/0, 15-16=-852/0,		
WEBS 7-16=-7 10-13=	1035/0, 2-23=-599/0, 1-23=0 299/51_11-13=-25/331	/590, 4-19=-511/0, 5-19=0/458	, 5-17=-742/0, 7-17=0	/754, 7-15=	0/568, 8-15=-523/0),	
	200/01, 11-10-20/001						
1) Unbalanced floor live	loads have been considere	d for this design.					
2) Recommend 2x6 stro be attached to walls	ongbacks, on edge, spaced a at their outer ends or restrair	at 10-0-0 oc and fastened to ea ned by other means.	ach truss with 3-10d (().131" X 3")	nails. Strongback	s to	
 CAUTION, Do not en Graphical bracing ret 	ect truss backwards. presentation does not depict	the size, type or the orientation	n of the brace on the n	nember. Sv	mbol only indicates	that	
the member must be	braced.	ns of a possible bearing conditi	ion Bearing symbols	are not con	sidered in the struc	tural	
design of the truss to	support the loads indicated						
Restraining & Bracing	g of Metal Plate Connected V	Nood Trusses for additional bra	acing guidelines, inclu	iding diagor	a for Handling, Insta	alling,	
7) SEE BCSI-B3 SUMM MINIMUM BRACING	IARY SHEET- PERMANEN REQUIREMENTS OF TOP	FRESTRAING/BRACING OF C CHORD, BOTTOM CHORD, A	CHORDS & WEB MEN ND WEB PLANES. I	MBERS FO	R RECOMMENDEI N TO THESE MINI	MUM MUMMIN	ROUM
GUIDELINES, ALWA	YS CONSULT THE PROJE	CT ARCHITECT OR ENGINEE	ER FOR ADDITIONAL	BRACING	CONSIDERATION	S. THE OFESS	6 Nollin
LOAD CASE(S) Standa	ırd					in logar	The second se
						SEAL	
						4014	
						TH AS SNOINE	ER S IN
						MARK K. N	10RM Internet
						2/1/2	024

<u> </u>	4-2-8 4-2-8	5-2-8 6-2-8 1-0-0 1-0-0	<u>14-1-0</u> 7-10-8	
Plate Offsets (X,Y)	[4:0-1-8,Edge], [7:0-1-8,Edge], [13:0	-1-8,Edge], [15:Edge,0-1-8]	
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 1-7-3 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2021/TPI2014	CSI. TC 0.63 BC 0.88 WB 0.39 Matrix-SH	DEFL. in (loc) I/defl L/d Vert(LL) -0.18 11-12 >918 480 Vert(CT) -0.24 11-12 >679 360 Horz(CT) 0.03 8 n/a n/a	PLATES MT20 GRIP 244/190 Weight: 70 lb FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF	P No.1(flat) P No.1(flat) P No.3(flat)		BRACING- TOP CHORD Structural wood sheathing of end verticals. BOT CHORD Rigid ceiling directly applied	lirectly applied or 6-0-0 oc purlins, except I or 10-0-0 oc bracing.

. . .

REACTIONS. (Ib/size) 15=608/Mechanical, 8=603/0-3-0 (min. 0-1-8)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 1-15=-584/0, 8-16=-600/0, 7-16=-599/0, 1-2=-647/0, 2-3=-1848/0, 3-4=-1848/0, 4-5=-1966/0, 5-6=-1613/0,

6-7=-684/0

BOT CHORD 13-14=0/1288, 12-13=0/1848, 11-12=0/1848, 10-11=0/1937, 9-10=0/1278

WEBS 3-13=-291/0, 1-14=0/812, 2-14=-834/0, 2-13=0/782, 4-11=-129/255, 5-10=-423/0, 6-10=0/436, 6-9=-772/0, 7-9=0/828

NOTES- (5)

1) Unbalanced floor live loads have been considered for this design.

2) Refer to girder(s) for truss to truss connections.

3) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to

be attached to walls at their outer ends or restrained by other means.

4) CAUTION, Do not erect truss backwards.

LOAD CASE(S) Standard

JOD	11	uss	Truss	туре		Qty	Piy L	LOT 0.0003 HONEY	CUTT HILLS 53 S	SHELBY MEADON	V LANE ANGIER, NC
24-1170-F02	F1	3	Floor S	upported Gable		1	1	Job Reference (or	otional)	#	46042
						Run: 8.430 s Fe ID:lovsi	b 12 2021 Print: 8 ufdhNr7VckecR	3.430 s Feb 12 2021 Ryt1FFyBNDc-kzl	MiTek Industries, 2cim9aMyqEI?2c	Inc. Mon Mar 41 cFtQM11IE1m5	5:26:45 2024 Page 1 PGEhMrt58pzeGvu
											0- <mark>1</mark> -8
											Scale: 1/2"=1
											1.5x3
3x4	1.5x3	1.5x3	1.5x3	1.5x3	1.5x3	3x4 =	1.5x3	1.5x3	1.5x3	1.5x3	1.5x3 =
1	2	3	4	5	6 11	7	8	9	10	11	12
] 🗗	•	•	•	•			•	•	•	•	
				Д						<u> </u>	25
11	SIT	SIN	SIN	SIN	SIN WZ	sin	SIN	SII	SIN	SIN	Bel 1
					B1						
		XXXXXXXXX	XXXXXXX	XXXXXXXX	XXXXXXXX	XXXXXXX	XXXXXXX	XXXXXXXXX	$\times \times $		
24	23	22	21	20	19	18	17	16	15	14	13
3x4	1.5x3	1.5x3	1.5x3	1.5x3	3x4 =	1.5x3	1.5x3	1.5x3	1.5x3	1.5x3	3x4

14-8-12 14-8-12								
Plate Offsets (X,Y) [1:Edge,0-1-8], [7:0-1-8,Edge], [19:0-1-8,Edge], [24:Edge,0-1-8]								
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2021/TPI2014	CSI. TC 0.06 BC 0.01 WB 0.03 Matrix-SH	DEFL. in Vert(LL) n/a Vert(CT) n/a Horz(CT) 0.00	(loc) l/defl L/d - n/a 999 - n/a 999 13 n/a n/a	PLATES MT20 GRIP 244/190 Weight: 65 lb FT = 20%F, 11%E			
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF OTHERS 2x4 SF	 No.1(flat) No.1(flat) No.3(flat) No.3(flat) No.3(flat) 		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing d end verticals. Rigid ceiling directly applied	irectly applied or 6-0-0 oc purlins, except or 10-0-0 oc bracing.			

REACTIONS. All bearings 14-8-12.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 24, 13, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-(6)

1) Gable requires continuous bottom chord bearing.

- 2) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 3) Gable studs spaced at 1-4-0 oc.
- 4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

5) CAUTION, Do not erect truss backwards.

LOAD CASE(S) Standard

3/1/2024

BCDL	5.0	Code IRC2021/TPI2014	Matrix-P			Weight: 16 lb	FT = 20%F, 11%E	
LUMBER	}-			BRACING-				
TOP CHORD 2x4 SP No.1(flat)				TOP CHORD	2-0-0 oc purlins, except end verticals			
BOT CH	ORD 2x4 SI	P No.1(flat)			(Switched from sheeted: Sp	bacing > 2-0-0).		
WEBS	2x4 SI	P No.3(flat)		BOT CHORD	Rigid ceiling directly applied	d or 10-0-0 oc bracing.		

REACTIONS. (lb/size) 5=235/0-3-8 (min. 0-1-8), 3=247/Mechanical

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES- (5)

- 1) Refer to girder(s) for truss to truss connections.
- 2) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 3) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to
- be attached to walls at their outer ends or restrained by other means.

4) CAUTION, Do not erect truss backwards.

LOAD CASE(S) Standard

1	6-1-4			8-1-4	14-8-1	14-8-10		
F		6-1-4	1-0-0	1-0-0	6-7-6	1		
Plate O	Offsets (X,Y)	[1:Edge,0-1-8], [4:0-1-8,Edge], [5:0-1-	-8,Edge]					
LOADIN TCLL TCDL BCLL BCDL	VG (psf) 40.0 10.0 0.0 5.0	SPACING- 1-7-3 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2021/TPI2014	CSI. TC 0.31 BC 0.63 WB 0.35 Matrix-SH	DEFL. i Vert(LL) -0.1 Vert(CT) -0.1 Horz(CT) 0.0	n (loc) l/defl L/d 2 11-12 >999 480 6 11-12 >999 360 3 9 n/a n/a	PLATES GRIP MT20 244/190 Weight: 74 lb FT = 20%F, 11%E		
LUMBE TOP CH BOT CH WEBS	ER- HORD 2x4 SF HORD 2x4 SF 2x4 SF	? No.1(flat) ? No.1(flat) ? No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing d end verticals. Rigid ceiling directly applied	lirectly applied or 6-0-0 oc purlins, except		

Rigid ceiling directly applied or 10-0-0 oc bracing.

.....

REACTIONS. (lb/size) 16=636/Mechanical, 9=631/0-3-6 (min. 0-1-8)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1074/0, 3-4=-1888/0, 4-5=-2183/0, 5-6=-1988/0, 6-7=-1284/0

~ . .

- BOT CHORD 15-16=0/517, 14-15=0/1605, 13-14=0/2183, 12-13=0/2183, 11-12=0/2183, 10-11=0/1768, 9-10=0/775
- WEBS 4-14=-493/0, 3-14=0/396, 3-15=-691/0, 2-15=0/725, 2-16=-815/0, 5-11=-405/0, 6-11=0/339, 6-10=-629/0, 7-10=0/663, 7-9=-973/0

NOTES-(5-8)

- 1) Unbalanced floor live loads have been considered for this design.
- Refer to girder(s) for truss to truss connections.
- 3) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 4) CAUTION, Do not erect truss backwards.
- 5) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
- 6) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.
- 7) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.
- 8) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

