Mark Morris, P.E.

#126, 1317-M, Summerville, SC 29483 843 209-5784, Fax (866)-213-4614

The truss drawing(s) listed below have been prepared by **Atlantic Building Components** under my direct supervision based on the parameters provided by the truss designers.

AST #: 47334 JOB: 24-2501-F01 JOB NAME: LOT 0.0007 HONEYCUTT HILLS Wind Code: N/A Wind Speed: Vult= N/A Exposure Category: N/A Mean Roof Height (feet): N/A These truss designs comply with IRC 2015 as well as IRC 2018. 22 Truss Design(s)

Trusses:

F1-01, F1-02, F1-03, F1-04, F1-05, F1-06, F1-07, F1-08, F1-08A, F1-09, F1-10, F1-11, F1-12, F1-12A, F1-13, F1-14, F1-15, F1-16, F1-17, F1-18, F1-19, F1-20

Warning !--- Verify design parameters and read notes before use.

This design is based only upon parameters shown, and is for an individual building component to be installed and loaded vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 *National Design Standard for Metal Plate Connected Wood Truss Construction* and BCSI 1-03 Guide to *Good Practice for*

Job	russ	Truss Type	Qty	Ply	LOT 0.0007 HONEYCU	TT HILLS 135 SHELB	Y MEADOW	LANE ANGIER, NC
24-2501-F01 F	1-01	Floor Supported Gable	1	1	Job Reference (optic	onal)		7334
0 ₁₁ 8			Run: 8.430 s Fet ID:5fxLxLn?C	12 2021 Prin 6dWjia?SH	t: 8.430 s Feb 12 2021 M K4thzkcYI-dUbCWMn	liTek Industries, Inc. Su 48f75F75HMvPA?C	un Apr 7 18:3 9pMgj_6X_	7:47 2024 Page 1 wJbb_mMzT1p2
								Scale = 1:21.5
1.5x3								
1.5x3 = 1.5x3	1.5x3	1.5x3	1.5x3	.5x3	1.5x3	1.5x3	1.5x3	3x4
1 2	3	4 5 ^{3x4} =	6 T1	7	8	9	10	11
	ST1	ST1 ST1	./v2 ST1	ST1	ST1	ST1	o ST1	
923 ST1 9 BL⊈I ST1				- -				
22 21	20	19 18	17	16	15	14	13	12
3x4 1.5x3	1.5x3	1.5x3 1.5x3	3x4 =	.5x3	1.5x3	1.5x3	1.5x3	3x4

Plate Offsets (X,Y)	[5:0-1-8,Edge], [17:0-1-8,Edge], [22:E	dge,0-1-8]	13-1-12 13-1-12		
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2021/TPI2014	CSI. TC 0.06 BC 0.01 WB 0.03 Matrix-SH	DEFL. ii Vert(LL) n/: Vert(CT) n/: Horz(CT) 0.00	a - n/a 999	PLATES GRIP MT20 244/190 Weight: 55 lb FT = 20%F, 11%E
			BRACING- TOP CHORD BOT CHORD	Structural wood sheathing of end verticals. Rigid ceiling directly applied	directly applied or 6-0-0 oc purlins, except d or 10-0-0 oc bracing.

REACTIONS. All bearings 13-1-12.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 22, 12, 21, 20, 19, 18, 17, 16, 15, 14, 13

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-(6)

Gable requires continuous bottom chord bearing.
 Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

3) Gable studs spaced at 1-4-0 oc.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

5) CAUTION, Do not erect truss backwards.

LOAD CASE(S) Standard

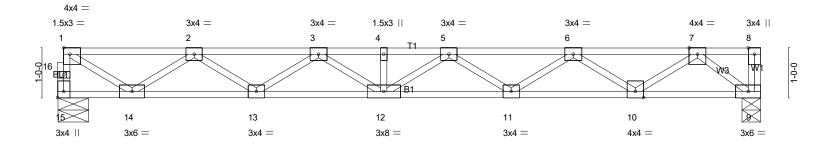
4/6/2024

Job	Truss	Truss Type	Qty	Ply	LOT 0.0007 HONEYCUTT HIL	LS 135 SHELBY MEADOW LANE ANGIER, NC
24-2501-F01	F1-02	Floor	5	1	Job Reference (optional)	# 47334
			Run: 8.430 s Feb 1	12 2021 Pri	nt: 8 430 s Feb 12 2021 MiTek Ir	dustries, Inc. Sun Apr 7 18:37:48 2024 Page 1
0-1-8			ID:5IXL	_XLN?Cou		zFytGgTvcxPXehvT3xursO3XFLYlozT1p1
120						1-3-4
H						Scale = 1:21.5
4x4 =						
1.5x3 =	3x4 =	3x4 = 1.5	5x3 3x4	4 =	3x4 =	3x6 =
1	2	3 4	5		6	7
				<u>} </u>		
					$\langle // \rangle$	W3 W1 0-0-1-
14	13	12 11			10	9
3x4	3x6 =	3x4 = 3x	(8 =		3x4 =	3x6 = 3x4
1-6-0	4-0-0	9-1	1-8		11-7-8	13-1-12
Plate Offsets (X V)	2-6-0 [1:Edge,0-1-8], [14:Edge,0-1		1-8		2-6-0	1-6-4
LOADING (psf) TCLL 40.0		0-0 CSI. .00 TC 0.35	DEFL. in Vert(LL) -0.12	1 (loc) 2 11	l/defl L/d >999 480	PLATES GRIP MT20 244/190
TCDL 10.0		.00 BC 0.54	Vert(CT) -0.17		>937 360	10120 244/130
BCLL 0.0 BCDL 5.0	Rep Stress Incr I Code IRC2021/TPI20	NO WB 0.53 014 Matrix-SH	Horz(CT) 0.03	8 8	n/a n/a	Weight: 66 lb FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SF	No 1/flot)		BRACING- TOP CHORD	Structu	ral wood choothing direct	y applied or 6-0-0 oc purlins, except
BOT CHORD 2x4 SF			TOP CHOILD	end ver		y applied of 0-0-0 oc putitis, except
WEBS 2x4 SF	P No.3(flat)		BOT CHORD	Rigid ce	eiling directly applied or 10	0-0-0 oc bracing.
REACTIONS. (Ib/siz	e) 14=703/0-7-8 (min. 0-1-	8), 8=1259/0-4-8 (min. 0-1-8)				
EODCES (Ib) Max	Comp /Max Ten All force	s 250 (lb) or less except when shown.				
TOP CHORD 14-1	5=-698/0, 1-15=-696/0, 7-8=	-1252/0, 1-2=-940/0, 2-3=-2158/0, 3-4=-	-2605/0, 4-5=-260	05/0, 5-6:	=-2166/0,	
	-950/0 -0/1750 11 12-0/2521 10	11-0/2522 0 10-0/1772				
	3=0/1759, 11-12=0/2521, 10 =0/1070, 2-13=-1000/0, 2-12	=11=0/2523, 9-10=0/1772 =0/487, 3-12=-443/0, 5-10=-436/0, 6-10)=0/481, 6-9=-10	04/0, 7-9	=0/1121	
	. ,	. , , , , , , , , , , , , , , , , , , ,	-			
NOTES- (4) 1) Load case(s) 1, 2 I	nas/have been modified. Bui	lding designer must review loads to ver	ify that they are c	orrect for	the intended use of this	
truss.		0 0	, ,			
	trongbacks, on edge, space s at their outer ends or restr	d at 10-0-0 oc and fastened to each tru ained by other means.	iss with 3-10d (0.1	131 X 3) nails. Strongbacks to	
	erect truss backwards.	-				

LOAD CASE(S)

Vert: 7=-550

1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 8-14=-10, 1-7=-100 Concentrated Loads (lb) Vert: 7=-550 2) Dead: Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 8-14=-10, 1-7=-100 Concentrated Loads (lb)



4/6/2024

Job	Truss	Truss Type	Qty Ply		ITT HILLS 135 SHELF	BY MEADOW LANE ANGIER, NC
24-2501-F01	F1-03	Floor	1	1		# 47334
0-1-8 H ├── ¹⁻¹⁻⁸	i 1-3-0		Run: 8.430 s Feb 12 20 Run: 8.430 s Feb 12 20 ID:5fxLxLn?C6d	Job Reference (opti 21 Prin: 8.430 s Feb 12 2021 N Wjia?SHK4thzkcYI-Ztizx2c	/iTek Industries, Inc. S	un Apr 7 18:37:49 2024 Page 1 IrE?YTKCalyDmv45qFzT1p0 0-10-12 Scale = 1:23.2
$4x4 =$ $1.5x3 =$ 1 1 1 1 1 $3x4 \parallel$	2 3x8 =	3x4 = 3 13 3x4 =	3x4 = 1.5x3 4 T1 5 B1 12 3x8 =	3x4 = 6 11 3x4 =	3x4 = 7	3x6 = 8 00000000000000000000000000000000000
<u>1-4-8</u> <u>1-4-8</u> Plate Offsets (X,Y)- LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0	<u>1-670</u> 2-10-8 0-11-8 1-4-8 [1:Edge,0-1-8], [2:0-3-0, Plate Grip DOL Lumber DOL Rep Stress Incr	5-4-8 2-6-0 Edge], [16:Edge,0-1-8] 2-0-0 CSI. 1.00 TC 0.59 1.00 BC 0.34 YES WB 0.58	10-6-0 5-1-8 DEFL. in (I Vert(LL) -0.07 Vert(CT) -0.10 Horz(CT) 0.01	oc) I/defl L/d 12 >999 480 12 >999 360 9 n/a n/a	13-0-0 2-6-0 PLATES MT20	H4-1-12 1-1-12 GRIP 244/190
BCDL5.0LUMBER- TOP CHORD2x4 3BOT CHORD2x4 3WEBS2x4 3	Code IRC2021/T SP No.1(flat) SP No.1(flat) SP No.3(flat)		BRACING- TOP CHORD St en BOT CHORD Ri 6-1	ructural wood sheathing of d verticals. gid ceiling directly applied 0-0 oc bracing: 15-16,14-	d or 10-0-0 oc brac	6-0-0 oc purlins, except
Max Max FORCES. (lb) - Ma TOP CHORD 16- 7-8 BOT CHORD 14- WEBS 2-1 7-1	: Uplift16=-1011(LC 4) : Grav 9=575(LC 4), 15=19 ax. Comp./Max. Ten All f -17=0/1005, 1-17=0/1003, =-564/0 -15=-1536/0, 13-14=0/413	11(LC 1) orces 250 (lb) or less except whei 8-9=-572/0, 1-2=0/1536, 2-3=0/5 , 12-13=0/1456, 11-12=0/1734, 10 2-14=0/1213, 3-14=-1129/0, 3-13=	n shown. 14, 3-4=-954/0, 4-5=-1670/0, 5-)-11=0/1227			
 Provide mechani This truss has lai at the bearings. F Recommend 2x6 be attached to with 5) CAUTION, Do not 	rge uplift reaction(s) from (Building designer must pro strongbacks, on edge, sp alls at their outer ends or r ot erect truss backwards.	sidered for this design. of truss to bearing plate capable gravity load case(s). Proper conne wide for uplift reactions indicated. aced at 10-0-0 oc and fastened t estrained by other means.	ection is required to secure trus	s against upward movem		
LOAD CASE(S) Sta	andard				INTERNATION	ROLANI

Job	Truss	Truss Type	Qty	Ply	LOT 0.0007 HONEYCUTT HILLS 135 SHI	ELBY MEADOW LANE ANGIER, NC
24-2501-F01	F1-04	Floor	8	1	Job Reference (optional)	# 47334
		Run: E II	.430 s Feb 1):5fxLxLn?(2 2021 Prin 6dWjia?S	it: 8.430 s Feb 12 2021 MiTek Industries, Inc. SHK4thzkcYI-13GL8OpyQaVg6aqs11zt	Sun Apr 7 18:37:50 2024 Page 1 tc3mFmtcgJmXM?ZqeNhzT1p?
0-1-8						
H ⊢ <u>1-3-0</u>						1-0-4 Scale = 1:23.2

<u> </u>	4-0-0 2-6-0	9-2 5-2		11-7-8 2-6-0	<u>13-10-12</u> 14-1-12 2-3-4 0-3-0
Plate Offsets (X,Y)	[1:Edge,0-1-8], [15:Edge,0-1-8]				
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2021/TPI2014	CSI. TC 0.30 BC 0.58 WB 0.56 Matrix-SH	DEFL. in (Vert(LL) -0.16 Vert(CT) -0.22 11 Horz(CT) 0.04	12 >999 480	PLATES MT20 GRIP 244/190 Weight: 71 lb FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF			e	tructural wood sheathing di nd verticals.	rectly applied or 6-0-0 oc purlins, except

WFBS 2x4 SP No.3(flat) BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 15=758/0-7-8 (min. 0-1-8), 9=764/0-4-8 (min. 0-1-8)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 15-16=-753/0, 1-16=-751/0, 1-2=-1026/0, 2-3=-2400/0, 3-4=-3005/0, 4-5=-3005/0, 5-6=-2721/0, 6-7=-1692/0

BOT CHORD 13-14=0/1923, 12-13=0/2841, 11-12=0/3013, 10-11=0/2396, 9-10=0/950

1-14=0/1168, 2-14=-1095/0, 2-13=0/583, 3-13=-539/0, 5-11=-356/0, 6-11=0/398, 6-10=-859/0, 7-10=0/905, WEBS

7-9=-1196/0

NOTES-(3)

1) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to

be attached to walls at their outer ends or restrained by other means.

2) CAUTION, Do not erect truss backwards.

LOAD CASE(S) Standard

4/6/2024

Job	Truss		Truss Typ	e		Qty	Ply LO	T 0.0007 HONEYCUTT H	HILLS 135 SHELB	Y MEADOW LANE	E ANGIER, NC
24-2501-F01	F1-05		Floor Supp	orted Gable		1	1 Joi	b Reference (optional))	# 4733	
					Run	8.430 s Feb 1 ID:5fxLxLr	2 2021 Print: 8.4 ?C6dWjia?SH	430 s Feb 12 2021 MiTek IK4thzkcYI-13GL8Op	Industries, Inc. Su yQaVg6aqs11ztc	n Apr 7 18:37:50 3mJatlhJukM?Z	2024 Page 1 ZqeNhzT1p?
0- <mark>1</mark> -8											
										Sc	ale = 1:23.2
1.5x3											
1.5x3 =	1.5x3	1.5x3	1.5x3	1.5x3		1.5x3	1.5x3	1.5x3	1.5x3	1.5x3 3	5x4
1	2	3	4	5	$6^{3x4} = 11$	7	8	9	10	11 1	2
] 🚽	•	•	•	•		•	•	•	•	<u> </u>	• (
	ST1	ST1	ST1	ST1	ST1 W2	ST1	ST1	ST1	ST1	ST1	W1 0-
	H		Н		B1		H				+ +
				XXXXXXX	XXXXXXXXX	XXXXXX			XXXXXXXX	XXXXXXXX	× l
24	23	22	21	20	19	18	17	16	15		3
3x4	1.5x3	1.5x3	1.5x3	1.5x3	1.5x3	3x4 =	1.5x3		1.5x3	1.5x3 3	
						57.1					

			14-1-12			
1			14-1-12			1
Plate Offsets (X,Y)	[6:0-1-8,Edge], [18:0-1-8,Edge], [24:E	dge,0-1-8]				
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2021/TPI2014	CSI. TC 0.06 BC 0.01 WB 0.03 Matrix-SH	DEFL. ir Vert(LL) n/z Vert(CT) n/z Horz(CT) 0.00	a - n/a 9 a - n/a 9	L/d PLATES 999 MT20 999 n/a Weight: 59 lb	GRIP 244/190 FT = 20%F, 11%E
			BRACING- TOP CHORD BOT CHORD	end verticals.	heathing directly applied or 6- ctly applied or 10-0-0 oc bracii	1 / 1

14-1-12

REACTIONS. All bearings 14-1-12.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 24, 13, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-(6)

1) Gable requires continuous bottom chord bearing.

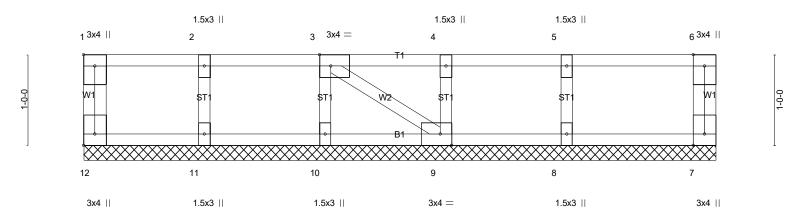
- 2) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 3) Gable studs spaced at 1-4-0 oc.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to

be attached to walls at their outer ends or restrained by other means.

5) CAUTION, Do not erect truss backwards.

LOAD CASE(S) Standard



4/6/2024

Job	Truss	Truss Type	Qty	Ply	LOT 0.0007 HONEYCUTT HILLS 135 SHELBY MEADOW LANE ANGIER, N
24-2501-F01	F1-06	GABLE	1	1	Job Reference (optional) # 47334

: 8.430 s Feb 12 2021 Print: 8.430 s Feb 12 2021 MiTek Industries, Inc. Sun Apr 7 18:37:51 2024 Page 1 ID:5fxLxLn?C6dWjia?SHK4thzkcYI-VFqjMkqaBudWkkP2bIU69GJTxH5u2LuVEDZCv7zT1p_

Scale = 1:12.7

	1-4-0 1-4-0	2-8	-0	4-0-0		-4-0 -4-0	6-11-12 1-7-12	
Plate Offsets (X,Y)	[1:Edge,0-1-8], [3:0-1-8	,Edge], [9:0-1-	8,Edgej, [12:Edge,0-1-8	3]			1	
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2021/T	2-0-0 1.00 1.00 YES PI2014	CSI. TC 0.08 BC 0.01 WB 0.04 Matrix-P	DEFL. Vert(LL) Vert(CT) Horz(CT) -	in (loc) n/a - n/a - 0.00 9	l/defl L/d n/a 999 n/a 999 n/a n/a	PLATES MT20 Weight: 32 lb	GRIP 244/190 FT = 20%F, 11%E
				BRACING- TOP CHORI BOT CHORI	except	t end verticals.	directly applied or 6- ed or 10-0-0 oc bracir	•

REACTIONS. All bearings 6-11-12.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 12, 7, 11, 10, 9, 8

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-(5)

1) Gable requires continuous bottom chord bearing.

2) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

3) Gable studs spaced at 1-4-0 oc.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

LOAD CASE(S) Standard

4/6/2024

	Truss	Trus	туре		Qty	Ply	LOT 0.0007 HO	NEYCUTT HILLS 1	135 SHELBY M	EADOW LANE ANGIER,
24-2501-F01	F1-07	GABL	E		1		1	- (# 47334
					Run: 8.430 s Fel	12 2021 Pi	Job Reference int: 8.430 s Feb 12	2021 MiTek Industr	ies, Inc. Sun Ap	or 7 18:37:52 2024 Page
0.4.0					ID:5fxLxI	_n?C6dWji	a?SHK4thzkcYI-	zRO5Z4rDyBmNI	Lu_F8S?LhU	sf4hR9nnEfStJlQZzT1
0-1-8										
										Scale = 1:25
1.5x3										
	5x3 1.5x3	1.5x3	1.5x3	3x4 =	1.5x3 1	.5x3	1.5x3	1.5x3	1.5x3	1.5x3 3x4
1 2	3	4	5	6		8	9	10	11	12 13
	0	0	•		-1 	0	0	•	•	
		ST1	ST1	ST1 XV2	ST1	ST1	ST1	ST1	ST1	ST1 W1
	.	•	•		کړ	•	•	•		
		******						*****		
26 25		23	22	21		19	18	17	16	15 14
3x4 1.5	5x3 1.5x3	1.5x3	1.5x3	1.5x3 3	3x4 = 1	.5x3	1.5x3	1.5x3	1.5x3	1.5x3 3x4
<u>⊢ 1-4-0</u>		-0-0 5-4-			9-4-0	10-8			14-8-	
1-4-0	1-4-0 1-	-4-0 1-4-	0 1-4-		9-4-0	10-8 1-4-			14-8- 	
Plate Offsets (X,Y)	1-4-0 1- [6:0-1-8,Edge], [20:0	-4-0 1-4-)-1-8,Edge], [26:	0 1-4- Edge,0-1-8]) 1-4-0	1-4-0	1-4-	0 1-4-0) 1-4-0	1-4-0) 0-9-6
1-4-0 Plate Offsets (X,Y)	1-4-0 1: [6:0-1-8,Edge], [20:0 SPACING-	-4-0 1-4-)-1-8,Edge], [26: 2-0-0	0 1-4- Edge,0-1-8] CSI .) 1-4-0	1-4-0) 1-4-0	1-4-(ATES G	
1-4-0 Plate Offsets (X,Y) LOADING (psf) TCLL 40.0 TCDL 10.0	1-4-0 1: [6:0-1-8,Edge], [20:0 SPACING- Plate Grip DC Lumber DOL	<u>-4-0 1-4</u> <u>)-1-8,Edge], [26:</u> 2-0-0 DL 1.00 1.00	0 1-4- Edge,0-1-8] CSI. TC 0 BC 0	0.06 0.01	1-4-0 DEFL. Vert(LL) n Vert(CT) n	in (loc) /a - /a -	0 1-4-0 l/defl L/d n/a 999 n/a 999) 1-4-0 PLA	1-4-(ATES G) 0-9-6 0-9-
I-4-0 Plate Offsets (X,Y) LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0	1-4-0 [6:0-1-8,Edge], [20:0 SPACING- Plate Grip DC Lumber DOL Rep Stress In	<u>-4-0 1-4</u> <u>)-1-8,Edge], [26:</u> 2-0-0 DL 1.00 1.00 icr YES	0 1-4- Edge,0-1-8] CSI. TC 0 BC 0 WB 0	0.06 0.01 0.03	1-4-0 DEFL. Vert(LL) n	in (loc) /a - /a -	0 1-4-0 I/defl L/d n/a 999) 1-4-0 PLA MT2	1-4-0 ATES G 20 2	0 -9-6 -1 GRIP 44/190
I-4-0 Plate Offsets (X,Y) LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	1-4-0 1: [6:0-1-8,Edge], [20:0 SPACING- Plate Grip DC Lumber DOL	<u>-4-0 1-4</u> <u>)-1-8,Edge], [26:</u> 2-0-0 DL 1.00 1.00 icr YES	0 1-4- Edge,0-1-8] CSI. TC 0 BC 0	0.06 0.01 0.03 SH	DEFL. Vert(LL) n Vert(CT) n Horz(CT) 0.0	in (loc) /a - /a -	0 1-4-0 l/defl L/d n/a 999 n/a 999) 1-4-0 PLA MT2	1-4-(ATES G) 0-9-6 0-9-
I-4-0 Plate Offsets (X,Y) LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0 LUMBER-	1-4-0 1: [6:0-1-8,Edge], [20:0 SPACING- Plate Grip DC Lumber DOL Rep Stress In Code IRC202	<u>-4-0 1-4</u> <u>)-1-8,Edge], [26:</u> 2-0-0 DL 1.00 1.00 icr YES	0 1-4- Edge,0-1-8] CSI. TC 0 BC 0 WB 0	0.06 0.01 0.03 SH	+ 1-4-0 DEFL. Vert(LL) n Vert(CT) n Horz(CT) 0.(BRACING-	in (loc) /a - /a - 00 14	0 1-4-(/defl L/d n/a 999 n/a 999 n/a n/a) 1-4-0 PLA MT2 We	ATES G 20 2 ight: 64 lb	670
I-4-0 Plate Offsets (X,Y) LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0 LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF	 1-4-0 	<u>-4-0 1-4</u> <u>)-1-8,Edge], [26:</u> 2-0-0 DL 1.00 1.00 icr YES	0 1-4- Edge,0-1-8] CSI. TC 0 BC 0 WB 0	0.06 0.01 0.03 SH	H 1-4-0 DEFL. Vert(LL) n Vert(CT) n Horz(CT) 0.0 BRACING- TOP CHORD	1-4- in (loc) /a - /a - 00 14 Structu end ve	0 1-4-(l/defl L/d n/a 999 n/a 999 n/a n/a ural wood sheat	1-4-0 PLA MT: We	1-4-(ATES C 20 2 ight: 64 lb	0 -9-6 -1 GRIP 44/190
I-4-0 Plate Offsets (X,Y) LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0 LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF	¹ 1-4-0 1 <u>[6:0-1-8,Edge], [20:C</u> SPACING- Plate Grip DC Lumber DOL Rep Stress In Code IRC202 ² No.1(flat)	<u>-4-0 1-4</u> <u>)-1-8,Edge], [26:</u> 2-0-0 DL 1.00 1.00 icr YES	0 1-4- Edge,0-1-8] CSI. TC 0 BC 0 WB 0	0.06 0.01 0.03 SH	+ 1-4-0 DEFL. Vert(LL) n Vert(CT) n Horz(CT) 0.(BRACING-	1-4- in (loc) /a - /a - 00 14 Structu end ve	0 1-4-(l/defl L/d n/a 999 n/a 999 n/a n/a ural wood sheat) 1-4-0 PLA MT2 We	1-4-(ATES C 20 2 ight: 64 lb	670

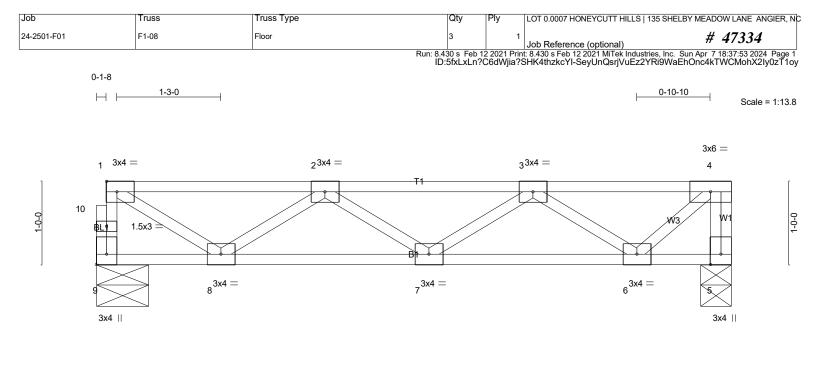
(lb) - Max Grav All reactions 250 lb or less at joint(s) 26, 14, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-(6)

Gable requires continuous bottom chord bearing.
 Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

3) Gable studs spaced at 1-4-0 oc.


4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

5) CAUTION, Do not erect truss backwards.

LOAD CASE(S) Standard

4/6/2024

L	1-6-0	4-0-0	1	6-6-0	7-7-10
	1-6-0	2-6-0		2-6-0	1-1-10
Plate Offsets (X,Y)	[9:Edge,0-1-8]				
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0	SPACING- 1-4-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr NO	CSI. TC 0.20 BC 0.13 WB 0.17	DEFL. i Vert(LL) -0.0 Vert(CT) -0.0 Horz(CT) 0.0	1 7 >999 360	PLATES GRIP MT20 244/190
BCDL 5.0	Code IRC2021/TPI2014	Matrix-P			Weight: 39 lb FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF			BRACING- TOP CHORD BOT CHORD	Structural wood sheathing end verticals. Rigid ceiling directly applie	directly applied or 6-0-0 oc purlins, except

WFBS 2x4 SP No.3(flat)

REACTIONS. (lb/size) 9=267/0-7-8 (min. 0-1-8), 5=821/0-4-6 (min. 0-1-8)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 9-10=-263/0, 1-10=-263/0, 4-5=-818/0, 1-2=-310/0, 2-3=-556/0

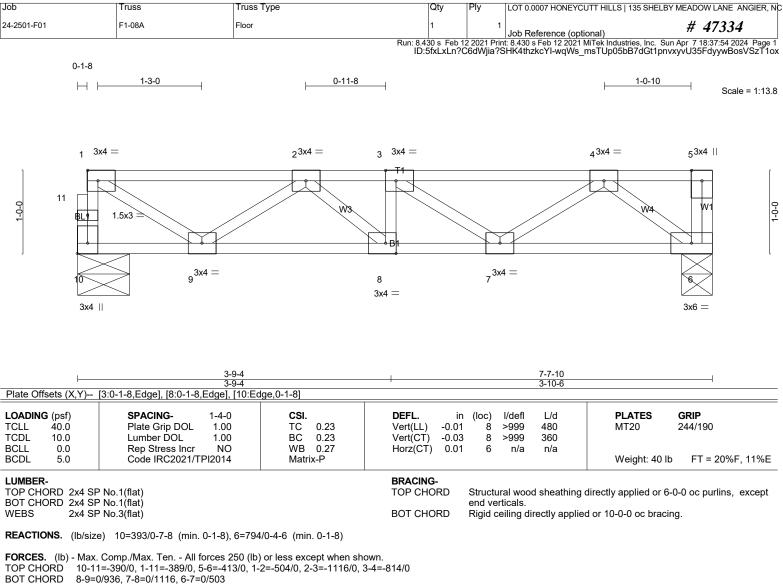
BOT CHORD 7-8=0/567, 6-7=0/520

WEBS 1-8=0/349, 2-8=-314/0, 3-6=-341/0, 4-6=0/318

NOTES-(4)

1) Load case(s) 1, 2 has/have been modified. Building designer must review loads to verify that they are correct for the intended use of this truss

2) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.


3) CAUTION, Do not erect truss backwards.

LOAD CASE(S)

1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 5-9=-7. 1-4=-67 Concentrated Loads (lb) Vert: 4=-550 2) Dead: Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 5-9=-7, 1-4=-67 Concentrated Loads (lb) Vert: 4=-550

4/6/2024

WEBS 1-9=0/572, 2-9=-527/0, 3-7=-363/0, 4-7=0/380, 4-6=-627/0

NOTES- (4)

1) Load case(s) 1, 2 has/have been modified. Building designer must review loads to verify that they are correct for the intended use of this truss

2) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

3) CAUTION, Do not erect truss backwards.

LOAD CASE(S) Standard

1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 6-10=-7. 1-5=-67

Concentrated Loads (lb)

Vert: 5=-400 3=-250

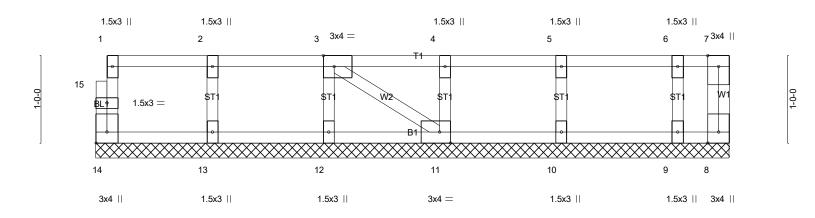
2) Dead: Lumber Increase=1.00, Plate Increase=1.00

Uniform Loads (plf)

Vert: 6-10=-7, 1-5=-67

Concentrated Loads (lb)

Vert: 5=-400 3=-250



4/6/2024

Job	Truss	Truss Type	Qty	Ply	LOT 0.0007 HONEYCUTT HILLS 135 SHELBY MEADOW LANE ANGIEF	₹, NC		
24-2501-F01	F1-09	Floor Supported Gable	1	1	Job Reference (optional) # 47334			
Run: 8.430 s Feb 12 2021 Print: 8.430 s Feb 12 2021 MiTek Industries, Inc. Sun Apr. 7 18:37:54 2024 Page 1 ID:5fxLxLn?C6dWjia?SHK4thzkcYI-wqWs_msTUp05bB7dGt1pnvx?ZU6dFhjywBosVSzT1ox								

0<u>-1-</u>8

Scale = 1:13.2

 			7-3-2						
Plate Offsets (X,Y) [3:0-1-8,Edge], [11:0-1-8,Edge], [14:Edge,0-1-8]									
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2021/TPI2014	CSI. TC 0.06 BC 0.01 WB 0.03 Matrix-P	DEFL. ir Vert(LL) n/a Vert(CT) n/a Horz(CT) 0.00	i -	l/defl L/d n/a 999 n/a 999 n/a n/a	PLATES MT20 Weight: 33 lb	GRIP 244/190 FT = 20%F, 11%E		
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF OTHERS 2x4 SF	BRACING- TOP CHORD BOT CHORD	end vert	icals.	directly applied or 6- d or 10-0-0 oc bracir	0-0 oc purlins, except ng.				

REACTIONS. All bearings 7-3-2.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 14, 13, 12, 11, 10, 9

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

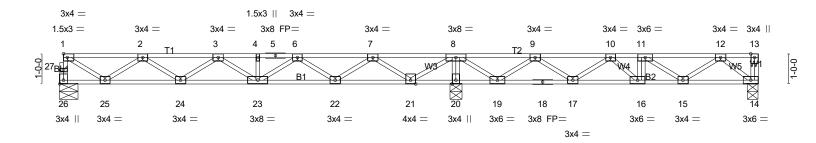
NOTES-(6)

1) Gable requires continuous bottom chord bearing.

2) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

3) Gable studs spaced at 1-4-0 oc.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to


be attached to walls at their outer ends or restrained by other means. 5) CAUTION, Do not erect truss backwards.

LOAD CASE(S) Standard

4/6/2024

Job	Truss	Truss Type	Qty	Ply	LOT 0.0007 HONEYCUTT HILLS 135 SHELB	Y MEADOW LANE ANGIER, NC
24-2501-F01	F1-10	Floor	5		Job Reference (optional)	# 47334
			Run: 8.430 s Feb 12	2021 Print	t: 8.430 s Feb 12 2021 MiTek Industries, Inc. Su SHK4thzkcYI-sDdcPRuj0QGpqVH0NI4Hs.	n Apr 7 18:37:56 2024 Page 1
			ID.SIXEXEN ??		SHK4IIIZKCTI-SDUCE KUJUQGPQVHUNI4HS	JUGQIJJJULENVHZZLZTIUV
0-1-8						
H ⊢ 1-3-0		ł	1-4-8		<u>p-10-12</u>	1-0-0 Scale = 1:38.2

13-1-8 13-1-8			I	<u>19-3-4</u> 6-1-12	23-1-12			
Plate Offsets (X,Y)			· · · · · · · · · · · · · · · · · · ·	0-1-12				
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 1-4-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr NO Code IRC2021/TPI2014	CSI. TC 0.36 BC 0.33 WB 0.47 Matrix-SH	DEFL. in Vert(LL) -0.06 Vert(CT) -0.07 Horz(CT) 0.01	23 >999 360	PLATES GRIP MT20 244/190 Weight: 117 lb FT = 20%F, 11%E			
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF			BRACING- TOP CHORD BOT CHORD	Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 6-0-0 oc bracing.				
REACTIONS. (Ib/size) 26=362/0-7-8 (min. 0-1-8), 20=2027/0-4-8 (min. 0-1-8), 14=985/0-4-8 (min. 0-1-8) Max Grav 26=383(LC 3), 20=2027(LC 1), 14=1047(LC 4)								
FORCES. (Ib) - Max. Comp./Max. Ten All forces 250 (Ib) or less except when shown. TOP CHORD 26-27=-380/0, 1-27=-379/0, 13-14=-559/0, 1-2=-493/0, 2-3=-1062/0, 3-4=-1110/0, 4-5=-1110/0, 6-7=-568/239, 7-8=0/743, 8-9=0/797, 9-10=-966/0, 10-11=-1557/0, 11-12=-1078/0								
19-20 14-11 WEBS 8-20 8-21	BOT CHORD 24-25=0/918, 23-24=0/1183, 22-23=-89/932, 21-22=-416/178, 20-21=-1554/0, 19-20=-1564/0, 18-19=-362/546, 17-18=-362/546, 16-17=0/1357, 15-16=0/1557, 14-15=0/617 WEBS 8-20=-1993/0, 1-25=0/560, 2-25=-518/0, 6-22=-483/0, 7-22=0/517, 7-21=-826/0, 8-21=0/939, 8-19=-0/991, 9-19=-927/0, 9-17=0/625, 10-17=-588/0, 10-16=0/358, 11-15=-568/0, 12-15=0/562, 12-14=-782/0							
 2) Load case(s) 1, 2, use of this truss. 3) Recommend 2x6 s be attached to wall 	ve loads have been considered for th 3, 4, 5, 6 has/have been modified. Bu trongbacks, on edge, spaced at 10-0- s at their outer ends or restrained by o erect truss backwards.	ilding designer must rev 0 oc and fastened to ea			acks to			
Uniform Loads (plf Vert: 14-26 Concentrated Load Vert: 13=-5 2) Dead: Lumber Incr Uniform Loads (plf Vert: 14-26 Concentrated Load Vert: 13=-5 3) 1st Dead + Floor L Uniform Loads (plf	=-7, 1-13=-67 is (lb) 550 8=-800 11=-350 ease=1.00, Plate Increase=1.00) =-7, 1-13=-67 is (lb) 550 8=-800 11=-350 ive (unbalanced): Lumber Increase=1		0		SEAL 28147			
	,				4/6/2024			

Job	Truss	Truss Type	Qty	Ply	LOT 0.0007 HONEYCUTT HILLS 135 SHELBY	MEADOW LANE ANGIER, NC
24-2501-F01 F	-1-10	Floor	5	1	Job Reference (optional)	# 47334

Run: 8.430 s Feb 12 2021 Print: 8.430 s Feb 12 2021 MiTek Industries, Inc. Sun Apr 7 18:37:56 2024 Page 2 ID:5fxLxLn?C6dWjia?SHK4thzkcYI-sDdcPRuj0QGpqVH0NI4HsJ0GQIj3jULENVHzZLzT1ov

LOAD CASE(S)

Concentrated Loads (lb)

- Vert: 13=-550 8=-800 11=-350
- 4) 2nd Dead + Floor Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)
- Vert: 14-26=-7, 1-8=-13, 8-13=-67
- Concentrated Loads (lb)
- Vert: 13=-550 8=-800 11=-350
- 5) 3rd unbalanced Dead: Lumber Increase=1.00, Plate Increase=1.00
- Uniform Loads (plf) Vert: 14-26=-7, 1-8=-67, 8-13=-13
- Concentrated Loads (Ib)
- Vert: 13=-550 8=-800 11=-350
- 6) 4th unbalanced Dead: Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 14-26=-7, 1-8=-13, 8-13=-67
- Concentrated Loads (lb) Vert: 13=-550 8=-800 11=-350

4/6/2024

Job	Truss	Truss Type	Qty Pl	y LOT 0.0007 HONEYC	UTT HILLS 135 SHELBY M	IEADOW LANE ANGIER, NC		
24-2501-F01	F1-11	Floor	3	1 Job Reference (opt	ional)	# 47334		
			Run: 8.430 s Feb 12 20	021 Print: 8.430 s Feb 12 2021 Vjia?SHK4thzkcYI-KPB_cn	MiTek Industries, Inc. Sun A	pr 7 18:37:57 2024 Page 1 zi5USvBOc90W5nzT1ou		
0-1-8			ID.OKEKEN: OOU			21000320000000121100		
H ⊢1-3-0			1-4-8			0-9-4		
			I I			Scale = 1:38.2		
3x4 =	1.	5x3 3x4 =						
1.5x3 =	3x4 = 3x4 =	3x8 FP= 3x4 =	3x8 =	3x4 =	3x4 = 1.5x3 3x4	= 3x6 =		
1	² T1 ³	4 5 6 7	8	T2 ⁹	10 11 12	13		
0-27B			W3			W4 W1		
		B1 1		<u> </u>				
			21 20 1		10	. Ř		
26 25 3x4 3x4 =		23 22 x8 = 3x4 = 3x4		9 18 17 «4 = 3x8 FP=	16 3x8 =	15 14 3x4 = 3x4		
	- 3x4 — 3	xo —	4x4 — 5x4 5x	4 — 5x6 FF— 3x4 —	3x0 —	3x4 — 3x4 ∏		
				0.11				
1-6-0	4-0-0 , 9-	1-8 11-7-8	13-1-8 14-6-0	17-0-0	22-1-8	23-1-12		
1-6-0 Plate Offsets (X,Y) [2-6-0 5-	1-8 2-6-0	1-6-0 1-4-8	2-6-0	5-1-8	1-0-4		
LOADING (psf) TCLL 40.0	SPACING- 1-4-0 Plate Grip DOL 1.00	CSI. TC 0.30	DEFL. in (I Vert(LL) -0.06	oc) l/defl L/d 23 >999 480	PLATES MT20	GRIP 244/190		
TCDL 10.0	Lumber DOL 1.00	BC 0.25	Vert(CT) -0.08	23 >999 360	WIT20	244/130		
BCLL 0.0 BCDL 5.0	Rep Stress Incr YES Code IRC2021/TPI2014	WB 0.43 Matrix-SH	Horz(CT) 0.01	20 n/a n/a	Weight: 116 lb	FT = 20%F, 11%E		
		Mault-Oll			Weight. 110 lb	11 - 20701, 1170E		
LUMBER- TOP CHORD 2x4 SP	No 1(flat)		BRACING- TOP CHORD St	ructural wood sheathing	directly applied or 6-0-	0 oc purlins except		
TOP CHORD 2x4 SP No.1(flat) BOT CHORD 2x4 SP No.1(flat)			TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, exce end verticals.					
	No.1(flat) No.3(flat)			nd verticals. gid ceiling directly applie	d or 6-0-0 oc bracing.			
WEBS 2x4 SP REACTIONS. (lb/size	No.3(flat) e) 26=380/0-7-8 (min. 0-1-8), ²	14=241/0-4-8 (min. 0-1-8), 20=1	BOT CHORD Ri		d or 6-0-0 oc bracing.			
WEBS 2x4 SP REACTIONS. (lb/size	No.3(flat)		BOT CHORD Ri		d or 6-0-0 oc bracing.			
WEBS 2x4 SP REACTIONS. (Ib/size Max Gi FORCES. (Ib) - Max.	No.3(flat)) 26=380/0-7-8 (min. 0-1-8), rav 26=400(LC 3), 14=303(LC 4 Comp./Max. Ten All forces 2f	.), 20=1054(LC 1) 50 (lb) or less except when show	BOT CHORD Ri 054/0-4-8 (min. 0-1-8) n.	gid ceiling directly applie	d or 6-0-0 oc bracing.			
WEBS 2x4 SP REACTIONS. (lb/size Max Gi FORCES. (lb) - Max. TOP CHORD 26-27	No.3(flat)) 26=380/0-7-8 (min. 0-1-8), rav 26=400(LC 3), 14=303(LC 4 Comp./Max. Ten All forces 26 =-397/0, 1-27=-396/0, 13-14=-3), 20=1054(LC 1)	BOT CHORD Ri 054/0-4-8 (min. 0-1-8) n. 3-4=-1237/0, 4-5=-1237/	gid ceiling directly applie	d or 6-0-0 oc bracing.			
WEBS 2x4 SP REACTIONS. (lb/size Max Gr FORCES. (lb) - Max. TOP CHORD 26-27 6-7=-7 BOT CHORD 24-25	No.3(flat)) 26=380/0-7-8 (min. 0-1-8), rav26=400(LC 3), 14=303(LC 4 Comp./Max. Ten All forces 25 =-397/0, 1-27=-396/0, 13-14=-3 746/61, 7-8=0/515, 8-9=0/778, 9 =0/969, 23-24=0/1284, 22-23=0), 20=1054(LC`1) 50 (lb) or less except when show 302/0, 1-2=-520/0, 2-3=-1139/0, 3 9-10=-542/384, 10-11=-694/115, 0/1084, 21-22=-213/381, 20-21=-	BOT CHORD Ri 054/0-4-8 (min. 0-1-8) n. 3-4=-1237/0, 4-5=-1237/ 11-12=-694/115	gid ceiling directly applie /0, 5-6=-1237/0,	d or 6-0-0 oc bracing.			
WEBS 2x4 SP REACTIONS. (lb/size Max Griman	No.3(flat) 26=380/0-7-8 (min. 0-1-8), ' rav 26=400(LC 3), 14=303(LC 4) Comp./Max. Ten All forces 25 =-397/0, 1-27=-396/0, 13-14=-3 746/61, 7-8=0/515, 8-9=0/778, 5 =0/969, 23-24=0/1284, 22-23=5 =-566/341, 16-17=-229/717, 15), 20=1054(LC`1) 50 (lb) or less except when show 302/0, 1-2=-520/0, 2-3=-1139/0, 3 9-10=-542/384, 10-11=-694/115, 0/1084, 21-22=-213/381, 20-21=-	BOT CHORD Ri 054/0-4-8 (min. 0-1-8) n. 3-4=-1237/0, 4-5=-1237/ 11-12=-694/115 -1301/0, 19-20=-1307/0	gid ceiling directly applie /0, 5-6=-1237/0, , 18-19=-566/341,				
WEBS 2x4 SP REACTIONS. (lb/size Max Griph and Stress) FORCES. (lb) - Max. TOP CHORD 26-27 6-7=-7 8-72-1 BOT CHORD 24-25 TOP STAR WEBS 8-20=1	No.3(flat) 26=380/0-7-8 (min. 0-1-8), ' rav 26=400(LC 3), 14=303(LC 4) Comp./Max. Ten All forces 25 =-397/0, 1-27=-396/0, 13-14=-3 746/61, 7-8=0/515, 8-9=0/778, 5 =0/969, 23-24=0/1284, 22-23=5 =-566/341, 16-17=-229/717, 15), 20=1054(LC 1) 50 (Ib) or less except when show 302/0, 1-2=-520/0, 2-3=-1139/0, 3 9-10=-542/384, 10-11=-694/115, 3/1084, 21-22=-213/381, 20-21=- -16=-38/575 8/0, 6-22=-453/0, 7-22=0/486, 7-	BOT CHORD Ri 054/0-4-8 (min. 0-1-8) n. 3-4=-1237/0, 4-5=-1237/ 11-12=-694/115 -1301/0, 19-20=-1307/0	gid ceiling directly applie /0, 5-6=-1237/0, , 18-19=-566/341,				

1) Unbalanced floor live loads have been considered for this design.

2) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to

be attached to walls at their outer ends or restrained by other means.

3) CAUTION, Do not erect truss backwards.

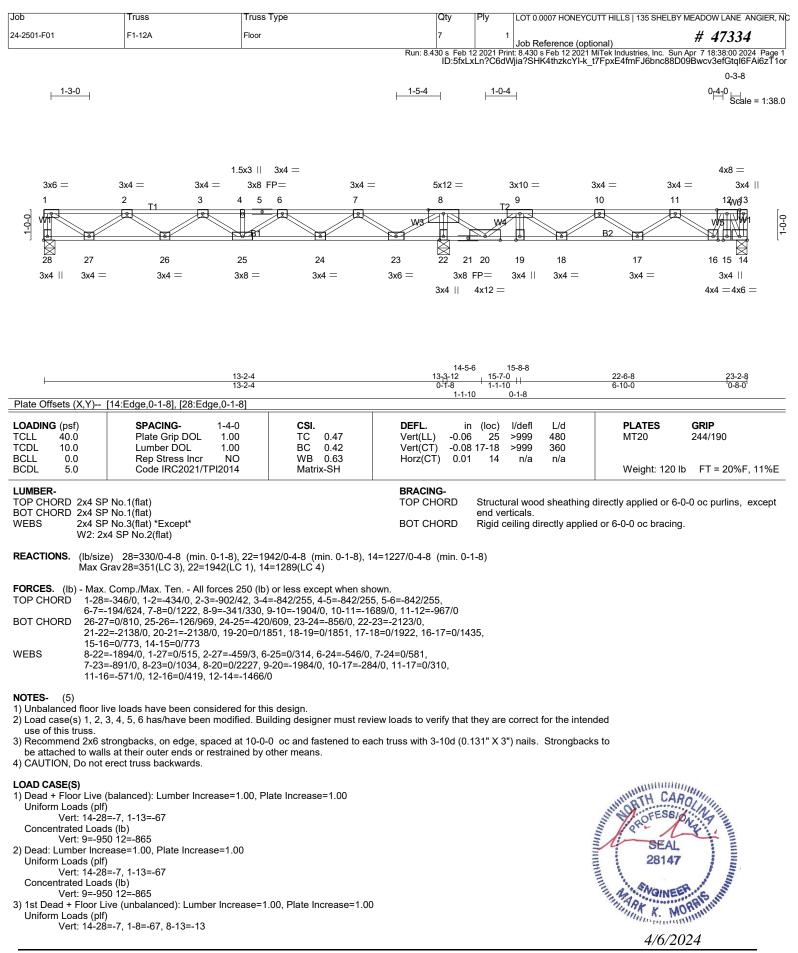
LOAD CASE(S) Standard

4/6/2024

Job 24-2501-F01 – 1-3-0	Truss F1-12	Truss Type Floor	Qty Ply 2 Run: 8.430 s Feb 12 2021 ID:5fxLxLn?C6dV	1 Job Reference (optiona	THILLS 135 SHELBY MEADOW LANE ANGIER, NC al) # 47334 ek Industries, Inc. Sun Apr 7 18:37:58 2024 Page 1 Y1WX3pROVj6lxk6ck5QQB08Xrpm3eDzT1ot
$3x6 =$ 1 27 26 $3x4 \parallel 3x4 =$	3x4 = 3x4 = 2 $2 T1 $ 3 25	1.5x3 3x4 = 3x8 FP = 3x4 = 4 5 6 7 B1 2 24 23 3x8 = 3x4 =	= 3x8 = 8 22 21 20 3x6 = 3x4 3x4	19 18 10 11 T2 9 10 11 T2 9 10 11 T2 9 10 11 T2 9 10 11	
Plate Offsets (X,Y)	[15:Edge,0-1-8], [27:Edge,0-	13-2-4 13-2-4 1-8]		22-6-8 9-4-4	23-2-8 0-8-0
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 1-4 Plate Grip DOL 1.1 Lumber DOL 1.1 Rep Stress Incr N Code IRC2021/TPI20	00 TC 0.37 00 BC 0.27 00 WB 0.45	DEFL. in (loc Vert(LL) -0.06 2 Vert(CT) -0.08 2 Horz(CT) 0.01 1	4 >999 480 4 >999 360	PLATES GRIP MT20 244/190 Weight: 119 lb FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF			end	ctural wood sheathing dire verticals. d ceiling directly applied o	ectly applied or 6-0-0 oc purlins, except or 6-0-0 oc bracing.
Max C FORCES. (lb) - Max TOP CHORD 1-27: 6-7= 12-1: BOT CHORD 25-22 19-2 WEBS 8-21: 8-22:	Grav 27=400(LC 3), 21=1121(Comp./Max. Ten All force: 395/0, 1-2=-511/0, 2-3=-11 -695/127, 7-8=0/582, 8-9=0/8 0/956, 24-25=0/1254, 23-2 0=-513/394, 18-19=-513/394 1092/0, 1-26=0/605, 2-26=-	8), 21=1121/0-4-8 (min. 0-1-8), 1 _C 1), 15=1111(LC 4) s 250 (lb) or less except when sh 17/0, 3-4=-1201/0, 4-5=-1201/0, 02, 9-10=-718/224, 10-11=-718/ 4=0/1040, 22-23=-288/324, 21-2 , 17-18=0/960, 16-17=0/968, 15- 544/0, 6-23=-462/0, 7-23=0/494 +0/805, 9-20=-745/0, 9-18=0/514	nown. 5-6=-1201/0, 224, 11-12=-978/0, 12=-1409/0, 20-21=-1417/0, -16=0/672 , 7-22=-805/0,		
 2) Load case(s) 1, 2, use of this truss. 3) Recommend 2x6 s be attached to wall 		lified. Building designer must rev	2		
Uniform Loads (plf Vert: 15-27 Concentrated Load Vert: 13=-5 2) Dead: Lumber Incr Uniform Loads (plf Vert: 15-27 Concentrated Load Vert: 13=-5 3) 1st Dead + Floor L Uniform Loads (plf	=-7, 1-14=-67 Is (lb) 965 =ase=1.00, Plate Increase=1) =-7, 1-14=-67 Is (lb) 965 ive (unbalanced): Lumber Inc		0	""""""""""""""""""""""""""""""""""""""	SEAL 28147 4/6/2024

Job	Truss	Truss Type	Qty	Ply	LOT 0.0007 HONEYCUTT HILLS 13	35 SHELBY MEADOW LANE ANGIER, NC		
24-2501-F01	F1-12	Floor	2	1	Job Reference (optional)	# 47334		
	Pup: 8 430 c Ech 12 2021 Print: 8 430 c Ech 12 2021 MiTek Industries, Inc. Sun Apr. 7 18:37:58 2024 Page 2							

Run 8.430 s Feb 12 2021 Print: 8.430 s Feb 12 2021 Mi Fek Industries, Inc. Sun Apr / 18:37:58 2024 Page 2 ID:5fxLxLn?C6dWjia?SHK4thzkcYI-oblNq7vzY1WX3pROVj6lxk6ck5QQBO8Xrpm3eDzT1ot


LOAD CASE(S)

Concentrated Loads (lb) Vert: 13=-865

- 4) 2nd Dead + Floor Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00
- Uniform Loads (plf)
- Vert: 15-27=-7, 1-8=-13, 8-14=-67
- Concentrated Loads (lb)
- Vert: 13=-865 5) 3rd unbalanced Dead: Lumber Increase=1.00, Plate Increase=1.00
- Uniform Loads (plf)
- Vert: 15-27=-7, 1-8=-67, 8-14=-13
- Concentrated Loads (lb) Vert: 13=-865
- 6) 4th unbalanced Dead: Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)
- Vert: 15-27=-7, 1-8=-13, 8-14=-67 Concentrated Loads (lb)
- Vert: 13=-865

4/6/2024

Job	russ	Truss Type	Qty	Ply	LOT 0.0007 HONEYCUTT HILLS 135 SHELBY MEADOW LANE ANGIER, NC
24-2501-F01 F ²	1-12A	Floor	7	1	Job Reference (optional) # 47334

Run: 8.430 s Feb 12 2021 Print: 8.430 s Feb 12 2021 MiTek Industries, Inc. Sun Apr 7 18:38:00 2024 Page 2 ID:5fxLxLn?C6dWjia?SHK4thzkcYI-k_t7FpxE4fmFJ6bnc88D09Bwcv3efGtql6FAi6zT1or

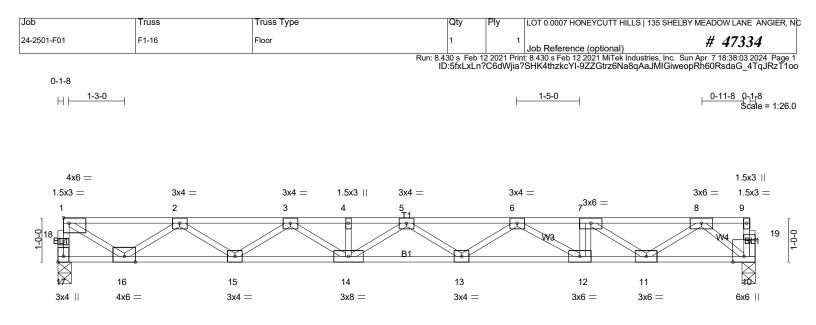
LOAD CASE(S)

- Concentrated Loads (lb) Vert: 9=-950 12=-865
- 4) 2nd Dead + Floor Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00
- Uniform Loads (plf)
- Vert: 14-28=-7, 1-8=-13, 8-13=-67
- Concentrated Loads (lb)
- Vert: 9=-950 12=-865 5) 3rd unbalanced Dead: Lumber Increase=1.00, Plate Increase=1.00
- Uniform Loads (plf) Vert: 14-28=-7, 1-8=-67, 8-13=-13
- Concentrated Loads (Ib)
- Vert: 9=-950 12=-865
- 6) 4th unbalanced Dead: Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)
- Vert: 14-28=-7, 1-8=-13, 8-13=-67
- Concentrated Loads (lb) Vert: 9=-950 12=-865

4/6/2024

Job	Truss	Truss Type	Qty	Ply LO	T 0.0007 HONEYCU	TT HILLS 135 SHFI F	BY MEADOW LANE ANGIER, NC
24-2501-F01	F1-13	Floor	1	1	10.0007 HONE TOO		# 47334
2.200.101			Run: 8 430 s Feb 1	Jol	b Reference (optio		# 47334 Sun Apr 7 18:38:01 2024 Page 1
			ID:5fxLxLn?C	6dWjia?SHK4	IthzkcYI-DARVS9	/sryu6wGAzArfSZN	lk84JSaOm0_Xm_kEYzT1oq
1-3-0					1-5-4	1	<u>1-0-0 0₁1</u> 8
							Scale = 1:26.0
							3x4 =
	3x4 =	3x4 = 1.5x3 ∣∣	3x4 =	3x4 =		3x8 =	1.5x3 =
1 ^{3x6} =	2	3 4	5	6		7	8
	Lek					Lis	
					W3		
			B1 8				
							10
16 12 [™] 16	- 15	14	13		12		
3x4 3x4	= 3x4 =	3x8 =	3x4 =		3x6 =	3x4	$3x4 = 3x4 \parallel$
1		13-2-4				, 1	15-9-12
Plate Offsets (X Y) [8	0-1-8,Edge], [17:Edge,0-1-8	13-2-4				I	2-7-8
					a		
LOADING (psf) TCLL 40.0	SPACING- 1-4-0 Plate Grip DOL 1.00		DEFL. in Vert(LL) -0.05	· · ·		PLATES MT20	GRIP 244/190
TCDL 10.0	Lumber DOL 1.00	BC 0.24	Vert(CT) -0.07	14 >99	9 360		
BCLL 0.0 BCDL 5.0	Rep Stress Incr YES Code IRC2021/TPI2014		Horz(CT) 0.01	11 n/	'a n/a	Weight: 80	lb FT = 20%F, 11%E
						troigini co	
LUMBER- TOP CHORD 2x4 SP N	lo 1(flat)		BRACING- TOP CHORD	Structural w	ood sheathing d	irectly applied or (6-0-0 oc purlins, except
BOT CHORD 2x4 SP N	lo.1(flat)			end vertical	s.		
WEBS 2x4 SP N	o.3(flat)		BOT CHORD	Rigid ceiling	g directly applied	or 6-0-0 oc braci	ng.
		9=-353/0-3-8 (min. 0-1-8), 11	=1096/0-4-8 (min. 0-1-	8)			
	ft9=-413(LC 3) v 17=395(LC 3), 11=1096(L0	C 1)					
TOP CHORD 1-17=-3	omp./Max. Ten All forces 2 91/0. 9-18=0/419. 8-18=0/4	250 (lb) or less except when sh 18, 1-2=-504/0, 2-3=-1098/0, 3-	own. -4=-1169/0. 4-5=-1169/	0.5-6=-650/0), 6-7=0/378,		
7-8=0/5	40				, ,		
		=0/1002, 12-13=0/272, 11-12=- 36/0, 5-13=-435/0, 6-13=0/468,			77 8-10=-661/0		
			, e	02, 1 10 0/1	,		
NOTES- (5) 1) Unbalanced floor live	loads have been considered	t for this design					
2) Provide mechanical of	onnection (by others) of trus	s to bearing plate capable of w					
	ngbacks, on edge, spaced a at their outer ends or restrain	at 10-0-0 oc and fastened to ea	ach truss with 3-10d (0.	131" X 3") na	ils. Strongbacks	to	
4) CAUTION, Do not ere		ou by other means.					
LOAD CASE(S) Standa	rd						

4/6/2024


Job	Truss	Truss Type	Qty	Ply LOT 0.0007 H	HONEYCUTT HILLS 135 SHELE	BY MEADOW LANE ANGIER, NC
24-2501-F01	F1-14	Floor	4	1	nee (entional)	# 47334
			Run: 8.430 s Feb 1	2 2021 Print: 8.430 s Feb	nce (optional) 12 2021 MiTek Industries, Inc. S	un Apr 7 18:38:02 2024 Page 1
1-3-0			ID:SIXLXLI		YI-hN?tfVzUcG0zYQkAkYBh 1-5-4	1-0-0 0-1-8
				F		
						Scale = 1:26.0
						3x4 =
	3x4 =	3x4 = 1.5x3 ∣∣	3x4 =	3x4 =	3x8 =	1.5x3 =
1 ^{3x6} =	2	3 4	5 	6	7	8
			<u></u>		- Firk	WA 18 9
			B1		W3	
				\		
12 16	15	14	13	12		10
3x4 3x	4 = 3x4 =	3x8 =	3x4 =	Зх(6 = 3x4	3x4 = − 3x4
1-6-0 1-6-0	4-0-0	<u>9-1-8</u> 5-1-8		<u>11-7-8</u> 2-6-0	<u>13-2-4</u> <u>14-6-12</u> 1-6-12 <u>1-4-8</u>	15-9-12
Plate Offsets (X,Y) [8:0-1-8,Edge], [17:Edge,0-1-8]					
LOADING (psf)	SPACING- 1-4-0	CSI.	DEFL. in			GRIP
TCLL 40.0 TCDL 10.0	Plate Grip DOL 1.00 Lumber DOL 1.00	TC 0.30 BC 0.24	Vert(LL) -0.05 Vert(CT) -0.07			244/190
BCLL 0.0 BCDL 5.0	Rep Stress Incr YES Code IRC2021/TPI2014	WB 0.44 Matrix-SH	Horz(CT) 0.01	11 n/a n/	a Weight: 80	b FT = 20%F, 11%E
			PRACING		troight of	
LUMBER- TOP CHORD 2x4 SP			BRACING- TOP CHORD		eathing directly applied or (6-0-0 oc purlins, except
BOT CHORD 2x4 SP WEBS 2x4 SP	No.1(flat) No.3(flat)		BOT CHORD	end verticals. Rigid ceiling directly	y applied or 6-0-0 oc braci	ng.
) 17=395/0-8-4 (min. 0-1-8),	0-353/078 (min 018) 11-		0 0 .		5
Max Up	olift9=-413(LC 3)		-1030/0-4-0 (mm. 0-1-0	5)		
	av 17=395(LC 3), 11=1096(LC	,				
	Comp./Max. Ten All forces 2 -391/0, 9-18=0/419, 8-18=0/41			0. 5-6=-650/0. 6-7=0/	/378.	
7-8=0	/540			,		
	=0/943, 14-15=0/1229, 13-14= -1065/0, 1-16=0/597, 2-16=-53			32, 7-10=0/777, 8-10	0=-661/0	
NOTES- (5)						
	e loads have been considered connection (by others) of truss		ithetanding 413 lb unlift	at joint 0		
3) Recommend 2x6 st	rongbacks, on edge, spaced at	10-0-0 oc and fastened to ea			ongbacks to	
be attached to walls 4) CAUTION, Do not e	at their outer ends or restraine rect truss backwards.	ed by other means.				
LOAD CASE(S) Stand						

Job	Truss	Truss Type	Qty	Ply LOT 0.0007 HONE	YCUTT HILLS 135 SHELE	BY MEADOW LANE ANGIER, NC	
24-2501-F01	F1-15	Floor	1	1 Job Reference (d	optional)	# 47334	
0-1-8 ⊢⊢ <u>1-3-0</u>	4		Run: 8.430 s Feb 12 ID:5fxLxLn	2 2021 Print: 8.430 s Feb 12 20 ?C6dWjia?SHK4thzkcYI-92	21 MiTek Industries, Inc. S ZGtrz6Na8qAaJMIGiwe 1-4-8	un Apr 7 18:38:03 2024 Page 1 eopUg684sgjG_4TqJRzT1oo 0_1r8 Scale = 1:26.0	
3x4 = 1.5x3 = 1 1 1 1 1 1 3x4 3x4	3x4 = 2 2 6 15 x4 = 3x4 = 3	3x4 = 1.5x3 3 4 14 3x8 =	3x4 = 5 $T1$ $B1$ 13 $3x4 =$	3x4 = 6 12 12 4x4 =	3x8 = 7 W3 3x4	3x4 = 1.5x3 = 8 19 10 $3x4 = 3x4 \parallel$	
	3:0-1-8,Edge], [17:Edge,0-1-8]	<u>13-1-8</u> 13-1-8				15-9-0 2-7-8	
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 1-4-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2021/TPI2014	CSI. TC 0.29 BC 0.24 WB 0.43 Matrix-SH	DEFL. in Vert(LL) -0.05 Vert(CT) -0.07 Horz(CT) 0.01	(loc) l/defl L/d 14 >999 480 14 >999 360 11 n/a n/a	PLATES MT20 Weight: 80	GRIP 244/190 lb FT = 20%F, 11%E	
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x4 SP WEBS 2x4 SP			BRACING- TOP CHORD BOT CHORD	Structural wood sheathir end verticals. Rigid ceiling directly app	• • • • •		
Max Up) 17=389/0-3-8 (min. 0-1-8), lift9=-409(LC 3) av 17=389(LC 3), 11=1088(LC	9=-348/0-7-8 (min. 0-1-8), 11 1)	=1088/0-4-8 (min. 0-1-8	3)			
FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 17-18=-386/0, 1-18=-385/0, 9-19=0/414, 1-2=-503/0, 2-3=-1090/0, 3-4=-1155/0, 4-5=-1155/0, 5-6=-632/0, 6-7=0/399, 7-8=0/535 BOT CHORD 15-16=0/936, 14-15=0/1219, 13-14=0/986, 11-12=-1178/0, 10-11=-1183/0 WEBS 7-11=-1057/0, 1-16=0/571, 2-16=-529/0, 5-13=-439/0, 6-13=0/472, 6-12=-791/0, 7-12=0/904, 7-10=0/768, 8-10=-654/0							
2) Provide mechanical3) Recommend 2x6 str	ongbacks, on edge, spaced at at their outer ends or restrained	s to bearing plate capable of w t 10-0-0 oc and fastened to ea			acks to		

LOAD CASE(S) Standard

1		11-11-0		15-9-0
		11-11-0		3-10-0
Plate Offsets (X,Y)	[1:Edge,0-1-8], [17:Edge,0-1-8], [19:0	-1-8,0-0-8]		
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2021/TPI2014	CSI. TC 0.48 BC 0.73 WB 0.63 Matrix-SH	DEFL. in (loc) l/defl L/d Vert(LL) -0.24 13-14 >771 480 Vert(CT) -0.33 13-14 >559 360 Horz(CT) 0.06 10 n/a n/a	PLATES GRIP MT20 244/190 Weight: 80 lb FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF			end verticals.	directly applied or 6-0-0 oc purlins, except lied or 10-0-0 oc bracing.

REACTIONS. (Ib/size) 17=846/0-3-8 (min. 0-1-8), 10=846/0-3-8 (min. 0-1-8)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 17-18=-841/0, 1-18=-839/0, 1-2=-1163/0, 2-3=-2788/0, 3-4=-3647/0, 4-5=-3647/0, 5-6=-3616/0, 6-7=-2781/0, 7-8=-1878/0

15-16=0/2186, 14-15=0/3355, 13-14=0/3798, 12-13=0/3395, 11-12=0/2781, 10-11=0/1026 BOT CHORD

7-12=0/366, 1-16=0/1326, 2-16=-1248/0, 2-15=0/736, 3-15=-691/0, 3-14=0/351, 6-13=0/270, 6-12=-706/0, WEBS

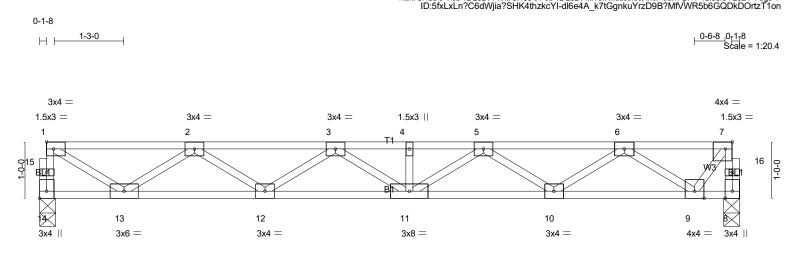
7-11=-1070/0, 8-11=0/1039, 8-10=-1319/0

NOTES-(3)

1) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to

.

be attached to walls at their outer ends or restrained by other means. 2) CAUTION, Do not erect truss backwards.


LOAD CASE(S) Standard

....

4/6/2024

Job	Truss	Truss Type	Qty	Ply	LOT 0.0007 HONEYCUTT HILLS 1	35 SHELBY MEADOW LANE ANGIER, NC
24-2501-F01	F1-17	Floor	5		1 Job Reference (optional)	# 47334
						es, Inc. Sun Apr 7 18:38:04 2024 Page 1

12-5-0 12-5-0							
Plate Offsets (X,Y) [7:0-1-8,Edge], [14:Edge,0-1-8]							
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2021/TPI2014	CSI. TC 0.29 BC 0.45 WB 0.48 Matrix-SH	DEFL. in Vert(LL) -0.10 Vert(CT) -0.13 Horz(CT) 0.03	3 11 >999 360	PLATES GRIP MT20 244/190 Weight: 63 lb FT = 20%F, 11%E		
LUMBER- TOP CHORD 2x4 SP No.1(flat) BOT CHORD 2x4 SP No.1(flat) WEBS 2x4 SP No.3(flat)			BRACING- TOP CHORD BOT CHORD	Structural wood sheathing (end verticals. Rigid ceiling directly applied	directly applied or 6-0-0 oc purlins, except d or 10-0-0 oc bracing.		

REACTIONS. (lb/size) 14=663/0-3-8 (min. 0-1-8), 8=663/0-3-8 (min. 0-1-8)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 14-15=-658/0, 1-15=-656/0, 8-16=-665/0, 7-16=-664/0, 1-2=-877/0, 2-3=-1982/0, 3-4=-2309/0, 4-5=-2309/0,

5-6=-1747/0, 6-7=-459/0

- BOT CHORD 12-13=0/1639, 11-12=0/2288, 10-11=0/2179, 9-10=0/1280
- WEBS 1-13=0/998, 2-13=-930/0, 2-12=0/418, 3-12=-374/0, 5-10=-527/0, 6-10=0/570, 6-9=-1003/0, 7-9=0/724

NOTES- (2)

1) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

LOAD CASE(S) Standard

$0_{\text{H}}^{1.8}$ 1.5x3 1.5x3 = 1.5x3 1 2 3 1 2 3	ABLE 1.5x3 4 5 $3x4 =$ 5 $T1$ 5 $T1$	1 Run: 8.430 s Feb 12 ID:5fxLxLn?C6 1.5x3 6 ST1	1 Job Reference (opti 2 2021 Print: 8.430 s Feb 12 2021 3dWjia?SHK4thzkcYI-5yg0IW3 1.5x3 1.5x3 7 8 9 5T1	MTek Industries, Inc. Sun Apr 7 18:38:05 2024 Page 1 MUBOXPuTIPhkOjDutmws6KgQZSOyxNJzT1on 0[1]8 Scale = 1:20.4 1.5x3 1.5x3 1.5x3 1.5x3 = 9 10 11 0 0 0
$1.5x3 \\ 1.5x3 = 1.5x3 \\ 1 2 3 \\ \hline \bullet $	1.5x3 4 $5^{3x4} =$ T1	1.5x3	2 2021 Print: 8 430 s Feb 12 2021 5dWjia?SHK4thzkcYI-5yg0IW7 1.5x3 1.5x3 7 8	MTek Industries, Inc. Sun Apr 7 18:38:05 2024 Page 1 MUBOXPuTIPhkOjDutmws6KgQZSOyxNJzT1on 0[1]8 Scale = 1:20.4 1.5x3 1.5x3 1.5x3 1.5x3 = 9 10 11 0 0 0
1.5x3 = 1.5x3 1.5x3 1.5x3 1 2 3 1 2 - 3 1 - 3	4 5 ^{3x4} =		7 8	1.5x3 1.5x3 1.5x3 = 9 10 11 0 0
22 BLAT ST1 ST1 ST1 ST1 ST1 ST1 ST1 ST	B1 B1 18 17 1.5x3 1.5x3	16 3x4 =	STI STI 0 0 15 14 1.5x3 1.5x3	23 3 13 12 1.5x3 6x6
<u> </u>	+ 5-4-0 + 6-8-0 1-4-0 + 1-4-0 16:0-1-8,Edge], [21:Edge,0-1-8], [23	8-0-0 1-4-0 3:0-1-8,0-0-8]	9-4-0 1-4-0	<u>10-8-0 12-0-0 12-5-0</u> 1-4-0 1-4-0 0-5-0
LOADING (psf) SPACING- 2-0-0 TCLL 40.0 Plate Grip DOL 1.00 TCDL 10.0 Lumber DOL 1.00 BCLL 0.0 Rep Stress Incr YES BCDL 5.0 Code IRC2021/TPI2014	CSI. D TC 0.06 V BC 0.01 V	DEFL. in /ert(LL) n/a /ert(CT) n/a Horz(CT) 0.00	(loc) l/defl L/d - n/a 999 - n/a 999 12 n/a n/a	PLATES GRIP MT20 244/190 Weight: 53 lb FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SP No.1(flat) BOT CHORD 2x4 SP No.1(flat) WEBS 2x4 SP No.3(flat) OTHERS 2x4 SP No.3(flat)	Т		Structural wood sheathing end verticals. Rigid ceiling directly applie	directly applied or 6-0-0 oc purlins, except d or 10-0-0 oc bracing.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 21, 12, 20, 19, 18, 17, 16, 15, 14, 13

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-(5)

- Gable requires continuous bottom chord bearing.
 Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 3) Gable studs spaced at 1-4-0 oc.
- 4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

LOAD CASE(S) Standard

4/6/2024

Job	Truss	Truss Type	Qty	Ply	LOT 0.0007 HONEYCU	TT HILLS 135 SHELBY MEA	DOW LANE ANGIER, NC
24-2501-F01	F1-19	GABLE	2	1	Job Reference (option		# 47334
0 ₁ 78		1	Run: 8.430 s Fe ID:5fxLxLi	o 12 2021 Pri 1?C6dWjia?	SHK4thzkcYI-Z8EOVs	1001) Tek Industries, Inc. Sun Apr 0?fVWO112xzOFdGQR2'	7 18:38:06 2024 Page 1 YKCR37hjg2iVwlzT1ol Scale = 1:22.9
							30ale - 1.22.9
1.5x3							1.5x3
1.5x3 = 1.5x3	3 1.5x3 3	1.5x3 1.5x3 4 5 ($6^{3x4} = 7^{1.5x3}$		I.5x3 1.5x3 8 9	1.5x3 10	3x4 11 12
	0	0	o T1 / sT1 0 sT1 0 sT1 0 b1 0 vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv		● ● ST1 ST1 ● ●	10 8 ST1 6	ST1 W1
24 23	22		19 18	~~~~	17 16	15	14 13
3x4 1.52			.5x3 3x4 =				3x4 1.5x3
⊢ 1-4-0 1-4-0 Plate Offsets (X,Y) [6	2-8-0 4-0-0 1-4-0 1-4-0 0-1-8,Edge], [18:0-1-8,Edge	5-4-0 6-8-0 1-4-0 1-4-0], [24:Edge,0-1-8]	+ 8-0-0 1-4-0	9-4-0 1-4-0	<u>10-8-0</u> 1-4-0	12-0-0 13-4-0 1-4-0 1-4-0	13-11-8 0-7-8
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-1 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2021/TPI201-0	TC 0.06 BC 0.01 WB 0.03	Vert(LL) n	in (loc) /a - /a -)0 13	l/defl L/d n/a 999 n/a 999 n/a n/a		IP I/190 FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SP N BOT CHORD 2x4 SP N WEBS 2x4 SP N OTHERS 2x4 SP N REACTIONS. All beal	lo.1(flat) lo.3(flat)	/	BRACING- TOP CHORD BOT CHORD	end ver	ticals.	irectly applied or 6-0-0 o or 10-0-0 oc bracing.	oc purlins, except

REACTIONS. All bearings 13-11-8.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 24, 13, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-(6)

Gable requires continuous bottom chord bearing.
 Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

3) Gable studs spaced at 1-4-0 oc.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

5) CAUTION, Do not erect truss backwards.

LOAD CASE(S) Standard

4/6/2024

Job	Truss	Truss Type		Qty	Ply I	LOT 0.0007 HONEYCUTT HILLS 135 SH	HELBY MEADOW	LANE ANGIER, NC
24-2501-F01	F1-20	Floor		8	1	Job Reference (optional)	# 42	7334
			Run: 8	.430 s Feb 1	2 2021 Print:	8.430 s Feb 12 2021 MiTek Industries, In 8HK4thzkcYI-Z8EOVs0?fVWO112xz	c. Sun Apr 7 18:3	8:06 2024 Page 1
0-1-8				ID.3IXLXLII?				5 21019210 WIZ 1 101
130							1-2-4	
Η ⊨	-							Scale = 1:23.5
4x4 =								
1.5x3 =	3x4 =	3x4 =	1.5x3 3	3x4 =		3x4 =	4x4 =	3x4
1	2	3	4 5	5		6	7	8
					<	// 📉 //	W3	
	$\overline{4}$	¥ `	B1		YT/			
~		13	12		11	10		\mathbf{k}
3x4	3x8 =	3x4 =	3x8 =		3x4 =	$4x4 \equiv$		3x6 =

<u> </u>	<u></u>	<u>9-1-8</u> 5-1-8		2-6-0	<u> </u>
Plate Offsets (X,Y)	[1:Edge,0-1-8], [15:Edge,0-1-8]				
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2021/TPI2014	CSI. TC 0.30 BC 0.60 WB 0.56 Matrix-SH	Vert(LL) -0.17	(loc) l/defl L/d 11-12 >999 480 11-12 >736 360 9 n/a n/a	PLATES GRIP MT20 244/190 Weight: 71 lb FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x4 SP WEBS 2x4 SP			BRACING- TOP CHORD BOT CHORD	Structural wood sheathing o end verticals. Rigid ceiling directly applied	directly applied or 6-0-0 oc purlins,except d or 10-0-0 oc bracing.

~ . .

REACTIONS. (lb/size) 15=767/0-7-8 (min. 0-1-8), 9=773/0-4-8 (min. 0-1-8)

. . .

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 15-16=-762/0, 1-16=-760/0, 1-2=-1040/0, 2-3=-2440/0, 3-4=-3072/0, 4-5=-3072/0, 5-6=-2815/0, 6-7=-1812/0

BOT CHORD 13-14=0/1950, 12-13=0/2895, 11-12=0/3094, 10-11=0/2502, 9-10=0/1083

1-14=0/1185, 2-14=-1111/0, 2-13=0/599, 3-13=-554/0, 5-11=-340/0, 6-11=0/381, 6-10=-843/0, 7-10=0/890, WEBS

7-9=-1301/0

. . .

NOTES- (3)

1) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to

be attached to walls at their outer ends or restrained by other means.

2) CAUTION, Do not erect truss backwards.

LOAD CASE(S) Standard

.....

.....

4/6/2024