

Job	Truss	Truss Type	Qty	Ply	Professional Bldrs / Hanover Craftsman
72406537	A3G	Truss	1	1	Job Reference (optional)

UFP Mid Atlantic LLC, 5631 S. NC 62, Burlington, NC, r thomas

L

Run: 8.62 S Sep 22 2022 Print: 8.620 S Sep 22 2022 MiTek Industries, Inc. Mon Mar 04 15:57:00

Page: 1 ID:ukQPTbS24oU3tPghzNWdYWz3TJk-rEUjEBSBQKJfLefPyUHIwJ9HQGtRQfohU3H4pfzeGTY

ł	<u>15-8-0</u> 15-8-0	ł	<u>25-4-0</u> 9-8-0	ł	40-7-8 15-3-8	ł				
[∞] [∞] [∞] [∞] [∞] [∞] [∞] [∞]	$\begin{array}{c} 6 \\ 1^{2} \\ 3 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 6 \\ 7 \\ 7 \\ 8 \\ 12 \\ 8 \\ 12 \\ 8 \\ 12 \\ 8 \\ 7 \\ 7 \\ 8 \\ 7 \\ 7 \\ 8 \\ 7 \\ 7 \\ 8 \\ 7 \\ 7$	5x6 = 101 12 9 5x6 = 101 12 10 12 5x6 = 43 421 40 5x6 = -8-8 8-8	13 14 15 13 14 15 13 14 15 14 15 15 15	5x6= 167 18 19 5T10 5T11 5T11 5T11 5T12 36 354 33 5x6= 40-7-8 24-11-0	20 3x6s 21 22 23 5T13 5T14 5T15 5 32 31 30	24 2x5 II 25 26 7 27 27 27 29 28 2x5 II				
Plate Offsets (X, Y): [11:0-3-	0,0-0-12], [16:0-3-0,0-0-12]									
Loading (ps TCLL (roof) 20. TCDL 10. BCLL 0. BCDL 10.	f) Spacing 0 Plate Grip DOL 0 Lumber DOL 0* Rep Stress Incr 0 Code IRI	2-0-0 CSI 1.15 TC 1.15 BC YES WB C2015/TPI2014 Matrix-MR	0.13 DEFL Vert(LL) 0.07 Vert(TL) 0.13 Horiz(TL)	in (loc) n/a - n/a - 0.01 27	l/defi L/d PLATES n/a 999 MT20 n/a 999 n/a n/a Weight: 278	GRIP 244/190 Ib FT = 20%				
LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 OTHERS 2x4 SP No.3 REACTIONS All bearing (lb) - Max Horiz Max Uplift	js 40-7-8. 51=132 (LC 7) All uplift 100 (lb) or less at joint(s) 2:	r, 29, 30, 31, 32, 33, 35, 37, 38, 3	BRACING TOP CHORD BOT CHORD WEBS	Structural wood she verticals, and 2-0-0 Rigid ceiling directly 6-0-0 cc bracing: 46 1 Row at midpt	athing directly applied or 6-0 oc purlins (6-0-0 max.): 11-1 applied or 10-0-0 oc bracing -47. 13-39, 14-3 17-36	-0 oc purlins, except end 6. J. Except: 8, 12-40, 10-42, 15-37,				
REACTIONS All bearings 40-7-8. 1 kow at minpt 13-38, 14-38, 12-40, 10-42, 15-37, 17-36 REACTIONS All bearings 40-7-8. 17-36 17-36 (b) - Max Horiz 51-132 (LC 7) Max U (LC 10) Max Grav All 4, 43, 44, 45, 46, 47, 48, 49, 51 except 28-144 (LC 11), 50-142 17-36 (b) - Max. Comp. Max. Ten All forces 250 (lb) or less at point(s) 27, 28, 29, 30, 31, 32, 33, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51 51 FORCES (b) - Max. Comp. Max. Ten All forces 250 (lb) or less except when shown. 50 TOP CHORD 8-9-107258, 9-10-126309, 10-114274, 11-12e-113/297, 13-14=-113/297, 15-16=-113/297, 16-17=-115/274, 17-18=-126/309, 18-19=-107/258 NOTES 1 Unbalanced rool live loads have been considered for this design. 1 Undatanced rool live loads have been considered for this design. 13-38, 16-29, 16-178-113/297, 13-14=-113/297, 13-14=-113/297, 15-16=-113/297, 16-17=-115/274, 17-18=-126/309, 18-19=-107/258 10 Unbalanced rool live loads have been considered for this design. 13-38, 16-29, 16-20, 16-2										

Job	Truss	Truss Type	Qty	Ply	Professional Bldrs / Hanover Craftsman	
72406537	A5	Truss	1	1	Job Reference (optional)	
JFP Mid Atlantic LLC, 5631 S. N	IC 62, Burlington, NC, r thomas	Run: 8.62 S Sep	22 2022 Prir	nt: 8.620 S S	ep 22 2022 MiTek Industries, Inc. Mon Mar 04 15:57:00	Page: 1

ID:wIPFXjKqcq6XXvXIPvPLdKz3TNI-JQ25SXTqBeRWyoEbWBoXSXiJ8g1M9zsqjj1dL6zeGTX

41-8-8 5-0-14 12-7-12 17-4-8 23-0-8 26-2-8 34-4-7 40-8-8 5-0-14 7-6-14 4-8-12 5-8-0 3-2-0 8-1-15 6-4-1 1-0-0 5x6 = 5x6**≈** 6 5 3x4 3x4 🖌 7 4 6¹² 3x6 -9-9-8 9-8-10 5x6 5x4 8 З 2 5x4👟 2x5 i 9 10 16 CANA2 è 5x6= 3∟ 12 XX 13 25 15 22 23 24 12 3x5= 14 5x6= 3x6= 3x4= 3x8= 3x10 u 0-3-8 ||| 0-3-8 20-10-4 7-8-8 15-5-0 20-8-8 30-11-8 40-8-8 7-5-0 7-8-8 5-3-8 10-1-5 9-9-0 0-1-12 [8:0-3-0,0-3-4], [10:0-7-9,Edge], [17:0-3-4,0-1-4] Plate Offsets (X, Y): 2-0-0 CS DEFL l/defl L/d PLATES GRIP Loading (psf) Spacing in (loc) TCLL (roof) 20.0 Plate Grip DOL 1.15 тс 0.70 Vert(LL) -0.38 12-14 >629 240 MT20 244/190 TCDL вс 10.0 Lumber DOL 1.15 0.86 Vert(CT) -0.55 12-14 >433 180 BCLL YES WB 0.0 Rep Stress Incr Horz(CT) 0.05 0.72 14 n/a n/a BCDL 10.0 Code IRC2015/TPI2014 Matrix-MSH Weight: 247 lb FT = 20%LUMBER BRACING TOP CHORD TOP CHORD Structural wood sheathing directly applied or 5-3-8 oc purlins, except end 2x4 SP No.2 verticals, and 2-0-0 oc purlins (10-0-0 max.): 5-6. BOT CHORD 2x4 SP No.2 BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. 2x4 SP No.3 WEBS WFBS 1 Row at midpt 5-14, 6-14, 7-14 SLIDER Right 2x6 SP No.2 -- 1-11-0 REACTIONS 10=492/0-3-8, (min. 0-1-8), 14=2336/0-3-8, (min. 0-2-12), 17=476/ (lb/size) Mechanical, (min. 0-1-8) Max Horiz 17=-167 (I C 15) Max Uplift 10=-156 (LC 11), 14=-258 (LC 10), 17=-70 (LC 10) 10=602 (LC 22), 14=2336 (LC 1), 17=558 (LC 21) Max Grav FORCES (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-854/130, 3-4=-752/167, 4-5=0/351, 5-6=-28/766, 6-7=-40/735, 7-8=-395/214, 8-9=-526/241, 9-10=-517/0 BOT CHORD 16-17=-348/996. 15-16=-173/250. 15-22=-377/328. 22-23=-377/328. 14-23=-377/328. 14-24=-309/235. 13-24=-309/235. 13-25=-309/235. 12-25=-309/235. 10-12=-120/536 WEBS 5-14=-1140/346, 6-14=-537/94, 7-14=-693/337, 7-12=-117/649, 8-12=-436/305, 2-16=-346/311, 4-16=-140/777, 4-15=-631/289, 5-15=-247/686, 2-17=-978/253 NOTES 1) Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) 2) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Provide adequate drainage to prevent water ponding. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between 5) the bottom chord and any other members, with BCDL = 10.0psf. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 258 lb uplift at joint 14, 156 lb uplift at joint 10 and 70 lb uplift at joint 17. 7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/ TPI 1 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord 54910

Job	Truss	Truss Type	Qty	Ply	Professional Bldrs / Hanover Craftsman	
72406537	A7	Truss	1	1	Job Reference (optional)	
JFP Mid Atlantic LLC, 5631 S. N	IC 62, Burlington, NC, r thomas	Run: 8.62 S Sep	ep 22 2022 MiTek Industries, Inc. Mon Mar 04 15:57:01	Page: 1		

UFP Mid Atlantic LLC, 5631 S. NC 62, Burlington, NC, r thomas

Run: 8.62 S Sep 22 2022 Print: 8.620 S Sep 22 2022 MiTek Industries, Inc. Mon Mar 04 15:57:01 ID:fHvQ8KY3BFVwqeHDR3fVtCz3TJc-occTfsUSyxZNaypo4uJm?kESK4LHuMv_yNmBtYzeGTW

	L	5-4-6	ı 12-11-4	L	17-8-0	د 1 23-4-0	ړ 2	6-6-0 L	34	-7-15		ŀ	40-7-8	
	1	5-4-6	1 7-6-14	1	4-8-12	1 5-8-0	1 3	3-2-0 ¹	8.	-1-15		1	5-11-9	1
						5x6≠	5x6≈ 6							
ÌŤ						т <u>а</u> тз		3x4.						
				5x4 v				7						
			12	4		// \\		K	72					
			3x6≠ 61						$\mathbb{N} \gg$					
80 00		7	x8 =	XV4	, We	5 WX	W8	, who	und a			5x8≈		
о		2	3	/	V5 //			\$\\\ \$	MIN			8		
		71	×~~ //		\K //	//	/	//						0vF
	3x4 II	W2					$\mathbb{N} \parallel //$		/	$\langle \rangle$	V071		WIZE	
<u>–</u>		BI	/ 15 7x8=	-B1							/			
↓ ¿↓ 1	6₩	3 12	170-		14 17	18	<u>B2</u> 13	19	12 20	11		Ba	3	±10 <u>-</u> ↓ , , , , , , , , , , , , , , , , , , ,
	3x10=	12			5x6=	10	3x8=	МТ	18HS 3x10 =	= 3x4=				5x5=
	0-3-8	8-0-0	L	15-8-8	L	23-2-4	L	31-	3-0	L		40	-7-8	. П
	0-3-8	7-8-8	ſ	7-8-8	ſ	7-5-12	ſ	8-0	-13	ſ		9-	-4-8	
Blata Offacta	(V V).	[4:0 1 9 0	0 01 10:0 2 0 0 2 41 1	16:0 6 9 0 1 41										
	(^, 1):	[4:0-1-8,0·	·u-oj, [o.u-ɔ-u,u-ɔ-4], ['	10.0-0-8,0-1-4]										
Loading		(psf)	Spacing Plate Grip DOI		2-0-0	CSI	0.80	DEFL	in -0.27	(loc)	l/defl ⊳000	L/d	PLATES	GRIP
TCDL		10.0	Lumber DOL		1.15	BC	0.95	Vert(CT)	-0.58	14-15	>833	180	MT18HS	244/190
BCLL		0.0*	Rep Stress Incr		YES	WB	0.92	Horz(CT)	0.28	10	n/a	n/a	Waight 051 lb	FT 20%
BCDL		10.0	Code	IRC2	2015/1912014	Matrix-MSH							Weight: 251 lb	F1 = 20%
LUMBER TOP CHOR	D 2x4	SP No.2 *Exce	pt* T2:2x4 SP SS				BRACING TOP CHO	RD	Structural	wood sh	eathing o	directly	applied or 2-2-0 o	c purlins, except end
WEBS	D 2x4 2x4	SP No.1 *Exce SP No.3	pt^ B2,B3:2x4 SP No.2	2			BOT CHO	RD	Rigid ceili	ng directl	y applied	d or 2-2	-0 oc bracing.	
REACTION	S	(lb/size)	10=1613/ Mechanical	, (min. 0-1-8), 16	6=1613/ Mecha	anical, (min. 0-1-8)	WEBS WEBS		1 Row at r 2 Rows at	nidpt 1/3 pts			5-13, 7-13, 8-10 2-16	0, 4-14
		Max Horiz Max Unlift	16=145 (LC 7) 10=-195 (LC 11) 16=	-199 (I.C. 10)										
FORCES		(lb) - N	lax. Comp./Max. Ten.	- All forces 250 ((lb) or less exc	ept when shown.								
TOP CHOR	D	1-2=-4	41/124, 2-3=-4216/102	27, 3-4=-4119/10	064, 4-5=-2115	5/724, 5-6=-1699/6	22, 6-7=-1957	7/686, 7-8=-2	2414/706, 8-9	9=-302/10)2, 1-16=	-317/1	16	0/4000
BOICHOR	D	15-16= 10-11=	-923/3707, 14-15=-44 -521/2151	2/2302, 14-17=-	223/1687, 17-	18=-223/1687, 13-1	18=-223/1687	, 13-19=-32	0/1893, 12-19	9=-326/10	893, 12-2	20=-326	5/1893, 11-20=-32	16/1893,
WEBS		6-13=-	214/684, 7-13=-558/30	09, 7-11=-73/377	7, 8-10=-2320/	629, 2-15=0/256, 4	-14=-1110/42	2, 5-14=-20	8/654, 4-15≕	-430/212	4, 2-16=	-3867/1	020	
1) Unbala	anced roof	live loads have	been considered for th	nis design.										
2) Wind:	ASCE 7-10	0; Vult=130mph	(3-second gust) Vasd	=103mph; TCDL	=6.0psf; BCD	L=6.0psf; h=35ft; C	at. II; Exp B;	Enclosed; M	WFRS (enve	lope)				
for rea	ictions sho	wn; Lumber DO	L=1.60 plate grip DOL	.=1.60		anon and right oxp	0000,0 0 101	inomboro u						
4) All pla	tes are MT	20 plates unles	s otherwise indicated.											
 5) This tr 6) * This 	uss has be truss has b	en designed fo	a 10.0 psf bottom cho	ord live load non	concurrent wit	h any other live loa	ds. ale 3-06-00 t:	all by 2-00-0) wide will fit	hetween				
the bo	ttom chord	and any other	members, with BCDL =	= 10.0psf.	able of withst	anding 195 lb unlift	at joint 10 an	d 199 lb unli	ft at joint 16					
8) This tr	uss is desi	gned in accorda	ance with the 2015 Inte	ernational Reside	ential Code se	ctions R502.11.1 a	nd R802.10.2	and referen	ced standard	I ANSI/				
TPI 1. 9) Graph	ical purlin r	representation of	loes not depict the size	e or the orientati	on of the purlir	n along the top and	/or bottom ch	ord.						
														10.
													WITH CA	ARO
												1.5	08.279s	in the
												1	TTOR	TRICEN
											A	PI	INK	Low
											· V	10	0540	19 : Ξ
												-	21410	024
												11.	5/4/2	ER SS
												14	NT	5. 00°,11
												100	THER E	3

Job	Truss	Truss Type	Qty	Ply	Professional Bldrs / Hanover Craftsman
72406537	AG	Truss	1	1	Job Reference (optional)

UFP Mid Atlantic LLC, 5631 S. NC 62, Burlington, NC, r thomas

Γ

Run: 8.62 S Sep 22 2022 Print: 8.620 S Sep 22 2022 MiTek Industries, Inc. Mon Mar 04 15:57:01 Page: 1 ID:r7Y9uHTIcPIn6jq34oY5dxz3TJi-occTfsUSyxZNaypo4uJm?kEca4YWuYH_yNmBtYzeGTW

ł	<u>15-4-8</u> 15-4-8	+	<u>25-0-8</u> 9-8-0		<u>40-8-8</u> 15-8-0	4	1-8-8
$ \begin{array}{c} & & & & & & \\ & & & & & & \\ & & & & $	$6^{12} = 8$ $3x6 = 7$ $4 5$ $5 7$ $5 7$ $5 7$ $5 7$ $5 7$ 49 49 49 49 $3x6 = 3$ $8-8$ 1 $5 - 0$ 7	5x6 = 10^{1} 12 9 5x6 = 5x6 = 5	13 14 15 \$T9 \$T9 \$T9 \$T9 \$T9 \$T9 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	5x6= 167 18 9 ST10 8 ST11 37 385 5x6= 40-8-6 25-3-6	19 20 21 3T12 3T13 3T14 34 33 32	3x6 22 23 24 5 15 5 16 5 17 31 30 29 2	
Plate Offsets (X, Y): [11	:0-3-0,0-0-12], [16:0-3-0,0-0-1	2]					
Loading TCLL (roof) TCDL BCLL BCDL	(psf) Spacing 20.0 Plate Grip DOL 10.0 Lumber DOL 0.0* Rep Stress Incr 10.0 Code	2-0-0 1.15 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-MR	DEFL 0.15 Vert(LL) 0.10 Vert(CT) 0.13 Horz(CT)	in (loc) n/a - n/a - 0.01 28	I/defi L/d PLATES n/a 999 MT20 n/a 999 n/a n/a Weight: 280	GRIP 244/190 0 lb FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS REACTIONS REACTIONS FORCES TOP CHORD	2 2 3 arings 40-8-8. Horiz 53=-145 (LC 8) Jplift All uplift 100 (lb) or les 41, 42, 44, 45, 46, 47, 10), 52=-112 (LC 8) Grav All reactions 250 (lb) c 38, 39, 40, 41, 42, 43, (lb) - Max. Comp./Max. Ten 8-9=-100/257, 9-10=-119/309 18-19=-100/257	is at joint(s) 28, 30, 31, 32, 33, 48, 49, 50 except 29=-118 (LC or less at joint(s) 28, 29, 30, 31, 44, 45, 46, 47, 48, 49, 50, 51, All forces 250 (lb) or less exce , 10-11=-109/273, 11-12=-106/	BI TC BC 34, 36, 38, 39, 40, C 11), 51=-177 (LC , 32, 33, 34, 36, 37, 52 spt when shown. /296, 12-13=-106/296,	RACING DP CHORD DT CHORD EBS 13-14=-106/296, 14-1	Structural wood she verticals, and 2-0-0 Rigid ceiling directly 6-0-0 oc bracing: 47 1 Row at midpt 5=-106/296, 15-16=-1	athing directly applied or 6- oc purlins (6-0-0 max.): 11- applied or 10-0-0 oc bracin -48,46-47. 13-40, 14- 17-37 06/296, 16-17=-109/274, 17	0-0 oc purlins, except end 16. g, Except: 39, 12-41, 10-43, 15-38, 7-18=-119/309,
 NOTES Unbalanced roof live load Wind: ASCE 7-10; Vult=1 exterior zone and C-C Ex for reactions shown; Lum Truss designed for wind I Provide adequate drainag All plates are 2x3 MT20 u Gable requires continuou Truss to be fully sheathed Gable studs spaced at 2- This truss has been desig *This truss has been desig *This truss has been desig *This truss has been desig Provide mechanical conn 48, 49, 50, 38, 36, 34, 33 Beveled plate or shim rec This truss is designed in a TPI 1. Graphical purlin represen 	As have been considered for th 30mph (3-second gust) Vasd- terior (2) zone; cantilever left i ber DOL-1.60 plate grip DOL- oads in the plane of the truss i ge to prevent water ponding. unless otherwise indicated. Is bottom chord bearing. d from one face or securely br 0-0 oc. gned for a 10.0 psf bottom cho signed for a 10.0 psf botto	is design. =103mph; TCDL=6.0psf; BCDL and right exposed ; end vertica =1.60 only. acced against lateral movement rd live load nonconcurrent with f on the bottom chord in all are ue using ANSI/TPI 1 angle to g earing plate capable of withsta 112, 51=176, 29=118. urface with truss chord at joint(rnational Residential Code sec er or the orientation of the purlin	=6.0psf; h=35ft; Cat. II il left and right exposed ; (i.e. diagonal web). a any other live loads. was where a rectangle 3 grain formula. Building anding 100 lb uplift at jo (s) 47, 43, 44, 45, 46, 4 titons R502.11.1 and R along the top and/or br	; Exp B; Enclosed; M ,C-C for members and -06-00 tall by 2-00-00 designer should verify int(s) 28, 47, 42, 40, 3 8, 49, 50, 51. 802.10.2 and reference ottom chord.	WFRS (envelope) d forces & MWFRS wide will fit between capacity of bearing 19, 41, 44, 45, 46, eed standard ANSI/	Leven of an and a start of the	CAROL 9510 4919 4/2024
This design is based upon para component is responsibility of th governing codes and ordinance truss is fabricated by a UFPI pla (BCSI) for general guidance reç (BCS) for general guidance rec	meters shown, and is for an in ne Building Designer. Building s. Building Designer accepts ant. Bracing shown is for later garding storage, erection and t	dividual building component to posigner shall verify all design responsibility for the correctnes al support of truss members or racing available from SBCA ar	b be installed and loade n information on this sh ss or accuracy of the do nly and does not replac nd Truss Plate Institute	d vertically. Applicabi teet for conformance v esign information as it e erection and perman	lity of design paramete with conditions and rec may relate to a specif nent bracing. Refer to	ers and proper incorporation quirements of the specific building. Certification is v Building Component Safety	binding and alid only when Information

(BCSI) for general guidance regarding storage, erection and bracing available from SBCA and Truss Plate Institute

governing codes and ordinances. Building Designer accepts responsibility for the correctness or accuracy of the design information as it may relate to a specific building. Certification is valid only when truss is fabricated by a UFPI plant. Bracing shown is for lateral support of truss members only and does not replace erection and permanent bracing. Refer to Building Component Safety Information (BCSI) for general guidance regarding storage, erection and bracing available from SBCA and Truss Plate Institute.

governing codes and ordinances. Building Designer accepts responsibility for the correctness or accuracy of the design information as it may relate to a specific building. Certification is valid only when truss is fabricated by a UFPI plant. Bracing shown is for lateral support of truss members only and does not replace erection and permanent bracing. Refer to Building Component Safety Information (BCSI) for general guidance regarding storage, erection and bracing available from SBCA and Truss Plate Institute.

(BCSI) for general guidance regarding storage, erection and bracing available from SBCA and Truss Plate Institute

Job	Truss		Truss Type		Qty	Ply		Profes	ssional	Bldrs / I	Hanov	ver Craftsman		
72406537	V6		Truss		1	1		Job R	eferenc	e (optic	onal)			
UFP Mid Atlantic LLC, 5631 S. N	IC 62, Bur	lington, NC, r thomas	1	Run: 8.62 S Sep	22 202	2 Print: 8.620) S S(ep 22 20	022 MiTe	ek Indust	ries, In	nc. Mon Mar 04 15:	57:04	Page: 1
					10	D:juogjfWoge	FCbł	K8rJed1	onz3TJe	e-CBHcH	uWKF	sxxRPYMI1sTdNs	9bHb55x2QeL?	rUtzeGTT
					+	<u>1-4-0</u> 1-4-0	<u>∕2-2</u> 0-10	2-8 - <u>13</u>)-13 0-5	3-0 					
			0-10-15	6 4 4	8 ¹	33 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(4 = 2 31	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	3					
					4	2-8	8-0							
Plate Offsets (X, Y): [2:0	0-2-0,Eda	e]												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-MP	0.03 0.04 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)		in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 7 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 REACTIONS (lb/siz Max H Max U FORCES NOTES 1) Unbalanced roof live load	2 2 Horiz 1= Jplift 1= (Ib) - Max ds have be	=89/2-8-0, (min. 0-1-8) =-19 (LC 6) =-10 (LC 10), 3=-14 (L(& Comp./Max. Ten A	, 3=89/2-8-0, (min. 0-1-8) C 11) Ill forces 250 (lb) or less exce design.	BR. TOI BO	ACING P CHOF T CHOF	RD RD	Stri	uctural v jid ceilin	wood she	eathing d y applied	lirectly ∣or 10-	applied or 2-8-0 o -0-0 oc bracing.	c purlins.	
 Wind: ASCE 7-10; Vult=1 exterior zone and C-C Ex for reactions shown; Lum Gable requires continuou This truss has been desig * This truss has been desig * This truss has been designed in a the bottom chord and any, Provide mechanical conn This truss is designed in a TPI 1. 	30mph (3 sterior (2) z ber DOL= is bottom of gned for a signed for y other me section (by accordance	-second gust) Vasd=1 zone; cantilever left an 1.60 plate grip DOL=1 chord bearing. 10.0 psf bottom chord a live load of 20.0psf c mbers. v others) of truss to bea to with the 2015 Intern	03mph; ICDL=6.0ps; BCDL dright exposed; end vertica .60 I live load nonconcurrent with on the bottom chord in all are aring plate capable of withsta ational Residential Code sec	.=6.0pst; h=35ft; Cat. II; I left and right exposed;(a any other live loads. as where a rectangle 3-(inding 10 lb uplift at joint tions R502.11.1 and R8	Exp B; I C-C for r 06-00 ta 1 and 1 02.10.2	Enclosed; MN members and II by 2-00-00 4 Ib uplift at and referenc	wide	s (envel es & MV e will fit t 3. tandard	ope) NFRS between ANSI/					
												WITH CA	ROUN	
										H	1 Martin Martin	OR OF SS MCEA 0549 3/4/2 NGIN		- Owning
This design is based upon para component is responsibility of th governing codes and ordinance truss is fabricated by a UFPI pla (BCSI) for general guidance reg	meters sh ne Building s. Buildin ant. Braci garding sto	nown, and is for an indi g Designer. Building D g Designer accepts re ng shown is for lateral prage, erection and bra	vidual building component to Designer shall verify all desig sponsibility for the correctne support of truss members or acing available from SBCA a	be installed and loaded n information on this she ss or accuracy of the det nly and does not replace nd Truss Plate Institute.	vertical et for co sign info erection	lly. Applicabi onformance o ormation as it n and perman	ility of with c may nent t	f design conditior relate to bracing.	paramet is and re a speci Refer to	ters and quireme ific buildi o Building	proper nts of t ng. Ce g Com	r incorporation of the specific building rrtification is valid of ponent Safety Info	g and nly when rmation	围

Job	Truss	Truss Type		Qty	Ply	Professional Bldrs / Hano	ver Craftsman
72406537	V11	Truss		2	1	Job Reference (optional)	
JFP Mid Atlantic LLC, 5631 S. N	NC 62, Burlington, NC, r thomas		Run: 8.62 S Sep	22 2022 Pri	int: 8.620 S S	Sep 22 2022 MiTek Industries, Ir	nc. Mon Mar 04 15:57:05 Page: 1
				ID:FIE	IVVJVAVK7IV	IZAZEMW60Faz3TJf-gOr_VEXy	UA303262JKOI9aPH9hV0qOI2t?KOUJZeGTS
						6-3- 0	
			3-1	-8	-/	<u>5-9-13</u> 2-8-5	
			5-1	-0	I	0-5-3	
					3x4 =		
					0		
	\rightarrow \rightarrow				2		
	o		12	тт	\nearrow	T1	
	<u>-1-4</u>		8	//			
			1				
	\rightarrow			~~~~	B1	3	
		0					
			3x4 💋			3x4 👟	
			/		6-3-0		
Plate Offsets (X, Y): [2:	0-2-0,Edge]						
Loading	(psf) Spacing	2-0-0	CSI	DE	FL	in (loc) l/defl L/d	PLATES GRIP
TCLL (roof) TCDL	20.0 Plate Grip DOL 10.0 Lumber DOL	1.15 T 1.15 E	FC BC	0.24 Ver 0.19 Ver	t(LL) t(TL)	n/a - n/a 999 n/a - n/a 999	MT20 244/190
BCLL	0.0* Rep Stress Incr	YES V	NB Aptrix MSH	0.00 Hoi	riz(TL)	0.01 3 n/a n/a	Weight: 10 lb ET - 20%
		11(02013/11/2014					Weight 1910 11 - 2070
LUMBERTOP CHORD2x4 SP No.2	2		BR/ TOF	A CING P CHORD	St	ructural wood sheathing directly	applied or 6-0-0 oc purlins.
BOT CHORD 2x4 SP No.2 REACTIONS (lb/siz	2 ze) 1=233/6-3-12 (min 0-1-ł	3) 3=233/6-3-12 (min 0-1-8)	BO	T CHORD	Ri	gid ceiling directly applied or 10	-0-0 oc bracing.
Max I	Horiz $1=-49$ (LC 6)	(
FORCES	(lb) - Max. Comp./Max. Ten Al	l forces 250 (lb) or less except	when shown.				
	1-2=-261/83						
1) Unbalanced roof live load	ds have been considered for this	design.					
 Wind: ASCE 7-10; Vult= exterior zone and C-C Exterior zone and C-C Exterior 	130mph (3-second gust) Vasd=10 kterior (2) zone; cantilever left and	I3mph; TCDL=6.0psf; BCDL=6 I right exposed ; end vertical le	6.0psf; h=35ft; Cat. II; l aft and right exposed;C	Exp B; Encl C-C for mem	osed; MWFR bers and for	S (envelope) ces & MWFRS	
 Gable requires continuou This trues has been desi 	us bottom chord bearing.	80	ou other live leads				
 5) * This truss has been designed and and and and and and and and and an	signed for a live load of 20.0psf of	n the bottom chord in all areas	where a rectangle 3-0	06-00 tall by	2-00-00 wid	e will fit between	
 6) Provide mechanical conr 7) Boyeled plate or shim rec 	nection (by others) of truss to bea	ring plate capable of withstand	ling 28 lb uplift at joint	1 and 32 lb	uplift at joint	3.	
 8) This truss is designed in TPI 1 	accordance with the 2015 Interna	tional Residential Code sectio	ns R502.11.1 and R80	02.10.2 and	referenced s	standard ANSI/	
							A CAP
						1.5	OF ESIG MY
							S TARIES
						AP1	Malan
						- 16 -	054919
						110	3/4/2024
							AUNGINEER OS

Job	Truss		Truss Type		Qty	1	Ply	Professiona	al Bldrs /	Hano	/er Craftsman		٦
72406537	V12		Truss		2	2	1	Job Refere	nce (opti	ional)			
UFP Mid Atlantic LLC	C, 5631 S. NC 62, Bu	Irlington, NC, r thomas		Run: 8.62 S Se	ep 22 202	2 Print:	8.620 S S	Gep 22 2022 Mi	Tek Indus	stries, In	c. Mon Mar 04 15	5:57:05 Page	e: 1
					10	D:FiEIW	/JVAvK7N	IzAZemw6oFa	z3TJf-gOr	_VEXy0	A3o3Z6ZJkOi9a	PKvhx0qOIZt?kO0JzeG	TS
					<u>}</u>	<u>1-7-8</u> 1-7-8		3-3- 2-9-13 1-2-5 0-5-	0				
		4-1-1	- 6.0	° ∕ 4	8 ¹²		3x4= 2 1 1 1 1 1 1 1 1 1 1 1		3				
						3x4 💋		3x4 👟					
							3-3-0						
					\uparrow		3-3-0	,	1				
Plate Offsets (X, Y):	[2:0-2-0,Ed	ge]											
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-MP	0.06 0.06 0.00	DEFL Vert(L Vert(T Horiz(L) `L) TL)	in (loc) n/a - n/a - 0.00 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 9 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD 2 BOT CHORD 2 REACTIONS FORCES NOTES 1) Unbalanced r 2) Wind: ASCE exterior zone for reactions :	2x4 SP No.2 (Ib/size) Max Horiz Max Uplift (Ib) - Ma coof live loads have b 7-10; Vult=130mph (and C-C Exterior (2) shown; Lumber DOL se continueus bottom	1=113/3-3-12, (min. 0-1-8 1=-24 (LC 6) 1=-13 (LC 10), 3=-17 (LC 1x. Comp./Max. Ten All ween considered for this of 3-second gust) Vasd=10 zone; cantilever left and =1.60 plate grip DOL=1. where the arrigen	i), 3=113/3-3-12, (min. 0-1-8 11) forces 250 (Ib) or less exce design. 3mph; TCDL=6.0psf; BCDL- right exposed ; end vertical 60	B Tr B) pt when shown. =6.0psf; h=35ft; Cat. I left and right exposed	RACING OP CHOI OT CHOI I; Exp B; d;C-C for	RD RD Enclose membe	Str Ri, ed; MWFR	ructural wood s gid ceiling direc S (envelope) ces & MWFRS	heathing ttly applie	directly d or 10-	applied or 3-3-0 (0-0 oc bracing.	oc purlins.	
 Gable require This truss has This truss has This truss has Provide mect Beveled plate This truss is of TPI 1. 	is continuous bottom as been designed for lord and any other m lanical connection (t e or shim required to designed in accordar	a 10.0 psf bottom chord I r a live load of 20.0psf or rembers. y others) of truss to bear provide full bearing surfa nce with the 2015 Interna	ive load nonconcurrent with the bottom chord in all area ing plate capable of withstan ice with truss chord at joint(s tional Residential Code sect	any other live loads. as where a rectangle 3 nding 13 lb uplift at joi s) 3. ions R502.11.1 and R	3-06-00 ta nt 1 and ² 8802.10.2	all by 2- 17 lb up ? and re	00-00 wide	e will fit betwee 3. standard ANSI/	n				
									4	and a summer	ORTH C MC 0549 3/4/2 NGIN	AROU 10 10 10 10 10 10 10 10 10 10 10 10 10	E

This design is based upon parameters shown, and is for an individual building component to be installed and loaded vertically. Applicability of design parameters and proper incorporation of component is responsibility of the Building Designer. Building Designer shall verify all design information on this sheet for conformance with conditions and requirements of the specific building. Certification is valid only when truss is fabricated by a UFPI plant. Bracing shown is for lateral support of truss members only and does not replace erection and permanent bracing. Refer to Building Component Safety Information (BCSI) for general guidance regarding storage, erection and bracing available from SBCA and Truss Plate Institute.

