

Trenco 818 Soundside Rd Edenton, NC 27932

Re: 2400183-08042 MCLEAN RESIDENCE

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by 84 Components - #2383.

Pages or sheets covered by this seal: I63717064 thru I63717089

My license renewal date for the state of North Carolina is December 31, 2024.

North Carolina COA: C-0844

February 20,2024

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	MCLEAN RESIDENCE	
2400183-08042	A01	Common	6	1	Job Reference (optional)	163717064

Run: 8.73 S Feb 6 2024 Print: 8.730 S Feb 6 2024 MiTek Industries, Inc. Mon Feb 19 11:42:59 ID:51WFC3FyBjaQWJz_w7wfPzo9fv-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Plate Offsets (X, Y): [2:Edge,0-1-9], [10:Edge,0-1-9]

0.4 OD NI- 0

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.68	Vert(LL)	-0.38	14-16	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.99	Vert(CT)	-0.63	14-16	>765	180		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.81	Horz(CT)	0.13	10	n/a	n/a		
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-MS							Weight: 223 lb	FT = 20%

LUMBER

IOF CHORD	2X4 SF NU.2
BOT CHORD	2x4 SP No.2 *Except* 15-13:2x4 SP No.1
WEBS	2x4 SP No.2 *Except* 12-9,16-3:2x4 SP No.3
WEDGE	Left: 2x4 SP No.3
	Right: 2x4 SP No.3
BRACING	-
TOP CHORD	Structural wood sheathing directly applied or
	2-8-3 oc purlins.
BOT CHORD	Rigid ceiling directly applied or 2-2-0 oc
	bracing.
WEBS	1 Row at midpt 7-14, 5-14
REACTIONS	(size) 2=0-3-8, 10=0-3-8
	Max Horiz 2=-301 (LC 10)
	Max Uplift 2=-318 (LC 12), 10=-318 (LC 13)
	Max Grav 2=1692 (LC 19), 10=1692 (LC 20)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=0/26, 2-3=-2703/498, 3-5=-2503/524,
	5-6=-1760/442, 6-7=-1760/442,
	7-9=-2503/524, 9-10=-2703/498, 10-11=0/26
BOT CHORD	2-16=-520/2455, 14-16=-304/1952,
	12-14=-185/1820, 10-12=-317/2229
WEBS	6-14=-322/1433, 7-14=-746/331,
	7-12=-166/648, 9-12=-378/251,
	5-14=-746/331, 5-16=-166/648,
	3-16=-378/250
NOTEO	

- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) -0-10-8 to 3-1-8, Interior (1) 3-1-8 to 20-0-0, Exterior (2) 20-0-0 to 24-0-0, Interior (1) 24-0-0 to 40-10-8 zone; cantilever left exposed ; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.
- All plates are 3x6 MT20 unless otherwise indicated.
 This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) All bearings are assumed to be SP No.2.
 8) Provide mechanical connection (by others) of truss to
- bearing plate capable of withstanding 318 lb uplift at joint 2 and 318 lb uplift at joint 10.
 9) This truss is designed in accordance with the 2015
- International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

SEAL 45844 February 20,2024

NOTES

1) Unbalanced roof live loads have been considered for this design.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	MCLEAN RESIDENCE	
2400183-08042	A01A	Common	4	1	Job Reference (optional)	163717065

Run: 8.73 S Feb 6 2024 Print: 8.730 S Feb 6 2024 MiTek Industries, Inc. Mon Feb 19 11:43:01 ID:sZ?HuoL_IBbIUYbXOo3Xk5zo9fn-RfC?PsB70Hq3NSqPqnL8w3uITXbGKWrCDoi7J4zJC?f

on Feb 19 11:43:01 Page: 1

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.57	Vert(LL)	-0.33	16-18	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.95	Vert(CT)	-0.51	16-18	>841	180		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.65	Horz(CT)	0.07	13	n/a	n/a		
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-MS							Weight: 234 lb	FT = 20%

LUMBER

TOP CHORD	2x4 SP No.2
BOT CHORD	2x4 SP No.2 *Except* 17-15:2x4 SP No.1
WEBS	2x4 SP No.2 *Except*
	14-9,18-3,10-13,9-13:2x4 SP No.3
WEDGE	Left: 2x4 SP No.3
	Right: 2x4 SP No.3
BRACING	
TOP CHORD	Structural wood sheathing directly applied or
	3-3-8 oc purlins.
BOLCHORD	Rigid ceiling directly applied or 2-2-0 oc bracing.
WEBS	1 Row at midpt 7-16, 7-14, 5-16, 9-13
REACTIONS	(size) 2=0-3-8, 11=0-3-8, 13=0-3-8
	Max Horiz 2=-301 (LC 10)
	Max Uplift 2=-289 (LC 12), 11=-203 (LC 25),
	13=-343 (LC 13)
	Max Grav 2=1489 (LC 19), 11=60 (LC 12),
	13=2020 (LC 20)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=0/26, 2-3=-2321/442, 3-5=-2121/469,
	5-6=-1352/375, 6-7=-1365/376,
	7-9=-1297/315, 9-10=-83/664,
	10-11=-126/668, 11-12=0/26
BOT CHORD	2-18=-472/2128, 16-18=-255/1614,
	14-16=-98/1212, 13-14=-37/646,
	11-13=-504/148
WEBS	6-16=-257/1036, 7-16=-269/250,
	7-14=-386/101, 9-14=-44/722,
	5-16=-753/333, 5-18=-170/665,
	3-18=-387/252, 10-13=-210/99,
	9-13=-2049/313
NOTES	

 Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) -0-10-8 to 3-1-8, Interior (1) 3-1-8 to 20-0-0, Exterior (2) 20-0-0 to 24-0-0, Interior (1) 24-0-0 to 40-10-8 zone; cantilever left exposed ; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.
 All plates are 3x6 MT20 unless otherwise indicated.
- 5) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- All bearings are assumed to be SP No.2.
 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 289 lb uplift at joint
- 2, 343 lb uplift at joint 13 and 203 lb uplift at joint 11.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

Edenton, NC 27932

This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Job	Truss	Truss Type	Qty	Ply	MCLEAN RESIDENCE	
2400183-08042	A01B	Attic	5	1	Job Reference (optional)	163717066

Run: 8,73 S Feb 6 2024 Print: 8,730 S Feb 6 2024 MiTek Industries, Inc. Mon Feb 19 11:43:02 ID:sZ?HuoL_IBbIUYbXOo3Xk5zo9fn-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Plate Offsets (X, Y): [2:E	:Edge,0-1-9], [4:0-2-11,Edge],	[12:0-3-8,Edge], [17:0-1-8	,0-2-4], [19:0-1-8,0-2-0]
----------------------------	--------------------------------	----------------------------	---------------------------

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.84 0.81 0.50	DEFL Vert(LL) Vert(CT) Horz(CT) Attic	in -0.27 -0.49 0.06 0.11	(loc) 19-20 19-20 14 17-19	l/defl >999 >869 n/a >943	L/d 240 180 n/a 360	PLATES MT20 Weight: 272 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD	2x4 SP No.1 *Excep 4-6:2x6 SP No.2 2x4 SP DSS *Excep 16-12:2x4 SP No.2 2x4 SP No.3 *Excep No.1, 17-8,15-8:2x4 Left: 2x4 SP No.3 Right: 2x4 SP No.3 Structural wood she 3-0-3 oc purlins. Rigid ceiling directly bracing, Except: 6-0-0 oc bracing: 12 1 Pow at midot	ot* 1-5,9-13:2x4 SP D t* 19-17:2x8 SP DSS ot* 4-19,7-17,6-21:2x4 SP No.2 athing directly applied applied or 10-0-0 oc 2-14.	W SSS, \$ \$ SP N(1) 2) d or	EBS 3 1 8 6 1 8 0 0 0 0 0 0 0 0 0 0 0 0 0	3-20=0/272, 3-19= 77-21=-374/310, 7- 3-17=-267/1017, 8- 3-21=-1848/610, 10 10-14=-2060/222, 7 3-21=-1848/610 roof live loads have 7-10; Vult=130mp b; TCDL=6.0psf; E closed; MWFRS (e erior (2) -0-10-8 to ior (2) 20-0-0 to 22 one; cantilever left of for members and	654/25 21=-27 15=-39)-15=0/ 11-14=- h (3-sec 3CDL=3 nvelope 3-1-8, li I-0-0, ln expose	4, 4-19=-89/72)/385, 5/45, 703, 213/100, considered for cond gust) .0psf; h=25ft;) exterior zon tterior (1) 24-0 d; end vertical & MWERS for	26, Cat. e 8 to -0 I left	LOAD C	ASE(S)	Star	ndard	
JOINTS REACTIONS FORCES	1 Brace at Jt(s): 21 (size) 2=0-3-8, 7 Max Horiz 2=-301 (L Max Uplift 2=-272 (L 14=-277 (L Max Grav 2=1745 (L 14=2030 (lb) - Maximum Com	12=0-3-8, 14=0-3-8 .C 10) .C 12), 12=-51 (LC 13 .C 20), 12=109 (LC 2 (LC 21) apression/Maximum	3), 3), 25), 5) 6)	reactions sho DOL=1.60 Building Desi verifying Rair requirements All plates are This truss ha chord live loa * This truss h	igner/Project engin igner/Project engin n Load = 5.0 (psf) (s specific to the use 3x6 MT20 unless s been designed for id nonconcurrent w ias been designed o chord in all areas	eer res covers r of this otherwi or a 10.0 vith any for a liv	consible for ain loading truss compon se indicated. D psf bottom other live load e load of 200 a rectangle	ent. ds. psf			L.	WITH CA	ROLAT
TOP CHORD	Tension 1-2=0/26, 2-3=-2822 4-6=-1964/339, 6-7= 8-10=-1609/327, 10 11-12=-25/317, 12-1 2-20=-438/2561, 19 17-19=-255/2090, 1: 14-15=-95/951, 12-1	2/405, 3-4=-2392/363 =-635/218, 7-8=-591/1 -11=0/299, I3=0/26 -20=-438/2561, 5-17=-105/1520, I4=-237/66	, 184, 7) 8) 9) 1(11	3-06-00 tall b chord and an Bottom chorc chord dead lu Bearings are SP No.2, Joi Provide mecl bearing plate 2, 277 lb upli 1) This truss is d International R802.10.2 ar	y 2-00-00 wide wil y other members, d live load (40.0 ps bad (5.0 ps) applie assumed to be: Jo int 12 SP No.2. hanical connection capable of withsta ft at joint 14 and 5° designed in accord Residential Codes and referenced stan tecked for L/360 de	I fit betw with BC (b) and a ed only bint 2 SI (by oth anding 2 I b upli lance w sections dard AN flection	veen the botto DL = 10.0psf. dditional botto o room. 17-19 P DSS , Joint ers) of truss to 72 lb uplift at it at joint 12. ith the 2015 R502.11.1 at ISI/TPI 1.	m)) 14) joint nd		Samme	R.	SEA 4584 SEA 4584 SEA 4584	ER SOTUTION 20,2024

- 10) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) Attic room checked for L/360 deflection.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	MCLEAN RESIDENCE	
2400183-08042	A01BE	Common Structural Gable	1	1	Job Reference (optional)	163717067

Run: 8.73 S Feb 6 2024 Print: 8.730 S Feb 6 2024 MiTek Industries, Inc. Mon Feb 19 11:43:02 ID:45rB_BE5HA?ioJ5rsKohx2zoAgT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	MCLEAN RESIDENCE	
2400183-08042	A01BE	Common Structural Gable	1	1	Job Reference (optional)	163717067
84 Components (Dunn, NC), Dunn, NC - 28334, Run: 8.73 S Feb 6 2024 Print: 8.730 S Feb 6 2024 MiTek Industries, Inc.				2024 MiTek Industries, Inc. Mon Feb 19 11:43:02	Page: 2	

ID:45rB_BE5HA?ioJ5rsKohx2zoAgT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

84 Components (Dunn, NC), Dunn, NC - 28334,

12) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

13) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	MCLEAN RESIDENCE	
2400183-08042	A01C	Common	1	1	I6 Job Reference (optional)	53717068

Run: 8.73 S Feb 6 2024 Print: 8.730 S Feb 6 2024 MiTek Industries, Inc. Mon Feb 19 11:43:03 ID:O6wT6e7hYfKrKmD3K0kJ?Izo9g3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Plate Offsets (X, Y): [2:Edge,0-1-9], [10:Edge,0-1-9]

2VA CD No 2

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.68	Vert(LL)	-0.38	13-15	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	1.00	Vert(CT)	-0.63	13-15	>765	180		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.81	Horz(CT)	0.12	10	n/a	n/a		
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-MS							Weight: 221 lb	FT = 20%

	244 01 10.2
BOT CHORD	2x4 SP No.2 *Except* 14-12:2x4 SP No.1
WEBS	2x4 SP No.2 *Except* 11-9,15-3:2x4 SP No.3
WEDGE	Left: 2x4 SP No.3
	Right: 2x4 SP No.3
BRACING	
TOP CHORD	Structural wood sheathing directly applied or
	2-8-1 oc purlins.
BOT CHORD	Rigid ceiling directly applied or 2-2-0 oc
	bracing.
WEBS	1 Row at midpt 7-13, 5-13
REACTIONS	(size) 2=0-3-8, 10=0-3-8
	Max Horiz 2=297 (LC 11)
	Max Uplift 2=-319 (LC 12), 10=-300 (LC 13)
	Max Grav 2=1693 (LC 19), 10=1642 (LC 20)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=0/26, 2-3=-2703/497, 3-5=-2504/525,
	5-6=-1761/442, 6-7=-1760/444,
	7-9=-2507/526, 9-10=-2707/499
BOT CHORD	2-15=-527/2448, 13-15=-313/1946,
	11-13=-194/1814, 10-11=-335/2236
WEBS	6-13=-324/1434, 7-13=-748/332,
	7-11=-169/654, 9-11=-381/251,
	5-13=-746/331, 5-15=-167/650,
	3-15=-378/250

NOTES

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) -0-10-8 to 3-1-8, Interior (1) 3-1-8 to 20-0-0, Exterior (2) 20-0-0 to 24-0-0, Interior (1) 24-0-0 to 40-0-0 zone; cantilever left exposed; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.
- All plates are 3x6 MT20 unless otherwise indicated.
 This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- All bearings are assumed to be SP No.2.
 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 319 lb uplift at joint
- 2 and 300 lb uplift at joint 10.
 9) This truss is designed in accordance with the 2015 Interview of the second second
- International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	MCLEAN RESIDENCE	
2400183-08042	A01D	Common	10	1	Job Reference (optional)	163717069

Run: 8 73 S Feb 6 2024 Print: 8 730 S Feb 6 2024 MiTek Industries Inc. Mon Feb 19 11:43:03 ID:GcdZNBzXcfhhGnjZ3o0GzYzo9gG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

_oading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	тс	0.98	Vert(LL)	-0.41	14-16	>829	240	MT20	244/190
FCDL	10.0	Lumber DOL	1.15	BC	0.96	Vert(CT)	-0.67	12-22	>205	180		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.37	Horz(CT)	0.04	12	n/a	n/a		
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-MS							Weight: 222 lb	FT = 20%

LUMBER

TOP CHORD	2x4 SP N	o.2		
BOT CHORD	2x4 SP N	o.2 *Exc	ept* 2-15:2x4 SP No.1	
WEBS	2x4 SP N	o.2 *Exc	ept* 16-3:2x4 SP No.3	
WEDGE	Left: 2x4	SP No.3		
SLIDER	Right 2x4	SP No.3	3 2-6-0	
BRACING	-			
TOP CHORD	Structura	l wood sl	heathing directly applied.	
BOT CHORD	Rigid ceili bracing.	ing direc	tly applied or 2-2-0 oc	
WEBS	1 Row at	midpt	5-14, 8-12	
REACTIONS	(size)	2=0-3-8	8, 11= Mechanical, 12=0-3-8	8
	Max Horiz	2=296 ((LC 9)	
	Max Uplift	2=-240	(LC 12), 11=-150 (LC 13),	
	-	12=-26	8 (LC 12)	
	Max Grav	2=1198	(LC 1), 11=564 (LC 24),	
		12=163	2 (LC 19)	
FORCES	(lb) - Max	imum Co	ompression/Maximum	
	Tension			
TOP CHORD	1-2=0/26,	2-3=-17	73/348, 3-5=-1569/376,	
	5-6=-823/	304, 6-8	=-829/290, 8-9=-338/186,	
	9-11=-112	20/210		
BOT CHORD	2-16=-404	4/1648, 1	14-16=-184/1105,	
	12-14=-26	6/241, 11	1-12=-193/468	
WEBS	6-14=-142	2/459, 8-	14=-131/842,	
	5-14=-76	7/328, 5-	16=-172/715,	
	3-16=-399	9/255, 8-	12=-1190/270,	
	9-12=-33	5/175		
NOTES				

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) -0-10-8 to 3-1-3, Interior (1) 3-1-3 to 20-0-0, Exterior (2) 20-0-0 to 23-11-11, Interior (1) 23-11-11 to 39-8-12 zone; cantilever left exposed ; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component. 4) All plates are 3x6 MT20 unless otherwise indicated.
- 5) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 6) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
- chord and any other members, with BCDL = 10.0psf. Bearings are assumed to be: Joint 2 SP No.1 , Joint 12 7) SP No.2
- 8) Refer to girder(s) for truss to truss connections.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 240 lb uplift at joint 2, 150 lb uplift at joint 11 and 268 lb uplift at joint 12.
- 10) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall a fuss system. Before use, the building designer index very the applications of design had used in property incorporate into easign much used to the system building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional terms are grading the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	MCLEAN RESIDENCE	
2400183-08042	A01DE	Common Structural Gable	1	1	Job Reference (optional)	163717070

Run: 8.73 S Feb 6 2024 Print: 8.730 S Feb 6 2024 MiTek Industries, Inc. Mon Feb 19 11:43:04 ID:4gu7M?DeCctUqF_fRmujTUzo9hE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:75.3

Plate Offsets (X, Y): [24:0-3-0,0-1-14], [31:0-3-0,0-3-0], [38:0-3-0,0-3-0]

					_						_					
Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(le	oc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)		20.0	Plate Grip DOL	1.15		TC	0.07	Vert(LL)	n/a		-	n/a	999	MT20	244/19)
TCDL		10.0	Lumber DOL	1.15		BC	0.07	Vert(CT)	n/a		-	n/a	999			
BCLL		0.0*	Rep Stress Incr	YES		WB	0.14	Horz(CT)	0.01		24	n/a	n/a			
BCDL		10.0	Code	IRC2015/TPI2014		Matrix-MS								Weight: 306 lb	FT = 20)%
LUMBER TOP CHORD	2x4 SP N	0.2			Ma	ax Grav 2=197 (25=188	LC 20), 2 (LC 20),	24=136 (LC 26=167 (LC	13), 2 20),	WE	BS		13-34 11-36	=-221/138, 12-3 =-127/84, 10-37	5=-136/72 '=-128/79,	,
OTHERS	2x4 SP N 2x4 SP N 34-13,35- -16,30-18	o.2 o.3 *Excep 12,36-11,3 :2x4 SP No	t* 7-10,38-8,33-14,32- 5.2	15,31		29=167 (LC 20), 30=170 (LC 20), 5-41=-129/81, 4-42=-125/74, 3-4 31=167 (LC 20), 32=166 (LC 20), 14-33=-132/68, 15-32=-128/75, 33=173 (LC 20), 34=231 (LC 13), 16-31=-127/78, 18-30=-128/79,								40=-128/79, 43=-140/101,		
slider Bracing	Right 2x4	SP No.3	· 1-10-8			35=177 37=168 39=168	(LC 19), (LC 19), (LC 19)	36=167 (LC 38=168 (LC 40=168 (LC	C 19), C 19), C 19)				19-29 21-27 23-25	=-128/80, 20-28 =-128/80, 22-26 =-144/115	=-128/80, ⊨-129/79,	
TOP CHORD	Structural	l wood shea	athing directly applie	d or		41=170	(LC 19),	42=160 (LC	C 19),	NO	TES		20 20			
BOT CHORD	Rigid ceili bracing.	ing directly	applied or 10-0-0 oc			43=198 47=136	(LC 19), (LC 13)	44=197 (LC	C 20),	1)	Unba this	alanced design.	l roof l	ive loads have b	een consid	dered for
WEBS	1 Row at	midpt	13-34, 12-35, 11-36 10-37, 14-33, 15-32 16-31	TOP CHORD	(I T 1	b) - Maximum Co ension -2=0/26, 2-3=-28	mpressi 8/228, 3-	on/Maximun 4=-229/200	n ,	2)	Wind Vaso II; Ex	d: ASCE d=103m xp B; Er	E 7-10 iph; T(nclose	; Vult=130mph (CDL=6.0psf; BC d; MWFRS (env	3-second of DL=3.0psf elope) ext	gust) ; h=25ft; Cat. erior zone
REACTIONS	TOP 16-31				4-5=-202/184, 5-6=-176/164, 6-7=-161/157, and C-C Corner (3) -0-10-8 to 3-1-3, Ex 7-8=-147/163, 8-10=-134/193, 20-0-0, Corner (3) 20-0-0 to 24-0-0, Ext 10-11=-174/222, 11-12=-218/254, 20-0-0, Corner (3) 20-0-0 to 24-0-0, Ext 12-13=-254/286, 13-14=-254/286, and C-C Corner (3) 20-0-0 to 24-0-0, Ext 14-15=-218/244, 15-16=-174/191, to 39-8-12 zone; cantilever left exposed 16-18=-136/144, 18-19=-95/94, box 19-20=-72/65, 20-21=-83/60, 21-22=-105/79, 22-32-4157/08, 23-24-68/26							-3, Exterio 0, Exterior cosed ; en ces & MW 60 plate gi	r (2) 3-1-3 to (2) 24-0-0 d vertical left /FRS for rip			
	Max Horiz Max Uplift	37=39-8-1 39=39-8-1 41=39-8-1 43=39-8-1 47=39-8-1 2=296 (LC 25=-119 (27=-69 (LL 29=-68 (L 31=-66 (L 33=-56 (L 33=-56 (L 38=-68 (L 40=-67 (L 40=-67 (L	$\begin{array}{llllllllllllllllllllllllllllllllllll$	BOT CHORD 13), 3), 3), 2), 2), 2), 2), 2), 2),	2 2 4 3 3 3 3 2 2 2 2 2	2-23=-13/196, 42 1-42=-120/194, 4 9-40=-120/194, 3 6-37=-120/194, 3 4-35=-120/194, 3 2-33=-120/194, 3 2-33=-120/194, 3 9-30=-118/192, 2 7-28=-118/192, 2 5-26=-118/192, 2	20)/194, 20/194, 20/194, 20/194, 20/194, 20/194, 18/192, 18/192, 18/192				Contraction of the second seco		SEA SEA 458	AROX SOLVER AL 44	Martin Martin	
		36=-50 (L) 36=-72 (L) 38=-68 (L) 40=-67 (L) 42=-54 (L) 44=-87 (L)	C 13), 33=-60 (LC 1) C 12), 37=-67 (LC 1) C 12), 39=-68 (LC 1) C 12), 41=-71 (LC 1) C 12), 43=-119 (LC C 8), 47=-41 (LC 1)	2), 2), 2), 2), 12),										VOREW J	EEP.	0,11

February 20,2024

Page: 1

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **AMSUTP11 Quility Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	MCLEAN RESIDENCE				
2400183-08042	A01DE	A01DE Common Structural Gable		1	Job Reference (optional)	163717070			
84 Components (Dunn, NC), Dur	n. NC - 28334.	Run: 8.73 S. Feb. 6.2024 Print: 8.730 S. Feb. 6.2024 MiTek Industries. Inc. Mon Feb 19.11.43:04							

ID:4gu7M?DeCctUqF_fRmujTUzo9hE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

84 Components (Dunn, NC), Dunn, NC - 28334.

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Building Designer/Project engineer responsible for 4) verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.
- All plates are 2x4 MT20 unless otherwise indicated. 5)
- Gable requires continuous bottom chord bearing. 6)
- Gable studs spaced at 2-0-0 oc. 7)
- This truss has been designed for a 10.0 psf bottom 8) chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 9) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) All bearings are assumed to be SP No.2.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 87 lb uplift at joint 2, 41 lb uplift at joint 24, 60 lb uplift at joint 35, 72 lb uplift at joint 36, 67 lb uplift at joint 37, 68 lb uplift at joint 38, 68 lb uplift at joint 39, 67 lb uplift at joint 40, 71 lb uplift at joint 41, 54 lb uplift at joint 42, 119 lb uplift at joint 43, 56 Ib uplift at joint 33, 74 lb uplift at joint 32, 66 lb uplift at joint 31, 67 lb uplift at joint 30, 68 lb uplift at joint 29, 67 Ib uplift at joint 28, 69 Ib uplift at joint 27, 64 Ib uplift at joint 26, 119 lb uplift at joint 25, 87 lb uplift at joint 2 and 41 lb uplift at joint 24.
- 12) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	MCLEAN RESIDENCE	
2400183-08042	B01	Common	5	1	Job Reference (optional)	163717071

Run: 8,73 S Feb 6 2024 Print: 8,730 S Feb 6 2024 MiTek Industries, Inc. Mon Feb 19 11:43:04 ID:Be9jcf?LLMM7_kODmpdSKszo99x-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Plate Offsets (X, Y): [2:0-3-0,0-0-14], [10:0-3-0,0-0-14], [13:0-4-0,0-3-0]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.87 0.68 0.26	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.09 -0.22 0.07	(loc) 12-13 12-13 10	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 168 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 *Excep Left 2x4 SP No.3 2 2-6-0 Structural wood shea Rigid ceiling directly bracing. 1 Row at midpt (size) 2=0-3-8, 1 Max Horiz 2=243 (LC Max Uplift 2=-259 (L) Max Crav 2=1230 (J	t* 14-4,12-8:2x4 SP 2-6-0, Right 2x4 SP N athing directly applie applied or 9-7-3 oc 4-13, 8-13 10=0-3-8 2 11) C 12), 10=-259 (LC C 12), 10=-259 (LC	4) 5) No.3 No.3 (d. 7) (d. 7) 8)	This truss ha chord live loa * This truss h on the bottom 3-06-00 tall b chord and an All bearings a Provide mech bearing plate 2 and 259 lb This truss is 6 International R802.10.2 ar DAD CASE(S)	s been designed fo d nonconcurrent w as been designed fo n chord in all areas y 2-00-00 wide will y other members. are assumed to be nanical connection capable of withstau uplift at joint 10. designed in accorda Residential Code s nd referenced stance Standard	r a 10.0 ith any for a liv where fit betw SP No. (by oth nding 2 ance w ections dard AN	 psf bottom other live load e load of 20.0 a rectangle veen the botto 2. ers) of truss to 59 lb uplift at ith the 2015 R502.11.1 a ISI/TPI 1. 	ds. ppsf om joint nd					
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASC Vasd=1031 II: Fxp B: E	(lb) - Maximum Com Tension 1-2=0/31, 2-4=-1763 6-8=-1376/331, 8-10 2-14=-356/1615, 12- 10-12=-197/1600 4-14=0/309, 4-13=-6 8-13=-669/305, 8-12 ed roof live loads have E 7-10; Vult=130mph mph; TCDL=6.0psf; BC Enclosed: MWERS (en	pression/Maximum //368, 4-6=-1376/331 l=-1763/368, 10-11=i 14=-356/1615, i69/304, 6-13=-159/8 !=0/309 been considered for (3-second gust) CDL=3.0psf; h=25ft; yelone) exterior zono	0/31 336, Cat.							C		WH CA	ROLING
 ii, Exp B; E and C-C E to 16-0-0, I 19-2-6 to 3 vertical left MWFRS fc grip DOL= 3) Building Dv verifying R requirement 	Enclosed; MWFRS (en xterior (2) -0-10-8 to 2 Exterior (2) 16-0-0 to 1 b2-10-8 zone; cantileve a exposed;C-C for men or reactions shown; Lu 1.60 esigner/Project engine ain Load = 5.0 (psf) co nts specific to the use	Velope) exterior 20n -3-14, Interior (1) 2-3 9-2-6, Interior (1) er left exposed ; end nbers and forces & mber DOL=1.60 plat er responsible for overs rain loading of this truss compon	e 3-14 te ent.							111111	A MARINE	SEA 4584	E.F. ON

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

February 20,2024

Job	Truss	Truss Type	Qty	Ply	MCLEAN RESIDENCE	
2400183-08042	B01E	Common Structural Gable	1	1	Job Reference (optional)	163717072

Run: 8.73 S Feb 6 2024 Print: 8.730 S Feb 6 2024 MiTek Industries, Inc. Mon Feb 19 11:43:05 ID:zftuD50UDfmJFJq9n60C?yzo2in-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Scale = 1:62.3

Plate Offsets (X, Y): [29:0-3-0,0-3-0]

Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc	l/defl	L/d	PLATES	GRI	P
ICLL (root)		20.0	Plate Grip DOL	1.15			0.06	Vert(LL)	0.00	36-39	>999	240	M120	244/	190
		10.0	Lumber DOL	1.15		BC	0.06	Vert(CT)	0.00	36-39	>999	180			
BCLL		0.0*	Rep Stress Incr	YES		WB	0.12	Horz(CT)	0.01	20) n/a	n/a			
BCDL		10.0	Code	IRC20	015/TPI2014	Matrix-MS							Weight: 217	lb FT =	= 20%
LUMBER					FORCES	(lb) - Maximum Cor	npressi	on/Maximum		3) T	russ desi	gned f	or wind loads i	n the plan	ne of the truss
TOP CHORD	2x4 SP N	0.2					400.0	4 475/450		or	1ly. ⊢or s	tuds e	xposed to wind	(normal)	to the face),
BOT CHORD	2x4 SP N	0.2			TOP CHORD	1-2=0/26, 2-3=-21/	/186, 3	4 = -175/159,	10	Se	e Standa	ra ina	ustry Gable En	d Details	as applicable,
OTHERS	2x4 SP N 29-11.30-	0.3 *Except 10.31-9.28	t* -12.27-13:2x4 SP No	.2		8-9=-135/178, 9-10	=-178/2	83, 6-6=-124/12 109,	+9,	4) B	uilding De	signer	/Project engine	er respo	nsible for
BRACING	- ,	-,, -	,			10-11=-217/243, 11	-12=-2	17/243,		Ve	erifying Ra	ain Loa	ad = 5.0 (psf) c	overs rair	n loading
TOP CHORD	Structural	l wood shea	athing directly applied	lor		12-13=-178/199, 13	8-14=-1	35/147,		re	quiremen	ts spe	cific to the use	of this tru	uss component.
	6-0-0 oc r	ourlins	annig anoon) approc			14-16=-95/98, 16-1	7=-62/5	8, 17-18=-73/5	51,	5) A	l plates a	re 2x4	MT20 unless of	otherwise	indicated.
BOT CHORD	Rigid ceili	ina directly	applied or 10-0-0 oc			18-19=-97/68, 19-2	0=-154	/105, 20-21=0/	26	6) G	able stude	s spac	ed at 2-0-0 oc.		
	bracing.	J ,			BOT CHORD	2-36=-181/183, 35-	36=-99	/164,		7) TI	nis truss h	as be	en designed fo	r a 10.0 p	osf bottom
WEBS	1 Row at	midpt	11-29, 10-30, 12-28			34-35=-99/164, 33-	34=-99	(164,		ch	ord live lo	pad no	nconcurrent w	ith any oth	her live loads.
REACTIONS	(size)	2=32-0-0,	20=32-0-0, 22=32-0-	0,		32-33=-99/164, 31-	32=-99	/164, /164		8) *	I his truss	has b	een designed i	or a live l	load of 20.0pst
		23=32-0-0	, 24=32-0-0, 25=32-0	0-0,		27 29 00/164 26	30=-99/ 27_ 00	164,		10			ord in all areas	where a r	rectangle
		26=32-0-0	, 27=32-0-0, 28=32-0	0-0,		25-26=-99/164 24-	25=-99	/164			ord and a	by Z=0	er members	III Delwee	
		29=32-0-0	, 30=32-0-0, 31=32-0	D-0,		23-24=-99/164 22-	23=-99	/164		9) A	l hearing	are a	ssumed to be	SP No 2	
		32=32-0-0	, 33=32-0-0, 34=32-0	0-0,		20-22=-99/164	20 00,	,		0) /1	rbouringe	, alo a		51 110.2 .	
		35=32-0-0), 36=32-0-0, 37=32-0)-0,	WEBS	11-29=-183/105, 10	-30=-1	36/76,							
	Max Llaria	40=32-0-0		0)		9-31=-127/83, 8-32	=-128/7	9, 6-33=-128/8	30,						
	Max Horiz	2=-243 (L)	(LC I), $37 = -243$ (LC I	0)		5-34=-129/81, 4-35	=-126/7	6, 3-36=-138/9	96,						
	Max Opint	2=-70 (LC	0), 20=-14 (LC 9), C 12) 22- 60 (LC 12	`		12-28=-133/73, 13-	27=-12	8/84,							
		22=-30 (L) 24=-70 (L)	C 13), 25=-67 (LC 13),		14-26=-128/79, 16-	25=-12	8/80,							
		26=-67 (L)	C 13), 27=-72 (LC 13).		17-24=-128/80, 18-	23=-12	7/77,						11111	3.0
		28=-61 (L	C 13), 30=-64 (LC 12).		19-22=-138/91							11'-H C	APO	111
		31=-71 (L	C 12), 32=-67 (LC 12),	NOTES						•	1	all	1	1.11
		33=-67 (L	C 12), 34=-70 (LC 12),	1) Unbalanced	I roof live loads have	e been (considered for			- <u>e</u>	S.	OVERS	Sid	Nº4
		35=-57 (L	C 12), 36=-108 (LC 1	2),	this design.		1.0					115	in all	N	ann
		37=-70 (L0	C 8), 40=-14 (LC 9)		2) Wind: ASCI	E 7-10; Vult=130mpl	n (3-sec	cond gust)	0-4				.0		K : = 1
	Max Grav	2=180 (LC	20), 20=140 (LC 1),		Vasd=103m	ipn; ICDL=6.0pst; E	SCDL=3	Opsi; n=25it; (Cat.		-	6			· · · · ·
		22=182 (L	C 20), 23=164 (LC 2	0),	II; EXP B; E	iciosed; iviviFRS (e		e) exterior 2016	3 1 /				SE SE	.AL	· · · · ·
		24=169 (L	.C 20), 25=168 (LC 20	0),	to 16-0-0 C	orner (3) 16-0-0 to 2	19-2-6	Exterior (2) 2-3	-14		-		45	244	
		26=168 (L	.C 20), 27=168 (LC 20	0), 0)	19-2-6 to 32	-10-8 zone: cantile	er left e	exposed · end						JTT	- E -
		28=173 (L	.C 20), 29=204 (LC 2. C 10), 21-167 (LC 1)	∠), 0)	vertical left	exposed:C-C for me	mbers	and forces &				1			1.0
		30=170 (L	C 10) 33-168 (LC 1)	9), 0)	MWFRS for	reactions shown; L	umber I	DOL=1.60 plate	е			-7	A. En.	-R	123
		34=170 (L	C 19), 35=160 (LC 1	9), 9)	grip DOL=1	.60		,				1	VA VGI	NEF	CON N
		36=193 (1	.C 19), 37=180 (I C 2)	0).	. .							1	AFI	140	12,11
		40=140 (I	.C 1)	<i>.</i> ,,									W.SW	JON	in
													1111	mm	
													Februa	ary 20,2	2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouclings with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria and DSE2** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbaccomponents.com)

818 Soundside Road Edenton, NC 27932 Page: 1

Continued on page 2 WARNING - Verify

Job	Truss	Truss Type	Qty	Ply	MCLEAN RESIDENCE					
2400183-08042	B01E	Common Structural Gable	1	1	Job Reference (optional)	163717072				

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 70 lb uplift at joint 2, 14 lb uplift at joint 20, 64 lb uplift at joint 30, 71 lb uplift at joint 31, 67 lb uplift at joint 32, 67 lb uplift at joint 33, 70 lb uplift at joint 34, 57 lb uplift at joint 35, 108 lb uplift at joint 36, 61 lb uplift at joint 28, 72 lb uplift at joint 27, 67 lb uplift at joint 26, 67 lb uplift at joint 25, 70 lb uplift at joint 24, 60 lb uplift at joint 23, 98 lb uplift at joint 22, 70 lb uplift at joint 2 and 14 lb uplift at joint 20.

11) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Run: 8.73 S Feb 6 2024 Print: 8.730 S Feb 6 2024 MiTek Industries, Inc. Mon Feb 19 11:43:05 ID:zftuD50UDfmJFJq9n60C?yzo2in-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	MCLEAN RESIDENCE	
2400183-08042	C01	Common	4	1	Job Reference (optional)	163717073

Run: 8,73 S Feb 6 2024 Print: 8,730 S Feb 6 2024 MiTek Industries, Inc. Mon Feb 19 11:43:05 ID:a2?Sq0EvuByCKauWZIJLTIzo2fv-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:64.7

Plate Offsets (X, Y): [2:0-3-8,Edge], [4:0-0-0,0-0-0], [8:0-5-1,Edge], [8:0-0-0,0-0-0], [10:0-4-0,0-3-4]

											_		
_oading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.38	Vert(LL)	-0.19	10-13	>999	240	MT20	244/190
FCDL	10.0	Lumber DOL	1.15		BC	0.98	Vert(CT)	-0.39	10-13	>679	180		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.32	Horz(CT)	0.03	2	n/a	n/a		
BCDL	10.0	Code	IRC201	5/TPI2014	Matrix-MS							Weight: 126 lb	FT = 20%
JUMBER FOP CHORD 30T CHORD WEBS 3LIDER	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Left 2x6 SP No.2 2 2-6-0	2-6-0, Right 2x6 SP ∣	4) 5) No.2	 This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar All bearings 	is been designed for ad nonconcurrent w has been designed in chord in all areas by 2-00-00 wide will by other members, are assumed to be	or a 10.0 vith any for a liv where I fit betw with BC) psf bottom other live loa e load of 20.0 a rectangle veen the botto DL = 10.0psf 2	ads. Opsf om f.					
BRACING	Structural wood shea	athing directly applie	ed or 7	Provide mec bearing plate	hanical connection capable of withsta	(by oth Inding 1	ers) of truss t 65 lb uplift at	to t joint					
BOT CHORD	Rigid ceiling directly bracing.	applied or 2-2-0 oc	8)	2 and 165 lb This truss is	uplift at joint 8. designed in accord	lance w	ith the 2015						
REACTIONS	(size) 2=0-3-8, 8 Max Horiz 2=-245 (Lu Max Uplift 2=-165 (Lu Max Grav 2=933 (Lu	8=0-3-8 C 10) C 12), 8=-165 (LC 1 C 1), 8=933 (LC 1)	₃₎ L	R802.10.2 a	nd referenced stand	dard AN	ISI/TPI 1.	ina					
ORCES	(lb) - Maximum Com Tension	pression/Maximum											
FOP CHORD	1-2=0/34, 2-4=-988/2 5-6=-818/250, 6-8=-9	230, 4-5=-818/250, 987/230, 8-9=0/34											
BOT CHORD	2-8=-248/866												
WEBS	5-10=-181/686, 6-10 4-10=-335/247	=-335/247,											
NOTES												IN CA	Dille
 Unbalance this design 	ed roof live loads have	been considered for	r							\int	J. S.	RTHUR	TOLIN
2) Wind: ASC	CE 7-10; Vult=130mph	(3-second gust)	0-1								E D	inthe	Miran

Vasd=103mph; TCDL=6.0psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 11-0-0, Exterior (2) 11-0-0 to 14-0-0, Interior (1) 14-0-0 to 22-10-8 zone; cantilever left exposed ; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading 3) requirements specific to the use of this truss component. Summer The second second 45844 104 minin February 20,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB Building Component Scitut Information**. Building from the Structure Building Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	MCLEAN RESIDENCE	
2400183-08042	C01E	Common Structural Gable	1	1	Job Reference (optional)	163717074

Run: 8.73 S Feb 6 2024 Print: 8.730 S Feb 6 2024 MiTek Industries, Inc. Mon Feb 19 11:43:06 ID:29S7m5QtgcWioHGe7BceFdzo2gy-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1.62.7		Scale	=	1:62.7	
----------------	--	-------	---	--------	--

Plate Offsets ((X, Y): [2:0-	-2-4,0-0-2],	[8:0-3-0,Edge], [9:0	0-0-0,Edg	e], [10:0-0-0	,Edg	je], [11:0-0-0,Edge], [12:0-	0-0,Edge], [1	4:0-3-13	8,0-0-2], [14:0-0-0),0-0-0]		
Loading TCLL (roof) TCDL BCLL BCDL		(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2()15/TPI2014		CSI TC BC WB Matrix-MS	0.18 0.18 0.15	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.01 -0.01 0.02	(loc) 16-31 16-31 14	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 160 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS SLIDER BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP N 2x4 SP N 2x4 SP N 23-5,24-4 Left 2x6 S 2-6-0 Structural 6-0-0 oc r Rigid ceili bracing. 1 Row at (size)	t* 12:2x4 SP No.3 2-6-0, Right 2x6 SP athing directly appli applied or 10-0-0 c 7-21, 9-20 14=22-0-0, 16=22-	No.2 ied or oc	BOT CHORD 2-24=-168/275, 23-24=-168/275, 22-23=-168/275, 21-22=-168/275, 20-21=-168/275, 19-20=-168/275, 17-19=-168/275, 16-17=-168/275, 14-16=-168/275 WEBS 7-21=-109/31, 9-20=-92/10, 6-22=-184/140, 5-23=-100/65, 4-24=-263/208, 10-19=-183/144, 11-17=-100/67, 12-16=-260/202 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone						 10) Provide mechanical connection (by others) of rules to bearing plate capable of withstanding 21 lb uplift at joint 2, 2 lb uplift at joint 14, 16 lb uplift at joint 21, 134 lb uplift at joint 22, 33 lb uplift at joint 23, 238 lb uplift at joint 24, 138 lb uplift at joint 19, 33 lb uplift at joint 17, 235 lb uplift at joint 16, 21 lb uplift at joint 2 and 2 lb uplift at joint 14. 11) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard 						
FORCES TOP CHORD	$\begin{array}{llllllllllllllllllllllllllllllllllll$				 II; Exp E and C-C 11-0-0, (22-10-8 exposed reaction. DOL=1.1. Truss d only. Fo see Star or consu. Truss d building verifying requiren All plate: Gable st Chord liv This trus chord liv This trus on the b 3-06-00 chord ar All beari 	;; End Corn Zone I;C-Cc s shc 60 esigr ndarc IIt qui Desi I Rair nents s are loa uss ha e loa uss h otton tall b d an ngs a	closed; MWFRS (e ner (3) -0-10-8 to 2 er (3) 11-0-0 to 14 e; (antilever left ex for members and own; Lumber DOL- ned for wind loads tds exposed to wind d Industry Gable E alified building des igner/Project engin n Load = 5.0 (psf) s specific to the us e 2x4 MT20 unless spaced at 2-0-0 oc s been designed fa d nonconcurrent w has been designed n chord in all areas by 2-00-00 wide wi y other members, are assumed to be	envelope 2-1-8, E: -0-0, Ex. -0-0, Ex. -1.60 pl: in the p d (norm nd Deta signer a: eer res otherwi covers r e of this otherwi covers r or a 10.0 vith any for a lio. SP No.	e) exterior zon (terior (2) 2-1 terior (2) 14-(end vertical li & MWFRS for ate grip lane of the tru al to the face ils as applica s per ANSI/TI ponsible for ain loading truss compon se indicated. D psf bottom other live loa e load of 20.0 a rectangle veen the bottt DL = 10.0psf 2.	ne -8 to 0 to eft r uss), ble, PI 1. nent. ds. Opsf om f.		O Shimmer	L'AND REAL	SEA 4584	L HA HA EEER.SO	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

818 Soundside Road Edenton, NC 27932

February 20,2024

Job	Truss	Truss Type	Qty	Ply	MCLEAN RESIDENCE	
2400183-08042	C02G	Common Girder	1	2	Job Reference (optional)	163717075

Run: 8,73 S Feb 6 2024 Print: 8,730 S Feb 6 2024 MiTek Industries. Inc. Mon Feb 19 11:43:06 ID:TMIpo?hkxtkpuQopnk?F?mzo2fJ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:67

Plate Offsets ()	K, Y):	[9:0-5-0,0-4-8]
------------------	--------	-----------------

Loading TCLL (roof) TCDL BCLL BCDL		(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC20	15/TPI2014	CSI TC BC WB Matrix-MS	0.41 0.75 0.42	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.07 -0.14 0.04	(loc) 9-10 9-10 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 309 lb	GRIP 244/190 FT = 20%	
UMBER OP CHORD 2x4 SP No.2 30T CHORD 2x4 SP No.2 * SOT CHORD 2x6 SP No.2 * VEBS 2x4 SP No.2 ** * SLIDER Left 2x6 SP No.2 -* 2-6-0, Right 2x6 SP No SLIDER Left 2x6 SP No.2 -* 2-6-0, Right 2x6 SP No SCOP CHORD Structural wood sheathing directly applied for 10-0 oc 5-7-3 oc purlins. * 30T CHORD SOT CHORD Rigid ceiling directly applied or 10-0 oc bracing. REACTIONS (size) 1=0-3-8, 7=0-3-8 Max Horiz 1=224 (LC 24) Max Uplit Max Grav 1=3573 (LC 1), 7=3604 (LC 1) *** Tension ************************************					 Unbalanced this design. Wind: ASCE Vasd=103my II; Exp B; En cantilever lef Lumber DOL Building Des verifying Rai requirements This truss ha chord live loa * This truss ha on the bottor 3-06-00 tall t chord and ar All bearings Provide mec bearing plate 1 and 929 lb This truss is International R802 10 2 and 	7-10; Vult=130mp 7-10; Vult=130mp b; TCDL=6.0psf; closed; MWFRS (t exposed ; end vu =1.60 plate grip E igner/Project engin n Load = 5.0 (psf) s specific to the us is been designed ad nonconcurrent has been designed ad nonconcurrent as been designed n chord in all area y 2-00-00 wide w hy other members are assumed to be hanical connection e capable of withst uplift at joint 7. designed in accor Residential Code nd referenced stat	ve been of bh (3-sec BCDL=3 envelope ertical lef DOL=1.6(neer resp covers r e of this for a 10.0 with any d for a 10.0 with any d for a 10.0 with a	considered fo cond gust) .0ps; h=25ft e) exterior zon exterior zon ponsible for ain loading truss compoind opsf bottom other live load e load of 20.0 a rectangle veen the bottom 2. ers) of truss t iz0 lb uplift at ith the 2015 c R502.11.1 a ISU/TPI 1	r ; Cat. ne; nent. ds. Dpsf om t joint						
 WEBS 4-9=-1002/3423, 5-9=-1268/510, 5-8=-371/1384, 3-9=-1262/507, 3-10=-369/1378 NOTES 1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc. Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Web connected as follows: 2x4 - 1 row at 0-9-0 oc. 2) All loads are considered equally applied to all plies, except if noted as for (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated. 				1 0 L 1 AD	 Use Simpson Truss, Single oc max. stari connect truss Fill all naih hc OAD CASE(S) Dead + Roo Plate Increa Uniform Loo Vert: 1-4 Concentrat Vert: 19= 22=-544 26=-544 	n Strong-Tie LUS2 e Ply Girder) or eq ting at 2-0-12 from s(es) to back face bles where hanger Standard of Live (balanced) ase=1.15 ads (lb/ft) =-60, 4-7=-60, 11- ed Loads (lb) e-544 (B), 20=-544 (B), 23=-544 (B), (B), 27=-544 (B),	4 (4-10c uivalent i the left of bottor is in cor Lumber 15=-20 ((B), 21= 24=-544 28=-544	(B), 25=-544 (B), 25=-544 (B), 25=-544	d)-0 2 to ber. 15,		Comme	State State	SEA 4584	ROLL A EPROLUTION	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

February 20,2024

Job	Truss	Truss Type	Qty	Ply	MCLEAN RESIDENCE	
2400183-08042	V1A	Valley	1	1	I637 Job Reference (optional)	717076

Run: 8.73 S Feb 6 2024 Print: 8.730 S Feb 6 2024 MiTek Industries, Inc. Mon Feb 19 11:43:07 ID:oP4AAryvrLZqed8NW4U1RLzo9gH-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:52.8

Plate Offsets (X	, Y):	[4:0-3-0,Edge]
------------------	-------	----------------

oading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)		20.0	Plate Grip DOL	1.15		тс	0.20	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
FCDL		10.0	Lumber DOL	1.15		BC	0.16	Vert(TL)	n/a	-	n/a	999			
BCLL		0.0*	Rep Stress Incr	YES		WB	0.16	Horiz(TL)	0.01	7	n/a	n/a			
BCDL		10.0	Code	IRC201	5/TPI2014	Matrix-MS							Weight: 92 lb	FT = 20%	
			•												
UMBER				3)	Truss desig	ned for wind loads i	in the p	ane of the tru	uss						
FOP CHORI	D 2x4 SP N	0.2			only. For stu	ds exposed to wind	d (norm	al to the face	e),						
BOT CHORI	D 2x4 SP N	0.2			see Standard	I Industry Gable Er	nd Deta	ils as applica	ble,						
OTHERS	2x4 SP N	lo.3 *Excep	t* 11-3,9-5:2x4 SP N	lo.2	or consult qu	alified building des	igner as	s per ANSI/11	PI 1.						
BRACING				4)	Building Des	gner/Project engin	eer res	Donsible for							
FOP CHORI	O Structura	I wood she	athing directly applie	d or	verilying Rail	1 LOad = 5.0 (psi) d	overs r	ain loading							
	6-0-0 oc	purlins.		E)	All plotop org	specific to the use	othorwi	truss compo	nent.						
30T CHORI	D Rigid ceil	ing directly	applied or 10-0-0 oc	; 5)	Coble require		on chor	d bearing							
	bracing.			(0) 7)	Gable require	es continuous Dolla	JIT CHOP	u bearing.							
REACTIONS	S (size)	1=19-6-15	5, 7=19-6-15, 8=19-6	6-15, ⁽⁾	This trues ha	spaceu al 4-0-0 00	x o 10 () not bottom							
		9=19-6-15	5, 11=19-6-15,	0)	chord live los	d nonconcurrent w	vith anv	other live los	ade						
		12=19-6-1	15	a)	* This truss h	as been designed	for a liv	e load of 20 (nas. Nast						
	Max Horiz	1=-198 (L	C 8)		on the bottor	n chord in all areas	where	a rectangle	0001						
	Max Uplift	8=-191 (L	C 13), 9=-138 (LC 1	3),	3-06-00 tall h	v 2-00-00 wide will	fit betv	een the bott	om						
		11=-142 (LC 12), 12=-197 (LC	; 12)	chord and an	v other members.	with BC	DL = 10.0ps	f.						
	Max Grav	1=178 (LC	C 21), 7=170 (LC 22)	^{),} 10) All bearings	are assumed to be	SP No.	2.							
		8=427 (LC	20), 9=416 (LC 20)	, 11) Provide mec	nanical connection	(by oth	ers) of truss t	to						
		11=421 (L	-C 19), 12=433 (LC 1	19)	bearing plate	capable of withsta	nding 1	97 lb uplift at	t joint						
FORCES	(lb) - Max	kimum Com	pression/Maximum		12, 142 lb up	lift at joint 11, 191	lb uplift	at joint 8 and	138						
	Tension	004 0.0	4.7/00 0 4 04/00		lb uplift at joi	nt 9.	•								
I OP CHORI) 1-2=-292	/231, 2-3=-	147/92, 3-4=-81/32,	12) This truss is	designed in accord	ance w	ith the 2015							
	4-5=-81/3	32, 5-6=-14	1/92, 6-7=-283/231		International	Residential Code s	sections	R502.11.1 a	and					111.	
BOT CHORI	J 1-12=-20	2/272, 11-1	2=-202/272,	070	R802.10.2 a	nd referenced stand	dard AN	ISI/TPI 1.					A LINE	Dille	
	9-11=-20	Z/Z/Z, 8-9= 7/011 0 11	=-202/272, 7-8=-202/	²⁷² L0	DAD CASE(S)	Standard						1	THUM	TO1 11.	
WED3	2-12=-29	/212 5 0-	=-237/107, 221/161									5	01.200	And	
OTES	0-0297	212, 3-3=-	2017101									R	rioth	Minai	マ
NULE3	cod roof live	loode hove	boon considered for										.or /	- K	2
i) Unbalan		ioaus nave	been considered for										100	e - 199	-
	90. SCE 7 10: Vu	ult_120mph	(2 second quist)									:	SEA	L 1	=
Vasd-1		-6 Onsf: R/	CDI -3 Onef: h-25ft.	Cat							=	:	1501		-
II. Exp B	: Enclosed: M	/WFRS (en	velone) exterior zon	οαι. ρ							=		4084	++ ;	2
and C-C	Exterior (2) (0-0-5 to 3-0	-5. Interior (1) 3-0-5	to							-	5 3			-
9-9-12.1	Exterior (2) 9-	9-12 to 12-	9-12. Interior (1)									. 7	·	a:23	
12-9-12	to 19-7-3 zon	ne; cantileve	er left exposed ; end									11	VGINI	EFICON	
vertical I	eft exposed:	C-C for mer	nbers and forces &									11	Op	INS IN	
MWFRS	for reactions	shown: Lu	mber DOL=1.60 plat	te								200	1. EW 10	OHILIN	

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) 0-0-5 to 3-0-5, Interior (1) 3-0-5 to 9-9-12, Exterior (2) 9-9-12 to 12-9-12, Interior (1) 12-9-12 to 19-7-3 zone; cantilever left exposed ; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

104

munn February 20,2024

Job	Truss	Truss Type	Qty	Ply	MCLEAN RESIDENCE	
2400183-08042	V1B	Valley	1	1	Job Reference (optional)	163717077

Run: 8.73 S Feb 6 2024 Print: 8.730 S Feb 6 2024 MiTek Industries, Inc. Mon Feb 19 11:43:07 ID:PTu8ftWKTGrxb68xP4Ekubzo2fY-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:59.3

Plate Offsets (X, Y): [4:0-3-0,Edge]

Loading TCLL (roof) TCDL BCLL BCDL		(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MS	0.24 0.15 0.21	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 7	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 83 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Unbalance this design	2x4 SP No 2x4 SP No 2x4 SP No 2x4 SP No Structural 10-0-0 oc Rigid ceilin bracing. (size) Max Horiz Max Uplift Max Grav (lb) - Maxi Tension 1-2=-136/: 4-5=-45/1! 1-12=-151 8-10=-151 2-12=-300 5-10=-280 ed roof live lo	2.2 2.2 2.3 *Excep wood shea purlins. ng directly 1=16-9-5, 10=16-9-5, 17=16-9-5 17=16-9-5 17=16-9-5 17=16-9-5 1=168 (LC 11=-69 (LC 11=-69 (LC 11=-65 (LC (LC 20), 1 11) mum Com 316, 2-3=-4 //220, 3-11 //7 bads have	* 11-3,10-5:2x4 SP N athing directly applied applied or 6-0-0 oc 7=16-9-5, 8=16-9-5, 5, 11=16-9-5, 12=16-9 5, 11=16-9-5, 12=16-9 5, 11=16-9-5, 12=16-9 5, 11=16-9-5, 12=16-9 5, 11=16-9-5, 12=16-9 5, 11=16-9-5, 12=16-9 7, 11=16-9, 12=16-9 7, 11=16-9, 12=16-9 7, 12=16-9, 12=16-9 7, 12=16-9, 12=16-9 7, 12=16-9, 12=16-9 7, 12=16-9, 12=16-9 7, 12=16-9, 12=16-9 7, 12=16-9, 12=16-9 7, 12=16-9, 12=16-9 7, 12=16-9, 12=16-9 7, 12=1	2) lo.2 or 3) l-5, 4))22 5) 5 (LC 7) 8) 9) l/82, 19, 10 11 12	Wind: ASCE Vasd=103mp II; Exp B; End and C-C Exte 8-4-15, Exter to 16-9-10 zoo exposed;C-C reactions sho DOL=1.60 Truss design only. For stu see Standard or consult qu Building Desi verifying Rair requirements All plates are Gable require Gable studs s This truss ha on the bottom 3-06-00 tall b chord and an All bearings a Provide mech bearing plate 1, 212 lb uplif lb uplift at joir This truss is of International R802.10.2 ar	7-10; Vult=130mpf h; TCDL=6.0psf; B dosed; MWFRS (er rior (2) 0-0-5 to 3-C for (2) 8-4-15 to 11 ne; cantilever left ef for members and f wn; Lumber DOL= ed for wind loads i ds exposed to wind loads try Gable En alified building desi gner/Project engine Load = 5.0 (psf) c specific to the use 2x4 MT20 unless of scontinuous botto spaced at 4-0-0 oc, s been designed fo d nonconcurrent w as been designed fo a chord in all areas y 2-00-00 wide will y other members, to re assumed to be banical connection capable of withsta t at joint 12, 65 lb u t 8. designed in accord: Residential Code s	a (3-sec GCDL=3 nvelope 0-5, Inté -4-15, I exposed forces & 1.60 pla 1.60 pla d (norm d Detai igner as eer respovers r o of this of this of this of this of the rwith for a 10.0 (it hany for a 10.0 (by other with BC SP No. (by other nding 6 uplift at ance wis sections dard AN	ond gust) .0psf; h=25ft;) exterior zor riror (1) 3-0-5 Interior (1) 11: ; end vertica & MWFRS for ane of the tru, al to the face b as applical s as applical per ANSI/TF bonsible for ain loading truss compor truss compor truss compor truss compor other live load e load of 20.0 a rectangle veen the bottom DL = 10.0psf 2. ers) of truss t 9 lb uplift at ji joint 11 and 2 th the 2015 R502.11.1 a SI/TPI 1.	c Cat. ne -4-15 al left uss .), ble, PI 1. nent. ds. opm o o oint 205 nd		Contraction of the second seco	Lunit Cont	SEA 4584	ROLLANS
				LC	DAD CASE(S)	Standard						and the second sec	REW JO	ER. OTIN

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	MCLEAN RESIDENCE	
2400183-08042	V1C	Valley	1	1	Job Reference (optional)	163717078

Run: 8.73 S Feb 6 2024 Print: 8.730 S Feb 6 2024 MiTek Industries, Inc. Mon Feb 19 11:43:07 ID:PTu8ftWKTGrxb68xP4Ekubzo2fY-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:42.6

Loading TCLL (roof) TCDL BCLL BCDL		(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	015/TPI2014	CSI TC BC WB Matrix-MS	0.19 0.14 0.15	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 62 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No 2x4 SP No 2x4 SP No Structural 10-0-0 oc Rigid ceili bracing. (size) Max Horiz Max Uplift Max Grav	0.2 0.2 0.3 wood she: purlins. ng directly 1=13-11-1 6=13-11-1 8=13-11-1 1=-140 (L 1=-21 (LC 8=-192 (L 1=100 (LC 6=368 (LC	athing directly applie applied or 6-0-0 oc 11, 5=13-11-11, 11, 7=13-11-11, 12 C 8) 5 8), 6=-189 (LC 13), C 12) C 20), 5=92 (LC 24), C 20), 7=278 (LC 1), C 19)	d or	 Truss desig only. For stu see Standard or consult qu Building Desiverifying Rai requirements Gable require Gable studs This truss ha chord live loc * This truss h on the bottor 3-06-00 tall the chord and ar All bearings Provide mecto bearing platt 	ned for wind loa ids exposed to d Industry Gabl- alified building igner/Project er n Load = 5.0 (p s specific to the es continuous b spaced at 4-0-0- tas been design ad nonconcurre has been design or chord in all ar by 2-00-00 wide hy other member are assumed to hanical connect is capable of with	ads in the pi wind (norm e End Deta designer as ngineer resp sf) covers r use of this bottom chor 0 oc. ed for a 10.0 nt with any ned for a 10.0 nt with any ned for a 10.1 nt with any ned for a 10.2 nt with any ned for a 10.0 to be SP No. tion (by oth hstanding 2 400 h wali	ane of the tr al to the face ils as applica s per ANSI/T ponsible for ain loading truss compo d bearing. D psf bottom other live loa e load of 20. a rectangle veen the bott 2. ers) of truss 11 buplift at e to the sit e	uss able, pl 1. nent. ads. Opsf to joint					
FORCES	(lb) - Max Tension	imum Com	pression/Maximum		11) This truss is International	designed in acc Residential Co	cordance w	ith the 2015	and					
TOP CHORD	1-2=-132/ 4-5=-99/1	210, 2-3=- 72	22/139, 3-4=-16/132	,	R802.10.2 a	nd referenced s	standard AN	ISI/TPI 1.						
BOT CHORD WEBS NOTES	1-8=-149/ 5-6=-148/ 2-8=-270/	131, 7-8=- 131 192, 4-6=-	149/131, 6-7=-148/1 270/191, 3-7=-247/0	31,	LOAD CASE(S)	Standard					ſ	Lan	WITH CA	ROL

this design.
Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) 0-0-5 to 3-0-5, Interior (1) 3-0-5 to

and C-C Exterior (2) 0-0-5 to 3-0-5, Interior (1) 3-0-5 to 7-0-2, Exterior (2) 7-0-2 to 10-0-5, Interior (1) 10-0-5 to 14-0-0 zone; cantilever left exposed; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

TRENCO A MiTek Affiliate

Job	Truss	Truss Type	Qty	Ply	MCLEAN RESIDENCE	
2400183-08042	V1D	Valley	1	1	Job Reference (optional)	163717079

Run: 8.73 S Feb 6 2024 Print: 8.730 S Feb 6 2024 MiTek Industries, Inc. Mon Feb 19 11:43:07 ID:PTu8ftWKTGrxb68xP4Ekubzo2fY-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:37.5

Plate Offsets (X, Y): [3:0-3-0,Edge]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.18	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15		BC	0.15	Vert(TL)	n/a	-	n/a	999			
BCLL	0.0*	Rep Stress Incr	YES		WB	0.06	Horiz(TL)	0.00	5	n/a	n/a			
BCDL	10.0	Code	IRC2015/TF	PI2014	Matrix-MS							Weight: 45 lb	FT = 20%	
LUMBER			4) B	uilding Desi	gner/Project engin	eer resp	oonsible for							
TOP CHORD	2x4 SP No.2		Ýve	erifying Rain	Load = 5.0 (psf) c	overs r	ain loading							
BOT CHORD	2x4 SP No.2		re	equirements	specific to the use	of this	truss compor	nent.						
OTHERS	2x4 SP No.3		5) G	Sable require	s continuous botto	om chor	d bearing.							
BRACING			6) G	Sable studs s	spaced at 4-0-0 oc									
TOP CHORD	Structural wood she	athing directly applie	dor 7) Ti	his truss has	s been designed fo	or a 10.0) psf bottom							
	6-0-0 oc purlins	aaning anooaly appilo	cł	hord live loa	d nonconcurrent w	ith any	other live loa	ds.						
BOT CHORD	Rigid ceiling directly	applied or 6-0-0 oc	8) * 01	This truss han the bottom	as been designed 1 chord in all areas	for a liv where	e load of 20.0 a rectangle)psf						
REACTIONS	(size) 1=11-2-2	, 5=11-2-2, 6=11-2-2	3-	-06-00 tall by	y 2-00-00 wide will	l fit betw	veen the botto	om						
	7=11-2-2			Il boorings o	y other members.		2							
	Max Horiz 1=-111 (L	_C 8)	3) A 10) P	lii beannys a		(by oth	z. orc) of trucc t	•						
	Max Uplift 6=-154 (L	_C 13), 7=-161 (LC 12	2) 10) I	earing plate	canable of withsta	nding 1	61 lb unlift at	ioint						
	Max Grav 1=120 (LC	C 23), 5=120 (LC 24)	, 7	and 154 lb i	unlift at joint 6	inuing i	or ib upint at	joint						
	6=350 (L0	C 20), 7=358 (LC 19)	11) T	his truss is c	designed in accord	ance w	ith the 2015							
FORCES	(lb) - Maximum Com Tension	npression/Maximum	In	nternational I	Residential Code s	sections	R502.11.1 a	nd						
TOP CHORD	1-2=-152/142, 2-3=- 4-5=-148/142	-51/19, 3-4=-51/18,		D CASE(S)	Standard		ISI/TPTT.							
BOT CHORD	1-7=-138/154. 6-7=-	-138/154, 5-6=-138/1	54											
WEBS	2-7=-257/163, 4-6=-	-257/157												
NOTES														
1) Unbalance	ed roof live loads have	been considered for										UNI CA	E l'IL	
, this design	1.											TH UA	ROIL	
Wind: AŠC	CE 7-10; Vult=130mph	n (3-second gust)								/	1.5	A Co	1. 4/1	1
Vasd=103	mph; TCDL=6.0psf; B	CDL=3.0psf; h=25ft;	Cat.							-	+ >	FESP	Chi K	in
II; Exp B; E	Enclosed; MWFRS (er	nvelope) exterior zon	е								\mathcal{N}	North	1.1	
and C-C E	xterior (2) 0-0-5 to 3-0	0-5, Interior (1) 3-0-5	to							_		Q.		-
5-7-6, Exte	erior (2) 5-7-6 to 8-7-6	, Interior (1) 8-7-6 to									:	SEA	ı :	=
11-2-7 zon	ie; cantilever left expo	sed ; end vertical left									:	ULA		=
exposed;C	C for members and f	forces & MWFRS for								=		4584	4 :	=
reactions s	shown; Lumber DOL=	1.60 plate grip								-	5 5			
DOL=1.60												1		
 Truss des 	igned for wind loads in	n the plane of the tru	SS								.7	No.	-ER.	1
only. For s	studs exposed to wind	(normal to the face)									1	O. GIN	F.F. GU	1
see Standa	ard Industry Gable En	d Details as applicab	le,								1	REIAL	HN	
or consult	qualified building desi	gner as per ANSI/TP	11.									TIL VV J	U. I.I.	
												- HILLING	1111	

February 20,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	MCLEAN RESIDENCE	
2400183-08042	V1E	Valley	1	1	Job Reference (optional)	163717080

4-2-4

4-2-4

84 Components (Dunn, NC), Dunn, NC - 28334,

3-6-2

Run: 8.73 S Feb 6 2024 Print: 8.730 S Feb 6 2024 MiTek Industries, Inc. Mon Feb 19 11:43:08 ID:xHKmSXViiyj4zzZlrNiVMOzo2fZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4x6 = 2

4 2x4 u

8-4-8

8-0-6

3-10-2

12

3

2x4 💊

Loading	(psf)	Spacing Plate Grip DOI	2-0-0		CSI	0.23	DEFL	in n/a	(loc)	l/defl	L/d	PLATES	GRIP
TOLL (1001)	20.0		1.15			0.23		11/a		11/a	999	101120	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.21	Vert(IL)	n/a	-	n/a	999		
BCLL	0.0	* Rep Stress Incr	YES		WB	0.12	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2015/	TPI2014	Matrix-MP							Weight: 32 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood s 8-4-8 oc purlins. Rigid ceiling direc bracing. (size) 1=8-4- Max Horiz 1=82 (Max Uplift 1=-22 4=-160 Max Grav 1=61 ((LC 1)	heathing directly applie tly applied or 6-0-0 oc 3, 3=8-4-8, 4=8-4-8 C 9) LC 24), 3=-20 (LC 23), (LC 12) C 23), 3=64 (LC 24), 4	5) 6) 7) 8) d or 9) 10) =614	Gable requird Gable studs This truss ha chord live loa * This truss h on the bottom 3-06-00 tall b chord and ar All bearings a Provide mecl bearing plate bearing plate 1, 20 lb uplift This truss is International R802.10.2 ar	es continuous b spaced at 4-0-0 s been designer da nonconcurrer has been designer y 2-00-00 wide by other member are assumed to hanical connect capable of with at joint 3 and 11 designed in acc Residential Con- nd referenced st	ottom chor oc. d for a 10.0 tt with any ed for a liv asas where will fit betw rs. be SP No. ion (by oth standing 2 60 lb uplift ordance wi le sections andard AN	d bearing.) psf bottom other live loa e load of 20.1 a rectangle veen the botth 2. ers) of truss t at joint 4. ith the 2015 R502.11.1 a ISI/TPI 1.	ds. Dpsf om oint					

2x4 🧳

FORCES (b) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-109/255, 2-3=-107/250 BOT CHORD 1-4=-231/152, 3-4=-228/150

WEBS 2-4=-450/194 NOTES

 Unbalanced roof live loads have been considered for this design.

this design.
Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) 0-0-5 to 3-0-5, Interior (1) 3-0-5 to 4-2-9, Exterior (2) 4-2-9 to 7-2-9, Interior (1) 7-2-9 to 8-4-13 zone; cantilever left exposed ; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.

SEAL 45844 February 20,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	MCLEAN RESIDENCE	
2400183-08042	V1F	Valley	1	1	Job Reference (optional)	163717081

2-0-7

7-0-0

2-4-2

Run: 8,73 S Feb 6 2024 Print: 8,730 S Feb 6 2024 MiTek Industries, Inc. Mon Feb 19 11:43:08 ID:xHKmSXViiyj4zzZIrNiVMOzo2fZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

5-<u>2-12</u>

2-5-5

5-6-15

12 10 Г

2-9-7

2-9-7

5-6-15

4x6 = 2

Scale = 1:26.3

													-		
Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)		20.0	Plate Grip DOL	1.15		тс	0.09	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
TCDL		10.0	Lumber DOL	1.15		BC	0.10	Vert(TL)	n/a	-	n/a	999			
BCLL		0.0*	Rep Stress Incr	YES		WB	0.05	Horiz(TL)	0.00	3	n/a	n/a			
BCDL		10.0	Code	IRC2015	5/TPI2014	Matrix-MP							Weight: 20 lb	FT = 20%	
				7)	This trues ha	s boon designed fo	or o 10 () pef hottom	-				•		
	2VA CD No 2			()	chord live los	d nonconcurrent w	vith any	other live load	de						
POT CHORD	2X4 SF NU.2			8)	* This trues h	as been designed	for a liv	e load of 20.0	us. Inef						
BUT CHURD	2X4 SP N0.2			0)	on the botton	as been designed	whore	a rectangle	psi						
UTHERS	2X4 5P NO.3				3-06-00 tall h	v 2-00-00 wide will	fit hetv	veen the botto	m						
BRACING					chord and an	v other members		veen the bolle	////						
TOP CHORD	Structural wo 5-6-15 oc pu	ood shea Irlins.	athing directly applie	d or 9)	All bearings a	are assumed to be	SP No.	2.							
BOT CHORD	Rigid ceiling bracing.	directly	applied or 6-0-0 oc	10	bearing plate	capable of withsta	(by oth inding 1	ers) of truss to 0 lb uplift at jo	o oint						
REACTIONS	(size) 1=	=5-6-15.	3=5-6-15, 4=5-6-15		3 and 78 lb u	plift at joint 4.									
	Max Horiz 1=	=-53 (LC	8)	11) This truss is	designed in accord	ance w	ith the 2015							
	Max Uplift 3=	=-10 (LC	13), 4=-78 (LC 12)		International	Residential Code s	sections	R502.11.1 a	nd						
	Max Grav 1=	-64 (I C	23) 3=66 (I C 24) 4	-346	R802.10.2 ar	nd referenced stand	dard AN	ISI/TPI 1.							
	(L	C 1)	20), 0 00 (20 2 .), .	LC	DAD CASE(S)	Standard									
FORCES	(lb) - Maximi	um Com	pression/Maximum												
	Tension														
TOP CHORD	1-2=-55/119	, 2-3=-59	9/113												
BOT CHORD	1-4=-109/81	. 3-4=-10	06/80												
WEBS	2-4=-225/91	,													
NOTES															
1) Unbalance	ed roof live load	ds have	been considered for												
this desig	n.														
2) Wind: AS	CE 7-10; Vult=	130mph	(3-second gust)										CONTR	I.G.	
Vasd=103	Smph; TCDL=6.	.0psf; B0	CDL=3.0psf; h=25ft;	Cat.									1111 00	- in	
II; Exp B;	Enclosed; MW	FRS (en	velope) exterior zon	Э									N'TH UA	ROUL	
and C-C E	Exterior (2) zon	e; cantile	ever left exposed ; e	nd								N	1	1. 4/1/1	
vertical let	ft exposed;C-C	for men	nbers and forces &								- / 1	3.3	U. FFSS	RAINAA	
MWFRS f	or reactions sh	own; Lu	mber DOL=1.60 plat	е								\mathbf{v}			2 a
grip DOL=	=1.60												<u>.</u> Q. 1		-
Truss des	signed for wind	loads in	the plane of the true	SS									SEA	r :	=
only. For	studs exposed	to wind	(normal to the face)									:	JLA	- :	=
see Stand	lard Industry G	able End	d Details as applicab	le,									4584	4 :	-
or consult	qualified buildi	ng desig	ner as per ANSI/TP	11.							-				-
4) Building D	esigner/Projec	t engine	er responsible for										100 march 100 ma	1. A. S.	2
veritying F	kain Load = 5.0) (pst) co	overs rain loading	4								-7	1. SNO	-ER. AS	
requireme	ents specific to	the use	of this truss compon	ent.								11	GIN	E.F. GUN	
5) Gable req	uires continuou	us bottor	n chord bearing.									1	PEL	NN	
b) Gable stu	as spaced at 4	-U-U OC.											1.501		

6) Gable studs spaced at 4-0-0 oc.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Fohr EN JOH

February 20,2024

Job	Truss	Truss Type	Qty	Ply	MCLEAN RESIDENCE	
2400183-08042	V1G	Valley	1	1	Job Reference (optional)	163717082

Run: 8,73 S Feb 6 2024 Print: 8,730 S Feb 6 2024 MiTek Industries, Inc. Mon Feb 19 11:43:08 ID:xHKmSXViiyj4zzZIrNiVMOzo2fZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2-5-3

Page: 1

3x6 =

1-4-10

1-4-10 1-0-8

2x4 💊

2-9-5

Scale = 1:25.5

Plate Offsets (X, Y): [2:0-3-0,Edge]

Loading TCLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.06	DEFL Vert(LL)	in n/a	(loc)	l/defl n/a	L/d 999	PLATES MT20	GRIP 244/190
FCDL	10.0	Lumber DOL	1.15		BC	0.05	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2015/	TPI2014	Matrix-MP							Weight: 8 lb	FT = 20%
-UMBER FOP CHORD 3OT CHORD BRACING FOP CHORD	2x4 SP No.2 2x4 SP No.2 Structural wood she: 2-9-5 oc purlins.	athing directly applie	8) ed or 9) 10)	* This truss h on the botton 3-06-00 tall b chord and an All bearings a Provide mecl	as been designed n chord in all areas y 2-00-00 wide wi y other members. are assumed to be hanical connectior	l for a liv s where Il fit betw s SP No. n (by oth	e load of 20.0 a rectangle veen the botto 2. ers) of truss t	Dpsf om					
3OT CHORD	Rigid ceiling directly	applied or 10-0-0 o	с	bearing plate 1 and 20 lb u	capable of withst plift at joint 3.	anding 2	0 lb uplift at j	oint					
REACTIONS	(size) 1=2-9-5, 3 Max Horiz 1=24 (LC Max Uplift 1=-20 (LC Max Grav 1=111 (LC	3=2-9-5 9) : 12), 3=-20 (LC 13) C 1), 3=111 (LC 1)	11) LO <i>I</i>	This truss is o International R802.10.2 ar AD CASE(S)	designed in accord Residential Code nd referenced star Standard	dance wi sections idard AN	th the 2015 R502.11.1 a ISI/TPI 1.	ind					
FORCES	(lb) - Maximum Com Tension	pression/Maximum											
TOP CHORD	1-2=-141/42, 2-3=-14	41/42											
BOT CHORD	1-3=-24/109												
NOTES													
 Unbalanc this desig 	ed roof live loads have n.	been considered fo	r										
2) Wind: AS	CE 7-10; Vult=130mph	(3-second gust)											
Vasd=103	3mph; TCDL=6.0psf; B0	CDL=3.0psf; h=25ft;	Cat.										
II; Exp B;	Enclosed; MWFRS (en	velope) exterior zor	ne .									minin	un,
and C-C I	Exterior (2) zone; cantile	ever lett exposed ; e	end								. 9	WAH CA	Rollin
MWFRS	or reactions shown. Lu	mber DOI =1.60 pla	ite							\wedge	J.	R	1. 4/11

grip DOL=1.60 Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable,

or consult qualified building designer as per ANSI/TPI 1. 4) Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading

requirements specific to the use of this truss component. Gable requires continuous bottom chord bearing. 5)

Gable studs spaced at 4-0-0 oc. 6)

7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

The manual of the Yuun maning SEAL 45844 104 unnunnun February 20,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	MCLEAN RESIDENCE	
2400183-08042	V2A	Valley	1	1	Job Reference (optional)	163717083

Run: 8.73 S Feb 6 2024 Print: 8.730 S Feb 6 2024 MiTek Industries, Inc. Mon Feb 19 11:43:08 ID:wBuWT6JjnZLaEER8GO13fgzo9fp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:55.6

Plate Offsets ((X, Y): [6:0)-3-0,Edge],	[7:0-0-0,Edge], [8:	0-0-0,Edg	ge],	[9:0-0-0,Edge	e], [10:0-0-0,Edge]									
Loading	-	(ncf)	Spacing	200			C81		DEEI	in	(loc)	l/dofl	L /d		CDID	
		(psi)	Diate Crip DOI	2-0-0				0.00		n/o	(100)	n/uen	000	MT20	344/100	
TOLL (1001)		20.0	Plate Grip DOL	1.15				0.08	Vert(LL)	n/a	-	n/a	999	101120	244/190	
TODL		10.0	Lumber DOL	1.15			BC	0.09	Vert(IL)	n/a	-	n/a	999			
BCLL		0.0*	Rep Stress Incr	YES			WB	0.12	Horiz(IL)	0.01	11	n/a	n/a			
BCDL		10.0	Code	IRC20	015	/TPI2014	Matrix-MS			-		-		Weight: 117 lb	FT = 20%	
LUMBER					WE	BS 5	5-17=-139/54. 7-16	5=-123/4	0. 4-18=-159	/122.	12) This	s truss is	desia	ned in accordanc	e with the 20	15
TOP CHORD	2x4 SP N	10.2				3	3-19=-135/105, 2-2	0=-164	105.		Ínte	rnationa	I Resi	dential Code sect	ons R502.11	.1 and
BOT CHORD	2x4 SP N	10.2				8	3-14=-158/126, 9-1	3=-136	/106,		R80)2.10.2 a	and ref	erenced standard	ANSI/TPI 1.	
OTHERS	2x4 SP N	lo 3 *Excep	t* 17-5 16-7 [.] 2x4 SF	P No 2			10-12=-158/100				LOAD	CASE(S)	Sta	ndard		
BRACING	221011	10.0 Excop	11 0,10 1.2X1 0	110.2	NO	TES					20/12 (, (OL(O)	014	lidara		
	Structure		othing directly appli	iad or	1)	Linbalanced	roof live loads have	o hoon i	considered fo	r						
TOP CHORD	6-0-0 00	nurline	atring unectly appl	ieu oi	''	this design		e been	Jonsidered 10							
	Rigid cei	ling directly	applied or 10-0-0 c		2)	Wind: ASCF	7-10. Vult=130mp	h (3-sec	cond aust)							
BOT ONORD	hracing	ing directly			-/	Vasd=103mr	ph: TCDL=6.0psf: E	BCDL=3	.0psf: h=25ft:	Cat.						
REACTIONS	(size)	1-20-0-11	11-20-0-11			II: Exp B: En	closed: MWFRS (e	envelope	e) exterior zor	ne						
REACTIONS	(3126)	12_20-0-11	1 13-20-0-11			and C-C Cor	ner (3) 0-0-0 to 2-8	3-10, Ex	terior (2) 2-8-	10						
		14-20-0-1	1, 16-20-0-11,			to 10-0-6, Co	orner (3) 10-0-6 to	13-0-6,	Exterior (2)							
		17-20-0-1	1 18-20-0-11			13-0-6 to 19-	7-14 zone; cantile	ver left e	exposed; end							
		19=20-0-1	1 20=20-0-11			vertical left e	xposed;C-C for me	mbers	and forces &							
	Max Horiz	1=201 (1 C	20 0 11			MWFRS for	reactions shown; L	umber I	DOL=1.60 pla	te						
	Max Unlift	1=-23 (1 C	(100)			grip DOL=1.6	60		-							
	max opin	12=-80 (1)	C 13) 13=-96 (LC	13)	3)	Truss desigr	ned for wind loads	in the p	lane of the tru	ISS						
		14=-114 (LC 13) 16=-26 (LC	13)		only. For stu	ids exposed to win	d (norm	al to the face)),						
		17=-40 (1)	C 12) 18=-111 (I C	2 12)		see Standard	d Industry Gable E	nd Deta	ils as applicat	ole,						
		19=-93 (1)	C(12), $C(12)$, $C(12)$, $C(12)$, $C(12)$, $C(12)$, $C(12)$	12)		or consult qu	alified building des	signer as	s per ANSI/TF	기 1.						
	Max Grav	1=156 (1 C	21) 11=132 (I C 3	22)	4)	Building Des	igner/Project engir	eer res	oonsible for							
	max orav	12=231 (1	C(20) 13=160 (LC	: 20)		verifying Rai	n Load = 5.0 (psf)	covers r	ain loading							
		14=170 (L	C 20, 16=218 (LC	20)		requirements	s specific to the use	e of this	truss compor	nent.				minin	1111	
		17=234 (I	C 19) 18=166 (LC	: 19)	5)	All plates are	2x4 MT20 unless	otherwi	se indicated.					WHILL CA	Dalle	
		19=156 (L	C (19) = 20 = 245 (1 C)	: 19)	6)	Gable require	es continuous botto	om chor	d bearing.			~		all	10/ 11	
FORCES	(lb) - May	vimum Com	pression/Maximum	,	7)	Gable studs	spaced at 2-0-0 oc						~	OVERSS	in M	11-
TORGES	Tension		pression/maximum		8)	This truss ha	s been designed for	or a 10.0) psf bottom				N	nict	Min	na
	1_2276	×/193 2-3	195/118 3-4115/	78		chord live loa	ad nonconcurrent v	vith any	other live loa	ds.				in the	11:	-
	4-5	55 5-676	62 6-776/62	70,	9)	* This truss h	as been designed	for a liv	e load of 20.0)psf						
	7-8=-68/	36 8-9=-10	2/57 9-10=-178/11	8		on the bottor	n chord in all areas	where	a rectangle					SFA	L. 1	2
	10-11=-2	257/193	2/07, 0 10- 170/11	0,		3-06-00 tall b	y 2-00-00 wide wil	l fit betv	veen the botto	om		-		4504		=
BOT CHORD	1-20=-16	34/233 19-2	0=-164/233			chord and ar	y other members,	with BC	DL = 10.0psf					4584	-4 :	
BOT ONORD	18-191	64/233 17-	18-164/233		10)	All bearings a	are assumed to be	SP No.	2.			-	ξ <u>1</u>		1	5
	16-17=-1	64/233 14-	16=-164/233		11)	Provide mec	hanical connection	(by oth	ers) of truss to	0			-			1 E -
	13-14=-1	64/233 12-	13=-164/233			bearing plate	capable of withsta	anding 2	3 lb uplift at j	oint			-, 7	1. SNOW	ER. A	1
	11-12=-1	64/233				1, 8 lb uplift a	at joint 11, 40 lb up	lift at joi	nt 17, 26 lb u	plift			11	O. GIN		N
		0.7200				at joint 16, 17	11 lb uplift at joint 1	18, 93 lb	uplift at joint	19,			1	AFIN I	HN	
						92 lb uplift at	joint 20, 114 lb up	lift at joi	nt 14, 96 lb u	plift				TIL VV J	Jun 1	
						at joint 13 an	d 80 lb uplift at joir	nt 12.						111111	111.	

mmm February 20,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	MCLEAN RESIDENCE	
2400183-08042	V2B	Valley	1	1	Job Reference (optional)	163717084

Run: 8.73 S Feb 6 2024 Print: 8.730 S Feb 6 2024 MiTek Industries, Inc. Mon Feb 19 11:43:09 ID:wBuWT6JjnZLaEER8GO13fgz09fp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:57.2

Plate Offsets (X, Y): [4:0-3-0,Edge]

	o 0,2090]										-		
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.24	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15	BC	0.16	Vert(TL)	n/a	-	n/a	999			
BCLL	0.0*	Rep Stress Incr	YES	WB	0.21	Horiz(TL)	0.00	7	n/a	n/a			
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-MS							Weight: 84 lb	FT = 20%	
LUMBER	_		2) Wind: ASCE	E 7-10; Vult=130	nph (3-sec	cond gust)	0-1						

TOP CHORD	2x4 SP N	0.2
BOT CHORD	2x4 SP N	0.2
OTHERS	2x4 SP N	o.3 *Except* 11-3,10-5:2x4 SP No.2
BRACING		
TOP CHORD	Structural 10-0-0 oc	wood sheathing directly applied or purlins.
BOT CHORD	Rigid ceili bracing.	ing directly applied or 6-0-0 oc
REACTIONS	(size)	1=17-2-8, 7=17-2-8, 8=17-2-8, 10=17-2-8, 11=17-2-8, 12=17-2-8, 17=17-2-8
	Max Horiz	1=173 (LC 9)
	Max Uplift	1=-71 (LC 8), 8=-205 (LC 13),
		11=-55 (LC 9), 12=-215 (LC 12)
	Max Grav	1=92 (LC 11), 7=0 (LC 11), 8=424
		(LC 20), 10=345 (LC 20), 11=413
		(LC 19), 12=420 (LC 19), 17=0 (LC 11)
FORCES	(lb) - Max Tension	imum Compression/Maximum
TOP CHORD	1-2=-142/	/318, 2-3=-53/286, 3-4=-49/134,
	4-5=-51/1	54, 5-6=-19/250, 6-7=-126/246
BOT CHORD	1-12=-152	2/84, 11-12=-152/84, 10-11=-152/84,
	8-10=-152	2/84, 7-8=-152/84
WEBS	2-12=-304 5-10=-280	4/224, 3-11=-310/74, 6-8=-300/223, D/0
NOTES		

 Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) 0-0-5 to 3-0-5, Interior (1) 3-0-5 to 8-7-9, Exterior (2) 8-7-9 to 11-7-9, Interior (1) 11-7-9 to 16-10-5 zone; cantilever left exposed ; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 4-0-0 oc.

8) This truss has been designed for a 10.0 psf bottom

chord live load nonconcurrent with any other live loads.
* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

- 10) All bearings are assumed to be SP No.2 .
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 71 lb uplift at joint 1, 215 lb uplift at joint 12, 55 lb uplift at joint 11 and 205 lb uplift at joint 8.
- 12) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	MCLEAN RESIDENCE	
2400183-08042	V2C	Valley	1	1	Job Reference (optional)	163717085

Run: 8,73 S Feb 6 2024 Print: 8,730 S Feb 6 2024 MiTek Industries, Inc. Mon Feb 19 11:43:09 ID:wBuWT6JjnZLaEER8GO13fgzo9fp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:43.4

Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		20.0	Plate Grip DOL	1.15		TC	0.20	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL		10.0	Lumber DOL	1.15		BC	0.14	Vert(TL)	n/a	-	n/a	999		
BCLL		0.0*	Rep Stress Incr	YES		WB	0.16	Horiz(TL)	0.00	5	n/a	n/a		
BCDL		10.0	Code	IRC201	5/TPI2014	Matrix-MS							Weight: 64 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING	2x4 SP N 2x4 SP N 2x4 SP N	lo.2 lo.2 lo.3		4 5 6	 Building Desverifying Rarequirement Gable require Gable studs 	signer/Project el in Load = 5.0 (p s specific to the res continuous l spaced at 4-0-0	ngineer res sf) covers i use of this pottom choi) oc.	ponsible for rain loading truss compo rd bearing.	nent.					
TOP CHORD	Structura 10-0-0 oc	l wood she purlins.	athing directly applie	ed or 7) This truss ha chord live lo	as been designe ad nonconcurre	ed for a 10. nt with any	0 psf bottom other live loa	ads.					
BOT CHORD	Rigid ceil bracing.	ing directly	applied or 6-0-0 oc	8) * This truss on the botto	has been desig m chord in all a	ned for a liv reas where	e load of 20. a rectangle	0psf					
REACTIONS	(size) Max Horiz Max Uplift Max Grav	1=14-4-15 7=14-4-15 1=-144 (L 1=-23 (LC 8=-197 (L 1=106 (LC 6=394 (LC 8=395 (LC	5, 5=14-4-15, 6=14-4 5, 8=14-4-15 C 8) S 8), 6=-193 (LC 13) C 12) C 20), 5=94 (LC 24), C 20), 7=379 (LC 19 C 19)	4-15, 9 , 1	 3-06-00 tall chord and a All bearings Provide mee bearing plate 1, 197 lb upl 1) This truss is Internationa P802 10.2 a 	by 2-00-00 wide ny other membe are assumed to chanical connec e capable of wit iff at joint 8 and designed in ac I Residential Co	will fit betweet, with BC be SP No tion (by oth hstanding 2 1931b uplicordance with a sections) with a sections.	ween the bott DL = 10.0ps 2. 23 lb uplift at ft at joint 6. 1000000000000000000000000000000000000	om f. to joint and					
FORCES	(lb) - Max Tension	kimum Com	pression/Maximum	L	OAD CASE(S)	Standard								
TOP CHORD	1-2=-135 4-5=-101	/203, 2-3=- /163	31/146, 3-4=-26/128	3,										
BOT CHORD	1-8=-144, 5-6=-144,	/132, 7-8=- /132	144/132, 6-7=-144/1	132,										
WEBS	2-8=-278	/199, 4-6=-	278/197, 3-7=-253/0)									minin	11111
NOTES	od roof live	loade bavo	been considered fo	r								2.0	"TH CA	RO

- live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) 0-0-5 to 3-0-5, Interior (1) 3-0-5 to 7-2-12, Exterior (2) 7-2-12 to 10-5-8, Interior (1) 10-5-8 to 14-5-3 zone; cantilever left exposed ; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	MCLEAN RESIDENCE	
2400183-08042	V2D	Valley	1	1	Job Reference (optional)	163717086

Run: 8.73 S Feb 6 2024 Print: 8.730 S Feb 6 2024 MiTek Industries, Inc. Mon Feb 19 11:43:09 ID:S_K8FmJ50GDjd4syigWq6Szo9fq-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:38.3

Plate Offsets (X, Y): [3:0-3-0,Edge]

Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)		20.0	Plate Grip DOL	1.15		TC	0.18	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
TCDL		10.0	Lumber DOL	1.15		BC	0.16	Vert(TL)	n/a	-	n/a	999			
BCLL		0.0*	Rep Stress Incr	YES		WB	0.06	Horiz(TL)	0.00	5	n/a	n/a			
BCDL		10.0	Code	IRC2015	/TPI2014	Matrix-MS							Weight: 47 lb	FT = 20%	
TCLL (roof) TCDL BCLL BCDL LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASC Vasd=103 II; Exp B; F and C-C E 5-9-15, Ex to 11-7-10 exposed;C C 2) Constants DOL=1.60 3) Truss des only. For 3 constants	2x4 SP No 2x4 SP No 2x4 SP No 2x4 SP No Structural 6-0-0 oc p Rigid ceili bracing. (size) Max Horiz Max Uplift Max Grav (lb) - Max Tension 1-2=-167/ 4-5=-163/ 1-7=-124/ 2-7=-257/ ed roof live In CE 7-10; Vu mph; TCDL Enclosed; M CE 7-10; Vu mph; TCDL Scare; canti -C for mem shown; Lum	20.0 10.0 0.0* 10.0 0.2 0.2 0.3 I wood sheat burlins. ing directly 1=11-7-5, 7=11-7-5 1=-115 (LI 6=-155 (LI 6=-155 (LI 6=-155 (LI 1=133 (LC (LC 20), 7 imum Com (124, 2-3=-7) (124 165, 6-7=-7) 166, 4-6=-2 0 ads have It=130mph =6.0psf; BC IWFRS (en 9-15 to 3-0 9-15	Plate Grip DOL Lumber DOL Rep Stress Incr Code applied or 6-0-0 oc 5=11-7-5, 6=11-7-5, C 8) C 13), 7=-162 (LC 12 C 1), 5=133 (LC 1), 6 =362 (LC 19) pression/Maximum 74/26, 3-4=-74/26, 124/153, 5-6=-124/15 257/161 been considered for (3-second gust) CDL=3.0psf; h=25ft; velope) exterior zone -5, Interior (1) 3-0-5 t -15, Interior (1) 8-9-1 txposed ; end vertical proces & MWFRS for 1.60 plate grip the plane of the trus (normal to the face), 1 Detaile oc applicable	1.15 1.15 YES IRC2015 4) 5) 6) d or 7) 8) 9) 2) =354 11) LO 53 Cat. 5 1eft ss	/TPI2014 Building Desi verifying Rair requirements Gable require Gable studs s This truss he on the bottom 3-06-00 tall b chord and an All bearings a Provide mech bearing plate 7 and 155 lb This truss is of International R802.10.2 ar AD CASE(S)	TC BC WB Matrix-MS gner/Project engin 0 Load = 5.0 (psf) of specific to the use scontinuous botto spaced at 4-0-0 oc s been designed for d nonconcurrent w as been designed in chord in all areas y 2-00-00 wide will y other members. are assumed to be banical connection capable of withsta uplift at joint 6. designed in accord Residential Code s d referenced stand Standard	0.18 0.16 0.06 eer respondent of this of a loc ith any for any for any for any for any for any for any for any for any f	Vert(LL) Vert(LL) Horiz(TL) Horiz(TL) Donsible for ain loading truss compon d bearing.) psf bottom other live load e load of 20.0 a rectangle ween the botto 2. ers) of truss to 62 lb uplift at th the 2015 R502.11.1 at SI/TPI 1.	n/a n/a 0.00 hent. ds. lpsf om joint nd	5	n/a n/a	999 999 n/a	MT20 Weight: 47 lb CHICK SS SEA 4584	244/190 FT = 20%	- Summunut
or consult	qualified bu	ilding desig	gner as per ANSI/TPI	11.								100	W JUNIN	20.2024	
													repruary	20,2024	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	MCLEAN RESIDENCE	
2400183-08042	V2E	Valley	1	1	Job Reference (optional)	163717087

Run: 8,73 S Feb 6 2024 Print: 8,730 S Feb 6 2024 MiTek Industries. Inc. Mon Feb 19 11:43:10 ID:S_K8FmJ50GDjd4syigWq6Szo9fq-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:31.8

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-MP	0.26 0.24 0.13	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 33 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 8-9-11 oc purlins. Rigid ceiling directly bracing. (size) 1=8-9-11, Max Horiz 1=-87 (LC Max Uplift 1=-28 (LC 4=-176 (L Max Grav 1=60 (LC (LC 1)) (lb) - Maximum Com Tension	athing directly applied applied or 6-0-0 oc 3=8-9-11, 4=8-9-11 : 8) : 24), 3=-28 (LC 23), C 12) 23), 3=60 (LC 24), 4: pression/Maximum	5) Gable requ 6) Gable stud 7) This truss I chord live I 8) * This truss on the bott 3-06-00 tal chord and 9) All bearing 10) Provide me bearing pla 1, 28 lb up 11) This truss i Internation R802.10.2 LOAD CASE(S	ires continuous bot s spaced at 4-0-0 c has been designed bad nonconcurrent has been designed by 2-00-00 wide w any other members s are assumed to b ichanical connectio te capable of withs if at joint 3 and 177 s designed in accord al Residential Code and referenced sta i) Standard	tom chor c. for a 10.0 with any d for a liv is where ill fit betw - e SP No. n (by oth tanding 2 b lb uplift dance w sections ndard AN	d bearing.) psf bottom other live loa e load of 20.0 a rectangle veen the botto 2. ers) of truss t 8 lb uplift at jj at joint 4. ith the 2015 R502.11.1 a ISI/TPI 1.	ds.)psf om o oint nd					
BOT CHORD	1-2=-121/278, 2-3=-	120/278 252/163										

WEBS 2-4=-491/211

NOTES

1) Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-10; Vult=130mph (3-second gust)

2) Vasd=103mph; TCDL=6.0psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) 0-0-5 to 3-0-5, Interior (1) 3-0-5 to 4-5-3, Exterior (2) 4-5-3 to 7-5-3, Interior (1) 7-5-3 to 8-10-0 zone; cantilever left exposed ; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.

Sommunit You and the second SEAL 45844 104 minin February 20,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	MCLEAN RESIDENCE	
2400183-08042	V2F	Valley	1	1	Job Reference (optional)	163717088

3-0-1

3-0-1

84 Components (Dunn, NC), Dunn, NC - 28334,

2-6-5

Run: 8.73 S Feb 6 2024 Print: 8.730 S Feb 6 2024 MiTek Industries, Inc. Mon Feb 19 11:43:10 ID:S_K8FmJ50GDjd4syigWq6Szo9fq-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

6-0-2

5-8-0

2-7-15

3

2x4 🔊

4x6 = 2 5 12 10 Г 2-2-0-0-4 4 2x4 II 2x4 🎣

Scale = 1:27.1

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roo	f) 20.0	Plate Grip DOL	1.15	TC	0.10	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15	BC	0.11	Vert(TL)	n/a	-	n/a	999			
BCLL	0.0*	Rep Stress Incr	YES	WB	0.05	Horiz(TL)	0.00	3	n/a	n/a			
BCDI	10.0	Code	IRC2015/TPI20	14 Matrix-MP							Weight [.] 22 lb	FT = 20%	
LUMBER			This ti	uss has been designed	l for a 10.0) psf bottom							
TOP CHO	RD 2x4 SP No.2		chord	live load nonconcurrent	t with any	other live loa	ids.						
BOT CHO	RD 2x4 SP No.2		8) * This	truss has been designe	ed for a liv	e load of 20.0	Opsf						
OTHERS	2x4 SP No.3	bottom chord in all area	as where	a rectangle									
BRACING 3-06-00 tall by 2-00-00 wide will fit between the bottom													
TOP CHORD Structural wood sheathing directly applied or chord and any other members.													
	6-0-2 oc purlins		9) All bea	arings are assumed to b	be SP No.	2.							
вот сно	RD Rigid ceiling directly	applied or 6-0-0 oc	e mechanical connection	on (by oth	ers) of truss t	to							
201 0110	bracing.		bearin	g plate capable of withs	standing 8	lb uplift at jo	int 3						
REACTIO	NS (size) 1-6-0-2	3-6-0-2 4-6-0-2	and 8	9 lb uplift at joint 4.									
REAGING	Max Horiz 1-58 (10	2 2 0 0 2, 4=0 0 2 2 8)	11) This ti	uss is designed in acco	s designed in accordance with the 2015								
	Max Holiz 1=-50 (LC	13) 1	Intern	ational Residential Code	e sections	R502.11.1 a	ind						
		13), 4=-09 (LC 12)	4 282 R802.	10.2 and referenced sta	andard AN	ISI/TPI 1.							
		23), 3=00 (LC 24), 4	LOAD CA	SE(S) Standard									
FORCES		nronoion/Movimum											
FURGES	(ib) - Maximum Compression/Maximum												
	RD = 1.4 - 124/02 + 2.4 - 1	24/02											
	RD 1-4=-124/92, 3-4=-1	24/92											
VVEDO	2-4=-250/100												
NOTES													
1) Unbalanced roof live loads have been considered for													
this design.													
2) Wind:	ASCE 7-10; Vult=130mph	(3-second gust)	•								, mm	111.	
Vasd=	103mph; ICDL=6.0pst; B	Smph; TCDL=6.0psr; BCDL=3.0psr; h=25ft; Cat.									What CA	Dalle	
II; Exp	B; Enclosed; MWFRS (er	nvelope) exterior zor	ne 						~		atron	10/ 11/	
and C	-C Exterior (2) zone; cantil	iever ieπ exposed ; e	ena							5	OFTERS	in Alle	
Vertica	I left exposed; C-C for mer	mbers and forces &	4.0							ĨÀ	riola	Mirrie	
IVIVVEF	$C_{1} = 1.60$	Imper DOL=1.60 pia	lite							000	:05	11. 2	
2) Truco	designed for wind loads in	n tha plana of tha tru	100						-				
only	Car stude expected to wind	I the plane of the food	155								SFA	L 1 1	
coo St	andard Industry Cable En	d Dotoils as applical), blo						-		450		
See Or	cult qualified building doci	apor os por ANSI/TE							=		4584	+4 : :	
4) Buildir	a Designer/Project engine	ynei as pei Anijol/Tr							-			1 5	
vortiking Designer/riget engineer responsibilite for vortiking Point and – 5.0 (orth power rain loading									A 1 3 3				
require	ments specific to the use	of this trues compor	hent							21	L: SNOW	CEN. ON	
5) Gable requires continuous bottom chard beging									F. G.N				
6) Gable	Gable requires contracted at 4-0-0 oc									OHN			

6) Gable studs spaced at 4-0-0 oc.

> WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

JULIU 104

February 20,2024

Job	Truss	Truss Type	Qty	Ply	MCLEAN RESIDENCE	
2400183-08042	V2G	Valley	1	1	Job Reference (optional)	163717089

Run: 8,73 S Feb 6 2024 Print: 8,730 S Feb 6 2024 MiTek Industries. Inc. Mon Feb 19 11:43:10 ID:S_K8FmJ50GDjd4syigWq6Szo9fq-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

1-3-2

1-4-5

2x4 💊

3-2-8

2x4 🍬

Scale = 1:23.4

Plate Offsets (X, Y): [2:0-3-0,Edge]

Loading	(psf)	Spacing	2-0-0		CSI	0.08		in n/o	(loc)	l/defl	L/d	PLATES	GRIP
	20.0		1.15		BC	0.08	Vert(LL)	n/a	-	n/a	999	WI120	244/190
BCH	0.0*	Ren Stress Incr	YES		WB	0.07	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2015	/TPI2014	Matrix-MP	0.00	110112(112)	0.00	Ū	n/a	n/a	Weight: 10 lb	FT = 20%
LUMBER FOP CHORD 30T CHORD 3RACING FOP CHORD 30T CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 Structural wood she 3-2-8 oc purlins. Rigid ceiling directly bracing. (size) 1=3-2-8, 3 Max Horiz 1=-29 (LC Max Uplift 1=-23 (LC	athing directly applie applied or 10-0-0 or 3=3-2-8 : 8) : 12), 3=-23 (LC 13)	8) ed or 9) c 11)	* This truss h on the bottor 3-06-00 tall b chord and ar All bearings a Provide mec bearing plate 1 and 23 lb u This truss is International R802.10.2 au	has been designed in chord in all area by 2-00-00 wide win by other members. are assumed to be hanical connection e capable of withst uplift at joint 3. designed in accor Residential Code ind referenced star	d for a liv is where ill fit betw e SP No. n (by oth anding 2 dance wi sections ndard AN	e load of 20.0 a rectangle veen the botto 2 . ers) of truss t 3 lb uplift at j ith the 2015 R502.11.1 a ISI/TPI 1.	Opsf om oint und					
ORCES	Max Grav 1=128 (LC (Ib) - Maximum Com	C 1), 3=128 (LC 1) pression/Maximum	20		Standard								
	1-2=-167/50 2-3=-1	67/50											
BOT CHORD	1-3=-30/130	01/00											
NOTES													
I) Unbalanc this desig	ed roof live loads have n. CE 7 10: Vult-120mph	been considered fo	r										
Vasd=103	Bmph: TCDL=6.0psf: B	CDL=3.0psf: h=25ft:	Cat.										
II; Exp B; and C-C I vertical le MWFRS f	Enclosed; MWFRS (en Exterior (2) zone; cantil ft exposed;C-C for mer for reactions shown; Lu	ivelope) exterior zor ever left exposed ; e nbers and forces & imber DOL=1.60 pla	end te							\wedge	Len's	HTH CA	ROLIN

grip DOL=1.60 Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable,

or consult qualified building designer as per ANSI/TPI 1. 4) Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading

requirements specific to the use of this truss component. Gable requires continuous bottom chord bearing. 5)

Gable studs spaced at 4-0-0 oc. 6)

7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

> CE PAGE MII-7473 rev. 1/2/2023 BEFORE USE Design valid for use only with MTek connectors. This design is based only upon parameters and property incorporate this design is based only upon parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Page: 1

